
Google Summer of Code 2013
Apache Gora support for Oracle NoSQL datastore

Apostolos Giannakidis
ap.giannakidis@gmail.com

Mentor: Lewis John Mcgibbney
16 September, 2013

Google Summer of Code 2013
Project title: “Apache Gora support for Oracle NoSQL datastore”
Student name: Apostolos Giannakidis
School of Computer Science, University of Birmingham
Project Proposal: https://google-melange.appspot.com/gsoc/project/google/gsoc2013/apgiannakidis/15001
Project URL: https://issues.apache.org/jira/browse/GORA-217
Project code base: https://github.com/maestros/gora-oraclenosql

DECLARATION OF AUTHORSHIP

The report that follows has been written by, and is entirely the work of Apostolos Giannakidis.

https://google-melange.appspot.com/gsoc/project/google/gsoc2013/apgiannakidis/15001
https://issues.apache.org/jira/browse/GORA-217
https://github.com/maestros/gora-oraclenosql

Abstract

The recent change in enterprise data needs, the subsequent advent of NoSQL databases and their
ongoing evolution have created applications that make concurrent use of various data storage
engines to solve different problems. These data storage engines have different data models and
different APIs. This concurrent use of a variety of databases, polyglot persistence as it is called,
could lead to confusion and may become hard to manage. Additionally, some aggregate-oriented
NoSQL databases are able to handle object persistence natively and efficiently, but others do not
have such build-in and efficient functionality. For these reasons, a framework is needed that can
consolidate the different NoSQL APIs and data models into one, and can provide a single way
for object persistence in NoSQL datastores regardless of their implementation. For the relational
databases this issue has been long resolved by the various ORM solutions that are available,
have been proved trustworthy and have become the standard. However, in the case of NoSQL
databases, there is still no standard framework. Apache Gora tries to fill this gap. Apache Gora
already supports persistence to 5 NoSQL data stores.

In this project, we designed, implemented and tested a new module for integrating Apache
Gora with the Oracle NoSQL Database as an object persistence data store. This module proves
that an object to a key/value store mapping is possible and thus object persistence is feasible in
such data stores.

Keywords: Apache Gora, NoSQL, Oracle NoSQL, ORM, Integration, Distributed Databases,
Systems and Software Development

‘Οι δημιουργοί της επιστημονικής γνώσης - ερευνητές σε εργαστήρια, καθηγητές σε

Πανεπιστήμια και νέοι στα πρώτα στάδια των σπουδών τους - έχουν, απέναντι στην

επιστήμη, τη σχέση που έχει ο γλύπτης με τα γλυπτά του ή ένας ποιητής με την

ποίηση.’

Γιώργος Γραμματικάκης (Η Κόμη της Βερενίκης)

“The creators of scientific knowledge - from the researchers in their labs to the
university professors and the young people just starting their studies - stand,
towards science, in the same relation as sculptors to their statues or poets to their
poems.”

George Grammatikakis (Coma Berenices)

ii

Contents

1 Introduction 1
1.1 Project Scope . 2

1.1.1 Scope statement . 2
1.1.2 Project deliverables . 2

1.2 Contribution of the project . 2
1.3 Motivation . 3
1.4 Report structure . 3

2 Background 5
2.1 NoSQL Overview . 5

2.1.1 Big Data . 5
2.1.2 Infrastructure Requirements . 6
2.1.3 CAP Theorem . 6
2.1.4 Data Models . 6

2.1.4.1 Aggregate . 7
2.1.4.2 Schemaless . 7

2.1.5 Types of NoSQL databases . 7
2.1.6 Key/Value stores . 8

2.1.6.1 Data model . 8
2.1.6.2 Key structures . 8
2.1.6.3 Value structures . 8
2.1.6.4 Avro data format . 8
2.1.6.5 Range queries . 8

2.2 Oracle NoSQL . 9
2.2.1 Overview . 9
2.2.2 Architecture . 9
2.2.3 Data model . 10
2.2.4 API . 11

2.3 Apache Gora . 12
2.3.1 Overview . 12
2.3.2 Architecture . 13
2.3.3 API . 14

3 Related Work 16
3.1 Apache Gora integration . 16

3.1.1 Gora-DynamoDB . 16
3.2 NoSQL Persistence Frameworks . 17

3.2.1 Object-NoSQL Datastore Mapper . 17

4 Requirement Analysis 18
4.1 Stakeholder identification . 18
4.2 Requirements specification . 19

4.2.1 Functional requirements . 19
4.2.2 Non-functional requirements . 21

4.3 Feasibility assessment . 21

iii

CONTENTS

5 Gora-OracleNoSQL datastore 23
5.1 Overview . 23
5.2 Features . 23
5.3 System Design . 25

5.3.1 High Level System Design . 25
5.3.1.1 Use Case Diagram . 25
5.3.1.2 Package Diagram . 26
5.3.1.3 Class Diagram . 27

5.3.2 Low Level System Design . 27
5.3.2.1 OracleStore . 27
5.3.2.2 OracleMapping . 28
5.3.2.3 OracleQuery . 28
5.3.2.4 OracleResult . 28
5.3.2.5 OracleUtil . 28
5.3.2.6 OracleStoreConstants . 28
5.3.2.7 GoraOracleTestDriver . 28

5.4 Implementation . 28
5.4.1 Data Model . 29

5.4.1.1 Data model mapping . 29
5.4.1.2 Mapping file . 30
5.4.1.3 Primary keys . 31
5.4.1.4 Preserving key natural sort order 31

5.4.2 CRUD Operations . 32
5.4.3 Properties . 32
5.4.4 ACID Transactions . 33
5.4.5 Query operations . 33

5.4.5.1 Result Cache . 34
5.4.6 Programming environment . 34
5.4.7 APIs used . 35

5.5 Testing . 36
5.6 Assisting software . 38

6 Apache Gora contribution 41
6.1 Overview . 41
6.2 Issues resolved . 41
6.3 Contribution Statistics . 43

7 Evaluation 45
7.1 Learning outcomes . 45
7.2 Challenges . 46
7.3 Achievements . 46
7.4 Limitations . 47
7.5 Improvements and future work . 48

8 Project Management 49
8.1 Project distribution . 49
8.2 Project schedule . 50
8.3 Risk Analysis . 50

8.3.1 Risk identification . 50
8.3.2 Risk assessment and management . 51

9 Conclusion 52

A Deliverables i

B How to run the software ii

iv

CONTENTS

C Progress Reports iv

v

List of Figures

2.1 Oracle NoSQL Database architecture . 10
2.2 Oracle NoSQL data model example . 11

5.1 Gora-OracleNoSQL - Use Case Diagram . 26
5.2 Gora-OracleNoSQL - Package Diagram . 26
5.3 Gora-OracleNoSQL - Class Diagram . 27
5.4 Gora data bean to Oracle NoSQL data model mapping 30

6.1 Number of issues by assignee . 44
6.2 Number of issues by reporter . 44

vi

Listings

5.1 Usage of DataStore.get(K key, String[] fields) . 23
5.2 Usage of DataStore.exists(T obj) and DataStore.delete(T obj) 24
5.3 Example of a Gora-OracleNoSQL mapping file . 30

vii

Nomenclature

ACID Atomicity, Consistency, Isolation, Durability

AGPL Affero General Public License

API Application Programming Interface

BDB JE Berkeley DB Java Edition

CRUD Create, Read, Update and Delete

JPA Java Persistence API

JSON JavaScript Object Notation

ORM Object-Relational Mapping

PMC Project Management Committee

RDBMS Relational database management system

SiTra Simple Transformer

SLF4J Simple Logging Facade for Java

SQL Structured Query Language

viii

Chapter 1

Introduction

Big Data is a revolution in the way businesses use their resources. During the last decade, businesses
started collecting vast amounts of data. This data could come from everywhere: real-time data
from all kinds of sensors, GPS location data, click information from web pages, or user posts from
all kinds of social media website are only few examples.

Several technologies have emerged that aim to contribute to the landscape of Big Data, each
one of them leveraging different aspects of Big Data. The two most important technologies that
drive the Big Data revolution are MapReduce and NoSQL databases.

MapReduce, first created by Google, and further developed by Yahoo and then by the Open
Source community, is a programming model that allows the processing of massive amounts of un-
structured data in parallel across a distributed network of computers. Apache Hadoop is the Open
Source implementation of the MapReduce programming model. Apache Hadoop is at the heart
of every Big Data system and because of its increasing importance, an ecosystem of interworking
tools, frameworks and applications has grown around it. Some of these are: Apache Gora, Apache
Pig, Apache Hive, Apache Sqoop and Apache Avro.

NoSQL databases are not a new invention today. The term NoSQL database was first coined in
1998 [1]. We should highlight the fact that the term NoSQL does not describe a specific database
system, nor a database query language. NoSQL is an umbrella term that describes all the varying
data storage technologies that do not conform to the relational paradigm [1]. Non-relational
technologies were created because of the realisation that the architectural concept “one size fits
all”, applied to datastores, did not suffice to cover the current needs of the enterprises [2]. These
needs include processing of huge amounts of generated data (High Throughput), very fast access,
and flexible Horizontal Scalability on commodity hardware. Also, because RDBMSs are mainly
built based on the “one size fits all” concept, they include complexity that is not needed in several
of the modern applications. This added complexity affects the overall performance of the database
in cases where performance is the main objective. For example, in a social web site, performance
and availability is more important than consistency. We are thus seeing many aspects related to
the NoSQL technologies and numerous implementations that are very different than each other.
This report is focused in the NoSQL field. Though it is not intended to be a thorough literature
review of the various NoSQL databases and the relevant technologies, we will, in order to fully
understand certain aspects of the implemented project, describe the fundamentals of the various
NoSQL technologies and some characteristics of their architecture.

Today, because of the recent changes in their needs and of the advent of NoSQL databases,
enterprises use a plethora of database engines in order to cover their numerous different needs. As
an example, let us consider the typical scenario of a big retailer online store. Such a store could use
an RDBMS to store and handle its financial data and for its warehouse reports, a key-value database
to store the shopping cart data and the user sessions, a graph database for recommendations, and
finally a column-oriented database for analytics and to store the user activity logs. This variety
of different data storage technologies for different enterprise needs could soon become confusing
and hard to manage. The term Polyglot Persistence [1] expresses just this variety of different data

1

CHAPTER 1. INTRODUCTION

storage technologies that are used concurrently by the current enterprise software systems. All
these different data storage technologies have different data models and different APIs.

Evidently, there is a need for a framework that will provide a single API for all the varying
NoSQL data stores, along with a single data model and Object-to-Datastore mapping capabilities.
This is where the Apache Gora framework comes in to fill the need. The version 0.3 of Gora
supports persistence to 5 NoSQL data stores, and its community works on expanding its data
store capabilities in order to achieve the project’s goal, which is to become the standard data
representation and persistence framework for Big Data. This project builds on top of Apache Gora
and contributes towards this goal by implementing a new NoSQL data store for object persistence.

1.1 Project Scope

1.1.1 Scope statement
In this project, we will expand Apache Gora’s data store capabilities by implementing a data store
module that will integrate with the Oracle NoSQL Database. More specifically, Apache Gora
should be enabled to persist data beans in Oracle NoSQL according to a custom mapping. The
design and the implemented features of this data store will be described in detail in this report.
The boundaries of this module are shown in the included Use Case diagrams.

The broad contribution to the Apache Gora Open Source community is also part of this project’s
scope. For this reason, and as a way to learn the implementation details of Apache Gora, several
issues, bugs and improvements were identified and resolved. The details of these issues are described
in chapter 5, and they are documented online in the Jira bug tracking tool that Apache maintains1.

1.1.2 Project deliverables
The main deliverable of this project is the new Gora-OracleNoSQL module that will allow Apache
Gora to use Oracle NoSQL as a persistence data store and properly utilise its features to achieve
the functionality that it is required by the Gora API. The source code of this datastore mod-
ule was maintained in GitHub and is publicly available here: https://github.com/maestros/gora-
oraclenosql/blob/master/gora-oracle/.

Additionally, this report itself is a major deliverable that includes important information about
this project. The specific sections of this report are discussed in subsection 1.4. It must be
highlighted that a critical part of this project is the delivery of a detailed design and analysis of
this module, not only to document it for this academic report, but also because of its Open Source
nature, which means it might need to be maintained by other developers in the future.

The patches of the Apache Gora Jira issues that have been resolved are also deliverables of this
project, as the contribution to the Apache Gora community was an essential part of the work.

The code for all the above deliverables, along with the report itself, are delivered on the CD
that comes with this report; they are also available online, as they have been committed to the
Apache Gora trunk repository.

1.2 Contribution of the project
The deliverables of this project aim to contribute to the Open Source community and specifically
to the Apache Gora project. This contribution will benefit the Apache Gora project in many
respects. Some of these benefits are listed below:

• Provide a new NoSQL datastore for the 0.4 release of Apache Gora.
• Make Apache Gora’s datastore support larger.
• Use a popular and reliable NoSQL solution in order to gain more attention from the com-

munity and help render Gora the standard persistence framework for NoSQL databases.
1https://issues.apache.org/jira/browse/GORA

2

https://github.com/maestros/gora-oraclenosql/blob/master/gora-oracle/
https://github.com/maestros/gora-oraclenosql/blob/master/gora-oracle/

CHAPTER 1. INTRODUCTION

• Explore a different approach of a key/value database, which will extend Gora’s datastore
support, as the only key/value store that Gora currently supports is DynamoDB, which is a
cloud database service and whose connectivity with it is performed by Web Services and not
by native method calls.

• Integrate with Oracle, winner of the Big Data Company of the Year 2013 award [3] and the
clear market leader in the commercial database field [4] in order to gain more enterprise users.

• Integrate seamlessly with the Oracle stack and the Big Data Appliance.
• Indirectly integrate (using External Tables) with Oracle’s, industry leading, relational data-
base.

• Take advantage of Oracle’s NoSQL unique features such as: ACID transactions, simple data
model, Avro JSON definitions and efficient support for Large Objects.

• Improve the overall framework by resolving major known bugs, by identifying unknown issues
and by proposing and implementing new features.

1.3 Motivation

Having extensive professional experience with relational databases, and being myself a Certified
Oracle SQL Expert, I wanted to explore alternative solutions to those that conform to the relational
paradigm. NoSQL technologies and the various Big Data solutions are the predominant alternative
and a relatively new field. Therefore, I considered a project related to the NoSQL technologies
as the best choice. During my search for a suitable project topic, I came across the Apache Gora
framework, which seemed a perfect fit for my knowledge needs. Additionally, I have always wanted
to work on an Open Source project, to add my contribution to the work of a large community of
developers, and this seemed a very good opportunity.

Apache Gora tries to solve the Polyglot Persistence issue [1] by consolidating all the different
NoSQL data models and APIs into a single data model and API. Further exploring Apache Gora,
I saw that it is a very new framework with great potential for becoming the standard data repres-
entation and persistence framework for Big Data because of its considerable adaptability and its
modular design. However, to actually become the standard NoSQL persistence framework, it needs
support for all major NoSQL datastores. Realising that at the moment, it supports only a few
of them, I identified the potential for extending its integration capabilities to another datastore.
While analysing the high-level requirements for such a project in order to assess its feasibility, I was
very happy to see that a similar endeavour was taking place in the global event Google Summer
of Code 2012. This proved that it is feasible to accomplish a similar goal within the timeframe of
a summer project.

When it came to the question of which NoSQL datastore I would plan to work on, the answer
came quite naturally. Since I am familiar with the Oracle ecosystem, and since Oracle NoSQL is
a NoSQL database with several integration points to other enterprise systems, I considered Oracle
NoSQL to be a very good candidate for Gora’s new datastore. Oracle NoSQL is a pure Java-based
implementation and its Community Edition is also Open Source (GNU AGPLv3). Additionally,
Oracle NoSQL, being an enterprise-class database, would give Apache Gora the opportunity to
be used in enterprise environments. Another point to be highlighted is that, even though Oracle
NoSQL is a key-value data store, its data model is quite different from any other existing key-value
database system. A final point to be made is that Oracle NoSQL has a tight integration with
Apache Hadoop and of course with the Oracle Database, as well as with Oracle Coherence and
Oracle Big Data Appliance. These facts make Oracle NoSQL a very interesting choice for a future
Apache Gora data store, one that would be a valuable asset for the Gora framework.

1.4 Report structure

This report is composed of 9 chapters. These are organised as follows:

• 2. Background: This chapter provides the necessary background information to properly
understand the implementation characteristics of the implemented system. Additionally, it

3

CHAPTER 1. INTRODUCTION

reviews the fundamental concepts and functionality of the two systems that will be integrated:
Apache Gora and Oracle NoSQL.

• 3. Related Work: This chapter presents a brief literature review and a review of similar
work on the topic of Apache Gora datastore support, as well as on the topic of persisting
objects in NoSQL data stores.

• 4. Requirement Analysis: This chapter presents the results of the analysis that was
performed in order to fully define the stakeholders and the system requirements of the Gora-
OracleNoSQL datastore module. Finally, it presents the assessment of a feasibility study
that was performed in order to evaluate the feasibility of this project.

• 5. Gora-OracleNoSQL datastore: This chapter gives all the details of the developed
module, including its analysis, design, implementation and testing. Moreover, it presents
the third-party tools that were used for the creation of the developed module and also the
assisting software utility that was needed for validating the results of the system. Finally, it
presents a guide for creating a Gora datastore module.

• 6. Apache Gora contribution: This chapter provides detailed information about the
general contribution to the Apache Gora project that aimed its overall improvement.

• 7. Evaluation: This chapter presents an overall evaluation of this project as well as several
important aspects of its success and the methodology that was used.

• 8. Project Management: This chapter describes the main phases and activities of this
project and how they were organised. It also presents the project plan, including the mile-
stones. Finally, it presents a risk assessment report that was created at the inception phase
of this project.

• 9. Conclusion: This chapter provides a synopsis of this project and summarises its achieve-
ments, limitations and proposed future work.

4

Chapter 2

Background

This chapter will present the necessary background information to make the reading of the report
easier, and clarify the terms and concepts relevant to the study.

2.1 NoSQL Overview

In this section we will present an overview of the NoSQL field and introduce to the reader the
fundamental concepts that are needed to understand the need of this project and its features.

2.1.1 Big Data

Before defining what Big Data is, let us first define what Big Data is not. Big Data is not a
technology; not even a product. It is an umbrella term that refers to very large datasets that are
challenging to handle, store, process, and analyse. Big Data is quantified Petabytes, Exabytes, and
soon Zettabytes [14]. These units express the magnitude of the datasets that today’s enterprises
generate and handle. To be specific, the rate of data generation increases annually, monthly or
even daily. Even in medium sized enterprises, the volume of data available to analyse is growing
at a very fast pace.

Viewed more closely, the term “Big Data” relates to the collection of large-scale datasets so as
to describe the fact that the complexity to be handled with common RDBMSs. By “handling”
such datasets, we mean performing particular functions and operations over the dataset. These
operations are not very different from those of the relational databases, as they include searching,
transferring, sharing, analysing and of course storing information [13]. But despite the fact these
functions are seemingly the same with the common data stores, there are particular requirements
that have to be met if they are to efficient and effective over large-scale datasets.

Obviously, in the last decade, a great change has arisen in the volume of the data that is being
generated and handled. However, it is not only the volume of the data that has changed, but also
the type of storage used.Today, a plethora of different data systems are in production, such as the
Web 2.0 applications, B2B, and Enterprise Application Integration (EAI) systems, to combine,
store and handle data from different sources. The data these sources generate may include text
messages, sensor data, audio, video, click streams, and log files, for just a few examples of the
variety of the data that should be stored and handled. A third characteristic of this kind of data
that has changed is the speed of their processing. There are many cases where 1 or 2 minutes of
processing is considered too much. The velocity, as it is called, of such data demands near real-
time or even real-time processing. Examples of such time-sensitive processes are fraud detection
and trading systems. Doug Laney [15] in 2001 was the first to define the term “Big Data” using
these three data characteristics (also called dimensions): Volume, Variety, Velocity. Now known
as the 3Vs of “Big Data”, they are used extensively to describe its essence.

5

CHAPTER 2. BACKGROUND

2.1.2 Infrastructure Requirements

It is very important that we now consider Big Data from a different point of view, that of hardware
and infrastructure, in order to define what the role of NoSQL databases is in the era of Big Data.
As Big Data is a fairly new world in the area of applied Information Technology, this is not a
regular case of common computing and infrastructure. There are particular requirements that are
very unique for the case of Big Data, as they are for every computing platform.

The term Big Data is closely related to three major processes that usually occur with a strict
sequence: data acquisition, data organisation and data analysis. Obviously, there would be no
interest or research into Big Data if there were not the final process of data analysis. Data analysis
is crucial because modern enterprises want to discover new findings or root causes by performing
knowledge mining operations over Big Data. Thus, data analysis is able to resupply the chain of
the three processes, by serving as the stepping stone for acquiring more data and organising them
again.

