
Efficient and Secure Decentralized Network Size
Estimation

Nathan Evans1, Bartlomiej Polot2, and Christian Grothoff2

1 Symantec Research Labs
nathan evans@symantec.com

2 Free Secure Network Systems Group
Network Architectures and Services

Technische Universität München
{bart,grothoff}@net.in.tum.de

Abstract. The size of a Peer-to-Peer (P2P) network is an important
parameter for performance tuning of P2P routing algorithms. This pa-
per introduces and evaluates a new efficient method for participants in
an unstructured P2P network to establish the size of the overall network.
The presented method is highly efficient, propagating information about
the current size of the network to all participants using O(|E|) opera-
tions where |E| is the number of edges in the network. Afterwards, all
nodes have the same network size estimate, which can be made arbitrar-
ily accurate by averaging results from multiple rounds of the protocol.
Security measures are included which make it prohibitively expensive for
a typical active participating adversary to significantly manipulate the
estimates. This paper includes experimental results that demonstrate the
viability, efficiency and accuracy of the protocol.

Keywords: Peer-to-Peer, protocol design, network security

1 Introduction

Individual peers participating in unstructured networks, such as Peer-to-Peer
(P2P) networks, ad-hoc wireless networks and sensor networks, can benefit from
knowing the size (total number of participants) of the network. Peers in unstruc-
tured P2P networks which know the network size can make intelligent decisions
with respect to content replication, message routing and forwarding and the
overall cost of operations. Additionally, nodes in a sensor network can use such
data to gauge the health of the overall network, calculate on/off time to save
energy, selectively route messages, and generate alerts.

This paper describes the design, implementation and experimental results of
a protocol that provides all peers in a structured or unstructured P2P network
with an accurate estimate of the total number of peers in the network. The
primary motivation for our work are the requirements of various P2P routing
protocols [4, 6, 12]; these protocols explicitly require a network size estimate to
tune parameters responsible for routing, path selection and content replication.

The focus of our design is to provide security in the context of an open
and completely decentralized network architecture. While it would be possible
to strengthen the security of our design with trusted centralized services — for
example by preventing a Sybil-attack with a centralized registration requirement
— our design does not require a centralized authority and is intended to provide
security in the presence of actively participating adversaries. A key difference to
existing proposals is that in our design there are no peers with special roles in
the process; this eliminates the possibility of malicious peers abusing such roles.

A central goal of our design — which is generally not satisfied by many other
network size estimation algorithms [1, 11, 14] — is that all peers are supposed
to participate in calculating a network size estimate at roughly the same time
and obtain the same result. This is achieved by a controlled flood of the network
with the size estimation information, costing O(|E|) messages per round. In
practice, the constant factor is typically between one and two; in other words,
the algorithm can be expected to only generate |E| messages per round.

The basic idea behind our algorithm is to flood the network with the identity
of the peer whose identity is closest to a particular key T . Each peer’s identity
is generated when the peer starts the first time. The key T is not chosen by
any peer but instead is generated from the start time S of the current round.
Despite using time, we specifically do not assume that the clocks in the network
are closely synchronized; our protocol ensures that in the worst case individual
peers with significant clock skew only cause a bounded amount of additional
network traffic.

Our protocol considers many other important networking issues as well. The
protocol is very efficient as it requires only O(1) state per peer and does not
require peers to establish new connections (we assume the network graph is
connected). The amount of work required by each node is based only on the
number of edges of the node, so the load between peers is typically balanced.
Given that our protocol floods the network with size estimation information,
peers randomly delay messages to avoid spikes in network traffic. Finally, our
design handles network churn well, and allows the system designer to trade-off
computational efficiency for security and bandwidth for accuracy.

The remainder of the paper is structured as follows. In Section 2, we present
related work on methods for network size estimation for P2P networks. Section 3
then presents our protocol. In Section 4 we analyze the security aspects of the
protocol. Experimental results obtained using large-scale emulation are given in
Section 5.

2 Related Work

Algorithms for estimating the size of a P2P network can be categorized into al-
gorithms for structured overlays, which typically exploit statistical properties of
an existing routing table from a DHT, and algorithms for unstructured overlays,
which make no assumptions about the structure of the underlying network.

