
Behind the Scenes of Intel
Security and Manageability

Engine

Shai Hasarfaty Principal Security Research Engineer, Intel Corp.
Yanai Moyal Security Researcher, Intel Corp.

Legal Disclaimer

Intel provides these materials as-is, with no express or implied warranties.

All products, dates, and figures specified are preliminary, based on current expectations, and are
subject to change without notice.

Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata,
which may cause the product to deviate from published specifications. Current characterized errata
are available on request.

Intel technologies' features and benefits depend on system configuration and may require enabled
hardware, software or service activation. Performance varies depending on system configuration. No
product or component can be absolutely secure. Check with your system manufacturer or retailer or
learn more at https://www.intel.com.

Some results have been estimated or simulated using internal Intel analysis or architecture simulation
or modeling, and provided to you for informational purposes. Any differences in your system hardware,
software or configuration may affect your actual performance.

Intel and the Intel logo are trademarks of Intel Corporation in the United States and other countries.

*Other names and brands may be claimed as the property of others.

© Intel Corporation

Scope Of This Talk

Latest CSME 12 Firmware & Hardware on Intel 8th and 9th Gen
Core Processor based platforms (code name Coffee Lake and
Whiskey Lake)

• Architecture & Boot flow

• OS Security Principles & Internals

• Hardening & Mitigations

• Pre & Post Manufacturing

• Update & Recoverability

• Wrap-up

What Is CSME?

CSME is an embedded subsystem in Platform Controller

Hub (PCH)

• Stands for Converged Security & Manageability Engine

• Standalone low power Intel processor with dedicated

Hardware (HW)

• CSME is Root of Trust of the platform

• Provides an isolated execution environment protected

from host SW running on main CPU

• Executes CSME Firmware (FW)

CPU

PCH

CSME

LAN
WLAN

SMBUS
GPIO
HECI

What Is CSME?

CSME serves 3 main platform roles

• Chassis

• Secure boot of the platform

• Overclocking

• Micro-code loading into PCH/CPU HW engines

• Security

• Isolated & trusted execution of security services

(TPM, DRM, DAL)

• Manageability

• Platform management over out of band network

(Intel AMT)

CPU

PCH

CSME

LAN
WLAN

SMBUS
GPIO
HECI

CSME HW Overview & Capabilities

• CPU: Intel 32 bits processor (i486)
supporting rings, segmentation and MMU for
page management

• SRAM: Isolated RAM (~1.5 MB) from host

• ROM: HW root of trust of CSME Firmware

• System Agent: Allows CPU to securely
access SRAM and enforce access control to
SRAM from internal/external devices by
using IOMMU (i.e. control DMA access)

• OCS (Offload & Cryptography
Subsystem): Crypto HW accelerator with
DMA engine and Secure Key Storage (SKS)

• Gasket: interface to PCH fabric & CSME IO
devices (TPM, HECI etc.)

• Manageability Devices: used for manageability and
redirection (USB-R, IDE-R, KT, KVM etc.)

• Protected Real Time Clock: used for monotonic
counters (anti-replay protection) and as protected time

• DRNG
• Generates non-deterministic random numbers

• Compliant to NIST SP800-90A, B and C

• Fuses – 2 types
• Intel PCH Manufacturing Fuses – set by Intel before shipment to manufacturers

• CSME configurations: which Intel CSME signing keys enabled, production silicon etc.

• CSME security keys unique per chip and encrypted using CSME HW key

• In Field Programmable Fuses (FPF) – set by manufacturers before shipment to end-
users

• Manufacturers’ secure settings: public key, Intel Boot Guard policy etc.

• CSME FW Anti-Rollback Security Version Number (ARB SVN)

• DFX (debug)
• Control CSME & other PCH micro-controllers debug interface (JTAG)

• In debug (JTAG open), keys in fuses and secrets in NVM are not available & CSME
SRAM is zeroed

PCH Hardware Used By CSME

CSME Role In Platform Boot

CSME ROM

• ROM is part of PCH HW with no patch mechanism
after HW tape-in

• ROM bypass disabled by Intel manufacturing fuse on
production stepping

• Main responsibilities
• Moves CSME CPU to protected mode & enable paging and

segmentation
• Generates CSME FW keys using chipset key and RBE

Security Version Number (TCB SVN)
• Loads, authenticates and executes IDLM (debug module) /

