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Abstract. Object-oriented languages provide little support for encapsulating objects. Ref-
erence semantics allows objects to escape their defining scope, and the pervasive aliasing
that ensues remains a major source of software defects. This paper presents Kacheck/J,
a tool for inferring object encapsulation properties of large Java programs. Our goal is to
develop practical tools to assist software engineers, thus we focus on simple and scalable
techniques. Kacheck/J is able to infer confinement – the property that all instances of a
given type are encapsulated in their defining package. This simple property can be used
to identify accidental leaks of sensitive objects, as well as for compiler optimizations. We
report on the analysis of a large body of code and discuss language support and refactoring
for confinement.

1 Introduction

Object-oriented languages rely on reference semantics to allow sharing of objects. Sharing occurs
when an object is accessible to different clients, while aliasing occurs when an object is accessible
from the same client through different access paths. Sharing and aliasing are both powerful tools
and sources of subtle program defects. A potential consequence of aliasing is that methods invoked
on an object may depend on each other in a manner not anticipated by designers of those objects,
and updates in one sub-system can affect apparently unrelated sub-systems, thus undermining
the reliability of the program.

While object-oriented languages provide linguistic support for protecting access to fields,
methods, and entire classes, they fail to provide any systematic way of protecting objects. A
class may well declare some field private and yet expose the contents of that field by returning it
from a public method. In other words, object-oriented languages protect the state of individual
objects, but cannot guarantee the integrity of systems of interacting objects. They lack a notion
of an encapsulation boundary that would ensure that references to ‘protected’ objects do not
escape their scope.

The goal of this paper is to report on experiments with a pragmatic notion of encapsula-
tion in order to provide software engineers with tools to guide them in the design of robust
systems. To this end, we focus on simple models of encapsulation that can easily be under-
stood. We deliberately ignore more powerful escape analyses [6,7,8,22] which are sensitive to
small code changes and may be difficult to interpret, as well as more powerful notions of own-
ership [1,4,5,11,12,13,16,17,21,32,35].Of course, the tradeoff is that we will sometime deem an
object as ‘escaping’ when a more precise analysis would discover that this is not the case. In par-
ticular, we have chosen to investigate confined types introduced by Bokowski and Vitek in [39]
as they give rise to a form of encapsulation that is both simple to understand and that can be
checked with little cost. The basic idea underlying confined types is the following:

Objects of a confined type are encapsulated in their defining, sealed package.

⋆ The paper is an extended version of a paper with the same title in Proceedings of OOPSLA’01, ACM
Conference on Object-Oriented Programming Systems, Languages and Applications, pages 241–253,
Tampa Bay, Florida, October 2001.
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Thus, if a class is confined, instances of that class and all of its subclasses cannot be manipulated
by code belonging to other packages. An instance of a confined type cannot flow to an object
outside the package of the confined type. In terms of aliasing, confinement allows aliases within
a package but prevents them from spreading to other packages as illustrated in Figure 1.

The original definition of confinement required explicit annotations and thus pre-supposes
that software is designed with confinement in mind. In some sense, the underlying assumption
was that confinement is an unusual property that may require substantial changes to the original
program. In this work we take a different point of view. We claim that confinement is a natural
property of well designed software systems. We validate our hypothesis empirically with a tool
that infers confinement in Java programs. We gathered a suite of forty-six thousand Java classes
and analyzed them for confinement. Our results show that, without any change to the source, 24%
of the package-scoped classes (exactly 3,804 classes or 8% of all classes) are confined. Furthermore,
we found that by using generic container types, the number of confined types could be increased by
close to one thousand additional classes. Finally, with appropriate tool support to tighten access
modifiers, the number of confined classes can be well over 14,500 (or over 29% of all classes) for
that same benchmark suite. While a more powerful program analysis may yield higher numbers
of confined classes, especially if a whole-program approach is taken, our current numbers are
already high and can be obtained efficiently as the average time to analyze a class file is less than
eight milliseconds.

In a related effort, Zhao, Palsberg and Vitek [42] have shown that the confinement rules
are sound for a simple object calculus inspired by Featherweight Java [30] in which sharing is
impossible. This was achieved by recasting the confinement rules into a type system. They also
showed the soundness of an extension of the confinement rules to generic types; we will discuss
that extension later in this paper.

Since their introduction confined types have been applied in several different contexts. Clarke,
Richmond, and Noble have shown that minor changes to the confinement rules presented here
can be used to check the architectural integrity constraints that must be satisfied by Enterprise
Java Beans applications [15]. Zhao, Noble and Vitek have applied the same ideas to Real-time
Specification for Java to ensure static safety of scoped memory usage [41]. Herrmann intro-
duced confinement as a software engineering mechanism for a new programming language [27].
Skalka and Smith have studied a somewhat different notion of confinement within the context
of programming language security [38]. In their work the main goal is to control not the flow of
references to objects but rather which methods are invoked on those objects.

This paper makes the following contributions and improvements on previous work on con-
finement:

– We simplify and generalize the confinement rules presented in the original paper on confined
types [10].

Fig. 1. Confinement is a property of object references. The diagram illustrates confinement in a
tiny program with two packages called inside and outside and three classes inside.Confined,
inside.Unconfined and outside.Other. Arrows denote allowed reference patterns. If the class
Confined obeys the confinement rules, then objects defined in package outside cannot hold
references to instances of the class Confined, the class is said to be encapsulated in the inside

package.
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– We present an efficient constraint-based confinement inference algorithm.
– We give an overview of the implementation of Kacheck/J, our confinement inference tool.
– We give results of the confinement analysis of a large corpus of programs.
– We discuss refactorings aimed at improving confinement as well as better language support.

Paper overview The paper is organized as follows. Section 2 starts with a look at an example of
confinement in practice with a class taken from the Java standard library. Section 3 introduces
confined types and the associated confinement rules. Section 4 presents our constraint-based
analysis algorithm. Section 5 discusses the implementation of the inference tool. Section 6 gives
result of the analysis of the benchmark suite. Section 7 discusses refactoring and language support.
In Section 8 we present an example from the Freenet benchmark [20,19], where Kacheck/J is
used to first discover that a class is not confined. The code is then refactored such that the class
becomes confined. Section 9 gives an overview of related work. Section 10 concludes. The complete
constraint generation rules are given in Appendix A. Appendix B gives additional benchmark
data.

2 A Practical Example of Confinement

In statically typed object-oriented programming languages such as Java, confinement can be
achieved by a disciplined use of built-in access control mechanisms and some simple coding idioms.
We will give a simple motivating example and use it to illustrate our analysis. Consider the class
HashtableEntry used within the implementation of Hashtable in the java.util package. The
access modifier for this class is set to default access, which, in Java, means that the class is scoped
by its defining package. HashtableEntry instances are used to implement linked lists of elements
which have the same hash code modulo table size. They are a prime example of an internal data
structure which is only relevant to one particular implementation of a hashtable and that should
not escape the context of that table and definitely not of its defining package. Yet how can we
be sure that code outside of the package cannot get access to an entry object?

Since HashtableEntry is a package-scoped class we need not worry that outside code will
create instances of the class. However, the implementation of the hash table class itself could cast
an entry object to some public superclass, and then expose a reference to the object. Alternatively,
in the case where a public method were to return an entry object or a public field held a reference
to such an object, outside code might obtain a reference to it (possibly causing an unexpected
memory leak, say in a weak hash map). The outside code could also use that reference as an
argument (which might have security implications if the object was representing ownership of

Fig. 2. Analysis overview. All classes in the enclosing package, java.util in this case, are checked
for confinement. Parent classes of confined classes (e.g. Object) are checked for anonymity. Client
code need not be checked.
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a permission), or cast it to some public parent class and invoke methods on it (which may be
problematic, in particular if the methods are overridden in the subclass and were not intended
to be reachable from outside of the package).

It is likely that a programmer would consider these scenarios to be the result of a programming
error, and a good programmer would take care to prevent such confinement breaches. One can
view this issue as an escape problem: can references to instances of a package-scoped class escape
their enclosing package? If not, then the objects of such a class are said to be encapsulated in the
package. In the example at hand, HashtableEntry is indeed encapsulated as programmers have
carefully avoided exposing them to code outside of the java.util package.

Confinement can be checked by a simple program analysis which relies on access modifiers of
classes, fields and methods and performs a context and flow insensitive analysis of the code of
the confining package. We have implemented a tool called Kacheck/J which discovers potential
confinement violations and returns a list of confined types for each package analyzed. For instance,
in the above example, the expected result of the analysis would be that HashtableEntry is
confined to the package java.util, while Hashtable is not since it has been declared public. In
order to determine this, the tool must analyze the body of all classes declared in the package
java.util package, as well as all parent classes of confined classes. Figure 2 illustrates the checks
performed by the tool. The analysis is modular since only one package (and the parent classes of
confined types) needs to be considered at a time; this turns out to be a key feature for scalability.
Furthermore, since client code is not required when checking confinement, it is possible to use
our tool on library code.

It turns out that contrary to our expectation, our analysis infers that the class HashtableEntry
is not confined because the method clone() is invoked on one of its instances. The problem is
that clone returns a copy of an entry which is typed as Object. Manual inspection of the code re-
veals that each invocation of this methods is immediately followed by a cast to HashtableEntry.
Thus instances of the class do not actually escape; this is a typical pattern in a language without
adequate support for genericity. Our analysis is not precise enough to discover the idiom—this is
part of the price we pay for simplicity. One could consider extending the analysis to catch such
idioms and we leave that for future work.

