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ABSTRACT
Recommender systems are an essential component of e-commerce
marketplaces, helping consumers navigate massive amounts of in-
ventory and find what they need or love. In this paper, we present
an approach for generating personalized item recommendations in
an e-commerce marketplace by learning to embed items and users
in the same vector space. In order to alleviate the considerable
cold-start problem present in large marketplaces, item and user
embeddings are computed using content features and multi-modal
onsite user activity respectively. Data ablation is incorporated into
the offline model training process to improve the robustness of the
production system. In offline evaluation using a dataset collected
from eBay traffic, our approach was able to improve the Recall@20
metric by 8.3% over the Recently-Viewed-Item (RVI) method. This
approach to generating personalized recommendations has been
launched to serve production traffic, and the corresponding scal-
able engineering architecture is also presented. In an industrial
recommender system, surface rate which is defined as the percent
of user page views that result in recommendations being displayed,
is an important metric. Initial A/B test results show that compared
to the current personalized recommendation module in production,
the proposed method increases the surface rate by ∼6% to generate
recommendations for 90% of item page views.

CCS CONCEPTS
• Computing methodologies→ Learning from implicit feed-
back; Neural networks; • Information systems → Personal-
ization; Information retrieval; Recommender systems.
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Figure 1: Screenshot of an eBay recommendations module
where the user has been previously looking at games.

1 INTRODUCTION
Generating product recommendations for users is commonplace
in e-commerce marketplaces. The eBay marketplace, with over 1.6
billion live items and over 183 million users, presents a unique set
of challenges when it comes to generating recommendations. Tra-
ditional collaborative filtering and matrix factorization methods [1]
produce poor results given the scale and extreme sparsity of eBay’s
user-item matrix [12]. With millions of new items listed daily, the
cold start problem affects a substantial fraction of the inventory.
Furthermore, over half of the live items are single quantity, that is,
they can be purchased by at most one buyer. After being purchased,
items are removed from the site, and no longer accessible to users.
Consequently, implicit user feedback signals such as clicks and
purchases are extremely sparse. In this paper, we describe how we
attempt to address these unique challenges to build an effective
recommender system.

Generally speaking, e-commerce recommendationsmay be driven
purely by the shopping context or they may be personalized for a
user based on a user profile. On an item page in an e-commerce
marketplace, the 𝑠𝑒𝑒𝑑 item provides strong indication of a user’s
shopping mission that may be used to guide the generation of rec-
ommendations. Indeed, there are several recommender systems
based on the seed item context that are deployed at eBay [3, 4, 12].
However, on other landing pages such as the homepage, such seed
item context is missing. There may be other occasions as well
where we need to provide personalized recommendations for the
user in the absence of a seed item, and the signal for generating
recommendations is primarily available user information. Such
"personalized recommendations" are our primary concern in this
paper. Figure 1 depicts a screenshot of an eBay recommendations
module ("sponsored items based on your recent views") where the
input is primarily taken from a user’s activity on the marketplace.

Information about a user to generate a profile may be captured
explicitly, by asking the user to fill out a survey as part of onsite
registration, or implicitly, e.g. by parsing the user’s shopping history.
Although explicit methods directly capture the user’s interests,
there are several limitations with this approach: an exhaustive set
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of potential interests is difficult to curate, user participation tends to
be low, the input can be highly incomplete, and long-term interests
may not capture specific short-term shopping missions. Due to
these limitations, generating a user profile of interests is commonly
performed using implicit user interaction data.

In this paper, we propose to model users as embeddings based
on implicitly observed user shopping behavior. Using a two-tower
deep learning model architecture [8], one tower for items and one
for users, users and items are represented as points in the same
vector space. In order to address the data sparsity and cold-start
challengesmentioned above, (i) items are represented using content-
features only, and (ii) we expand the set of implicit user signals to
incorporate multi-modal user onsite behaviors such as item clicking
and query searching. Once trained, a k-nearest neighbor (KNN)
search using a user embedding is used to generate a set of item
recommendations for the user that reflect his or her implicit shop-
ping behavior. At runtime, an additional Learning-To-Rank (LTR)
model may be applied to this candidate item set in order to improve
conversion, as was done in the work by Brovman et al. [4]. How-
ever this paper primarily focuses on the method for generating
personalized recommendation candidate items. And since deploy-
ing a deep learning based recommendation model to a large scale
dynamic industrial marketplace environment involves non-trivial
engineering challenges, we also discuss details of our production
engineering architecture. In summary, we contribute methods and
techniques for:

