
A Transport Layer Abstraction
for Peer-to-Peer Networks
Ronaldo A. Ferreira, Christian Grothoff and Paul Ruth

Department of Computer Sciences
Purdue Universityfrf,grothoff,ruthg@cs.purdue.edu

http://www.gnu.org/software/GNUnet/

Abstract— The initially unrestricted host-to-host communica-
tion model provided by the Internet Protocol has deteriorated
due to political and technical changes caused by Internet growth.
While this is not a problem for most client-server applications,
peer-to-peer networks frequently struggle with peers thatare
only partially reachable. We describe how a peer-to-peer frame-
work can hide diversity and obstacles in the underlying Internet
and provide peer-to-peer applications with abstractions that hide
transport specific details. We present the details of an implemen-
tation of a transport service based on SMTP. Small-scale bench-
marks are used to compare transport services over UDP, TCP, and
SMTP.

I. I NTRODUCTION

Peer-to-peer networks are typically overlay networks thatare
built on top of the existing Internet infrastructure. In an ideal
overlay network, every node can communicate with every other
node. However, this is not always the case with the modern
Internet. Firewalls, network-address translation (NAT) devices,
and dynamic IP assignment via DHCP are create obstacles that
global peer-to-peer applications need to overcome. One central
design goal for a peer-to-peer framework must thus be to virtu-
alize the network and give the application a view of a uniform
address space and communication model. While it may not al-
ways be possible to guarantee connectivity from every node to
every other node, the details about the implementation of the
transport layer should clearly be hidden from the application.

Another important problem with communications over the
Internet is the increasing interference of governments in the ac-
tivities of their citizens. China, for example, blocks access to
some news sites hosted outside the country [3]. It is desirable
for a peer-to-peer system to offer transport protocols thatcan be
used in spite of these circumstances. UDP and TCP can easily
be blocked based on the port number associated with a specific
application; on the other hand, some protocols, such as SMTP,
cannot be conveniently blocked without interfering with a sig-
nificant portion of users.

It should be clear from the discussion above that one of the
most important design requirements for a peer-to-peer system
is the support for a wide variety of transport mechanisms. The
goal is that a transport abstraction should support the fullspec-
trum of transport services. These services may be unidirectional
or bidirectional, stream-oriented or record-oriented, reliable or
unreliable, and low-latency or high-latency. In particular, it is
desirable to support a mixture of these different features in the

same peer-to-peer network. In fact, two peersA andB may
want to use different modes of communication on the same link.
For example, suppose nodeB is behind a NAT box and cannot
be reached directly via UDP or TCP. In a system with multiple
transport protocols,A could initiate a connection by sending an
e-mail toB (SMTP) and then haveB contactA via TCP, al-
lowingA to continue further communication on a bidirectional
TCP connection.

We will use GNUnet as our reference peer-to-peer system,
but it should be clear that the idea of a transport abstraction can
be applied to other systems.GNUnet is a peer-to-peer frame-
work whose main focus is on security [1], [5]. The goal of the
GNUnet project is to become an important tool for free informa-
tion exchange in a world which is hostile toward uncontrolled
communication.GNUnet’s primary design goals are to protect
the privacy of its users and to guard itself against attacks or
abuse.GNUnet does not have any mechanism to control, track
or censor users. Instead, theGNUnet protocols aim to make it
as hard as possible to identify specific network activities or to
disrupt operations.

In this paper, we present a transport layer abstraction for
GNUnet and benchmarking results that evaluate the perfor-
mance of the corresponding UDP, TCP and SMTP transport
implementations. We will describe the SMTP transport im-
plementation in more detail, since this is the less conventional
choice.

II. GNUNET AND THE TRANSPORTLAYER

GNUnet is a peer-to-peer framework that can support mul-
tiple applications [5]. It has a layered design (see Figure 1),
and normally runs as a daemon. The applications talk to the
GNUnet daemon (gnunetd) in a client-server manner using
TCP connections. Current examples of applications are anony-
mous file sharing (AFS) and a message exchange program
(Chat). InGNUnet, the servergnunetd is responsible for ac-
counting, routing and link encryption. The core relies on im-
plementations of theTransportAPI for the actual transport
of messages.