3 Confined Types

The goal of confinement is to satisfy the following soundness property: An object of confined type

is encapsulated in the scope of that type. Notice that scope is a static notion whereas confinement

controls run-time flow of objects. The idea of confined types is to make the static scope define a
bound on where an object can flow. In this work we have set the granularity of confinement to be
the package (other granularities have been studied in [15,41]; only minimal changes to the rules
are required). Thus, no instance of a confined type may escape the package in which that type
is defined. In order to ensure that the analysis is modular and sound in the presence of dynamic
loading we must ensure that new code does not show up inside of the encapsulation boundary
after the analysis. In Java, this can easily be achieved by requiring that the encapsulating package
is sealed [33,40]. Henceforth, when we say that instances of a confined class are encapsulated in
their defining package we require that the package is sealed.

Confinement is enforced by two sets of constraints. The first set of constraints, confinement

rules, apply to the enclosing package, the package in which the confined class is defined. These
rules track values of confined types and ensure that they are neither exposed in public members,
nor widened to non-confined types. We use the term widening to denote both:

– static widening from C to B: an expression or a statement that requires a check that C is a
subtype of B, and

– hidden widening to B: an expression or a statement which requires that the type of the
distinguished variable this is a subtype of B.

A typical example of static widening is an assignment x=y, where x is of type B and y is of type
C; Java requires that C is a subtype of B. A typical example of hidden widening is an assignment
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x=this, where x is of type B; the dynamic type of the this-object cannot be determined locally,
so we say that the assignment results in a hidden widening from that dynamic type of this to
B.

The second set of constraints, so-called anonymity rules, applies to methods inherited by the
confined classes, potentially including library code, and ensures that these methods do not leak
a reference to this which may refer to an object of confined type.

In this section, we adapt the rules of Bokowski and Vitek to infer confinement. The new rules
are both simpler and less restrictive (i.e., more classes can be shown confined), while remaining
sound. As in the original paper, the rules presented here do not require a closed-world assumption.
Confinement inference is performed at the package level. The rules assume that all classes in a
package are known and, for confined classes, that their superclasses are available.

Enforcing confinement relies on tracking the spread of encapsulated objects within a package
and preventing them from crossing package boundaries. We have chosen to track encapsulated
objects via their type. Thus, a confinement breach will occur as soon as a value of a confined
type can escape its package. Since we track types, widening a value from a confined type to a
non-confined type is a violation of the confinement property.

3.1 Anonymity Rules

Anonymity rules apply to inherited methods which may (but do not have to) reside in classes
outside of the enclosing package. The goal of this set of rules is to prevent a method from leaking
a reference aliasing the distinguished this pointer. The motivation for these rules is that if this
refers to an encapsulated object, returning or storing it amounts to hidden widening.

We say that a method is anonymous if it satisfies the three rules in Fig. 3. The first rule
prevents an inherited method from storing or returning this unless the static type of this also
happens to be confined. The second rule ensures that native methods are never anonymous.
While rules A1 and A2 are direct anonymity violations, the rule A3 tracks transitive violations.
The call mentioned in rule A3 depends on the dynamic type of this (the target of the call). Thus,
anonymity of a method is determined in relation to a specific type. One can use a conservative
flow analysis to determine a set of possible target methods, or one can rely on the static type to
determine possible targets.

A1 An anonymous method cannot widen this to a non-confined type.

A2 An anonymous method cannot be native.

A3 An anonymous method cannot invoke non-anonymous methods on this.

Fig. 3. Anonymity rules.

Figure 4 gives an example of a problematic piece of code where a non-anonymous method
allows presumably encapsulated objects to escape their container, possibly leaking private in-
formation. The interesting thing to note here is that for all assignments in the code the static
types match exactly. In particular, the widening of the type of the presumably encapsulated
object happens in the escape method when the static type of this is C. Detecting such hidden
widenings is the purpose of the anonymity rules. Explicit (static) widenings, that is assignments
where the static types of the variables involved are different, are covered by rules described in
the next section.

An alternative approach would be to simplify the rules (as taken in [15]) and to disallow
confined types to extend types other than Object. Anonymity rules are then no longer needed:
the only place where hidden widening can occur with that limitation is Object. The only violation
in Object is clone() which is then handled with a specific rule. However, while this approach
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public abstract class C {
public abstract int getSecret();

public C escape() {
return this;

}
}
class Internal extends C {

public int getSecret() {
return 42;

}
public C notAnonymous() {

return escape();

}
}
public class Container {

Internal i = new Internal();

public C exposeAccidentally() {
return i.notAnonymous();

}
}

Fig. 4. Example of hidden widening in a non-anonymous method result-
ing in a confinement breach. A client outside of the package could execute
container.exposeAccidentally().getSecret(); to obtain the secret, despite the fact
that Internal is package-scoped and there is no static widening of Internal to C.

significantly simplifies the rules for confinement, it also severely restricts the set of classes that
can be confined. In this paper we focus on the design with anonymous methods.

3.2 Confinement Rules

Confinement rules are applied to all classes of a package. A class is confined if it satisfies the
five rules of Figure 5. Rule C1 ensures that no inherited method invoked on a confined type will
leak the this pointer. Together with the anonymity rules this rule prevents hidden widening.
Note that the rule does not preclude a confined type from inheriting (or even declaring) non-
anonymous methods, as long as they are never called. Rule C2 prevents public classes from being
confined. This is necessary since code outside of the package must not be able to instantiate a
confined type. Rule C3 ensures that no exposed member (public or protected) is of a confined
type. This applies to all non-confined types in the package. Rule C4 prevents non-confined classes
(or interfaces) from extending confined types. This rule is primarily a design choice from the
point of view that if a confined type encapsulates internal information, that information should
also not be leaked as part of a subtype. In [42] it was shown that leaking references to confined
types from a package can be prevented without this rule. Finally, rule C5 prevents static widening
of references of confined type to non-confined types.

3.3 Discussion and Special Cases

Exceptions are a case of widening which is not explicitly listed in our rules. Instead, we consider
that throw widens its argument to the class Throwable, which is declared public and thus violates
rule C5.

Our confinement rules do not forbid packages from having native code, but rule A2 explicitly
states that native methods are not anonymous. The motivation for this design choice is that
while the developer of a package may be expected to manually inspect native code in the current
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C1 All methods invoked on a confined type must be anonymous.

C2 A confined type cannot be public.

C3 A confined type cannot appear in the type of a public (or protected) field or
the return type of a public (or protected) method of a non-confined type.

C4 Subtypes of a confined type must be confined.

C5 A confined type cannot be widened to a non-confined type.

Fig. 5. Confinement rules.

package, it would be difficult to check native code of parent classes belonging to standard libraries.
Furthermore, uses of this that violate A1 are usually not perceived as bad behavior for native
code. Essentially, we assume that native code within the enclosing package is, to some extent,
trusted. In other words, with respect to anonymity, we make the safe choice that a native method
cannot be anonymous; it can do whatever it wants. With respect to confinement, we trust the
native methods to not violate the confinement rules. The reason for this design decision is that
native code that does not conflict with the Java type system may still violate the anonymity
rules. However, confinement violations can happen anywhere in native code, thus if we do not
want to analyze or rule out all native code, we must trust that native code does not violate
confinement. We have manually inspected some of the native code in GNU Classpath, and we
found that anonymity violations do happen. We did not find any confinement violations in the
native code that we inspected.

In Java, System.arraycopy is often used to copy elements from one array to another. While
the signature of this special native method takes arguments of type Object and thus calls to
this method would constitute a widening to a non-confined type, this method is used frequently
enough to warrant a special treatment in Kacheck/J. The tool treats calls to System.arraycopy

as a widening from the inferred source-array type to the inferred destination array type. This is
safe if the language implements System.arraycopy correctly.

Another optimization in Kacheck/J is the treatment of static widenings of this. Static widen-
ings of this are covered by both rules for anonymity (A1) and for confinement (C5). But while
rule A1 will only have an impact on confinement if the anonymous method is actually invoked
(C1), rule C5 would always make the statically widened type non-confined. While this makes no
difference in many cases, this does have an impact on some types if the code in which the widen-
ing takes place is dead. In some sense, A1 implicitly contains a limited flow-sensitive dead code
analysis, while C5 does not. The Kacheck/J tool can be made to relax the rule C5 to not include
static widenings of this (since those would be caught by rule A1 if the code is not dead). An
example for this is shown in Figure 6. If the optimization is enabled, the liveness of the dead()

method determines whether Conf is confined. This illustrates how relaxing C5 makes the analysis
more fragile in the sense that small changes in the code are more likely to change the set of
confined classes.

class Conf {
public Object dead() {

return this;

}
}

Fig. 6. Static widenings of this can be ignored. This can eliminate confinement violations in
dead code.
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In a related effort, Zhao, Palsberg and Vitek [42] have shown that the confinement rules
are sound for a simple object calculus inspired by Featherweight Java [30] in which sharing is
impossible. In that paper, the three anonymity rules are consolidated into just one rule, namely
“the this reference is only used to select fields and as receiver in invocation of other anonymous

methods.” That can be done because the calculus does not have native methods or assignment
statements.