Clearly, the process of storing and organising this information should be totally different than
in regular data warehouses. For achieving better performance levels, there is a clear tendency to
take advantage of commodity computing. This means that a large number of already available
computing and hardware components are used for parallel computing in computer clusters or
clouds, to get the greatest amount of useful computation at low cost [16].

Commodity computing is also related to scalability issues. There are two major types of scaling:
horizontal and vertical scaling. The former is related to additions of extra machines (in terms of
nodes for a distributed system), while the latter is relevant to extra resources (e.g. CPU or RAM
upgrades) for a particular machine (node) of the cluster.

We can now realise that, as scalability is a very important issue for Big Data procedures, this
environment is an excellent fit for NoSQL applications. This is because NoSQL databases have the
right kind of design to support dynamic data structures and scalability, as they do not parse data
into fixed schemas [17] and do not maintain constraints (see section 2.1.4.2). NoSQL databases
are thus a very important help of in the process of data acquisition. In combination with Hadoop,
NoSQL is a fully integrated solution for the other two process of data organisation and analysis.

2.1.3 CAP Theorem

At this point we have to introduce the CAP theorem, as it applies in the field of distributed
systems. The CAP theorem states that when the three properties of Consistency, Availability and
Partition tolerance have to be met, any distributed system can achieve only up to two of them at
the same time. Of course, such requirements should be defined very clearly before proceeding with
any further discussion.

By the term Consistency, we mean the validity, accuracy, and integrity of the stored data, both
from logical and physical points of view. By Availability, we mean that if we can communicate
with one particular node of a cluster, this node is able to read and write data. This definition is
slightly different than the usual content of Availability [1]. Finally, by the term Partition tolerance,
we mean that the cluster is able to react successfully to communication breakages that occur inside
the cluster, that separate the cluster into different partitions unable to communication each other.

2.1.4 Data Models

Section 2.1.2 explained the importance of data organisation in Big Data. A representation of a way
of organising and manipulating data is called a data model. A popular model, one that dominated
the area of databases for many years, is the well-known relational data model.

Generally speaking, in NoSQL databases, there are no concepts of entity relationships, foreign-
keys, joins, and normalisation; concepts that are the essence of the relational model that RDBMS
systems use. This is because, as we described earlier, such a data model does not scale well. To
solve the scalability problem while being able to access all the required information, the solution

6

CHAPTER 2. BACKGROUND

is to perform denormalisation. Denormalisation is the systematic process of introducing duplicate
data into the database to improve the database’s efficiency [2][22].

However, this raises two questions [2]:

1. How much denormalisation is needed?
2. How will this model work when an update happens on a denormalised field?

To answer the first question, one must start at the beginning, or even before. In NoSQL databases,
an important step is performed before modelling: the definition of the queries. At this point, data
modellers should ask the question “What information should be fetched?” [18]. The answer to this
question will give them clues to the denormalisation granularity.

Regarding the second question, the answer relies on the application logic. Since the data are now
denormalised, the database cannot guarantee their consistency. Applications are now responsible
for maintaining consistent data and resolving any possible inconsistencies based on business rules.

Next, we will describe two basic characteristics of data models, as they are used in NoSQL
databases.

2.1.4.1 Aggregate

The aggregate data model characteristic is adopted by various types of NoSQL databases such as
key/value, document and column stores. An aggregate can be understood as a collection of data
that we wish to handle as a unit. Using aggregates, NoSQL databases are able to handle opera-
tions in very large data sets in a much more efficient and scalable way than relational databases.
Furthermore, aggregates are usually popular with software engineers, as they map directly to the
data structures they use in their applications, and are therefore able to control data persistence
in a more natural way. We should mention here that each NoSQL data model treats aggregates
differently.

2.1.4.2 Schemaless

This is a major property of every NoSQL database. To understand the concept of a schemaless
data model, it is convenient to compare it again with the relational data model. In order to define
a fully functional relational database, one has to define the schema before it stores any data. This
means that the necessary tables and their columns, relationships and constraints have to be defined
in advance. Then, any data that is to be stored in the database must conform to the predefined
schema.

In contrast, NoSQL databases bypass this requirement. One can simply store almost any kind
of data and no restrictions are applied. However, we must stress that some kind of schema is always
needed. This is because the data, in order to make sense to the application that will use them,
must have a specific structure that is understandable by the application. This application-level
schema is also called implicit schema [1]. A database that uses “Implicit Schemas” is commonly
called Schemaless.

2.1.5 Types of NoSQL databases
In this section, we will briefly present three of the most important types of NoSQL databases:
key/value stores, document databases, and column-family data stores.

Key/Value stores
This kind of stores is build on hash tables and is used when the access to the data is designed

to be achieved by a (primary) key. This data model is composed of two columns: one for the ID
(key) and one for the content (value). As this type of NoSQL database is of paramount importance
to this project, we will discuss their architecture in detail in next section.

Document databases
Document databases operate with documents, which are usually expressed in XML, JSON or

BSON etc. Document databases process the documents in order to retrieve and handle data that

7

CHAPTER 2. BACKGROUND

are located inside them. It is common for such a database to store documents that have the same
or a similar schema. However, this is not necessary, as each document is self-describing[1].

Column-family data stores
This type of NoSQL databases allows the user to store data with a data model similar to the

key/value stores. However, each key is mapped to a value that is a set of column-families. Each
column-family consists of several columns and each column is a tuple of name, value and timestamp
[1]. Well-known examples of Column-Family stores are the HBase and Hypertable stores.

2.1.6 Key/Value stores

As we mentioned earlier, this type of NoSQL databases plays a major role this project. In this sec-
tion, we will discuss this model in more detail and provide the necessary background on key/value
stores. Some popular databases based on the key/value model are Riak, Amazon’s DynamoDB,
Oracle NoSQL, and Project Voldemort which is an open-source implementation of Amazon Dy-
namoDB.

2.1.6.1 Data model

This model is the simplest and probably the most popular of all the NoSQL data stores. As we
said, each record is represented by a key and a value column. The value is in essence the aggregate
and the key is the index to the aggregate. The user is allowed to retrieve the value for the key,
insert values for particular keys or delete a key from the store.

2.1.6.2 Key structures

Despite the fact the general concept of key/value store is the same for most of the databases, there
are different implementations of the key structure in different NoSQL databases. For example, the
key structure in the Oracle NoSQL Database is based on the major and minor key paradigm, while
DynamoDB uses either one hash attribute or one hash and range attribute for the key.

2.1.6.3 Value structures

Values usually represent an opaque data type. That means that values are black box records for the
key/value store. The model is not interested in the nature of this data as values. Query operations
based on value are only allowed at the application level. That means that the application retrieves
the records, iterates through them and discards those who do not fulfil the value criteria. Thus,
key/value store databases are not able to perform queries based on values, as these values are
opaque to the database.

Additionally, as we mentioned earlier, the values do not have any schema restrictions. Each
record could have values of any content. Finally, it is important to mention that usually there is
no limit on the value part. The only limit is the one imposed by the Operating System.

2.1.6.4 Avro data format

Apache Avro is a data serialisation system which provides rich data structures and an efficient
binary data format. Avro names these data structures schemas, and are defined with JSON [20].
The Avro specification allows a plethora of data types for each schema, which includes various
primitive types such as boolean, int, float, bytes and complex types such as records, enums, arrays
and maps. Using Avro, one is able to compile a schema into generated code.

2.1.6.5 Range queries

As we have described above, there are plenty of implementations of key/value stores. While the
goal of all these solutions is to offer highly available and scalable data storage services, they have
significant differences amongst each other in terms of the architecture, their features, their use
cases and even their internal data models [12].

8

CHAPTER 2. BACKGROUND

Range queries provide a crucial functionality to a key/value store: to be able to identify one or
more keys that are stored, based on specific criteria. Such criteria are usually a start key (lower
limit) and an end key (upper limit). These two criteria define a specific range of keys that can be
used to access one or more key/value pairs in the database.

Range queries are an important feature for every data store that is used by OLTP applications.
It may be a strange observation to someone unfamiliar with the NoSQL field, but the feature of
range queries is not available to all key/value store implementations [12]. An extension of this
concept, of not only single key/value pairs but at the level of whole persistent objects, is provided
by the Apache Gora framework (see section 5.4.5).

2.2 Oracle NoSQL

2.2.1 Overview

The Oracle NoSQL Database is a distributed, highly scalable, highly available key-value data store.
It is focused to address the low latency data access needs that are required in processing "Big Data"
volumes [7]. "Key-value data store" means that the database stores and retrieves the data which
is organised into key-value pairs.

It is based on the proven and highly-tested Berkeley DB Java Edition and is a pure Java-based
implementation. On top of the BDB JE, it provides a simple data model based on multi-component
major and minor keys and full Create, Read, Update and Delete (CRUD) operations, with ad-
justable durability and consistency transactional guarantees. Additionally, it has tight integration
with the Apache Hadoop MapReduce infrastructure, with the relational Oracle database (RD-
BMS), with Oracle Coherence and with the Oracle Big Data Appliance.

It has several use cases, including social networks, customer profile management, real-time
sensor aggregation, content management, session management, archiving and many more. The
Oracle NoSQL Database can be used by any application that requires network-accessible key-value
data, as the back-end database in a three-tier architecture [8].

It is released in two editions: the Enterprise Edition and the Community Edition, which is
Open Source and licensed under the Affero General Public License version 3. It is part of the
Oracle Big Data Appliance and even though it was released 1.5 year ago, it already has several
thousands of deployments in enterprise environments.

In the following sections, we will discuss the architecture, the data model and the API of the Or-
acle NoSQL Database. Please note that these sections will not cover all the aspects, properties and
features of the Oracle NoSQL database, but only those that were used by the Gora-OracleNoSQL
module and/or those that are needed to understand the rationale behind some of the key imple-
mentation decisions of that module.

2.2.2 Architecture

The Oracle NoSQL Database, being a distributed database, is organised in Storage Nodes and
Replication Nodes. A Storage Node is a physical (or virtual) machine that hosts one or more
Replication Nodes. Conceptually, a Replication Node can be perceived as a single database which
contains specific key-value pairs. In the background, the Oracle NoSQL Database Driver partitions
the data and evenly distributes it across nodes, on the basis of on a consistent hashing algorithm
applied on the key. One or more Replication Nodes constitute a shard. One of the Replications
Nodes of a shard is elected to be the Master Node, which is responsible for handling the write
operations and replicating the write operations to the other Replication Nodes of the shard, which
are called replicas. The replicas handle the read-only operations. In essence, this means that by
having more shards (and thus more master nodes) there is higher write throughput, and by having
more replicas in a shard there is higher read throughput. The term Replication Factor refers to
the number of nodes that a shard has.

9

CHAPTER 2. BACKGROUND

Figure 2.1: Oracle NoSQL Database architecture

The data model of Oracle NoSQL will be explained in more detail in the section 2.2.3. However,
we must understand at this point that the key part of a key-value pair is composed of the Major
key and the Minor key. It is important to highlight the fact that Oracle NoSQL provides ACID
guarantees across multiple data pairs depending on their major and minor keys. The single-master,
multi-replica architectural model of Oracle NoSQL allows it to provide highly available database
replication with flexible durability policies per transaction. This flexibility is exposed at the API
level. This allows the application developer to make the proper decision regarding the tradeoff
of performance and consistency/durability for each CRUD operation or transaction. It should
be noted that other single-master, multi-replica distributed systems do not provide this flexibil-
ity. Instead, they provide system-wide configurations, which are very limiting for the application
developer who needs control over the data operations.

An important characteristic that needs further elaboration at this point is that Oracle NoSQL
achieves very fast indexed key lookup because it provides data locality for all the keys that share
the same Major key. Therefore, if application developers are to exploit properly the fact that key-
value pairs are evenly distributed across the nodes, they should properly design their application’s
data model and make wise use of Major key components. Having wisely-chosen Major keys has
another important benefit: multiple CRUD operations on multiple key-value pairs that share the
same Major key are executed under a single atomic operation with ACID guarantees.

The store records versions for each modification of the key-value pairs. However, it should be
remembered that it maintains only a single version of them: the latest. Therefore, there is no
need for conflict resolution. In essence, this means that the application developers do not have
to reconcile incompatible versions. This is achieved because of the single-master, multi-replica
architecture. The master node, always only one for each shard, always stores the latest (most
up-to-date) value for a specific key. Of course, the replicas, which are always read-only, might
have a slightly older version, depending on the configured consistency level. The reason that
Oracle NoSQL records versions for each key-value pair is to be able to provide read-modify-write
operations while consistency is preserved.

2.2.3 Data model
In this section, we will describe the data model that Oracle NoSQL Database uses. It is very
important to understand this data model in order to be able to understand the data model that
we created for the Gora-OracleNoSQL datastore module, which exploits the characteristics of the
one used by Oracle NoSQL.

The Oracle NoSQL Database stores its data using key-value pairs. In the Oracle NoSQL
terminology, a key-value pair could also be called “a record”. A key-value pair is a map data
structure in which the key references the associated value. A key follows the Major+Minor-key
paradigm. This means that a key is composed of a Major part and a Minor part. Each part (major
and minor) has one or more components, specified as an ordered list. All the components that

10

CHAPTER 2. BACKGROUND

compose the Major and the Minor parts are of type String. The concatenation of all the Major
and Minor key components is called the full key. Note that the Major key is mandatory and must
have at least one component. The Minor key is optional. Multiple key-value pairs that share the
same Major key but different Minor keys create sub-structures with an organisation similar to a
directory path specification in a Unix file system. An example of this structure could be visualised
as: /Major1/Major2/Minor1/Minor2/Minor3/.

The value part of the key-value pair is an opaque data value. This means that the value is byte
arrays of arbitrary length that are uninterpreted by the database. The database does not know the
structure/schema of the value, nor it does have query access based on the value part of its stored
key-value pairs. The serialisation of the data structures that need to be stored as byte arrays
and their deserialisation is left to the application. However, Oracle NoSQL has Avro bindings and
recommends to serialise the values using Avro instead of a custom serialisation format. As a final
note regarding the values, it should be mentioned that there are no restrictions on the size of the
values. However, consideration should be given to how large the key-values should be, because this
directly affects the datastore’s performance.

The following figure 1 illustrates an example of two key-value pairs that share the same Major
key but have different Minor keys, for a clear understanding of the data model used by Oracle
NoSQL.

Figure 2.2: Oracle NoSQL data model example

2.2.4 API

The Oracle NoSQL API for manipulating key-value pairs is straightforward. All the available
classes and methods of the API are made available to the application developer in the kvclient.jar
file. The following will discuss very briefly the main methods of the API. The methods presented
are grouped based on their operation type.

Basic CRUD operations
There are 3 main methods that provide CRUD operations, but there are several variations of

each of them. The variations of these methods are employed for specific use cases. Therefore,
we will only present here only those that were actually used by the Gora-OracleNoSQL datastore
module.

• get(Key key) → Value
Retrieves the value corresponding to the given key. A call of this method retrieves the value
of only one key-value pair at a time.

• put(Key key, Value value)
Inserts the persistent object with the given key if the key does not exist. If an key-value pair
with the given key already exists, the value of that key-value pair will silently be replaced.

• delete(Key key)
Deletes from the database the key-value pair that corresponds to the given key.

1Figure borrowed by the Oracle NoSQL documentation. Available at: http://www.oracle.com/
technetwork/products/nosqldb/overview/key-value-497224.html

11

http://www.oracle.com/technetwork/products/nosqldb/overview/key-value-497224.html
http://www.oracle.com/technetwork/products/nosqldb/overview/key-value-497224.html

CHAPTER 2. BACKGROUND

• multiDelete(Key parentKey, KeyRange subRange, Depth depth) → int
Deletes the descendant Key/Value pairs associated with the parentKey and returns the num-
ber of the keys that were deleted.

Iteration
Apart from the above-mentioned basic CRUD operations, Oracle NoSQL Database provides

additional API methods for two types of iteration: unordered and ordered iteration over records.
Ordered iteration is performed only for records that have the same full Major key. Unordered
iteration is performed when it is given only partial Major key or no key at all. The following are
the related methods that were used:

• multiGet(Key parentKey, KeyRange subRange, Depth depth)→ SortedMap<Key,ValueVersion>
Returns the descendant key/value pairs associated with the parentKey. A call of this method
retrieves multiple, sorted, key-value pairs at a time, as long as they all share the same Major
key.

• storeKeysIterator(Direction direction, int batchSize) → Iterator<Key>
Returns an Iterator which iterates over all keys in unsorted order. Since this method operates
in multiple key-value pairs that do not share the same Major key, the result does not have
transaction semantics.

• multiGetKeysIterator(Direction direction, int batchSize, Key parentKey, KeyRange sub-
Range, Depth depth) → Iterator<Key>
Returns an Iterator over a SortedSet of descendant keys associated with the parentKey.

Bulk Operations
Another type of operations, apart from the basic single-record CRUD operations, are the op-

erations that are bundled together into a collection of operations in order to be executed transac-
tionally all together, as long as they all share the same Major key.

• execute(List<Operation> operations) → List<OperationResult>
Executes the operations in the given list of operations in an efficient way within the scope of
a single transaction. The sequence of operations should be associated with keys that share
the same Major Path.

2.3 Apache Gora

2.3.1 Overview
In the relational database world, there are plenty of Object-Relational-Mapping frameworks that
solve the object-relational impedance mismatch problem. Hibernate 2, that implements the JPA
2.0 specification, has become the standard in this field 3. ORM frameworks, such as Hibernate,
create an abstraction layer for data storage. Therefore, using such a framework, it is in fact feasible
to change the back-end database system with minimal (or even no) changes in the application code.

However, in the NoSQL world, there is no similar standard specification for data storage ab-
straction and object persistence. ORM frameworks, such as Hibernate, are not sufficient to handle
the full power of NoSQL databases. This is where Apache Gora comes in to fill this gap. Apache
Gora is primarily, but not only, a NoSQL storage abstraction framework. Apache Gora is one of
the very few object persistence frameworks for NoSQL datastores, and according to our research, it
is the only one specifically built for this [5]. More specifically, the Apache Gora framework provides
an easy-to-use in-memory data model and persistence for Big Data and supports functionality for
persisting to column stores, key value stores, document stores and RDBMSs, and analysing the
data with extensive Apache Hadoop MapReduce support. Gora’s overall goal is to become the
standard data representation and persistence framework for Big Data [6].

The Apache Gora first entered the Apache Incubator on September 2010 and became a Top
Level Project in January 2012. Initially, the project started as an object persistence framework

2http://www.hibernate.org/
3http://jcp.org/aboutJava/communityprocess/final/jsr317/

12

http://www.hibernate.org/
http://jcp.org/aboutJava/communityprocess/final/jsr317/

CHAPTER 2. BACKGROUND

for column oriented databases such as Apache HBase 4 and Apache Cassandra 5. However, it
was soon evident that this framework could be extended to support any other kind of NoSQL
database. In its current release it supports 5 NoSQL databases and many others are implemented
by the members of its community. More specifically, it supports Apache HBase, Apache Cassandra,
Apache Accumulo 6, Amazon DynamoDB 7and a store for Apache Avro data files 8.

Apart from its object persistence capabilities, Apache Gora takes advantage of parallel com-
putation by having extensive out-of-the-box support for Apache Hadoop MapReduce. Every Gora
data store that implements the MapReduce-specific API methods, can be used as input and output
of Hadoop jobs 9.

As a final note, it should be mentioned that Apache Gora already has several thousands of
deployments, mostly as a dependency of Apache Nutch, a scalable web crawler.

2.3.2 Architecture

In this section we will present a high level overview of the Gora Architecture. Gora is a multi-
module project. Each supported datastore has its own module, and the core functionality of Gora
has its own separate module.

Gora-Core is the module where the core Gora interfaces and functionality are located, as
well as the AvroStore, the MemoryStore, and the testing suite. The core functionality includes the
persistency data structures, the query functionality, the Gora Compiler, the MapReduce supported
functionality, and some utility classes that are used by gora-core and the datastore modules.

All the other modules are datastore modules, each one specific to one NoSQL database. As
discussed in the previous section, Gora is able to use several different back-ends transparently.
Each datastore implementation is independent from the others as long as they implement the
required methods of the DataStoreBase core abstract class. Each datastore module comes with
a gora.properties file that should be changed by the application developer who wants to use the
specific Gora datastore. This file contains required configuration for the specific datastore.

Each data structure that we want to persist in Gora, instead of being written as a Java class,
should be defined in Apache Avro format. Gora uses Avro to define the data structures to be
persisted and also for serialisation of these Avro structures. According to the Avro terminology
such a definition is called an Avro Schema and is declared using JSON.

