
Adding file-level CRC32C support to
Hadoop Distributed FileSystem
Authors: dhuo@google.com,

Objective
Define a new "FileChecksum" type in Hadoop Distributed FileSystem (HDFS) which is the raw
CRC32C of the entire file contents, to enable checksum comparison between HDFS instances
with very different underlying block configurations, between replicated and striped HDFS files,
and even comparison with non-HDFS implementations of Hadoop's FileSystem interface.

Background
HDFS uses CRC32Cs to maintain data integrity in several different contexts:

● At rest, DataNodes continuously verify data against stored CRCs to detect and repair
bit-rot

● In transit, the DataNodes send known CRCs alongside the corresponding bulk data, and
HDFS client libraries cooperatively compute per-"chunk" CRCs to compare against the
CRCs received from the DataNodes

● For HDFS administrative purposes, "block"-level checksums are used for low-level
manual integrity checks of individual "block" files on DataNodes

● For arbitrary application-layer use cases, the FileSystem interface defines
getFileChecksum, and the HDFS implementation uses its stored fine-grained CRCs to
define such a "file-level" checksum

For most day-to-day uses, the CRCs are used transparently with respect to the application
layer, and only use per-"chunk" CRC32Cs which are already precomputed and stored in
"metadata" files alongside block data. The "chunk" size is defined by
dfs.bytes-per-checksum and has a default value of 512 bytes. All API-exposed
checksums currently take the form of an MD5 of a concatenation of chunk CRC32Cs, either at
the "block" level through the low-level DataTransferProtocol , or at the "file" level through
the top-level FileSystem interface. The latter is defined as the MD5 of the concatenation of all
the block checksums, each of which is an MD5 of a concatenation of chunk CRCs, and is
therefore referred to as an "MD5MD5CRC32FileChecksum ". This is effectively an on-demand
three-layer Merckle tree.

mailto:dhuo@google.com
https://en.wikipedia.org/wiki/Merkle_tree

This definition of the "file-level" checksum is sensitive to implementation and data-layout details
of HDFS, namely the "chunk" size (default 512 bytes) and the "block" size (default 128MB). As
such, it is not usable in any of the following situations:

● Two different copies of the same files in HDFS but with different per-file block sizes
configured

● Two different instances of HDFS with different block or chunk sizes configured
● Copying across non-HDFS "Hadoop compatible filesystem implementations" such as

Google Cloud Storage, AWS S3, Azure Blob Storage, etc.

Overview
Since CRC32C can be efficiently composed, it is possible to define new "composite block
CRCs" and "composite file CRCs" as the mathematically composed CRC across the stored
chunk CRCs rather than using MD5 of the component CRCs to calculate a single CRC that is
representative of the entire block or file and independent of the lower-level granularity of "chunk"
CRCs.

Given the sensitivity of data integrity and the vast volume of data stored in existing HDFS
deployments, it is desirable to minimize changes to existing behaviors, even if hidden from the
application-layer interface. This means the added functionality should avoid changing the way
BlockScanner maintains data integrity at rest or the way BlockReaderRemote verifies
chunk CRCs in transit.

Design Details

Modifying BlockChecksum in DataTransferProtocol
The DataTransferProtocol defines the low-level protocol-buffer-based interface over TCP
for HDFS clients to access DataNode data or metadata. Checksum information is available in
certain mutation requests and as a pre-computed "MD5 of CRC" block checksum, in addition to
providing the complete chunk-granularity stream of chunk CRCs in streaming reads. While the
client could reconstruct comparable composite CRCs from the read stream, it is necessary to
provide a means of computing composite CRCs without incurring the cost of ingesting the
complete actual data contents from disk.

As such, there doesn't currently exist an efficient accessor for CRC metadata in the
DataTransferProtocol, so any complete implementation requires modification to the DataNode
service to modify the DataTransferProtocol. To reuse the framework for dealing with any partial
chunks or range requests, this feature will modify both the existing BlockChecksum and
BlockGroupChecksum methods. In theory, the remote caller of this method needs only the

https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/crcutil/crc-doc.1.0.pdf

single composite CRC and CRC type in the response. Notably, in contrast to MD5-based block
checksums, the response does *not* need to expose internal details about bytes-per-CRC or
crcs-per-block. However, since the FileChecksum doubles up to be used for file-attribute
propagation in certain cases, the bytes-per-CRC is still needed in the response.