Potanin et al. [37] have presented an alternative means to check package confinement, by
reduction to Java generics

Clarke, Richmond, and Noble have shown that minor changes to the confinement rules pre-
sented here can be used to check the architectural integrity constraints that must be satisfied by
Enterprise Java Beans applications [15]. One main difference between their rules and ours is that
they don’t use a notion of anonymous methods. To a first approximation, we can understand their
rules as the result removing A1–A3 from our rules and changing C1 to “All methods invoked on
a confined type must be defined in a confined type.” Clarke, Richmond, and Noble [15] make a
few further restrictions on the confinement rules that are appropriate for the domain of Enter-
prise Java Beans. In contrast to our analysis, their analysis enables different classes to appear
as confined and as unconfined in different parts of the application (i.e., in different beans). The
overall result is an analysis which works at a different level of granularity than ours and offers
confinement per bean, rather than per package. The experimental results of Clarke, Richmond,
and Noble [15] demonstrate that their analysis works well in the domain of Java Beans.

4 Constraint-Based Analysis

We use a constraint-based program analysis to infer method anonymity and confinement. Constraint-
based analyses have previously been used for a wide variety of purposes, including type inference
and flow analysis. Constraint-based analysis proceeds, as usual, in two steps: (1) Generate a
system of constraints from program text. (2) Solve the constraint system. The solution to the
constraint system is the desired information. In our case, constraints are of the following forms:

A ::= not-anon(methodId)

T ::= not-conf(classId)

C ::= A | T | T ⇒ A | A ⇒ A | A ⇒ T | T ⇒ T

A constraint not-anon(methodId) asserts that the method methodId is not anonymous; simi-
larly, not-conf(classId) asserts that the class classId is not confined. The remaining four forms of
constraints denote logical implications. For example, not-anon(A.m()) ⇒ not-conf(C) is read “if
method m in class A is not anonymous then class C will not be confined.”

We generate constraints from the program text in a straightforward manner. The example of
Figure 7 illustrates the generation of constraints. For each syntactic construct, we have indicated
in comments the associated rule from Section 3. Figure 8 details the constraints that are generated
for that example. A complete description of the constraints generated from Java bytecode is given
in Appendix A. All our constraints are ground Horn clauses. Our solution procedure computes
the set of clauses not-conf(classId) that are either immediate facts or derivable via logical
implication. This computation can be done in linear time [23] in the number of constraints,
which, in turn, is linear in the size of the program.

4.1 Control Flow Analysis

The rule C1 poses a control flow problem as it mandates that only methods that are actually
invoked on a confined type need to be anonymous. Any conservative control flow analysis can be
used to yield a set of candidate methods. We have chosen to perform a simple flow insensitive
analysis that is practical and precise enough for our purposes.

Methods of confined classes cannot be invoked from outside of their defining package since
confined types are by definition not public (C2) and cannot be widened to non-confined types
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(C5). So, for anonymity violations that are relevant to a given type, the analysis only needs to
consider invocations of methods on instances of that type and its subtypes. Subtypes must be
included since confined types may be widened to other confined types.

Our analysis performs a fixed-point iteration starting with the assumption that all non-public
classes could potentially be confined. The analysis then records invocations of the type x.m(),
where the type of x is in the current candidate set for confinement. These invocations form the
root set for the control flow analysis. Calls of the form this.m() that are reachable from this root
set are recorded in accordance with anonymity rule A3. The set of types of this that are used
for resolving virtual method calls is the static type of x, as inferred during bytecode verification,
and all subtypes of that type that are ever found to be widened to it. Naturally, such widenings
(rules A1 and C5) may be detected at any time during the flow analysis, which is the reason why
a fixed-point computation is necessary. When the fixed-point computation terminates and all
invocation chains for all applicable confinement candidates have been traversed, the remaining
types for which no anonymity violations were found are declared confined.

The analysis does not attempt to perform dead-code detection, so while the method that
includes an invocation such as x.m() may be dead, we will nevertheless add m to the root set.
This simplifies the analysis but costs some precision. Doing dead code detection would lead to
analysis results that are much more sensitive to changes in the source program.

5 Implementing Confinement Inference: Kacheck/J

Although the confinement and anonymity rules have been described as source level constraints,
we have chosen to implement Kacheck/J as a bytecode analyzer. The main advantage of working
at the bytecode level is that there are a large number of class files freely available to apply our
tool to. The implementation of Kacheck/J leverages the XTC static analysis framework which
was developed as part of the Ovm JVM. In XTC, bytecode verification is implemented using
the Flyweight pattern [25]. For each of the 200 bytecode instructions defined in the Java Virtual
Machine Specification, the XTC verifier creates an Instruction object that is responsible for
computing the effect this instruction will have on an abstract state. Verification is a simple fixed-

public class A {

A a;

public A m() {
a = this; (A1)

new B().t( this); (A1)

return this; (A1)

}

native void o(); (A2)

}

class B extends A {

void t( A a) {}

A p() {
return this.m(); (A3)

}

public A getD() {
return new D().p(); (C1)

}
}

public class C { (C2)

public D getD() { (C3)
return new D();

}
public D d = new D(); (C3)

}

class D extends B { (C4)

A getA() {
this.t( this); (C5)
a = new D(); (C5)
return new D(); (C5)

}
}

Fig. 7. Example program.
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Case Constraint Explanation

(A1) not-conf(A) ⇒ not-anon(A.m()) this widened to A

(A2) not-anon(A.o()) o is native

(A3) not-anon(A.m()) ⇒ not-anon(B.p()) B.p() calls m() with this as receiver

(C1) not-anon(D.p()) ⇒ not-conf(D) p() invoked on a D-object

(C2) not-conf(C) class C declared to be public

(C3) not-conf(C) ⇒ not-conf(D) public method C.getD() has return type D;
public field C.d has type D

(C4) not-conf(D) ⇒ not-conf(B) D extends B

(C5) not-conf(A) ⇒ not-conf(D) D widened to A

Fig. 8. The constraints generated from the example in Figure 7.

point iteration. The verification starts with an initial state which includes the instruction pointer,
operand stack and variables. The verifier follows all possible flows of control within the method.

By instrumenting the transfer functions of only 9 of the 200 Instruction objects we can
use XTC’s abstract interpretation engine to generate constraints. The instrumentation performs
some simple checks and record basic facts about the program execution. For instance, the code
for the areturn instruction checks if this is used as return value, and if so, it reports that this
is widened to the return type of the method. The invoke instructions record dependencies like
the use of this as an argument or when a method is invoked on this. Overall, the following
changes were applied to the verifier:

– In non-static methods, local variable 0 (this) is tracked and uses of this are recorded.
– All static widenings are recorded; thrown exceptions are considered widened to Throwable.

Widenings are captured by intercepting subtype checks done by the verifier. Anonymity checks
only require slight modifications to the transfer functions that correspond to the nine instructions:
a check is added to record operations on this. See Appendix A for details. The flow analysis
computes the implication chains for each potentially confined type T , such that

(T ′ ⇒ A1) ∧ (A1 ⇒ A2) ∧ . . . (An−1 ⇒ An) ∧ (An ⇒ T )

is collapsed to
T

′ ⇒ T.

The code specific to confined types (including verbose reporting of violations) is about 2,200
lines. The code reused from XTC (including reading and writing of Java 5.0 class files) is about
30,000 lines of code.

5.1 Example

Figure 9 gives an example of a chain of constraints that results in classes being not confined.
Although the tool reorders parts of the solving process, we will in the following explain only the
final chain of constraints. Notice first that Object is a non-confined class, so a constraint of the
type C is generated by rule C2:

not-conf(Object)

The method P.nonAnon() widens this to Object. This will generate a constraint of type C ⇒ A

by rule A1:
not-conf(Object) ⇒ not-anon(P.nonAnon())

The invocation of nonAnon in nonAnonInd with this as the receiver generates a constraint of the
type A ⇒ A by rule A3:

not-anon(P.nonAnon()) ⇒ not-anon(B.nonAnonInd())
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The method nonAnonInd() is invoked on C. By rule C1 a constraint of the type A ⇒ C is
generated:

not-anon(B.nonAnonInd()) ⇒ not-conf(C)

As C extends B, a constraint of the type C ⇒ C is generated by rule C4:

not-conf(C) ⇒ not-conf(B)

Solving this constraint system will result in B and C being non-confined (and P and X cannot be
confined either because they are public).

5.2 Simplifying Assumptions

Kacheck/J operates under some simplifying assumptions which we detail here.

Reflection The analysis assumes that reflection is not used to circumvent language access control.
In other words, it assumes that the semantics of private, protected and default access modifiers
are respected by the reflection mechanisms. This assumption can be violated by changing the
settings of the Java Security Manager. This may result in additional confinement breaches.

Native code Native methods are not checked by Kacheck/J and may breach confinement. The
results obtained from Kacheck/J are only valid if native methods do not violate any of the
confinement rules. Furthermore, we assume that native code in does not violate the semantics of
the language by ignoring access control declarations. Manual inspection of a number of native
methods indicates that these assumptions are reasonable. We do not assume that native methods
satisfy the anonymity rules. Note though that we manually inspected the native methods and
did not find any that violate the rules for anonymous methods.

