A Transport Layer Abstraction
for Peer-to-Peer Networks

Ronaldo A. Ferreira, Christian Grothoff and Paul Ruth
Department of Computer Sciences
Purdue University
{rf,grothoff,ruth} @cs.purdue.edu
http://www.gnu.org/software/GNUnet/

Abstract— The initially unrestricted host-to-host communica-
tion model provided by the Internet Protocol has deterioraed
due to political and technical changes caused by Internet gmth.
While this is not a problem for most client-server applications,
peer-to-peer networks frequently struggle with peers thatare
only partially reachable. We describe how a peer-to-peer fame-
work can hide diversity and obstacles in the underlying Intenet
and provide peer-to-peer applications with abstractions lhat hide
transport specific details. We present the details of an imgmen-
tation of a transport service based on SMTP. Small-scale be-
marks are used to compare transport services over UDP, TCP,ral
SMTP.

|. INTRODUCTION

Peer-to-peer networks are typically overlay networks énat
built on top of the existing Internet infrastructure. In aleal

same peer-to-peer network. In fact, two pedrand B may
want to use different modes of communication on the same link
For example, suppose nodkis behind a NAT box and cannot
be reached directly via UDP or TCP. In a system with multiple
transport protocols4 could initiate a connection by sending an
e-mail to B (SMTP) and then havé® contactA via TCP, al-
lowing A to continue further communication on a bidirectional
TCP connection.

We will use GNunet as our reference peer-to-peer system,
but it should be clear that the idea of a transport abstnacém
be applied to other system&Nunet is a peer-to-peer frame-
work whose main focus is on security [1], [5]. The goal of the
GNunet project is to become an important tool for free informa-
tion exchange in a world which is hostile toward uncontmblle
communication.GNunet’s primary design goals are to protect

overlay network, every node can communicate with everyrothge privacy of its users and to guard itself against attacks o
node. However, this is not always the case with the modesibuse.cnunet does not have any mechanism to control, track

Internet. Firewalls, network-address translation (NA&Yyides,

or censor users. Instead, tbelunet protocols aim to make it

and dynamic IP assignment via DHCP are create obstacles thethard as possible to identify specific network activitiego
global peer-to-peer applications need to overcome. Onigatendisrupt operations.

design goal for a peer-to-peer framework must thus be ta-virt

In this paper, we present a transport layer abstraction for

alize the network and give the application a view of a uniforeNunet and benchmarking results that evaluate the perfor-
address space and communication model. While it may not elance of the corresponding UDP, TCP and SMTP transport
ways be possible to guarantee connectivity from every nodeitnplementations. We will describe the SMTP transport im-
every other node, the details about the implementation @f thlementation in more detail, since this is the less conveati

transport layer should clearly be hidden from the applizati

choice.

Another important problem with communications over the

Internet is the increasing interference of governmentséraic-
tivities of their citizens. China, for example, blocks ass¢o

[l. GNUNET AND THE TRANSPORTLAYER
GNuUnet is a peer-to-peer framework that can support mul-

some news sites hosted outside the country [3]. It is ddsiralkiple applications [5]. It has a layered design (see Figyre 1

for a peer-to-peer system to offer transport protocolsthatbe

and normally runs as a daemon. The applications talk to the

used in spite of these circumstances. UDP and TCP can easilyunet daemongnunetd) in a client-server manner using
be blocked based on the port number associated with a specifP connections. Current examples of applications areyanon
application; on the other hand, some protocols, such as SMH#us file sharing (AFS) and a message exchange program

cannot be conveniently blocked without interfering withige s
nificant portion of users.

It should be clear from the discussion above that one of théementations of th&ransportAPI

(Chat). InGNunet, the servegnunetd is responsible for ac-
counting, routing and link encryption. The core relies on im
for the actual transport

most important design requirements for a peer-to-peeesystof messages.
is the support for a wide variety of transport mechanisms Th In GNunet, peers are identified mode identitieswhich are

goal is that a transport abstraction should support thespdt-
trum of transport services. These services may be uniéreadt
or bidirectional, stream-oriented or record-orientetiabde or
unreliable, and low-latency or high-latency. In particuiiis

desirable to support a mixture of these different featunebe

the hash codes of their public keys. TGrunet core provides
link-to-link encrypted transmission of messages to otloetas

that are identified by this node identity. The core binds each
node identity to an address in the underlying Internet. Tde n
ture of these network addresses depends upon which transpor