The behavior of BlockChecksum will be determined by an additional option in the
OpBlockChecksumProto to indicate whether MD5CRC or COMPOSITE_CRC is desired at the
block level. The option itself will not distinguish between COMPOSITE_CRC32 vs
COMPOSITE_CRC32C, since the option is a runtime property, while CRC32 vs CRC32C is a
sticky property of the underlying data.

In contrast to adding a completely separate DataTransferProtocol Op composite-crc paths:

Pros

● Avoids the proliferation of protocol Op codes
● Easier reuse of ReplicatedBlockChecksumComputer and

BlockGroupNonStripedChecksumComputer
Cons

● Failure modes for mismatched client/server versions less clean
● More changes to existing codepaths leading to increased risk of bugs impacting the old

behavior
● Requires changing existing method signatures of nominally public interfaces

Client-side support will additionally require shared logic for hierarchically merging multiple block
CRCs into a file-level CRC.

For better support of custom client-side definitions of range CRCs, it may be worthwhile to add
fine-grained accessors to raw chunk CRCs to the DataTransferProtocol providing access to
arbitrary ranges of chunk CRCs within each block. This idea was also previously discussed in
the context of new client-side aggregation algorithms for new striped erasure-coded files.

Legacy "gzip" CRC32 support
Prior to HADOOP-7443, HDFS used the same CRC polynomial used in java.util.zip.CRC32,
with little-endian bit-representation 0xEDB88320. In file-checksum contexts, this is
internally/colloquially referred to as the "Gzip" variant of the MD5-composed checksum, i.e. the
MD5MD5CRC32GzipFileChecksum), not to be confused with checksums over gzipped
contents, but simply named as such due to the legacy polynomial being the same one used by
gzip.

It is desirable for this feature to support both the Castagnoli variant as well as the "Gzip" variant,
for two reasons:

https://issues.apache.org/jira/browse/HDFS-8430?focusedCommentId=15105005&page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel#comment-15105005
https://issues.apache.org/jira/browse/HADOOP-7443
https://docs.oracle.com/javase/7/docs/api/java/util/zip/CRC32.html
https://github.com/apache/hadoop/blob/f67237cbe7bc48a1b9088e990800b37529f1db2a/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/fs/MD5MD5CRC32GzipFileChecksum.java

● A significant advantage of this proposed design is in-place backwards compatibility, so

supporting the legacy format which may still be in use by some older HDFS deployments
is in-line with this goal

● It is a good driving use case to ensure the implementation is done in a general manner
to better accommodate new CRC polynomials in the future, especially when likely
moving to 64-bit CRCs if/when CPU-native support for a 64-bit standard is introduced

Nonetheless, it is expected that CRC32C will remain standard/preferred for the foreseeable
future, and the primary variant to be used in compatibility across heterogeneous storage
systems for the same reasons it was introduced in the first place (superior error-detection
semantics and CPU intrinsic support since SSE 4.2).

In practice, this means the file-level composition strategy will be kept distinct and orthogonal to
choice of underlying component CRCs; rather than introducing COMPOSITE-CRC32C as a
"peer" of "MD5MD5CRC32", we should think of "COMPOSITE-CRC" and "MD5MD5CRC" as
different composition strategies applicable to different underlying CRC options. Additionally,
protocol definitions will continue to return variable-length composite checksum definitions (i.e.
"bytes" in the protocol buffer definition) instead of uint32.

CRC32C strength and possible future CRC64 support

Error detection vs tamper resistance
In assessing the role of file-level checksums in various aspects of data integrity, it is important to
note that the same properties which make CRCs well-suited for distributed storage systems
(composability, reversibility) mean it is fundamentally not tamper-resistant. At the same time,
MD5 is also considered insecure in the context of adversarial tamper resistance. As such, we
can recognize that "secure" data integrity is already a problem which must be solved
out-of-band from existing internal error-detection/correction mechanisms.

This observation helps focus the driving requirements for the category of file-level checksums
discussed here. Importantly, the theoretical existence of collisions and/or the triviality of being
able to construct intentional collisions is *not* a driving concern, and instead the protection
strength can be assessed in the context of actual random-error sources in the use-case at hand.