RBE
• Hashes of public keys embedded in ROM

• Intel manufacturing fuse indicates which public key is enabled
(debug signing key is disabled on production)

Key Derivation By ROM

2. Decryption of Chipset Key

3. Derivation of CSME FW Key

1. HW key generation

HW Secure Key Storage

HW SKS:

Protect CSME root keys during runtime.
FW can only use keys

Every SKS slot has set of attributes

- Secure Mode
- Result of AES-CBC decrypt and HMAC using

the key in this slot can be stored in SKS only

- Privilege Level: used for HW access
control on SKS slot

- The key in this slot is accessible if SKS slot
privilege level is >= SKS privilege level

SKS Privilege Level 0

HW Secure Key Storage

HW SKS:

Protect CSME root keys during runtime.
FW can only use keys

Every SKS slot has set of attributes

- Secure Mode
- Result of AES-CBC decrypt and HMAC using

the key in this slot can be stored in SKS only

- Privilege Level: used for HW access
control on SKS slot

- The key in this slot is accessible if SKS slot
privilege level is >= SKS privilege level

- Locked: key in this slot can be
invalidated or replaced after CSME
HW reset only

SKS Privilege Level 3

RBE (ROM Boot Extension)

• Extends ROM functionality in FW (can be
updated on field)

• Bootloader of CSME OS

• Main responsibilities
• Performs HW based anti-rollback check on

CSME FW

• Performs early chassis job – PMC patch

• Loads, authenticates and executes CSME
OS

OS & core drivers and services

Applications

Drivers & Services

CSME Secure Boot Flow

ROM

RBE

SyslibKernel

Crypto
Driver

FW TCB
Ring3

VFS
Event
Disp.

Bus Driver
PRTC
Driver

Storage
Driver

FPF Driver

Load
Manager

Kernel

Execute
using ICV

Process
ManagerExecute

using ICV

Execute
using ICV

CSME
Drivers

CSME
Drivers

CSME
DriversCSME

Services

CSME
Services

CSME
Services

PTTAMT

DAL PAVP

ICC IP Loading

Load and authenticate
Create ICV
Execute using ICV

Bringup

Once all CSME modules
have been loaded, Process
Manager stores all CSME

modules’ ICVs and ICV key
in ICV Blob Partition (IVBP)

in SPI flash, encrypted,
integrity and replay

protected

Legend
ICV: Integrity Check Value

time

FW Ring0

HW Ring0
FW OS
Ring3

FW App
Ring3

FW lib.
Ring3

Load and authenticate
Create ICV

Load,
authenticate
and execute

ICV Blob

Store in SPI flash

1

2

3

4

5

7

8

6

Process
Manager

DRAM Init
DoneCode pages replacement using ICV done by kernel from SPI flash Code and data pages replacement using ICV done by kernel from DRAM

Execute
using ICV

OS & core drivers and services

Applications

Drivers & Services

CSME Secure Boot Flow With ICV Blob

ROM

RBE

SyslibKernel

Crypto
Driver

FW TCB
Ring3

VFS
Event
Disp.

Bus Driver
PRTC
Driver

Storage
Driver

FPF Driver

Load
Manager

Kernel

Execute
using ICV

Process
ManagerExecute

using ICV

Execute
using ICV

CSME
Drivers

CSME
Drivers

CSME
DriversCSME

Services

CSME
Services

CSME
Services

PTTAMT

DAL PAVP

ICC IP Loading

Execute using ICV

Bringup

time

FW Ring0

HW Ring0
FW OS
Ring3

FW App
Ring3

FW lib.
Ring3

Load,
authenticate
and execute

1

3

4

5

7

6

Process
Manager

DRAM Init
DoneCode pages replacement using ICV done by kernel from SPI flash Code and data pages replacement using ICV done by kernel from DRAM

Execute
using ICV

Load and
authenticate

ICV Blob2

ICVs are used to
speed-up CSME

boot

Legend
ICV: Integrity Check Value

• Architecture & Boot flow

• OS Security Principles & Internals

• Hardening & Mitigations

• Pre & Post Manufacturing

• Update & Recoverability

• Wrap-up

CSME OS Main Security Principles

• Micro-Kernel OS based on Minix OS architecture
• The micro-kernel is the only runtime component running

at ring0. Application, Drivers and Services run at ring3

• The micro-kernel implements the bare minimum
required to implement an OS

• Minimal Trusted Compute Base (TCB)
• Protects access to keys and HW (CSME assets)