mechanism that is used. For example, for UDP and TCP, IP ad- typedef struct {

dress and port number are used. For SMTP, an e-mail addressis TSession ~ « tsession;
Hostldentity sender ;

used. The core is responsible for link-to-link encryptibimd- p2pHEADER % msg:
ing of node identities to routable addresses, and peendisgo unsigned int size;
This leaves the peer-to-peer applications concerned oitly w n penerypted:
node identities. Due to space limitations, we refer the eetal } MessagePack;
. . . i typedef struct {
[5] for more details aboutNunet and its various protocols; for unsigned int version
the remainder of this paper, we will concentrate on the frarts Hostldentity « myldentity ;
. void (* receive)(MessagePack mp);
abstraction. } CoreAPIForTransport;
s 5 Fig. 2. Data structure used in the interface core/trandpyet.
% AFS Ul Chat Ul %
L__TcPio J L_TCPio J not allow the use of cheaper protocols such as IP or UDP).
AES lib Chat lib In order to allow using any common transport protocol as
the basis for the transport layer, the size of the messages ex
Application Service AP changed between the core and the transport layer must lee eith
GNUnet CORE s fixed (and in this case equal to the smallest value among the
encryption, discovery 2 transport MTUsS) or communicated from the transport layer to
Transport Service API the core. While UDP can technically support datagrams of up
to 64KB, the operating system may impose a smaller MTU (see
‘ TCP H uDP ‘ ‘ SMTPH HTTP H IPV6 ‘ RFC 1122 [2], for example). Fragmentation consideratidns o
ten dictate even smaller message sizes, such as 1472 bytes on
Fig. 1. GNunet layers. ethernet. Other protocols, like SMTP, have no restrictions

the message size but may have a high per-message overhead.
Therefore, we advocate the idea that the transport layedgho

ication i r-to-peer networks is in- . o)
Node to noo!e communicationin peer-1o-peer NEWOTKS IS Wy ertise a transport-specific MTU to the core. The coregr th
herently unreliable. In contrast to client-server arattiees,

.) ; responsible for queuing multiple application messages ant
node failure is part of the normal mode of operation. But even .
. . . rger message (which must be smaller than the MTU) and us-
if nodes do not fail, the transport layer may be built on top o

an unreliable communication protocol such as IP or UDP. Tr;&?r the transport layer to transmit this message. The sstalle

; L . U should ideally be larger than the largest single applica
design question in this case is whether or not the transpypet| . PO : ;
) . ; . .. tion message, but if this is impossible, the core could glevi
implementation should hide this fact and guarantee dsfiifer fraomentation and reassembl
the other node is reachable. In other words, the question 29 Y-
whether or not the transport layer or core should providie rel
able communication like TCP and hide the unreliability af thA- The core API
network, or if all network problems should be exposed to the The GNunet core provides a very simple interface, the
application. CoreAPIForTransport data structure, to the transport
In peer-to-peer systems, it is better to expose the unikliabayer. It consists of the methagceive which is invoked
ity of the transport layer to applications. There are migtip by the transport layer whenever a message is received. The
reasons for this. For instance, it forces the programmes+o @ore API data structure also contains a version number and
sume that every communication can fail. This is a good idélae identity of the local node. Figure 2 shows the data struc-
since a reliable transport abstraction may give applicatie- ture. A pointer to this data structure is passed to an iral
signers a false sense of reliability that cannot fully beiegtd tion method ihittransport) that the transport layer im-
since peers can still fail. Another reason is that many appfilementation must implement. Thettransport method
cations may not require reliable communications; for exampthen returns a data structure with the methods that the eore ¢
a flooding search may send out 12 queries in parallel, andrifioke on the transport layer (see section II-B).
one of them is lost on the transport layer, it is still possibl The receive method from the core interface takes one
that the remaining 11 queries will return a sufficient nuntifer message as its argument. The message contains a transport se
results. Adding retransmission on the transport layer @s¢h sion handle TSessiop This handle is used to identify a trans-
cases merely increases the overhead without providing @y mort session (e.g. a TCP stream). Th®essiorcontains the
jor benefit. type id of the transport and an opaque handle that the transpo
The same rationale applies to the question of ordered deliayer is free to define. The transport layer can pass NULL for
ery. Choosing the weaker semantics (no guarantee for ofdetle session handle if the specific transport implementdtam
delivery) makes the transport layer cheaper and moreeasilino notion of sessions.
to attacks. For both reliability and message ordering, rtiuest The second fieldsender) is the node identity of the sender
port layer implementation may still use an underlying pcolo of the message. The transport layer must communicate this in
such as TCP that has stronger semantics; This might hapgenmation, but the means by which this is communicated are up
for example, because the network or the host configuraties dao the transport implementation. For example, UDP messages