(i) generating content-based item embeddings to address the
cold-start problem

(ii) generatingmulti-modal user embeddings from various onsite
events, such as item views and search queries

(iii) selectively dropping out training data to increase production
model robustness

(iv) utilizing cluster-based KNN algorithm to increase recom-
mended item diversity

(v) deployment of the model and end-to-end recommender sys-
tem to eBay’s large scale industrial production setting

This paper is organized in the following manner. Section 2 sum-
marizes relatedwork from academia as well as industry.We describe
the proposed core model architecture in Section 3. The dataset as
well as the offline experiments to evaluate the model are presented
in Section 4. To analyze the model robustness in production environ-
ment, we conduct user data ablation analysis, and propose solutions
to improve model performance. We then turn our attention to the
model prediction stage in Section 5, cover retrieval as well as the
production engineering architecture and discuss empirical A/B test
results. Finally, we present a summary of this work and discuss
future directions in Section 6.

2 RELATEDWORK
The generation of personalized recommendations is a well studied
problem in both academia and industry. Among the most popular
techniques are matrix factorization models (e.g. [18, 22, 27]) which
decompose a user–itemmatrix into user and itemmatrices, and treat
recommendation as a matrix imputation problem. Despite seeing
success in the Netflix competition for movie recommendation [22],
traditional matrix factorizationmodels require unique user and item

identifiers, and do not perform as well in a dynamic e-commerce
marketplace where existing items sell out and new items come
in continuously. Utilizing content features such as the item title
text becomes essential for tackling data sparsity and cold-start
issues, and various methods have been proposed to address this
within the matrix factorization framework. For example, Content-
boosted collaborative filtering [23] uses a content-based model to
create pseudo user-item ratings. Factorization machine [26] and
SVDFeature [5] directly incorporate user and item features into the
model.

More recently, neural networks have been used to model more
complex content features and combine them in a non-linear fashion.
Covington et al. [8] proposed two-tower neural networks to embed
users and items separately, and applied it to the task of generating
video recommendations. He et al. [16] explored the use of a non-
linear affinity function to replace the dot product between the
user and item embedding layers for improved model capacity. Zhu
et al. [33] and Gao et al. [13] further extended the idea by using
graph structures for candidate recall and scaling the non-linear
affinity function for an industrial setting, for e-commerce and video
recommendations respectively. Our work takes inspiration from
these efforts and the practical challenges and limitations posed by
the eBay marketplace.

There is a different but related line of work focusing on using
neural networks for LTR, such as Deep and Wide [6] and DIN [32].
However, our work is is aimed at tackling the core candidate recall
retrieval problem in an industrial setting, with the primary goal of
efficiently selecting small groups of relevant items from a very large
pool of candidate items. As mentioned earlier, an LTR model may
be applied to this candidate item set to improve user engagement
and conversion.

3 MODEL
Our proposed approach for personalized recommendations is based
on training a two-tower deep learning model to generate user em-
beddings and item embeddings at the same time. The architecture
of the model is as shown in Fig. 2, and described in detail below. We
also mention the impact of adding specific model features to our
primary offline model performance metric, Recall@K, described in
detail in Section 4.3.

Following the work by Covington et al. [8], we model generat-
ing recommendations as a classification problem with the softmax
probability:

𝑃 (𝑠𝑖 |𝑈 ) = 𝑒𝛾 (v𝑖 ,u)∑
𝑗 ∈𝑉 𝑒

𝛾 (v𝑗 ,u)
, (1)

where u ∈ R𝐷 is a 𝐷-dimensional vector for the embedding of
user 𝑈 , v𝑖 ∈ R𝐷 is a 𝐷-dimensional vector for the embedding of
item 𝑠𝑖 , 𝛾 is the affinity function between user and item, and 𝑉 is
all items available on eBay. As 𝑉 could contain billions of items,
it is infeasible to perform a full-size softmax operation. Negative
sampling has to be used to limit the size of 𝑉 , and we will discuss
this further in Sec. 4.2. The whole model is trained to minimize the
negative log-likelihood (NLL) of observed user clicks in the dataset.
Next, we discuss the details of how eBay items are encoded by the
model.



Personalized Embedding-based e-Commerce Recommendations at eBay KDD ’21, August 14-18, 2021, Singapore

Figure 2: Model architecture with recurrent user representation.