2

2.1 Network Size Estimation for Structured Overlays

Structured overlays construct routing tables at each peer according to particular
rules that enable efficient routing of messages to the peer with the “closest”
identifier with respect to a given key [15, 18]. In these structured overlays, the
distance to the nearest neighbors in the routing table can be used as a first
network size estimate as it correlates with the network size [17].

As node identifiers are often not perfectly uniform, searching the structured
overlay for the closest node to various randomly selected keys can be used to
get accurate network size estimates [17]. Given a DHT routing algorithm with a
typical cost of O(log n), network size estimation for all nodes using this method
would be O(n log n). When compared to the method presented in this paper, a
key disadvantage of existing methods for structured networks is that they rely on
the security of the underlying routing algorithm; actively participating malicious
nodes have thus the potential to significantly skew the network size estimate.
Furthermore, for any of the structured methods that we are aware of, different
nodes will virtually always compute somewhat different network size estimates.

2.2 Network Size Estimation for Unstructured Overlays

Several algorithms for unstructured overlays are based on sampling. Examples
include Sample & Collide, Random Tour and Hops Sampling. In Sample & Col-
lide [14], each peer starts bounded random walks to sample random peers in the
network and uses the collision information and the birthday paradox to estimate
the size of the network. In Random Tours [14], a message tours the network
until it reaches the initiator; the size estimate is then computed based on a
counter in the message that was incremented by each peer on the tour. Hops
Sampling [11] works by flooding the network with a message containing a hop
count. Peers report back to the initiator with a probability inverse to the hop
count they received. The network size estimate is then the sum over all dis-
tances of the number of replies received for a particular distance divided by the
reply-probability for that distance.

As described, these methods generate results for just one peer in the net-
work, resulting in a high amount of bandwidth used overall (assuming each peer
requires an estimate). Also, different peers will have potentially significantly dif-
ferent network size estimates. While these approaches do not assume a particular
network structure for routing, they do still make implicit assumptions about the
structure of the overlay topology and may significantly underestimate the net-
work size if the overlay topology happens to have a structure that is unfavorable
to the algorithm. For example, a circular topology would result in a network size
estimate of n2 for Sample & Collide.

Other algorithms, such as Gossip-based Aggregation [8], achieve a somewhat
more uniform estimate for all participating nodes at the cost of sensitivity to
node failures. Gossip-based Aggregation starts with one peer setting a local state
to 1 while all other peers set their local state to 0. Peers continuously connect to
randomly selected peers, and exchange states in pairs. Each peer then replaces

3

its state with the average of both values. After a predefined number of iterations,
all peers are supposed to end up with a value close to 1/n where n is the size
of the network. A method that addresses the problem of who should set the
state to 1 has been proposed [20], but only works in certain structured networks
and retains other shortcomings of this approach, including high vulnerability to
malicious peers.

A special case is the method proposed in [1] which attempts to produce
a network size estimate using only “local” information. The idea behind this
algorithm is to observe the number of new neighbors discovered in a breadth-
first search of the network and estimate the network size based on the growth of
this function. The authors claim to obtain accurate results with a breadth-first
search of depth three, which makes this a “local” method. However, the way they
constructed the topologies for their experiments does not seem to properly model
the structure of actual networks. We were unable to reproduce their results on
other network topologies.

The accuracy and performance of various size estimation methods for un-
structured networks are compared in [16] using simulation. The authors identify
the Sample & Collide method as the strongest algorithm and state that it re-
quires about 50 million messages in a random-graph topology of 100,000 nodes
for an accuracy of ±4%. It should be noted that this is the overhead for an
individual node to obtain an estimate; if each of the 100,000 nodes were to run
the Sample & Collide protocol, it would take 5 trillion messages to achieve this
degree of accuracy.

None of these papers mention concrete implementations or discuss security
concerns. Furthermore, all of them are clearly vulnerable to malicious partic-
ipants. For example, in the case of sampling-based algorithms, malicious par-
ticipants can manipulate walks that pass through them (allowing virtually un-
bounded manipulation of the network size estimates) or achieve a significant
multiplier (O(

√
n)) to their network bandwidth in a denial-of-service attack by

continuously initiating size estimation requests. Similarly, an active adversary
can manipulate the exchanged values in gossip-based methods to change the
size estimate in any direction.

3 Our Approach

We generate node identifiers by hashing the public key of the respective node.
Node identifiers for benign nodes should therefore be statistically equivalent to
random numbers from a uniform distribution. Furthermore, nodes are able to
cryptographically sign messages using their respective private key.