Hierarchical error detection for data transfers
In general, 32-bit CRCs are expected to be valuable for generalized detection of transfer-time
errors in files being migrated between separate storage instances, since each hierarchical
protocol layer provides certain guarantees on the nature of errors that may go undetected. In
particular, since HDFS continues to verify per-chunk CRCs at the transfer layer, the minimum
number of bit-errors required to generate a failed error detection in an arbitrary-length payload is

https://en.wikipedia.org/wiki/SSE4#SSE4.2

lower-bounded by the CRC's minimum Hamming distance for an undetected error in a
chunk-sized payload. For a Hamming distance of N,

1. If all N bit-flips occur within a single chunk, this is trivially true by being detected by the
chunk verifier

2. If the N bit-flips occur spread across several chunks to result in a file-level CRC collision,
then some number of chunks would have held K-bit errors ranging from 1 <= k <= N - 1,
and by definition of CRC Hamming distance, all bit-errors <= N bits will be detected by
the chunk verifier

The second case is where the hierarchical inclusion of per-chunk verification distinguishes the
possible error types from a pure-file-checksum based integrity check. In terms of concrete
numbers, CRC32C has a minimum Hamming distance of 6 for the default chunk size of 512
bytes, whereas, for example, a standalone CRC32C of a 2GB payload (greater than the period
of the polynomial) would be vulnerable to 2-bit errors.

For certain dense bit-errors that go undetected within a single chunk, the approach of using a
composite CRC is no worse than the existing approach of using MD5-of-CRCs, since in both
cases the strength of the aggregated checksum is no better than that of individual chunks;
importantly, MD5-of-CRCs is not equivalent to MD5 of the raw byte contents.

Ultimately, the types of errors most likely to benefit from the use of file-level composite CRCs
are those caused by software bugs that may introduce errors independently of transfer-layer
chunk checksums, such as rebroadcast/duplication/out-of-order buffering bugs or other
software-layer memory corruption introduced after chunk-level checks are performed.

Use cases vulnerable to collisions

Certain legitimate use cases may call for longer CRCs, such as data de-duplication across a
large number of files, since in such a case the birthday paradox applies and we'd expect only
something on the order of 216 files to reach a ~50% chance of a collision in a 32-bit space.

In anticipation of future extension to longer CRCs, protocol definitions will be length-agnostic.

Supporting file prefix-range checksums
The same approach for prefix-range checksums currently used in MD5MD5CRC combine mode
will apply to new the COMPOSITE-CRC combine mode, where the final partial-chunk will need
to be explicitly fetched from disk to obtain a new CRC32C of the partial chunk on-demand.

https://users.ece.cmu.edu/~koopman/crc/crc32.html
https://users.ece.cmu.edu/~koopman/crc/c32/0x8f6e37a0_len.txt
https://users.ece.cmu.edu/~koopman/crc/c32/0x8f6e37a0_len.txt

As long as the length of the partial chunk is accounted for when composing CRCs, the
composed CRCs will uniquely support further composition with a file suffix-range while
preserving comparison with whole-file checksums. In contrast, MD5MD5CRC mode
fundamentally does not support extending a prefix-range checksum with a suffix while retaining
equality with the whole-file checksum, because there is no way to "back out" the partial-chunk
checksum digested into the block MD5.

Striped Erasure-Coded formats
HDFS-7285 introduces a new striped, erasure-coded file format to HDFS in Hadoop 3+, adding
a new hierarchical layer of data granularity called a "cell", defaulting to 64kB, arranged into a
"block groups" which are logically analogous to normal "blocks" in a non-striped file, are now
striped across multiple datanodes.

For purposes of file-level checksum support, HDFS-8430 implements a three-layer
MD5-of-CRCs approach, whereby individual contiguous sections (cells) are calculated through
the same non-striped "blockChecksum" method but are aggregated at the "block group" layer
before then being combined at the file-level. Each cell-level "blockChecksum" is thus an
MD5-of-CRC, each "blockGroupChecksum" is MD5-of-MD5-of-CRC, and the FileChecksum is
an "MD5-of-MD5-of-MD5-of-CRC", even though it is exposed as a comparable MD5MD5CRC
checksum type, which implies compatibility with regular non-striped file checksums.

This incompatibility between FileChecksums of striped files vs replicated files was indeed
identified as one of the key shortcomings of the straightforward MD5 approach, and was
discussed in-depth in HDFS-8430. Maintaining compatibility with the existing replicated-file
MD5BD5CRC was deemed infeasible due to the approach requiring fetching all *chunk*-level
CRCs from all sibling DataNodes sharing cells of a single block group, and having a single
block-group mediator combine chunk CRCs in order to make blockGroupChecksum analogous
to replicated-file blockChecksums.

This document's new COMPOSITE-CRC32 approach allows both backwards-compatibility and
comparability between replicated and striped files independently of cell layout. This will require
adding API support for CRC composition to the blockGroupChecksum method of the
DataXceiver, but will similarly be able to build on top of the addition of blockChecksum support
in replicated files being used to obtain per-cell composite CRCs.

