Black Hat Europe 2019

ClusterFuzz

Fuzzing at Google Scale

Abhishek Arya
Oliver Chang

About us

e Chrome Security team (Bugs--)
e Abhishek Arya (@infernosec)
o Founding Chrome Security member
o Founder of ClusterFuzz
e Oliver Chang (@halbecaf)
o Lead developer of ClusterFuzz
o Tech lead for OSS-Fuzz

Fuzzing

e Effective at finding bugs by exploring unexpected states
e Recent developments
o Coverage guided fuzzing
m AFL started “smart fuzzing” (Nov'13)
o Making fuzzing more accessible
m libFuzzer - in-process fuzzing (Jan'15)

m OSS-Fuzz - free fuzzing for open source (Dec’16)

Fuzzing mythbusting

e Fuzzing is only for security researchers or security teams
e Fuzzing only finds security vulnerabilities
e We don't need fuzzers if our project is well unit-tested

e Our project issecure if there are no open bugs

Scaling fuzzing

e How to fuzz effectively as a Defender?
o Not just “more cores”

e Security teams can't write all fuzzers for the entire project
o Bugs create triage burden

e Should seamlessly fit in software development lifecycle
o Input: Commit unit-test like fuzzer in source

o Output: Bugs, Fuzzing Statistics and Code Coverage

Fuzzing lifecycle

Manual Automated

Fuzzing

Upload builds R e Build bucket

Cloud Storage @ @ Find crash
@ ﬁa De-duplicate

Write fuzzers

Minimize
Bisect

\ File bug

1 Fix bugs

4

Test if fixed

(daily) ﬁ
s 00 /

o

Assign bug

ClusterFuzz

e Open source - https://github.com/google/clusterfuzz

e Automates everything in the fuzzing lifecycle apart from
“fuzzer writing” and “bug fixing”
e Runs 5000 fuzzers on 25000 cores, can scale more

e Cross platform (Linux, macOS, Windows, Android)

e Powers OSS-Fuzz and Google's fuzzing

Fuzzing lifecycle

oo WN

Write fuzzers
Build fuzzers
Fuzz at scale
Triage crashes

Improving fuzzers

Step 1. Write fuzzers

Finding targets to fuzz

Attack surface enumeration
e.g. Chrome
o Sandboxed renderer process 7
m Direct untrusted input
o Privileged processes:
m Fuzz IPC boundaries
Third party libraries
Parsers, complicated processing of input data

VRP reports

10

Black box fuzzing

e Generation or mutation based, with rules specific to a
particular format
o e.g.Ascript that generates valid but randomized HTML files
e Slow (few execs/sec)

e Significant effort to write (>1k LoC)

1

Black box fuzzing

e Chrome employs a number of custom black box fuzzers to do

ulnteg ratlon" Style teStlng for (let __v_2528 = 0; __v_2528 < 100; ++__v_2528) {

const __v_2529 = __v_2528 % 20 + 15 | 0O;

o HTML/DOM fuzzers G L

__f_548(__v_2519.test(
. /* VariableMutator: Replaced __v_2529 with __v_2514 */
o JavaScript fuzzers __v_2514), __v_2529);
} catch (e) {}
}

o |PC fuzzers

/* CrossOverMutator: Crossover from /usr/local/google/home/
try {
Y Gestu res Ar::icjggo:z?e.f‘lndIndex.call(undef‘lned, function () {
’
Y {1)s
1 catch (e
e Not guided by coverage ! (=
/* VariableOrObjectMutator: Random mutation */

try {
_callRandomFunction(__v_2514, 313164, null, 4294967297,

} catch (e) {}

12

Grey box fuzzing

e Coverage-guided fuzzers
o AFL
o libFuzzer
e Better for testing more focused parts of codebase,

akin to unit tests

Corpus =

> Coverage feedback

13

Grey box fuzzing

e Unit test-like stubs, called “fuzz targets” (as little as 5 LoC)

e \Write once, run with multiple fuzzing engines (AFL, libFuzzer, etc)

extern "C" int LLVMFuzzerTestOneInput(const uint8 t *Data,
size t Size) {
DoSomethingInterestingWithMyAPI(Data, Size);

return 0;

14

Grey box fuzzing

e No need for mutation or generation logic
o Fuzzing engine does mutation based on coverage feedback
o Dictionaries/seed corpora can help a lot

e Written by developers to complement traditional unit testing
o "Security is everyone’s job now, not just the security team’s."