In GNUnet, peers are identified bynode identities, which are
the hash codes of their public keys. TheGNUnet core provides
link-to-link encrypted transmission of messages to other nodes
that are identified by this node identity. The core binds each
node identity to an address in the underlying Internet. The na-
ture of these network addresses depends upon which transport

mechanism that is used. For example, for UDP and TCP, IP ad-
dress and port number are used. For SMTP, an e-mail address is
used. The core is responsible for link-to-link encryption,bind-
ing of node identities to routable addresses, and peer discovery.
This leaves the peer-to-peer applications concerned only with
node identities. Due to space limitations, we refer the reader to
[5] for more details aboutGNUnet and its various protocols; for
the remainder of this paper, we will concentrate on the transport
abstraction.

Application Service API

Transport Service API

Chat UIAFS UI

gn
un

et
−

ch
at

gn
un

et
−

gt
k

gn
un

et
dGNUnet CORE

encryption, discovery

TCP UDP SMTP HTTP IPv6

Chat lib

TCP IOTCP IO

AFS lib

Fig. 1. GNUnet layers.

Node to node communication in peer-to-peer networks is in-
herently unreliable. In contrast to client-server architectures,
node failure is part of the normal mode of operation. But even
if nodes do not fail, the transport layer may be built on top of
an unreliable communication protocol such as IP or UDP. The
design question in this case is whether or not the transport layer
implementation should hide this fact and guarantee delivery if
the other node is reachable. In other words, the question is
whether or not the transport layer or core should provide reli-
able communication like TCP and hide the unreliability of the
network, or if all network problems should be exposed to the
application.

In peer-to-peer systems, it is better to expose the unreliabil-
ity of the transport layer to applications. There are multiple
reasons for this. For instance, it forces the programmer to as-
sume that every communication can fail. This is a good idea
since a reliable transport abstraction may give application de-
signers a false sense of reliability that cannot fully be achieved
since peers can still fail. Another reason is that many appli-
cations may not require reliable communications; for example,
a flooding search may send out 12 queries in parallel, and if
one of them is lost on the transport layer, it is still possible
that the remaining 11 queries will return a sufficient numberof
results. Adding retransmission on the transport layer in these
cases merely increases the overhead without providing any ma-
jor benefit.

The same rationale applies to the question of ordered deliv-
ery. Choosing the weaker semantics (no guarantee for order of
delivery) makes the transport layer cheaper and more resilient
to attacks. For both reliability and message ordering, the trans-
port layer implementation may still use an underlying protocol
such as TCP that has stronger semantics; This might happen,
for example, because the network or the host configuration does

typede f s t r uc t f
TSess ion � t s e s s i o n ;
H o s t I d e n t i t y sender ;
p2p HEADER � msg ;
unsigned in t s i z e ;
i n t i s E nc ryp te d ;
i n t crc ;g MessagePack ;

typede f s t r uc t f
unsigned in t ve rs ion ;
H o s t I d e n t i t y � myIde n t i t y ;
void (� re c e i ve) (MessagePack� mp) ;g CoreAPIForT ranspor t ;

Fig. 2. Data structure used in the interface core/transportlayer.

not allow the use of cheaper protocols such as IP or UDP).
In order to allow using any common transport protocol as

the basis for the transport layer, the size of the messages ex-
changed between the core and the transport layer must be either
fixed (and in this case equal to the smallest value among the
transport MTUs) or communicated from the transport layer to
the core. While UDP can technically support datagrams of up
to 64KB, the operating system may impose a smaller MTU (see
RFC 1122 [2], for example). Fragmentation considerations of-
ten dictate even smaller message sizes, such as 1472 bytes on
ethernet. Other protocols, like SMTP, have no restrictionson
the message size but may have a high per-message overhead.
Therefore, we advocate the idea that the transport layer should
advertise a transport-specific MTU to the core. The core is then
responsible for queuing multiple application messages into a
larger message (which must be smaller than the MTU) and us-
ing the transport layer to transmit this message. The smallest
MTU should ideally be larger than the largest single applica-
tion message, but if this is impossible, the core could provide
fragmentation and reassembly.