6 Analysis Results

Kacheck/J has been evaluated on a large data set. This section gives an overview of the bench-
mark programs and presents the results of the analysis. The first goal of the evaluation is to

public class P {
public Object nonAnon() {

return this; (1)

}
}

class B extends P {
public Object nonAnonInd() {

return this.nonAnon(); (2)

}
}

class C extends B { (3)

}

public class X {
public Object invocation() {

return new C().nonAnonInd(); (4)

}
}

Fig. 9. A confinement violation.
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show that confinement is a common property in actual code (Section 6.2). The second goal is
to identify common reasons why certain types are not confined and thereby gauge the limita-
tions of our technique (Section 6.3). Studying reasons for nonconfinement also points out possible
places where slight modifications to the analysis would dramatically increase opportunities for
confinement. We present three such modifications in sections 6.4, 6.5 and 6.6. In order to give
evidence that confinement is a stable property that a programmer might want to declare in the
program text, Section 6.7 studies how confinement properties of types change during the lifetime
of a particular application. Annotating types as confined would not be practical if confinement
was a fragile property and annotations would need to be changed frequently. Finally, in order
for confinement to be useful in practice we will demonstrate that checking or inferring confine-
ment scales and can be done quickly. Section 6.8 shows that Kacheck/J can rapidly analyze huge
benchmarks.

6.1 The Purdue Benchmark Suite

The Purdue Benchmark Suite (Figure 10) consists of 33 Java programs and libraries of varying
size, purpose and origin. The entire suite contains 46,165 classes (or 115MB of bytecode) and
1,771 packages. To the best of our knowledge the PBS is the largest such collection of Java
programs. Most of the benchmarks are freely available and can be obtained from the Kacheck/J

web page.
Figure 11 gives an overview of the sizes, in number of classes, for each program or library that is

part of the PBS. Appendix B provides additional data about the benchmarks. Our largest bench-
marks, over 2,000 classes each, are Forte, JDK 1.2.2, JDK 1.3.*, Ozone, Voyager and JTOpen.
Ozone and Forte are applications, while the others are libraries. The number of package-scoped
classes is indicated in light gray for each application. This number is an upper bound for the
number of confined classes; public classes cannot be confined.

Figure 12 relates the proportion of package-scoped members to package-scoped classes. Package-
scoped members are fields and methods that are declared to have either private or default access.
Most coding disciplines encourage the use of package-scoped methods and package-scoped classes.
Not surprisingly, programs that were designed with reuse in mind, such as libraries and frame-
works, are better-written than one-shot applications. For instance, the Aglet workbench and
JTOpen, both libraries, exhibit high degrees of encapsulation. Forte is noteworthy because even
though it is an application, it has over 50% package-scoped classes and members. Compilers and
optimizers written in an object-oriented style, such as Bloat, Toba and Soot, have high numbers
of package-scoped classes because of the many classes used to represent syntactic elements or
individual bytecode instructions. At the other extreme, we have applications like Jax and Kawa
which have almost no package-scoped classes. It is also worth noting the increase in encapsula-
tion between different versions of the JDK. From JDK1.1.8 to JDK1.3.1, the absolute number of
classes tripled, and yet the percentage of package-scoped classes doubled. The reason is largely
that most of the JDK1.1.8 code implements the simple, public core classes of the Java runtime
(java.*), whereas JDK1.3.1 has substantial amounts of code that the main application does not
interface with directly.

Coding style has an impact on confinement. While the relation between package-scoped classes
and confined types is obvious, there is a more subtle connection between package-scoped members
and confined types: public and protected methods can return potentially confined types. So it is
reasonable to expect that programs with low proportions of package-scoped members will also
have comparatively fewer confined types.

6.2 Confined Types

Running Kacheck/J over the PBS yields 3,804 confined classes; 24% of the package-scoped classes
and 8% of all classes are confined. Figure 13 shows confined classes in percentage of all classes.
The numbers are broken down per program with confined inner classes in light gray. Raw numbers
are given in Appendix B.



Encapsulating Objects with Confined Types 13

Name Description

Aglets Mobile agent toolkit ag

AlgebraDB Relational database db

Bloat Purdue bytecode optimizer bl

Denim Design tool de

Forte Integrated dev. environment fo

GFC Graphic foundation classes gf

GJ Java compiler gj

HyperJ IBM composition framework hj

JAX Packaging tool ja

JDK 1.1.8 Library code (Sun) j1

JDK 1.2.2 Library code (Sun) j2

JDK 1.3.0 Library code (IBM) j3

JDK 1.3.1 Library code (Sun) j4

JavaSeal Mobile agent system js

Jalapeno 1.1 Java JIT compiler jp

JPython Python implementation jy

JTB Purdue Java tree builder jb

JTOpen IBM toolbox for Java jt

Kawa Scheme compiler kw

OVM Java virtual machine o4

Ozone ODBMS oz

Rhino Javascript interpreter rh

SableCC Java to HTML translator sc

Satin Toolkit from Berkeley sa

Schroeder Audio editor sh

Soot Bytecode optimizer framework so

Symjpack Symbolic math package sy

Tomcat Java servlet reference impl. tc

Toba Bytecode-to-C translator to

Voyager Distributed object system vy

Web Server Java Web Server ws

Xerces XML parser xe

Zeus Java/XML data binding ze

Fig. 10. The Purdue Benchmark Suite (PBS v1.0).
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Fig. 11. Benchmark characteristics: program sizes.
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Fig. 12. Benchmark characteristics: member encapsulation.
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Fig. 13. Confined types.

There are 6 programs where more than 40% of the package-scoped types are confined (db,
gf, jy, jb, jp, o4). It is interesting to note that these programs have very little in common:
they are a mix of libraries (gf), frameworks (o4) and applications (db, jy, jb, jp). Their ratio of
package-scoped classes and their sizes vary widely. Indeed, manual inspection of the programs
indicates that programming style is essential to confinement. For example, in early versions
of Ovm and Kacheck/J, unit tests were systematically stored in a sub-package of the current
package. Some methods and classes were declared public only to allow testing of the code. This
in turn prevented many classes from being confined. The large number of confined inner classes
in Ovm (o4) comes from the objects representing bytecode instructions nested in an instruction
set class. For Jalapeno, the high confinement ratio of 16% (155 classes out of 994) is partially
the result of the single package structure of the program.

Predictably, programs with very few package-scoped classes (e.g. ja, kw, sh, gf) end up with
few confined classes. Figure 14 shows the relationship between package-scoped classes and con-
fined classes. Notice that the fraction of package-scoped classes varies considerably from bench-
mark to benchmark. For instance, libraries like Aglets (ag) which have very high ratios of package-
scoped members and classes still perform quite poorly with only 13 classes (3%) being confined
out of 410. Why does this happen? To answer that question, we start with a discussion of con-
finement violations.
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Fig. 14. Confinement and package-scoping.

6.3 Confinement Violations

It is difficult to quantify confinement violations into categories based on the constraints, mostly
because many of the constraints work in concert. For example, widening one class to another (C5)
may violate confinement because the other class is not confined because, in turn, a non-anonymous
method (A1) is invoked (C1) on it. And the reason for why the method is not anonymous could
be because a third class is public (C2). Notice that the confinement violation for the original
class involves four different constraints. Rather than trying to quantify confinement violations,
this section attempts to describe the causes for non-confinement based on a few characteristic
examples.

Most confinement breaches are caused by a small number of widely used programming idioms.
For any violation Kacheck/J returns a textual representation of the implication chain that caused
the violation. We give examples of the main causes for classes not being confined.

Anonymity Violations The top three anonymity violations in the entire JDK come from
methods in the AWT library which register the current object for notification. The method
addImpl is representative:

protected void addImpl(Component cp, Object cn, int i) {

synchronized ( getTreeLock() ) { ...

e = new ContainerEvent( this, COMPONENT ADDED, comp);

...

}
}

Widening to superclass Widening to a superclass is among the most frequent kind of confine-
ment breach. For instance, Kacheck/J signals the following widening in the Aglet benchmark:

com/ibm/aglets/tahiti/SecurityPermissionEditor:

- illegal widening to:

- com/ibm/aglets/tahiti/PermissionEditor

The PermissionEditor class is an abstract superclass of the non-public SecurityPermission-

Editor. PermissionEditor is the part of the interface that is exported outside the package.
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Widening in Containers A large number of violations comes from the use of container classes
in Java. Data structures such as vectors and hashtables always take arguments of type Object,
thus any use of a container will entail widening to the most generic super type. For instance,
Kacheck/J reports that NativeLibrary, an inner class of ClassLoader, is not confined.

java/lang/ClassLoader$NativeLibrary:

Illegal Widening to java/lang/Object

Kacheck/J works with bytecodes, not source code. At the bytecode level of Java, generic
types are absent. One might implement a Kacheck/J-like tool at the source level which handles
generic types in a non-trivial way. We leave that for future work; inspiration might come from
the paper by Zhao, Palsberg, and Vitek [42] which presented rules for handling confinement of
generic types.

The error occurs because an instance of NativeLibrary is stored in a vector:

systemNativeLibraries.addElement(lib);

As such, this violation may indicate a security problem. The internals of class loaders should
really be encapsulated. Inspection of the code reveals that the Vector in which the object is
stored is private.

private static Vector systemNativeLibraries = new Vector();

After a little more checking it is obvious that the vector does not escape from its defining class.
But this requires inspection of the source code and only remains true only until the next patch is
applied to the class. This example shows the usefulness of tools such as Kacheck/J as they can
direct the attention of software engineers towards potential security breaches or software defects.

Anonymous Inner Classes This violation occurs frequently when inner classes are used to im-
plement call-backs. For example in Aglets the MouseListener class is public. Thus, the following
code violates confinement of the anonymous inner class.

mlistener = new MouseAdapter() {
public void mouseEntered(MouseEvent e) { ... } };

Similar situations occur with package-scoped classes that implement public interfaces. They
are package-scoped to protect their members, but are exported outside of the package.