Apache Gora has a compiler, the GoraCompiler (which extends the Avro Specific Compiler) to
generate the necessary Java data beans from the Avro Schema. The data bean not only contains the
fields as specified in the Avro Schema, it also contains the necessary fields to track the persistency
state of the data objects. For this reason, each generated data bean extends a PersistentBase class.

The main data structure that handles the actual object persistence is the DataStore. A Data-
Store object is responsible for retrieving, persisting, deleting and querying persistent objects. Note
that each DataStore object is always associated with a key and a value class. The value class is the
persistent class; i.e. the class of the objects that should be persisted. Therefore, a DataStore object
is capable of handling the persistence of only one type of persistent object (data bean). The types
of these classes (key class and value class) are defined during the creation of the new DataStore
object. The value class is generated using the GoraCompiler, as specified above. DataStore objects
are generated by the DataStoreFactory. Every call to the DataStoreFactory.getDataStore() reads
the gora.properties file from the CLASSPATH to identify the Gora datastore module that should
be used for persistence and other datastore-specific parameters. It then initialises and returns a
new DataStore object. In order to handle more than one data bean, multiple DataStore objects
should be created, one for each data bean.

4http://hbase.apache.org/
5http://cassandra.apache.org/
6http://accumulo.apache.org/
7http://aws.amazon.com/dynamodb/
8http://Avro.apache.org/
9http://hadoop.apache.org/docs/stable/api/org/apache/hadoop/mapred/jobcontrol/Job.html

13

http://hbase.apache.org/
http://cassandra.apache.org/
http://accumulo.apache.org/
http://aws.amazon.com/dynamodb/
http://Avro.apache.org/
http://hadoop.apache.org/docs/stable/api/org/apache/hadoop/mapred/jobcontrol/Job.html

CHAPTER 2. BACKGROUND

After the Gora data bean is generated by the GoraCompiler, Apache Gora needs a way to know
where in the datastore it should persist instances of this data bean and its fields. This is the work
of the mapping, which is a file in XML that gives important information to Gora such as the class
for the key, the name of the database table to persist instances of the data bean, what the primary
key is, and the names of the fields and under which name they should be persisted in the database.
Note that each datastore has its own, specific, structure for the mapping file. This is because
each NoSQL database has its own, unique, structure and features. By having datastore-specific
mapping files, Gora takes advantage of these unique datastore structures and features.

A final note is needed in this section to clarify what a datastore schema means in the context
of Gora. Gora does not provide a formal definition of what a datastore schema is (or should be).
For this reason, we had to deduct its meaning and purpose by studying the implementation of
the Gora core functionality and of its various datastore modules. The reason for this confusion is
because that is dependant on the back-end datastore. Thus, we came to the conclusion that a Gora
datastore schema is just the container in which the data of the persistent objects are stored. The
container is datastore specific and could be any structure that fits this requirement. For example,
it could be a table, a column family, a key component, or any other container structure provided
by each of the back-end database. Also note that a Gora datastore schema contains data of only
one data bean and not data of every data bean available to Gora. This is because, as described
earlier, a datastore handles only one type of persistent object (data bean).

2.3.3 API
The Gora API is pretty big, as it not only contains classes and methods for object persistence, but
also for MapReduce and several datastore-specific methods. In this section we will briefly describe
the main API calls provided by DataStore objects in order to better understand the Gora core
functionality. Following are the methods, grouped by their operation type:

CRUD operations

• get(K key) → T
Returns the Persistent object corresponding to the given key.

• get(K key, String[] fields) → T
Returns the Persistent object corresponding to the given key with the specified fields.

• put(K key, T obj)
Inserts the persistent object with the given key. If an object with the same key already exists
it will silently be replaced.

• delete(K key)
Deletes a persistent object from the database.

• flush()
Every CRUD operation can be accumulated before they are actually executed in the back-end
database. This method forces the accumulated operations to be flushed.

Query operations

• newQuery() → Query<K, T>
Constructs and returns a new Query. A Query can search for a specific key or a range of
keys. The results of a Query can be iterated with the Result interface.

• execute(Query<K, T> query) → Result<K,T>
Executes the given query and returns the results in a Result object.

• deleteByQuery(Query<K, T> query)
Deletes all the objects matching the query. If the query specifies specific fields, only those
fields are deleted, instead of the whole persistent objects.

Schema operations

• createSchema()
Creates the schema in the datastore to hold the objects. If the schema is already created
previously, the operation is ignored.

14

CHAPTER 2. BACKGROUND

• deleteSchema()
Deletes the schema in the datastore that holds the persistent objects. After the execution of
this method, no persistent objects exist in the database.

• schemaExists()
Checks if the schema exists or not.

15

Chapter 3

Related Work

As described in the scope statement in section 1.1.1, this project has two main goals. The first is to
integrate Apache Gora with Oracle NoSQL, and the second is to persist objects in Oracle NoSQL.
In this chapter, we will briefly review the Gora-DynamoDB module that is another datastore
module that already integrates with the Apache Gora framework. We will also briefly present
another object persistence solution for NoSQL databases.

This research of related work was very valuable at the beginning of this project, as it enabled us
to assess the feasibility of this project and also learn how others managed to achieve similar goals.
This list is by no means complete. It includes the most important projects that we identified that
have detailed documentation.

3.1 Apache Gora integration
Apache Gora is able to persist objects in several NoSQL databases. In this section, we will briefly
describe only one of them: the Gora-DynamoDB datastore module, which has many similarities
with our own project. First and foremost, the Gora-DynamoDB project was also accepted in the
Google Summer of Code 2012, and was completed on time. Second, DynamoDB is a key/value
data store, as Oracle NoSQL is. In the following section, we will give a high-level overview of the
Gora-DynamoDB datastore module.

3.1.1 Gora-DynamoDB
The Gora-DynamoDB module was originally motivated by two facts. First, Cloud computing has
become very popular and its popularity continues to rise exponentially among IT departments.
Second, most of big data enthusiasts do not have access to powerful Hadoop clusters, nor to
sophisticated NoSQL data store setups.

Amazon’s DynamoDB is a very popular Cloud key/value store and was considered a good
datastore for Apache Gora. This will enable Apache Gora developers to use Amazon’s popular
NoSQL datastore without having to worry about data modelling and hardware.

The Gora-DynamoDB module handles serialisation as others modules inside Gora, although it
relies only on a XML file, as it has no direct dependency on Apache Avro. There are some differences
on the way data is flushed to the back-end data store as when this module was implemented there
was an advantage in reading/writing a single object or a batch of a hundred elements. Inside
regular data stores, the advantage of holding records in memory is a lower usage of networking
resources, which can be the bottleneck in distributed applications.

Finally, it should be mentioned that the Gora-DynamoDB module made several changes to the
Gora abstraction layer, because it now needed to support not only disk-based datastores but also
datastores based on web services (such as Amazon’s DynamoDB). Now that such a layer exists,

16

CHAPTER 3. RELATED WORK

that supports web-service based datastores, other modules can be created that will add support
to other popular Cloud NoSQL databases such as Google App Engine, Microsoft Data Services
(Azure), and others.

3.2 NoSQL Persistence Frameworks
Apache Gora is a working framework for object persistence in NoSQL databases. During our
research for related works, we identified another project that is still under research but has pub-
lished documentation of its architecture. In the following section we will briefly discuss this research
framework.

3.2.1 Object-NoSQL Datastore Mapper
Cabibbo [21] proposed a framework for managing persistent objects in NoSQL systems. This
system allows software engineers to take advantage of an ORM-like API which is similar to JPA.
This framework is based on a data model that consists of entities, relationships and embeddable
objects. Interestingly, even though it is not released yet, it already supports access to a large
variety of NoSQL systems such as Cassandra, Couchbase, MongoDB and Oracle NoSQL, which
proves the flexibility of the framework to support new NoSQL datastores.

It is designed in a way that allows the system to be independent from the specific datastore,
and that facilitates the storage of different entities based on multiple representation strategies. Its
architecture is based on three major layers: the API, the Internal Representation Management and
the Datastore Access. The first layer (API) can be used by developers and is based on an extended
version of JPA. The second layer is responsible for the internal management of the entities within
a current transaction, while the third is responsible for connectivity via connectors to different
NoSQL datastores. To describe the structure of the persistent objects it uses annotations, which
are exposed at the API level. CRUD operations are provided by the entity manager interface that
is defined in the Java Persistence API (JPA). Each Internal Representation Manager is responsible
for implementing this interface. A final point of interest is that the Datastore Access layer relies
on different entity representation strategies. Such as strategy defines how an internal representa-
tion of a persistent object can be stored in a NoSQL database. Each connector implements one
such strategy. This effectively allows to have multiple connectors for the same back-end NoSQL
datastore and thus different entity representation strategies for the same datastore.

17

Chapter 4

Requirement Analysis

In this chapter, we will perform a requirement analysis for the Gora-OracleNoSQL datastore module
which is the main objective of this project. Specifically, we will identify the stakeholders, define
the system requirements and classify them by type (functional / non-functional), and finally we
will assess the feasibility of such a module.

4.1 Stakeholder identification
Before we proceed to define the system requirements, we need to identify the stakeholders. Un-
derstanding who is affected by the system will help us make the system requirements (defined in
section 4.2) more specific, targeted and clear.

The following persons, groups of people, or organisations are affected by the implemented
system:

• Decision-makers:

– Datastore module developer (Primary decision-maker)
– Apache Gora project community

• Users:

– Application developers (Primary users)
– IT Architects

• Sponsor:

– Google Corporation

• Wider environment:

– Apache Software Foundation
– Oracle Corporation

We should note that the actual users of this system (Gora-OracleNoSQL datastore module) are
themselves developers, who develop their applications using Apache Gora and this module as the
back-end data storage mechanism to achieve object persistence.

We should also note that even though the Gora project community are classified as “Decision
makers”, they did not actually made any explicit decisions regarding the Gora-OracleNoSQL mod-
ule. They are classified as “Decision makers” because of their indirect, implicit influence on parts
of the module’s architecture; specifically, because several of the module’s classes had to implement
specific Gora interfaces, or extend specific Gora classes, as defined by the Gora project community.

Finally, we should note that Google Corporation is the sponsor of this project and has parti-
cipated in the funding because this project is part of the Google Summer of Code 2013 event.

18

CHAPTER 4. REQUIREMENT ANALYSIS

4.2 Requirements specification

One of the fundamental steps towards the successful completion of any project is to elicit the proper
requirements of the system to be implement, during the analysis phase of the project. The aim
of this section is to identify the system requirements and constraints that drive its design and its
implementation. The requirements are classified based on their type (functional / non-functional).

Note that with the term system, we are referring to the Gora-OracleNoSQL datastore module
and not to the Gora framework itself. With the term persistent object, we are referring to the
object that could be stored and/or retrieved to/from the datastore.

4.2.1 Functional requirements

We considered the following functional requirements (FR). Each functional requirement has been
assigned an identifier in order to be easily referred to in other parts of the analysis and design
sections. For each high-level functional requirement, we have identified its rationale and also
performed a breakdown analysis to identify its sub-requirements.

FR. 1: The system should be properly integrated with the Apache Gora framework.
Rationale: To achieve the main project’s goal: Apache Gora should be able to use this system
as a fully supported datastore module.
a) The system should use the latest API of Apache Gora.
b) The system should extend Gora’s core classes and implement its core interfaces.

FR. 2: The system should be properly integrated with the Oracle NoSQL database.
Rationale: To achieve the main project’s goal: to use the Oracle NoSQL database as the
backend datastore of this system.
a) The system should use the latest API of Oracle NoSQL database.
b) The system should make efficient use of the provided functionality and data model of
Oracle NoSQL database.

FR. 3: The system should provide basic CRUD operations for persistent objects based on their
keys.
Rationale: To achieve object persistence.
a) The system should properly serialise/deserialise the persistent objects based on their types.
b) The system should be able to access/persist/retrieve speficic fields of the persistent objects.

FR. 4: The system should provide extended Get and Delete operations based on the persistent
objects and not only based on their keys.
Rationale: To achieve more dynamic operations and extended functionality.
a) The system should be able to identify which field of the persistent object represents its
key, according to the datastore specific mapping.
b) The system should acquire the value of the key of the provided persistent object using
reflection.

FR. 5: The system should provide support for range queries.
Rationale: To achieve batch CRUD operations based on range queries.
a) The queries should operate based on a single key or a range of keys.
b) The system should allow the creation of new queries.
c) The system should allow the execution of queries.
d) The system should be able to perform range queries to retrieve single or multiple specific
persistent objects.
e) The system should be able to retrieve multiple persistent objects while preserving the
natural order of their keys.
f) The system should be able to perform Delete single or multiple specific persistent objects
based on range queries.

19

CHAPTER 4. REQUIREMENT ANALYSIS

FR. 6: The system should provide configurable consistency & durability for the CRUD operations.
Rationale: To exploit the flexible capabilities of consistency & durability that Oracle NoSQL
database provides.
a) The consistency and durability settings should be defined in the gora.properties file.
b) The system should provide sensible defaults for consistency and durability properties.

FR. 7: The system should be configured, if required, by proper use of the gora.properties file.
Rationale: To achieve a fully customised behavior of the system operations.
a) The system should be able to locate, access and parse the gora.properties file.
b) The system should be able to identify specific properties of the gora.properties file and
read its values.
c) The system should be robust enough not to terminate abnormally or accept invalid or
missing values. Instead it should use sensible defaults [10].

FR. 8: The system should provide a custom mapping between the Gora data model and the Oracle
NoSQL data model.
Rationale: To achieve a bidirectional translation of the two incompatible data models.
a) The system should use XML to define the mapping.
b) The system should be able to locate, access and parse the XML mapping file.

FR. 9: The system should provide transactions with ACID guarantees, for multiple CRUD oper-
ations of the same persistent object.
Rationale: To achieve isolation between possible concurrent access of the same persistent
object and improve the overall performance.
a) The system should accumulate the called CRUD operations in the order in which they
were called.
b) The system should provide a way to execute the accumulated operations in the order in
which they were accumulated.
c) The system should make use of the proper method calls of the Oracle NoSQL API to
achieve ACID transactions.

FR. 10: The system should be able to connect to multiple Oracle NoSQL master nodes.
Rationale: To achieve system robustness and node failure resilience.
a) The system should be able to be configured for the addresses of the multiple master nodes
by reading the gora.properties file.

FR. 11: The system should provide a Result Cache mechanism.
Rationale: To achieve better read throughput in case of frequent access of the same persistent
object.
a) The system should store in memory the latest retrieved persistent object and use the
memory-stored one if the same key is needed in a subsequent call, instead of making a new
database Get request.

FR. 12: The system should provide an embedded version of the Oracle NoSQL database server.
Rationale: Since Oracle does not provide one, a custom embedded Oracle NoSQL server
should be created to be used during the automated execution of test cases.
a) The system should be able to spawn a new operating system process and execute the
Oracle NoSQL server.
b) The system should be robust in case of failure to start the Oracle NoSQL server and
provide error handling and retrying functionality.
c) The system should be able to properly terminate the process and release any opened
resources.

FR. 13: The system should be able to persist fields of any datatype available in the Avro format.
Rationale: Gora data beans use Avro for serialisation and any of its supported datatypes
should be persisted.
a) The system should be able to persist any primitive datatypes.
b) The system should be able to persist Avro complex types including Records, Unions,
Enums, Maps and Arrays.

20

CHAPTER 4. REQUIREMENT ANALYSIS

4.2.2 Non-functional requirements

We considered the following non-functional requirements (NFR). We will present them according
to the classification proposed by Dr.Ian Sommerville1 as presented in his Software Engineering
book [9].

NFR. 1: The system should use the functionality of the existing libraries provided by Gora-Core
and its dependencies, where possible.
Organisational (Development) - Implementation

NFR. 2: The system should use the functionality of Open Source libraries only.
Organisational (Development) - Implementation

NFR. 3: The system and its documentation should be released under the ASL2 (Apache Software
License 2.0).
External (Legislative) - License

NFR. 4: The system should adhere to the same architectural design [9] as the other Gora datastore
modules and follow the same Design Patterns, where available.
Organisational (Development) - Design method

NFR. 5: Progress reports presenting details about the effort expended on each system feature
must be produced every month.
Organisational (Operational) - Process

NFR. 6: The system should be documented properly and thoroughly in order to be easily main-
tained by the Open Source community.
Product (Maintainability) - Documentation

NFR. 7: The system should be implemented in Java, because the Gora framework offers its API
only in Java.
Organisational (Environmental) - Programming language

NFR. 8: The system should be highly portable, running on a range of Linux/Unix platforms and
Windows.
Organisational (Environmental) - Portability

NFR. 9: The system should provide a reasonable response time.
Product (Efficiency) - Performance

4.3 Feasibility assessment

During the analysis phase of this project we assessed the feasibility of this system, on the basis of a
careful consideration of the project’s scope, the defined requirements, the technical characteristics
and the architecture of the two systems that had to be integrated. Two other important aspects
that were taken into consideration for assessing the project’s feasibility were the project’s timeframe
and our lack of knowledge in the NoSQL field.

After taking account of the above, we considered the system to be feasible for the following
reasons:

• The project’s timeframe is considered adequate for the successful completion of this project’s
objectives. This is because another Gora datastore module was created as part of the Google
Summer of Code 2012; thus similar objectives were achieved in roughly the same duration.

• Even though Apache Gora had no support of other key/value store with native method calls,
it supports 5 other different NoSQL databases, which proves that its API and its overall
architecture is flexible enough to allow the integration with a key/value store such as Oracle
NoSQL.

1http://www.software-engin.com/

21

http://www.software-engin.com/

CHAPTER 4. REQUIREMENT ANALYSIS

• As indicated in the Related Work section, both systems have been successfully integrated
with a plethora of other systems, which proves their integration capabilities.

• Apache Gora has specific mappings for each back-end datastore. This means that, regardless
of the data model of the back-end database, by designing a proper mapping scheme, Gora
should be able to translate the Gora data model into the data model of Oracle NoSQL. In
the extreme case of not being able to achieve such a custom mapping scheme, me and my
supervisor had already established an alternative solution. The alternative solution would
be to use a model transformation tool such as SiTra 2, which is a tested solution, and I
would have extensive support from my University’s supervisor who is also responsible for the
development of this tool.

• The lack of knowledge in the NoSQL field is a definite risk for the successful completion
of the project. However, the fact that we allocated about 1 month in the beginning of the
project in which a significant amount of studying will take place and the fact that I would
receive the guidance of my supervisor, reduces (if not eliminate) the risk.

For the above-mentioned reasons, we considered the project to be feasible. However, as it was
apparent from the above, there were some risks inherent in this project. For this reason, a proper
risk analysis took place in order to reduce and/or properly circumvent them. The risk analysis can
be found in the section 8.3.

2http://www.cs.bham.ac.uk/∼bxb/Sitra/

22

http://www.cs.bham.ac.uk/~bxb/Sitra/

Chapter 5

Gora-OracleNoSQL datastore

5.1 Overview
The creation of the Gora-OracleNoSQL data store module is the main objective of this project.
Its purpose is to allow the Gora framework to use the Oracle NoSQL database as a data store for
persisting objects (Gora data beans). The Gora-OracleNoSQL data store module has two main
integration points: one with Apache Gora and one with the Oracle NoSQL database. It implements
all the necessary functionality as required by the Gora API contracts (interfaces) and it provides
some extra functionality to achieve several purposes, as will be described in the following sections.

An analysis of this module was performed in chapter 4, which presents in significant detail
the stakeholders and the functional and non-functional requirements of the module. The design,
the implementation and the test cases were based on these requirements. In this chapter, we will
present the main features of the Gora-OracleNoSQL module (referred as system from now on) and
its design. Furthermore, we will discuss the implementation details of its main features and provide
an overview of how it was tested. Finally, we will briefly present the assisting software that was
implemented for the needs of the demonstration of this system.

5.2 Features
Following is a full list of the main features that the system provides. For each feature, we will
provide a brief overview of its functionality. Also, for some of the features we will provide sample
code snippets of how they can be used. It is important to understand that these code snippets
are not parts of the code of the Gora-OracleNoSQL datastore module. They are examples of how
other developers can make proper use of the Gora-OracleNoSQL datastore module.