A. The core API

The GNUnet core provides a very simple interface, the
CoreAPIForTransport data structure, to the transport
layer. It consists of the methodreceive which is invoked
by the transport layer whenever a message is received. The
core API data structure also contains a version number and
the identity of the local node. Figure 2 shows the data struc-
ture. A pointer to this data structure is passed to an initializa-
tion method (inittransport) that the transport layer im-
plementation must implement. Theinittransport method
then returns a data structure with the methods that the core can
invoke on the transport layer (see section II-B).

The receive method from the core interface takes one
message as its argument. The message contains a transport ses-
sion handle (TSession). This handle is used to identify a trans-
port session (e.g. a TCP stream). TheTSessioncontains the
type id of the transport and an opaque handle that the transport
layer is free to define. The transport layer can pass NULL for
the session handle if the specific transport implementationhas
no notion of sessions.

The second field (sender) is the node identity of the sender
of the message. The transport layer must communicate this in-
formation, but the means by which this is communicated are up
to the transport implementation. For example, UDP messages

typede f s t r uc t f
unsigned short pro toco lNumber ;
unsigned short mtu ;
unsigned in t c os t ;
i n t (� ve r i f yHe lo) (HELO Message� he lo) ;
i n t (� createHELO) (HELOMessage�� he lo) ;
i n t (� connec t) (HELOMessage� he lo , TSess ion�� t s e s s i o n) ;
i n t (� send) (TSess ion� t s e s s i o n , void �msg ,

unsigned in t s i z e , i n t i s E nc ryp te d ,
i n t crc) ;

i n t (� a s s o c i a t e) (TSess ion� t s e s s i o n) ;
i n t (� d i s c onne c t) (TSess ion� t s e s s i o n) ;
i n t (� s t a r t T r a n s p o r t S e r v e r) (void) ;
i n t (� s t o p T r a n s p o r t S e r v e r) (void) ;
void (� r e l o a d C o n f i g u r a t i o n) (void) ;g Transpor tAPI ;

Fig. 3. The transport API.

contain the sender identity in every message, whereas in the
TCP implementation, the client sends its identity only whenthe
connection is established (but never thereafter).

The remaining four arguments describe the message itself.
They are all passed to the transport layer by the core. They
consist of a pointer to the message itself, the size of the mes-
sage, a flag specifying whether the message is in plain text or
encrypted, and the CRC32 checksum of the plain text message.
The transport layer is not concerned with encryption or with
verification of the checksum; it is only concerned with trans-
mitting these four pieces of information. The details abouthow
this information is communicated are again transport-specific
and not specified.

B. The Transport Interface

TheTransportAPI is again a data structure containing a
list of function pointers, see Figure 3. It provides access to three
fields and nine methods which extendGNUnet with a new trans-
port service. A new transport mechanism can be integrated into
GNUnet by building a dynamic librarylibgnunettrans-
port XXXthat exports a functioninittransport XXX. If
GNUnet finds a command to load the transport namedXXX in
the configuration file, it will load this dynamic library and in-
voke theinittransport XXXmethod passing the core API
described in the previous section.inittransport XXX is
then supposed to return a pointer to theTransportAPI data
structure, or NULL on error.