Summary Even though confinement violations are often the result of a chain of events, there are
two rules which by themselves eliminate most opportunities for confinement and thus deserve
further consideration. The confinement rules that are the cause for the largest number of non-
confined types overall are C2 (class is public), followed by C5 (instance widened to non-confined
type). How dramatic the effect of these rules is shown in the following sections, where small
modifications are made which limit the scope of these rules, resulting in a significant increase in
the number of confined types. In Section 6.4 widening of confined types is discounted whenever
it happens in conjunction with containes (eliminating many common applications of rule C5). In
Section 6.5 the access modifiers are inferred, making many classes and methods package-scoped
that used to be public. Both variations result in a sharp increase in the number of confined types.
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6.4 Confinement with Generics

In Java, vectors, hashtables and other containers are pervasive. Every time an object is stored in
a container, its type is widened to Object leading to a widening violation for the object’s class.
If Java supported proper parametric polymorphism, the large majority of the violations would
disappear (there can be a few heterogeneous data structures, but they seem be the exception).

In order to try to assess the impact of generics, without rewriting all of the programs in the
PBS, we modified Kacheck/J to ignore widening violations linked to containers. This is done by
ignoring all widenings to Object that occur in calls to methods of classes java.util. Figure 15
gives the percentages of confined classes without generic violations; we call these classes Generic-
Confined (GC). The light gray bars show the original number of confined classes. The dark grey
bars show the effect of adding genericity. The number of confined types increases from 3804 (8%)
to 4862 (10%) over all programs in the PBS. These results should be viewed with caution because
they could represent an overestimate of the potential gains since we do not guarantee that the
container instances are package-scoped.
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Fig. 15. Generic-confined types.

6.5 Inferring Access Modifiers

The low number of confined classes in some of the benchmarks is surprising. Looking at the access
modifiers of classes in these benchmarks, the reason is immediately clear. For example, in Kawa,
out of 443 classes, only 5 (1%) are package-scoped. Similarly, many benchmarks contain methods
and/or fields that are declared as public and thus prevent certain types from being confined.
That raises the question of whether the access modes are the tightest possible or whether they are
more permissive than necessary. To answer the question we infer the tightest access modes during
analysis and then use the inferred modes for confinement checking. This analysis is performed
by the Java Access Modifier Inference Tool (JAMIT), which is also available on our webpage.

JAMIT infers the tightest legal access modes by looking at all accesses to a given member or
type. It then checks what the most restrictive access modifier is that would permit all accesses
according to Java’s visibility rules. The analysis takes subtyping into account; subtypes can view
protected members and overriding methods can only relax access modifiers. More importantly,
in order to preserve overriding the access modifier in the parent may need to be relaxed to
package-scoped (if all overriding subtypes reside in the same package) or protected.

Figure 16 shows the result of running Kacheck/J on code for which access modifiers were
strengthened using JAMIT. Classes that become confined with modifier inference are called
Confinable (CA). With mode inference, the number of confinable classes jumps from 3804 (8%)
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to 12,880 (26.1%) for the entire PBS. Furthermore if we combine confinable and generics, we
obtain 14,591 (29.6%) Generic-Confinable classes.
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Fig. 16. Confinable types.

Figure 17 relates the results of this new analysis to the original number of package-scoped
classes. It is quite telling to see that Jax and Kawa, which were applications with the lowest
numbers of confined classes suddenly have about 40% of their classes confinable. Of course, using
this option on library code may yield an overestimate of the potential gains as some classes that
are never used from within the library can be made package-scoped, even though client code
requires access to these classes. Nevertheless, the results give a good indication of the potential
gains.
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Fig. 17. Confinable types and package-scoping.

6.6 Hierarchical Packages

Our last experiment involves changing the semantics of the Java package mechanism. Currently,
Java has a flat package namespace; that is to say, even though package names can be nested,
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there is no semantics in this nesting. This creates a dilemma between data abstraction and
modularity. Good design practice suggests that applications be split into packages according
to functional characteristics of the code. On the other hand, creating packages forces certain
classes to become public even if those classes should not be used by clients of the program.
From a confinement perspective, we could say more packages result in fewer confined classes.
One extreme is Jalapeno, which is structured as a single package. This diminishes the usefulness
of the confinement property.

To evaluate the impact of the package structure on confinement, we modified Kacheck/J to
use a hierarchical package model. The general idea is that package-access would be extended to
neighbor packages. We introduce a definition of scope that we call n-package-scoped. n-package-
scoped limits access to classes in packages that are less than n nodes in the tree of package names
away from the defining package. For example, the class java.util.HashtableEntry would be
visible for java.lang.System for n = 2. The unnamed package is defined to have distance ∞
from all other packages, making a n-package-scoped class a.A invisible for b.B regardless of the
choice of n.

Figure 18 shows the cumulative improvements yielded by increasing the proximity threshold
n. With n = 9 most programs are treated as a single package, increasing the number of confined
types from 3,804 to 7,495. The largest increase in confined classes comes from the Voyager
benchmark where the number of confined classes increases from 208 to 1021.
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Fig. 18. Confinement with hierarchical packages.

6.7 Evolution of Confinement

For the working software engineer, it may be of interest to know whether confinement is preserved
when software evolves. If a class is confined in one software version, then it would be helpful to
know whether the class will likely be confined also in the next version. If the answer is yes, then
confinement can be viewed as a meaningful, fundamental property of a type, and not just a
coincidence of the arrangement of the code. To shed light on this issue, we present a study of the
confined types in 14 versions of TomCat, ranging from version 3.0 to an early snapshot of 5.0.
The results are unambiguous. Even with dramatic changes to the code base that involve adding
and removing hundreds or thousands of classes, only very few existing classes suddenly become
confined or stop being confined. Almost all confined classes stay confined (or are removed from
the code base), and almost all non-confined classes stay non-confined (or are removed).

Fig. 19 shows the differences in the numbers of confined types between versions. The upward
arrows indicate the number of types that are new in a particular version of the code. The top
of the upward arrows is anchored at the number of confined types for the specific version. The
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dashed arrows that go down diagonally from that point indicate the number of types that used
to be confined and that have been removed from the codebase. The fact that in almost all places
both arrows meet in exactly the same point shows that it is rare that confined types become
non-confined and vice versa. The height of the bars at the bottom also illustrates this; the height
of the bar is the number of types that are live, were live in the previous version and changed
from confined to non-confined or vice versa. The graph shows that while the overall changes to
the code are quite significant, the number of types that change their confinement property is
marginal (with a total of 6 changes from version 3.0 to 5.0, with the total number of confined
types in the different versions in between ranging from 46 to 104 with an average of 68). This
stability of the confinement property over time supports the thesis that confinement would be a
reasonable annotation for a type.

Fig. 19. Number of confined types in different versions of the TomCat benchmark. The top of the
solid arrows marks the number of confined types in each version. The dashed arrows refer to the
number of confined types that were already present and confined in the previous version of the
code. The bars at the bottom represent the number of types that change confinement (become
confined or are no longer confined) and exist in the current and the previous version of the code.

6.8 Runtime Performance

All benchmarks were performed on a Pentium III 800 with 256 MB of RAM running Linux 2.2.19
with IBM JDK 1.3. Except for the JDK tests (j1, j2, j3, j4) all running times include loading
and analyzing required parts of the Sun JDK 1.3.1 libraries. The longest running time is that of
JDK 1.3.1 which consists of 7,037 classes and is analyzed in 41 seconds. On average, Kacheck/J
needs 7.5 milliseconds per class. Figure 20 summarizes the cost of confinement checking, detailed
timings are in the appendix.
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Fig. 20. Running times in ms (log-log scale).

7 Containers and Language Extensions

7.1 Coding for Confinement

Our results clearly point to containers as one source of confinement violations. We considered
using generic extensions of Java to increase confinement. Unfortunately, the homogeneous trans-
lation strategies adopted by Java implies that at the bytecode level, code written with generics
is translated back to code that uses Object and casts. One might be able to uncover patterns
of bytecode compiled from generics and use that to improve the analysis; however, Kacheck/J
makes no attempt to do that and thus cannot verify that classes stored in generic containers
remain confined. Heterogeneous translation strategies would have the drawback of causing code
duplication. Fortunately, it is possible to achieve the desired result with some coding techniques.
The basic idea is to use the adapter pattern to wrap an unconfined object around each confined
object that must be stored in a container.

A confined implementation of a hashtable could provide an interface Entry with two methods
equal(Entry e) and hashCode(). In the package that contains the confined class C, the pro-
grammer would define an implementation RealEntry of Entry with a package-scoped constructor
that takes the key and value (where for example the value has the type of the confined class) and
package-scoped accessor methods. The Hashtable itself would only be able to access the public

methods defined in Entry.
The cost of this change would be the creation of the extra Entry object that might not be

required by other implementations of Hashtable. On the other hand, to access a key-value pair,
this implementation only requires one cast (Entry to the RealEntry to access key and value),
where the default implementation requires a cast on key and value. For other containers, the
tradeoffs may be worse.

Zhao, Palsberg and Vitek [42] suggested an alternative that involves extending confinement
to generic types and annotating bytecode with confinement assertions. In addition to the existing
rules presented so far, they require the rules given in Figure 22. The rules C5 and C6 combined
correspond to the subtyping partial order that prevents reference widening for Generic Con-
finedFJ. C7 corresponds to the extra requirement in the definition of well-formed generic types.
Unlike in the base system, C8 is necessary since we are not certain which method may be called
before a generic class is instantiated.