typedef struct { called whenGNunet is ready to receive messages from the

uns@gneg sﬂor: prtotocolNumber: transport layer. It should be used to start a server thresdftr
unsigne short mtu; . . .
unsigned int cost: example, listens on some port for incoming messages. When

int (x verifyHelo)(HELO.Messagex helo); GNuUnet is stopped, it callstopTransportServer in or-
int (*x createHELO)(HELQMessagexx helo);

int (x connect)(HELQMessagex helo, TSessionkxtsession)def to give the transport a chance to shutdown properly.

int (« send)(TSession tsession , void xmsg, GNunet uses so-callddELO messages to notify other nodes
unsigned int size, int isEncrypted, . .
int crc); about available transports. AELO message contains, among
int (« associate)(TSession tsession); other things, the transport protocol number and the address
int (x disconnect)(TSessiom tsession); . .
int (startTransportServer Moid); of the transport endpoint. Since tleunet core does not
int (« stopTransportServer)oid); know anything about the addressing scheme used by the trans-
void (*x reloadConfiguration){oid); ; . .
} TransportAPI ; port mechanism (it could be anything, from an IP address
and port number to an e-mail address or an IPv6 address), it
Fig. 3. The transport API. calls createHELO on the transport mechanism in order to

obtain this information.HELO messages are of variable size

)) o . with the transport-layer address being the variable-kefigtd
contain the sender identity in every message, whereas in the yerAddress at the end of the messagereateHELO

TCP implementation, the client sends its identity only witen ;¢ supposed to fill in the fieldsenderAddressSize |, pro-
connectionis established (but never thereafter). __tocol , MTUandsenderAddress . createHELO returns

The remaining four arguments describe the message itSgiicon syccesscreateHELO can fail; for example, it may fail
They are all passed to the transport layer by the core. Theye transport service is unidirectional (send only) aadrot
consist of a pointer to the message itself, the size of the Mgy yqyertised as an address under which the local node can be
sage, a flag specifying whether the message is in plain text .t cheq. This might, be the case, for example, with a TCP ser-
encrypted, and the CRC32 checksum of the plain text messageg pehind a NAT box. If the TCP implementation is aware of
The transport layer is not concerned with encryption or witfy o NAT problem, it may decide to always retuYSERRN

verification of the checksum; it is only concerned with trangeateHELO and thus ensure that other nodes will never at-
mitting these four pieces of information. The details alW o5t 1 initiate a TCP connection. In this case, the TCPiserv

this information is communicated are again transport4igec 4 only be used for outbound connectionsdayunet.

and not specified. The functionverifyHelo is a counterpart tareateH-
ELQ ltis invoked whenevesNunet receives &IELO message

B. The Transport Interface with the same transport protocol iderifyHelo is supposed

TheTransportAPl is again a data structure containing 40 check whether the sender address specified iHEieO con-
list of function pointers, see Figure 3. It provides acceshtee forms to the standards set for sender addresses in the specifi
fields and nine methods which exteasiunet with a new trans- transport mechanisnverifyHelo does not have to verify if
port service. A new transport mechanism can be integrated ithe rest of thaHELOis well-formed or if the address is actually
GNuUnet by building a dynamic librarlibgnunettrans- reachableverifyHelo ~ may check if the user has configured
port _XXXthat exports a functiomittransport XXX If the transport mechanism to specifically deny sending messag
GNunet finds a command to load the transport nan¥Xin to that address (a blacklist mechanism: this may, for exampl
the configuration file, it will load this dynamic library and-i prevent attempts to connect to a 10.0.0.0 IP network).
voke theinittransport XXXmethod passing the core APl The remaining four methods are the ones actually concerned
described in the previous sectiomittransport XXXis with sending messagesonnect is used to establish a con-
then supposed to return a pointer to ffransportAPI data nection to a remote nodeonnect is passed &ELO mes-
structure, or NULL on error. sage and, if successful, is supposed to set its second angume