• Full CRUD operations
Gora-OracleNoSQL provides full CRUD operations for persisting objects. The CRUD opera-
tions are fully compatible with the Gora API. An important feature that should be highlighted
here is that the module is able to retrieve specific fields of the persistent objects. This
allows a fine-grained access to persistent objects, which is a powerful feature for the applic-
ation developer. An example of a DataStore get operation to retrieve specific field could be
the following code snippet:

Listing 5.1: Usage of DataStore.get(K key, String[] fields)
OracleStore<Str ing , Pageview> dataStore ;
Conf igurat ion conf = new Conf igurat ion () ;
dataStore = DataStoreFactory . getDataStore (S t r ing . c l a s s , Pageview . c l a s s , conf) ;
S t r ing [] f i e l d s = {" ip " , " timestamp "} ; dataStore . get ("1" , f i e l d s) ;

23

CHAPTER 5. GORA-ORACLENOSQL DATASTORE

• Query operations
Another feature that is provided is the ability to create queries. These queries can be used
to search the database for a single persistent object, or for multiple persistent objects, based
on a key range. The identified persistent objects can then be used to either be retrieved (Get
operation) or be deleted (DeleteByQuery(Query<K, T> query) operation). Query
operations are mostly useful in conjunction with Hadoop jobs.

• Extra API functionality
Apart from the implemented CRUD functionality that is required by the Gora API, some
extra operations where implemented that provide added value to the overall capabilities of
the system. More specifically, the system is able to check the existence of a persistent object
(exists(T obj)) in the back-end database given as an argument the object itself, not just
the key of the persistent object. Moreover, with the same process, a persistent object can be
deleted (delete(T obj)) from the back-end database given as an argument the object itself.
An example of usage of these two methods can be seen in the following code snippet:

Listing 5.2: Usage of DataStore.exists(T obj) and DataStore.delete(T obj)
WebPage myWebPage ;
myWebPage= dataStore . get ("www. goog l e . com") ;
i f (dataStore . e x i s t s (myWebPage))

l og . i n f o (" p e r s i s t e n t ob j e c t e x i s t s . ") ;
dataStore . d e l e t e (myWebPage) ;
i f (dataStore . e x i s t s (myWebPage))

l og . i n f o (" p e r s i s t e n t ob j e c t e x i s t s . ") ;
else

l og . i n f o (" p e r s i s t e n t ob j e c t does not e x i s t . ") ;

• ACID transactions, where possible
The Oracle NoSQL Database provides ACID transactions, depending on the keys of the
operations, as described in section 2.2.2. The Gora-OracleNoSQL module accumulates the
called CRUD operations and executes them, in the same order in which they where called,
during the flush() operation. In this way, isolation is achieved between possible concurrent
access of the same persistent object. It also improves the overall performance.

• Configurable consistency & durability
Being able to control the level of consistency and durability is a very important factor for
the success of a distributed system. The Oracle NoSQL Database, in contrast to many other
NoSQL databases, provides variable consistency for read operations and varying degrees
of durability for update operations. The Gora-OracleNoSQL module exploits this feature
of Oracle NoSQL Database and itself provides the same variable levels of consistency and
durability. These can be configured globally in the gora.properties file.

• Node failure resistance
The Gora-OracleNoSQL module is able to connect to multiple master nodes of the Oracle
NoSQL data centres. This node failure resistance feature is valuable for enterprise infrastruc-
tures that have multiple data centres. The addresses of the multiple master nodes can be
configured in the gora.properties file.

• Preservation of key natural sort order
The Oracle NoSQL Database supports keys only of type String. This may become a problem
in case the Gora data bean must be persistent using another data type, such as Long. The
Gora-OracleNoSQL module stores the key as a String, however, it is encoded in base32hex 1.
This encoding allows multiple String keys to be retrieved in their natural key order during a
query operation.

1http://tools.ietf.org/html/rfc4648

24

http://tools.ietf.org/html/rfc4648

CHAPTER 5. GORA-ORACLENOSQL DATASTORE

• Result cache
The current version of Oracle NoSQL Database does not provide a result cache. Even if in
future releases, it would not be able to cache the complete persistent object, as needed by
the Gora framework. The Gora-OracleNoSQL module provides a result cache that stores
in memory the last retrieved persistent object in order to provide it to Gora in a potential
subsequent request. This functionality is transparent to the end-user of the module.

• Embedded Oracle NoSQL server
The Gora framework requires an embedded version of the back-end NoSQL database to be
available in order to automatically start it during the execution of the test suite. This way,
the DataStore test methods will be able to use the specific Gora datastore module for object
persistence and test their functionality. However, the Oracle NoSQL Database does not
provide an embedded version of its server. The Gora-OracleNoSQL module provides such
an embedded server that is started and terminated automatically during the set up and the
tear down of the test suite.

• Persistence of all the primitive datatypes and complex types
Each field of the data beans should be properly persisted in the back-end database. The
Gora-OracleNoSQL module is able to serialise and persist all the primitive datatypes, such
as int, long, char, boolean, float, etc. Additionally, it is able to serialise and persist the
Avro complex types 2: Records, Arrays, Maps, and Unions. Note that it is also able to
persist nested Records and Unions with 2 or 3 types. These persistence capabilities enable
the module user to define elaborate data beans that contain fields of a plethora of data types;
primitive or complex ones.

5.3 System Design

5.3.1 High Level System Design
In this section, we will provide three UML diagrams whose aim is to convey to the reader a
high-level overview of how the system is implemented.

5.3.1.1 Use Case Diagram

The following diagram is a UML Use Case Diagram, which illustrates the functionality available
to the users (application developers) and to the Apache Gora framework. It also illustrates the
system boundaries.

2http://avro.apache.org/docs/current/spec.html#schema_complex

25

http://avro.apache.org/docs/current/spec.html#schema_complex

CHAPTER 5. GORA-ORACLENOSQL DATASTORE

Figure 5.1: Gora-OracleNoSQL - Use Case Diagram

5.3.1.2 Package Diagram

The following diagram is a UML Package Diagram, which depicts the system package, its main
classes, and the way it integrates with the Apache Gora packages and classes.

Figure 5.2: Gora-OracleNoSQL - Package Diagram

26

CHAPTER 5. GORA-ORACLENOSQL DATASTORE

5.3.1.3 Class Diagram

The following diagram is a UML Class Diagram for the main system classes. Note that some utility
classes, even though they contain valuable functionality (such as OracleUtil, OracleStoreConstants,
etc), are not illustrated in the diagram because they provide only static properties, and thus no
objects were created from these classes.

Figure 5.3: Gora-OracleNoSQL - Class Diagram

5.3.2 Low Level System Design

In this section, we will provide a brief description of the entities of the Gora-OracleNoSQL datastore
module.

5.3.2.1 OracleStore

The OracleStore class provides datastore functionality to the Gora framework. It is the most
important component of the Gora-OracleNoSQL datastore module and it is the component that
“glues” together the functionality of all other classes of the module. It contains attributes that
store the specific configuration values for the KVStore, a handle to the back-end KVStore, a
data structure that accumulates the CRUD operations and a Mapping instance. The OracleStore
extends the DataStoreBase class and is responsible for handling the actual object persistence
of a single Gora data bean. It provides methods for initialisation, CRUD operations, schema
management, and query operations. Details on the functionality of these features are presented in
the section 5.4.

27

CHAPTER 5. GORA-ORACLENOSQL DATASTORE

5.3.2.2 OracleMapping

The OracleMapping class provides mapping definitions for Oracle NoSQL. It holds information
about the definition for a single table. Its main attribute is a Map<String,String> structure that
maps a Gora data bean field to the key component of the Oracle NoSQL key/value pair. Addition-
ally, it holds information about the major key that serves as a table, the name of the Gora data
bean field that serves as the primary key, the class type for the persistence key, and the full class
name of the Gora data bean. It is important to note that this class should be thread safe, mostly
because in the future, multiple Hadoop jobs might run in parallel and this might cause synchron-
isation issues. To achieve thread safety, an inner builder class called OracleMappingBuilder is
responsible for creating a single Mapping object, using simple immutability.

5.3.2.3 OracleQuery

The OracleQuery class provides Oracle NoSQL specific implementation of the Query interface.
It encodes the range keys using base32hex encoding and additionally provides a Result Cache
mechanism for performance optimisation. Objects of this class are used to perform queries that
retrieve one or more records from the Oracle NoSQL Database. Details on the functionality of
these features are presented in section 5.4.5.

5.3.2.4 OracleResult

Objects of the OracleResult class are responsible for handling Query objects and iterate through the
result set that was obtained after the Read operation that was performed in the DataStore.execute()
method. The main method of interest in this class is the nextInner() method, that retrieves the
next key/value pair from the result set. While there are records in the result set, nextInner()
stores the next record in the persistent attribute, which is a variable of generic type that stores
the currently retrieved persistent object. When there are no more records in the result set, the
methods returns false. OracleResult objects are used by the OracleQuery and the OracleStore
classes.

5.3.2.5 OracleUtil

The OracleUtil class is a utility class with static methods that provide utility functionality to the
other classes of the module. Most of this class’s methods are related to Key functionality, such
as key encoding/decoding, key creation, and primary key retrieval from a key range. These static
utility methods are public in order to be available to be used by other components, if needed.

5.3.2.6 OracleStoreConstants

The OracleStoreConstants class is a wrapper class for the system constants. These constants are
wrapped inside this class in order to improve code readability.

5.3.2.7 GoraOracleTestDriver

The Gora framework requires the use of an embedded back-end server in order to automate the
execution of the test cases. The Oracle NoSQL Database does not provide an embedded version.
The GoraOracleTestDriver contains methods that spawn a new server process, terminate the server
process, create a server handle and clean up the unnecessary server files after its termination. This
class is only used by the Gora test suite in order to have direct connectivity with the back-end
server.

5.4 Implementation

In order for Apache Gora to be able to recognise the Gora-OracleNoSQL datastore module as
a valid Gora datastore module, some aspects of its implementation had to be done in a specific
way. Most notably, the new datastore classes such as the OracleStore, the OracleQuery and so

28

CHAPTER 5. GORA-ORACLENOSQL DATASTORE

on, should extend the Gora base classes and implement the required abstract methods. Also, its
filesystem should follow the one indicated by Maven, its source code should be placed in a folder
at the same level as the other Gora modules and the parent pom file should be modified to add
the new module.

Note all this will achieve is merely to get the new module recognised as a Gora datastore
module. For the new datastore to provide valid functionality, it also needs to be able to integrate
with the back-end database in such a manner that Gora persistent objects can be handled properly.
To achieve this, a data model should be created that will allow the persistence of the objects in a
way that will successfully map the Gora data model. For this reason a data model was created for
the Gora-OracleNoSQL module.

This section will clearly describe the data model of the Gora-OracleNoSQL module. We will
also discuss how the functionality of its major features is achieved along with some of their imple-
mentation details. Additionally, we will present briefly the APIs that were used in this project and
we will provide information about how the system was tested. Finally, we will present the assisting
software that was created for this project and we will briefly discuss about their capabilities.

5.4.1 Data Model

In this section we will describe in detail how the data model of the Gora-OracleNoSQL works. We
will describe the mapping between the Gora data model and the Oracle NoSQL data model. This
data model is of paramount importance in this project, because it is this model that allows the
object persistence in the Oracle NoSQL Database to be achieved.

Then, we will describe the structure of the mapping file, how Gora-OracleNoSQL maintains
the primary keys and finally how the natural sort order of the keys is preserved.

5.4.1.1 Data model mapping

In section 2.2.3, we described the data model that the Oracle NoSQL Database uses. A clear
understanding of that data model is crucial to understand the data model mapping that we created
for the Gora-OracleNoSQL datastore module.

Apache Gora in its API uses some terms that do not exist in the Oracle NoSQL database: terms
such as table, schema, column, and column family. Oracle NoSQL knows only about key/value
pairs. However, because of the multi-component nature of the Oracle NoSQL keys, we were able
to emulate a table, a column, and a column family. Following is the data model that Gora-
OracleNoSQL datastore uses:

• We use the 1st component of the Major key to map the table/schema.
• We use the 2nd component of the Major key to map the persistent key.
• We use the 1st component of the Minor key to map the column/field family (if any).
• We use the 2nd component of Minor key to map the field.

Then this maps to the following fullKey : value pair

/TableName/PersistentKey-FieldFamily/Field : Value

29

CHAPTER 5. GORA-ORACLENOSQL DATASTORE

Note:

• By “table” we do not mean an actual table. It merely means that this key component would
act as a container (called table in several NoSQL databases; not to be related to the relational
table notion of RDBMSs). In Gora API the term schema is loosely defined. In practice, a
data store can define what “schema” means for its data model. Other Gora data stores use a
table as a schema. In Oracle NoSQL there is no schema nor table. Therefore, it was decided
that the 1st component of the Major key would serve both as a table and a schema for the
Gora-OracleNoSQL datastore.

• By “field family” we mean that this key component would serve as a container for fields that
have common context. We do not mean that the Oracle NoSQL Database actually supports
field/column families. This feature was added in order to be consistent with the existing
Gora datastores.

• The value of each field is stored in the Value part of the key/value pair as byte array value,
which is a serialised form of the field value. Gora-OracleNoSQL is responsible for serialising
and deserialising the value.

Following is an illustrated example of how this data model maps a Gora data bean to Oracle
NoSQL key/value pairs:

Figure 5.4: Gora data bean to Oracle NoSQL data model mapping

Please note that this illustration is a high-level view of the mapping. The data model mapping
is further elaborated in order to achieve preservation of the natural order of the keys. This is
explained in detail in section 5.4.1.4.

5.4.1.2 Mapping file

An important piece that is needed in order to achieve the above-mentioned mapping is the mapping
file. In Gora the mapping file is an XML file that is specific for each datastore. This means that
each datastore has slightly different semantics for its mapping file compared to the other datastore’s
mapping files.

The Gora-OracleNoSQL module uses a mapping file as the following:

Listing 5.3: Example of a Gora-OracleNoSQL mapping file
<gora−orm>

<c l a s s name="org . apache . gora . examples . generated . Employee"
keyClass=" java . lang . S t r ing " tab l e="Employee">

<primarykey name=" ssn " column=" ssn " />
<f i e l d name="name" column=" i n f o /name" />
<f i e l d name="dateOfBirth " column=" i n f o / dateOfBirth " />
<f i e l d name=" sa l a r y " column=" i n f o / s a l a r y " />
<f i e l d name="boss " column=" i n f o / boss " />
<f i e l d name="webpage" column=" i n f o /webpage" />
</ c l a s s>

<c l a s s name="org . apache . gora . examples . generated .WebPage"
keyClass=" java . lang . S t r ing " tab l e="WebPage">

<primarykey name=" u r l " column=" u r l " />
<f i e l d name=" content " column=" content " />

30

CHAPTER 5. GORA-ORACLENOSQL DATASTORE

<f i e l d name="parsedContent " column="parsedContent " />
<f i e l d name=" ou t l i n k s " column=" ou t l i n k s "/>
<f i e l d name="metadata" column="common/metadata" />
</ c l a s s>

</gora−orm>

As can be seen from the mapping file, the developer is able to define the name of the table,
the field names of the data bean and how they should be named in Oracle NoSQL along with any
possible field family if desired. An important thing to notice here is the primary key element. This
element informs the Gora-OracleNoSQL module which field of the data bean acts as its primary
key. This field should be unique among all the objects of each data bean.

5.4.1.3 Primary keys

As mentioned above, each persistent object has an associated primary key that identifies it uniquely
among all the persistent objects. The primary keys are very important when multiple persistent
objects need to be returned by a Query. The Query specifies a key range. The primary keys that
are inside this key range should be returned when the query is executed. However, the data model
that is illustrated in figure 5.4 is impractical for quick retrieval of the unique keys of the persistent
objects. This is because, as shown in figure 5.4, each Gora persistent object is translated into
several Oracle NoSQL key/value pairs.

In order to simplify this structure and achieve a more efficient retrieval of the unique keys of the
persistent objects, we created another structure inside the Oracle NoSQL Database. This is merely
another Major key component named “PrimaryKeys”, that stores the persistent keys for each data
bean. The full Major key that stores the primary keys of each data store has the following format:

/PrimaryKeys/TableName/-/PersistentKey :

Note that the TableName is included in the Major key path, in order to separate the persistent
keys of each data bean. Also note that the persistent key is stored in the Minor key component.
Finally, note that there is no need for a value; all the required information is stored in the key part
of the key/value pair.

The name of the Major key component that will be used to store the primary keys is configurable
by the properties file (see section 5.4.3). Its default value is “PrimaryKeys”.

A practical example of usage that demonstrates the retrieval of primary keys from this data
structure is the OracleUtil.getPrimaryKeys() method.

5.4.1.4 Preserving key natural sort order

The illustration of the figure 5.4 is a high-level view of how the mapping works. However, this
mapping lacks an important feature, that we will describe now.

Gora Queries may return multiple persistent objects. In case the persistent keys are character
string such as “www.google.com”, “www.bbc.co.uk”, then the keys of the persistent objects will be
returned sorted by their natural sort order, which is the lexicographic order. However, in the case
of numerical strings such as “1”, “2”, “10”, and so on, the keys are not going to be returned sorted
by their natural order, which should have been “1”, “2”, “10”, but in the order “1”, “10”, “2”, which
is the lexicographic order and not the numeric order. For this reason, the following transformation
is performed for each persistent key.

Before storing the key in Oracle NoSQL, each persistent key is encoded using the base32hex
encoding. We did use this encoding specifically (and not for example the base64 or the simple
base32), because, as the RFC 4648 3 specifies:

“One property with this alphabet, which the base64 and base32 alphabets lack, is that encoded
data maintains its sort order when the encoded data is compared bit-wise.”

This allows us to retrieve the keys while preserving their natural order. It must be noted here
that in order for numerical string to be properly retrieved in their natural order, they should be

3http://tools.ietf.org/html/rfc4648

31

http://tools.ietf.org/html/rfc4648

CHAPTER 5. GORA-ORACLENOSQL DATASTORE

first padded with zeros so that they all have a fixed length. This task is left to the application
developer, as it depends to the value types of the desired keys. However, the OracleUtil class
provides the static utility method padKey() that provides String padding functionality.

Therefore, the actual key/value pairs that are stored in Oracle NoSQL are based on the data
model as illustrated in figure 5.4, but the persistent keys are not plain String values. They are
base32hex encoded.

5.4.2 CRUD Operations
The Gora-OracleNoSQL datastore module provides full CRUD operations. An overview of the
available CRUD operations is given in section 2.3.3, that discusses the Gora API. Here, we will
provide a brief overview of how each CRUD operation is implemented. Note that K is the generic
type of the key class and T is the generic type of the value class (i.e. the data bean)

• get(K key) → T
First retrieves a SortedMap of the key/value pairs from the database that corresponds to the
given persistent key. In case no key/value pairs were returned, the method returns null. If
key/value pairs are retrieved, then a new instance of the persistent object is created and its
fields are populated with the retrieved values. Note that each value is deserialised according
to its type. Next, the object’s stateManager is cleared, in order to be able to accept future
changes, if any. Finally, the new persistent object is returned.

• get(K key, String[] fields) → T
Its implementation is the same as the simple get(K key) method, with the exception that
only specific key/value pairs are retrieved from the database.

• put(K key, T obj)
First, it checks the object’s stateManager. If the stateManager is not flagged as dirty, then
the put method terminates, without any further processing of the object. Otherwise, it
creates a new list of operations (in order to perform all the put operations of the subsequent,
multiple key/value pairs in a single transaction (see section 5.4.4)). Then it encodes the key
using base32hex (as described in section 5.4.1.4), inserts the primary key as a new key/value
pair under the “PrimaryKeys” Major component, and finally inserts a new key/value pair for
each field of the persistent object. Two important points should be highlighted here:

– In case a key/value pair with the same key exists in the back-end, it will silently be
replaced. This effectively provides update semantics.

– In case the new value of a field is empty or null, the corresponding key/value pair will
be deleted from the database. This effectively provides delete-field semantics.

• delete(K key)
To delete a persistent object based on a given key, it first creates a new query and sets its
key to be equal to the given key. Then, it calls the deleteByQuery method (see section 2.3.3)
based on this query. This effectively deletes all the key/value pairs that correspond to the
given persistent key along with its primary key.

• delete(T obj)
This method deletes a persistent object based on the persistent object itself. It uses the
mapping to identify which field contains the primary key and extracts the value of that field.
Then it works as the simple version of the delete(K key).

5.4.3 Properties
The Gora-OracleNoSQL module can be configured through the use of a properties file. This file
should be named gora.properties file and should be located in the CLASSPATH. The only property
that is mandatory is the gora.datastore.default. All the other properties are optional, which
means that the defaults will be used for each property. The available properties, that are parsable
by the Gora-OracleNoSQL module, are the following:

• mapping.file - Specifies the filename of the mapping file. In case this property is empty,
the default is gora-oracle-mapping.xml.

32

CHAPTER 5. GORA-ORACLENOSQL DATASTORE

• gora.datastore.default - Specifies the Gora datastore class that will be used for object per-
sistence. To use the Gora-OracleNoSQL datastore module, this value should be org.apache.gora.oracle.store.OracleStore.

