
A Benchmark for HTTP 2.0 Header Compression

Christian Grothoff

Technische Universität München

31.07.2013

https://gnunet.org/httpbenchmark/

https://gnunet.org/httpbenchmark/

Goals

I Realistic benchmark based on diverse, real-world user data

I Preserve realistic privacy expectations of monitored users

I Preserve compression characteristics

I Allow assessment of tunneling multiple requests in one stream

I Capture data at high-speed link (no TCP stream
reconstruction)

Goals

I Realistic benchmark based on diverse, real-world user data

I Preserve realistic privacy expectations of monitored users

I Preserve compression characteristics

I Allow assessment of tunneling multiple requests in one stream

I Capture data at high-speed link (no TCP stream
reconstruction)

Methods

I Capture data with libpcap on port 80 that looks like HTTP
header

I Traces are headers with same source IP to same destination
IP within 5 minutes

I Store in sqlite database with trace- and timing information

I Remove IP addresses

I Obscure possibly private data in headers

Header cleaning

I Apply substitution ciphers depending on payload:
I Same substitution for all URIs in a trace
I Same substitution for all (expected) occurences of hostname
I Same substitution for cookie values in trace
I Fresh, character-set preserving substitutions for other headers

I Write regular expressions for headers that are not cleaned

I Discard headers for which we do not have a regular expression

I Pass internal review for data export

Header cleaning

I Apply substitution ciphers depending on payload:
I Same substitution for all URIs in a trace
I Same substitution for all (expected) occurences of hostname
I Same substitution for cookie values in trace
I Fresh, character-set preserving substitutions for other headers

I Write regular expressions for headers that are not cleaned

I Discard headers for which we do not have a regular expression

I Pass internal review for data export

Length distribution for the traces

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000

#
 t

ra
ce

s
o
f

g
iv

e
n
 l
e
n
g

th

number of requests in trace

Length distribution of the traces

Data set 1
Data set 2
Data set 3
Data set 4
Data set 5

The length of a trace is defined as the number of headers in a
given trace.

Number of bytes per header

 1

 10

 100

 1000

 10000

 100000

 0 200 400 600 800 1000 1200 1400

#
 h

e
a
d

e
rs

 o
f

g
iv

e
n
 s

iz
e

number of bytes per header

Size distribution of the headers

Data set 1
Data set 2
Data set 3
Data set 4
Data set 5

Number of key-value pairs in the headers

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60

#
 h

e
a
d

e
rs

 w
it

h
 t

h
is

 m
a
n
y
 v

a
lu

e
s

number of values per header

Number of key-value pairs in the headers

Data set 1
Data set 2
Data set 3
Data set 4
Data set 5

Compression (public benchmark)

Algorithm Compressed size Comp. time Decomp. time

memcpy req. 260 ± 44 MB 166 ± 6 ms 148 ± 3 ms
gzip req. 46 ± 18 MB 9,3 ± 2,2s 2 ± 0,5 s
bzip2 req. 215 ± 33 MB 103 ± 14 s 26 ± 4 s

memcpy res. 157 ± 12 MB 155 ± 5 ms 137 ± 3 ms
gzip res. 30 ± 4 MB 7,1 ± 0,7s 1,4 ± 0,1 s
bzip2 res. 138 ± 10 MB 70 ± 5 s 17 ± 1,2 s

Compression (raw data)

Algorithm Compressed size Comp. time Decomp. time

memcpy req. 265 ± 45 MB 169 ± 4 ms 147 ± 3 ms
gzip req. 37 ± 6 MB 8,6 ± 1,4s 2,1 ± 0,2 s
bzip2 req. 210 ± 31 MB 103 ± 15 s 26 ± 3,9 s

memcpy res. 163 ± 12 MB 159 ± 3 ms 138 ± 3 ms
gzip res. 29 ± 4 MB 7,4 ± 0,7s 1,6 ± 0,1 s
bzip2 res. 138 ± 10 MB 71 ± 4,6s 17 ± 1,1 s

Publication

I PDF with detailed description of method

I Five sqlite3 databases with ≈ 1 million HTTP headers each

I C source code for capture, cleanup and evaluation

I ODS spreadsheed with statistical analysis of data output by C
code

I License: Code is GPL, use of data should be attributed

Do you have any questions?

References:

I Christian Grothoff. A Benchmark for HTTP 2.0 Header
Compression. https://gnunet.org/httpbenchmark/,
2013.

https://gnunet.org/httpbenchmark/

Content-length distribution