3.1 Content-based Item Embedding
In the eBay marketplace, an item corresponds to a listing (or offer)
of something for sale from a seller. In order to address the cold-start
problem, an item in our model is represented not as a unique identi-
fier (item id), but solely by using its content-based features such as
item title, category (e.g mobile phone), and structured aspects (e.g
brand: Apple, network: Verizon, etc.). We chose not to incorporate
historical item-behavior features (e.g. historical Click-Through-
Rate, Purchase-Through-Rate) in our model. These features are not
applicable to cold-start items and are constantly changing by their
very nature, creating additional engineering complexity for storage
and retrieval when building a large-scale production system.

For title and aspect features, we tokenize and convert raw text
into token embeddings with embedding size 𝐷𝑡𝑒𝑥𝑡 , and use the
Continuous-Bag-of-Words (CBOW) [24] approach to generate title
and aspect feature representations. The vocabulary for the title
feature consists of approximately 400K tokens and is gathered from
eBay item titles as opposed to a generic English language corpus.
This allows us to better capture the distribution of item title tokens
in the eBay marketplace, which is drastically different from the
traditional English language, as is demonstrated in the work by
Wang and Fu [30]. Tokenization is comprised of replacing any
character that is not a-Z or a number with whitespace, and splitting
by whitespace. The vocabulary for aspect features comes from the
existing production database and contains around 100K aspect
tokens. For the item category feature, we index the category values
and map them into an embedding space of size 𝐷𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 using a
lookup table. All of the embedding tables are trained from scratch
with random initialization from the standard normal distribution
N(0, 1).

After mapping all item features into a continuous space, item
feature embeddings z𝑖 are concatenated and passed through a MLP

with 𝐿 hidden layers, 𝐻 hidden dimensions, and Rectified Linear
Units (ReLU) [14] as the non-linear activation function, to generate
a 𝐷-dimensional item embedding v𝑖 :

z𝑖 = concat(ztitle𝑖 , zaspect
𝑖

, zcategory
𝑖

),
ṽ𝑖 = MLP(z𝑖 ) .

v𝑖 =
ṽ𝑖

| |ṽ𝑖 | |

(2)

The item embedding v𝑖 is normalized to unit length. We now turn
our attention to the user tower part of the model.

3.2 Multi-Modal User Embedding
A user’s activity on an e-commerce marketplace is not limited to
only viewing items. A user may also perform actions such as mak-
ing a search query, adding an item to their shopping cart, adding an
item to their watch list, and so on. These actions provide valuable
signals for the generation of personalized recommendations. In this
work, we have attempted to create a generic framework to incor-
porate such "multi-modal" user activity into the model. We have
chosen to start with item viewing and the search query user actions
as representatives of item-based events and query-based events
respectively, since these are the quintessential online shopping
activities.

Item views/clicks are the most common form of implicit user
feedback for an e-commerce marketplace, and generate large vol-
umes of training data. For an item-based event 𝑧𝑖 , we first map
the corresponding item 𝑠𝑧𝑖 to the corresponding embedding v𝑧𝑖 as
described in Sec. 3.1, and then concatenate it with a 4-dimensional
vector e𝑧𝑖 representing its event type.

User searches are a valuable signal for a recommender system
as they are strong indications of explicit user interest or shopping
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mission. In order to encode this user action into our framework,
we model each search query as a "pseudoitem" with the actual
query text taking place of the item title, and the "dominant" query
category (predicted using a separate model) taking place of the item
category, and the aspects left empty. The event type embedding
is concatenated to the item-based embedding. Adding this search
query signal to the model resulted in a ∼4% improvement in our
offline validation metric, Recall@20.

We denote for each user event 𝑧𝑖 , its corresponding vector rep-
resentation 𝐸 (𝑧𝑖 ) as:

𝐸 (𝑧𝑖 ) = concat(v𝑧𝑖 , e𝑧𝑖 ) (3)

We explored different methods of generating a user embedding
for a given user𝑈 with onsite activity 𝑍 = {𝑧1, ..., 𝑧𝑛}.