Similar to the network size estimation algorithms for structured overlays,
our network size estimation approach is based on the largest number of leading
overlapping bits between any node identifier and a random key:

Theorem 1. Let p be the expected maximum number of leading overlapping bits
between any of the n random node identifiers in the network and a random key.
Then the network size n is approximately 2p−0.332747.

4

Proof. Let X be the random variable for all n identifiers and let Xi be the
number of overlapping bits for an individual random node identifier i.

The probability that a single random node identifier i overlaps with at least
α bits with a random key is

P (Xi ≥ α) = 2−α. (1)

Then, the probability that a single random node identifier overlaps with less
than α bits with a random key is

P (Xi < α) = 1− 2−α. (2)

The probability that the maximum number of leading overlapping bits for
all n random nodes is strictly less than α is

Pn(X < α) :=: P

(∧
i

Xi < α

)
= (P (Xi < α))

n
=
(
1− 2−α

)n
. (3)

Then En(X), the expected maximum number of leading overlapping bits of any
of the n random node identifiers in the network is:

En(X) :=:

∞∑
α=0

α · Pn(X = α) =

∞∑
α=1

Pn(X ≥ α)

=

∞∑
α=1

(1− Pn(X < α)) =

∞∑
α=1

(
1−

(
1− 2−α

)n)
=

log2 n∑
α=1

(
1−

(
1− 2−α

)n)
+

∞∑
α=log2 n+1

(
1−

(
1− 2−α

)n)
Suppose n is sufficiently large such that we can use limn→∞(1− x

n)n = e−x. By
substituting β := α− log2 n and γ := log2 n− α we then get:

En(X) = log2 n−
log2 n−1∑
γ=0

(
1− 2γ−log2 n

)n
+

∞∑
β=1

(
1−

(
1− 2−(β+log2 n)

)n)

= log2 n−
log2 n−1∑
γ=0

(
1− 2γ

n

)n
+

∞∑
β=1

(
1−

(
1− 2−β

n

)n)

≈ log2 n−
log2 n−1∑
γ=0

e−2
γ

+

∞∑
β=1

(
1− e2

−β
)

≈ log2 n− 0.521865 + 0.854613 = log2 n+ 0.332747

Thus, for sufficiently large values of n,

En(X) ≈ log2 n+ 0.332747. (4)

ut

5

Given Theorem 1, the key remaining challenge is thus to efficiently and se-
curely find a closest node identifier (with distance measured in terms of leading
overlapping bits) to a random key in an unstructured network.

In our design, all nodes in the network periodically participate in a global
network size estimation operation at a frequency of f . Each round results in
all peers learning a discrete approximation p (the number of overlapping lead-
ing bits for a particular random key) for p (the theoretically expected number
of overlapping leading bits). The specific frequency f is chosen based on the
expected level of network churn and the desired accuracy. f is a design param-
eter and fixed in the implementation. The results from the last k iterations are
averaged locally by each peer to obtain an approximation p̃ for p. A standard
deviation can also be computed if an estimate for the error of the size estimate is
desired. Furthermore, the current p value is used by the protocol as a parameter
to (slightly) improve the performance for the next round. We will refer to the
number of overlapping leading bits from the previous round as p′.

3.1 Generating a random “key”

Given a frequency f , the random target key T for each round is generated by
hashing the start time S, which is the absolute UTC time at times that are zero
modulo f . For example, if f = 1h, then a fresh key could be generated every
hour by hashing “DD-MM-YYYY HH:00:00”. Using this method, all peers will
generate exactly the same key at (roughly) the same time. Generating the key
this way has the advantage that it will be known to all peers without commu-
nication and that malicious participants cannot influence the process. However,
it should be noted that while the keys satisfy the statistical properties of being
random and uniform, it is trivial to compute them in advance.

Our method requires all peers to calculate the current key T at the respective
start time S. The network size estimation protocol’s goal is to communicate to
all peers an identity IT of a peer with the largest proximity p with respect to T .
More specifically, all peers are supposed to learn one of the closest peer identities
IT between time S and time S+f . Given IT , each peer can then calculate p, the
average p̃ of the p-values from the last k rounds and finally the current network
size estimate 2p̃−0.332747.