• Responsible for CSME FW code integrity at boot &
runtime

• Responsible for protection CSME modules from each
other and their data in SPI flash

• Enforces CSME modules’ minimum privileges

Micro Kernel (uKernel)

• Main responsibilities
• Driver of the CPU

• Enforces code execution is from SRAM only

• Enforces process isolation using CPU rings and x86 segments

• Setups page attributes (RW and User bit). Enforcement done by MMU

• Controls HW access via MMIO by ring3

• Driver of the IOMMU
• Controls DMA access to SRAM

• Support standard kernel service
• Inter-Process Communication (IPC)

• Processes & threads management

• Interrupts and exceptions handling

• Handle page replacement between SRAM and DRAM/SPI flash to save
SRAM utilization

• Evicted pages to DRAM are encrypted and integrity protected

CSME TCB OS

Ring3 TCB
Component

Main Security Role Create
CSME

Process

Control
access to

CSME keys

Control
access to
CSME OS
services

Control
access to
Hardware

Process
Manager

1. Code authentication
2. Process creation & termination

Yes No No No

Crypto
Driver

1. Crypto & DMA service
2. FW key management

No Yes No No

Virtual File
System
(VFS)

1. Secure storage service with
data migration support

2. Enforce permission check on
data files and special files
exposed by drivers & services

No No Yes No

Bus Driver 1. Allow CSME drivers to
configure their own device
configuration space

2. Enforce access control

No No No Minimal

Bringup (BUP)

• Support early platform boot and configuration

• Reduced its privileges starting CSME 12

• Can’t create CSME processes

• No access to root keys and attestation keys

• No access to crypto accelerator and DFX HW

• Driver and Services are running at ring3

• Drivers have access only to HW they
need to manage via Memory Mapped
IO (MMIO)

• Access to drivers and services are jointly
controlled by VFS & uKernel

CSME OS – Drivers and Services

CSME Applications

• CSME applications are running at ring3

• CSME TCB ensure CSME applications are isolated from each
others including their data kept in NVM

• Architecture & Boot flow

• OS Security Principles & Internals

• Hardening & Mitigations

• Pre & Post Manufacturing

• Update & Recoverability

• Wrap-up

• Kernel (Ring0)
• Kernel system call filtering

• Applied stack protector for kernel

• Data execution prevention

• Activated Supervisor Mode Execution Prevention (SMEP)

• Use CR0.Write.Protect
• Prevent corruption of read only pages by kernel

• ACL on Ring3 inter-process communication

Hardening & Exploitation Mitigations

Hardening & Exploitation Mitigations

• Example of authorized IPC (Abstracted)
PAVPPAVP - DRM PAVPVFS PAVPCrypto Drv PAVPKernel

Hardening & Exploitation Mitigations

• Example of authorized IPC (Abstracted)
PAVPPAVP - DRM PAVPVFS PAVPCrypto Drv PAVPKernel

open() - IPC_SEND_RCV

VERIFY_ACL

VERIFY_REQ_ACL

FILE_DESCRIPTOR_HANDLE

FILE_DESCRIPTOR_HANDLE

IOCTL (FD , AES_ENC , &BUF)

IOCTL AES_ENC

IOCTL_CHECK_ACL

WRITE BUFFER

RETURN_SUCCESS
RETURN_SUCCESS

PAVPPAVP - DRM PAVPVFS PAVPCrypto Drv PAVPKernel

Hardening & Exploitation Mitigations

• Example of authorized IPC (Abstracted)
PAVPPAVP - DRM PAVPVFS PAVPCrypto Drv PAVPKernel

open() - IPC_SEND_RCV

VERIFY_ACL

VERIFY_REQ_ACL

FILE_DESCRIPTOR_HANDLE

FILE_DESCRIPTOR_HANDLE

IOCTL (FD , AES_ENC , &BUF)