3.2.1 Continuous Bag-of-Events Representation. The first approach
is to bag all the event embeddings into a single vector by averaging
over all embeddings. After combining all events into a single vector,
we use a MLP layer with 𝐿 layers, 𝐻 hidden dimension, and ReLU
non-linear activation functions to generate a 𝐷-dimensional user
embedding u:

ũ = MLP( 1
𝑛

𝑛∑
𝑖=1

𝐸 (𝑧𝑖 )),

u =
ũ

| |ũ| |

(4)

Continuous Bag-of-Events is the simplest representation of user
activity, however, in this approach, the ordering of the events does
not affect the outcome.

3.2.2 Recurrent Representation. In order to integrate the ordering
information of user historical events, we also experimented with
using a recurrent neural network to process the sequence of event
embeddings. We start with gated recurrent units [GRU, 7], which
have the update rule h𝑡 = 𝜙 (x𝑡 , h𝑡−1) defined by:

r𝑡 = 𝜎 (W𝑟x𝑡 + U𝑟h𝑡−1)
u𝑡 = 𝜎 (W𝑢x𝑡 + U𝑢 (r𝑡 ⊙ h𝑡−1))

h̃𝑡 = tanh(Wx𝑡 + U(r𝑡 ⊙ h𝑡−1))

h𝑡 = (1 − u𝑡 ) ⊙ h𝑡−1 + u𝑡 ⊙ h̃𝑡 ,

(5)

where 𝜎 is a sigmoid function, x𝑡 is the input at the 𝑡-th timestep,
and ⊙ is element-wise multiplication.

We initialize the GRU recurrent hidden state l0 as 0. For each
event 𝑧𝑡 in the user history 𝑍 , we feed the corresponding event
embedding into the GRU cell in sequence as input in each timestep:

l𝑡 = 𝜙 (𝐸 (𝑧𝑖 ), l𝑡−1),
l0 = 0.

(6)

The 𝐷-dim user embedding u is generated by taking the average
over output vectors from all GRU steps:

ũ =

∑𝑛
𝑖=1 l𝑖
𝑛

,

u =
ũ

| |ũ| |

(7)

Compared to the Continuous Bag-of-Events user representation,
recurrent user representation has access to the order of user activity,

and in principle can better relate user relevance feedback to the
user’s interaction history. In our experiments, using this recurrent
user representation in our model resulted in a ∼5% gain in our
offline Recall@20 metric.

3.3 Affinity function
The affinity function 𝛾 (v𝑖 , u) between user 𝑈 and item 𝑠𝑖 is con-
structed by the dot product between the user and item embeddings.
As user and item embeddings are normalized to have unit length
(| |u| | = 1, | |v𝑖 | | = 1), the dot product score between any pair of
embeddings is constrained to have a value between -1 and 1. This
essentially limits the capability of the model to distinguish positive
items from negatives items. In order to address this, we added a
temperature 𝜏 [31] term to our affinity function described in Eq. 1
as follows:

𝛾 (v𝑖 , u) =
v𝑖u
𝜏
. (8)

The temperature hyperparameter was tuned to maximize the re-
trieval metric, Recall@k. In our experiments, we found that 𝜏 has a
large impact on the performance of the trained model. By tuning 𝜏
on the validation set, we are able to increase Recall@20 by ∼150%.

4 DATASET & EXPERIMENTS
In this section, we describe the dataset we created to train our
model, the importance of negative sampling during the training
process, as well as the offline experiments performed to evaluate
the effectiveness of the model.

4.1 Experimental Dataset
Since we treat the recommendation task as a classification problem
(Eq.1), in order to train our model, we require positive and negative
samples of items, where positive samples represent items relevant
to the user and their shopping journey at impression time. In our
e-commerce setting, an impression is defined as a single instance
of an item page view by a user. eBay’s e-commerce site (and mobile
apps) features millions of item pages corresponding to active items,
and each page contains recommendations for other items, organized
into horizontal modules representing "similar items", "related items",
"seller’s other items", "items based on recent views" and so on. These
recommendations are typically powered by module-specific recall
and ranking stages. Each module presents multiple items (up to 12
on desktop web), and there may be as many as 6 such modules on
each item page, distributed along the length of the page.

In order to collect positive and negative data samples, we looked
at implicit user interactions with these merchandising recommen-
dation modules on eBay’s item pages, captured in the form of offline
log data. Only those item page impressions that had a recorded click
event on a recommendation module were considered for positive
and negative data samples. Recommended items across recommen-
dations modules that were clicked on by a user were selected as
positive examples for the model target. Click events were chosen
due to the volume of available data, however, other signals such
as purchases may also be used. Recommended items that were not
clicked on were treated as negative examples. Since clicking on
a recommended item causes a new item page to be loaded, each
item page impression typically resulted in one positive and multi-
ple negative samples. As we shall discuss in the next section, the
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sampling strategy used for negative examples is critical to achieve
good model training performance.