Note that p is a discrete value representing the number of leading matching
bits between the key T and a peer’s identity. As such, it is quite likely that many
peers have identities with the same number of leading matching bits and hence
the same proximity p. Our protocol deliberately ignores all bits after the first
mismatch to improve performance; if multiple peers have the same proximity
score, it does not matter which of these equivalent identities is propagated as
they will all ultimately result in the same proximity estimate p.

3.2 Starting the Flood

Our protocol essentially floods the network with the identity of a closest peer IT .
If only the identities of closest peers are propagated, this operation would create

6

less than 2|E| messages (up to two per edge in the network). The challenge is to
avoid creating significantly more than 2|E|messages, which is difficult since in an
unstructured network a peer with the closest identity IT cannot be certain that
there is no other peer that is closer to T . We address this problem by delaying
the flood based on proximity.

First, each peer evaluates its own proximity x with respect to T . How close
the peer is to T is then used to determine how soon the peer will initiate the
flood of the network with a message claiming that he is the closest peer. We use
the previous network size estimate as a guide to time the release. Specifically,
given a proximity of x leading overlapping bits and a network size estimate p′

from the previous round, we use the following function to determine the time
when a peer starts to flood the network:

r(x) := S +
f

2
− f

π
· arctan (x− p′) (5)

Using this function, if the peers proximity x is equal to the proximity of the
last iteration, the peer floods the network at time S + f

2 . If the peer’s proximity
is 0 bits, the peer floods the network close to time S + f , which is at the end
of the time interval for the current round; if the peer’s proximity is significantly
higher than p′, the peer floods at the beginning of the round, which is close to
time S. It should be noted that since limx→p′

∂r
∂x (x) = 1, Equation 5 maximizes

the difference between release times for nodes with proximities that are close to
the previous number of overlapping bits p′ and as such minimizes the chance of
two peers releasing floods for different network size estimates around the same
time — assuming the network size estimate did not change significantly.

3.3 Processing the Flood

Peers that receive the resulting network size estimation messages first perform
a series of validation steps before continuing to forward the message. First, each
peer checks if a notification from a closer peer has already been received for round
S. Messages with proximity scores equal to the currently known best score for
the current round are simply discarded. Messages with lower proximity scores
should only occur if there is significant clock skew, and are answered immediately
with a message indicating the higher proximity score. If the message contains
a higher proximity than what was previously known for the current round, the
peer checks if the proximity p of the given message justifies receiving it at the
current time. If not, further processing is delayed until the local peer’s time is
past r(p). Finally, before forwarding and further processing, the format of the
message is validated (this is discussed in more detail in Section 3.5).

Assuming the message validates, the peer then proceeds to forward it to all of
its neighbors. For each neighbour, the message is forwarded with a peer-specific
random delay. If a peer receives a message with an equivalent proximity score
during the delay, the transmission is canceled. As a consequence, the delay helps
to both avoid an explosion of messages on the network in a tiny amount of time,
and to improve the chances of traversing each edge in only one direction per link

7

(as it decreases the chances of equivalent messages being sent in both directions
at the same time).

The permissible delay L is calculated using the time difference between r(p)
and r(p − 1) divided by an estimate of the network’s diameter. The network
diameter D is estimated using the maximum of the hop counters in the network
size estimation messages from the previous k iterations. For each neighbor, the
peer then applies a delay chosen uniformly at random from the interval [0, L)
where L is defined as

L :=
r(p− 1)− r(p)

D
. (6)

As a result, each peer in the network is expected to receive a proximity
notification with proximity p before any peer with notifications for proximity
p− 1 would even begin to flood the network. Naturally, there are various causes
that could increase the number of messages above |E| in a real-world network; for
example, different system times between peers, high network latencies, and peers
with unusually high distances to IT can increase the total number of messages.
However, all benign peers that form a connected component are guaranteed to
eventually receive IT . Furthermore, given that the number of bits in the key
is a small constant, the total number of messages can never exceed O(|E|) per
round.

3.4 Joining the Network

A peer that is freshly joining the network lacks results from previous rounds
for network size estimation. In order to bootstrap the protocol, each peer starts
with a network size estimate based on its own key in relation to the key T
from the previous round, and a network diameter estimate of one. Whenever
a connection between two peers is established, they exchange the network size
estimation result from the previous round (and the current round if their local
time is past f(p)). As a result, all nodes can always be expected to use the same
value for p′ in Equation (5).