The transport API data structure contains three fields. The
first field is the protocol number, which is a unique, small num-
ber that can be used to identify the transport protocol inside of
GNUnet. The second field is the maximum transfer unit (MTU)
supported by the transport implementation. If aGNUnet trans-
port implementation is stream-oriented (like TCP) and has no
obvious limit on the message size, the MTU should be chosen
such that a reasonable trade-off between per-message overhead,
IP-level fragmentation and latency is achieved. The third field
defines thecost of using this transport mechanism compared
to other services. For example, UDP is typically cheaper than
TCP, and TCP is much cheaper than SMTP. Given the choice,
the GNUnet core will choose the cheapest available transport
mechanism to send a message.

The first function thatGNUnet will typically call on the trans-
port API is startTransportServer . This function is

called whenGNUnet is ready to receive messages from the
transport layer. It should be used to start a server thread that, for
example, listens on some port for incoming messages. When
GNUnet is stopped, it callsstopTransportServer in or-
der to give the transport a chance to shutdown properly.

GNUnet uses so-calledHELOmessages to notify other nodes
about available transports. AHELO message contains, among
other things, the transport protocol number and the address
of the transport endpoint. Since theGNUnet core does not
know anything about the addressing scheme used by the trans-
port mechanism (it could be anything, from an IP address
and port number to an e-mail address or an IPv6 address), it
calls createHELO on the transport mechanism in order to
obtain this information.HELO messages are of variable size
with the transport-layer address being the variable-length field
senderAddress at the end of the message.createHELO
is supposed to fill in the fieldssenderAddressSize , pro-
tocol , MTUandsenderAddress . createHELO returns
OKon success.createHELO can fail; for example, it may fail
if the transport service is unidirectional (send only) and cannot
be advertised as an address under which the local node can be
reached. This might, be the case, for example, with a TCP ser-
vice behind a NAT box. If the TCP implementation is aware of
the NAT problem, it may decide to always returnSYSERRin
createHELO and thus ensure that other nodes will never at-
tempt to initiate a TCP connection. In this case, the TCP service
would only be used for outbound connections byGNUnet.

The functionverifyHelo is a counterpart tocreateH-
ELO. It is invoked wheneverGNUnet receives aHELOmessage
with the same transport protocol id.verifyHelo is supposed
to check whether the sender address specified in theHELOcon-
forms to the standards set for sender addresses in the specific
transport mechanism.verifyHelo does not have to verify if
the rest of theHELO is well-formed or if the address is actually
reachable.verifyHelo may check if the user has configured
the transport mechanism to specifically deny sending messages
to that address (a blacklist mechanism: this may, for example,
prevent attempts to connect to a 10.0.0.0 IP network).

The remaining four methods are the ones actually concerned
with sending messages.connect is used to establish a con-
nection to a remote node.connect is passed aHELO mes-
sage and, if successful, is supposed to set its second argument
to the transport session (TSession) that was established. The
TSession handle is used by the core in calls tosend to iden-
tify where to send the message. The other arguments tosend
are the message itself, the size of the message, the indication of
whether the information is encrypted, and the checksum of the
message in plain text. These provide the transport mechanism
with all four arguments that must be passed to thereceive
function of the core at the receiver node. Thedisconnect
method does the opposite ofconnect ; it shuts down a con-
nection and deallocates the resources associated with it. In par-
ticular, the transport implementation must free theTSession
data structures that were created inconnect .

While it seems that the set of functions described so far
would be sufficient, we need one additional method,asso-
ciate , in order to handle bidirectional transport mechanisms.
The problem with bidirectional transports is that a sessionis not

always initiated by the localGNUnet core callingconnect , but
may instead have been started by a remote node. TheGNUnet
core first sees the session when the transport layer callsre-
ceive . At this point, two things may happen. Either the core
decides to use the bidirectional session to send replies, orthe
core uses another (potentially cheaper) transport mechanism to
answer, if it answers at all. If the core wants to use the existing
session to send replies, it must retain the transport session han-
dle. Withoutassociate , this would cause problems because
the transport layer would not know when to close the connec-
tion and free the resources. Thus, we require the core to invoke
associate if it decides to use the transport session for fur-
ther communication.associate is similar toconnect in
that it ensures that the session handle is valid until the core calls
disconnect . The implementation ofassociate is simi-
lar to reference counting in garbage collection.connect and
associate increment the reference counter;disconnect
decrements it.