IOCTL AES_ENC

IOCTL_CHECK_ACL

WRITE BUFFER

RETURN_SUCCESS
RETURN_SUCCESS

PAVPPAVP - DRM PAVPVFS PAVPCrypto Drv PAVPKernel

Hardening & Exploitation Mitigations

• Example of authorized IPC (Abstracted)
PAVPPAVP - DRM PAVPVFS PAVPCrypto Drv PAVPKernel

open() - IPC_SEND_RCV

VERIFY_ACL

VERIFY_REQ_ACL

FILE_DESCRIPTOR_HANDLE

FILE_DESCRIPTOR_HANDLE

IOCTL (FD , AES_ENC , &BUF)

IOCTL AES_ENC

IOCTL_CHECK_ACL

WRITE BUFFER

RETURN_SUCCESS
RETURN_SUCCESS

PAVPPAVP - DRM PAVPVFS PAVPCrypto Drv PAVPKernel

Hardening & Exploitation Mitigations

• Example of authorized IPC (Abstracted)
PAVPPAVP - DRM PAVPVFS PAVPCrypto Drv PAVPKernel

open() - IPC_SEND_RCV

VERIFY_ACL

VERIFY_REQ_ACL

FILE_DESCRIPTOR_HANDLE

FILE_DESCRIPTOR_HANDLE

IOCTL (FD , AES_ENC , &BUF)

IOCTL AES_ENC

IOCTL_CHECK_ACL

WRITE BUFFER

RETURN_SUCCESS
RETURN_SUCCESS

PAVPPAVP - DRM PAVPVFS PAVPCrypto Drv PAVPKernel

Hardening & Exploitation Mitigations

• Example of authorized IPC (Abstracted)
PAVPPAVP - DRM PAVPVFS PAVPCrypto Drv PAVPKernel

open() - IPC_SEND_RCV

VERIFY_ACL

VERIFY_REQ_ACL

FILE_DESCRIPTOR_HANDLE

FILE_DESCRIPTOR_HANDLE

IOCTL (FD , AES_ENC , &BUF)

IOCTL AES_ENC

IOCTL_CHECK_ACL

WRITE BUFFER

RETURN_SUCCESS
RETURN_SUCCESS

PAVPPAVP - DRM PAVPVFS PAVPCrypto Drv PAVPKernel

Hardening & Exploitation Mitigations

• Example of authorized IPC (Abstracted)
PAVPPAVP - DRM PAVPVFS PAVPCrypto Drv PAVPKernel

open() - IPC_SEND_RCV

VERIFY_ACL

VERIFY_REQ_ACL

FILE_DESCRIPTOR_HANDLE

FILE_DESCRIPTOR_HANDLE

IOCTL (FD , AES_ENC , &BUF)

IOCTL AES_ENC

IOCTL_CHECK_ACL

WRITE BUFFER

RETURN_SUCCESS
RETURN_SUCCESS

PAVPPAVP - DRM PAVPVFS PAVPCrypto Drv PAVPKernel

Hardening & Exploitation Mitigations

• Example of authorized IPC (Abstracted)
PAVPPAVP - DRM PAVPVFS PAVPCrypto Drv PAVPKernel

open() - IPC_SEND_RCV

VERIFY_ACL

VERIFY_REQ_ACL

FILE_DESCRIPTOR_HANDLE

FILE_DESCRIPTOR_HANDLE

IOCTL (FD , AES_ENC , &BUF)

IOCTL AES_ENC

IOCTL_CHECK_ACL

WRITE BUFFER

RETURN_SUCCESS
RETURN_SUCCESS

PAVPPAVP - DRM PAVPVFS PAVPCrypto Drv PAVPKernel

Hardening & Exploitation Mitigations

• Example of authorized IPC (Abstracted)
PAVPPAVP - DRM PAVPVFS PAVPCrypto Drv PAVPKernel

open() - IPC_SEND_RCV

VERIFY_ACL

VERIFY_REQ_ACL

FILE_DESCRIPTOR_HANDLE

FILE_DESCRIPTOR_HANDLE

IOCTL (FD , AES_ENC , &BUF)