3.5 Proof of Work

The presented design is vulnerable to an adversary that creates fake identities
(Sybil attack [2]). Such an adversary could create identities that are “close”
to the respective key for each time S + Zr. By flooding the network with the
respective messages at the right time, the adversary can then make the network
appear to be larger than it is.

Our design defends against this attack by requiring a proof of work [19] for the
identity of the peer as part of the network size estimation message. Specifically,
we require the originator to produce a value with a W -bit hash collision with the
peer’s identifier, and a cryptographic signature to demonstrate that the identifier
was derived from a valid public-private key pair.

The complete message format for the network size estimation messages is
described in our technical report [7].

8

4 Security Analysis

For our security analysis, we assume that an active adversary is participating
in the P2P network. The adversary is allowed to control a certain percentage
of colluding malicious nodes in the network. Individual malicious and benign
nodes are assumed to have the same amount of computational resources; all
nodes are assumed to have sufficient bandwidth to participate in the protocol in
the absence of an attack.

We can imagine three different high-level goals an adversary may pursue with
an attack. First, an adversary may try to cause nodes to significantly underes-
timate the size of the network. Second, an adversary may try to cause nodes
to significantly overestimate the size of the network. Finally, an adversary may
want to use the protocol for a denial-of-service attack where the P2P network
uses significantly more traffic for network size estimation, possibly causing other
components of the system to be left with insufficient bandwidth.

The best method for an adversary to cause peers to underestimate the size of
the network is to not participate in the protocol. If the adversary controls X% of
the network, that will cause the protocol to underestimate the size of the network
by X%. Furthermore, if the adversary is able to control an ε-separator of the
network graph [9, 10, 13] (removing an ε-separator from a graph reduces the size
of the largest remaining connected component to εn), then the overall network
size estimate would be reduced to less than εn for all nodes in the network.
Given that in all of these cases the network size estimate would correspond to
the size of the network after the removal of the adversaries’ nodes, this attack
is not particularly disruptive in relation to the strength of the adversary. Thus,
an adversary cannot make the network appear significantly smaller than it is.

If the adversary wants to make the network look larger by M nodes, it needs
to first compute (and store) M public-private key pairs. Then, at every time
interval f , the adversary needs to compute collisions costing an additional O(2W)
to generate the required W -bit collision. Actually joining the network with M
“fake” peers is not required. If W is chosen so large that the adversary cannot
solve the problem at frequency f , it is still possible for the adversary to cause an
increase in the network size estimate by solving the problem every c · f (for an
appropriate choice of c based on the adversaries computational resources), which
would still affect the computed medium-term averages computed for subsequent
intervals. Using such an attack, an adversary can make the network appear
significantly larger than it is, as long as the adversary has access to sufficient
computational resources.

Finally, for a denial-of-service attack, an adversary would first generate ad-
ditional identities and generally perform the same steps as for increasing the
estimated network size. Now, suppose the adversary has created m identities
that are closer to the current key than the closest actual peer in the network
by 1 . . .m-bits respectively. Then, just after the identity of the peer that is ac-
tually closest to the key has been broadcast to the network, the adversary can
cause m additional broadcasts by transmitting its m “fake” identities in order
of increasing proximity to the key. Each time, the network will presume that

9

a closer peer was “late” with its transmission (for example, due to clock-skew
or network latency) and broadcast the update. If the network is already of size
n, the expected one-time cost for the adversary to create m such identities is
O(n2m); the attack then requires an additional O(m2W) operations for the hash
collisions at frequency f . Therefore, if we neglect the high one-time cost of com-
puting identities, the adversary can cause |E| traffic on the network at the cost
of O(2W) computations.

Analytical Worst-Case Analysis

The following scenario describes the theoretical worst case in terms of bandwidth
consumption by the protocol. Without loss of generality, suppose a 512-bit hash
function is being used. Then, the worst-case network would for µ ∈ [1, 512] have
exactly one peer with µ matching bits with the target key T (in each round); all
other peers in the network would have zero matching bits. The peers that do have
matching bits should be connected to the main network via a long chain (with
larger distances for peers with larger µ), causing the network diameter D to be
large. (As a result, the algorithm will calculate L ≈ 0.) Peers with µ matching
bits should furthermore have (or pretend to have) a late system time that causes
them to transmit effectively at time S +µε; all other peers have fast clocks that
cause them to accept any message at any time, causing 512 network-wide floods
per round. Furthermore, in the worst case, network delays in the main network

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Pe
e
rs

Rounds

Estimated size
Real size

Fig. 1: Network size estimates as actually observed by a node in relation to the
(changing) total network size over time for a random graph topology. All nodes
arrive at the same estimate, except for nodes that recently joined the network.