The data needed for the user tower was gathered over a 30
day period going back from a given page impression, and consists
of up to 450 user events. All of the positive and negative items
were enriched with necessary metadata about category, title, and
aspects using offline tables. A typical training run would consist
of around 10 million page impressions gathered from 8 days of
data. A validation set with approximately 110K page impressions
was collected following the end of the training data time frame, in
order to avoid information leakage across training and validation
sets. In order to avoid biasing the outcome towards a few users
with high engagement, a given user was only allowed to contribute
to one page impression in the training data and validation data.
Therefore, we had 10 million unique users and 110K unique users
in our training and validation datasets respectively. In order to
better capture the distribution of users and their diverse shopping
patterns, data was collected from logs from all of eBay’s platform
experiences: desktop web, mobile web, and iOS and Android native
apps.

4.2 Negative Sampling
As previously mentioned, the number of available items |𝑉 | on
the eBay marketplace is on the scale of one billion, therefore it is
infeasible to perform a full-size softmax operation as defined in
Eq.1. We experimented with two approaches for sampling negative
examples.

4.2.1 Observed Un-Clicked Item. In this approach, on the item page,
we take the item(s) clicked on as positive, and a subset of the items
that were impressed but not clicked on as our negatives. Specifically,
each positive item is paired with 8 un-clicked negative items. This
approach failed in our initial model training, resulting in overfitted
models that were unable to generalize. The main reason for this
is that on the item page, all of the impressed items from current
recommendation modules are very similar to the seed item, and
this leads to the effect that the model is unable distinguish positive
from negative examples utilizing content-based item features.

4.2.2 In-batch Random Negative Sampling. We then experimented
with using random items as negatives. Rather than randomly sam-
pling items from the whole item pool (billions of items), we use
in-batch negative sampling [17] by using the impressed but un-
clicked items from other training examples within the same batch
as negatives. This approach gives us a less complex and more effi-
cient sampling strategy. This approach has some similarities with a
popularity-based sampling approach, as the likelihood of an item
serving as a negative sample is proportional to the number of times
this item is presented to a user.

4.3 Evaluation Metrics
We experimented with multiple evaluation metrics to measure
model performance using our offline validation dataset. Given the
similarity of our problem to the ranking problem in the information
retrieval setting, we considered several metrics commonly used
for ranking problems such as Normalized Discounted Cumulative
Gain (NDCG), Recall@k, Precision@k, and Mean Reciprocal Rank

Symbol Hyperparameter Description Value

𝐷 Item/User embedding dimension 64
𝐷𝑡𝑒𝑥𝑡 Text-based feature dimension 64
𝐷𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 Category feature dimenstion 64
𝐿 Number of hidden layers in MLP 3
𝐻 Hidden dimension in MLP 64
𝜏 Temperature in affinity function 0.1

Table 1: Model hyperparameter settings.

(MRR) [11]. As mentioned in the previous section, we typically
have only 1 positive in each page impression, therefore it becomes
important to measure whether or not the positive recommenda-
tion is in the top k results. We therefore ultimately chose to use
Recall@k as our primary evaluation metric, for 𝑘 = 1, 5, 10, 20, 40.
For P impressions, the metric is defined as:

𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 =
1
𝑃

𝑃∑
𝑖=1

# relevant items @ k
# total relevant items

(9)

For an industrial recommender system, it is important to surface
the most relevant recommendations at the very top of the ranking
since the user may only be shown (say) 5 recommendations via the
user interface and would not engage with other recommendations.

4.4 Model Training
We used the PyTorch [25] deep learning framework to implement
the coremodel. Additionally, we utilized the PyTorch-Lightning [10]
framework which shortened development iterations and standard-
ized the training loop so that it was seamless to transition the model
between different CPU and GPU training environments. We chose
the Adam optimizer [21] with a 0.01 learning rate. The gradient
clipping parameter, set to 0.001, was essential in stabilizing the
gradient in the recurrent part of the network, which spanned sev-
eral hundred steps. We chose to sample 3000 negatives for each
positive item, and use 600 as our batch size to maximize GPU uti-
lization. Finally, we trained the model with 10 epochs over our data
to reach convergence of the evaluation metrics. Model hyperparam-
eters were selected considering production storage constraints and
model performance on the validation set. The chosen settings are
reported in Table 1.

