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Abstract

In many networks, such as mobile ad-hoc networks and
friend-to-friend overlay networks, direct communication
between nodes is limited to specific neighbors. Often these
networks have a small-world topology; while short paths
exist between any pair of nodes in small-world networks, it
is non-trivial to determine such paths with a distributed al-
gorithm. Recently, Clarke and Sandberg proposed the first
decentralized routing algorithm that achieves efficient rout-
ing in such small-world networks.

This paper is the first independent security analysis of
Clarke and Sandberg’s routing algorithm. We show that
a relatively weak participating adversary can render the
overlay ineffective without being detected, resulting in sig-
nificant data loss due to the resulting load imbalance. We
have measured the impact of the attack in a testbed of 800
nodes using minor modifications to Clarke and Sandberg’s
implementation of their routing algorithm in Freenet. Our
experiments show that the attack is highly effective, allow-
ing a small number of malicious nodes to cause rapid loss
of data on the entire network.

We also discuss various proposed countermeasures de-
signed to detect, thwart or limit the attack. While we were
unable to find effective countermeasures, we hope that the
presented analysis will be a first step towards the design
of secure distributed routing algorithms for restricted-route
topologies.

1 Introduction

Fully decentralized and efficient routing algorithms for
restricted route networks promise to solve crucial problems
for a wide variety of networking applications. Efficient de-
centralized routing is important for sensor and general wire-
less networks, peer-to-peer overlay networks and theoreti-
cally even next generation Internet (IP) routing. A number
of distributed peer-to-peer routing protocols developed in
recent years achieve scalable and efficient routing by con-
structing a structured overlay topology [4, 5, 8, 11, 15].
However, all of these designs are unable to work in real-
world networks with restricted routes. In a restricted route
topology, nodes can only directly communicate with a sub-
set of other nodes in the network. Such restrictions arise
from a variety of sources, such as physical limitations of
the communications infrastructure (wireless signals, physi-
cal network topology), policies (firewalls) or limitations of
underlying protocols (NAT, IPv6-IPv4 interaction).

Recently, a new routing algorithm for restricted route
topologies was proposed [13] and implemented in version
0.7 of Freenet, an anonymous peer-to-peer file-sharing net-
work [3]. The proposed algorithm achieves routing in
expected O(log n) hops for small-world networks with n
nodes and O(log n) neighbors1 by having nodes swap lo-
cations in the overlay under certain conditions. This sig-
nificant achievement raises the question of whether the al-
gorithm is robust enough to become the foundation for the
large domain of routing in restricted route networks.

The research presented in this paper shows that any par-
ticipating node can severely degrade the performance of
the routing algorithm by changing the way it participates
in the location swapping aspect of the protocol. Most of

1Given only a constant number of neighbors, the routing cost increases
to O(log2 n).
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the guards in the existing routing implementation are in-
effective or severely limited and in particular fail to re-
liably detect the malicious nodes. Experiments using a
Freenet testbed show that a small fraction of malicious
nodes can dramatically degenerate routing performance and
cause massive content loss in a short period of time. Our re-
search also illuminates why churn impacts the structure of
the overlay negatively, a phenomenon that was observed by
Freenet users in practice but has, to the best of our knowl-
edge, never been explained.

The paper is structured as follows. Section 2 describes
related work focusing on distributed hash tables and small-
world networks. Section 3 details Freenet’s distributed
friend-to-friend (or, as termed by the Freenet authors,
“darknet”) routing algorithm for small-world networks. The
proposed attack is described in Section 4, followed by ex-
perimental results showing the effects of the attack in Sec-
tion 5. Possible defenses and their limitations are discussed
in Section 6.

2 Related Work
2.1 Distributed hash tables

A distributed hash table is a data structure that enables
efficient key-based lookup of data in a peer-to-peer overlay
network. Generally, the participating peers maintain con-
nections to a relatively small subset of the other participants
in the overlay. Each peer is responsible for storing a sub-
set of the key-value pairs and for routing requests to other
peers. In other words, a key property of the use of DHTs in
a peer-to-peer setting is the need to route queries in a net-
work over multiple hops based on limited knowledge about
which peers exist in the overlay network. Part of the DHT
protocol definition is thus concerned with maintaining the
structure of the network as peers join or leave the overlay.

DHT designs can be characterized using the performance
metrics given in Table 1. Routing in DHTs is generally
done in a greedy fashion and resembles lookups in skip
lists [10]. Table 2 summarizes the key properties of various
existing DHT designs. The table does not capture properties
which are hard to quantify, such as fault-tolerance. Given
a uniform distribution of keys, most existing DHT designs
achieve near perfect load balancing between peers. Hosts
that can provide significantly more resources than others are
usually accommodated by associating multiple locations in
the overlay with a single host. In some sense, those hosts
are counted as multiple peers.