• gora.oraclestore.storename - Specifies the name of the KVStore. The default is kvstore.
• gora.oraclestore.hostnameport - Specifies the hostname and port of the node(s) that the
system should connect to. The value should be one or more values of the format "host-
name:port [,hostname:port]". In case of multiple hosts, a comma should be used to separate
the entries, such as: localhost:5000, 192.168.0.1:5000, 192.168.0.2:5000. The default is “loc-
alhost:5000”.

• gora.oraclestore.primarykey_tablename - This property specifies the name of the table
that will store the primary keys. By table, we mean the first major component of the Oracle
NoSQL key. The default is “PrimaryKeys”.

• gora.oraclestore.autocreateschema - The autocreateschema property specifies whether
the schema will be created during the initialisation or not. This merely creates the kay/value
pairs, with the specific major key components that will be used to store the key/value pairs
of the persistent objects and the primary keys. The default value is true.

Following are the properties that configure the levels of durability, consistency and various
timeouts for the connection to the Oracle NoSQL server. The various values of these properties
and their meaning can be found in the Oracle NoSQL javadoc 4.

• gora.oraclestore.durability.syncpolicy - The default is WRITE_NO_SYNC.
• gora.oraclestore.durability.replicaackpolicy - The default is SIMPLE_MAJORITY.
• gora.oraclestore.consistency - The default is NONE_REQUIRED.
• gora.oraclestore.time.unit - The default is MILLISECONDS.
• gora.oraclestore.request.timeout - The default is 5000.
• gora.oraclestore.read.timeout - The default is 30000.
• gora.oraclestore.open.timeout - The default is 5000.

5.4.4 ACID Transactions

One important feature of the Gora-OracleNoSQL module is that it supports ACID transactions,
where available. In this section we will clarify what “where available” means, and also how this is
accomplished.

The Oracle NoSQL Database provides support for ACID transactions and atomic operations 5.
This means that multiple CRUD operations will be executed as a single atomic unit. This provides
ACID transaction semantics as long as all the operations are associated with records that have the
same Major Key path. This way, the operations will be executed as a transaction; either all will
be executed successfully or none of them.

To make use of this Oracle NoSQL feature, the Gora-OracleNoSQL accumulates all write op-
erations (insert / update / delete) in a LinkedHashSet<List<Operation>> data structure, called
operations. Every entry of the operations data structure contains a list of operations. This list of
operations is specific to a single persistent object; thus, a list of key/value pairs that share the same
Major Key path. The accumulated operations are executed in order, when the DataStore.flush()
method is called. More specifically, when the flush() method is called, the system iterates throught
the operations data structure and fetches every List<Operation> entry. Then, it executes the list
of operations directly in the back-end, which will be processed as a single atomic unit. Finally,
after the flush() method completes, the operations data structure will be empty in order to be
clean for future operations.

5.4.5 Query operations

Another feature is the support for queries. A Query is a Gora structure that is defined in the
Query interface. Its base class is called QueryBase, which provides the basic query functionality.

4http://docs.oracle.com/cd/NOSQL/html/javadoc/
5http://www.oracle.com/technetwork/database/nosqldb/overview/nosql-transactions-497227.html

33

http://docs.oracle.com/cd/NOSQL/html/javadoc/
http://www.oracle.com/technetwork/database/nosqldb/overview/nosql-transactions-497227.html

CHAPTER 5. GORA-ORACLENOSQL DATASTORE

Then, every Gora datastore module should provide custom query implementation according to the
capabilities and the API of the back-end.

The QueryBase has 2 important attributes; the startKey and the endKey. These represent the
range in which the persistent keys should be retrieved during the execution of the query. It could
be an open range, which means that either the startKey will be set or the endKey. Alternatively,
it could be a closed range, which means that both the startKey and the endKey are set. Queries
are executed by the DataStore.execute() method, which returns a Result object. The Result object
should be created in the execute() method of each DataStore and its contents are always based on
the given Query object.

The OracleQuery extends the capabilities of the QueryBase to provide custom functionality and
features. More specifically, the startKey and endKey are base32hex encoded, as this is required by
the data model of Gora-OracleNoSQL module. Additionally, it provides a Result Cache mechanism.

5.4.5.1 Result Cache

This feature was implemented without being required by the Gora API. In fact, no other Gora
datastore module provides a similar functionality. We decided to add this feature when we were
exploring the DataStore testing suite of Gora. Several of its test cases followed the same pattern:
a Query object was created and then it was executed several times throughout the method. A
characteristic of this use case is that it might become overkill in case the query retrieves thousands
or even millions of records. For this reason, we implemented this optimisation feature, which
prohibits a query being reexecuted in the back-end, if the same query was executed in the previous
call of DataStore.execute(). This is implemented by including a Result object inside the Query
object along with a flag which indicates wether the query is new or whether it was previously
executed. The flag is set to false when a new Query object is created and every time one of the
startKey and endKey is changed.

5.4.6 Programming environment
For the implementation of the Gora-OracleNoSQL datastore module and the the assisting software
5.6, we used the Java programming language. The use of Java was required, as described in the
non-functional requirements, because the API of Apache Gora is available only in Java. As an
IDE we used the IntelliJ IDEA 6. One factor for choosing to work using the IntelliJ IDE was the
fact that it is a modern IDE, and much used in the industry, and having practical experience with
it is a valuable skill for employability. Another factor is that its Ultimate edition was free for
Apache developers and as I was working officially for the Apache Gora project, I was eligible to
take advantage of the features offered by this edition.

A Test-Driven Development (TDD) approach [11] was used during the implementation. By
adhering to this approach, we created the necessary JUnit test cases before we proceeded to the
actual implementation of the specific method. By studying the test cases before working with the
actual implementation of each method, we had a very efficient way to get a good understanding of
what had to be implemented. This significantly simplified the implementation phase. Additionally,
having such detailed JUnit tests helped to build a robust and a highly tested system.

For the automation of the build process and the execution of the test cases we used the Apache
Maven 2 software project management tool. The use of Maven was required as Apache Gora is a
multi-module project based on the structure of Maven. Thus, the parent pom file of the project
should change to accommodate the new module. Also, the file system of the new module should
adhere to the one required by Maven.

For version control we used Git. For a repository server we used GitHub. A public reposit-
ory such as GitHub was a very convenient solution for the needs of this project. Also, learning
to use GitHub, which is a highly-used Git repository in the field, provided me with valuable ex-
perience. The URL of the public repository of this project is https://github.com/maestros/gora-
oraclenosql/blob/master/gora-oracle/.

6http://www.jetbrains.com/idea/

34

https://github.com/maestros/gora-oraclenosql/blob/master/gora-oracle/
https://github.com/maestros/gora-oraclenosql/blob/master/gora-oracle/
http://www.jetbrains.com/idea/

CHAPTER 5. GORA-ORACLENOSQL DATASTORE

Finally, for maintaining a history of the issues and improvements of this project, the Jira bug
tracking tool was used 7. Jira is the official tool for bug tracking that is used by the Apache
Software Foundation and it is publicly available for use by contributors.

5.4.7 APIs used
In this section, we will present the APIs that we used in our implementation of the Gora-
OracleNoSQL datastore module and also give examples of how and why they where used.

• Apache Gora API
First and foremost we made extensive use of the API of the Apache Gora framework8. This
was not only to properly integrate with its core module, but also to make use of several utility
classes and methods. The core API classes and methods that were used are explained in
greater detail in sections 2.3.3 and 5.3.2. The utility classes that were used are the following:

– AvroUtils
This utility class provides static methods for handling some aspects of interacting with
Avro schemas. Gora-OracleNoSQL uses the AvroUtils.getEnumValue() static method
to get the Enum value of a serialised Enum field of a data bean.

– IOUtils
We used this class as it is the Gora-recommended for serialising and deserialising
Avro Maps, Arrays and Records. Where possible, every Gora datastore should use
IOUtils.serialize() and IOUtils.deserialize() to handle serialisation for these Avro com-
plex types.

Apart from the Gora utility classes that were used, the following classes where also used that
provide Gora-specific exceptions for custom error handling:

– GoraException
We used the Gora specific exception when an I/O related exception had to be thrown.
An example of usage is when an exception is thrown during the parsing of the mapping
file.

– OperationNotSupportedException
We used this Gora specific Runtime Exception when a method is called that is not yet
fully implemented or does not make sense in the context of that specific datastore. An
example of usage in the Gora-OracleNoSQL datastore is the getPartitions() method. As
also described in the Limitations section 7.4, Gora-OracleNoSQL does not yet provide
functionality for supporting Hadoop jobs. Therefore, if the getPartitions() method is
called, the OperationNotSupportedException is thrown, with an informative message.

• Oracle NoSQL API
The second most important API that we used is of course the API of the Oracle NoSQL
Database 9. We used this API not only to use the CRUD related classes and methods of
Oracle NoSQL, but also to set up the KVStore instance, handle properly the Key and Value
structures, iterate the store to retrieve multiple key/value pairs, create and execute batch
operations and properly handle exceptions. Section 2.2.4 clearly describes all the methods
that are related to data handling in the Oracle NoSQL Database. These methods include
CRUD methods, iteration-related methods and method for batch operations. In this section
we will briefly present the classes that were used to set up the KV Store and handle the
exceptions.

– KVStoreConfig
Represents the configuration parameters used to create a handle to an existing KV store.
After parsing the gora.properties file, we created an instance of the KVStoreConfig based
on the user-defined values of the properties file. These values include the list of node
addresses and ports to connect to, the various timeouts, the consistency and durability
levels. Then, we used this configuration object to get a handle of the KV store.

7https://www.atlassian.com/software/jira
8http://gora.apache.org/current/api/apidocs-0.3/
9docs.oracle.com/cd/NOSQL/html/javadoc/

35

https://www.atlassian.com/software/jira
http://gora.apache.org/current/api/apidocs-0.3/
http://docs.oracle.com/cd/NOSQL/html/javadoc/

CHAPTER 5. GORA-ORACLENOSQL DATASTORE

– KVStoreFactory
We used this factory class to retrieve a handle to the KVStore, as was specified in the
object created using the KVStoreConfig.

The following Oracle NoSQL specific exception where used to catch the exceptions thrown
during the various CRUD operations. The exact way that we handled them is described in
section 5.5.

– RequestTimeoutException
Thrown when an operation cannot be completed because the configured timeout limit
is exceeded.

– OperationExecutionException
Thrown when there is a failure to execute a sequence of operations.

– DurabilityException
Thrown during a write operation and indicates that the durability guarantee could not
be met.

– FaultException
Indicates that an error occurred that cannot be handled in any other way but retrying
the operation.

• Apache Avro API
Apache Avro is presented in section 2.1.6.4. Due to the fact that Apache Gora extensively
uses Apache Avro for data bean definition and serialisation, we also had to use the Avro API
10 to properly read and write the Avro schemas. For example, Avro uses the Utf8 datatype
to store character strings instead of the Java String datatype. Another example of its usage
is the class SpecificDatumReader and SpecificDatumWriter used to read and write Union
complex types. Finally, the BinaryEncoder and BinaryDecoder are used to serialise and
deserialise Avro values into binary-format.

• JDOM API
JDOM’s SAXBuilder 11 was used to properly parse the XML mapping file and extract the
values from the specific mapping elements.

• SLF4J & Log4j API
We used SLF4J 12 and Log4J 13 to efficiently use multilevelled logging of the generated log
messages.

• Base32Hex
As described in the section 5.4.1, there is an inherent problem between the keys of the
data models of Gora and Oracle NoSQL. In order to preserve the natural sort order of
the Gora keys and being able to retrieve multiple keys in their natural sort order, we used
the base32hex encoding, which, according to the RFC 4648, maintains the sort order of
the encoded data. We used the com.buck.common.codec.Base32Hex 14, licensed under the
Apache License, Version 2.0, as the implementation of the base32hex encoding.

5.5 Testing

In this project, we used a Test-driven development methodology. For each feature that we wanted
to implement, such as CRUD operations, Query operations, and so on, we first wrote an test case
meant to test and validate the new functionality. Of course at first this test case would fail, but it
was used to drive the implementation of the actual functionality. Next, we added a first version of
the implementation and validated its functionality against the test case. Then, we refactored the
implementation until the test case passed successfully.

The Apache Gora has an existing testing suite that provides plenty of test cases to valid-
ate the datastore-specific implementation of each API method (validation). Also, by having

10https://avro.apache.org/docs/current/api/java/
11http://www.jdom.org/docs/apidocs/org/jdom2/input/SAXBuilder.html
12http://slf4j.org/apidocs/org/slf4j/Logger.html
13http://logging.apache.org/log4j/2.x/
14http://grepcode.com/file/repo1.maven.org/maven2/com.github.rbuck/java-codecs/1.0.1/com/buck/common/codec/Base32Hex.java

36

https://avro.apache.org/docs/current/api/java/
http://www.jdom.org/docs/apidocs/org/jdom2/input/SAXBuilder.html
http://slf4j.org/apidocs/org/slf4j/Logger.html
http://logging.apache.org/log4j/2.x/
http://grepcode.com/file/repo1.maven.org/maven2/com.github.rbuck/java-codecs/1.0.1/com/buck/common/codec/Base32Hex.java

CHAPTER 5. GORA-ORACLENOSQL DATASTORE

successful test cases, we can verify that the system conforms to the functional requirements as
specified in section 4.2.1 (verification). Most of the Gora-OracleNoSQL JUnit tests override the
DataStoreTestBase test cases, which are provided by the Gora API and are mandatory to be suc-
cessfully passed by every datastore module. Also, several methods for asserting the final result of
the test cases had to be created. These assertion methods verify the consistency of the persistent
data directly from the Oracle NoSQL Database. Additionally, for the extended functionality that
the Gora-OracleNoSQL module provides, specific test cases were created. Finally, some additional
test cases were created to further test the robustness and the capabilities of the system.

Following is a list of the test cases that where created and the assertion methods. For each one,
a brief description is added.

• testAutoCreateSchema - Tests and asserts that the autocreateschema property works as
expected.

• testTruncateSchema - Tests and asserts that schema truncation works as expected.
• testDeleteSchema - Tests and asserts that the DataStore is able to delete a schema.
• testSchemaExists - Tests the existence of a schema, by creating a new schema.
• assertSchemaExists - Asserts that the schema created in the testSchemaExists, exists.
• testPut - Tests that the put operation works as expected by persisting a new object.
• assertPut - Asserts that the new object, created in the testPut, is persisted as expected and
retrieved properly.

• testPutNested - Tests and asserts that an object that contains a nested object is persisted
as expected.

• testPutArray - Tests that an object that contains an array field is persisted.
• assertPutArray - Asserts that the object created in the testPutArray is persisted as expected
and retrieved properly.

• testPutBytes - Tests that an object that contains a byte array or a character string field is
persisted.

• assertPutBytes - Asserts that the object created in the testPutBytes is persisted as expected
and retrieved properly.

• testPutMap - Tests that an object that contains a Map field is persisted.
• assertPutMap - Asserts that the object created in the testPutMap is persisted as expected
and retrieved properly.

• testUpdate - Tests and asserts that an update operation works as expected.
• testEmptyUpdate - Tests and asserts that an update operation works as expected, if the new
value is null.

• testGet - Tests that a get operation works as expected, by persisting a new object and
asserting that it is retrieved properly.

• testGetRecursive - Tests and asserts that an object with a nested recursive object is persisted
as expected and retrieved properly.

• testGetDoubleRecursive- Tests and asserts that an object with a double nested recursive
object is persisted as expected and retrieved properly.

• testGetNested - Tests and asserts that an object that contains a nested object (not recursive)
is persisted as expected and retrieved properly.

• testGet3UnionField - Tests and asserts that an object with a 3-types union field is persisted
as expected and retrieved properly.

• testGetWithFields- Tests that a get operation with specific fields works as expected, by
persisting a new object and asserting that it only the specific fields are retrieved.

• testGetWebPage - Tests that a get operation works as expected, by persisting a new WebPage
object and asserting that it is retrieved properly.

• testGetWebPageDefaultFields- Tests that a get operation works as expected, by persisting a
new WebPage object and asserting that all its fields are retrieved properly.

• testGetNonExisting - Tests that a get operation works as expected when trying to retrieve a
non-existing persistent key.

• testDelete - Tests and asserts that a delete operation works as expected.
• testDeleteByQuery - Tests and asserts that multiple persistent objects are deleted based on
specific queries.

37

CHAPTER 5. GORA-ORACLENOSQL DATASTORE

• testDeleteByQueryFields - Tests and asserts that only specific fields of the identified persist-
ent objects are deleted base on specific queries.

• testDeletePersistentObject - Tests and asserts that persistent objects can be deleted given
the same persistent objects and not only given their keys.

• assertTopLevelUnions - Asserts that when writing a top level union [’null’,’type’] the value
is written in raw format.

• assertTopLevelUnionsNull - Asserts that when writing a top level union [’null’,’type’] the null
value is treated properly.

The following test cases verify that the various combinations of query setups work as expected by
retrieving the expected number of objects according to the each query setup.

• testQuery
• testQueryStartKey
• testQueryEndKey
• testQueryKeyRange
• testQueryWebPageSingleKey
• testQueryWebPageSingleKeyDefaultFields
• testQueryWebPageQueryEmptyResults

We should mention an issue with testDeleteByQueryFields method. This test method test an
important feature of the datastore: the ability to delete specific fields from multiple persistent
objects using a Query operation. This feature works correctly in the Gora-OracleNoSQL data-
store. However, the test method testDeleteByQueryFields is defined by Gora’s DataStoreTestBase
and it has a problem with unambiguity concerning the query range criteria. These criteria are
interpreted differently in some Gora datastore modules. This is a known Gora bug 15, which is
still not resolved. We had to ignore this test method until the Gora-66 issue is resolved. How-
ever, the functionality of this feature works correctly in the Gora-OracleNoSQL and this can be
demonstrated by the LogManager (see section 5.6).

The above test cases perform a thorough Unit Testing of the system. After the completion
of the implementation of every method, we run the whole test suite both to perform Regression
Testing and as a way to validate the new functionality.

As we will discuss in the next section, we used an assisting application, called LogManager, to
test and demonstrate the functionality of the Gora-OracleNoSQL datastore module. Through the
use of this software we performed extensive simulation before the submission of the project. This
effectively contributed to a successful System Testing.

5.6 Assisting software
The Gora-OracleNoSQL datastore module is able to work successfully without the use of any
assisting software, apart from its dependencies of course. However, for this project we used two
additional applications to assist us during the demonstration of the functionality of the Gora-
OracleNoSQL datastore module. The first one is the OracleTerminal and the second one is the
LogManager.

The Apache Gora framework is a framework that is used as an abstraction storage layer for the
front-end applications. Therefore, as a back-end system, its functionality cannot be demonstrated
on its own. For this reason, a sample front-end application is needed that will make use of the
functionality provided by the Gora framework. The LogManager is the official sample application
that is used by the Apache Gora community to demonstrate the functionality of the Gora frame-
work. The LogManager is a sample application that manages web server logs. It is able to parse
any web server log file, given that the log format is the Combined Log Format 16. The LogManager
is able to parse web server log files and storing the logs, deleting some lines and querying.

15https://issues.apache.org/jira/browse/GORA-66
16http://httpd.apache.org/docs/current/logs.html

38

https://issues.apache.org/jira/browse/GORA-66
http://httpd.apache.org/docs/current/logs.html

CHAPTER 5. GORA-ORACLENOSQL DATASTORE

We considered using the LogManager application in order to be consistent with the demon-
strating approach of the rest of the Gora community. However, we did not use the LogManager
exactly as it is provided by the Gora community. We customised its functionality for two reasons.
First, because of the limitation of the Gora-OracleNoSQL module that supports persistent keys
only of type String. The LogManager uses keys of type Long. Therefore, we transformed the Long
keys into zero padded Strings with a fixed length of 4 characters. Second, we added a new read
capability that extends its current capabilities. This is the -get <lineNum> [<field list>] option,
which we believed it is a feature that was important to be demonstrated.

The available options of the LogManager are the following:

• -parse <input_log_file>
This option parses the input file that contains the web server logs. Each entry of the file is
parsed into a separate object that is persisted in the database. After the completion of this
operation, all the entries of the log file will have been parsed into separate objects and will
have been persisted into the database. The key for each persistent object will be the line
number of each entry of the log file.

• -get <lineNum> [<field list>]
This option allows the user to retrieve the persistent object that is associated with the
given key. As described above, the key for each persistent object is its line number in the
log file. The retrieved persistent object will be displayed on the screen. This calls the
toString() method of each persistent object, which displays all the object fields and their
values. Note that this option, in its simple form, retrieves the values of all the fields of the
object. However, there might be some use cases in which this behaviour is not needed. For
this reason, Gora and the Gora-OracleNoSQL datastore provide an overloaded method that
retrieves only specific fields for the persistent object of the given key. Therefore, the optional
<field_list> parameter retrieves specific fields for the given persistent object. An example
call of this option would be the following:
LogManager -get 15 ip,url
The above command will retrieve the persistent object with the key 15 and only the fields ip
and url will have values retrieved from the database. The rest of the fields will be empty or
zero.