IOCTL AES_ENC

IOCTL_CHECK_ACL

WRITE BUFFER

RETURN_SUCCESS
RETURN_SUCCESS

PAVPPAVP - DRM PAVPVFS PAVPCrypto Drv PAVPKernel

PAVPPAVP - DRM PAVPVFS PAVPCrypto Drv PAVPKernel

Hardening & Exploitation Mitigations

• Example of authorized IPC (Abstracted)
PAVPPAVP - DRM PAVPVFS PAVPCrypto Drv PAVPKernel

open() - IPC_SEND_RCV

VERIFY_ACL

VERIFY_REQ_ACL

FILE_DESCRIPTOR_HANDLE

FILE_DESCRIPTOR_HANDLE

IOCTL (FD , AES_ENC , &BUF)

IOCTL AES_ENC

IOCTL_CHECK_ACL

WRITE BUFFER

RETURN_SUCCESS
RETURN_SUCCESS

PAVPPAVP - DRM PAVPVFS PAVPCrypto Drv PAVPKernel

Hardening & Exploitation Mitigations

• Example of authorized IPC (Abstracted)
PAVPPAVP - DRM PAVPVFS PAVPCrypto Drv PAVPKernel

open() - IPC_SEND_RCV

VERIFY_ACL

VERIFY_REQ_ACL

FILE_DESCRIPTOR_HANDLE

FILE_DESCRIPTOR_HANDLE

IOCTL (FD , AES_ENC , &BUF)

IOCTL AES_ENC

IOCTL_CHECK_ACL

WRITE BUFFER

RETURN_SUCCESS
RETURN_SUCCESS

PAVPPAVP - DRM PAVPVFS PAVPCrypto Drv PAVPKernel

Hardening & Exploitation Mitigations

• Example of unauthorized IPC
PAVPPAVP - DRM PAVPVFS PAVPCrypto Drv PAVPKernel

open() - IPC_SEND_RCV

VERIFY_ACL

VERIFY_REQ_ACL

FILE_DESCRIPTOR_HANDLE

FILE_DESCRIPTOR_HANDLE

IOCTL (FD , AES_ENC , &BUF)

IOCTL AES_ENC

IOCTL_CHECK_ACL

WRITE BUFFER

RETURN_SUCCESS
RETURN_SUCCESS

• Exploitation mitigations in Ring3

Hardening & Exploitation Mitigations

• Exploitation mitigations in Ring3
• Syslib context pointer moved to a read only page (not on stack anymore)

Hardening & Exploitation Mitigations

• Exploitation mitigations in Ring3
• Syslib context pointer moved to a read only page (not on stack anymore)

• Return Control Flow Integrity via modified Stack Canary “XOR-RET-ALL”
on the majority of the Ring3 functions.

Hardening & Exploitation Mitigations

• Exploitation mitigations in Ring3
• Syslib context pointer moved to a read only page (not on stack anymore)

• Return Control Flow Integrity via modified Stack Canary “XOR-RET-ALL”
on the majority of the Ring3 functions.

Hardening & Exploitation Mitigations

• Exploitation mitigations in Ring3
• Syslib context pointer moved to a read only page (not on stack anymore)

• Return Control Flow Integrity via modified Stack Canary “XOR-RET-ALL”
on the majority of the Ring3 functions.

Hardening & Exploitation Mitigations

• Exploitation mitigations in Ring3
• Syslib context pointer moved to a read only page (not on stack anymore)

• Return Control Flow Integrity via modified Stack Canary “XOR-RET-ALL”
on the majority of the Ring3 functions.

• Regular Stack-Protector:

Hardening & Exploitation Mitigations

OLD EBPLOCAL VAR ARG
2

ARG
1

RETURNCanary
=

Random
Linear Buffer overflow

• Exploitation mitigations in Ring3
• Syslib context pointer moved to a read only page (not on stack anymore)

• Return Control Flow Integrity via modified Stack Canary “XOR-RET-ALL”
on the majority of the Ring3 functions.

• Regular Stack-Protector:

Hardening & Exploitation Mitigations

OLD EBPLOCAL VAR ARG
2

ARG
1

RETURNCanary
=

Random
Linear Buffer overflow

Nonlinear Write will bypass stack protector

• Exploitation mitigations in Ring3
• Syslib context pointer moved to a read only page (not on stack anymore)

• Return Control Flow Integrity via modified Stack Canary “XOR-RET-ALL”
on the majority of the Ring3 functions.