— Werner Vogels, Amazon CTO

15

Black box vs grey box

e \When to use grey box fuzzing?
o Smaller, more targeted components
o Encourage developers to write these
o Preferred

e Black box fuzzing still necessary
o Larger components
o Non-deterministic targets

o Integration testing

16

Structure aware fuzzing

e Bridges some gaps between grey box and black box fuzzing
e Structure (protos) + rules = libprotobuf-mutator
e Manual, cumbersome, but equally rewarding

e Reference:Jonathan Metzman talk, Black Hat USA 2019

17

Structure aware fuzzing example

Structure Rules
; message SQLQueries { E; std::string CreateTableToString(const CreateTable& ct) {
: repeated CreateTable queries = 1; EE std::string ret("CREATE TABLE ");
E } ;E if (ct.has_temp_table()) {
: - ret += TempModifierToString(ct.temp_table());
. message CreateTable { L ret += " "
optional TempModifier temp_table = 1; ; E }

required Table table = 2; ret += TableToString(ct.table());

ret += 5

ret += ColumnDefToString(ct.col def());

required ColumnDef col_def = 3;
repeated ColumnDef extra_col_defs = 4;
repeated TableConstraint table_constraints = 5;

required bool without_rowid = 6;
DEFINE_BINARY_PROTO_FUZZER(const SQLQueries& sql_queries)

{

: std::string queries = SQLQueriesToString(sql_queries);
: // Further definitions of TempModifier, Table, . .

: sql _fuzzer::RunSQLQueries(queries);

g ColumnDef, and TableConstraint.

Scaling fuzzer writing

e Key to scaling is not through cores, but through
educating developers
e Documentation and examples for writing grey
box fuzzers
e Provide guidance on efficient fuzzing
o Seed corpora, dictionaries
e Make grey box fuzzing a first class citizen (like

unit tests)

19

Step 2: Build fuzzers

Building fuzzers

e Use compile-time instrumentation
o AddressSanitizer, MemorySanitizer, etc...
o Coverage instrumentation
o 2Xx~ performance penalty

e Linkwith afuzzing engine or driver

o libFuzzer: clang -fsanitize=address,fuzzer ...

21

Building fuzzers (cont)

e Make sure that release version is fuzzed

o Assertions etc are often noisy when fuzzing

o (Optional) Add debug version for assertion coverage
e Optimization level matters

o Speed vs more edges
e Builds should be continuous

o l|deally produced as artifacts of existing Cl infrastructure

22

Step 3: Fuzz at scale

Fuzzing task management

Preemptible VMs

Non-preemptible VMs

A, \&4

Process crashes:
Write new - Minimize
crashes - Bisect

- etc

24

Picking targets

e |arge projects can have thousands of fuzz targets
e Automatic fuzz target discovery
e Prioritize based on fuzz target quality
o Productive target > Unproductive target >
Target with startup issues
e Prioritize based on sanitizer importance
o ASan > MSan > Others (UBSan / CFI/ TSAN)

25

Corpus Management

Download

Sync new files
(new coverage)

Fuzzing

Corpus
pruning

Distillation

Cross-pollination

Fuzzing strategies

No perfect search heuristic

©)

O

©)

©)

Corpus enhancement technigues

©)

©)

Corpus subset
Value profiling
Custom mutators

Limiting maximum length of inputs

Radamsa mutator

Recurrent neural network mutator (ML-based)