• -query <lineNum>
This option creates a Gora Query and searches the back-end database for a single persistent
key. If it is found, the associated persistent object is returned. If not, no object is returned
and an informative message is displayed to the user.

• -query <startLineNum> <endLineNum>
This option creates a Gora Query and searches the back-end database for persistent objects
that fall inside the given key range. If there are stored keys inside the given range, the
associated persistent objects are returned. If not, no object is returned and an informative
message is displayed to the user. This also demonstrates that the retrieved objects are
returned in a sorted order, based on the natural sort order of their keys (see section 5.4.1.4).

• -delete <lineNum>
This option deletes the persistent object from the database that is associated with the given
key (lineNum). Note that this is translated to multiple delete operations that will be ex-
ecuted in the back-end database, because a persistent object uses several key/value pairs for
persisting all its fields. Additionally, the primary key of this object will be deleted, which is
stored under the “PrimaryKeys” Major component.

• -deleteByQuery <startLineNum> <endLineNum>
This option creates a new Gora Query that specifies a key range based on the given keys
(startLineNum, endLineNum). It then uses this query to perform a deleteByQuery operation,
which deletes all the persistent objects whose keys are inside the query range. Additionally,
the primary keys of the deleted persistent object will be deleted, which are stored under the
“PrimaryKeys” Major component.

The Oracle NoSQL Database does not provide a terminal application, like other databases do.
For example the Oracle RDBMS uses the SQL*Plus utility that allows the developer to submit

39

CHAPTER 5. GORA-ORACLENOSQL DATASTORE

ad-hoc queries directly to the database. Since there was no such utility for the Oracle NoSQL
Database, we created one in order to be able to validate the results of the Gora-OracleNoSQL
operations directly from the database. We named this assisting software OracleTerminal. Its
purpose is to allow the developer to connect directly to the Oracle NoSQL Database and access in
an ad-hoc fashion. However, for the purposes of the demonstration, there was no need to allow the
developer to submit freely any kind of ad-hoc operation. Therefore, we restricted the capabilities
of this utility by creating specific options. Also, the OracleTerminal has knowledge of the Gora-
OracleNoSQL data model. This means that it is aware of what a key of a persistent object is and
what a primary key is.

The available options of the OracleTerminal are the following:

• -dumpDB
With this option, the OracleTerminal will display on the screen all the key/value pairs that
are currently stored in the Oracle NoSQL Database. This option is useful when one wants
to validate that the database contains data and it is not empty or wants to visually validate
that the structure of the stored key/value pairs is correct. We used this option after the
parse operation of the LogManager.
The format of the output of each key/value pair is the following:
MajorKey-MinorKey : Value
Note that the MinorKey and/or the Value parts are optional. This means that there might
be kay/value pairs that do not have a MinorKey and/or a Value. This is valid based on the
Gora-OracleNoSQL data model. Also, note that the fields of the persistent objects whose type
is a complex data structures are serialised in order to be stored in the database. Therefore,
because of the fact that the OracleTerminal does not perform deserialisation, these serialised
values are displayed directly on the screen. This has the side effect of displaying several
non-printable characters. However, as explained, this is an expected behaviour.

• -get <key>
This option allows the user to get all the key/value pairs that are related to a specific
persistent key. The parameter of this option (key) refers to the persistent key (the key of the
persistent object).

• -truncate
This option deletes all the stored key/value pairs from the database. We provided this option
in order to have a clean database before the demonstration.

• -countKeys [<PrimaryKeys>]
This option displays and counts the key/value pairs that are stored in the database. Note that
a Gora persistent object may be composed of several key/value pairs. An optional parameter
is the “PrimaryKeys” keyword, that counts only the stored primary keys; the key/value pairs
that are stored under the “PrimaryKeys” Major component.

Note that the OracleTerminal utility has no capabilities for write operations. This is because, as
we mentioned above, the purpose of this utility is to validate the results of the operations performed
by the Gora-OracleNoSQL module. Therefore, there is no need to add write capabilities to this
utility in order to successfully validate the results.

40

Chapter 6

Apache Gora contribution

6.1 Overview
A secondary objective of this project was to contribute to the Apache Gora community, not only
by implementing the Gora-OracleNoSQL module, but also by improving the framework in general.
This work was performed not only because this project took part in the Google Summer of Code
2013 event, but also because it was a convenient way of getting to know the implementation
details of the Gora framework. For this reason, I monitored daily the Jira bug tracking tool
and communicated with the Gora community about the unresolved bugs of the project. I must
highlight here the fact that the bugs that I am referring here are not bugs of the Gora-OracleNoSQL
datastore but bugs of other modules of the Gora framework. Within the time frame of this project
I identified 8 new bugs and improvements and I provided patches for a total of 15 issues. It may
be noted that I provided patches that affect all modules of the Gora framework, including all
its supported data store modules. This gave me insights and valuable knowledge of the whole
framework that enabled me to avoid some mistakes of other datastore modules and also to utilise
some Gora API functionality that otherwise would have been unknown to me because of its limited
documentation. For these reasons, this contribution proved to be very valuable for the success of
the main objective of this project.

6.2 Issues resolved
The following will describe the most important issues that have been resolved during the time
frame of this project. The full details of each of these issues are also available online in the Jira
application that Apache Gora maintains1.

1https://issues.apache.org/jira/browse/GORA

41

https://issues.apache.org/jira/browse/GORA

CHAPTER 6. APACHE GORA CONTRIBUTION

GORA-229: Use @Ignore for unimplemented test functionality
Jira issue URL: https://issues.apache.org/jira/browse/GORA-229
This issue is about the use of JUnit 4 features in the test cases, which is essentially an improvement
for the testing suite of the project. More specifically, it involves refactoring all the Java classes
of Apache Gora to abandon the deprecated junit.framework.* and use the recommended static
org.junit.Assert.*. Additionally, it involves making use of the @Ignore annotation for the test
methods that do not have proper implementation yet and should be skipped. This was a very big
patch that affected all the modules and data stores of the project. The patch has already been
committed to the project.

GORA-231: Provide better error handling in AccumuloStore.readMapping
Jira issue URL: https://issues.apache.org/jira/browse/GORA-231
Each Gora datastore has to read the mapping file and parse it accordingly. However, there is no
check and proper error handling in case the mapping file does not exist. The goal was to create
a patch that would provide a consistent error handling among all Gora datastore. For this reason
I modified the DataStoreFactory.getMappingFile() which is used by all datastores. It now throws
an IOException if the mapping file does not exist in the path. The patch was submitted but has
not yet been committed at the time of writing this report. GORA-232: DataStoreTestBase

functionality delegation to DataStoreTestUtil
Jira issue URL: https://issues.apache.org/jira/browse/GORA-232
This issue was an improvement of the implementation of the testing suite. The pattern that the
test suite follows demands that alDataStoreTestUtil should be responsible for the actual testing.
However, some test cases defined in DataStoreTestBase contained an actual test code implement-
ation. The patch that I contributed delegated all the testing functionality to DataStoreTestUtil,
where appropriate. The patch has already been committed to the project.

GORA-243: Properly escaping spaces of GORA_HOME in bin/gora
This bug was identified by me. The problem was that when the user executed “bin/gora” from a
path that contained one or more spaces, it failed with the following exception:
Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/Avro/Schema
The cause was the mishandling of spaces when building the CLASSPATH environmental variable
in bin/gora. The solution was to save the IFS (Internal Field Separator) variable into a temporary
variable, the build the CLASSPATH environmental variable and then restore the original value of
IFS from the temporary variable. The patch has already been committed to the project.
Jira issue URL: https://issues.apache.org/jira/browse/GORA-243

GORA-258: writeCapacUnits gets value from wrong attribute
This bug was identified me and involves a variable that reads a value from a wrong property in
the Gora-DynamoDB module. More specifically, I spotted that the variable writeCapacUnits was
wrongly reading its value from the element readCapacUnits during the xml parsing of the mapping
file. The patch has already been accepted and committed.
Jira issue URL: https://issues.apache.org/jira/browse/GORA-258

GORA-259: Removal of the main methods from the test case classes
This improvement was identified by me. I spotted that several JUnit test case classes contained
main methods for triggering some test cases, which is a non-recommended practice. After I received
positive feedback from the community, I proceeded to create the patch, which has already been
committed.
Jira issue URL: https://issues.apache.org/jira/browse/GORA-259

42

https://issues.apache.org/jira/browse/GORA-229
https://issues.apache.org/jira/browse/GORA-231
https://issues.apache.org/jira/browse/GORA-232
https://issues.apache.org/jira/browse/GORA-243
https://issues.apache.org/jira/browse/GORA-258
https://issues.apache.org/jira/browse/GORA-259

CHAPTER 6. APACHE GORA CONTRIBUTION

GORA-264: Make generated data beans more java doc friendly
This issue is an improvement of the GoraCompiler. The goal of this improvement is to make the
GoraCompiler add static and dynamic javadocs to the generated data beans. In order to make the
javadocs as dynamic as possible, I extended the compiler’s parsing capabilities of the json Avro
schemas. More specifically, the GoraCompiler now extracts information from the “doc” element
of the Avro schema in order to dynamically construct the javadoc for the generated data bean.
This way, the generated data beans provide helpful comments and are much more readable and
maintainable. A sample data bean generated with this patch can be seen in 2.3.2. The patch has
already been accepted and committed.
Jira issue URL: https://issues.apache.org/jira/browse/GORA-264

GORA-265: Support for dynamic file extensions when traversing a directory
Until version 0.3 of Gora, the GoraCompiler had 2 ways of finding the Avro schemes that it would
compile. The first one was to directly specify the filename of the Avro scheme and the second
one was to to specify a directory. In the later case the GoraCompiler would compile all the Avro
schemes whose filenames have the default extension of .avsc. I proposed this improvement that
allows the user to specify dynamically the extensions of the files of a specific directory. This way
the user has much greater flexibility when needing to compile multiple Avro schemes. The patch
has already been accepted and committed.
Jira issue URL: https://issues.apache.org/jira/browse/GORA-265

GORA-268: Make GoraCompiler the main manifest attribute in gora-core
Normally, the GoraCompiler should be invoked by using the bin/gora executable. However, the
GoraCompiler being a part of the gora-core module could be invoked by the maven-generated
jar file. This functionality was not implemented yet. I submitted this patch that makes the
GoraCompiler the mainClass in the jar’s manifest. Therefore, a user is able now to simply invoke
the GoraCompiler directly from java, as follows:
java -jar gora-core/target/gora-core-0.4-SNAPSHOT.jar.
This provides greater flexibility in invoking the GoraCompiler and also allows the GoraCompiler
to be uncoupled from the rest of the framework.
Jira issue URL: https://issues.apache.org/jira/browse/GORA-268

6.3 Contribution Statistics
The following pie charts are provided to illustrate the amount of work that I performed for this
project. The pie charts were generated by the Jira bug tracking tool that Apache Gora maintains
and are also available online2.

2https://issues.apache.org/jira/browse/GORA

43

https://issues.apache.org/jira/browse/GORA-264
https://issues.apache.org/jira/browse/GORA-265
https://issues.apache.org/jira/browse/GORA-268
https://issues.apache.org/jira/browse/GORA

CHAPTER 6. APACHE GORA CONTRIBUTION

Figure 6.1: Number of issues by assignee

Figure 6.2: Number of issues by reporter

Note: Since this project will continue to be developed and maintained, these charts will change.
The Jira URL for the most current statistics is: https://issues.apache.org/jira/browse/GORA. The
pie charts can be dynamically generated by clicking on the “Pie Chart Report” option.

44

https://issues.apache.org/jira/browse/GORA

Chapter 7

Evaluation

This chapter will evaluate the project. It presents the learning outcomes and the most important
challenges faced, and describes the achievements of the project and its current limitations. It
evaluates the delivered product and the process followed to achieve its completion.

7.1 Learning outcomes

My main objective right from the outset of this project was to gain as much knowledge as possible,
not only of a new field, but also of new technologies and tools. It is my belief that I achieved these
learning objectives. More specifically, I have gained the following knowledge:

• Familiarity with the Big Data field
• Various NoSQL technologies and concepts:

– Schemaless data modelling
– Aggregate oriented databases

• How an object persistence framework achieves its goals:

– How Object-to-Datastore mapping works
– How to create a database abstraction

• Expertise in 3 software systems and their APIs:

– Oracle NoSQL database
– Apache Gora
– Apache Avro

• Experience in the use of the following Software Engineering tools:

– Git (version control)
– Maven (build automation)
– Jira (bug tracking)
– IntelliJ IDEA (Integrated Development Environment)

• How Open Source projects are generally structured and work

– How the Apache Software Foundation works

• Experience in working in an Open Source project
• How to organise the activities of a software development project of a complex system and
properly prioritise them.

• How to find alternative solutions to issues that block the completion of a project.

45

CHAPTER 7. EVALUATION

7.2 Challenges
This project started with some known risks that proved to be significant challenges. Additionally,
some unexpected challenges emerged along the way. All these challenges are described in detail in
this section.

• Before I started the project, I had virtually zero previous knowledge in the field of NoSQL
and Big Data. This was actually one of my motivations for working on a project on this
field, as I wanted to get to know this very promising field of computer science. However,
this total lack of knowledge was a big challenge to overcome, because in a strict timeframe I
not only had to learn on my own the concepts and the fundamentals of the various NoSQL
technologies, but also to learn how the Apache Gora framework and the Oracle NoSQL work,
and then to analyse, design, implement and test a new data store module for this framework,
which was also unknown to me previously.

• As both software systems are very new, there are no books on Apache Gora and Oracle
NoSQL that could provide me with the information I needed to build up the skills necessary
to the construction of the new datastore module. My main information resources were the
javadocs, some blog posts and the community of each project.

• Apache Gora is a very new framework. The version 0.3 was released a few days before I
started this project. Because of this, and also because it is an Open Source project, there
was limited or inconsistent documentation, in some cases. For example, there is no guide on
how to create a new data store module. Therefore, I had to study the code of the other data
store modules and identify on my own what has to be done. This was very time-consuming
and confusing because the implementation of these data stores are not consistent between
each other. Each datastore is implemented in its own way, relatively different from the others.
Additionally, the Gora API is not very clear in several cases, which caused significant delays
while I clarified the confusion.

• There is no Oracle NoSQL database embedded version. This limitation caused significant
delays until an approach for resolution was agreed. Several alternative solutions were tried,
in an attempt to automate the initialisation and termination of the embedded version of the
server, but it was proved that the only trustworthy solution was to manually create the em-
bedded version of the server. The embedded version is needed by the GoraOracleTestDriver
which is used by the test case suite, so that the datastore test cases can be executed without
having to manually start the NoSQL database.

• There is a significant limitation of the Gora-OracleNoSQL datastore module regarding license
version incompatibility. The limitation is described in detail in section 7.4. This incompat-
ibility prohibits the distribution of the module in the Gora release. The significance of this
should not be overlooked, as it invalidates my motivation to contribute to the Open Source
community. However, since this project proposal was already accepted in the Google Summer
of Code 2013, and since the Oracle NoSQL development and management team informed us
that in the future, they might release their client API in a compatible license, I decided to
move on with the completion of the project.

7.3 Achievements
Despite the challenges that are described in 7.2, the project was successfully completed and de-
livered on time. The following list describes the achievements of this 3-month project:

• Embarked on a NoSQL project regardless of the risk inherent in my virtually zero previous
knowledge on the NoSQL field and successfully completed the project on time.

• Because of this zero previous knowledge, I had to allocate significant time to study the theory
behind the vast field of the various NoSQL technologies, before starting the design and the
implementation of the practical deliverable of this project. This introduced a big risk for
the successful completion of the practical deliverable because of the little time that was
left. However, despite the risk, I successfully gained significant theoretical knowledge of the
various NoSQL technologies and completed the implementation of the Gora-OracleNoSQL
data store module.

46

CHAPTER 7. EVALUATION

• Successfully researched, analysed, designed, implemented and fully documented a NoSQL
software system within a strict timeframe.

• Understood the internals of a framework previously unknown to me to such a degree
that I was able to improve the quality of its core functionality and of several of its modules
by solving some of its open issues and by identifying some new.

• Contributed new features and improvements, and fixed bugs, on a framework that has thou-
sands of deployments.

• The delivered software system not only incorporated almost all the features and functionality
as they were described in the project proposal but also delivered added functionality that
was not initially planned.

• I am proud to have successfully contributed to the Open Source community and been nom-
inated for promotion to Apache Project Management Committee (PMC) member
and Commiter status.

7.4 Limitations

At the moment of writing this report, the delivered Gora-OracleNoSQL datastore module has some
limitations that have not been resolved yet. As we will see, some of them were because of lack
of time, others because of legal issues and others because of unclear specifications due to the lack
of proper documentation of Apache Gora. Following, the current limitations of the module are
described in detail.

Even though Apache Gora has extensive support for Hadoop, the Gora-OracleNoSQL mod-
ule does not provide such functionality as it is required by Gora’s API. More specifically, Gora
API requires its datastore modules to implement the getPartitions(Query<K, T> query) method.
This is one of the few datastore-specific methods which eventually involves and utilises Hadoop
MapReduce computation for executing Gora jobs on data within the back-end store. Because of
my limited knowledge of Hadoop and because of lack of time, the implementation of this method
has not been completed yet.

After the initiation of the project, we realised that there is a license incompatibility problem
that prohibited distribution of the module in the next release of Apache Gora. More specifically,
the Gora-OracleNoSQL module depends on the kvclient.jar of the Oracle NoSQL database. This
jar is the driver that provides the necessary Oracle NoSQL API that Apache Gora must use. The
fact that the license of Oracle NoSQL is GNU AGPLv3 and the license of Apache Gora is Apache
License 2.0 creates a license incompatibility issue that forbids us to incorporate this jar file in
the distribution of Apache Gora. We contacted the Oracle NoSQL development and management
team and they informed us that they will work on a possible solution. However, this issue has
yet to be resolved by Oracle. Therefore, the users that would want to use the Gora-OracleNoSQL
module will have to download it separately from the main Gora distribution. The user will have to
be responsible for downloading the Oracle NoSQL database and installing the kvclient.jar in the
proper directory of Gora’s file system.

Apache Gora has an extensive suite of test cases that validate the proper functionality of a data
store module. However, even though the Gora-OracleNoSQL module successfully passed all the
test cases, a limitation was identified a few days before this report was written. More specifically,
in Gora the key for a persistent object could be of any data type. However, the test cases test only
the case of String keys. This is very consistent with the data model of the Oracle NoSQL, as the
data types of its keys are a series of strings. This limitation was identified when we tried to use
the LogManager demonstration utility 1, which uses Long as the persistent key. Because of this
issue in the test cases, a false impression was created that persistent keys should only be of type
String. The Gora-OracleNoSQL datastore module was created based on this false impression and
therefore its support for keys is limited to String.

1http://gora.apache.org/current/tutorial.html

47

http://gora.apache.org/current/tutorial.html

CHAPTER 7. EVALUATION

7.5 Improvements and future work
Apache Gora has a great potential to become the standard in Big Data persistence. Also, I believe
that this project provides important value to the framework and I will continue to maintain and
improve it. Additionally, as this project is released in the Open Source community, other developers
can contribute and provide improvements and new features.

The most important improvements that should be addressed in the immediate future are the
following:

• The limitation for supporting Apache Hadoop should be addressed by implementing the
necessary Gora API methods, such as the getPartitions(). Based on discussions with the
Gora community, this is considered an advanced feature that will add more value to the
Gora-OracleNoSQL module. Oracle NoSQL by itself integrates with Apache Hadoop, which
means it is feasible to address this limitation.

• The Gora-OracleNoSQL module currently supports persistent keys only of type String. This
is a significant limitation that should be addressed. Moreover, the test case suite should
change and incorporate tests that will validate that all the datastore modules support keys
of other types apart from String.

• If and when Oracle releases the Oracle NoSQL client API under an Apache License 2.0, the
Gora-OracleNoSQL module should change in order to incorporate the necessary jar file in its
path. This way the module will be distributed in the official Gora release.

• The Gora-OracleNoSQL module should integrate with the GoraCI test suite which will allow
us to validate that the module can operate with a performance level similar to other modules
while ensuring that data is not lost at scale. This test suite is called continuous ingest 2.

2https://github.com/keith-turner/goraci

48

https://github.com/keith-turner/goraci

Chapter 8

Project Management

8.1 Project distribution
This project was organised in 7 phases. Following is a high-level overview of the key phases of the
project and the main tasks of each one. Please note that we did not follow a waterfall methodology.
Therefore, some activities of these phases overlap with some others during this project.

