
Visualizing Dataflow Graphs of
Deep Learning Models in TensorFlow

Kanit Wongsuphasawat, Daniel Smilkov, James Wexler, Jimbo Wilson,
Dandelion Mané, Doug Fritz, Dilip Krishnan, Fernanda B. Viégas, and Martin Wattenberg

(a) (b)

Main Graph Auxiliary Nodes

Fig. 1. The TensorFlow Graph Visualizer shows a convolutional network for classifying images (tf cifar) . (a) An overview displays
a dataflow between groups of operations, with auxiliary nodes extracted to the side. (b) Expanding a group shows its nested structure.

Abstract—We present a design study of the TensorFlow Graph Visualizer, part of the TensorFlow machine intelligence platform. This
tool helps users understand complex machine learning architectures by visualizing their underlying dataflow graphs. The tool works
by applying a series of graph transformations that enable standard layout techniques to produce a legible interactive diagram. To
declutter the graph, we decouple non-critical nodes from the layout. To provide an overview, we build a clustered graph using the
hierarchical structure annotated in the source code. To support exploration of nested structure on demand, we perform edge bundling
to enable stable and responsive cluster expansion. Finally, we detect and highlight repeated structures to emphasize a model’s
modular composition. To demonstrate the utility of the visualizer, we describe example usage scenarios and report user feedback.
Overall, users find the visualizer useful for understanding, debugging, and sharing the structures of their models.

Index Terms—Neural Network, Graph Visualization, Dataflow Graph, Clustered Graph.

1 INTRODUCTION

Recent years have seen a series of breakthroughs in machine learning,
with a technique known as deep learning bringing dramatic results on
standard benchmarks [37]. A hallmark of deep learning methods is

• Kanit Wongsuphasawat is with Paul G. Allen School of Computer Science
& Engineering, University of Washington. E-mail: kanitw@uw.edu.

• Daniel Smilkov, James Wexler, Jimbo Wilson, Dandelion Mané, Doug Fritz,
Dilip Krishnan, Fernanda B. Viégas, and Martin Wattenberg are with
Google Research. E-mail: {smilkov, jwexler, jimbo, dougfritz, dilipkay,
viegas, wattenberg}@google.com

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of
Publication xx xxx. 201x; date of current version xx xxx. 201x.
For information on obtaining reprints of this article, please send
e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx/

their multi-layered networks of calculations. The complexity of these
networks, which often include dozens of layers and millions of param-
eters, can lead to difficulties in implementation. Modern deep learning
platforms including TensorFlow [6], Theano [11], and Torch [18] pro-
vide high-level APIs to lower these difficulties. With these APIs, de-
velopers can write an abstract program to generate a low-level dataflow
graph that supports a variety of learning algorithms, distributed com-
putation, and different kinds of devices.

These APIs and their dataflow models simplify the creation of neu-
ral networks for deep learning. Yet developers still have to read code
and manually build a mental map of a model to understand its com-
plicated structure. A visualization of the model can help developers
inspect its structure directly. However, these dataflow graphs typically
contain thousands of heterogeneous, low-level operations; some of
which are high-degree nodes that connect to many parts of the graphs.
As a result, standard layout techniques such as flow layout [49] and



force-directed layout generally produce tangled diagrams.
In response, we present the TensorFlow Graph Visualizer, a com-

ponent of in the TensorFlow machine intelligence platform, to help
developers understand and inspect the structure of their TensorFlow
models. Given a low-level directed dataflow graph of a model as in-
put, the visualizer produces an interactive visualization that shows the
high-level structure of the model, akin to diagrams that deep learning
experts typically draw to explain their models, and enables users to
explore its nested structure on demand.

This paper describes our design process and the design of the visu-
alizer. We present a set of graph transformations and visual encodings
that enables standard flow layout techniques [50] to produce a legi-
ble interactive diagram from a dataflow graph of a machine learning
model. To provide an overview, we build a clustered graph by group-
ing nodes based on their hierarchical namespaces that developers can
provide. To support exploration, we introduce a novel application of
edge bundling to enable stable and responsive expansion of clustered
flow layout. To declutter the graph, we apply heuristics to extract non-
critical nodes, and introduce new visual encodings that decouple the
extracted nodes from the layout. We also detect and highlight repeated
structures to help users recognize modular composition in the models.
Finally, we overlay the graph with additional quantitative information
to help developers inspect their models.

To demonstrate the utility of the visualizer, we describe usage sce-
narios for exploring deep learning models. We also report feedback
from users who use the tool to examine structures of deep learning
models, and discuss usage patterns we have observed in the wild.
Overall, developers find the visualization useful for understanding, de-
bugging, and sharing the structures of their models.

2 RELATED WORK

2.1 Dataflow Graph Applications
Dataflow graphs arise in diverse domains: distributed systems [15, 32,
42], databases [41], user-interface development [20], visualization [14,
46, 52] and engineering [4].

Some dataflow systems (e.g., [4, 14, 52]) use visualizations as au-
thoring tools and allow users to directly edit the graph to modify the
dataflow. Since dataflows in these systems represent high-level com-
ponents that are manually added one-by-one, their graphs are typically
much smaller compared to dataflow graphs of deep neural networks.

One important application domain for dataflow models is large-
scale distributed systems, which automatically create dataflow struc-
tures from a program to enable distributed computation [15, 32, 42].
To help users diagnose performance of distributed databases, Perfop-
ticon [41] includes a collapsible dataflow graph of query execution
plans. However, its design does not scale to large dataflow graphs.

Our goal is to help users understand large, complex dataflow pro-
grams with a visualization that scales, provides a legible overview,
and supports detailed exploration on demand. While our design tar-
gets TensorFlow, our strategy to decouple non-critical nodes from the
layout can be applicable for heterogeneous graphs in other domains.
Clustered flow graphs in other domains can apply edge bundling to
facilitate responsive and stable graph expansion as well.

2.2 Visualization for Neural Networks
Visualization plays many important roles in machine learning. Practi-
tioners and researchers often use visualization to monitor learned pa-
rameters and output metrics to help them train and optimize their mod-
els. Besides the Graph Visualizer, TensorBoard, TensorFlow’s dash-
board component, also includes modules for monitoring scalar values,
distribution of tensors, images, and audio. We briefly describe these
modules in supplementary material.

For neural networks, the lack of understanding of how the models
work often makes model optimization difficult. Visualizations can im-
prove the transparency and interpretability of the models and help open
these “black boxes” [34, 54]. Some projects present visualizations for
specific types of neural networks such as convolutional network [39]
and recurrent networks [2, 48]. Besides supporting expert’s analysis,
recent projects, such as Olah’s interactive essays [1], ConvNetJS [2],

and TensorFlow Playground [47], provide interactive visualizations to
teach novices how neural networks work. Unlike prior projects that
focus on visualizing learned parameters and output values, or specific
kinds of networks, our primary goal is to help users understand the
structure of dataflow graphs that represent arbitrary neural networks.

Similar to our work, some high-level deep learning toolkits such as
Keras [3] and MXNet [16] leverage GraphViz [28] to provide tools
for visualizing model structure. However, their graph representations
are higher-level than TensorFlow and do not contain information about
nested low-level operations. For other toolkits that use more complex
and lower-level dataflow graphs [11, 18], standard tools like GraphViz
generally produce illegible layouts. Without a better tool, developers
have to read the code and manually build a mental map of the struc-
ture to understand a model. Our visualizer aims to help developers
understand and inspect low-level dataflow graphs of neural networks.

2.3 Graph Visualization Techniques

Visualizing dataflow graphs can be generalized as drawing directed
graphs. A common way to draw directed graph is the flow layout,
which uses one axis to convey overall direction. A standard flow
layout algorithm, introduced by Sugiyama et al. [50] and widely ex-
tended [13, 31, 33], assigns x-and y-coordinates separately in multiple
stages that optimize different objectives. An alternative approach by
Dwyer et al. applies constraint optimization to compute both coor-
dinates for a flow layout simultaneously [22, 23, 24]. The separa-
tion constraints [24] introduced by this approach are also used in other
types of layouts [35, 57]. Since directionality is critical for understand-
ing the dataflow of neural networks, we use a flow layout as a basis of
our layout algorithm and augment it with additional transformations
to simplify the graph. Our implementation uses a Sugiyama-style al-
gorithm due to the availability of stable libraries and high-quality doc-
umentation. However, our additional transformations are also applica-
ble for a constraint-based flow layout.