4.5 Offline Evaluation
As an offline baseline recommendation method for comparison, we
used Recently Viewed Items (RVI), which recommends items that
a user has recently viewed ranked by the viewed item’s recency.
Although this method is simple and does not use a collaborative
filtering (CF) based approach, RVI is widely used as away of generat-
ing personalized recommendations in production systems. It is also
a difficult baseline to beat in terms of generating user engagement,
given that these are items the user has engaged with recently. The
works of Song et al. [28] and Wang et al. [29] show approaches sim-
ilar to RVI to be strong baseline methods, outperforming CF-based
methods.

We evaluated our best model, which used a recurrent user rep-
resentation based on item views and search query events, and the
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Recall@k RVI Proposed Model

1 0.01 0.02 (50%)
5 0.06 0.06
10 0.09 0.09
20 0.12 0.13 (8.3%)
40 0.16 0.18 (12.5%)

Table 2: Offline test set evaluation results.

hyperparameters shown in Table 1. This evaluation was performed
on a separate test set, which consists of 7K unique users and 10
million candidate items. The number of candidate items used for
this evaluation is similar in scale to the number of candidate items
typically used at prediction time in production.

Figure 3: Sample items are grouped together by similar
themes, demonstrating model quality.

Experimental results are reported in Table 2. Our method out-
performs the RVI method in several Recall@k metrics that were
measured. This shows that our model is able to generate appro-
priate personalized recommendations based on the user’s current
shopping mission, and potentially inspire new ones given the right
user history. The RVI method, in contrast, only serves a re-targeting
purpose, wherein a user is shown items they have already browsed
in order to encourage re-engagement with previous shopping mis-
sions. In our approach, the multi-modal user embedding framework
allows the model to incorporate various user activities seamlessly
in a machine-learned manner to maximize user engagement.

Several sample items are presented in Figure 3 in order to demon-
strate the model quality in a visual manner. The model generates
item embeddings in a way that groups items with a similar semantic
theme together. For example, the rows in Figure 3 represent item
that have i) similar artistic style, ii) clothing with a similar style,
and iii) Pokemon trading cards with the same character. Although
the model uses text based features, we are showing the pictures of
the items for brevity.

4.6 Data Ablation Analysis and Model
Robustness

Stability of the model and robustness of its prediction is essential
for a production environment, but is rarely studied for machine
learning models that power recommender systems. We conducted

an ablation analysis for our model with respect to user history data
in order to study model performance under the condition where
part of the user history is missing.

To understand the possible impact of missing the most recent
user history at prediction time, we performed several experiments,
the results of which are shown in Figure 4. First, we trained a model
with the full user history present (dashed blue curve in Fig. 4), and
computed predictions on a validation set while dropping different
lengths of the most recent user activity (horizontal axis in Fig. 4). As
can be seen by the dashed blue curve in Fig. 4, when the most recent
5-minute user activity was missing, the Recall@20 metric decreased
by more than 30%, from 0.9 to 0.62. The metric degrades by as much
as 50% to 0.45 when user activity within the most recent 60 minutes
is missing. This creates significant performance risk for production
deployment, since the model may not always have up-to-date real-
time user onsite history at prediction time. To counteract this effect,
we chose to train the model while dropping the most recent user
activities, not random ones from the user history, in order to better
align with the scenario happening in production system where
there may be a gap in time between the batch model prediction
output and a user impression. A user can simply be browsing the
site, potentially with a new shopping mission, for some time after
a batch update.

Figure 4: Model prediction performance with missing user
history.

We experimented with training models by dropping some of
the user onsite activity data before impression time, ranging from
the most recent 10 minutes (green curve) to 1 day (purple curve).
As we can see in Fig. 4, models trained using skipped user history
performed better compared to the original model, when part of
user history was missing at prediction time. For example, with 60
minutes of user activity missing at prediction time, all "skipped"
models were able to achieve Recall@20 of 0.56, compared to 0.45 for
the original model (dashed blue curve). In addition, training with
more skipped history leads to a "flatter" curve, suggesting a more
robust model under conditions of variable missing history. However,
we also observe that model performance decreases when trained
with more dropped out user history, especially across the range of
0 minute (no skipping) to 30 minutes. In order to find a balance
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between performance and consistency, the production model is
selected as the one with the largest area under curve from Fig. 4
amongst those trained with 10-minutes of skipped user activity
(green curve). This sort of user history dropout is important to
consider when training a model with robust prediction expectations
for a production setting.