• Stack-Protector XORed with Return address:

Hardening & Exploitation Mitigations

OLD EBPLOCAL VAR ARG
2

ARG
1

RETURNCanary

=
Random ^ Ret

• Exploitation mitigations in Ring3
• Syslib context pointer moved to a read only page (not on stack anymore)

• Return Control Flow Integrity via modified Stack Canary “XOR-RET-ALL”
on the majority of the Ring3 functions.

• Stack-Protector XORed with Return address:

• Attacker will now require to have stack/canary info leak or to leverage a
data corruption (if possible)

Hardening & Exploitation Mitigations

OLD EBPLOCAL VAR ARG
2

ARG
1

RETURNCanary

=
Random ^ Ret

• Exploitation mitigations in Ring3
• Syslib context pointer moved to a read only page (not on stack anymore)

• Return Control Flow Integrity via modified Stack Canary “XOR-RET-ALL”
on the majority of the Ring3 functions.

• SW Forward Edge Control Flow Integrity

Hardening & Exploitation Mitigations

• Exploitation mitigations in Ring3
• Syslib context pointer moved to a read only page (not on stack anymore)

• Return Control Flow Integrity via modified Stack Canary “XOR-RET-ALL”
on the majority of the Ring3 functions.

• SW Forward Edge Control Flow Integrity

Hardening & Exploitation Mitigations

COP/ROP/JOP
Gadget

• Exploitation mitigations in Ring3
• Syslib context pointer moved to a read only page (not on stack anymore)

• Return Control Flow Integrity via modified Stack Canary “XOR-RET-ALL”
on the majority of the Ring3 functions.

• SW Forward Edge Control Flow Integrity

Hardening & Exploitation Mitigations

• Exploitation mitigations in Ring3
• Syslib context pointer moved to a read only page (not on stack anymore)

• Return Control Flow Integrity via modified Stack Canary “XOR-RET-ALL”
on the majority of the Ring3 functions.

• SW Forward Edge Control Flow Integrity

Hardening & Exploitation Mitigations

• Exploitation mitigations in Ring3
• Syslib context pointer moved to a read only page (not on stack anymore)

• Return Control Flow Integrity via modified Stack Canary “XOR-RET-ALL”
on the majority of the Ring3 functions.

• SW Forward Edge Control Flow Integrity

Hardening & Exploitation Mitigations

• Exploitation mitigations in Ring3
• Syslib context pointer moved to a read only page (not on stack anymore)

• Return Control Flow Integrity via modified Stack Canary “XOR-RET-ALL”
on the majority of the Ring3 functions.

• SW Forward Edge Control Flow Integrity

Hardening & Exploitation Mitigations

• Exploitation mitigations in Ring3
• Syslib context pointer moved to a read only page (not on stack anymore)

• Return Control Flow Integrity via modified Stack Canary “XOR-RET-ALL”
on the majority of the Ring3 functions.

• SW Forward Edge Control Flow Integrity

Hardening & Exploitation Mitigations

• Exploitation mitigations in Ring3
• Syslib context pointer moved to a read only page (not on stack anymore)

• Return Control Flow Integrity via modified Stack Canary “XOR-RET-ALL”
on the majority of the Ring3 functions.

• SW Forward Edge Control Flow Integrity

• Heap protections

Hardening & Exploitation Mitigations

• Exploitation mitigations in Ring3
• Syslib context pointer moved to a read only page (not on stack anymore)

• Return Control Flow Integrity via modified Stack Canary “XOR-RET-ALL”
on the majority of the Ring3 functions.

• SW Forward Edge Control Flow Integrity

• Heap protections

• Double free protection

• Malloc of zero size return NULL

• Cookie protection enforced during free of an allocated\busy chunk

• A Marker surround every Busy Block

• Value of random “Cookie” field in the Marker is compared with the original Cookie
value. Mismatch is handled as an overflow attack (or bug).

Hardening & Exploitation Mitigations

• Exploitation mitigations in Ring3
• Syslib context pointer moved to a read only page (not on stack anymore)

• Return Control Flow Integrity via modified Stack Canary “XOR-RET-ALL”
on the majority of the Ring3 functions.