To simplify large graphs, a common technique is to build hierar-
chical clustered graphs that provide an overview and support cluster
expansion to explore details [7, 8, 9, 30]. Following this approach,
we leverage hierarchical namespaces that developers provide to create
a clustered flow layout. To help users maintain mental maps during
exploration [40], a clustered graph must also be responsive and stable.
For undirected graphs, some systems use static layouts [10, 30, 55]
while others draw the graph interactively [7, 8, 55]. For directed
graphs, constraint-based approaches [24, 25, 26] and an online tech-
nique [43] can speed up the calculation and preserve the topology of
the flow layout during interactions. However, drawing edges directly
between all visible nodes still clutters expanded graphs. To both de-
clutter the view and support interactive expansion, we bundle and route
edges between groups such that edges only connect nodes that are sib-
lings in the hierarchy [10]. This approach allows us to compute the
layout of each cluster’s subgraph separately and update only relevant
subgraphs when users expand nodes. As a result, we can create re-
sponsive and stable interactive graph with a standard Sugiyama-style
algorithm for clustered graph [27, 29, 45, 49], without the need to im-
plement complex constraints or online algorithms. To the best of our
knowledge, none of the prior work documents the application of edge
bundling to enable interactive expansion of a clustered flow layout.

Graph clustering and edge bundling simplify our layout, but still
leave intertwining edges in many cases due to the presence of non-
critical, high-degree nodes. Another group of graph simplification
techniques extracts nodes and edges, or replaces them with special
visual encodings. Dunne and Shneiderman substitute common nodes
and links with compact glyphs that represent common patterns [21].
Van Ham & Wattenberg remove edges based on a centrality measure
to show graph clusters in force-directed layout [56]. Inspired by these
strategies, we apply heuristics based on domain knowledge, semantic
metadata, and distribution of node degrees to extract non-critical nodes
from the layout, and re-encode them with new visual encodings.



3 BACKGROUND: TENSORFLOW

TensorFlow [6] is Google’s system for the implementation and deploy-
ment of large-scale machine learning models. Although deep learning
is a central application, TensorFlow also supports a broad range of
models including other types of learning algorithms.

The Structure of a TensorFlow Model

A TensorFlow model is a dataflow graph that represents a computation.
Nodes in the graph represent various operations. These include mathe-
matical functions such as addition and matrix multiplication; constant,
sequence, and random operations for initializing tensor values; sum-
mary operations for producing log events for debugging; and variable
operations for storing model parameters.

Edges in TensorFlow graphs serve three different purposes. Data
dependency edges represent tensors, or multidimensional arrays, that
are input and output data of the operations. Reference edges, or out-
puts of variable operations, represent pointers to the variable rather
than its value, allowing dependent operations (e.g., Assign) to mutate
the referenced variable. Finally, control dependency edges do not rep-
resent any data but indicate that their source operations must execute
before their tail operations can start.

Building a TensorFlow Model

The TensorFlow API provides high-level methods for produc-
ing low-level operations in the dataflow graph. Some, such as
tf.train.GradientDescentOptimizer, generate dozens of low-
level operations. Thus a small amount of code, such as the definition
of the tf mnist simple model in Figure 4 (see supplementary mate-
rial), can produce about a hundred operations in the graph. Real-world
networks can be even more complex. For instance, an implementation
of the well-known Inception network [51] has over 36,000 nodes.

Operation Names

For clarity, operations in TensorFlow graphs have unique names,
which are partly generated by the API and partly specified by users.
Slashes in operation names define hierarchies akin to Unix paths
(like/this/example). By default, the API uses operation types
as names and appends integer suffixes to make names unique (e.g.,
“Add 1”). To provide a meaningful structure, users can group oper-
ations with a namespace prefix (e.g., “weights/”). Complex meth-
ods such as tf.train.GradientDescentOptimizer also automat-
ically group their underlying operations into subnamespaces (e.g.,
“gradients” and “GradientDescent”). As discussed later in §5.2,
we apply these namespaces to build a clustered graph.

4 MOTIVATION & DESIGN PROCESS

The motivation for the TensorFlow Graph Visualizer came from our
conversations with deep learning experts, including one of the authors.
When experts discuss their models, they frequently use diagrams (e.g.,
Figure 2) to depict high-level structure. When working with a new
model, they often read the code and draw a diagram to help them build
a mental map of the model’s architecture. Since diagrams are critical
for their work, machine learning experts desire a tool that can auto-
matically visualize the model structures.

Motivated by an apparent need for a visualization tool, we worked
with potential users to understand the key tasks for such a visualiza-
tion. We also examined the model data that a visualization would have
to portray. The purpose of these investigations was to match user needs
with what would be possible given real-world data.

Fig. 2. Whiteboard drawing by a computer vision expert: a convolu-
tional network for image classification.

4.1 Task Analysis
Our overarching design goal is to help developers understand and com-
municate the structures of TensorFlow models, which can be useful
in many scenarios. Based on conversations with potential users, we
identified a set of key scenarios for a model visualization. Beginners
often learn how to use TensorFlow based on example networks in the
tutorials. Even experts usually build new models based on existing
networks. Therefore, they can use the visualization to help them un-
derstand existing models. When modifying the code that generates
models, developers can use the visualization to observe the changes
they make. Finally, developers typically work in teams and share their
models with their co-workers; they can use the visualization to help
explain the structures of their models.

As discussed earlier, researchers often manually create diagrams to
explain their models and build mental maps. These diagrams were
an important inspiration for our design. As shown in Figure 2, they
usually show a high-level view of the model architecture and feature
relatively few nodes. Low-level implementation details such as cost
function calculation or parameter update mechanism are generally ex-
cluded from these diagrams. When a network features repeated mod-
ules, the modules are usually drawn in a way that viewers can tell they
are the same. These diagrams also often annotate quantitative infor-
mation such as the layer dimensions in Figure 2.

In model development, developers also need to understand the
model beyond the high-level structure. For example, when a devel-
oper modifies a part of the code and sees an unexpected result, the
reason may lie either in the model itself or in the code that created the
model. It can be hard to know whether the program is actually building
the intended model. In such case, the developer may desire to inspect
a specific part of the model to debug their code.

From conversations with experts about potential usage scenarios
and our observation from these hand-drawn diagrams, we identify a
set of main tasks that the visualization should support:

T1: Understand an overview of the high-level components of the
model and their relationships, similar to schematic diagrams that
developers manually draw to explain their model structure.

T2: Recognize similarities and differences between components in
the graph. Knowing that two high-level components have iden-
tical structure helps users build a mental model of a network;
noticing differences between components that should be identi-
cal can help them detect a bug.

T3: Examine the nested structure of a high-level component, in
terms of low-level operations. This is especially important when
a complex nested structure has been created automatically from
a single API call.

T4: Inspect details of individual operations. Developers should not
have to refer back to the code to see lists of attributes, inputs, and
outputs, for instance.

T5: View quantitative data in the context of the graph. For example,
users often want to know tensor sizes, distribution of computa-
tion between devices, and compute time for each operation.

These tasks do not include standard monitoring apparatus, such as
plots of loss functions (i.e. optimization objectives) over time. Such
tools are important, but beyond the scope of this paper since they do
not relate directly to the structure of the dataflow graph; we briefly dis-
cuss how TensorFlow handles these issues in supplementary material.

This task analysis guided our work, as we engaged in a user-
centered design process. Throughout the project, we worked closely
with several TensorFlow developers and beta users and iterated on the
design. We met with beta users and members of the developer team
for at least an hour a week (sometimes for much longer) for about 20
weeks. After the release, we continued to seek feedback from both
internal and public users.

4.2 Data Characteristic Analysis
Our design process also included an investigation into the particular
properties of dataflow graphs that define TensorFlow models. An im-
mediate concern was that early experiments with standard layout tools



(e.g. flow layout in GraphViz [28], as well as force-directed layouts
from D3) had produced poor results. We wanted to understand, more
generally, the scale of real-world model data, and whether it would be
possible for an automatic visualization to support key user tasks.