The transport API data structure contains three fields. Thethe transport sessiofi$ession) that was established. The
first field is the protocol number, which is a unique, small AunTSession handle is used by the core in callssend to iden-
ber that can be used to identify the transport protocol asid tify where to send the message. The other argumerssrid
GNuUnet. The second field is the maximum transfer unit (MTUWre the message itself, the size of the message, the irficzti
supported by the transport implementation. tfmunet trans- whether the information is encrypted, and the checksumeof th
port implementation is stream-oriented (like TCP) and has message in plain text. These provide the transport meahanis
obvious limit on the message size, the MTU should be choseith all four arguments that must be passed to réeeive
such that a reasonable trade-off between per-messagesaderhfunction of the core at the receiver node. Tdisconnect
IP-level fragmentation and latency is achieved. The thettifi method does the opposite obnnect ; it shuts down a con-
defines thecostof using this transport mechanism comparedection and deallocates the resources associated withgart
to other services. For example, UDP is typically cheapen théicular, the transport implementation must free Ti&ession
TCP, and TCP is much cheaper than SMTP. Given the choic@ta structures that were create¢damnect .
the GNunet core will choose the cheapest available transportWhile it seems that the set of functions described so far
mechanism to send a message. would be sufficient, we need one additional methasiso-

The first function thaGNunet will typically call on the trans- ciate , in order to handle bidirectional transport mechanisms.
port API is startTransportServer . This function is The problem with bidirectional transports is that a sessomt

always initiated by the locaNunet core callingonnect , but traffic. The only gain thall/ has potentially achieved is that it
may instead have been started by a remote node.GNumet was able to hide its identity fror.

core first sees the session when the transport layer realls

ceive . At this point, two things may happen. Either the core 1. EXAMPLE: SMTP IMPLEMENTATION

decides to use the bidirectional session to send replietheor

, X WhenGNunet starts running, it loads all the transport mod-
core uses another (potentially cheaper) transport mesimeoi g P

o .. ules defined in its configuration file. During this procesg, th
answer, it answers at 9"- If the core wants to use the e?gst initialization code of the SMTP transport opens a connedtio
session to send replies, it must retain the transport Sessio- . s\iTp server (sendmail, gmail, etc.) that is running eithe
dle. Withoutassociate , this would cause problems becausg, 1 |oca) host or remotely; this connection will be used to
the transport layer would not know when to close the connegs . 4 messages to the other peers. Observestianet does

tion and free the resources. Thus, we require the core td’“m\’(?wt establish a direct SMTP connection to the other peets, bu

associate if it decides to use the transport session for fUlsalies instead on existing mail transfer agents (MTAS) tadse

ther communicationassociate is similar toconnect in the messages.

that it ensures that the session handle is valid until the calts
disconnect . The implementation odssociate is simi-

lar to reference counting in garbage collecticonnect and A. Sending E-mail _ _
associate increment the reference counteisconnect When the SMTP transport service receives a message from

decrements it. the GNunet core, the message is extended with a header
Another important detail in the implementation of bithat contains the node identity of the sender and the meta-

directional transports is that they must time out stale egan information provided in the parameters #nd . The result-
tions. The current interface would allow nodes to estakdishind message is base64 encoded, encapsulated accordirgg to th
connection that would last indefinitely without being usedr MIME conventions [4], and sent to the MTA over the pre-
example, the core of nodé may decide to establish a Ch%peq-;;xisting TCP connection. Most MTAs store the mail on the
way to communicate and not &ssociate with an inbound drive before sending an acknowledgement to the client in or-
connection. The transport of nodecannot instantly close the der to ensure guaranteed delivery even after a crash. Witsle t
session since the other nodemay still be using it to send is not required forgNunet mail (especially since the seman-
data. ButB may keep the connection open for the same refics only specify unreliable communications), this dis s
son; it may expect to receive data frafinon that connection. & Significant overhead for the SMTP transport. The MTA then
Thus, the transport service must time out sessions thatadre f¢solves the destination address using DNS (MX record) and
associated with the core for writing. contacts the remote mail server, which again receives tlee me
sage via SMTP and initiates delivery.