Phase 1: Initiation and planning phase
Since I had no knowledge of Oracle NoSQL and of Apache Gora, the learning curve was sub-

stantial, as I had to learn and fully understand both systems. Following are the major tasks that
I performed during the 1st phase of the project:

I studied their documentation, functionality and features. I studied and reviewed their APIs
and also study the source code of both products to understand their inner functionality. It was
important to identify areas of key importance of the APIs. More specifically: how specific API
calls of Oracle NoSQL could be properly mapped to Apache Gora. Proper handling of CRUD
operations of multi-component Oracle NoSQL keys. Special care had be taken for proper handling
of CRUD operations of multiple key-value pairs within an entity (same major key). Oracle NoSQL’s
unordered scan API had also be studied and handled properly during get() and flash() operations.
Oracle NoSQL’s variable consistency for read operations and varying degrees of durability for
update operations had to be studied. In this phase, I also deployed both systems and created a
sample database in Oracle NoSQL. Additionally, I investigated existing solutions that integrate
with Oracle NoSQL. Then, I studied the source code of other Gora modules to understand how
they achieve their integration with their datastores. I studied the Oracle NoSQL data model in
order to determine how its data model influences Gora’s internals and how a mapping could be
implemented. Finally, I identified dependencies and how they could be handled in this project.

Phase 2: Design phase
In this phase, after I had a clear understanding of the architecture and the details of both

Gora and Oracle NoSQL, I created a design in UML (package diagram) to communicate to my
supervisor and to the Gora community the architecture of the Gora-OracleNoSQL module that I
would implement. It was agreed that there was no need to elaborate much in the UML diagrams
at that point but to focus more on the actual implementation of the datastore module. More UML
diagrams were created in later phases of the project.

Phase 3: Implementation phase
For the implementation, I adopted a Test Driven Development approach. Apache Gora had a

ready made test case suite that I had to use. However, I also created some JUnit tests for the Oracle
NoSQL datastore for the extra functionality that I wanted to add. Of course, the tests failed at
first, but they guided the actual implementation of the datastore. Having such detailed JUnit tests
helped in building a robust and a highly tested system. For the automation of the build process
and the execution of the test cases, I used the Apache Maven 2 software project management tool.
For the version control of the project I used Git and I used a repository in GitHub. I considered
it very important to commit very frequently in order to have my code reviewed by my supervisor
and to receive early feedback.

49

CHAPTER 8. PROJECT MANAGEMENT

Phase 4: System testing and bug fixing phase
In this phase, I tested the whole system and ran real simulations of the module in order to

identify possible bugs. Any bug that was identified was logged in Gora’s Jira but tracking tool and
then fixed.

Phase 5: Code clean-up phase
In this phase, I performed a source code clean-up and I fully documented it with proper Javadoc

and inline comments. Having proper comments and javadocs is essential for this project, first
because it has to be reviewed by my supervisor, and second because it is to be maintained by the
Open Source community after its completion.

Phase 6: Demonstration phase
This phase was necessary because a demonstration a requisite for assessment.. In this phase, I

created a utility application that was used for ad hoc validation of the results of the Gora operations
directly from the Oracle NoSQL database. I also customised the LogManager application that Gora
uses for demonstration purposes. Finally, I created a slide presentation that is also available online
here: http://prezi.com/vnahscdp9vm4/apache-gora-support-for-oracle-nosql/

Phase 7: Documentation phase
Finally, after the presentation and demonstration, I wrote this detailed report that reviews and

presents all the aspects of this project.

8.2 Project schedule

Following is a rough time schedule of the project, as the phases were actually performed.
June 1st – June 15th: Phase 1 - Initiation and planning phase
June 16th – June 26th: Phase 2 - Design phase
June 27th – Aug 27th: Phase 3 - Implementation phase
June 27th– Aug 27th: Phase 4 - System testing and bug fixing phase
Aug 28th – Aug 29th: Phase 5 – Code clean-up phase
Aug 30th – Sept 2nd: Phase 6 – Demonstration phase
June 1st– Sept 12th: Phase 7 – Documentation phase

Note that the Phase 4 and Phase 5 are concurrent phases. Also note that the Documentation
phase run throughout the project’s lifetime.

8.3 Risk Analysis

During the planning phase of this project we performed a risk analysis to identify potential high
risk areas. This analysis also played a key role in performing the feasibility assessment of the
project (see section 4.3). In the following sections, we will present the identified risks. Next we
will assess each of them and provide the proposed solutions for each one.

8.3.1 Risk identification

The following list presents the identified risks. Each risk is numbered for future reference.

1. Zero previous knowledge of NoSQL technologies might require steep learning curve before
become productive.

2. Apache Gora, as a very new Open Source project, might have several bugs that could delay
successful integration.

3. Object to key/value store mapping might not be possible.
4. Apache Gora and Oracle NoSQL might have APIs that are incompatible with each other.
5. Apache Gora might lack documentation and prohibit us from learning its internal function-

ality.

50

http://prezi.com/vnahscdp9vm4/apache-gora-support-for-oracle-nosql/

CHAPTER 8. PROJECT MANAGEMENT

8.3.2 Risk assessment and management
Following we will assess each identified risk and provide risk strategies for each one. To evaluate
the risk, we established a scale from 1 to 10 for both the risk probability and the risk impact. 10
is considered to be the most probable or the one with the highest impact.

1. Probability of risk: 10. Impact: 10. Risk = 100.
Risk strategy: Establish proper time management and prioritise the topics that should be
studied. Set achievable small goals and proceed at a fast pace. Communicate frequently with
the supervisor about the progress. Main focus should be the actual NoSQL technologies that
will be used in this project. Use trusted resources such as books of renowned authors.

2. Probability of risk: 3. Impact: 6. Risk = 18.
Risk strategy: Create mock implementations of the Gora interfaces in order to make sure that
an integration is feasible. Study previous Gora datastores to identify bugs that delayed these
projects and verify that they are resolved. If not, communicate with the Gora community to
stress the need to resolve them.

3. Probability of risk: 1. Impact: 7. Risk = 7.
Risk strategy: Study existing Gora datastores that have key/value data model (such as the
Gora-DynamoDB module) and learn how they achieved the mapping. Also, research if other
projects achieved object persistence in other key/value stores. The probability of risk is low
because the existing Gora-DynamoDB datastore module provides similar mapping.

4. Probability of risk: 2. Impact: 9. Risk = 9.
Risk strategy: Study the Gora API and the Oracle API. Create early prototypes to assess
compatibility. Research other projects that have managed to integrate with these systems.
In the worst case of inevitable incompatibility, use a model transformation framework such
as SiTra.

5. Probability of risk: 8. Impact: 7. Risk = 56.
Risk strategy: Gather all available documentation. Communicate with the Gora community
and ask for resources. Study the source code of Gora. Solve known bugs and provide
improvements of the existing functionality in order to learn the Gora architecture and its
internal functionality. Create bonds with the other Gora developers.

51

Chapter 9

Conclusion

In this project we focused on exploring the NoSQL field. Our main objective was to prove that
an object to a key/value store mapping is possible and that object persistence can be achieved in
such a data store. We proved this concept by extending the datastore capabilities of the Apache
Gora framework so it can be integrated with the Oracle NoSQL Database. To achieve this, we
first studied thoroughly the various NoSQL technologies and data models. Then, we studied
extensively the functionality, the architecture and the internals of the Apache Gora framework.
Next, we studied the Oracle NoSQL Database, its data model and its API in order to properly use
it as the back-end data storage mechanism for the Gora-OracleNoSQL datastore module, which
was the main deliverable of this project.

The Gora-OracleNoSQL datastore module not only provides full datastore capabilities to the
Apache Gora but also provides several extra features such as additional CRUD operations, ACID
transactions and a Result Cache mechanism. This module allows Apache Gora to be used in
enterprise infrastructures and integrate seamlessly with the Oracle technology stack, including the
market leader Oracle RDBMS.

This self-proposed project makes me feel proud and honored for two reasons. First is the fact
alone that my project proposal was accepted by Google’s Summer of Code 2013. It has been
a great pleasure to participate in this great event where I have gained valuable experience and
knowledge. Apart from the technical knowledge that I have acquired, I have also improved other
important skills such as self-discipline, self-organization and self-motivation. The second reason
is that due to the overall significance of the project’s contribution to the Apache Gora project, I
have been nominated to be promoted to the Apache Project Management Committee. I believe
that this project has in its entirety been a personal and professional success.

This project is a contribution to a very well-known Open Source Foundation: the Apache
Software Foundation. It is my sincere hope that this system will be used by the Open Source
community and the enterprise application developers. Personally, I will continue to maintain it in
an attempt to help the Apache Gora become the standard persistence framework for Big Data.

52

Bibliography

[1] Pramod, J. Sadalage and Fowler, M. (2012). “NoSQL Distilled: A Brief Guide to the Emerging
World of Polyglot Persistence”. 1st edition. Addison-Wesley Professional

[2] Obasanjo, D. (2009). “Building scalable databases: Denormalization, the
NoSQL movement and Digg”. Retrieved July 15th, 2013. Available at:
http://www.25hoursaday.com/weblog/CommentView.aspx?guid=324e0852-ba72-4cc4-94bb-
66b553fda165

[3] Storage Magazine, Storage Awards (2013). Retrieved August 19th, 2013. Available at:
http://www.storagemagazine.co.uk/storageawards/index.php?page=winners201

[4] Fontecchio, M. (2013). “Oracle the clear leader in $24 billion RDBMS market”. TechTarget.
Retrieved July 27th, 2013. Available at: http://itknowledgeexchange.techtarget.com/eye-on-
oracle/oracle-the-clear-leader-in-24-billion-rdbms-market/

[5] Apache Gora Design Goals. Retrieved August 30th, 2013. Available at: ht-
tps://github.com/enis/gora/wiki/Design

[6] Apache Gora tutorial. Retrieved June 4th, 2013. Available at:
http://gora.apache.org/index.html

[7] Joshi, A. Haradhvala, S. Lamb, C. (2012). “Oracle NoSQL Database – Scalable, Transactional
Key-value Store”. Oracle Corporation. Burlington. Retrieved July 9th, 2013. Available at:
https://issues.apache.org/jira/secure/attachment/12583735/immm_2012_4_10_20050.pdf

[8] Oracle Corporation, (2013). “Getting Started with NoSQL Database”. Oracle
Corporation World Headquarters. Retrieved August 6th, 2013. Available at:
http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuide/Oracle-NoSQLDB-GSG.pdf

[9] Sommerville, I. (2010). “Software Engineering”. 9th edition. Addison-Wesley

[10] Miller, J. (2009). "Design For Convention Over Configuration". Microsoft. Retrieved August
4th, 2013. Available at: http://msdn.microsoft.com/en-us/magazine/dd419655.aspx

[11] Koskela, L. (2007). “Test Driven: Practical TDD and Acceptance TDD for Java Developers”.
Manning Publications Co., Greenwich, CT, USA

[12] Pirzadeh, P.; Tatemura, J. Hacigumus, H. (2011). "Performance Evaluation of Range Queries
in Key Value Stores and Parallel and Distributed Processing Workshops and PhD Forum
(IPDPSW)”. IEEE International Symposium, vol.1092, no.1101, pp.16-20

[13] Hilbert, M. “Big Data for Development: From Information- to Knowledge Societies” Retrieved
July 17th, 2013. Available at: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2205145

[14] Oracle Corporation, (2012). “Oracle Information Architecture: An Ar-
chitect’s Guide to Big Data.”. Retrieved July 20th, 2013. Available at:
http://www.oracle.com/technetwork/topics/entarch/articles/oea-big-data-guide-1522052.pdf

53

http://www.25hoursaday.com/weblog/CommentView.aspx?guid=324e0852-ba72-4cc4-94bb-66b553fda165
http://www.25hoursaday.com/weblog/CommentView.aspx?guid=324e0852-ba72-4cc4-94bb-66b553fda165
http://www.storagemagazine.co.uk/storageawards/index.php?page=winners201
http://itknowledgeexchange.techtarget.com/eye-on-oracle/oracle-the-clear-leader-in-24-billion-rdbms-market/
http://itknowledgeexchange.techtarget.com/eye-on-oracle/oracle-the-clear-leader-in-24-billion-rdbms-market/
https://github.com/enis/gora/wiki/Design
https://github.com/enis/gora/wiki/Design
http://gora.apache.org/index.html
https://issues.apache.org/jira/secure/attachment/12583735/immm_2012_4_10_20050.pdf
http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuide/Oracle-NoSQLDB-GSG.pdf
http://msdn.microsoft.com/en-us/magazine/dd419655.aspx
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2205145
http://www.oracle.com/technetwork/topics/entarch/articles/oea-big-data-guide-1522052.pdf
http://www.oracle.com/technetwork/topics/entarch/articles/oea-big-data-guide-1522052.pdf

BIBLIOGRAPHY

[15] Laney, D. (2001). “3D Data Management: Controlling Data Volume, Velocity, and Variety”.
META Group. Retrieved June 3rd, 2013. Available at: http://blogs.gartner.com/doug-
laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-
Variety.pdf

[16] Dorband, J. Palencia, J. and Ranawake, U. (2003). “Commodity computing clusters at God-
dard Space Flight Center, Journal of Space Communication”. pp: 113-123.

[17] Oracle Corporation, (2013). “Big Data for the Enterprise”. Retrieved August 21st, 2013. Avail-
able at: http://www.oracle.com/us/products/database/big-data-for-enterprise-519135.pdf

[18] Vaish, G. (2013). “Getting Started with NoSQL”. Packt Publishing.

[19] Segleau, D. “On Oracle NoSQL Database”. Retrieved July 19th, 2013. Available at:
http://www.odbms.org/blog/2013/07/on-oracle-nosql-database-interview-with-dave-segleau/

[20] Apache Avro 1.7.5 Documentation. Retrieved June 1st, 2013. Available at:
http://avro.apache.org/docs/current/

[21] Cabibbo, L. (2013) “ONDM: an Object-NoSQL Datastore Mapper”. Faculty of
Engineering, Roma Tre University. Retrieved June 15th, 2013. Available at:
http://cabibbo.dia.uniroma3.it/pub/ondm-demo-draft.pdf

[22] Rodgers, U. (1989). “Denormalisation - Why, What and How?, Database Programming and
Design”

[23] Bahsoon, L. (2013) “Evaluating Software Products”. University of
Birmingham. Retrieved on September 2nd, 2013. Available at:
http://www.cs.bham.ac.uk/∼rzb/Evaluation%20Bahsoon.pdf

54

http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://www.oracle.com/us/products/database/big-data-for-enterprise-519135.pdf
http://www.odbms.org/blog/2013/07/on-oracle-nosql-database-interview-with-dave-segleau/
http://cabibbo.dia.uniroma3.it/pub/ondm-demo-draft.pdf
http://www.cs.bham.ac.uk/~rzb/Evaluation%20Bahsoon.pdf

Appendix A

Deliverables

Project Report:

• https://issues.apache.org/jira/browse/GORA-217

Source Code:

• https://github.com/maestros/gora-oraclenosql - This directory contains the whole project.
Please note that this includes the whole Apache Gora framework along with the source
code of the Gora-OracleNoSQL datastore module. It is included because it contains the
required core Gora functionality.

• https://github.com/maestros/gora-oraclenosql/tree/master/gora-oracle - This is the direct-
ory of my source code for theGora-OracleNoSQL datastore module (see chapter 5). The
actual source code files that have been created by me, contain javadoc comments that state me
as the author. The source code of this module is also available online: https://github.com/
maestros/gora-oraclenosql/blob/master/gora-oracle/. More specifically, the source code files
that I created are the following:

– /src/main/java/org/apache/gora/oracle/store/OracleStore.java
– /src/main/java/org/apache/gora/oracle/store/OracleMapping.java
– /src/main/java/org/apache/gora/oracle/store/OracleStoreConstants.java
– /src/main/java/org/apache/gora/oracle/query/OracleResult.java
– /src/main/java/org/apache/gora/oracle/query/OracleQuery.java
– /src/main/java/org/apache/gora/oracle/util/OracleUtil.java
– /src/main/java/org/apache/gora/oracle/util/OracleTerminal.java
– /src/test/java/org/apache/gora/oracle/store/TestOracleStore.java
– /src/test/java/org/apache/gora/oracle/GoraOracleTestDriver.java

I have also made significant modifications to the publicly available LogManager front-end
application. It is located in: gora-oraclenosql/gora-
tutorial/src/main/java/org/apache/gora/tutorial/log/LogManager.java

• https://github.com/maestros/gora-oraclenosql/tree/master/contribution-patches - This is the
directory that contains the source code of the patches that I contributed to the Apache Gora
framework (see Chapter 6). Inside the directory, except of the patch files, there is a readme
file that provides some information for each patch. These patches have also been submitted
to the Gora community and have been accepted and committed to the trunk. They are also
available online: https://issues.apache.org/jira/browse/GORA.

i

https://issues.apache.org/jira/browse/GORA-217
https://github.com/maestros/gora-oraclenosql/blob/master/gora-oracle/
https://github.com/maestros/gora-oraclenosql/blob/master/gora-oracle/
https://issues.apache.org/jira/browse/GORA

Appendix B

How to run the software

Before anything else, the Gora framework should be installed. In order to install the Gora frame-
work and to run the testing suite, the Apache Maven 2 software has to be installed in the system.
If Maven is installed, then Gora has to be installed as follows:

gora−o r a c l e no s q l $ mvn c l ean i n s t a l l −Dmaven . t e s t . sk ip=true

After the completion of this command a “SUCCESS” message should me displayed next to each
Gora module. At the bottom, Maven should display “BUILD SUCCESS”.

The Apache Gora is a persistence framework and the Gora-OracleNoSQL is a datastore module
of the Gora framework. As a framework, it cannot be “run” by itself. There are 2 ways of validating
and/or demonstrating the functionality of the Gora-OracleNoSQL datastore module.

The first way, is to run the testing suite which executes all the unit tests. The unit tests
perform several CRUD operations, using several setups, on several persistent objects of various
data beans. After the execution of all the unit tests, the database is truncated by calling the
OracleStore.deleteSchema() of each created DataStore. Therefore, the back-end database will be
empty after the completion of the testing suite execution. Note that the testing suite has been
successfully tested under both GNU/Linux and Mac OS X. Note that in order to run the testing
suite, there is no need to manually start the OracleNoSQL server, because an embedded server is
provided. Following are the commands to execute on a shell (terminal):

gora−o r a c l e no s q l $ cd gora−o r a c l e
gora−o r a c l e n o s q l /gora−o r a c l e $ mvn c l ean t e s t

The output of this command will be the logs generated by the unit tests. At the end the
following should be displayed:

Resu l t s :
Tests run : 36 , Fa i l u r e s : 0 , Errors : 0 , Skipped : 2

Note that the 2 skipped tests are the testGetPartitions() and the testDeleteByQueryFields()
for the reasons that have been already discussed (see sections 5.5 and 7.4). In case the tests failed
because of connectivity issues with the server, there might be an Operating System specific issue
that prohibits the embedded server to be executed. In such case make sure that no server process
runs and execute manually the server, as described later.

The second way of demonstrating the functionality of the Gora-OracleNoSQL datastore module,
is by the use of the LogManager. As this is an external front-end application that uses the Apache
Gora framework, the Oracle NoSQL server needs to be manually started. To start the server,
execute the following commands in a separate shell session:

gora−o r a c l e n o s q l /gora−o r a c l e $ java −j a r l i b−ext /kv−2.0.39/ kvs to re . j a r k v l i t e

Next, we execute the LogManager, from a different shell session, as follows:

ii

APPENDIX B. HOW TO RUN THE SOFTWARE

gora−o r a c l e no s q l $ bin / gora logmanager

This will display the available options of the LogManager. Note the path from which the
LogManager is executed. The LogManager is pre-configured to use the Gora-OracleNoSQL data-
store module as the default Gora datastore. For a detailed description of the functionality of each
option of the LogManager see the section 5.6. Note that we execute the LogManager from the
gora-oraclenosql directory (the root directory of the project).

Following we present some sample commands that can be executed using the LogManager:

bin / gora logmanager −parse gora−t u t o r i a l / s r c /main/ r e s ou r c e s / a c c e s s . l og
bin / gora logmanager −get 9998
bin / gora logmanager −get 9998 ip
bin / gora logmanager −get 9998 ip , u r l
bin / gora logmanager −get 9998 ip , r e f e r r e r , u r l
bin / gora logmanager −query 9996
bin / gora logmanager −de l e t e 9998
bin / gora logmanager −query 9998
bin / gora logmanager −query 9995 9997
bin / gora logmanager −deleteByQuery 9995 9999
bin / gora logmanager −query 9995 9999

Note that the -parse option calls the OracleStore.put() method that persists the parsed objects.