We initially performed rapid prototyping to investigate the reasons
that TensorFlow graphs caused problems for standard layouts. We vi-
sualized several example computation model graphs in multiple ways.
After a few trials, we quickly abandoned experiments with force-
directed layouts as they created illegible hairballs. Attempts to use
a standard flow layout [50] for example models yielded illegible re-
sults. For example, Figure 4-a shows a flow layout of a simple network
for classifying handwritten digits (tf mnist simple). Building clus-
tered flow layouts allows us to produce more legible views. However,
these layouts were still cluttered and often change dramatically after
expanding a node.

These experiments pointed to several challenges that make Tensor-
Flow model graphs problematic for standard techniques.

C1: Mismatch between graph topology and semantics. One might
hope that meaningful structures would emerge naturally from the
graph topology. Unfortunately, it is hard to observe clear bound-
aries between groups of operations that perform different func-
tions such as declaring and initializing variables, or calculating
gradients. Moreover, randomized algorithms produce visually
different layouts for topologically identical subgraphs. A good
layout should show similarities between identical subgraphs.

C2: Graph heterogeneity. Some operations and connections are less
important for understanding the graph than others. For exam-
ple, developers often consider constants and variables simply as
parameters for other operators. Similarly, summary operations
serve as bookkeepers that save their input to log files for inspec-
tion, but have no effect on the computation. Treating all nodes
equivalently clutters the layout with non-critical details.

C3: Interconnected nodes. While most nodes in TensorFlow graphs
have low-degree (one to four), most graphs also contain some in-
terconnected high-degree nodes that couple different parts of the
graphs. For example, the summary writer operation (Figure 4-a)
connects with all summary operations. These high-degree nodes
present a major problem for visualizations, forcing a choice be-
tween tight clustering and visual clutter. In force-directed lay-
outs, connections between these nodes reduce distances between
nodes that are otherwise distant, leading to illegibly dense group-
ings. In flow layouts, these connections produce long edges
along of the flow of the layout and clutter the views.

5 DESIGN OF THE TENSORFLOW GRAPH VISUALIZER

We now describe the design of TensorFlow Graph Visualizer that aims
to help users with the tasks in §4.1. First, we explain the basic layout
and visual encodings. We then describe a sequence of graph trans-
formations that target the challenges in §4.2. We also report how we
identify and highlight repeated structure, and overlay the graph with
other quantitative information. We finally discuss our implementation.

For simplicity, we will use a simple softmax regression model for
image classification (tf mnist simple) to illustrate how we transform
an illegible graph into a high-level diagram (Figure 4). As shown in the
final diagram (Figure 4-d), the model calculates weighted sum (Wx b)
of the input x-data. The parameters (weights and bias) are placed
on the side. With Wx b and the y-input labels, the model computes the
test metrics and cross-entropy (xent), which is in turn used to train
and update the parameters. Besides this simple model, we describe
scenarios for exploring more complex neural networks in §6.

5.1 Basic Encoding and Interaction
As in Figures 1 and 4-d, the visualizer initially fits the whole graph to
the screen. We draw the directed graph of the dataflow with a flow lay-
out [50] from the bottom to the top, following a common convention
in the deep learning literature. Although both horizontal and vertical
layouts are common in the literature, we use a vertical layout since it
produces a better aspect ratio for models with a large number of layers.

Horizontal ellipse nodes represent individual operations. Compared
to a circle, this shape provides extra room for input edges on the bot-
tom and output edges on the top. Edge styles distinguish different
kinds of dependencies (T2). Solid lines represent data that flow along
data dependency edges. Dotted lines indicate that data does not flow
along control dependency edges (e.g., bias→init in Figure 4-c). Ref-
erence edges, such as weight→weight/Assign in Figure 3-a, have
arrows pointing back to the variables to suggest that the tail operations
can mutate the incoming tensors.

Since users are often interested in the shape of tensors edges (T5),
we label the edges with the tensor shape (Figure 3-a). We also com-
pute the total tensor size (i.e. the number of entries, or the product
of each dimension size) and map it to the edge’s stroke width (via a
power scale due to the large range of possible tensor sizes). If the
input graph does not specify dimension sizes for a tensor, the lowest
possible tensor size determines the width.

Users can pan and zoom to navigate the graph by dragging and
scrolling. When the graph is zoomed, a mini-map appears on the bot-
tom right corner to help users track the current viewpoint (Figure 1-b).
To reset the navigation, users can click the “Fit to screen” button on
the top-left. To inspect details of a node (T4), users can select a node
to open an information card widget (Figure 1-b, top-right), which lists
the node’s type, attributes, as well as its inputs and outputs. The widget
itself is interactive: users can select the node’s input or output listed
on the graph. If necessary, the viewpoint automatically pans so the
selected node is visible.

5.2 Graph Transformation
The key challenge for visualizing TensorFlow graphs is overcoming
the layout problems described in §4.2. We apply a sequence of trans-
formations (Figure 4) that enables standard layout techniques to over-
come these challenges. To provide an overview that matches the se-
mantics of the model (C1), we cluster nodes based on their names-
paces [8]. In addition to clustering, we also bundle edges to enable
stable and responsive layout when users expand clusters. Moreover,
as non-critical (C2) and interconnected nodes (C3) often clutter the
layout of clustered graphs, we extract these nodes from the graphs and
introduce new visual encodings that decouple them from the layout.

Step 1. Extract Non-Critical Operations
TensorFlow graphs are large and contain heterogeneuous operations
(C2), many of which are less important when developers inspect a
model. To declutter and shrink the graph, we de-emphasize these non-
critical operations by extracting these nodes from the layout and en-
coding them as small icons on the side of their neighbors.

We extract two kinds of operations, constants and summaries. Both
are loosely connected: extracting them does not change any paths be-
tween other nodes. A constant node always serves as an input to an-
other operation and thus has only one output edge and no input edge. A
summary node always has one input edge from a logged operation and
one output edge to the summary writer node, which is the global sink
node that takes all summary nodes as inputs and write log data to the
log file. Since the summary writer behaves identically in every Tensor-
Flow graph, it is negligible for distinguishing different models and can
be removed. With the summary writer removed, both summaries and
constants have degree 1. Thus, we can extract them without changing
any connections between the rest of the graph.

Fig. 3. Extract non-critical operations. (a) A raw subgraph for the
weights variable and its summary. (b) The subgraph with summary and
constant operations extracted from the flow layout and re-encoded as
embedded input and output on the side of their neighbors.



Extract Non-critical Operations

Build a Clustered Graph

a

b

c

d

Extract Auxiliary Nodes

Fig. 4. Transforming the graph of a simple model for classifying hand-
written digits (tf mnist simple). (a) A dataflow graph, which is large and
wide and has many intertwining connections. The zoomed part of the
raw graph highlights how the summary writer operation (red) is intercon-
nected to logged operations in many different parts of the graph (green)
via summary operations (blue). (b) The dataflow graph with summary
and constant operations extracted. Logged operations (green) are now
less intertwined. (c) An overview of the graph, which shows only top-
level group nodes in the hierarchy. (d) An overview with auxiliary nodes
extracted to the side of the graph. Selecting an extracted node highlights
proxy icons attached to its graph neighbors.

We encode the extracted constants and summaries as embedded in-
puts and outputs of their neighbor operations, or small icons on the left
and right of the node they connect to (Figure 3). A small circle repre-
sents a constant while a bar chart icon represents a summary operation.
Edges of the embedded nodes have arrows to indicate the flow direc-
tion. We place embedded nodes on the side of their neighbor nodes to
make the overall layout more compact and avoid occlusion with other
edges that connect with the node on the top and bottom.

As shown in Figure 4 (a-b), this transformation declutters the view
in two ways. First, removing the interconnected summary writer (red)
frees logged operations (green) from being tied together (C3). More-
over, constants and summaries together account for a large fraction of
nodes (approximately 30% in a typical network). Extracting them can
significantly reduce the graph size, making it less packed. Reduced
size also expedites subsequent transformation and layout calculation.

Step 2. Build a Clustered Graph with Bundled Edges
To reflect semantic structure of the model (C1), we build a hierarchi-
cal clustered graph by grouping operations based on their namespaces.
We also bundle edges between groups to help simplify the layout and
make the clustered flow layout responsive and stable when users ex-
pand nodes. With these transformations, we can provide an overview
(T1) that shows only the top-level groups in the hierarchy as the initial
view, while allowing users to expand these groups to examine their
nested structure (T3).