5 MODEL PREDICTION
The previous sections focused on describing the model and offline
validation testing. In this section, we will turn our attention to
describing the model prediction stage, including the multitude of
engineering considerations and trade-offs for building a large scale
production engineering recommender system.

5.1 Retrieval
During the prediction stage, given a user embedding and a pool
of candidate item embeddings, retrieval is conducted by the KNN
search algorithm.We used the KNN implementation from FAISS [19].
For a marketplace with an enormous item-based inventory, similar
items are common on the site (at the time of paper writing, search-
ing “iphone 11” on eBay would return 3047 results). As our model
only consumes content-based features (title, category, and aspects)
for items, all those content-similar items would have similar em-
bedding from our model. Utilizing the traditional KNN approach,
given a user embedding, the retrieved items would be extremely
overlapping in the embedding space.

To address this diversity problem, we use K-means clustering to
group all candidate items into 𝐾 clusters, each with a centroid 𝑐𝑖 .
At retrieval time, we try to find 𝑁 candidate recall items, given a
user embedding 𝑢. We first find the nearest𝑀 clusters, and in each
cluster conduct a KNN search to retrieve𝑚𝑖 items:

𝑚𝑖 = ⌈ 𝑒𝛾 (c𝑖 ,u)∑𝑀
𝑗=1 𝑒

𝛾 (c𝑗 ,u)
· 𝑁 ⌉, (10)

where 𝛾 (cj, u) is the same affinity function defined in Eq. 1.

(a) Without Clustering (𝑀 = 1, 𝐾=100,000)

(b) With Clustering (𝑀 = 10, 𝐾=100,000)

Figure 5: Generated personalized item recommendations (a)
without and (b) with clustering, where the user has been pre-
viously looking at Adidas Yeezy shoes.

Since the inventory on eBay is highly diverse, the existing prod-
uct catalog does not cover all eBay items consistently. The clustering
step essentially creates a "pseudo catalog" covering all items, and
content-similar items could be organized into static entities. In
our experiment, we found 𝐾 = 100,000 provides the right level of
granularity in clustering items.

Figure 6: Production engineering architecture formodel pre-
diction.

The number of clusters,𝑀 , for retrieval is chosen by balancing
between item diversity and retrieval metrics. With larger 𝑀 , the
retrieved items would cover more potential user interests, but with
less concentration on a specific direction.With𝑀 = 1, this approach
degenerates to the traditional KNN method. In our experiment, as
can been shown from an example in Fig. 5, the clustering-based
method generates a more diverse set of item recommendations,
without losing relevancy. This technique enables controlling recom-
mendation diversity with a simple hyperparameter,𝑀 , and can be
tuned during the prediction stage separately from the training stage.
In production, we found that using𝑀 = 10 and𝐾 = 100,000 provides
the optimal amount of diversity of eBay item recommendations.

5.2 Production Engineering Architecture
In this section, we describe the engineering architecture used for
model prediction to serve the personalized recommended items to
eBay users. The production engineering architecture is depicted
in Figure 6. Since a user’s browsing history is constantly being
updated, we recalculate the user embedding as well as the KNN
results on a daily basis. Note that our model is based on content
text based features, which are mostly static for any given item, so
we found that we do not need to retrain the full model on a daily
basis.

The prediction process is performed offline in batch mode. First,
two Spark extract, transform, load (ETL) jobs generate the candidate
items and the up to date user histories for all users on eBay that
had activity in the last 30 days, along with the necessary metadata
aggregated in Hadoop. The user behaviour data at eBay is aggre-
gated once per day in Hadoop, so this is the reason the ETL jobs run
with this daily frequency. In order to control for item popularity,
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we limit the candidate item set to items that have had 2 or more
clicks in the past 4 days.

Next, we utilize eBay’s GPU cluster, Krylov [20], to run a forward
pass on the item and user towers in the trained model, in order
to generate the item and user embeddings, respectively. Now, for
every user embedding, a KNN search is performed on all of the item
embeddings, to generate the KNN results and write them back to
Hadoop. The KNN results are then loaded to a Couchbase database,
which is utilized as a fast (with a latency of a few milliseconds)
run-time cache, with the user id as the key, using a batch loading
application. This caching approach is scalable to hundreds of mil-
lions of users, and is only limited by the Couchbase cluster capacity
being used.