7.2 Improved Language Support

Java can be extended to support confined types in several ways. Such extensions can be more or
less intrusive on the syntax and semantics. We will consider two approaches:
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public interface Entry {
boolean equal( Entry e);

int hashCode(); }

public class Hashtable {
public void put( Entry e) { ... }
public Entry get( Entry e) { ... } }

class MyEntry implements Entry {
ConfinedKey key;

ConfinedValue val;

public boolean equal( Entry e) { ... }
public int hashCode() { ... } }

Fig. 21. Example Hashtable interface.

1. explicit annotations for confined classes and anonymous methods, and
2. explicit annotations for confined classes but not for anonymous methods.

Using the meta-data facilities of Java 5 it is easy to add such annotations to Java code.
Figure 23 shows how to specify the Confined and Anonymous annotations. In order to allow for
running a static checker on the bytecode, the confinement property is preserved for the class files.
The annotations are not needed at runtime. The rule that subclasses of confined types should
also be confined is made explicit by the inherited annotation.

Explicit annotations of classes and methods In Bokowski and Vitek’s original proposal for
confined types [39], both confined classes and anonymous methods had explicit modifiers, in the
following style:

@Confined class C extends B {
@Anonymous int m() {

return this.n();

}
}

The constraints of Bokowski and Vitek are stricter than the constraints presented in this paper.
In particular, Bokowski and Vitek require that the anonymity of a method is preserved in all
subclasses and that the static receiver of a virtual call must be anonymous. In contrast, the
constraints checked by Kacheck/J only require the unique dynamic targets to be anonymous.
Thus the more modular checking will result in fewer confinement opportunities.

The explicit annotation @Anonymous for anonymous methods simplifies checking the confine-
ment constraint C1. That rule can be checked by (1) ensuring that every method invoked on a

C6 A generic type or type variable cannot be widened to a type containing a
different set of type variables.

C7 A confined type cannot replace a public type variable in the instantiation of a
generic type.

C8 Overriding must preserve anonymity of methods.

Fig. 22. Alternative confinement rules



Encapsulating Objects with Confined Types 23

@java.lang.annotation.Retention(java.lang.annotation.RetentionPolicy.CLASS)

@java.lang.annotation.Inherited

public @interface Anonymous {}
@java.lang.annotation.Retention(java.lang.annotation.RetentionPolicy.CLASS)

@java.lang.annotation.Inherited

public @interface Confined {}

Fig. 23. Defining annotations for confinement and anonymous methods in Java 5. The presented
code defines two annotations (@Anonymous and @Confined) which according to the given retention

policy will be compiled into the .class files, but which will not be available for introspection at
runtime. The inherited declaration ensures that the annotations are automatically applied to all
subtypes.

confined type is declared as @Anonymous and (2) by checking the constraints given by Bokowski
and Vitek [39] for anonymous methods. Having the programmer specifically specify methods as
anonymous also makes it easier for the programmer to reason about confinement, just like con-
finement can be checked in a modular way the confinement violations are more localized since
this approach avoids having to follow chains of anonymity violations across multiple methods.

Explicit annotations of classes, but not of methods There are many more anonymous
methods than confined classes. Thus, the burden on the programmer to annotate code can be
lightened considerably by only requiring explicit annotation of classes. Moreover, the resulting
inference of anonymous methods can be done according to the rules presented in this paper.
This inference is scalable and more precise than annotations for anonymous methods. Annotat-
ing existing code with a @Confined modifier can be done automatically with the results from
Kacheck/J. The latest version of Kacheck/J for Java 5 allows both automatically annotating
bytecode with @Confined metadata attributes (for use by other analyses that need confinement
information) as well as checking that all types that are annotated to be @Confined in the source
are actually confined (for verification of confinement assertions provided by the programmer).
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8 Refactoring for Confinement

In this section we detail how Kacheck/J can aid the process of first discovering that a class is
not confined and then refactoring the program such that the class becomes confined.

8.1 The example program

We will use an example which stems from the Freenet application [20,19]. The example was found
by inspecting the Freenet source code and discovering that class DoublyLinkedListImpl has an
inner class which probably should be confined. For clarity, we will work with a much condensed
version of class DoublyLinkedListImpl and two of its clients. We condensed the code mainly by
removing methods and code sections irrelevant to our quest for making a class confined.

Our example program is shown in Figure 24. The example program contains, in the left col-
umn, a rudimentary interface DoublyLinkedListand an implementation DoublyLinkedListImpl

of doubly linked lists. The example program also contains, in the right column, two pieces of
client code, called IntervalledSum and LoadStats, that use doubly linked lists. Notice that class
DoublyLinkedListImpl has an inner class ItemImpl (which was called Item in the Freenet source
code). Class ItemImpl is used to represent the state of objects of class DoublyLinkedListImpl. If
we want to encapsulate the state of objects of class DoublyLinkedListImpl, then class ItemImpl
should be confined.

The Freenet code was written by many different authors. The multiple authorship may explain
the two inconsistent uses of class DoublyLinkedListImpl: one client re-implements the Item

interface from scratch, whereas another client extends the ItemImpl code. The Freenet code
contains more than just these two uses of DoublyLinkedList; the two clients in Figure 24 are
simple yet representative samples.
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package freenet.support;

public interface DoublyLinkedList {

public interface Item {

Item getNext();

Item setNext(Item i);

Item getPrev();

Item setPrev(Item i);

}

int size();

java.util.Enumeration elements();

void push(Item i);

}

public class DoublyLinkedListImpl

implements DoublyLinkedList {

protected int size;

protected Item head, tail;

public int size() { return size; }

public java.util.Enumeration elements() {

return new java.util.Enumeration() {

protected Item next = head;

public boolean hasMoreElements() {

return next != null;

}

public Object nextElement() {

if (next == null) throw new

java.util.NoSuchElementException();

Item result = next;

next = next.getNext();

return result;

}

};

}

public void push(Item j) {

// ...

++size;

}

public static class ItemImpl

implements Item {

private Item next, prev;

public Item getNext() { return next; }

public Item setNext(Item i) {

Item old = next; next = i; return old;

}

public Item getPrev() { return prev; }

public Item setPrev(Item i) {

Item old = prev; prev = i; return old;

}

}

}

package freenet.support;

import freenet.support.DoublyLinkedList.Item;

public class IntervalledSum {

private final DoublyLinkedList l

= new DoublyLinkedListImpl();

public void report(double d) {

l.push(new Report(d));

}

static class Report implements Item {

double value;

private Item prev, next;

Report(double value) { this.value = value; }

public Item getNext() { return next; }

public Item setNext(Item i) {

Item r = next; next = i; return r;

}

public Item getPrev() { return prev; }

public Item setPrev(Item i) {

Item r = prev; prev = i; return i;

}

}

}

package freenet.node;

import freenet.support.*;

public class LoadStats {

private final DoublyLinkedListImpl lru

= new DoublyLinkedListImpl();

private final java.util.Map table

= new java.util.HashMap();

public void storeTraffic(byte[] n, long r) {

LoadEntry le = new LoadEntry(n, r);

table.put(le.fn, le);

lru.push(le);

}

class LoadEntry

extends DoublyLinkedListImpl.ItemImpl {

private final Object fn;

private final long qph;

private LoadEntry(byte[] b, long qph) {

this.fn = b;

this.qph = qph;

}

}

}

Fig. 24. Doubly linked lists and two of their clients
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8.2 Refactoring: remove simple confinement violations

In Figure 24, the class ItemImpl is public and therefore it is not confined by definition. However,
confining ItemImpl is probably a good idea since its state is the internal representation of the
DoublyLinkedList. Having clients outside of the package manipulate ItemImpl-objects might
easily break invariants of the DoublyLinkedList implementation, such as the size of the list or
the head and tail fields.

In order to confine ItemImpl, we must remove all violations of the confinement rules. Let
us first consider rule C4 which requires that subtypes of a confined type must be confined. This
clearly conflicts with the subclassing of ItemImpl by LoadEntry. This problem can be solved
using the ”Replace Inheritance with Delegation” refactoring pattern [24]. Instead of extending
Item a field value is added to the Item class. We use generics in order to give the field an
appropriate type. Using this design also removes the code duplication in Report, which no longer
needs to implement Item. Since ItemImpl is now going to be the only implementation of the
Item interface, the split between implementation and interfaces is quite useless, so in order to
simplify the code we remove the interfaces and eliminate the Impl from the names of the classes
of the implementation. Finally, the access modifier of Item (formerly ItemImpl) is changed from
public to default (in order to satisfy confinement rule C2). The result of the first refactoring is
the program in Figure 25.
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package freenet.support;

public class DoublyLinkedList<T> {

private int size;

private Item<T> head, tail;

public int size() { return size; }

public java.util.Enumeration elements() {

return new java.util.Enumeration() {

protected Item next = head;

public boolean hasMoreElements() {

return next != null;

}

public Object nextElement() {

if (next == null) throw new

java.util.NoSuchElementException();

Item result = next;

next = next.next;

return result;

}

};

}

public void push(T j) {

// ...