27

Fuzzing strategy selection

e Multi-armed bandit (MAB)
o Waste fewer resources on bad fuzzing strategies
o Choose strategy combinations that improved coverage
o Some runs use strategies with a default weight
m Actasdynamic input to MAB model

o Rest of runs use strategies based on MAB optimizations

Step 4. Trlage crashes

De-duplication

e Based on stacktraces

o (Crash type, Crash state, Security flag) tuple
e Picktop 3 “interesting” frames as the crash state

o Include debug and release assertions

o Exclude inline frames, common library and debug funcs
e |gnore stacktrace for OOMs and Timeouts

e Used for immediate de-duplication

30

De-duplication

[1:1:1030:FATAL:layout inline.h(399)]Security DCHECK failed: 'object || (object->IsLayoutInline()).
==1==ERROR: AddressSanitizer: ABRT on unknown address 0x053900000001 (pc 0x7f24£f8426428 ...)
#0 0x7f24f8426427 in gsignal /build/glibc-Cl5G7W/glibc-2.23/sysdeps/unix/sysv/linux/raise.c:54
#1 0xb599eb3 in logging::LogMessage: :~LogMessage ()base/logging.cc:876:7
#2 0x14171df5 in ToLayoutInlinethird party/blink/renderer/core/layout/layout inline.h:399
#3 0x14171df5 in blink::LayoutBox: :ContainingBlockLogicalWidthForPositioned(...)
#4 0x1417b923 in blink: :LayoutBox: :ComputePositionedLogicalWidth(...)

lobject || (object->IsLayoutInline()) in layout_inline.h
blink: :LayoutBox: :ContainingBlockLogicalWidthForPositioned
blink: :LayoutBox: :ComputePositionedLogicalWidth

31

Grouping

e Second stage of de-duplication (slower)
e Same crash can manifest with a slightly

different signature

e Use Levenshtein distance to group all
similar crashes

e \Works well with real world crashes

Use-of-uninitialized-value Thu,oct3,2019,8:35 AM §88

H_Pass_Avrg_Up_16_C
interpolatel6x16_quarterpel
decoder_mbinter

Use-of-uninitialized-value Tue, Oct 1,2019,10:55 PV 388

H_Pass_Avrg_Up_8_C
interpolate8x8_quarterpel

decoder_mbinter

Use-of-uninitialized-value Tue, 0ct1,2019,5:11PM 3838

H_Pass_Avrg_8_C
interpolate8x8_quarterpel

decoder_mbinter

Use-of-uninitialized-value Tue, oct1,2019,3:07AM 388

H_Pass_8_C
interpolate8x8_quarterpel

decoder_mbinter

32

Testcase minimization

e Makes testcases less flaky and easier to root cause
e Grey box fuzzers

o Often provide facilities for fast minimization
e Black box fuzzers

o Delta debugging based testcase minimization

o Slower out-of-process minimization, but parallelized

Minimized Testcase: & €% (470B) Unminimized Testcase: & €% (43 KB)

33

Bisection

e Alarge percent of bug finds are “regressions” (OSS-Fuzz: ~40%)
e FEarly reverts are far easier than CVEs
e Bisection based on simple binary search

e Re-use same builds used for fuzzing

Good ? Bad

- REGRESSION REVISION RANGE

Chakra: 3ee8acae8ecca674d660baf52679b3a7c6169d88:93752a1fa83bd9¢c43520b992d49d9f7¢c0763fbeb

Variant analysis

e A crash input can manifest with different signatures across
sanitizers, fuzzing engines, platforms, architectures
e Automate analysis across all possible configs

e Help with severity analysis

for (operand = @, numBitsFound = 0@, currentBit = 1 << ((opcodePTR->size * 8) - 1);

TESTCASE ANALYSIS ON OTHER JOBS

JOB NAME | STATUS : REVISION | CRASH TYPE | CRASH STATE | SECURITY : SIMILAR | REPRODUCER
afl_asan_binutils Reproducible 201910141554 Global-buffer-overflow READ 4 ripBits

print_insn
print_insn_xgate

true true Same

libfuzzer_ubsan_binutils Reproducible 201910141554 Undefined-shift ripBits false false Same

print_insn
print_insn_xgate

35

Automatic bug filing

e Automatic assignment of owner based on bisect results
o If failed, assign to sub-product area bug queue

e Provide minimized reproducer, detailed crash report

e “Fuzz-blocker” l[abel if hurting fuzzer performance

e File ONLY reproducible crashes

o Exception: frequent unreproducible crashes

36

Dv

Automatic bug filing

Type Vv
Bug-Security
Bug-Security
Bug-Security
Bug-Security
Bug-Security
Bug-Security