Much of the logic already implemented for hierarchical MD5 composition can be reused to
handle cases of missing data blocks requiring cell reconstruction against parity blocks, but some
refactoring is still needed to abstract out the CRC composition logic from the parity-block repair
logic in helper classes like BlockChecksumHelper to eliminate hard-coded assumptions about
accumulating an MD5 of underlying checksums.

https://issues.apache.org/jira/browse/HDFS-7285
https://issues.apache.org/jira/browse/HDFS-8430
https://github.com/apache/hadoop/blob/56b88b06705441f6f171eec7fb2fa77946ca204b/hadoop-hdfs-project/hadoop-hdfs/src/main/java/org/apache/hadoop/hdfs/server/datanode/DataXceiver.java#L1020
https://github.com/apache/hadoop/blob/56b88b06705441f6f171eec7fb2fa77946ca204b/hadoop-hdfs-project/hadoop-hdfs/src/main/java/org/apache/hadoop/hdfs/server/datanode/DataXceiver.java#L1020
https://github.com/apache/hadoop/blob/cc1292e73acd39c1f1023ad4841ffe30176f7daf/hadoop-hdfs-project/hadoop-hdfs/src/main/java/org/apache/hadoop/hdfs/server/datanode/BlockChecksumHelper.java#L338

Other Implementation Details

DataChecksum vs FileChecksum options
The DataChecksum class encapsulates "internal" checksum options pertaining to transfer-level
checksums, while the FileChecksum constitutes the public interface. At the moment, the nature
of the FileChecksum is fully a function of the underlying DataChecksum options, being implicitly
defined by an effective combination of dfs.checksum.type , dfs.bytes-per-checksum ,
and dfs.blocksize , all defined in HdfsClientConfigKeys.

For this new feature, it is desirable to allow a client-side configuration definition to choose the
CRC combine strategy at runtime, so we introduce a new key
dfs.checksum.combine.mode , configured orthogonally to the transfer-level configuration
options.

ChecksumOpt preservation of low-level FileAttributes
Since the value of dfs.bytes-per-checksum is part of the definition of the FileChecksum
algorithm name when using MD5MD5CRC combine mode, the embedded
FileChecksum.getChecksumOpt doubles as a mechanism to obtain per-file low-level checksum
configs for use with cases like FileAttribute preservation in DistCp.

Since the new combine mode makes FileChecksum agnostic to underlying chunk or block
representation, dfs.bytes-per-checksum has no reason to be propagated into
FileChecksum, and in particular will not be part of the "algorithm name" to ensure comparable
checksums between different HDFS instances with different underlying chunk configurations.

However, since attribute-preservation is in theory unrelated to the comparability of
FileChecksum instances, the interface seems to dictate propagating the chunk configuration into
the ChecksumOpt despite being unnecessary to the checksum computation itself. For copies
from HDFS to HDFS, this will thus behave as expected even when "COMPOSITE-CRC" is used
as the combine mode.

If copying from a storage system which is unable to expose underlying chunk configuration, the
ChecksumOpt may either be set to an uninitialized value of dfs.bytes-per-checksum , or
could inherit runtime HDFS settings.

https://github.com/apache/hadoop/blob/addbcd8cd44de25f9fcb1920183155609908aa91/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/util/DataChecksum.java
https://github.com/apache/hadoop/blob/addbcd8cd44de25f9fcb1920183155609908aa91/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/fs/FileChecksum.java
https://github.com/apache/hadoop/blob/addbcd8cd44de25f9fcb1920183155609908aa91/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/client/HdfsClientConfigKeys.java#L119
https://github.com/apache/hadoop/blob/addbcd8cd44de25f9fcb1920183155609908aa91/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/fs/FileChecksum.java#L40
https://github.com/apache/hadoop/blob/addbcd8cd44de25f9fcb1920183155609908aa91/hadoop-tools/hadoop-distcp/src/main/java/org/apache/hadoop/tools/mapred/RetriableFileCopyCommand.java#L157

Abstracting out FileChecksum implementation from DFSClient
Though the FileChecksum interface declared as the return value for FileSystem and
AbstractFileSystem's getFileChecksum method is sufficiently generic to accommodate this new
COMPOSITE-CRC format, the lower-level DFSClient.getFileChecksum method explicitly returns
an "MD5MD5CRC32FileChecksum". In general, the DFSClient is only supposed to be used as
an internal implementation detail of the DistributedFileSystem and in other HDFS-internal
contexts, but it is declared as a public class and DFSClient.getFileChecksum is a public method
(mitigated by the class-level annotation "@InterfaceAudience.Private").