++size;

}

static class Item<T> {

Item next, prev;

public final T value;

Item(T val) { this.value = val; }

}

}

package freenet.support;

import freenet.support.DoublyLinkedList;

public class IntervalledSum {

private final DoublyLinkedList<Report> l

= new DoublyLinkedList<Report>();

public void report(double d) {

l.push(new Report(d));

}

static class Report {

double value;

Report(double value) { this.value = value; }

}

}

package freenet.node;

import freenet.support.*;

public class LoadStats {

private final DoublyLinkedList<LoadEntry> lru

= new DoublyLinkedList<LoadEntry>();

private final java.util.Map table

= new java.util.HashMap();

public void storeTraffic(byte[] nr, long rph) {

LoadEntry le = new LoadEntry(nr, rph);

table.put(le.fn, le);

lru.push(le);

}

class LoadEntry {

private final Object fn;

private final long qph;

private LoadEntry(byte[] b, long qph) {

this.fn = b;

this.qph = qph;

}

}

}

Fig. 25. The code after the first refactoring
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8.3 Refactoring: remove widening violations

If we run Kacheck/J on the program in Figure 25 we will get the result that class Item is still
not confined. The problem is that method nextElement widens Item to Object (upon return).
We can refactor the program in Figure 25 to remove the violation.

The result of the second refactoring is the program in Figure 26. As a result of the refactoring,
Item is confined and clients can no longer easily break invariants of the DoublyLinkedList

container.

8.4 Refactoring: Summary

In our experience the biggest hurdle in refactoring code for confinement is to find candidates where
such a refactoring would truely improve the code. The primary obstacle are Java’s containers,
which could theoretically be addressed by checking confinement at the source level. Nevertheless,
in practice many classes can be easily confined by flattening the hierarchy and possibly wrapping
references to instances in another class. However, while it is often easy to achieve confinement,
refactoring code blindly simply to maximize confinement may result in unnatural datastructures
with too many layers of abstraction.

9 Related Work

Reference semantics permeate object-oriented programming languages, and the issue of control-
ling aliasing has been the focus of numerous papers in the recent years [2,3,18,21,26,28,29,31,36].
We will discuss briefly the most relevant work.

package freenet.support;

public class DoublyLinkedList<T> {

private int size;

private Item<T> head, tail;

public int size() { return size; }

public java.util.Enumeration<T> elements() {

return new java.util.Enumeration<T>() {

protected Item next = head;

public boolean hasMoreElements() {

return next != null;

}

public T nextElement() {

if (next == null) throw new

java.util.NoSuchElementException();

Item<T> result = next;

next = next.next;

return result.value;

}

};

}

public void push(T j) {

// ...

++size;

}

static class Item<T> {

Item next, prev;

public final T value;

Item(T val) { this.value = val; }

}

}

Fig. 26. The code after the second refactoring
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Bokowski and Vitek [10] introduced the notion of confined types. In their paper, confined types
are explicitly declared. Their paper discussed an implementation of a source-level confinement
checker based on Bokowski’s CoffeeStrainer [9]. The main difference between that work and the
present paper lies in the definition of anonymity. In both cases anonymity rules are used to detect
confinement breaches from hidden widening of confined types to public types that can occur with
inherited methods (rule C1). However, the rules given by Bokowski and Vitek are much stronger
than strictly necessary.

public class Parent {
protected Parent nonAnonymousMethod() {

return this; // violation of A1

} }

class NotConf extends Parent {
Parent violation() {

return nonAnonymousMethod(); // hidden widening

} }

Fig. 27. Confinement violation C1.

Consider the example of Figure 27. Notice that class Parent is public so it cannot be confined.
Intra-procedural analysis would not reveal that the expression new NotConf().violation()

will widen NotConfined to Parent. So, Bokowski and Vitek chose to rely on explicit anonymity
declarations and added an additional anonymity constraint:

A4 Anonymity declarations must be preserved when overriding methods.

public class A { // A is not confined

Object m() {
// m() is anonymous in relation to C but not in relation to B

return null;

}
public Object n() {

return new C().m();

} }

class B extends A { // B is not confined

Object m() { // m() is not anonymous

return this;

} }

class C extends A { } // C is confined

Fig. 28. Anonymity need not be preserved in all subtypes.

Thus, once a method is declared anonymous, all overriding definitions of that method have
to abide by the constraints. When inferring anonymity, the rule A4 is not necessary. The goal of
A4 was to ensure that anonymity of a method is independent from the result of method lookup.
If anonymity of methods is inferred, dynamic binding can be taken into account. Figure 28 shows
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a confined class C that extends a class A. The method A.m() meets all anonymity criteria except
for rule A4. The violation of that rule occurs in class B, because B extends A and redefines m()

with an implementation that returns this. The key point to notice here is that the anonymity
violation cannot occur if the dynamic type of this is A. We say the method A.m() is anonymous
in relation to C, but not in relation to B.

Another difference between the old and the new anonymity rules is that we allow widening
of the this reference to other confined types. The old rules forbid returning this or using this

as an argument completely. The new rules allow such cases, if the type of the return value or
the argument is again a confined type. An example is shown in Figure 29, which is a minimal
variation of Figure 27 (Parent is no longer public). In this case the new rules would allow both
classes to be confined.

class Parent {
protected Parent anonymousMethod() {

return this; // not a violation of A1

} }

class Confined extends Parent {
Parent noViolation() {

return anonymousMethod(); // widening, but no escape

} }

Fig. 29. Two confined classes.

Noble, Vitek, and Potter [36] presented flexible alias protection as a means to control poten-
tial aliasing amongst components of an aggregate object (or owner). Aliasing-mode declarations
specify constraints on the sharing of references. The mode rep protects representation objects

from exposure. In essence, rep objects belong to a single owner object and the model guarantees
that all paths that lead to a representation object go through that object’s owner. The mode
arg marks argument objects which do not belong to the current owner, and therefore may be
aliased from the outside. Argument objects can have different roles, and the model guarantees
that an owner cannot introduce aliasing between roles. Hogg’s Islands [28] and Almeida’s Bal-
loons [2,3] have similar aims. An Island or Balloon is an owner object that protects its internal
representation from aliasing. The main difference from [36] is that both proposals strive for full
encapsulation, that is, all objects reachable from an owner are protected from aliasing. This is
equivalent to declaring everything inside an Island or Balloon as rep. This is restrictive, since
it prevents many common programming styles; it is not possible to mix protected and unpro-
tected objects as done with flexible alias protection and confined types. Hogg’s proposal extends
Smalltalk-80 with sharing annotations but it has neither been implemented nor formally vali-
dated. Almeida did present an abstract interpretation algorithm to decide if a class meets his
balloon invariants, but it was also not implemented so far. Balloon types are similar to confined
types in that they only require an analysis of the code of the balloon type and not of the whole
program. Boyland, Noble and Retert [14] introduced capabilities as a uniform system to describe
restrictions imposed on references. Their system can model many of the different modifiers used
to address the aliasing problem, such as immutable, unique, readonly or borrowed. They also
model a notion of anonymous references, which is different from the one used in this paper. Their
system of access rights cannot be used to model confined types, mainly because it lacks support
for modeling package-scoped access. Kent and Maung [31] proposed an informal extension of
the Eiffel programming language with ownership annotations that are tracked and monitored
at run-time. Barnett et al. [5] used a simple notion of ownership as the basis for an approach
to specifying and checking properties stated as pre- and post-conditions for methods and object
invariants; in their system the checking of ownership is itself a proof obligation. Also Müller [34]
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used ownership in support of verification but in this case checked by a type system. In the field of
static program analysis, a number of techniques have been developed. Static escape analyses such
as the ones proposed by Blanchet [6,7] and others [8,22] provide much more precise results than
our technique, but come at a higher analysis cost. They often require whole program analyses,
and are sensitive to small changes in the source code.

Clarke, Potter, and Noble [16,18] formalized representation containment by means of own-
ership types. Their seminal paper has sparked much interest and many papers have explored
ownership types since then. Ownership types enforce that all paths from the root of an object
system must pass through an object’s owner. The paper of Clarke, Potter, and Noble [18] allowed
just three annotations, rep, norep, and owner for specifying ownership, while later papers have
introduced additional or alternative annotations [1,17,32,35]. Ownership types are inherently
more flexible than confined types, while experiments with inferring ownership types, for example
using the approch of Aldrich, Kostadinov, and Chambers [1] indicate that confined types lead to
more scalable inference. Ownership types have been used as the basis for specifying a variety of
properties via types, such as the absence of data races and deadlocks [11,12].

Most of the approaches mentioned above use operational semantics to reason about alias
protection and ownership. Banerjee and Naumann [4] used denotational semantics to prove a
representation-independence theorem, that is, a result about whether a class can safely be re-
placed by another class, independently of the program in which the class occurs. They use a
syntactic notion of confinement, like we do, in which the protection domain is an instance rather
than a package. Their notion of confinement is more restrictive than ours and it leads to a
powerful theorem about classes.

10 Conclusion

We have presented the Kacheck/J tool for inferring confinement in Java programs and used the
tool to analyze over 46,000 classes. The number of confined types found by the analysis are sur-
prisingly high, about 24% of all package-scoped classes and interfaces are confined. Furthermore,
we discovered that many of the confinement violations are caused by the use of container classes
and thus might be solved by extending Java with genericity, this would increase confinement to
30%. The biggest surprise was the number of violations due to badly chosen access modifiers. Af-
ter inferring tighter access modifiers, 45% of all package-scoped classes were confined. We expect
that these numbers will rise even further once programmers start to write code with confinement
in mind.