A major limitation of the DHT designs listed in Ta-
ble 2 is that they do not support routing in restricted route
topologies. These DHTs assume that it is generally possi-
ble for any peer to connect to any other peer. However, fire-
walls and network address translation (NAT) make this as-
sumption unrealistic over the current Internet, where large-

scale studies have shown that over 70% of machines are
NATed [1].

In contrast to the DHT designs from Table 2, the Freenet
routing algorithm achieves expected O(log n) routing in re-
stricted route topologies under the assumption that the re-
stricted network topology has small-world properties.

2.2 Small-world networks

A small-world network is informally defined as a net-
work where the average shortest path between any two
nodes is “small” compared to the size of the network, where
“small” is generally considered to mean at least logarithmic
in relation to the size of the network. Small world networks
occur frequently in the real world [17], the most prominent
example being social networks [9].

Watts and Strogatz [17] characterized small-world net-
works as an intermediate stage between completely struc-
tured networks and random networks. According to their
definition, small world networks with n nodes have on av-
erage k edges per vertex where n >> k >> log n. They
define a clustering coefficient which captures the amount of
structure (clustering) in a given network. Small-world net-
works are then networks with a clustering coefficient sig-
nificantly larger than the coefficients of completely random
networks and with average shortest path lengths close to
those of completely random networks. Watts and Strogatz’s
work explains why short paths exist in real-world networks.

Kleinberg [6, 7] generalized Watts and Strogatz’ con-
struction of small-world networks and gave sufficient and
necessary conditions for the existence of efficient dis-
tributed routing algorithms for these constructions. Klein-
berg’s model for distributed routing algorithms does not in-
clude the possibility of nodes swapping locations, which is a
fundamental part of Freenet’s “darknet” routing algorithm.

3 Freenet’s “darknet” routing algorithm
Freenet [3] is a peer-to-peer network where the operator

of each node specifies which other peers are allowed to con-
nect to the node [2]. The main reason for this is to obscure
the participation of a node in the network – each node is
only directly visible to the friends of its’ operator. Peer-to-
peer networks that limit connections to friend-to-friend in-
teractions are sometimes called darknets. Given that social
networks are small-world networks and that small-world
networks arise easily given a certain amount of “random-
ness” in the graph construction, it is realistic to assume that
Freenet’s darknet is a small-world network. The routing
restrictions imposed on the Freenet overlay could techni-
cally model arbitrary network limitations; consequently, an
efficient distributed routing algorithm for such a topology
should easily generalize to any small-world network.



(1) Messages required for each key lookup
(2) Messages required for each store operation
(3) Messages needed to integrate a new peer
(4) Messages needed to manage a peer leaving
(5) Number of connections maintained per peer
(6) Topology can be adjusted to minimize per-hop latency (yes/no)
(7) Connections are symmetric or asymmetric

Table 1. Performance metrics for DHTs.

Chord [15] Pastry [12] Kademlia [8] CAN [11] RSG [5]
(1) O(log n) O(log n) O(log n) O(n−d) O(log n)
(2) O(log n) O(log n) O(log n) O(n−d) O(log n)
(3) O(log2 n) O(log n) O(log n) O(d+ n−d) O(log n)
(4) O(log2 n) O(1) O(1) O(d) O(log n)
(5) O(log n) O(log n) O(log n) O(d) O(1)
(6) no yes yes yes no
(7) asymmetric asymmetric symmetric symmetric asymmetric

Table 2. Comparison of DHT designs. The numbers refer to the list of performance metrics given in
Table 1. The value d is a system parameter for CAN.

3.1 Network creation

The graph of the Freenet network consists of vertices,
which are peers, and edges, which are created by friend
relationships. An edge only exists between peers if both
operators have agreed to the connection a priori. Freenet
assumes that a sufficient number of edges (or friend rela-
tionships) between peers will exist so that the network will
be connected.

Each Freenet node is created with a unique, immutable
identifier and a randomly generated initial location. The
identifier is used by operators to specify which connections
are allowed, while the location is used for routing. The lo-
cation space has a range of [0, 1) and is cyclic with 0 and
1 being the same point. For example, the distance between
nodes at locations 0.1 and 0.9 is 0.2.

Data stored in the Freenet network is associated with a
specific key from the range of the location space. The rout-
ing algorithm transmits get and put requests from node
A to the neighbors of A starting with the neighbor with the
closest location to the key of the request.

3.2 Operational overview

The basic strategy of the routing algorithm is to greedily
forward a request to the neighbor whose location is clos-
est to the key. However, the simple greedy forwarding is
not guaranteed to find the closest peer – initially, the lo-

cation of each peer is completely random and connections
between peers are restricted (since a peer can only establish
connections to other peers which the operator has explicitly
allowed). Consequently, the basic greedy algorithm is ex-
tended to a depth-first search of the topology (with bounded
depth) where the order of the traversal is determined by the
distance of the nodes to the key [14]. Figure 1 shows the
routing algorithm for get operations in pseudocode. A
put operation is routed in the same fashion and reaches
exactly the same peers as an unsuccessful get operation.
In addition, Freenet replicates content transmitted as part of
a get response or as part of a put operation at nodes that
are encountered during the routing process where the node’s
location is closer to the key than the location of any of the
peer’s neighbors.