Figure 4-c shows an example overview produced from this step.
Each rounded rectangle represents a group node. To distinguish groups
of different size (T2), each rectangle’s height encodes the number of
operations inside the group. Users can expand these groups to examine
their nested structure, as shown in Figure 5-c.

Building a hierarchy. We build a hierarchy based on operation
names by creating a group node for each unique namespace (or, in the
Unix path analogy, directory). If a node’s name conflicts with a names-
pace (analogy: a file having the same name as a directory in Unix) we
put the node inside the group node and add parentheses around its
name. For example, Figure 5-a shows a hierarchy, which groups three
nodes in Figure 3-b under weights. The original weights operation
becomes the (weights) operation inside the weights group.

Although namespace groupings are optional, they are a good choice
for defining a hierarchy for a few reasons. First, TensorFlow graphs
typically have informative namespaces as developers also use these
namespaces to understand non-visual output in the debugging tools.
Moreover, inferring the semantic hierarchy from the graph topology
alone is ineffective; even incomplete namespace information better
corresponds to the mental model of the network’s developer. Most
importantly, adding names to models is relatively low effort for devel-
opers; we predicted that they would add namespaces to their models
to produce hierarchical groupings in the visualization if necessary. As
described later in §7, user feedback confirms this prediction.

To prevent operations without proper namespace prefixes (e.g.,
“Add 1”, “Add 2”, ...) from cluttering the view, we also group op-
erations of the same name under the same namespace into a special
series node. To avoid aggressive series grouping, by default we only
group these operations if there are at least five of them.

Bundling edges to enable stable and responsive expansion. Af-
ter grouping nodes to build a hierarchy, we draw group edges, or edges
between groups. We avoid drawing edges between all visible nodes
directly for a few reasons. First, it usually produces cluttered layouts.
More importantly, it may require complete layout re-calculation and
cause major layout changes every time the user expands a node. In-
stead, we bundle edges and route them along the hierarchy to make the
layout responsive, stable, and legible.

To do so, we create group edges only between nodes within the
same subgraphs of the group nodes. Within a subgraph, we cre-
ate group edges between group nodes and operation nodes as well
as group edges between pairs of group nodes. A group node and
an operation are dependent if there is at least one edge between a
descendant operation of the group node and the operation. Simi-
larly, two group nodes are dependent if there is at least one depen-



train

weights

(root)
gradients

Gradient-
Descent

Assign

read

(weights)

a c

b

Fig. 5. Build a hierarchical clustered graph. (a) A hierarchy show-
ing only train and weights namespaces from tf mnist simple in Fig-
ure 4. (b) A high-level diagram showing dependency between train
and weights. Hovering over the train namespace shows a button for
expansion. (c) A diagram with train and weights expanded.

dency edge between a pair of their descendant operations. If there
is more than one such edge, the corresponding group edge can bun-
dle multiple dependency edges. For example, we create a group edge
from weights to train in Figure 5-b. This group edge actually bun-
dles two dependency edges: weights/read→ train/gradients and
weights/(weights)→ train/GradientDescent.

When group nodes are expanded, we route edges along the hierar-
chy instead of directly drawing edges between all visible nodes [10].
We only directly draw edges between nodes that are siblings in the
hierarchy. For an edge between non-sibling nodes, we split the edge
into segments that are routed through their siblings ancestors. For ex-
ample, in Figure 5-c, both weights/read → train/gradients and
weights/(weights)→ train/GradientDescent are routed through
weights and train. Routed edge bundling provides multiple benefits:

1. Responsiveness. With edge routing, we can compute the lay-
out of each group node’s subgraph separately because edges do not
cross the boundary of each group node. Since layered graph lay-
out has super-linear time complexity, dividing the layout calculation
into smaller subproblems can provide significant speed-up. More-
over, when a group node is expanded or collapsed, we only need to
re-compute the layout for the ancestors of the group node instead of re-
computing the whole layout since other nodes are unaffected. In con-
trast, if we directly draw edges between all visible nodes even though
they are not a part of the same group node’s subgraph, the layout must
be computed all at once. The whole layout also has to be recomputed
every time a node is expanded or collapsed.

2. Stability. With edge routing, the topology of each group node’s
subgraph remains constant after an expansion. Therefore, expanding
a node only enlarges the node and its ancestors without causing major
changes to the layout. This helps users maintain their mental model
of the graph when they interactively expand the graph. We chose not
to directly draw edges between all visible nodes, since in that case
an expansion could vastly change the graph’s topology and produce a
totally different layout.

3. Legibility. Edge routing decreases the number of edges in each
group’s subgraph and thus declutters the layout by reducing edge
crossings. Drawing edges directly can tangle the view with many
crossing curves, especially when many nodes are expanded.

One possible drawback of edge routing is that it can be harder to
trace where an edge goes when it is bundled. We address this with
interaction by providing a list of inputs and outputs in the information
card to help them track a particular input and output edge.

Step 3. Extract Auxiliary Nodes from the Clustered Graph
Building a clustered graph simplifies the layout and provides a high-
level overview. However, high-degree nodes with connections across
the graph continue to present a challenge, causing intertwining edges
that clutter the visualization (C3). Ironically, when we showed these
diagrams to experts, they commented that many problematic nodes
such as variables and bookkeeping operations are actually not impor-
tant for understanding the model structure.

Akin to Step 1, we address these issues by extracting non-critical
nodes, but from each subgraph in the clustered graph instead of the
raw input graph. We place extracted nodes on the right of the layout
(labeled as “auxiliary nodes”) as shown in Figures 1-a and 4-d. To rep-
resent the extracted connections, we add small proxy icons for them
as embedded inputs and outputs besides their neighbor nodes. Each
proxy icon has a shape like its node (rectangles for groups and ellipses
for operations) and has a dashed border to indicate that it serves as a
proxy for its full representation on the side. When an extracted node
or one of its proxies is selected or hovered, we highlight both the node
and all of its proxies to help users locate the node and its neighbors.
This extraction strategy enables us to simplify the graph, while retain-
ing connectivity information from the original graph.

Fig. 6. Before extracting aux-
iliary nodes, the links between
groups clutter the overview of
tf cifar in Figure 1-a.

The key challenge here is to de-
termine non-critical nodes to ex-
tract. We use a set of heuristics
to extract two kinds of auxiliary
nodes for each subgraph. First, we
extract auxiliary nodes with spe-
cific and consistent subgraph pat-
terns. These include groups for
declaring and initializing variables,
which experts consider as param-
eters rather than core operations,
and NoOp nodes, which serve as
control dependency hubs that per-
form no computation.

We then extract auxiliary nodes
that do not have specific subgraph
patterns, but connect to many parts
of the graph. For example, groups that compute statistics for measur-
ing performance often connect to multiple layers in a network. Due
to their high-degree, these auxiliary nodes are mainly the cause of
the intertwining connections (C3). Meanwhile, core computations in
TensorFlow are typically mathematical operations that are binary or
ternary operators. Thus most core nodes have lower degree than auxil-
iary nodes, except the ones that connect to many auxiliary nodes. Most
of these auxiliary nodes are also sink-like, appearing at or near the end
of the graph, and thus have high in-degree. Since extracting nodes af-
fects the degrees of their neighbors, we extract high in-degree nodes
before high out-degree nodes so core nodes that connect to many sink-
like auxiliary nodes no longer have high out-degree.

To extract high in-degree nodes, we first calculate the quartiles of
in-degrees for a subgraph, ignoring edges of extracted nodes. We ap-
ply Tukey’s method [53] to detect outlier nodes with in-degrees higher
than Q3+ k ∗ (Q3−Q1), where k = 1 (a slightly aggressive thresh-
old). To avoid extracting nodes in low-degree graphs, we only extract
the outliers if they have in-degrees higher than a minimum threshold
of 4. (To demonstrate our transformations with a simplified example,
we disable this threshold in Figure 4.) After extracting high in-degree
nodes, we repeat the same procedure to extract out-degree nodes, but
use a conservative threshold (k = 4) to avoid extracting core nodes.