10

would be so large that each of the 512 messages would traverse each link in both
directions, creating a total of 1024 · |E| ∈ O(|E|) transmissions. Note that this
scenario covers the worst-case and includes an adversary with infinite computing
power and full control over the network topology.

5 Experimental Results

We have implemented the presented protocol in the GNUnet P2P framework3,
and evaluated the behavior of the proposed protocol using large-scale emula-
tion [5].

To evaluate the network size estimation quality, we show the network size
estimate based on the average of the previous 64 rounds. Figure 1 shows the
evolution of the network size estimate for a random graph topology [3, 5] with a
minimum node degree of 5 and an average node degree of 10 for the 4,000 node
network. It should be noted that the shape of the network topology has no impact
on the size estimate. The experiment was started with an initial network size of
4,000 nodes for 640 rounds. Then, we decreased the network size to 1,000 nodes
for 640 rounds (the remaining peers stayed connected) and finally increased it
to 2,000 nodes for another 640 rounds.

3 https://gnunet.org/svn/gnunet/src/nse/

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 2 4 8 16 32 64 128 256 512

b
it

s
o
f

st
a
n
d

a
rd

 d
e
v
ia

ti
o
n

protocol rounds

unweighted average
weighted average

Fig. 2: Trade-off between the precision of the network size estimate vs the number
of rounds used to calculate p̃. Naturally, this plot assumes that the network size
does not change during the measurement.

11

The number of rounds used to calculate the result has an impact on the preci-
sion of the estimate. The trade-off between more measurements and the resulting
precision is plotted in Figure 2. Precision is measured as |p̃− p|. Averaging over
four rounds gives results with a standard deviation of one. As the network size
is calculated as 2p−0.332747 (Theorem 1), a standard deviation of one means that
the network size estimate is in an interval between half and double the actual
network size 68% of the time and between a quarter and four times the actual
network size 95% of the time. The 64 rounds we used for Figure 1 correspond to
a standard deviation of under 0.3. This means that 95% of the time the network
size estimate is accurate up to a factor of ≈ 1.5.

In the proof for Theorem 1 we made an approximation that is valid if “n is
sufficiently large”. However, what constitutes a sufficiently large n in practice is
not obvious. Figure 3 shows the results of a simulation that determined p̃ from
50,000 rounds for networks of size n ∈ [1, 224]. The difference p̃− log2 n quickly
converges to the constant calculated in Theorem 1 (0.332747). It should be noted
that even with 50,000 rounds the values for p̃ still exhibit some visible fluctuation.

Fig. 3: Differences observed between log2 n and the average observed value for p
over 50,000 iterations in relation to the network size. The average difference was
0.33 ≈ 1/3. Since peer-to-peer networks smaller than 25 = 32 peers are not really
relevant for network size estimation techniques, we use a uniform correction of
1/3 to compensate for the observed difference when estimating n from p.

12

Figure 3 shows that for a reasonable number of rounds of measurement (≤
50, 000), the “sufficiently large values of n“ are values larger than 25.

Additional experimental results, such as an analysis of the impact of the
network topology and clock skew on bandwidth consumption, can be found in our
technical report [7]. The key result from those experiments is that the protocol
works for any topology, tolerates clock skew and under realistic conditions uses
fewer than 2|E| messages per round.

6 Conclusion

We have presented the first protocol for securely and efficiently estimating the
size of a P2P network. Our protocol combines proximity to a deterministic
sequence of (pseudo-)random values, staggered triggering of messages and a
proof-of-work component. The scheme works for structured and unstructured
networks, is inexpensive in terms of bandwidth, perfectly distributed imposing
equal requirements in terms of computation and bandwidth on all nodes, and
is quite accurate even for networks under churn. The protocol is secure against
adversaries trying to make the network appear smaller and makes it computa-
tionally expensive (based on a parameter W) to make the network appear larger
or to flood the network with unwarranted traffic.

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft (DFG) under
ENP GR 3688/1-1. We thank Mikhail Atallah for his help proving Theorem 1
and Christopher Wolf for an insightful discussion on an earlier draft of this paper.