C. Security Considerations B. Receiving E-mail

An interesting security problem in peer-to-peer networks In order forGNunet to receive an inbound e-mail, the mail
arises when malicious nodes advertise invalid or incopeetr must first be delivered to the local machine. If the local niraeh
addresses. For example, it would be possible in Gnutellto[6]is the receiving host according to the MX record for the etmai
advertiseexample.com as a peer; even the port can be freelgddress, this step is handled by the SMTP protocol. But in the
chosen in the advertisement. If peers spread this advesise case where theNnunet node runs behind a NAT box, the mail
and frequently attempt to connect to this host, the pegetr- will typically be stored on the mail server at the ISP. In this
network could become a tool for a distributed denial of sEvi case, the host will periodically poll for new mail, for exal@p
attack. On the other hand, without a central server, thétyabilusing a POP client. Under this last configuration, the pgllin
of peers to advertise other peers cannot be avoided. interval will be a major contributor to the delay in the SMTP

Our solution to this problem is that every pekthat receives transport. FoircNunet to work properly, we assume that one
an advertisement for another pggmust check that the adver-minute is a reasonable interval. Polling with POP can e&sly
tised address is valid by sending a PING message containmmgomated usinfgetchmail , a tool that is available for most
achallenge(a randomly chosen integer) to the advertised peBiNIX systems.

B. If B receives the PING, it responds with a PONG mes- In many cases, this is not the only problem. Normally users
sage which also contains the challenge, confirming thatrit cwill have only one e-mail account available. Thus it is nec-
be reached under this address. Only after this protocoléas bessary to filter the inboundnunet messages from the other
run shouldA notify other peers oB3’s existence. This preventsmessages that are destined for the user. Since we do not want
a malicious nodé// from advertising a non-participating thirdto tag all GNunet e-mails with a uniform header (this would
party 7' on the network sincd” would not properly respond make it too easy for adversaries to filter and effectivelyscen

to A’s PING. M also cannot easily fabricate a PONG fBr GNunet traffic), the advertisement for the SMTP address of the
because the message senfXa@ontains a challenge which ispeer does not only contain an e-mail address but alfibea
unknown toM. While M has trickedA4 into sending a single line. The sender is required to add this line to the headaceSi
message (the PING) B, this cannot be used to seriously attackhe receiver of the e-mail specified which filter to upegc-

T sinceM had to send a messageAdirst. If A/ had sentthe mail can be used to distinguish mails that have the appropri-
message directly t@, it would have caused an equal amount ddite filter line. The user can change the filter line whenever he

| Transport]| UDP | TCP | Purdue| RH 8.0 [gmail |

:0: 11 bytes|| 31ms| 55 ms| 781 s 89s| 24 s
* \"X-mailer: GNUnet 407 bytes|| 37ms| 62 ms| 789 s 98s| 25s
/tmp/gnunet.smtp 1,221 bytes|| 46ms| 73 ms| 804 s 98s| 25s

Fig. 5. Time to send 1000 messages (transport only).

Ivar/spool/mail/SUSER

Fig. 4. Example procmail configuration with “X-mailer: GNEgi as the filter A more sophisticated attack involves mailing lists. Thetpro

line and */imp/gnunet.smtp” as the name of the pipe. lem here is, that an adversary could subscribe to a mailig i
and then advertise the address of the mailing listGotunet.
deers would send mail to the list and the adversary could send
responses to the PING messages since he is one of the recip-
ients. Since the peers can confirm that the address is valid,
hey would now start advertising the address, causing exea m

wants; it will, of course, take some time to propagate the n
address information into the network.

Finally, procmail needs to be informed of how to deliver
the cNunet mail to thegnunetd process. The easiest way i i) ;
to use a named pipe (fifo). The user specifies inghinet traffic for the list. In this way, an adversary could anonysigu
configuration the name of the pipe, apbcmail writes the drown any open mailing list in unsolicited traffic. The -saxhut
filtered mail into that pipe. The SMTP transport then reads tiC this problemiis to ensure thaNunet SMTP traffic will not
mail, decodes the base64 encoded body and forwards the nfésiorwarded by any modern mailing list software. This can be
sage to thesnunet core. An exampleprocmailr config- achieved by making evergnunet e-mail look like a bounce
uration file is given in Figure 4. message [7]. Bounce messages are L_lsed to nofufy the sender

of an e-mail about an invalid or unavailable receiver adslres
)]] Since mailing lists often have the problem that one of its mem
C. Security considerations for SMTP bers is unavailable, it is safe to assume that bounces asgslw

