
1

Procedure	v2	-	Overview
March	2015

Problem	1	-	Sync	Client

2

Master

Executor

Create
Table

Handler

Admin

void createTable(…) {
 master.createTable();

 while (…) {
 if (MetaReader.hasTable(…))
 break;
 }
}

void createTable(…) {
 validateHTD(…)
 cpHost.preCreate()
 executor.submit(new CreateHandler())
 cpHost.postCreate()
}

create regions on fs
add regions to META
Assign
cpHost.postCreateHandler() -> (ACLs)The	client	relies	on	knowing	“the	last”	opera4on	

performed	by	the	server	to	create	a	fake	sync	behavior.	
result:	if	the	crete	handler	is	slow	ACLs	&	co	tests	will	be	failing

Solu=on	1	-	Sync	Client

3

Each	opera4on	“Procedure”	will	return	an	ID	
the	client	can	ask	the	master	if	the	opera4on	
with	the	given	ID	is	completed.	
(We	can	freely	change	the	server	side	code	order)

void createTable(…) {
 procId = master.createTable()

 while (!master.isProcDone(procId)) {
 sleep
 }
}

Master Executor

Create
Table

Handler

create regions on fs
add regions to META
Assign

Add to completed list

long createTable(…) {
 validateHTD(…)
 cpHost.preCreate()
 procId = executor.submit(new CreateHandler())
 cpHost.postCreate()
 return procId;
}

isProc
Done

cpHost.postCreateHandler()

Admin

Problem	2	-	Mul=-Steps	proc	&	Failures

4

Create
Table

Handler

create regions on fs
add regions to META
Assign
cpHost.postCreateHandler() -> (ACLs)

if	we	crash	in	between	steps.	we	end	up	with		
half	state	File-System	present,	META	not	present	
hbck	MAY	be	able	to	repair	it

if	we	crash	in	the	middle	of	a	single	step	(e.g.	create	N	regions	on	fs)	
hbck	has	not	enough	informa4on	to	rebuild	a	correct	state.

Requires	manual	interven/on	to	repair	the	state

Solu=on	2	-	Mul=-Steps	proc	&	Failures

5

Create
Table

Handler

create regions on fs
add regions to META
Assign
cpHost.postCreateHandler() -> (ACLs)

Rewrite	each	opera/on	to	use	a	State-Machine

…each	executed	step	is	wri;en	to	a	store

if	the	machine	goes	down		
we	know	what	was	pending	
and	what	should	be	rolledback	
or	how	to	con=nue	to	complete	the	opera=on

Procedure	v2	-	Implementa=on	Details

6

• New	“hbase-procedure”	package	
• depends	on:	hbase-common	
• used	by:	hbase-server	(Master	only	at	the	moment)	

• Procedure:	execute(),	rollback()	
• ProcedureExecutor:	sumitProcedure(Procedure),	isFinished(procId),	getResult(procId)	
• ProcedureStore:	load(Proc),	insert(Proc),	update(Proc),	delete(Proc)

Procedure	v2	-	Core	Components

7

ProcedureExecutor

Thread[0] Thread[1] Thread[N]

RunQ

Timeout
Thread

TimeoutQ

submitProcedure()

Completed
Proc Set
& Result

isFinished()
getResult()

ProcedureStore

Active
Procedure Set

Procedure	v2	-	What	a	procedure	can	do?

8

• A	Procedure	describes	an	“opera=on”	
• A	Procedure	may	be	divided	in	sub-Procedures	(“steps	of	the	opera=on”)

Step 0

Step 1

Step 2

Request

Response

Step 0

Step 1B

Step 2B

Request

Step 3

Response

Step 1CStep 1A

Step 2B

Procedure	v2	-	Code	Example

9

• “Procedure”	is	the	base	object	that	allows	you	to	do	crazy	stuff	
• there	are	helpers	that	allows	you	to	simplify	the	code	e.g.	Sequen=alProcedure

Step 0

Step 1

Request

Response

class Step0 extends SequentialProcedure {
 protected Procedure[] execute() {
 return new Procedure[] { new Step1(); };
 }
 protected void rollback() { ... }
}

class Step1 extends SequentialProcedure {
 protected Procedure[] execute() {
 return null; // no other sub-procs
 }
 protected void rollback() { ... }
}

10

Procedure	v2	-	Code	Example

11

• A	variant	of	a	“Sequen=alProcedure”	is	“StateMachineProcedure”	
• Less	Procedure	classes	around,	and	a	bit	more	readable	for	simple	procs.

class MyProcedure extends StateMachineProcedure<MyState> {
 enum MyState { STEP_0, STEP_1, STEP_2 }
 protected Flow executeFromState(MyState state) {
 switch (state) {
 case STEP_0: setNextState(STEP_1); return Flow.HAS_MORE_STATE;
 case STEP_1: setNextState(STEP_2); return Flow.HAS_MORE_STATE;
 case STEP_2: return Flow.NO_MORE_STATE;
 }
 }
 protected void rollbackState(MyState state) {
 switch (state) {
 case STEP_0: break;
 case STEP_1: break;
 case STEP_2: break;
 }

Step 0

Step 1

Step 2

Request

Response

Procedure	v2	-	Procedure	“Framework”	States

12

• The	procedure	(simplified)	lifecycle	is:

INITIALIZING

RUNNABLE

FINISHED

Is
Failed?