Bug-Security

Component ¥ Status v

Verified
Verified
Verified
Verified
Verified
Verified

New

Proj v

openssl
openssl
openssl
openssl
openssl
openssl

openssl

Reported v

2017-08-22
2017-09-23
2018-04-15
2018-05-12
2019-06-04
2019-07-31

2019-09-25

Owner v

Summary + Labels v

openssl: Heap-buffer-overflow in X509v3_addr_get_afi ClusterFuzz Reproducible

openssl: Index-out-of-bounds in tls1_set_ec_id ClusterFuzz Reproducible

openssl/asn1: Heap-buffer-overflow in asn1_ex_i2c ClusterFuzz Reproducible
openssl/server: Heap-use-after-free in ssl_get_prev_session ClusterFuzz Reproducible
openssl/client: Stack-use-after-return in OSSL_PARAM_get_int32 ClusterFuzz Reproducible
openssl/conf: Heap-buffer-overflow in OPENSSL_strlcpy ClusterFuzz Reproducible

openssl:x509: Heap-buffer-overflow in CRYPTO_strdup ClusterFuzz Reproducible

37

OVERVIEW!

Crash State: xmlFreeID
xmlHashFree

xmlTextReaderFreeDoc

Crash Type:

Heap-double-free

Fuzzer: afl_libxml2_xml_reader_for_file_fuzzer Security: YES (High)

Crash Address: 0x6050000005e0

Job Type: afl_asan_libxmI2 Reliably reproduces: YES ®

Issue: 12419 ® Platform: linux Fixed: YES
Created: Mon, Jan 7, 2019, 12:53 AM Sanitizer: address (ASAN)

Project: libxml2

Minimized Tes

© (408B) Unminimized Testcase: ¢ (1KB) Re-upload testcase: & Build: ¢

REPRODUCE BUG
See https:/github.com/google/oss-fuzz/blob/master/docs/reproducing.md for instructions to reproduce this bug locally.

FIND SIMILAR ISSUES: OPEN NEW

FIXED REVISION RANGE
Libxml2: 619534ef2ed501e5206915064a5bc36153a8977:b48226f78c626a0fdbaed65793f1a61

REGRESSION REVISION RANGE
i Libxml2: f8a8¢1f59db355b46962577e7b74f1a1e8149dc6:619534ef2ed501e5206915064a5bc36153a8977

v

CRASH STACKTRACE C

-~ ORIGINAL STACKTRACE ON REVISION 619534EF2ED501E5206915064A5BC36153A897F7 (103 LINES)

~

INFO: Loaded 1 PC tables (44543 PCs): 44543 [0x9b3320,0x261310),

®

/mnt/scratch®/clusterfuzz/bot/builds/clusterfuzz-builds_libxml2_a738435c9a3e204f4e873e9c8966e84ab939eba6/revisions/libxml2_xml_reader_for_file_fuzzer: Running 1 +inputs 100 time(s) each.
Running: /SW n:mwmbfsmfuzzﬂ
10

“-ERROR: AddressSanitizer: attempting double-free on 9x6050000005€
SCARINESS: 42 (double-free)

©

thread T0:

#0 Ox4ec830 in __interceptor_free _asan_rtl_
14 #1 0x66cd9e in xmlFreeID /src/libxml2/xmlreader.c:242:2
#2 Ox5eabld in xmlHashFree /src/libxml2/hash.c:339:7

#3 0x65f0f1 in xmlTextReaderFreeDoc /src/libxml2/xmlreader.c:531:

17 #4 in xmlFreeTextReader /src/libxml2/xmlreader

18 #5 0x531b6b in = e _xml_reader_for_file_fuzzer.cc:49:3

19 #6 Ox55e7c5 1in fuzzer::Fuzzer::ExecuteCallback(unsigned char const*, unsigned long) /src/libfuzzer/FuzzerLoop.cpp:571:15

20 #7 Ox534156 in fuzzer::RunOneTest(fuzzer::Fuzzerx, char constx, unsigned long) /src/libfuzzer/FuzzerDriver.cpp:280:6

21 #8 0x53fal6 in fuzzer::FuzzerDriver(intx, charxxx, int (*)(unsigned char const*, unsigned long)) /src/libfuzzer/FuzzerDriver.cpp:713:9
22 #9 0x5337cc 1in main /src/libfuzzer/FuzzerMain.cpp:20:10

23 #10 0x7fd41e93282f in __libc_start_main /build/glibc-C15G7W/glibc-2.23/csu/libc-start.c:291

38

Prioritization

e Don't attempt to do deep analysis on bugs to figure out impact
o Not scalable

e Assume all memory corruption are exploitable

e Rough automated prioritization based on
o Type of crash (e.g. UaF vs null deref)
o Where the crash occurs

m FE.g.ifthe crash occurs in a sandboxed process

39

Fix verification

e Verify that fix actually causes a crash to stop reproducing

e Perform a bisect to verify the commit which fixed the bug
o Useful for comparing different bugs with same root cause
o Sometimes, an unrelated patch can fix the issue

e Auto-close bugs once verified

e Human errors can be common

40

Vulnherability reward program

e External PoCs can be uploaded to the fuzzing infrastructure

e Get same benefits of automated triage

o Deduplication, fix verification, etc
e Fuzzerreward program
o Continuous bug reporting pipeline

o High-quality reports

41

Step 5: Improving fuzzers

Fuzzer statistics

fuzzer
libFuzzer_aec3_config_json_fuzzer
libFuzzer_agc_fuzzer
libFuzzer_android_crazy_linker_zip_fuzzer
libFuzzer_angle_translator_fuzzer
libFuzzer_apdu_fuzzer
libFuzzer_appcache_fuzzer
libFuzzer_appcache_manifest_parser_fuzzer

libFuzzer_audio_decoder_fuzzer

corpus_size
4662 (1 MB)
2308 (37 MB)
504 (5 MB)
8168 (8 MB)
265 (10 MB)
5100 (98 MB)
6998 (163 MB)

9911 (23 MB)

avg_exec_per_sec
1,200.7

3194

19,5405

156.2

1,025.8

3

406

36.6

>1000

fuzzing_time_percent
141

98.7

98.2

798

983

96.9

97

644

=100%

new_tests_added

2142
5586
3439
18,600
1,191
124
6,607

24,559

>0

new_features
29,858

429

438

0

845

171

232

713

regular_crash_percent
926

0

oom_percent

228

15.7

33

leak_percent

0

0

9.

4

=0%

timeout_percent

0.9

startup_crash_percent

0

0

43

Crash statistics

Heap-use-after-free READ 1
quic::QuicDataReader: :PeekVarInt62Length
quic::HttpDecoder: :ReadFrameType
quic::HttpDecoder::ProcessInput

[Project chromium || Security || Reliably reproduces || New | [Issue 981291 |

Time to crash: 1154.65s ®
Total count: 531

Total number of crashes

May 25

_9PM

=
o
o

100

50

May 26
.9PM

May 27
_9PM

May 28

I windows

HOEM

May 29
LS

I linux

May 30
oM

[chrome

May 31
A

B mac

Jun1
LIPM

Jun 2
.9PM

44

Code coverage

e Separate coverage instrumented build (Clang Source Code Cov)