The primary security problem with SMTP is the potential fofiltered.
harassment of users. Other transports (UDP, TCP, HTTP) have
this problem to a much lesser extent. While sending massive
amounts of traffic can become an attack with every transport IV. PERFORMANCEMEASUREMENTS
protocol, fairly moderate amounts of data can become a prob-
lem when sent to a user via e-mail, especially if the user is no For the measurementsNunet was configured to only use
educated enough to filter the spam. Still, it is possible ® usne transport service for the benchmarks; automaticalizbw
SMTP as one possible transport mechanism for peer-to-péey to a more efficient protocol was thus impossible. In a first
networking. SincesNunet is completely decentralized, a sobenchmark, the latency of the UDP, TCP and SMTP trans-
lution to the security challenge requires that peers be @bleport services was measured. For this, the service was called
advertise e-mail addresses of other peers on the network. to send a message to itself. This gives a network-independen

In order to prevent attacks, every peer first validates the approximation of the overhead of the service on the pedf.itse
vertisements before using the e-mail address for actuastraThe loopback measurements of the SMTP transport were per-
mission or advertising it further. The validation proceglue- formed on three different machines spanning a range of nmoder
quires the peer to send an e-mail message containingimet SMTP configurations. We used a Pentium IIl 800MHz running
PING message together with advertisements for its own traf&edHat 7.3 with thePurdue Computer Science configuration
ports to the peer. If the peer responds with a prapeunet which includes filters for spam. We also used a Xeon 2GHz
PONG message, the address is considered valid. Every PIN{Eh a vanilla RedHat8.0 sendmail configuration. Further-
message contains a random number (challenge) that the mere, we used gmail on a Pentium Il 1GHz running Sorcerer
sponding peer must copy into the PONG message. This mak&sU Linux (SGL. The numbers for UDP and TCP are pro-
it impossible to send a fake PONG reply for anybody that dog&led using the SGL configuration. The gmail benchmark uses
not control a router on the path between the two peers. Nafmail’s internal filtering whereas the sendmail benchmasdes
that the PONG message does not have to use the SMTP tragmmecmail to filter and deliver the mail. We used the trans-
port mechanism; any known transport for the peer willdo. port layer to send a message ipbytes (excluding transport

This mechanism ensures that a malicious peer that sendspastocol headers) directly to the local machine. This way; n
advertisement for an invalid (naeNunet) e-mail address will work latency and packet losses on the wire have no impact on
trick the receiving peer into sending at most one small ngessahe time measurements.messages were sent sequentially over
to that address. The bandwidth that the adversary spendstlomtransport layer, sending messagel after thei-th message
sending advertisements is thus proportional to the amdueit o was received. All messages were sent over the same conmectio
mail that the victim receives. More importantly, the adeeys and the time to establish the connection was not taken into ac
is not anonymous. While the victim does not receive the maibunt since this overhead is minuscule in practice — as lsng a
directly from the attacker, it is clear that the attackehismode a connection is used for a significant number of messages. The
sending the advertisements since no honest node will send benchmarks show that UDP and TCP are, as expected, both
vertisements without having received the PONG confirmatiorsignificantly faster compared with any of the SMTP services
Thus, it is possible to track down the attacker. (in particular with the gmail benchmark that was run on the

same machine and is recognized to be much faster than seBithce the application does not limit the transmission rttte,
mail). Among the SMTP implementations, there can be signifinux kernel starts dropping messages shortly after thi sfa
icant differences depending on the SMTP configurationefilt the benchmark. This allows the application to finish sendihg

ing with an external tool likgorocmail that needs to reload the messages earlier — the processing time of a droppedtpacke
and parse its configuration for each mail can be very expdas-smaller — but the loss rate can become quite dramatia) ofte
sive. Applying spam filters can also significantly impact thexceeding 70%. For TCP, the situation is the same, only that
performance of the underlying SMTP implementation. The milue to the inherent protocol overhead, the throughputdsti

cro benchmark shows that SMTP can be a viable solution faorse with at most 3,627 kbps. The high packet loss that sccur
initiating peer-to-peer sessions: a few seconds to cornext in this naive design can be avoided by reducing the rate attwhi

peer will probably not even be noticed by users. the application sends messages. Figure 7 shows the rémtlts t
can be achieved if the application sends the packets instrain

vor o with hand-tuned spacing between the trains. Conceptuhéy,
! ! B delays are equivalent to congestion control in TCP, butesinc

o8 o8 o the timers available to the application are more coarsegdi

the performance is worse than in real TCP, even if hand-tuned

for a static testbed. Note that TCP is a bit easier to tuneesinc

, the TCP windows with the better timers available to the OS can

e e help leverage the coarse-grained application level tinfEss,

_ _ _ , with up to 3,310 kbps throughput, TCP throughput is (while

E'gbeéndsfgg'Rgnls’gggsmﬁfﬁggte:pgzilﬁgpo octets payload ethnreliable), o random) a bit better than the 2,343 kbps of UDP. .