In order to return the COMPOSITE-CRC as a different subclass of FileChecksum, either
DFSClient must change its public method signature (and break any users assuming
MD5MD5CRC32FileChecksum to be the concrete class returned), or the configuration option
must be applied one level higher, in the DistributedFileSystem. In the interest of
backwards-compatability, the preferred approach will be to apply the configuration in the
DistributedFileSystem, at the cost of leading to slightly more code duplication in the DFSClient.

Performance

Amortization across fixed-size chunks
While the critical-path computation of CRCs from raw data benefits from SSE intrinsics, there is
no such native "compose-crc" support. Though in many cases the order of magnitude of CRC
compose operations performed is small enough to make efficiency considerations negligible (for
example, a single compose operation on "append", or concatenating on the order of 10s to 100s
of block CRCs into a file CRCs), in this case the reuse of chunk CRCs to compute the
aggregate CRC introduces non-negligible efficiency requirements. At a default
dfs.bytes-per-checksum of 512 and a default dfs.blocksize of 128MB, this translates
to 250,000 CRC-composition operations per block, and larger block sizes are commonly used in
large deployments, where 512MB blocks mean 1,000,000 operations.

As indicated in this whitepaper, the composition of two CRCs CRC(M1, 0) and CRC(M2, 0) can
be modeled as a special case of computing a "change of initialization polynomial" given a
source with initialization polynomial of 0 and target polynomial of CRC(M1). Applying the
formula, we see:

CRC(M2, CRC(M1)) = CRC(M2, 0) + ((CRC(M1, 0) - 0) x|M2| mod P

The bulk of the computation thus lies in calculating the monomial x|M2| mod P and multiplying it
by the CRC of M1. As usual, by expressing the length L in terms of its binary representation,

https://github.com/apache/hadoop/blob/59d69257a888347f0fb9c51bb000afc986b64f98/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/fs/FileChecksum.java
https://github.com/apache/hadoop/blob/59d69257a888347f0fb9c51bb000afc986b64f98/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/DFSClient.java#L1729
https://github.com/apache/hadoop/blob/59d69257a888347f0fb9c51bb000afc986b64f98/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/DFSClient.java#L194
https://github.com/apache/hadoop/blob/a68e445dc682f4a123cdf016ce1aa46e550c7fdf/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/DistributedFileSystem.java#L1676
https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/crcutil/crc-doc.1.0.pdf

 |M | Σb 2L = 2 = i
i

xL = xΣb 2i
i

x= Π b 2i
i

and each power-of-two monomial can be efficiently computed independently by repeatedx2i
squaring. We thus see that the basic runtime of a single composition operation is logarithmic in
the length L of M2. While powers-of-two monomials can be precomputed, we must always
support arbitrary lengths of M2 when it is an incomplete chunk or incomplete block. Furthermore,
there is no fundamental constraint that chunk sizes are exact powers of 2.

Naively, if we have N chunks each of size L, computing the total composite CRC is O(log(L) *
N). Using sample numbers of 1,000,000 operations, letting log(L) ~= 64, each multiplication
taking 32 operations, and 1ns per operation, we see this approaching 1M * 2048ns ~= 2
CPU-seconds for a single composite CRC.

In contrast, since the chunk layout is largely homogenous, we can have the block-checksum
loop precompute the monomial associated with the given block's chunk size (even if this differs
between different files, within a block the chunk size is always constant) and thus reduce every
chunk composition to a single 32-bit polynomial multiplication (and one XOR) except for the last
partial chunk, to achieve overall O(log(L) + N) time. Using the same example numbers, this
reduces the CPU-cost to ~30ms from 2s.

In practice, chunk sizes aligned with powers of two should have the same time complexity as
precomputing the monomial. However, looping over unset bits in recomputing the monomial still
introduces overhead, and more importantly, since chunk sizes are configurable per-file, it is
desirable to enforce consistent CPU performance of file checksums, rather than allowing an
ill-conceived or intentionally-malicious chunk size to suddenly cause DataNodes to spend i.e.
10-20x the typical CPU cycles on checksumming.