• SW Forward Edge Control Flow Integrity

• Heap protections

• Data execution prevention

Hardening & Exploitation Mitigations

CSME Security Development Lifecycle

CSME Security Development Lifecycle

Applying Security Development Lifecycle (SDL) through the
CSME development phases

• Security Architecture and Design Review
• Threat analysis

• Challenging FW design results into product changes

• Security Code Review
• Manual and Static Code Analysis (SCA) tools

• Penetration testing
• Manual

• Automation

• Using latest industry techniques on silicon

CSME Security Validation Technologies

• Using latest industry techniques on silicon
• Address Sanitization

CSME Security Validation Technologies

• Using latest industry techniques on silicon
• Address Sanitization

• Doesn’t work out of the box since requires glibc

• Sanitizer requires 8 bytes aligned memory and CSME a 4 bytes aligned memory

• Sanitizer write to a “shadow” memory at a fixed address of “0x20000000”

• Making the code too big won’t fit into flash or won’t fit into SRAM

CSME Security Validation Technologies

• Using latest industry techniques on silicon
• Address Sanitization

• Doesn’t work out of the box since requires glibc.

• Fixed it by creating stub functions that are missing and implement them

• Sanitizer requires 8 bytes aligned memory and CSME a 4 bytes aligned memory

• Each time we enter a “error function” make sure is it in a 4 byte aligned
memory and validate that address with the “shadow” if it’s an issue or not

• Using: “-fsanitize-recover=address” so calling code path won’t change

• Sanitizer write to a “shadow” memory at a fixed address of “0x20000000”

• Patch GCC to make it accept “-fsanitize=kernel-address” by removing
“SANITIZE_KERNEL_ADDRESS” in “opts-global.c”

• Was asked many times but none done it as a feature in GCC:

• https://groups.google.com/forum/#!topic/address-sanitizer/ZLI4un1NyoE

• Making the code too big won’t fit into flash or won’t fit into SRAM

• Apply only on a single process and not on the entire system at once.

CSME Security Validation Technologies

https://groups.google.com/forum/#!topic/address-sanitizer/ZLI4un1NyoE

• Using latest industry techniques on silicon
• Address Sanitization

CSME Security Validation Technologies

• Using latest industry techniques on silicon
• Address Sanitization

• Fuzzing with Coverage guided

CSME Security Validation Technologies

• Using latest industry techniques on silicon
• Address Sanitization

• Fuzzing with Coverage guided
• Based on AFL Fuzzer logic

CSME Security Validation Technologies

• Using latest industry techniques on silicon
• Address Sanitization

• Fuzzing with Coverage guided
• Based on AFL Fuzzer logic

Issue #1: BitMap size

CSME Security Validation Technologies

• Using latest industry techniques on silicon
• Address Sanitization

• Fuzzing with Coverage guided
• Based on AFL Fuzzer logic

Issue #1: BitMap size

CSME Security Validation Technologies

• Using latest industry techniques on silicon
• Address Sanitization

• Fuzzing with Coverage guided
• Based on AFL Fuzzer logic

Issue #2: Memory pipe for getting test feedback

CSME Security Validation Technologies

• Using latest industry techniques on silicon
• Address Sanitization

• Fuzzing with Coverage guided
• Based on AFL Fuzzer logic

Issue #2: Memory pipe for getting test feedback

• Easy to solve by calling a test firmware API (not exist in production) to get the internal
array that hold all feedback