Another important detail in the implementation of bi-
directional transports is that they must time out stale connec-
tions. The current interface would allow nodes to establisha
connection that would last indefinitely without being used.For
example, the core of nodeA may decide to establish a cheaper
way to communicate and not toassociate with an inbound
connection. The transport of nodeA cannot instantly close the
session since the other nodeB may still be using it to send
data. ButB may keep the connection open for the same rea-
son; it may expect to receive data fromA on that connection.
Thus, the transport service must time out sessions that are not
associated with the core for writing.

C. Security Considerations

An interesting security problem in peer-to-peer networks
arises when malicious nodes advertise invalid or incorrectpeer
addresses. For example, it would be possible in Gnutella [6]to
advertiseexample.com as a peer; even the port can be freely
chosen in the advertisement. If peers spread this advertisement
and frequently attempt to connect to this host, the peer-to-peer
network could become a tool for a distributed denial of service
attack. On the other hand, without a central server, the ability
of peers to advertise other peers cannot be avoided.

Our solution to this problem is that every peerA that receives
an advertisement for another peerB must check that the adver-
tised address is valid by sending a PING message containing
a challenge(a randomly chosen integer) to the advertised peerB. If B receives the PING, it responds with a PONG mes-
sage which also contains the challenge, confirming that it can
be reached under this address. Only after this protocol has been
run shouldA notify other peers ofB’s existence. This prevents
a malicious nodeM from advertising a non-participating third
party T on the network sinceT would not properly respond
to A’s PING. M also cannot easily fabricate a PONG forT
because the message sent toB contains a challenge which is
unknown toM . WhileM has trickedA into sending a single
message (the PING) toT , this cannot be used to seriously attackT sinceM had to send a message toA first. If M had sent the
message directly toT , it would have caused an equal amount of

traffic. The only gain thatM has potentially achieved is that it
was able to hide its identity fromT .

III. E XAMPLE : SMTP IMPLEMENTATION

WhenGNUnet starts running, it loads all the transport mod-
ules defined in its configuration file. During this process, the
initialization code of the SMTP transport opens a connection to
an SMTP server (sendmail, qmail, etc.) that is running either
on the local host or remotely; this connection will be used to
send messages to the other peers. Observe thatGNUnet does
not establish a direct SMTP connection to the other peers, but
relies instead on existing mail transfer agents (MTAs) to send
the messages.

A. Sending E-mail

When the SMTP transport service receives a message from
the GNUnet core, the message is extended with a header
that contains the node identity of the sender and the meta-
information provided in the parameters ofsend . The result-
ing message is base64 encoded, encapsulated according to the
MIME conventions [4], and sent to the MTA over the pre-
existing TCP connection. Most MTAs store the mail on the
drive before sending an acknowledgement to the client in or-
der to ensure guaranteed delivery even after a crash. While this
is not required forGNUnet mail (especially since the seman-
tics only specify unreliable communications), this disk I/O is
a significant overhead for the SMTP transport. The MTA then
resolves the destination address using DNS (MX record) and
contacts the remote mail server, which again receives the mes-
sage via SMTP and initiates delivery.

B. Receiving E-mail

In order forGNUnet to receive an inbound e-mail, the mail
must first be delivered to the local machine. If the local machine
is the receiving host according to the MX record for the e-mail
address, this step is handled by the SMTP protocol. But in the
case where theGNUnet node runs behind a NAT box, the mail
will typically be stored on the mail server at the ISP. In this
case, the host will periodically poll for new mail, for example
using a POP client. Under this last configuration, the polling
interval will be a major contributor to the delay in the SMTP
transport. ForGNUnet to work properly, we assume that one
minute is a reasonable interval. Polling with POP can easilybe
automated usingfetchmail , a tool that is available for most
UNIX systems.