Another subtlety for calculating in- and out-degree in TensorFlow
is that data dependency edges are considered more important than con-
trol dependency edges. If a node contains only a few data edges but
many control edges, the node is likely a core operation. On the other
hand, if a node contains only control edges, the node is likely auxil-
iary. Thus, if a node has a data edge, we determine the node’s degree
by only the number of data edges. If it has only control edges, we
determine its degree by the number of control edges. As a result, we
can further distinguish between core and auxiliary nodes.



As shown in Figures 1 and 4-d, extracting auxiliary nodes declutters
clustered graphs and provides a layout that shows core structures of the
models. Since we use heuristics to extract nodes, we also allow users
to override the heuristics; users can use the “Remove from / Add to
the main graph” button in the information card (Figure 1-b, right) to
manually extract a node or re-attach a node back to the main layout.

5.3 Identify and Highlight Repeated Structure

The use of repeated modules is a characteristic feature of deep learning
networks. For example, many image classification systems [51] have a
series of identical convolutional layers. The structure view (our default
view, as shown in Figures 1 and 4-d) helps users understand a complex
dataflow by highlighting group nodes with identical structure with the
same color (T2). Uniquely structured group nodes are otherwise gray.

The challenge in creating this view is that, a priori, there is no ex-
plicit marker for identical structures. In theory one could modify the
APIs to include structural annotations along with node names. How-
ever, keeping structural annotations in sync with the actual structure
would require error-prone manual effort during changes to the APIs.

Instead, the TensorFlow Graph Visualizer automatically looks for
repeated substructures in the graph. Since detecting isomorphic sub-
graphs is an NP-complete problem [19], we use a heuristic approach.
Although this strategy is not guaranteed to find arbitrary repeated
structures, it performs well and is effective in practice.

Detecting structural templates from group nodes. We restrict
our search to subgraphs that are defined by single group nodes. This
restriction is reasonable in practice, since repeated modules are fre-
quently created by calling a given function multiple times, creating
groups with similar nested structures. We detect similar group nodes
using a two-step approach inspired by the blocking technique for dupli-
cation detection in databases [17]. This technique reduces the number
of record pairs to be compared by splitting the entities into blocks such
that only entities in the same block need to be compared. Here, we first
create a hashmap to store clusters of nodes with the same blocking
key based on metadata that we compute while building the hierarchy
(§5.2). The key consists of the number of nodes and edges, and a
histogram counting types of operation nodes inside the group node’s
subgraph. Two identical subgraphs will have the same key since all of
these properties are isomorphism invariants.

Next, we examine each cluster in the hashmap to find templates of
repeated modules, starting from clusters that contain fewer operations.
For each cluster c, we first initialize a set of templates to an empty set
Tc = {}. For each group node g in the cluster, we compare it with each
existing template t ∈ Tc. For each template t, we compare g with a
node gt that belongs to t using a subgraph similarity checking method
described in the next paragraph. If g and gt are similar, we assign g to
the template t. Otherwise, we continue checking with other templates.
If g does not match any existing templates, we add a new template with
g as a member to the set Tc. After visiting all nodes in the cluster, we
add all templates t ∈ Tc that have more than one member to the global
template set T , which is used for assigning colors.

Checking subgraph similarity. We determine if two group nodes
g1 and g2 are similar with the following steps. If their subgraphs s1
and s2 do not have the same degree sequence, they are dissimilar. Oth-
erwise, we use a heuristic graph traversal procedure that determines
graph similarity with nodes’ signature. We define a node’s signature
as a tuple of (1) the node’s type, which can be an operation type for
an operation node or its template unique identifier1 for a group node,
(2) the node’s in-degree, and (3) the node’s out-degree. We traverse
through both graphs using breadth first search. First, we add the source
nodes of the subgraphs s1 and s2 to their queues q1 and q2 respectively.
If there are multiple sources for each subgraph, we sort them by their
signatures before adding to the queue. We then traverse by dequeueing
a pair of nodes, one from each queue. For each pair of visited nodes
(n1,n2), we compare their signatures. If they are different, we can
terminate the process and decide that the group nodes are dissimilar.

1 Since we detect templates in smaller group nodes first, each child of the
examined group node always already has a template identifier assigned.

Otherwise, we add all direct successors of n1 and n2 to q1 and q2 re-
spectively. If there are multiple successors, we again sort them by their
signatures. We keep traversing by removing nodes from the queue and
perform the same process. If the parallel traversal completes success-
fully, the two group nodes are considered similar.

Time complexity. For the blocking step, we insert each group node
to the cluster hash map based on its key, which is already included
in the hierarchy. Since insertion in a hash map takes O(1) time on
average, the blocking step takes O(N) time if the model has N group
nodes. For comparing group nodes in each cluster, checking similarity
for two subgraphs with V nodes and E edges takes O(V +E) time.
Comparing many group nodes can be expensive. However, from our
experiment with sample models, dissimilar group nodes never have
the same blocking key. Therefore, in practice, we only need to perform
subgraph similarity just to verify that a pair of group nodes are similar.

5.4 Overlaying Additional Quantitative Data
In addition to structural similarity, users can use color to encode other
quantitative information (T5).

Fig. 7. Nodes in the de-
vice distribution view.

The device distribution view helps users
understand how computation is distributed
across multiple devices. As shown on the
right, this view colors each operation ac-
cording to the device it is allocated to run
on. A group node is colored proportion-
ally to the use of different devices for the
operations inside it.

The compute time and memory views enables users to find and de-
tect memory and computation bottleneck in their models. These views
color nodes using a single-hue color ramp: nodes with higher compute
time or memory usage have more saturation.

5.5 Implementation
TensorFlow Graph Visualizer is an open-source, web-based visualiza-
tion. The source code is available in TensorBoard’s repository [5].

We generate the layout by recursively computing (depth first) the
flow layout for each expanded group’s subgraph. For example, in
Figure 5-c, the layout for the subgraphs inside train and weights
are calculated first. The layout for the root node’s subgraphs are then
computed. To include embedded inputs and output, we compute the
bounding box of each node, including all of its embeddings, and then
calculate the layout for these bounding boxes. Next, we adjust the an-
chor points of the edges so that they all connect directly to the node’s
shape. Finally, we render the graph in SVG and animate the graph
during expansion using D3.js [12].

We use Dagre, a Javascript library for a Sugiyama-style flow lay-
out [50], to compute a layout for each subgraph. Although Dagre
sometimes produces unnecessary edge crossings, the library enables
us to build clustered graphs and apply our graph extraction strategy to
produce layouts that are overall legible. We consider the reduction of
edge crossings in each subgraph beyond the scope of this work. How-
ever, prior edge crossing reduction techniques [22, 24, 29, 33] can be
directly applied to improve the layout of each subgraph.

6 NEURAL NETWORK EXPLORATION SCENARIOS

This section describes example scenarios for using the TensorFlow
Graph Visualizer to explore neural networks in TensorFlow.

Scenario 1: Exploring a Convolutional Network
A user wants to learn about tf cifar, an example convolutional neu-
ral network for classifying images from the CIFAR-10 benchmark
dataset [36]. Since the model is based on roughly seven hundreds
line of code (included in supplementary material), the user looks at
the visualizer along with the code to understand the model structure.
Figure 1-a shows an overview of the graph (T1). The main graph pri-
marily includes input processing operations and layers of calculation
networks for making inference. On the side, the auxiliary nodes in-
clude non-critical nodes that are extracted to declutter the layout since
they connect to many layers in the model.



Consider the main graph, the model first reads input images. To
increase the training dataset size, the model applies randomized image
processing (process image) such as adjusting brightness and contrast
to produce additional data. It then shuffles the images and divides
them into batches for training (shuffle batch). The middle part of
the graph shows how the model makes inferences. In this part, the
model first stacks two sets of convolution layers [38], which efficiently
use shared parameters to produce higher-level features from the input.
As the convolution layers have identical nested structure, their nodes
share the same color (T2). Following each of the convolution layers,
the model includes a max-pooling operation (pool1-2) to downsample
the representation size and make the model invariant to low-level trans-
formations, as well as a local response normalization operation [36]
(norm1-2) to reduce overfitting. The final part of the inference net-
work contains fully connected layers (fully3-4), similar to layers in
traditional neural networks, for performing high-level reasoning based
on the produced features. After the fully connected layers, the model
uses the softmax (multinomial logistic regression) module to calculate
the probability distribution between different classification categories.
Finally, the model computes the cross entropy between the predic-
tion output and the labels of the input images as its loss function.