e Run fuzz target with distilled corpus ->

Per-fuzz target / Aggregate project report

c overage Rep ort 47 OPENSSL LHASH *OPENSSL LH new(OPENSSL LH HASHFUNC h, OPENSSL LH COMPFUNC c)
48 22.8k {
View results by: Directories | Files 49 22.8k OPENSSL_LHASH *ret;
50 22.8k
PATH LINE COVERAGE FUNCTION COVERAGE REGION COVERAGE 51 22.8k if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL) {
crypto/ 35.58% (45125/126819) 38.07% (2224/5842) 29.81% (30811/103342) 52 0 /*
engines/ 5.15% (54/1049) 8.51% (4/47) 3.77% (24/637) 53] * Do not set the error code, because the ERR code uses LHASH
fuzz/ 88.53% (571/645) 70.00% (28/40) 74.08% (403/544) 54 0 * and we want to avoid possible endless error loop.
include/ 76.00% (776/1021) 74.71% (130/174) 76.59% (373/487) 55 0 * CRYPTOerr(CRYPTO _F OPENSSL LH NEW, ERR R MALLOC FAILURE);
providers/ 27.54% (2571/9334) 30.18% (185/613) 21.95% (1784/8127) 56 0 -
ssU 44.41% (17425/39237) 42.44% (519/1223) 40.40% (13073/32360) 57 0 return NULL;
TOTALS 37.35% (66522/178105) 38.92% (3090/7939) 31.94% (46468/145497) 28 o }
59 22.8k if ((ret->b = OPENSSL zalloc(sizeof(*ret->b) * MIN NODES)) == NULL)
60 22.8k goto err;
61 22.8k ret->comp = ((c == NULL) ? (OPENSSL_LH_COMPFUNC)strcmp : c);
62 22.8k ret->hash = ((h == NULL) ? (OPENSSL_LH HASHFUNC)OPENSSL LH strhash : h);

45

Other applications

Non-security bugs

e Correctness bugs via differential fuzzing, e.g. CryptoFuzz

m Across different product implementations
m Across different languages, compilers, optimizations
e E.g. optimized ASM vs pure C
e Stability bugs
o Denial-of-service attacks can be serious in many scenarios
o Fixing stability bugs leads to a more productive fuzzer

m Esp. leaks, ooms, timeouts, null-ptr dereferences

47

Design and development decisions

e Should we add this third party library to our project?
o Require fuzzing or integration in OSS-Fuzz as prerequisite
o How well are those endpoints fuzz tested? Coverage?
e [eedback to prioritize security mitigations
o Sandboxing
o Allocator hardening

o etc

48

Results

49

Chrome, OSS and Google

e Overall 40,000 bugs found

e Vulnerabilities found: 5000+ in Chrome, 3500+ in OSS-Fuzz

e Vulnerabilities fixed: Chrome (98.6%), OSS (91.4%)

e Methodology works for both large projects (Chrome, Google)
and smaller projects in OSS-Fuzz (250+)

e Developer evangelism - tech talks, contests, etc

50

Results outside of Google

WebKit

Available for: macOS Mojave 10.14.6, macOS High Sierra 10.13.6

Impact: Processing maliciously crafted web content may lead to arbitrary code execution

Description: Multiple memory corruption issues were addressed with improved memory handling.

CVE-2019-8710: found b

CVE-2019-8743: zhunki from Codesafe Team of Legendsec at Qi'anxin Group
CVE-2019-8751: Dongzhuo Zhao working with ADLab of Venustech
CVE-2019-8752: Dongzhuo Zhao working with ADLab of Venustech
CVE-2019-8763: Sergei Glazunov of Google Project Zero

CVE-2019-8765: Samuel GrofB3 of Google Project Zero

¢ CVE-2018-5093: Buffer overflow in WebAssembly

during Memory/Table resizing
Reporter 0SS-Fuzz

Impact high |

Description

A heap buffer overflow vulnerability may occur in WebAssembly
during Memory/Table resizing, resulting in a potentially exploitable
crash.