In many cases, this is not the only problem. Normally users
will have only one e-mail account available. Thus it is nec-
essary to filter the inboundGNUnet messages from the other
messages that are destined for the user. Since we do not want
to tag all GNUnet e-mails with a uniform header (this would
make it too easy for adversaries to filter and effectively censor
GNUnet traffic), the advertisement for the SMTP address of the
peer does not only contain an e-mail address but also afilter
line. The sender is required to add this line to the header. Since
the receiver of the e-mail specified which filter to use,proc-
mail can be used to distinguish mails that have the appropri-
ate filter line. The user can change the filter line whenever he

:0:
* \ˆX-mailer: GNUnet
/tmp/gnunet.smtp
:0:
/var/spool/mail/$USER

Fig. 4. Example procmail configuration with “X-mailer: GNUnet” as the filter
line and “/tmp/gnunet.smtp” as the name of the pipe.

wants; it will, of course, take some time to propagate the new
address information into the network.

Finally, procmail needs to be informed of how to deliver
the GNUnet mail to thegnunetd process. The easiest way is
to use a named pipe (fifo). The user specifies in theGNUnet
configuration the name of the pipe, andprocmail writes the
filtered mail into that pipe. The SMTP transport then reads the
mail, decodes the base64 encoded body and forwards the mes-
sage to theGNUnet core. An example.procmailrc config-
uration file is given in Figure 4.

C. Security considerations for SMTP

The primary security problem with SMTP is the potential for
harassment of users. Other transports (UDP, TCP, HTTP) have
this problem to a much lesser extent. While sending massive
amounts of traffic can become an attack with every transport
protocol, fairly moderate amounts of data can become a prob-
lem when sent to a user via e-mail, especially if the user is not
educated enough to filter the spam. Still, it is possible to use
SMTP as one possible transport mechanism for peer-to-peer
networking. SinceGNUnet is completely decentralized, a so-
lution to the security challenge requires that peers be ableto
advertise e-mail addresses of other peers on the network.

In order to prevent attacks, every peer first validates the ad-
vertisements before using the e-mail address for actual trans-
mission or advertising it further. The validation procedure re-
quires the peer to send an e-mail message containing aGNUnet
PING message together with advertisements for its own trans-
ports to the peer. If the peer responds with a properGNUnet
PONG message, the address is considered valid. Every PING
message contains a random number (challenge) that the re-
sponding peer must copy into the PONG message. This makes
it impossible to send a fake PONG reply for anybody that does
not control a router on the path between the two peers. Note
that the PONG message does not have to use the SMTP trans-
port mechanism; any known transport for the peer will do.

This mechanism ensures that a malicious peer that sends an
advertisement for an invalid (nonGNUnet) e-mail address will
trick the receiving peer into sending at most one small message
to that address. The bandwidth that the adversary spends on
sending advertisements is thus proportional to the amount of e-
mail that the victim receives. More importantly, the adversary
is not anonymous. While the victim does not receive the mail
directly from the attacker, it is clear that the attacker is the node
sending the advertisements since no honest node will send ad-
vertisements without having received the PONG confirmations.
Thus, it is possible to track down the attacker.

Transport UDP TCP Purdue RH 8.0 qmail

11 bytes 31 ms 55 ms 781 s 89 s 24 s
407 bytes 37 ms 62 ms 789 s 98 s 25 s

1,221 bytes 46 ms 73 ms 804 s 98 s 25 s

Fig. 5. Time to send 1000 messages (transport only).