Confinement is an important property. It bounds aliasing of encapsulated objects to the
defining package of their class, and helps in re-engineering object-oriented software by expos-
ing potential software defects, or at least making, often subtle, dependencies visible. We have
demonstrated that inferring confined types is fast and scalable. Kacheck/J is available from

http://ovmj.org/kacheck/
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A Constraint Generation

In this section we present which opcodes generate which constraints for confined types.
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InvokeStatic

– If this occurs in the argument list, record widening of this to the type T of the match-
ing argument in the current method m. This generates the constraint: C ⇒ A where C is
not-conf(T ) and A is not-anon(m).

– For each argument a of inferred type T that is an object, record the corresponding declared
type T ′ of the parameter. This generates constraints C′ ⇒ C where C′ is not-conf(T ′) and C

is not-conf(T ).

Areturn, Putfield, Putstatic, Aastore

– If the variable that is returned or stored is this, record widening of this to the declared type
T ′ (the return type, type of the field or the component type of the array). This generates a
constraint C ⇒ A where C is not-conf(T ′) and A is not-anon(m) with m being the current
method.

– If the variable that is used is an object but not this and has inferred type T , record widening
to the corresponding declared type T ′. This generates constraints C′ ⇒ C where C′ is
not-conf(T ′) and C is not-conf(T ).

InvokeInterface, InvokeVirtual, InvokeSpecial

– If this occurs in the argument list, record widening of this to the type T of the match-
ing argument in the current method m. This generates the constraint: C ⇒ A where C is
not-conf(T ) and A is not-anon(m).

– If the call is of the form this.n(), calling a method n from method m on this, record
method invocation distinguishing between invokevirtual, invokeinterface and invokespecial.
This generates the constraint A ⇒ A′ where A is not-anon(n) and A′ is not-anon(m).

– If the call is not on this but of the form a.n(), record an invocation on type T where T is
the inferred type of a. This generates the constraint A ⇒ C where A is not-anon(n) and C is
not-conf(T ).

– For each argument a of inferred type T that is an object, record the corresponding declared
type T ′ of the parameter. This generates constraints C′ ⇒ C where C′ is not-conf(T ′) and C

is not-conf(T ).

Athrow

– If the variable that is thrown is this, record widening of this to Throwable. This generates
a constraint C ⇒ A where C is not-conf(Throwable) and A is not-anon(m) with m being
the current method. Because the condition not-conf(Throwable) is always true, a primitive
constraint A can be used, too.

– If the thrown variable is an object but not this and has inferred type T ′, record widen-
ing to Throwable. This generates a constraint C ⇒ C′ where C is again always true
(not-conf(Throwable)) and C′ is not-conf(T ′).

Call Propagation

A call to method m on a type T must generate additional constraints for all subtypes Si of T

that are widened to T .

B Benchmark Data
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Classes Confinement Time
Benchmark

All Public Inner
Pkgs Opcodes

C GC CA GCA (ms)

Aglets 410 193 133 18 107846 13 15 60 66 4979

AlgebraDB 161 130 9 6 51218 20 24 81 97 3009

Bloat 282 150 127 17 84212 10 17 29 39 3623

Denim 949 684 271 63 288140 65 71 187 211 9463

Forte 6535 3053 3769 192 1123362 306 437 1149 1346 37565

GFC 153 143 8 15 58003 5 5 58 58 3284

GJ 338 202 189 12 105323 27 27 51 52 4245

HyperJ 1007 862 70 26 211269 32 38 193 212 6711

JAX 255 255 0 9 97932 0 0 99 104 3790

JDK 1.1.8 1704 1423 29 80 917132 71 96 712 744 13103

JDK 1.2.2 4338 2655 1365 130 958619 527 603 1062 1173 23463

JDK 1.3.0 5438 3326 1780 176 1180406 581 685 1297 1476 29336

JDK 1.3.1 7037 4569 2043 213 2010305 756 891 2126 2344 41304

JPython 214 134 35 7 103094 40 45 90 107 4107

JTB 158 150 1 6 48900 4 4 8 8 3009

JTOpen 3022 1439 557 52 1048704 438 467 1049 1113 23950

Jalapeno 1.1 994 730 132 29 255436 155 159 543 549 6770

JavaSeal 75 56 19 9 34933 1 2 14 17 2685

Kawa 443 438 100 6 68733 1 1 177 177 3910

OVM 763 391 539 26 89975 313 313 427 428 6072

Ozone 2442 1705 490 112 447984 93 221 754 920 13245

Rhino 95 67 1 5 51752 11 15 28 33 3201

SableCC 342 290 47 8 45621 3 5 24 28 3470

Satin 938 559 455 48 194985 48 52 206 218 7955

Schroeder 108 103 7 2 41422 0 1 6 7 3270

Soot 721 302 79 6 65137 45 47 90 92 5622

Symjpack 194 125 0 11 73465 8 10 53 89 3559

Toba 762 327 79 11 98993 53 55 102 104 6020

Tomcat 1271 916 221 93 286368 65 109 377 448 8918

Voyager 5667 4430 1305 294 996077 208 295 1268 1442 34082

Web Server 1024 787 52 60 370664 51 72 255 301 9308

Xerces 622 508 125 35 233919 22 47 221 279 6038

Zeus 604 517 74 39 180437 20 38 237 278 5640

Total 46165 30277 13555 1771 10917301 3998 4873 13064 14591 347567

Fig. 30. Statistics for the benchmarks. C is Confined, GC is Generic-Confined, CA is Confinable
and GCA is Genrice-Confinable.
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Classes
Benchmark

All Public Inner
Pkgs Opcodes

Aglets 410 193 133 31 107846

AlgebraDB 161 130 9 9 51218

Bloat 282 150 127 20 84212

Denim 949 684 271 84 288140

Forte 6535 3053 3769 231 1123362

GFC 153 143 8 22 58003

GJ 338 202 189 14 105323

HyperJ 1007 862 70 29 211269

JAX 255 255 0 21 97932

JDK 1.1.8 1704 1423 29 90 917132

JDK 1.2.2 4338 2655 1365 133 958619

JDK 1.3.0 5438 3326 1780 177 1180406

JDK 1.3.1 7037 4569 2043 213 2010305

JPython 214 134 35 11 103094

JTB 158 150 1 8 48900

JTOpen 3022 1439 557 75 1048704

Jalapeno 1.1 994 730 132 29 255436

JavaSeal 75 56 19 18 34933

Kawa 443 438 100 13 68733

OVM 835 416 590 41 111161

Ozone 2442 1705 490 122 447984

Rhino 95 67 1 8 51752

SableCC 342 290 47 10 45621

Satin 938 559 455 70 194985

Schroeder 108 103 7 13 41422

Soot 721 302 79 9 65137

Symjpack 194 125 0 14 73465

Toba 762 327 79 14 98993

Tomcat 1271 916 221 105 286368

Voyager 5667 4430 1305 312 996077

Web Server 1024 787 52 76 370664

Xerces 622 508 125 45 233919

Zeus 604 517 74 42 180437

Total 49259 31741 14163 2120 11987191

Fig. 31. Statistics for the benchmarks
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Benchmark Conf Confinable GenConf GenConfinable

Aglets 13 60 15 66

AlgebraDB 20 81 24 97

Bloat 10 29 17 39

Denim 65 187 71 211

Forte 306 1149 437 1346

GFC 5 58 5 58

GJ 27 51 27 52

HyperJ 32 193 38 212

JAX 0 99 0 104

JDK 1.1.8 71 712 96 744

JDK 1.2.2 527 1062 603 1173

JDK 1.3.0 581 1297 685 1476

JDK 1.3.1 756 2126 891 2344

JPython 40 90 45 107

JTB 4 8 4 8

JTOpen 438 1049 467 1113

Jalapeno 1.1 155 543 159 549

JavaSeal 1 14 2 17

Kawa 1 177 1 177

OVM 119 243 302 428

Ozone 93 754 221 920

Rhino 11 28 15 33

SableCC 3 24 5 28

Satin 48 206 52 218

Schroeder 0 6 1 7

Soot 45 90 47 92

Symjpack 8 53 10 89

Toba 53 102 55 104

Tomcat 65 377 109 448

Voyager 208 1268 295 1442

Web Server 51 255 72 301

Xerces 22 221 47 279

Zeus 20 237 38 278

Total 3804 12880 4862 14591

Fig. 32. Number of confined and confinable classes
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Time (ms)
Benchmark

real user sys

Aglets 4979 4540 160

AlgebraDB 3009 2860 70

Bloat 3623 3530 90

Denim 9463 8020 300

Forte 37565 29870 1380

GFC 3284 3070 90

GJ 4245 3960 60

HyperJ 6711 6160 220

JAX 3790 3580 100

JDK 1.1.8 13103 11750 450

JDK 1.2.2 23463 19270 750

JDK 1.3.0 29336 25760 760

JDK 1.3.1 41304 39730 850

JPython 4107 3890 90

JTB 3009 2810 80

JTOpen 23950 21720 800

Jalapeno 1.1 6770 6270 230

JavaSeal 2685 2490 50

Kawa 3910 3440 180

OVM 6072 5270 200

Ozone 13245 11190 480

Rhino 3201 2920 70

SableCC 3470 3130 110

Satin 7955 6310 270

Schroeder 3270 2730 90

Soot 5622 5190 250

Symjpack 3559 3270 100

Toba 6020 5550 270

Tomcat 8918 7790 330

Voyager 34082 25960 1090

Web Server 9308 8060 250

Xerces 6038 5560 220

Zeus 5640 4960 150

Total 347567 303330 10670

Fig. 33. Time required for the analysis
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