For SMTP, we only show the rate-controlled numbers. Fig-

e e ure 8 shows that the SMTP throughput for messages of size

: ;’jﬂi 1 ":*;%W 1,200 octets is 6 kbps. The high per-message overhead can be

o8 B o8 ot alleviated by increasing the message size to 12,000 ocgets,

° o sulting in 13 kbps throughput. A major bottleneck in thiseas

Percentage of Received Messages

Percentage of Received Messages

0.6

Percentage of Received Messages
Percentage of Received Messages

0.4 P 0.4 -
ol e A < is sendmail writing every message onto the drive when the mes
olet” N W sage is queued. By using a RAM-drive for the mail queue (vi-
0 100 200 300 400 500 600 0 100 200 300 400 500 600 . . ags . .
Time () Time () olating SMTP reliability in the case of a machine crash), the

Fig. 7. Sending 1,000 messages of 1,200 octets payload esitti-bptimized throyghput can be increased .tO 51 kl?pS, which is still about
spacing between message-trains. 50 times slower than UDP with spacing. As shown by the

loopback-benchmark, other MTAs may have different perfor-
mance characteristics.

SMTP MTUs 1,200 vs. 12,000 SMTP - Impact of Disc /O

1 x 1 -, -

0.8 0.8

ol V. CONCLUSION

. i We have presented the design of a transport abstraction for
Cl Sl peer-to-peer systems. The abstraction can support a wide ra

O 20 060 80 100 120140 160 100 200 O 1020 3 A0 0 %070 80 %0 0 of underlying transport mechanisms and we have implemented
_ _ o S _ service modules for UDP, TCP and SMTP. While the bench-
for the same total payload wih ifierent MTUs and witthath RAM-dise. arks clearly show that SMTP is significantly worse in terms
for the mail spool. of performance, the service can still be useful to initiate@-c
nections and negotiate the use of a cheaper service. We have

dressed security concerns that arise with the use of SMTP

The second set of benchmarks measures the poss| %Iarguedwhyapeer-to-peertransportabstractionshauhj
throughput for a transport. Throughput can be measured Nreliable semantics

sending multiple messages in parallel and measuring packet
loss. Note that not only UDP but also the TCP transport can R
actually lose messages, since the TCP implementation dr([)BsK Bennett. C. Grothoff TEHFERENCEdSI bat &t Sharing of
. . . . bennett, C. Grotnholt, |. RHorozov, ana |. Patrascu. n aring o
messages if thavrite to the socket blocks. Fpr this bench- Encrypted Data. IProceedings of ASCIP 2002002.
mark, we report the message loss after allowirsgconds for [2] R. Braden. Requirements for Internet Hosts — Commuitinat.ayers.
sendingm messages. If messages were not sent (or received)RFC 1122, IETF, October 1989. .
ds. th id dl he b h K 3] “N. Feamster, M. Balazinska, G. Harfst, H. Balakrishnand D. Karger.
aftert secon _S' they were considere OSt.- The eqc mar Sinfranet: Circumventing Web Censorship and Surveillamc®roceedings
performed using two Xeon 2 GHz machines running RedHat of the11" USENIX Security Symposiuan Francisco, CA, 2002.
; i ; ; ; N. Freed and N. Borenstein. Multipurpose Internet Maittéhsions
8.0 Wlth.sendma”' The maChme? were connected via a dirét (MIME) Part One: Format of Internet Message Bodies. RFC 20&5F,
100 MBIt ethernet connection. Figure 6 shows the percentage november 1996.
of 1,000 messages with a payload of 1,200 octets that could[fle The GNunet Project. http://www.gnu.org/software/gnunet/.
received after seconds if the messages were passed to the K&}-Cnutella. http://gnutelia.wego.com.
. e . . K. Moore and G. Vaudreuil. An Extensible Message FornaatDelivery
nel without any artificial delays. The maximum throughputin" status Notifications. RFC 1894, IETF, January 1996.

this case is about 4,169 kilobytes per second (kbps) for UDP.

0.6

0.4

Percentage of Received Messages
Percentage of Received Messages