A more sophisticated attack involves mailing lists. The prob-
lem here is, that an adversary could subscribe to a mailing list
and then advertise the address of the mailing list onGNUnet.
Peers would send mail to the list and the adversary could send
responses to the PING messages since he is one of the recip-
ients. Since the peers can confirm that the address is valid,
they would now start advertising the address, causing even more
traffic for the list. In this way, an adversary could anonymously
drown any open mailing list in unsolicited traffic. The solution
to this problem is to ensure thatGNUnet SMTP traffic will not
be forwarded by any modern mailing list software. This can be
achieved by making everyGNUnet e-mail look like a bounce
message [7]. Bounce messages are used to notify the sender
of an e-mail about an invalid or unavailable receiver address.
Since mailing lists often have the problem that one of its mem-
bers is unavailable, it is safe to assume that bounces are always
filtered.

IV. PERFORMANCEMEASUREMENTS

For the measurements,GNUnet was configured to only use
one transport service for the benchmarks; automatically switch-
ing to a more efficient protocol was thus impossible. In a first
benchmark, the latency of the UDP, TCP and SMTP trans-
port services was measured. For this, the service was called
to send a message to itself. This gives a network-independent
approximation of the overhead of the service on the peer itself.
The loopback measurements of the SMTP transport were per-
formed on three different machines spanning a range of modern
SMTP configurations. We used a Pentium III 800MHz running
RedHat 7.3 with thePurdueComputer Science configuration
which includes filters for spam. We also used a Xeon 2GHz
with a vanilla RedHat8.0 sendmail configuration. Further-
more, we used qmail on a Pentium III 1GHz running Sorcerer
GNU Linux (SGL). The numbers for UDP and TCP are pro-
vided using the SGL configuration. The qmail benchmark uses
qmail’s internal filtering whereas the sendmail benchmarksuse
procmail to filter and deliver the mail. We used the trans-
port layer to send a message ofb bytes (excluding transport
protocol headers) directly to the local machine. This way, net-
work latency and packet losses on the wire have no impact on
the time measurements.nmessages were sent sequentially over
the transport layer, sending messagei+1 after thei-th message
was received. All messages were sent over the same connection
and the time to establish the connection was not taken into ac-
count since this overhead is minuscule in practice – as long as
a connection is used for a significant number of messages. The
benchmarks show that UDP and TCP are, as expected, both
significantly faster compared with any of the SMTP services
(in particular with the qmail benchmark that was run on the

same machine and is recognized to be much faster than send-
mail). Among the SMTP implementations, there can be signif-
icant differences depending on the SMTP configuration. Filter-
ing with an external tool likeprocmail that needs to reload
and parse its configuration for each mail can be very expen-
sive. Applying spam filters can also significantly impact the
performance of the underlying SMTP implementation. The mi-
cro benchmark shows that SMTP can be a viable solution for
initiating peer-to-peer sessions: a few seconds to connectto a
peer will probably not even be noticed by users.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

P
er

ce
nt

ag
e

of
 R

ec
ei

ve
d

M
es

sa
ge

s

Time (ms)

UDP

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

P
er

ce
nt

ag
e

of
 R

ec
ei

ve
d

M
es

sa
ge

s

Time (ms)

TCP

Fig. 6. Sending 1,000 messages of 1,200 octets payload with the unreliable
UDP and TCP transports without spacing.

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

P
er

ce
nt

ag
e

of
 R

ec
ei

ve
d

M
es

sa
ge

s

Time (ms)

UDP

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

P
er

ce
nt

ag
e

of
 R

ec
ei

ve
d

M
es

sa
ge

s

Time (ms)

TCP

Fig. 7. Sending 1,000 messages of 1,200 octets payload with hand-optimized
spacing between message-trains.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200

P
er

ce
nt

ag
e

of
 R

ec
ei

ve
d

M
es

sa
ge

s

Time (s)

SMTP MTUs 1,200 vs. 12,000

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

of
 R

ec
ei

ve
d

M
es

sa
ge

s

Time (s)

SMTP - Impact of Disc I/O

Fig. 8. SMTP throughput (with hand-optimized spacing to avoid thrashing)
for the same total payload with different MTUs and with/without RAM-disk
for the mail spool.