References

1. Javier Bustos-Jimenez, Nicolas Bersano, Satu Elisa Schaeffer, Jose Miguel Piquer,
Alexandru Iosup, and Augusto Ciuffoletti. Estimating the size of peer-to-peer
networks using lambert’s w function. In Sergei Gorlatch, Paraskevi Fragopoulou,
and Thierry Priol, editors, Grid Computing, pages 61–72. Springer US, 2008.

2. John R. Douceur. The sybil attack. In IPTPS ’01: Revised Papers from the First
International Workshop on Peer-to-Peer Systems, pages 251–260, London, UK,
2002. Springer-Verlag.

3. P. Erdős and A. Rényi. On random graphs. I. Publ. Math. Debrecen, 6:290–297,
1959.

4. P. Th. Eugster, R. Guerraoui, S. B. Handurukande, P. Kouznetsov, and A.-M. Ker-
marrec. Lightweight probabilistic broadcast. ACM Trans. Comput. Syst., 21:341–
374, November 2003.

5. Nathan Evans and Christian Grothoff. Beyond simulation: Large-scale distributed
emulation of p2p protocols. In 4th Workshop on Cyber Security Experimentation
and Test (CSET 2011). USENIX Association, 2011.

6. Nathan Evans and Christian Grothoff. R5n: Randomized recursive routing for
restricted-route networks. In 5th International Conference on Network and System
Security, Milan, Italy, 2011. IEEE.

13

7. Nathan Evans, Christian Grothoff, and Bartlomiej Polot. Efficient and secure
decentralized network size estimation. Technical report, Technische Universität
München, 2011.

8. Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. Gossip-based aggregation
in large dynamic networks. ACM Trans. Comput. Syst., 23:219–252, August 2005.

9. B. W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning
Graphs. The Bell system technical journal, 49(1):291–307, 1970.

10. Jon Kleinberg, Mark Sandler, and Aleksandrs Slivkins. Network failure detection
and graph connectivity. SIAM J. Comput., 38:1330–1346, August 2008.

11. Dionysios Kostoulas, Dimitrios Psaltoulis, Indranil Gupta, Ken Birman, and Al De-
mers. Decentralized schemes for size estimation in large and dynamic groups. In
Proceedings of the Fourth IEEE International Symposium on Network Comput-
ing and Applications, pages 41–48, Washington, DC, USA, 2005. IEEE Computer
Society.

12. Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: a scalable and dynamic
emulation of the butterfly. In PODC ’02: Proceedings of the twenty-first annual
symposium on Principles of distributed computing, page 183–192, New York, NY,
USA, 2002. ACM, ACM.

13. Dániel Marx. Parameterized graph separation problems. Theor. Comput. Sci.,
351:394–406, February 2006.

14. Laurent Massoulié, Erwan Le Merrer, Anne-Marie Kermarrec, and Ayalvadi
Ganesh. Peer counting and sampling in overlay networks: random walk methods. In
Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed
computing, PODC ’06, pages 123–132, New York, NY, USA, 2006. ACM.

15. Petar Maymounkov and David Mazières. Kademlia: A Peer-to-Peer Information
System Based on the XOR Metric. In 1st International Workshop on Peer-to Peer
Systems, pages 53–65, Cambridge, March 2002.

16. Erwan Le Merrer, Anne-Marie Kermarrec, and Laurent Massouli. Peer to peer size
estimation in large and dynamic networks: A comparative study. In 15th IEEE
International Symposium on High Performance Distributed Computing 2006, pages
7–17, 2006.

17. Bartlomiej Polot. Adapting blackhat approaches to increase the resilience of white-
hat application scenarios. Master’s thesis, Technische Universität München, 2010.

18. Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In Proceedings of the
IFIP/ACM International Conference on Distributed Systems Platforms Heidelberg,
pages 329–350, London, UK, 2001. Springer-Verlag.

19. Andrei Serjantov and Stephen Lewis. Puzzles in p2p systems. In 8th CaberNet
Radicals Workshop, Corsica, 2003.

20. Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi. A practical approach to network
size estimation for structured overlays. In Proceedings of the 3rd International
Workshop on Self-Organizing Systems, IWSOS ’08, pages 71–83, Berlin, Heidel-
berg, 2008. Springer-Verlag.

14