The eBay run-time web serving application stack is based on
the Java Virtual Machine (JVM). The backend application serving
recommendations is written in Scala and runs on the JVM for fast
run-time performance. One of the reasons the caching architecture
was chosen, is due to the latency requirements of the run-time
application for serving personalized recommendations to the eBay
users. Traditional approaches, such as in-memory matrix factor-
ization, would simply not be computationally feasible at eBay data
scale. In addition to enriching the recommended items with neces-
sary metadata, the backend application can also apply a separately
trained LTR model [4] in order to optimize conversion.

5.3 Online Evaluation
The best trained model was deployed to our production environ-
ment and evaluated in an online A/B test. Surface rate, defined as
percent of user page views that result in recommendations being
displayed, is an important metric in an industrial recommender
system. For example, if 100 users view an item page and only 50 of
those users are shown recommendations, the surface rate would be
50%. In general, the surface rate of a production algorithm can be
below 100% due to lack of inventory, item expiration, engineering
constraints, as well as business logic, among other reasons. If a user
is not shown recommendations on a specific page, they cannot click,
interact, or purchase those items, which is the ultimate business
intent for a recommender system.

Compared to the current personalized recommendation module
in production, which mainly focuses on resurfacing items a user
has viewed, our model demonstrated an increase in the surface
rate of ∼6% to generate recommendations for 90% of item page
impressions. This is mainly achieved by addressing the cold start
and data sparsity problem through content-based item and user
embeddings. The production RVI based algorithm is limited to using
a user’s item activity only, as opposed to our model which uses
search activity as well. The embeddings based approach generates
a much larger candidate set, which results in a higher surface rate
overall. The current system, refreshed daily to capture new user
activity, serves 50 million US users and will be scaled to cover all
global eBay users in the near future.

6 SUMMARY AND FUTUREWORK
In this paper, we presented an approach for generating personalized
item recommendations in a large scale e-commerce marketplace. A
two-tower deep learningmodel is used to learn embeddings of items

and users in a shared vector space. Items and users embeddings
are learned using their content features and multi-modal onsite
user activity respectively, to tackle the cold-start problem. To better
address the instability of the online production environment, user
data ablation is incorporated into the offline training process to
generate a more robust model. Offline (improvement in Recall@20
metric by 8.3% over the RVI method) and online (improvment in
surface rate of ∼6% over the production algorithm) experiments
have validated our approach, and shown significant improvements
over baseline approaches. A personalized recommender system
based on our approach has been launched to production and is now
serving recommendations at scale to eBay buyers.

We are actively working to enhance the quality of the model.
More types of implicit user feedback, such as "add to cart" and
"watch item" should be incorporated into the model to better cap-
ture a user’s shopping mission. Additionally, having only a single
vector to represent a user is potentially limiting, since the user may
have diverse interests and multiple ongoing shopping missions.
We are working on an improved user representation that encodes
parallel shopping missions, and has the capability to separate long
term user interests from short term shopping missions. From the
item modeling perspective, a pre-trained language understanding
model (e.g BERT [9]) could be leveraged to better understand item
titles. We are also working on incorporating an additional LTR
model at runtime which to improve conversion metrics. This LTR
model would be trained specifically for our context wherein the
input is the user history and not a 𝑠𝑒𝑒𝑑 item.

One of the shortcomings of our current engineering implemen-
tation is the frequency of the recommendation update, which is
currently limited by the need for daily batch processing. We are
working on moving to a near real-time (NRT) system for generating
personalized recommendations using user and item embeddings.
This entails several infrastructural improvements including i) a
real-time KNN service based on algorithms such as FAISS [19] and
ScaNN [15] to compute distances between embedding vectors, ii)
a real-time model prediction service for generating item and user
embeddings (potentially using the Open Neural Network Exchange
(ONNX) format [2] for transferring the trained model from the
offline training to the real-time prediction environment), and iii)
an event stream processing service for capturing up to date item
and user actions on the eBay site. We are actively working on de-
veloping this infrastructure in the form of more general services
that can be utilized for a variety of deep learning embedding-based
algorithms, in addition to personalized recommendations.
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