Expanding the conv1 module (Figure 1-b) to see its nested structure
(T3), the user observes that the module composes a Conv2D operation
with weights and biases variables, and forwards the output to a node
named conv1. Curious about the conv1 node, the user selects it to
inspect details in the information card (T4). The node is a rectified
linear unit (Relu), an activation function that enables convolutional
networks to make breakthroughs in recognition tasks [36, 37]. From
the weights, the module also computes L2Loss and passes the output
to multiple auxiliary nodes including total loss and train.

Glancing at the auxiliary nodes, the user sees several groups that
connect to all convolution and fully connected layers (conv1-2 and
fully3-4). These include groups for state saving (save), error re-
porting (report uninitialized variables), model initialization,
training and total loss function calculation. The model also con-
tains auxiliary nodes (e.g., group deps and init) in which all edges
are control dependencies to manage execution order in the dataflow.

After understanding the model structure, the user trains the model.
During the training, she uses the memory and compute views to ex-
amine parts of the graphs that take a lot of memory and compute time
during the training (T5). The user also uses the names of the nodes
in the graph to select summary plots in TensorBoard. As the user ex-
periments and modifies the model, she uses the visualizer to inspect
modifed parts in the graph to verify her changes in the code.

Scenario 2: Exploring a Very Deep Network

Figure 8 shows an implementation of Inception [51] (tf inception),
a deep network architecture that had the top classification result in
the ImageNet 2014. Due to space limitation, we show a version of
the model that excludes training and bookkeeping operations. From
the overview in Figure 8-a (T1), the user sees that the model con-
tains about twenty top-level layers. The bottom part contains input
processing operations. The topmost node is the softmax module for
determining classification output.

From the overview, the user recognizes that some nodes share
the same colors and thus have identical nested structure (T2). The
lower part of the model contains the same convolution module (e.g.,
conv1-4), with identical max-pooling layers occasionally interleav-
ing in the middle. The upper part contains the inception mixed mod-
ules [51] that combine convolutional and pooling layers. Two groups
of these mixed modules (mixed and mixed 1-2, and mixed 4-7) are
identical, while other mixed modules shown in grey (mixed 3 and
mixed 8-10) have unique structures.

The user can expand particular modules to explore their nested
structure (T3). Figure 8-b shows the expanded state of mixed 4 and
mixed 5, confirming that they share the same structure. The user ob-
serves that each of these inception modules produces high-level fea-
tures using 4 parallel pathways (conv, tower, tower 1, and tower 2)
that are later concatenated (join). Expanding each tower unit in Fig-

(b)

(c)(a)
Fig. 8. Exploring an implementation of Inception (tf inception) [51],
a deep network architecture that won the ImageNet 2014 competiton.
(a) The overview shows identical modules with the same colors. (b)
Expanding two identical modules (mixed 4-5) displays similar substruc-
tures. (c) Drilling down, mixed 4 is composed of multiple conv modules
identical to the conv modules in the top-level graph. Expanding the conv
module on the left reveals nested operations that form the module.

ure 8-c shows that all of these towers contain identical convolutional
modules (conv). As these modules are blue, the user realizes that they
are also identical to other blue convolutional modules in the lower lay-
ers (in Figure 8-a). Finally, expanding a convolutional module (Fig-
ure 8-c, left) shows individual operations that form the module.



7 QUALITATIVE FEEDBACK

We gathered feedback from real-world users of the visualizer in many
ways. Within our company, we sent out a structured questionnaire
for feedback; we also observed and talked directly with developers
who have used the tool. In addition, since the tool has been released
publicly, we also collect feedback and comments from online forums.

7.1 Internal feedback
Here we report on internal feedback that was collected from: (1) for-
mal questionnaire and (2) observations of usage “in the wild”.

Structured questionnaire
After the launch of TensorFlow, we followed up with 8 internal users
of the Graph Visualizer to better understand why they used the visual-
ization and what, if any, value they derived from it. We sent a struc-
tured questionnaire to ask them about their goals, usage, and problems.

Of our respondents, 5 were researchers (experimenting with and de-
veloping models) and 3 were engineers (applying existing models to
products). None of them were the beta users that met with us weekly
during the design process. Before using our visualization, three users
said they had built their own tools to look at model architecture but had
not been satisfied. The overall response was positive, with a good mea-
sure of the excitement resting on the interactive nature of the graph:

“It’s great - visually appealing and the structure exploration seems
very effective.”

“This is absolutely amazing! I especially love the ability to define
custom collapsible units by using the / symbol - it does wonders in
cleaning up my graph. ”

When asked about the types of tasks they tried to accomplish, their
answers ranged from checking model architecture, to inspecting what
hardware different parts of the network were running on, to debugging
model structure. Here are quotes that speak to user goals:

“Understanding what my code actually produced. We had layers
of functions and configs and arguments and it’s good to verify we got
what we intended”

“Find the name of a tensor so that I could do further exploration
(like sampling that tensor over different inputs or seeing the evolution
of a particular input)”

“I needed to find out which device was running what, and I did.”
“Sanity-checking some specific part of the graph to make sure

things are as expected”

Observed usage
Besides the questionnaire, we informally observed how the visualizer
was being used “in the wild”. Without our intervention, we take note
of conversations in internal mailing lists and look at graphs made by
users. From this examination, we discover a number of usage patterns.

Many users deliberately add namespaces to their models to ensure
graph legibility. They iteratively modify namespaces until the visual-
ization became a reasonable match to the mental model they had of
their system, especially if they have to share their models with oth-
ers. Our belief that users would annotate the graph to ensure visual
legibility was not a foregone conclusion. These observations validate
our decision to exploit user-specified namespaces to build a clustered
graph. Moreover, they indicate that the visualizer is useful for users.

Many users also create screenshots of the graphs (or their parts)
to communicate about deep learning systems. Sometimes this in-
volves sharing “before and after” screenshots that show the graph as it
changed during debugging. Other times the images are used simply as
a visual reference to a particular piece of the system. Images of differ-
ent graphs also regularly show up in the official TensorFlow tutorials
and third-party articles, attesting to their value as didactic illustrations.

7.2 Public feedback
To gather public feedback outside our company, we also searched on-
line for user reactions to the Graph Visualizer. Unlike with internal
users, where demand characteristics [44] can be an issue, external
users have no incentive to “be nice” about the diagrams the Graph

Visualizer creates. We found that online reviews of TensorFlow have
repeatedly called out the Graph Visualizer as differentiating the system
from other deep learning platforms. Some typical examples:

“I think there are two main differences at the moment, comparing it
to the more mainstream libraries: 1: The visualization module (Ten-
sorBoard): One of the main lacking areas of almost all open source
Machine Learning packages, was the ability to visualize model and
follow the computation pipeline.” [Quora]

“We believe visualization is really fundamental to the creative pro-
cess and our ability to develop better models. So, visualization tools
like TensorBoard are a great step in the right direction.” [Indico]

All of the comments we found have positive tone; we did not see
users complaining about the tool. One reason may be that having any
visualization at all is an improvement over the norm. The warm recep-
tion suggests that this is a design problem worth solving, and (as one
commenter says) our tool is a least a “step in the right direction.”

In addition to explicit feedback, we found many examples where
people use screenshots of the Graph Visualizer to describe specific ap-
plications or explain intricacies of a particular type of model they built.
These cases show that users find the visualizer helpful for communi-
cating their ideas. Many users have also created tutorials that explain
how to author namespaces to help the visualizer produce hierarchical
clusters that matches the semantics of the model.

8 CONCLUSION AND FUTURE WORK

Deep learning models are becoming increasingly important in many
applications. Understanding and debugging these models, however,
remains a major issue. This paper describes a design study of a visual-
ization tool that tackles one aspect of this challenge: interactive explo-
ration of the dataflow architecture behind machine learning models.

Our design process emphasizes understanding of both users and
data: we describe a task analysis for developers of deep learning mod-
els, and outline the layout challenges presented by model structures.
We then present a series of graph transformation to address these chal-
lenges, and demonstrate usage scenarios. Finally, we discuss user re-
actions, which indicate that the visualizer addresses users’ need.