• Modify AFL instrumentation to set the global BITMAP array inside of the FW

CSME Security Validation Technologies

• Using latest industry techniques on silicon
• Address Sanitization

• Fuzzing with Coverage guided
• Based on AFL Fuzzer logic

CSME Security Validation Technologies

Host OS

CSME Firmware

HECI Driver

Fuzzer

Path
Manager

Test Case
Fuzzer

Test
Collection

Platform Under Test

• Using latest industry techniques on silicon
• Address Sanitization

• Fuzzing with Coverage guided
• Based on AFL Fuzzer logic

CSME Security Validation Technologies

Host OS

CSME Firmware

HECI Driver

Fuzzed test case
Fuzzer

Path
Manager

Test Case
Fuzzer

Test
Collection

Platform Under Test

• Using latest industry techniques on silicon
• Address Sanitization

• Fuzzing with Coverage guided
• Based on AFL Fuzzer logic

CSME Security Validation Technologies

Host OS

CSME Firmware

Instrumented Firmware

HECI Driver

Fuzzed test case
IF

ELSE

Fuzzer

Path
Manager

Test Case
Fuzzer

Test
Collection

Platform Under Test
ID

ID

• Using latest industry techniques on silicon
• Address Sanitization

• Fuzzing with Coverage guided
• Based on AFL Fuzzer logic

CSME Security Validation Technologies

Host OS

CSME Firmware

HECI Driver

Fuzzed test case ID

ID

Get Feedback

Fuzzer

Path
Manager

Test Case
Fuzzer

Test
Collection

Platform Under Test

Instrumented Firmware

IF

ELSE

ID

ID

• Using latest industry techniques on silicon
• Address Sanitization

• Fuzzing with Coverage guided
• Based on AFL Fuzzer logic

CSME Security Validation Technologies

Host OS

CSME Firmware

HECI Driver

Fuzzed test case ID

ID

Get Feedback

BitMapArray

Fuzzer

Path
Manager

Test Case
Fuzzer

Test
Collection

Platform Under Test

New path
found

Instrumented Firmware

IF

ELSE

ID

ID

• Using latest industry techniques on silicon
• Address Sanitization

• Fuzzing with Coverage guided

CSME Security Validation Technologies

• Architecture & Boot flow

• OS Security Principles & Internals

• Hardening & Mitigations

• Pre & Post Manufacturing

• Update & Recoverability

• Wrap-up

• Features are configurable by manufacturers
• Manageability support – corporate / consumer

• HW Anti-rollback support

• Manufacturer public key for secure micro-code loading and Intel Boot Guard

• Intel Boot Guard enable/disable & policy

• PTT enable/disable

• End Of Manufacturing (EOM)
• Required by manufacturers before shipping platforms to end-users

• Write and lock manufacturers’ settings into FPF and CSME data partition in
SPI flash

• Close SPI flash descriptor – SPI controller enforces access control on BIOS,
CSME and other SPI regions

Customization During Manufacturing

Some CSME features can still be configured after EOM by end-
users

• Manageability can be configured in BIOS menus
• AMT out of band network interface enable/disable

• AMT USB provisioning enable/disable

• AMT Host Based Provisioning enable/disable

• AMT redirection enable/disable

Post Manufacturing Configuration

• Architecture & Boot flow

• OS Security Principles & Internals

• Hardening & Mitigations

• Pre & Post Manufacturing

• Update & Recoverability

• Wrap-up

CSME FW verifies digital signature and version of new CSME FW
image before updating it in SPI flash on end-user system

• Two levels of CSME FW anti-rollback supported in CSME 12
1. SW rollback to old CSME FW is prevented using Version Control

Number (VCN)
2. Physical rollback is prevented using Anti-Rollback (ARB) SVN

• ARB SVN is kept in field programmable fuse (FPF)

• Require manufacturer support

• Once FW update is done to a higher TCB SVN, CSME will
perform data migration and initiate the re-creation of attestation
keys (EPID and PTT Endorsement Key)

CSME FW Update & Recovery

1. If not latest iCLS (Intel Capability Licensing Service) SW

service is already used, update SW.

2. Manufacturers update to new CSME FW with higher SVN.

At next boot, CSME FW performs CSME data migration

from previous CSME storage key to new one derived by

ROM.

3. Intel iCLS SW service connects securely using Intel SIGMA

protocol over internet to Intel backend servers to complete

TCB recovery and retrieve new EPID key and Intel

certificate for new PTT Endorsement Key (TPM EK)

4. At some point, Intel revokes EPID keys and PTT EK (i.e.

publish CRL on Intel server). Once revocation is done,

Content Providers can halt streaming content to non-

updated systems

TCB Recovery & CSME Data Migration

• Architecture & Boot flow

• OS Security Principles & Internals

• Hardening & Mitigations

• Pre & Post Manufacturing

• Update & Recoverability

• Wrap-up

Wrap-up

• Secure design with defense In-depth
• Secure boot and execution enforced by minimal TCB

• Least privileges and process isolation

• Exploitation mitigations

• Secure Update & Recovery
• Secure FW update

• FW and HW Anti-rollback

• Data migration with online renewal of attestation keys (TCB Recovery)

• Evaluating Future Enhancements
• Further reduce privileges

• Adding ASLR support given CSME OS memory limitations

• HW Control-Flow Enforcement Technology (CET) support in CSME CPU

Thank You!

Special thanks to CSME architecture, development, validation and
security research teams for their contribution to this presentation