References

Bug 1415291

Constructed ASN.1 types with a recursive definition (such as can be found in

CVE-2019-8766: found by OSS-Fuzz

CVE-2019-8773: found by OSS-Fuzz

PKCS7) could eventually exceed the stack given malicious input with excessive
recursion. This could result in a Denial Of Service attack. There are no such

structures used within SSL/TLS that come from untrusted sources so this is
considered safe. Reported by OSS-fuzz.

e Fixed in OpenSSL 1.1.0h (git commit) (Affected 1.1.0-1.1.0g)
e Fixed in OpenSSL 1.0.20 (git commit) (Affected 1.0.2b-1.0.2n)

Sec Bug #77831 Heap-buffer-overflow in exif_iif_add_value in EXIF

PHP Version: 7.1.27
Private report: No CVE-ID: 2019-11035

—| View | I Add Comment I | Developer | Edit

Submitted: 2019-04-02 06:44 UTC Modified: 2019-04-15 06:53 UTC
From: stas@php.net Assigned: stas (profile)
Status: Closed Package: EXIF related

Description:

Another

2018-04-30 7.0.7-29 Cristy <quetzlzacatenango@image...>
* Release ImageMagick version 7.0.7-29, GIT revision 14225:41edbdcea:20180430.
2018-03-26 7.0.7-29 <quetzizacatenango@image...>
os: * « Fixed numerous use of uninitialized values, integer overflow, memory exceeded, and timeouts (credit to 0SS Fuzz).
2018-03-24 7.0.7-28 Cristy <quetzizacatenango@image...>
Release ImageMagick version 7.0.7-28, GIT revision 23615:edd71782e:20180325.
2018-03-21 7.0.7-28 <quetzizacatenango@image...>
[2019-04-02 06:44 UTC] stas@php.net « Fixed numerous use of uninitialized values, integer overflow, memory exceeded, and timeouts (credit to 0SS Fuzz).
2018-03-18 7.0.7-27 Cristy <quetzlzacatenango@image...>
« Release ImageMagick version 7.0.7-27, GIT revision 23466:734b146df:20180318.
bug: https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=13938 »(18.03-17 7.0.7-27 <quetzizacatenango@image...>
« Fixed numerous use of uninitialized values, integer overflow, memory exceeded, and timeouts (credit to 0SS Fuzz).

It was found using the C Z
fuzzer infrastructure that decoding
specially crafted OpenPGP
certificates could lead to (A) an
integer overflow, resulting to an
invalid memory write, (B) a null
pointer dereference resulting to a
server crash, and (C) a large
GNUTLS- GRS allocation, re:ilt{lﬁng Ttg a serf\:ertout;of-
-2017- : memory condition. These affect only
SA2017- Wf7een Memory corruplion - apjications which utiize the
OpenPGP certificate functionality of
GnuTLS. The issues were fixed in
3.5.10. Recommendation: The
support of OpenPGP certificates in
GnuTLS is considered obsolete. As
such, it is not recommended to use
OpenPGP certificates with GnuTLS.
To address the issues found upgrade
to GnuTLS 3.5.10 or later versions.

Libarchive vulnerability can lead to code

execution on Linux, FreeBSD, NetBSD

Bug discovered by Google. Impacts Linux and BSD distros, but not Windows and macOS.

v1.10.0

ChakraCore 1.10.0 includes more JavaScript and WebAssembly feature updates,
performance enhancements, and JSRT APIs. See notable changes below.

Also shout-out to @rhuanjl, @fatcerberus,
their contributions during this release!

and Google Project Zero for

libxmI2
Available for: Windows 7 and later
Impact: Multiple issues in libxmi2

Description: Multiple memory corruption issues were addressed with improved input
validation.

CVE-2019-8749: found by 0SS-Fuzz 51

CVE-2019-8756: found by OSS-Fuzz

Future plans

52

Future plans

e Fuzzing as part of Continuous Integration (Cl) to catch
regressions before check-in

e Alternate solution to artificial fuzzer benchmarks (e.g. LAVA-M)

e Continue to improve fuzzing efficiency - e.g. more focused
mutations using DataFlowSanitizer

e Support for more languages (Java, Python, etc)

53

Conclusion

e Fuzzing should be an integral part of developer workflows

o Not just for security researchers

e Different fuzzing engines and strategies can be combined

effectively at scale

e Large projects with thousands of developers can be fuzzed

effectively with a small team

o Smaller projects can use the same methodology

54