In the context of TensorFlow, there are many natural next steps.
Some users have asked for “two-way” visualizations that allow direct
editing of a graph. Direct manipulation capabilities in the graph could
ease the creation and modification of machine learning models. Fea-
tures for comparing multiple models could be helpful as well.

Another lesson may be applicable to other systems that visualize
graphs with similar structures. The strategy of extracting non-critical
nodes seems successful: viewers apparently understand the overall
structure of the graph despite the lack of direct edges. While our
heuristics to determine non-critical nodes are application-specific, the
strategy of extracting non-critical nodes may be applicable for hetero-
geneous graphs in other domains.

An intriguing finding is that developers were willing to change
their own code in the interest of improving the visualization, manu-
ally adding metadata to their graph in order to clarify the layout. For
one thing, this behavior shows that users derived significant value from
the visualizations. More importantly, it suggests that in other contexts,
designers need not feel bound by the data at hand; with the right visu-
alization, and a tight feedback loop between artifact visualization and
creation, users may be willing to add critical pieces of metadata. This
is a welcome sign for visualization creators.

Finally, developer reactions also suggest a heartfelt desire for better
ways to understand machine learning. This is an area in which data
is central, but the tools have not matured, and users often feel they
operate in the dark. Visualization may have an important role to play.

ACKNOWLEDGMENTS

We thank our colleagues at Google for advice and feedback during the
design process: Greg Corrado, Jeff Dean, Matthieu Devin, Chris Olah,
Koray Kavukcuoglu, Jon Shlens, Michael Terry, as well as our early
users. We also thank UW Interactive Data Lab members and Supasorn
Suwajanakorn for their comments on this manuscript.



REFERENCES

[1] colah’s blog. http://colah.github.io/. Accessed: 2017-03-15.
[2] ConvNetJS. http://cs.stanford.edu/people/karpathy/

convnetjs/. Accessed: 2017-03-15.
[3] Keras: Deep learning library for theano and tensorflow. https://keras.

io/. Accessed: 2017-03-15.
[4] Labview. http://www.ni.com/labview/. Accessed: 2016-03-15.
[5] The TensorBoard repository on GitHub. http://github.com/

tensorflow/tensorboard. Accessed: 2017-06-15.
[6] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kud-
lur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale ma-
chine learning on heterogeneous systems, 2015. Software available from
tensorflow.org.

[7] J. Abello, F. Van Ham, and N. Krishnan. ASK-Graphview: A large scale
graph visualization system. Visualization and Computer Graphics, IEEE
Transactions on, 12(5):669–676, 2006.

[8] D. Archambault, T. Munzner, and D. Auber. Grouseflocks: Steerable ex-
ploration of graph hierarchy space. Visualization and Computer Graph-
ics, IEEE Transactions on, 14(4):900–913, 2008.

[9] D. Archambault, H. C. Purchase, and B. Pinaud. The readability of path-
preserving clusterings of graphs. In Computer Graphics Forum, vol-
ume 29, pages 1173–1182. Wiley Online Library, 2010.

[10] M. Balzer and O. Deussen. Level-of-detail visualization of clustered
graph layouts. In Visualization, 2007. APVIS’07. 2007 6th International
Asia-Pacific Symposium on, pages 133–140. IEEE, 2007.

[11] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-
jardins, J. Turian, D. Warde-Farley, and Y. Bengio. Theano: a CPU and
GPU math expression compiler. In Proceedings of the Python for scien-
tific computing conference (SciPy), volume 4, page 3. Austin, TX, 2010.

[12] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. Visu-
alization and Computer Graphics, IEEE Transactions on, 17(12):2301–
2309, 2011.

[13] U. Brandes and B. Köpf. Fast and simple horizontal coordinate assign-
ment. In Graph Drawing, pages 31–44. Springer, 2001.

[14] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and
H. T. Vo. VisTrails: visualization meets data management. In Proceed-
ings of the 2006 ACM SIGMOD international conference on Management
of data, pages 745–747. ACM, 2006.

[15] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry, R. Bradshaw,
and N. Weizenbaum. Flumejava: easy, efficient data-parallel pipelines. In
ACM Sigplan Notices, volume 45, pages 363–375. ACM, 2010.

[16] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang. MXNet: A flexible and efficient machine
learning library for heterogeneous distributed systems. arXiv preprint
arXiv:1512.01274, 2015.

[17] P. Christen. A survey of indexing techniques for scalable record linkage
and deduplication. Knowledge and Data Engineering, IEEE Transactions
on, 24(9):1537–1555, 2012.

[18] R. Collobert, S. Bengio, and J. Mariéthoz. Torch: a modular machine
learning software library. Technical report, IDIAP, 2002.

[19] S. A. Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the Third Annual ACM Symposium on Theory of Computing,
pages 151–158. ACM, 1971.

[20] E. Czaplicki. Elm: Concurrent frp for functional guis. Senior thesis,
Harvard University, 2012.

[21] C. Dunne and B. Shneiderman. Motif simplification: improving network
visualization readability with fan, connector, and clique glyphs. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 3247–3256. ACM, 2013.

[22] T. Dwyer and Y. Koren. Dig-CoLa: directed graph layout through con-
strained energy minimization. In Information Visualization, 2005. INFO-
VIS 2005. IEEE Symposium on, pages 65–72. IEEE, 2005.

[23] T. Dwyer, Y. Koren, and K. Marriott. Drawing directed graphs using
quadratic programming. IEEE Transactions on Visualization and Com-
puter Graphics, 12(4):536–548, 2006.

[24] T. Dwyer, Y. Koren, and K. Marriott. IPSep-CoLa: An incremental pro-
cedure for separation constraint layout of graphs. IEEE Transactions on

Visualization and Computer Graphics, 12(5):821–828, 2006.
[25] T. Dwyer, Y. Koren, and K. Marriott. Constrained graph layout by

stress majorization and gradient projection. Discrete Mathematics,
309(7):1895–1908, 2009.

[26] T. Dwyer, K. Marriott, and M. Wybrow. Topology preserving constrained
graph layout. In International Symposium on Graph Drawing, pages 230–
241. Springer, 2008.

[27] P. Eades, Q.-W. Feng, and X. Lin. Straight-line drawing algorithms for
hierarchical graphs and clustered graphs. In Graph Drawing, pages 113–
128. Springer, 1996.

[28] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull.
Graphviz and dynagraph—static and dynamic graph drawing tools. In
Graph Drawing Software, pages 127–148. Springer, 2004.

[29] M. Forster. Applying crossing reduction strategies to layered compound
graphs. In Graph Drawing, pages 276–284. Springer, 2002.

[30] E. R. Gansner, Y. Koren, and S. C. North. Topological fisheye views for
visualizing large graphs. IEEE Transactions on Visualization and Com-
puter Graphics, 11(4):457–468, 2005.

[31] E. R. Gansner, E. Koutsofios, S. C. North, and G.-P. Vo. A technique for
drawing directed graphs. Software Engineering, IEEE Transactions on,
19(3):214–230, 1993.

[32] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed
data-parallel programs from sequential building blocks. In ACM SIGOPS
Operating Systems Review, volume 41, pages 59–72. ACM, 2007.

[33] M. Jünger and P. Mutzel. Exact and heuristic algorithms for 2-layer
straightline crossing minimization, pages 337–348. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 1996.

[34] A. Karpathy, J. Johnson, and L. Fei-Fei. Visualizing and understanding
recurrent networks. arXiv preprint arXiv:1506.02078, 2015.

[35] S. Kieffer, T. Dwyer, K. Marriott, and M. Wybrow. Hola: Human-like
orthogonal network layout. IEEE transactions on visualization and com-
puter graphics, 22(1):349–358, 2016.

[36] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural informa-
tion processing systems, pages 1097–1105, 2012.

[37] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[38] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[39] M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu. Towards better analysis of
deep convolutional neural networks. IEEE Transactions on Visualization
and Computer Graphics, 23(1):91–100, 2017.

[40] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and the
mental map. Journal of Visual Languages & Computing, 6(2):183–210,
1995.

[41] D. Moritz, D. Halperin, B. Howe, and J. Heer. Perfopticon: Visual query
analysis for distributed databases. In Computer Graphics Forum, vol-
ume 34, pages 71–80. Wiley Online Library, 2015.