To validate the results of the LogManager directly from the database, we can use the Or-
acleTerminal utility application that provides a simple terminal that connects directly to the data-
base server. For a detailed description of the functionality of each option of the OracleTerminal see
the section 5.6. The OracleTerminal runs inside Maven, which properly sets up the environment
variables. To use the OracleTerminal, execute it from the gora-oraclenosql/gora-oracle directory.

Next, we present some sample commands that can be executed using the OracleTerminal.

mvn exec : java −Dexec . mainClass="org . apache . gora . o r a c l e . u t i l . OracleTerminal "
−Dexec . c la s spathScope="compi le " −Dexec . args=""

mvn exec : java −Dexec . mainClass="org . apache . gora . o r a c l e . u t i l . OracleTerminal "
−Dexec . c la s spathScope="compi le " −Dexec . args="dumpDB"

mvn exec : java −Dexec . mainClass="org . apache . gora . o r a c l e . u t i l . OracleTerminal "
−Dexec . c la s spathScope="compi le " −Dexec . args="get AccessLog /9998"

Note the “AccessLog/9998 ” parameter in the last command. The “AccessLog” is the “schema”
of the DataStore that the LogManager uses. This is defined in the mapping file, which is located in:
/gora-oraclenosql/gora-tutorial/conf/gora-oracle-mapping. The “9998” is the key of the persistent
object.

To delete all the key/value pairs from the database use the following command:

mvn exec : java −Dexec . mainClass="org . apache . gora . o r a c l e . u t i l . OracleTerminal "
−Dexec . c la s spathScope="compi le " −Dexec . args="truncate "

After the execution of this command, the database will be empty.

iii

Appendix C

Progress Reports

Following are the two progress reports that were submitted to my mentor during the Google Sum-
mer of Code 2013. These are also available online at the URL: http://svn.apache.org/repos/asf/gora
/committers/reporting/gsoc2013/gora-oracle/.

Report # 1
Project Name: Apache Gora support for Oracle NoSQL datastore
Project URL: https://issues.apache.org/jira/browse/GORA-217
Report compiled by: Apostolos Giannakidis
Report date: July 5, 2013

Project Description
Further expanding Apache Gora’s datastore support is key for becoming a standard persist-

ence framework. The goal of this project is to extend the integration capabilities of Apache Gora.
By implementing a new module for Gora, named Gora-Oracle, this project aims to offer a new
NoSQL datastore which will enable Apache Gora users and developers to utilize the expressive-
ness offered from the Gora framework in conjunction with the functionality of the enterprise-class
Oracle NoSQL database. Oracle NoSQL is as a distributed, highly scalable, low latency, key-value
database for real-time big data workloads.

Checklist:
1. Objective: Study and review Oracle NoSQL data model. Oracle NoSQL data model is

more sophisticated than simple key-value pairs however it keeps the data model simple. More
specifically, each key is composed of a Major Key Path (major components) and a Minor Key
Path (minor components). Both the major and the minor components are consisted of lists of
Java Strings. The major component of each key is mandatory and requires at least one String
(component). The concatenation of the Major Key Path and the Minor Key Path consist the
full key. This data model allows flexible data modeling that, when done properly, provides fast,
indexed lookup. Values are opaque data items (hence no specific data types) and can be either
arbitrary byte arrays or the Oracle recommended Avro data format, which allows more complex
data structures. Values can be left empty.

2. Objective: Study and review the Oracle NoSQL API. Oracle NoSQL maintains detailed
documentation and manuals that helped me familiarize myself with the product. CRUD opera-
tions are documented clearly along with code snippets that demonstrate the use of the API. The
API provides several methods that perform CRUD operations. These are the following: put, pu-
tIfAbsent, putIfPresent, delete, deleteIfVersion. Also, there are many overloaded versions of each
of them.

3. Objective: Deploy and run sample applications in Oracle NoSQL. This was done with ease.
The deployment of the Oracle NoSQL merely involves downloading from Oracle’s web site and
untarring the file archive. I had some difficulties on my machine because I use Mac OS X and for
some reason I could not execute properly the kvstore server. I had to create an Ubuntu Virtual
Machine, install Java 1.7 and properly configure the 2 virtual network adapters (Host-only adapter
and NAT) in order to have access from and to the host machine and also to the Internet. After that

iv

http://svn.apache.org/repos/asf/gora/committers/reporting/gsoc2013/gora-oracle/
http://svn.apache.org/repos/asf/gora/committers/reporting/gsoc2013/gora-oracle/
https://issues.apache.org/jira/browse/GORA-217

APPENDIX C. PROGRESS REPORTS

I could properly execute the kvstore server and successfully run the example applications provided
by Oracle.

4. Objective: Identify dependencies and how they should be handled in this project. This
module depends on the kvclient.jar of the Oracle NoSQL database. This jar is the driver that
provides the necessary Oracle NoSQL API that Apache Gora will use. We identified that there is
a license incompatibility issue that prohibits us to incorporate this jar file in the distribution of
Apache Gora. I am in contact with the Oracle NoSQL development and management team and
they informed us that they are working on a possible solution. In case no solution comes from
Oracle, the module will have to be downloaded separately of the main Gora distribution and the
user will be responsible to download the Oracle NoSQL database and install the kvclient.jar in the
proper directory of Gora’s file system.

5. Objective: Investigate existing solutions that integrate with Oracle NoSQL. Apart from
the official integration of Oracle NoSQL with Apache Hadoop, Oracle Coherence, and the Oracle
RDBMS (with the use of External Tables), I have also identified a few of other projects that
integrate with the Oracle NoSQL. The most important of them are:

a) Blueprints – A property Graph Model Interface The blueprints-oracle-nosqldb is a Java
implementation of the Blueprints API over Oracle NoSQL database, created by Daniel McClary.
Project URL: https://github.com/dwmclary/blueprints-oracle-nosqldb

b) Hive - A data warehouse system for Hadoop The HiveKVStorageHandler2 is a Java imple-
mentation of a Storage Handler to query data stored in Oracle NoSQL Database via Hive, created
by Alexandre Vilcek. Project URL: https://github.com/vilcek/HiveKVStorageHandler2

c) Zorba – A NoSQL Query Processor The oracle-nosql-db-module is a C++ external module
for using the Oracle NoSQL Database within Zorba, created by the Zorba Coders team. Project
URL: https://launchpad.net/zorba/oracle-nosql-db-module

6. Objective: Create file structure for the Gora-Oracle module. My mentor and me decided
that this should be exactly the same as the other modules. We also agreed to rename the module
from Gora-OracleNoSQL to Gora-Oracle. All the necessary changes to the file structure and the
pom files have already been made.

7. Objective: Start coding some of the classes. I have created a Github repository for this
project (github.com/maestros/gora-oraclenosql) and I have properly set up SVN and remote Git
repositories in order to be able to fetch the trunk changes. I have created the necessary java files
and I have started coding the OracleStore, TestOracleStore and GoraOracleTestDriver. However, a
major drawback emerged that does not allow us to continue working on the GoraOracleTestDriver.
The drawback is the fact that Oracle NoSQL does not provide an embedded kvstore server that is
needed. My mentor and me are looking for alternative ways to tackle this issue.

8. Objective: Contribute to the community by addressing Jira issues. I have already worked
in the following Jira issues:

• GORA-243: Properly escaping spaces of GORA_HOME in bin/gora I identified a bug, which
I documented it in a new Jira issue and provided a patch that solves the issue. The patch has
already been accepted.

• GORA-255: Remove deprecated methods from DataStoreTestBase I identified an improve-
ment that should be performed in the DataStoreTestBase and documented it in a new Jira issue. I
assigned the issue to me but I did not have the time yet to work on it. I am also waiting for some
feedback from the community before I start working on this.

• GORA-229: Use @Ignore for unimplemented functionality to identify absent tests Issue re-
ported by Lewis McGibbney that I assigned it to myself. It involves refactoring all the Java classes
of Apache Gora to abandon the deprecated junit.framework.* and use the recommended static
org.junit.Assert.* of JUnit 4.10. It also involves adding the @Ignore annotation to all the test
methods that do not have proper implementation yet. I performed all the necessary work and
provided 4 patches - one for each Gora module. I am waiting for feedback on these patches from
the Gora community.

9. Objective: Create a social network around this project. I am actively communicating about
this project in Gora’s Jira, Oracle Forums, Linkedin groups and contacts and also via my personal
blog (www.giannakidis.info). It is evident that I already have a backlink from an Oracle’s employee
blog to one of my blogposts.

v

https://github.com/dwmclary/blueprints-oracle-nosqldb
https://github.com/vilcek/HiveKVStorageHandler2
https://launchpad.net/zorba/oracle-nosql-db-module
http://www.giannakidis.info

APPENDIX C. PROGRESS REPORTS

Next Steps:
1. We have to decide how can all the CRUD method variation be mapped to Apache Gora.
2. Find a proper way of addressing the lack of the embedded kvstore server in order to continue

with the implementation of the GoraOracleTestDriver. Currently we are considering of using
Atlassian’s bash-maven-plugin that will allow executing bash scripts using maven. This way we
could execute the kvstore server within maven. Because this plugin is not available from Maven
Central we have to work on pushing it there.

3. Finish working with the GoraOracleTestDriver and continue to the TestOracleStore and the
OracleStore.

4. Decide if we need to upgrade Gora’s Avro dependency because Oracle NoSQL uses a more
recent version of Avro, which might conflict with Gora’s one, which uses an older one.

5. Study the mappings that the other Gora modules use and get a better understanding of
Oracle NoSQL data model and modeling capabilities in order to create a proper mapping for this
module.

6. Continue working on existing Jira issues and create new ones were appropriate. More
specifically, I will work at the following Jira issues:

a. GORA-241: Properly document WebServiceBackedDataStore Interface
b. GORA-232: DataStoreTestBase should delegate all functionality to DataStoreTestUtil
c. GORA-255: Remove deprecated methods from DataStoreTestBase.
7. Continue working on establishing a social network around this project by publishing more

blog posts and further communication in other social channels.

Supervisor’s Comments
Apostolos has shown a high degree of interest and patience with the project to date. His

understanding of Gora is coming along very nicely and he is showing competence in his use of
version control e.g. Subversion and Git to skip between code bases as required. With regards
to his approach to the project, he has been in very regular contact with me and we have been
discussing aspects of the project regularly. This seems to be working well. As the report and it’s
content displays, Apostolos was a great fit for this project and I am looking forward to working on
the next steps as described above. We will progress on this basis for now.

Supervisor: lewismc

vi

APPENDIX C. PROGRESS REPORTS

Report # 2
Project Name: Apache Gora support for Oracle NoSQL datastore
Project URL: https://issues.apache.org/jira/browse/GORA-217
Report compiled by: Apostolos Giannakidis
Report date: 1 August, 2013

Project Description
Further expanding Apache Gora’s datastore support is key for becoming a standard persist-

ence framework. The goal of this project is to extend the integration capabilities of Apache Gora.
By implementing a new module for Gora, named Gora-Oracle, this project aims to offer a new
NoSQL datastore which will enable Apache Gora users and developers to utilize the expressive-
ness offered from the Gora framework in conjunction with the functionality of the enterprise-class
Oracle NoSQL database. Oracle NoSQL is as a distributed, highly scalable, low latency, key-value
database for real-time big data workloads.

Checklist:
1. Objective: Study and review the Oracle NoSQL API. Apart from the methods that provide

CRUD operations for a single key, Oracle NoSQL provides an efficient and transactional mechanism
for executing a sequence of operations associated with keys that share the same Major Path. This
feature allowed me to implement the datastore in such a way that it batches the operations before
executing them. Then, when the flush() method of the datastore is called, all the batched operations
are executed in Oracle NoSQL.

2. Objective: Deploy and run sample applications in Oracle NoSQL. At first I had some issues
running the Oracle NoSQL server on my host OS (Mac OS X) because Oracle does not support,
officially, this OS. Therefore, initially, I solved this problem by installing the Oracle NoSQL server
in a Virtual Machine. However, this solution could not work efficiently as I had major difficulties
running the Gora test cases from my host OS against the Oracle NoSQL server, because Gora uses
an embedded Test Driver, which, at first, could not be executed on my host OS. Thus, I investigated
the issue further and I managed to successfully deploy and execute Oracle NoSQL on Mac OS X. I
blogged about this in my personal blog: www.giannakidis.info/post/54750399281/running-oracle-
nosql-on-mac-os-x

3. Objective: Design of the module. My mentor and me agreed that I should focus more on
the coding part rather than on the UML modeling. Also, I designed a mapping scheme on how to
persist a POJO in Oracle NoSQL, which uses a simple key/value pair data model. The mapping
scheme involves the elaborated nature of the Oracle NoSQL key, which is composed of one or more
major components and one or more minor components. This way, I used the first major component
to be treated as a table, the second major component to be treated as a record primary key, the
first minor component to be treated as a column family, if any, and the second minor component
to be treated as a field. It seems to be a straightforward mapping scheme, which has also been
approved by my mentor.

4. Objective: Find a solution to the embedded Oracle NoSQL server issue. One of the pending
tasks since the previous report, was to find a proper way of addressing the lack of the embedded
kvstore server in order to continue with the implementation of the GoraOracleTestDriver. At first,
we were considering of using Atlassian’s bash-maven-plugin that will allow executing bash scripts
using maven. This way we could execute the kvstore server within maven. However, because this
plugin is not available from Maven Central, I was also working on an alternative solution. This
solution involves the manual creates (spawn) of a new process that executes the Oracle NoSQL
server (kvstore.jar) and its manual termination. This solution seems to work successfully in my
local machine.

5. Objective: Finish working on the GoraOracleTestDriver Because of the working solution of
the embedded Oracle NoSQL server, I managed to complete the implementation of the GoraOr-
acleTestDriver. Some minor enchantments are pending such as the deletion of the temporary files
after it finishes its execution.

6. Objective: Implementation. I have moved on with the implementation of the mapping, as
described above. The mapping is almost complete. Some minor improvements might be needed to
be done in the next weeks. Also, working under a Test-Driven methodology, I have been working
towards an implementation of the put() and get() methods that will allow the CURD unit tests to

vii

https://issues.apache.org/jira/browse/GORA-217
http://www.giannakidis.info/post/54750399281/running-oracle-nosql-on-mac-os-x
http://www.giannakidis.info/post/54750399281/running-oracle-nosql-on-mac-os-x

APPENDIX C. PROGRESS REPORTS

pass successfully. Until now, I have completed the implementation of put() and get() in such a way
that assertPutBytes() completes successfully. To facilitate the implementation of these methods
(and the creation of the unit tests) I have created a helper class (OracleUtil) that contains static
utility methods. Finally, based on some feedback I had from my mentor, I made some adjustments
to the source code such as adhering to the indentation of the Gora codebase and including javadocs
for every method.

7. Objective: Contribute to the community by addressing Jira issues. I have already worked
in the following Jira issues:

• GORA-229: Use @Ignore for unimplemented functionality to identify absent tests Issue re-
ported by Lewis McGibbney that I assigned it to myself. It involves refactoring all the Java
classes of Apache Gora to abandon the deprecated junit.framework.* and use the recommended
static org.junit.Assert.* of JUnit 4.10. It also involves adding the @Ignore annotation to all the
test methods that do not have proper implementation yet. I performed all the necessary work
and provided 4 patches - one for each Gora module. The patch has already been accepted and
committed.

• GORA-232: DataStoreTestBase should delegate all functionality to DataStoreTestUtil Issue
reported by Lewis McGibbney and I assigned it to myself. It involves refactoring the unit test
methods that contain test code of the DataStoreTestBase and delegate their functionality to the
utility class DataStoreTestUtil. I worked on this issue and provided a patch that delegates the
functionality of the following test methods: testPutNested(), testPutArray(), testPutBytes(), and
testPutMap(). The patch has not yet been committed.

• GORA-258 writeCapacUnits gets value from wrong attribute Bug identified by me. I doc-
umented it in a new Jira issue and provided a patch that solves the issue. The issue involves a
variable that reads a value from a wrong property in the Gora-DynamoDB module. The patch has
already been accepted and committed.

• GORA-259 Removal of the main methods from the test case classes Issue identified by me. I
documented it in Jira and I assigned it to myself. I identified that several JUnit test case classes
contain main methods, which is a non-recommended practice. After I received positive feedback
from the community, I proceeded to create the patch, which has already been committed.

• GORA-264 Make generated data beans more java doc friendly Issue identified by Renato
Javier Marroquín Mogrovejo. I assigned it to myself and I provided a patch for the GoraCompiler
that adds javadocs to the generated data beans. Some of the javadoc that is added is static and
some is dynamic, taken from the json avro schema. Therefore, I extended the json avro schema to
also understand and use the "doc" attribute. The patch has not yet been committed.

8. Objective: Create a social network around this project. I continue to actively communicate
about this project in Gora’s Jira, Oracle Forums, Linkedin groups and contacts and also via
my personal blog (www.giannakidis.info). This project has attracted some attention and some
publicity. The most important example is a wonderful blog-post of Steve O’Hearn, author of the
book “OCA Oracle Database SQL Expert Exam Guide: Exam 1Z0-047” (Oracle Press), which
talks with very warm words about this project. http://blog.corbinian.com/node/89

Next Steps:
1. There are some CRUD methods in Oracle NoSQL that provide flexibility regarding con-

sistency, durability and several storage and query options. We have to decide how and if these
methods can be mapped to Apache Gora.

2. Remove, on clean up, the temporary files created by the GoraOracleTestDriver when it
spawns a new process for the Oracle NoSQL service.

3. Continue working on the TestOracleStore and the OracleStore and provide implementations
for the delete and Query methods and classes. Ideally, these implementations should be finished
in the next month.

4. Decide if we need to upgrade Gora’s Avro dependency because Oracle NoSQL uses a more
recent version of Avro, which might conflict with Gora’s one, which uses an older one.

5. Continue the studying of the implementations of other Gora modules and get a better
understanding of how the CRUD operations are implemented in other datastores.

6. Continue working on existing Jira issues and create new ones were appropriate. I will work
at the following Jira issues, for which I would like some community feedback before I proceed to
work on the patches:

viii

http://blog.corbinian.com/node/89

APPENDIX C. PROGRESS REPORTS

a. GORA-241: Properly document WebServiceBackedDataStore Interface
b. GORA-255: Remove deprecated methods from DataStoreTestBase
7. Continue working on establishing a social network around this project by publishing more

blog posts and further communication in other social channels.

Supervisors Comments
Apostolos’ project has come on leaps and bounds since last reporting. There is clear evidence

that he has a firm grasp on Gora as a community project and of course his GsoC project as a
personal project. Apostolos has been very active within community communication as well as
active on other social media streams to promote his project and to ask for help if and where it is
required.

What he has achieved (since last reporting) is accurately documented above. What he hopes
to achieve (next steps as above) is in agreement with what we have discussed in private.

His participation in Gora community issues is extremely encouraging and it is really nice to see
a fresh injection of passion in to Gora.

I am looking forward to seeing the codebase progress and for the number of @Ignore test cases
reduce over the second term.

Supervisor: lewismc

ix

	Introduction
	Project Scope
	Scope statement
	Project deliverables

	Contribution of the project
	Motivation
	Report structure

	Background
	NoSQL Overview
	Big Data
	Infrastructure Requirements
	CAP Theorem
	Data Models
	Aggregate
	Schemaless

	Types of NoSQL databases
	Key/Value stores
	Data model
	Key structures
	Value structures
	Avro data format
	Range queries

	Oracle NoSQL
	Overview
	Architecture
	Data model
	API

	Apache Gora
	Overview
	Architecture
	API

	Related Work
	Apache Gora integration
	Gora-DynamoDB

	NoSQL Persistence Frameworks
	Object-NoSQL Datastore Mapper

	Requirement Analysis
	Stakeholder identification
	Requirements specification
	Functional requirements
	Non-functional requirements

	Feasibility assessment

	Gora-OracleNoSQL datastore
	Overview
	Features
	System Design
	High Level System Design
	Use Case Diagram
	Package Diagram
	Class Diagram

	Low Level System Design
	OracleStore
	OracleMapping
	OracleQuery
	OracleResult
	OracleUtil
	OracleStoreConstants
	GoraOracleTestDriver

	Implementation
	Data Model
	Data model mapping
	Mapping file
	Primary keys
	Preserving key natural sort order

	CRUD Operations
	Properties
	ACID Transactions
	Query operations
	Result Cache

	Programming environment
	APIs used

	Testing
	Assisting software

	Apache Gora contribution
	Overview
	Issues resolved
	Contribution Statistics

	Evaluation
	Learning outcomes
	Challenges
	Achievements
	Limitations
	Improvements and future work

	Project Management
	Project distribution
	Project schedule
	Risk Analysis
	Risk identification
	Risk assessment and management

	Conclusion
	Deliverables
	How to run the software
	Progress Reports