The second set of benchmarks measures the possible
throughput for a transport. Throughput can be measured by
sending multiple messages in parallel and measuring packet
loss. Note that not only UDP but also the TCP transport can
actually lose messages, since the TCP implementation drops
messages if thewrite to the socket blocks. For this bench-
mark, we report the message loss after allowingt seconds for
sendingm messages. If messages were not sent (or received)
aftert seconds, they were considered lost. The benchmark was
performed using two Xeon 2 GHz machines running RedHat
8.0 with sendmail. The machines were connected via a direct
100 MBit ethernet connection. Figure 6 shows the percentage
of 1,000 messages with a payload of 1,200 octets that could be
received aftert seconds if the messages were passed to the ker-
nel without any artificial delays. The maximum throughput in
this case is about 4,169 kilobytes per second (kbps) for UDP.

Since the application does not limit the transmission rate,the
Linux kernel starts dropping messages shortly after the start of
the benchmark. This allows the application to finish sendingall
the messages earlier – the processing time of a dropped packet
is smaller – but the loss rate can become quite dramatic, often
exceeding 70%. For TCP, the situation is the same, only that
due to the inherent protocol overhead, the throughput is slightly
worse with at most 3,627 kbps. The high packet loss that occurs
in this naive design can be avoided by reducing the rate at which
the application sends messages. Figure 7 shows the results that
can be achieved if the application sends the packets in trains
with hand-tuned spacing between the trains. Conceptually,the
delays are equivalent to congestion control in TCP, but since
the timers available to the application are more coarse grained,
the performance is worse than in real TCP, even if hand-tuned
for a static testbed. Note that TCP is a bit easier to tune since
the TCP windows with the better timers available to the OS can
help leverage the coarse-grained application level timers. Thus,
with up to 3,310 kbps throughput, TCP throughput is (while
more random) a bit better than the 2,343 kbps of UDP.

For SMTP, we only show the rate-controlled numbers. Fig-
ure 8 shows that the SMTP throughput for messages of size
1,200 octets is 6 kbps. The high per-message overhead can be
alleviated by increasing the message size to 12,000 octets,re-
sulting in 13 kbps throughput. A major bottleneck in this case
is sendmail writing every message onto the drive when the mes-
sage is queued. By using a RAM-drive for the mail queue (vi-
olating SMTP reliability in the case of a machine crash), the
throughput can be increased to 51 kbps, which is still about
50 times slower than UDP with spacing. As shown by the
loopback-benchmark, other MTAs may have different perfor-
mance characteristics.

V. CONCLUSION

We have presented the design of a transport abstraction for
peer-to-peer systems. The abstraction can support a wide range
of underlying transport mechanisms and we have implemented
service modules for UDP, TCP and SMTP. While the bench-
marks clearly show that SMTP is significantly worse in terms
of performance, the service can still be useful to initiate con-
nections and negotiate the use of a cheaper service. We have
addressed security concerns that arise with the use of SMTP
and argued why a peer-to-peer transport abstraction shouldhave
unreliable semantics.

REFERENCES

[1] K. Bennett, C. Grothoff, T. Horozov, and I. Patrascu. Efficient Sharing of
Encrypted Data. InProceedings of ASCIP 2002, 2002.

[2] R. Braden. Requirements for Internet Hosts – Communication Layers.
RFC 1122, IETF, October 1989.

[3] N. Feamster, M. Balazinska, G. Harfst, H. Balakrishnan,and D. Karger.
Infranet: Circumventing Web Censorship and Surveillance.In Proceedings
of the11th USENIX Security Symposium, San Francisco, CA, 2002.

[4] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions
(MIME) Part One: Format of Internet Message Bodies. RFC 2045, IETF,
November 1996.

[5] The GNUnet Project. http://www.gnu.org/software/gnunet/.
[6] Gnutella. http://gnutella.wego.com.
[7] K. Moore and G. Vaudreuil. An Extensible Message Format for Delivery

Status Notifications. RFC 1894, IETF, January 1996.