[42] D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Mad-
havapeddy, and S. Hand. Ciel: a universal execution engine for dis-
tributed data-flow computing. In Proc. 8th ACM/USENIX Symposium on
Networked Systems Design and Implementation, pages 113–126, 2011.

[43] S. C. North and G. Woodhull. Online hierarchical graph drawing. In
International Symposium on Graph Drawing, pages 232–246. Springer,
2001.

[44] M. T. Orne. Demand characteristics and the concept of quasi-controls.
Artifacts in Behavioral Research: Robert Rosenthal and Ralph L. Ros-
now’s Classic Books, page 110, 2009.

[45] G. Sander. Layout of compound directed graphs. Technical report,
Saarlandische Universitat und Landesbibliothek, Postfach 151141, 66041
Saarbracken, 1996.

[46] A. Satyanarayan, K. Wongsuphasawat, and J. Heer. Declarative inter-
action design for data visualization. In Proceedings of the 27th annual
ACM symposium on User interface software and technology, pages 669–
678. ACM, 2014.

[47] D. Smilkov, S. Carter, D. Sculley, F. B. Viegas, and M. Wattenberg. Di-
rect manipulation visualization of deep networks. In ICML Workshop on
Visualization for Deep Learning, 2016.

[48] H. Strobelt, S. Gehrmann, B. Huber, H. Pfister, and A. M. Rush. Visual
analysis of hidden state dynamics in recurrent neural networks. arXiv
preprint arXiv:1606.07461, 2016.

[49] K. Sugiyama and K. Misue. Visualization of structural information: Au-

http://colah.github.io/
http://cs.stanford.edu/people/karpathy/convnetjs/
http://cs.stanford.edu/people/karpathy/convnetjs/
https://keras.io/
https://keras.io/
http://www.ni.com/labview/
http://github.com/tensorflow/tensorboard
http://github.com/tensorflow/tensorboard


tomatic drawing of compound digraphs. IEEE Transactions on Systems,
Man, and Cybernetics, 21(4):876–892, 1991.

[50] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding
of hierarchical system structures. Systems, Man and Cybernetics, IEEE
Transactions on, 11(2):109–125, 1981.

[51] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–9, 2015.

[52] D. Thompson, J. Braun, and R. Ford. OpenDX: paths to visualization;
materials used for learning OpenDX the open source derivative of IBM’s
visualization Data Explorer. Visualization and Imagery Solutions, 2004.

[53] J. W. Tukey. Exploratory data analysis. 1977.
[54] F. Y. Tzeng and K. L. Ma. Opening the black box - data driven visual-

ization of neural networks. In VIS 05. IEEE Visualization, 2005., pages
383–390, Oct 2005.

[55] F. Van Ham and J. J. Van Wijk. Interactive visualization of small world
graphs. In Information Visualization, 2004. INFOVIS 2004. IEEE Sym-
posium on, pages 199–206. IEEE, 2004.

[56] F. Van Ham and M. Wattenberg. Centrality based visualization of small
world graphs. In Computer Graphics Forum, volume 27, pages 975–982.
Wiley Online Library, 2008.

[57] V. Yoghourdjian, T. Dwyer, G. Gange, S. Kieffer, K. Klein, and K. Mar-
riott. High-quality ultra-compact grid layout of grouped networks. IEEE
transactions on visualization and computer graphics, 22(1):339–348,
2016.



VISUALIZING DATAFLOW GRAPHS OF DEEP LEARNING MOD-
ELS IN TENSORFLOW: SUPPLEMENTARY MATERIAL

A TENSORBOARD

TensorBoard is Tensorflow’s dashboard tool, which allows users to vi-
sualize their TensorFlow models, plot quantitative metrics about their
execution, and show additional data like images that pass through the
models. The TensorFlow Graph Visualizer is included as the Graph
View in TensorBoard. Besides the Graph Visualizer, TensorBoard pro-
vides others views (Figure S-1) for inspecting scalar, histogram, im-
ages, and audio data. To log data in the models, users can add sum-
mary operations that takes operation they desire to log as inputs. To vi-
sualize the graphs, user can include dataflow information for the Graph
Visualizer in the log data. Users can also optionally include additional
metadata about runtime statistics including total memory usage, total
compute time, and tensor shapes.

For specific information about how to setup and run TensorBoard,
please refer to TensorFlow tutorials1.

(b)

(a)

(c)

Fig. S-1. Summary log viewers in TensorBoard, TensorFlow’s dash-
board. (a) The events view showing plots of accuracy over time for the
tf mnist simple model. (b) The histogram view showing distribution
of the weights variable’s tensor values over time. (c) The image view
showing a handwritten digit image input.

1https://www.tensorflow.org/get started/summaries and
tensorboard

B EXAMPLE CODE

tf mnist simple

The Listing 1 below shows an example Python code snippet that de-
clares a simple model for classifying handwritten digits, derived from
TensorFlow’s “MNIST For ML Beginners” getting started tutorial2.

The code first defines a placeholder for the input and initializes
variables for model parameters (Lines 1-5). It then calculates y =
so f tmax(Wx+b) (Lines 6-7), which produces a probability distribu-
tion for each of the ten digits (0-9), and trains the model by minimiz-
ing cross entropy using a gradient descent optimizer (Lines 11-17).
Finally, it evaluates the model by comparing the digit with highest
probability for each data point with the correct label and calculat-
ing the ratio between correct predictions and the number of all data
points (Lines 18-22). Namespaces are provided for operations via the
name parameter of operation constructor methods (Lines 2-5), and the
tf.name scope method (Lines 6, 12, 15, and 19), which wraps oper-
ations with a common namespace. Certain operations are also logged
with summary operations for debugging (Lines 8-10,14,22).

1 # Input placeholder, params variable, summary log
2 x = tf.placeholder(tf.float32, [None, 784],

name='x-input')
3 y_ = tf.placeholder(tf.float32, [None, 10],

name='y-input')
4 W = tf.Variable(tf.zeros([784, 10]), name='weights')
5 b = tf.Variable(tf.zeros([10]), name='bias')
6 with tf.name_scope('Wx_b'):
7 y = tf.nn.softmax(tf.matmul(x, W) + b)
8 tf.histogram_summary('weights', W)
9 tf.histogram_summary('biases', b)
10 tf.histogram_summary('y', y)
11 # Define loss and optimizer
12 with tf.name_scope('xent'):
13 cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
14 tf.scalar_summary('cross entropy', cross_entropy)
15 with tf.name_scope('train'):
16 train_step = tf.train.GradientDescentOptimizer(
17 FLAGS.learning_rate).minimize(cross_entropy)
18 # Compare predicted y with input y_
19 with tf.name_scope('test'):
20 correct_prediction = tf.equal(tf.argmax(y, 1),

tf.argmax(y_, 1))
21 accuracy = tf.reduce_mean(tf.cast(correct_prediction,

tf.float32))
22 tf.scalar_summary('accuracy', accuracy)
23 # Write log
24 merged = tf.merge_all_summaries()
25 writer = tf.train.SummaryWriter(FLAGS.summaries_dir,
26 sess.graph.as_graph_def(add_shapes=True))

Listing 1. A example Python snippet that declares a simple model
for classifying handwritten digits in the MNIST dataset with softmax
regression (tf mnist simple).

tf cifar

The source code is in cifar10.zip in the supplementary material zip
file. See cifar10 train.py for the training code.

tf inception

The code can be found online in the inception directory in the
tensorflow/models repository on GitHub3.

2https://www.tensorflow.org/get started/mnist/beginners
3https://github.com/tensorflow/models

https://www.tensorflow.org/get_started/summaries_and_tensorboard
https://www.tensorflow.org/get_started/summaries_and_tensorboard
https://www.tensorflow.org/get_started/mnist/beginners
https://github.com/tensorflow/models

	Introduction
	Related Work
	Dataflow Graph Applications
	Visualization for Neural Networks
	Graph Visualization Techniques

	Background: TensorFlow
	Motivation & Design Process
	Task Analysis
	Data Characteristic Analysis

	Design of The TensorFlow Graph Visualizer
	Basic Encoding and Interaction
	Graph Transformation
	Identify and Highlight Repeated Structure
	Overlaying Additional Quantitative Data
	Implementation

	Neural Network Exploration Scenarios
	Qualitative Feedback
	Internal feedback
	Public feedback

	Conclusion and Future Work
	TensorBoard
	Example Code