Benchmarks indicate performance characteristics in-line with the theoretical values, taking ~0.5s
to compose 1,000,000 CRCs with data length 511 using a shared monomial vs ~4.5s to do the
same recomputing the monomial from a powers-of-two lookup table for each composition (and
more than 10s to do the same without a powers-of-two lookup table, instead performing
repeated squaring on-demand).

Skipping chunk CRCs during parity-block reconstruction
Since existing MD5-of-CRC checksums are sensitive to chunk size, the
StripedBlockChecksumReconstructor must still compute individual chunk CRCs independently
before combining them into an MD5; in this case, chunk CRCs aren't used other than in the

https://github.com/apache/hadoop/blob/cc1292e73acd39c1f1023ad4841ffe30176f7daf/hadoop-hdfs-project/hadoop-hdfs/src/main/java/org/apache/hadoop/hdfs/server/datanode/erasurecode/StripedBlockChecksumReconstructor.java#L125

aggregate checksum, so it would be more efficient for a COMPOSITE-CRC to simply compute
the contiguous running CRC across the reconstructed block to avoid a second
CRC-composition phase. However, the code is not well structured to support this divergent
branch of logic, so it would either require refactoring or a custom block-reconstruction
implementation. Since the reconstruction of data blocks involves reading orders of magnitude
more data from disk than plain CRC metadata, the additional inefficiency of a CRC composition
phase is negligible anyways, and it is likely not worth the maintenance overhead to perform this
optimization.

Augmenting FileSystem interfaces with data integrity
checks
An immediate benefit of implementing COMPOSITE-CRC is that several existing FileSystem
interfaces can be augmented to apply low-level data integrity checks transparently and
efficiently where this wasn't previously possible. Notably:

● concat - The namenode could share the CRC-combine logic and compare against the
datanode-aggregated values to ensure no out-of-order issues occured in assigning new
block index mappings

● append - The client can pre-fetch the existing file-level CRC and incrementally extend
the CRC with newly appended bytes without requiring knowledge of underlying chunk or
block layout; on completion, a full-file checksum can be requested and compared against
the checksum computed from the continued stream

○ In contrast, this is not possible with the MD5MD5CRC mode even with client-side
knowledge of chunk/block layout, because a partial chunk and/or partial block
would be factored into the original file which is not present at all in the full-file
checksum post-append

Auxiliary tooling

BlockReader accumulator without DataTransferProtocol support
While the existing DataTransferProtocol doesn't expose CRCs directly, it does embed them into
block read streams, so at least for live data migrations it is possible to opportunistically preserve
pure client-computed aggregate CRCs. Modifications would need to be made to the
BlockReaderRemote and BlockReaderLocal to accumulate per-chunk CRCs and expose an

https://github.com/apache/hadoop/blob/f67237cbe7bc48a1b9088e990800b37529f1db2a/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/client/impl/BlockReaderRemote.java#L216
https://github.com/apache/hadoop/blob/f67237cbe7bc48a1b9088e990800b37529f1db2a/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/client/impl/BlockReaderLocal.java#L378

accessor to fetch the composite value upon completion of each block. The DFSInputStream
would then accumulate per-block CRCs directly from the BlockReaders and would itself
compose a file-level checksum.

This type of modification could be used in cases where it is infeasible to upgrade DataNodes on
a large HDFS cluster, and a pure client change is needed. For single-stream use cases, a
custom HDFS client bundled locally should work, but running a distributed job with custom
HDFS clients may run into classpath collisions with existing HDFS client classes under i.e.
/usr/lib/hadoop-hdfs/hadoop-hdfs-client*.jar. In such a case, it would be necessary to build a
clean end-to-end dependency stack (including i.e. DistCp itself) using Maven shade plugin to
relocate the entire HDFS client package.

Block metadata file validator
Given mappings to existing block metadata files and not wanting to update DataNode daemons
in-place, it could still be possible to overlay metadata file readers as separate ad-hoc daemons
running only for the duration of a data-verification effort. This tooling would involve implementing
a fully standalone and lightweight client/server pair, with servers responsible for reading block
metadata and returning composed block CRCs, and the client using the real namenode to fetch
block locations before connecting to the dedicated block-CRC daemons instead of to the
datanode ports indicated by the namenode.

Version History
● v2 - Updated section about modifying DataTransferProtocol to modify existing

BlockChecksum and BlockGroupChecksum methods with new BlockChecksumType
parameters instead of adding separate composite-crc specific methods

● v1 - Initial draft

https://github.com/apache/hadoop/blob/59d69257a888347f0fb9c51bb000afc986b64f98/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/DFSInputStream.java