ROLLEDBACK

YES

submitProcedure(new MyProcedure)

MyProcedure.execute()

MyProcedure.rollback()

The server may go down during the execution of the Procedure
on restart the procedure.execute() will run again,
since the state is not changed.

The server may go down during the execution of the Procedure
on restart the procedure.rollback() will run again,
since the state is not changed.

At	each	“state	change”	
the	Procedure	State	
is	wri[en	to	a	store.

All	the	Steps	you	write	in	execute()/rollback()	must	be	idempotent

Procedure	v2	-	Procedure	Store	/	WAL

13

• ProcedureStore	is	an	interface	with	load(),	insert(),	update,	delete()	
• Current	Implementa=on	is	a	simple	WAL,	which	allows:	

• if	no	proc	running/pending,	throw	away	all	the	WALs	
• if	all	the	procs	were	updated	and	added	to	the	new	WAL,	throw	away	the	old	ones

INIT Procedure 0

UPDATE Procedure 0

INSERT Procedure 0 Procedure 1

…

UPDATE Procedure 1

UPDATE Procedure 0

INIT Procedure 2

…

state-001.log state-002.log

• Replay	is	from	new	to	old	
• A	procedure	can	start	only	when	the	INIT	is	
found	(INIT	=	user	submit)	or	we	read	all	logs.

Procedure	v2	-	HMaster	Implementa=on	Details

14

• Master.proto	
• A	new	“proc_id”	field	was	added	to	the	Response	of	each	opera=on	
• A	new	getProcedureResult(procId)	rpc	was	added,	to	allow	the	client	to	
get	the	result	of	the	specified	procedure	(sync-client).	

• HMaster	
• has	a	startProcedureExecutor()/stopProcedureExecutor()	
• MasterProcedureEnv	passed	to	the	procedures	to	have	access	to	
HMaster	instance.	

• *Handler	replaced	by	*Procedure

Procedure	v2	-	HMaster	Implementa=on	Details

15

• The	master	has	a	custom	run-queue,	that	knows	about	tables.	
• The	Procedure	have	to	implement	a	“TableProcedure	Interface”	

• Opera=ons	on	different	tables	can	be	executed	concurrently.	
• (If	not	the	case	you	have	to	take	a	lock)	

• Write	Opera=ons	on	a	single	table	must	be	serialized	
• Read	Opera=ons	on	a	single	table	may	be	executed	concurrent	

• (we	don’t	have	any)
Table A Table B Table C Table …

proc

proc

proc

proc proc

proc

Procedure	v2	-	Client	with	sync	support

16

• Binary	Compa=bility:	void	opera=onAsync(…)	
• HBase	1.1:	Future<T>	opera=onFuture(…)		
• HBase	2.0:	Future<T>	opera=onAsync(…)

Future<T> operationAsync(..) {
 OperationResponse response = master.operation(..);
 return new ProcedureFuture<Void>(this, response.getProcId()) {
 protected T convertResult(GetProcedureResultResponse resp) {
 // Operation.convert(resp.getData())
 }
 protected T waitOperationResult(..) {
 // If there is no proc support,
 // sleep until condition (e.g. is entry in META)
 }
 }
}

T operation(..) throw TimeOutEx, IOEx {
 Future<T> f = operationAsync(..);
 return f.get();
}

• We	now	have	the	ability,	to	know	
if	we	have	a	“client	=meout”,	an	
error	on	the	server	or	more.	

• We	can	also	abort	the	opera=on	
with	future.cancel()

Procedure	v2/No=fica=onBus

17

• The	Procedure	v2/No=fica=onBus	aims	to	provide	a	unified	way	to	build:	
• Synchronous	calls,	with	the	ability	to	see	the	state/result	in	case	of	failure.		
• mul=steps	procedure	with	a	rollback/rollforward	ability	in	case	of	failure	(e.g.	
create/delete	table)	

• no=fica=ons	across	mul=ple	machines	(e.g.	ACLs/Labels/Quota	cache	updates)	
• coordina=on	of	long-running/heavy	procedures	(e.g.	compac=ons,	splits,	…)	
• procedures	across	mul=ple	machines	(e.g.	Snapshots,	Assignment)	
• Replica=on	for	Admin	opera=ons