Both get and put requests include a hops-to-live value
which is initially set to the nodes pre-set maximum and used
to limit traversal of the network. Each request also includes
the closest location (in relation to the key) of any node en-
countered so far during the routing process.

3.3 Location swapping

To make the routing algorithm find the data faster,
Freenet attempts to cluster nodes with similar locations. Let
L(n) denote the current location of node n. The network
achieves this by having nodes periodically consider swap-
ping their locations using the following algorithm:



1. A node A randomly chooses a node B in its prox-
imity and initiates a swap request. Both nodes share
the locations of their respective neighbors and calcu-
late D1(A,B). D1(A,B) is the product of the ex-
isting distances between A and each of A’s neighbors
|L(a)−L(n)|multiplied by the product of the existing
distances between B and each of B’s neighbors.

D1(A,B) =
∏

(A,n)∈E

|L(A)−L(n)| ·
∏

(B,n)∈E

|L(B)−L(n)|

(1)

2. The nodes also compute D2(A,B), the product of the
products of the differences between their locations and
their neighbors’ locations after a potential swap:

D2(A,B) =
∏

(A,n)∈E

|L(B)−L(n)| ·
∏

(B,n)∈E

|L(A)−L(n)|

(2)

3. If the nodes find that D2(A,B) ≤ D1(A,B), they
swap locations, otherwise they swap locations with
probability D1(A,B)

D2(A,B) . The deterministic swap always
decreases the average distances of nodes with their
neighbors. The probabilistic swap is used to escape
local minima.

The overlay becomes semi-structured as a result of swap-
ping locations; the routing algorithm’s depth first search can

Figure 1. Pseudocode for routing of a get re-
quest.

1. Check that the new get request is not identical to re-
cently processed requests; if the request is a duplicate,
notify sender about duplication status, otherwise con-
tinue.

2. Check local data store for the data; if the data is found,
send response to sender, otherwise continue.

3. If the current location is closer to the key than any pre-
viously visited location, reset hops-to-live to the max-
imum value.

4. If hops-to-live of the request is zero, respond with data
not found, otherwise continue.

5. Find the closest neighbor (in terms of peer location)
with respect to the key of the get request, exclud-
ing those routed to already. Forward the request to
the closest peer with a (probabilistically) decremented
hops-to-live counter. If valid content is found, forward
the content to sender, otherwise, repeat step 5.

utilize this structure in order to find short paths with high
probability. Sandberg’s thesis [13] shows that the Freenet
routing algorithm converges towards routing in O(log n)
steps (with high probability) under the assumption that the
set of legal connections specified by the node operators
forms a small-world network. This is a significant result
because it describes the first fully decentralized distributed
hash table (DHT) design that achieves O(log n) routing
with (severely) restricted routes. Most other DHT designs
make the unrealistic assumption that every node is able to
directly communicate with every other node [5, 8, 12, 15].

3.4 Content Storage

Each Freenet node stores content in a datastore of
bounded size. Freenet uses a least-recently-used content re-
placement policy, removing the least-recently-used content
when necessary to keep the size of the datastore below the
user-specified limit.

Our simulation of routing in the Freenet network places
the content at the node whose location is closest to the key
and does not allow caching or replication of content. The
reason for this is that our study focuses on routing perfor-
mance and not on content replication and caching strategies.

3.5 Example
Figure 2 shows a small example network. Each node

is labeled with its location (Ln ∈ [0, 1)) in the network.
The bi-directional edges indicate the direct connections be-
tween nodes. In a friend-to-friend network, these are the
connections that were specifically allowed by the individual
node operators, and each node is only aware of its immedi-
ate neighbors. Similarly, in an ad-hoc wireless network, the
edges would indicate which nodes could physically commu-
nicate with each other. While our example network lacks
cycles, any connected graph is allowed; the small-world
property is only required to achieve O(log n) routing per-
formance as the algorithm works for any connected graph.
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0.10

.50

0.90

Swap?

0.30

.60

0.45

0.85

0.40

.25

0.25

.65

Figure 2. This figure shows an example net-
work with two nodes considering a swap.
The result of the swap equation is D1 = .60
* .65 * .25 * .50 = .04875 and D2 = .30 * .35 * .05
* .80 = .0042. Since D1 > D2, they swap.
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Figure 3. This figure shows the resulting ex-
ample network after the swap has occurred.
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Figure 4. Illustrates the path of a GET request
initiated from the node with location of 0.90.
The request is looking for data with a key
value of .23, which is stored at the node iden-
tified by the location 0.25. The path that the
GET request travels is displayed as the dot-
ted lines which travel from 0.90→ 0.10→ 0.90
→ 0.60→ 0.25 where the data is found.

The network illustrated in Figure 2 happens to have an
assignment of locations that would cause the nodes with lo-
cations 0.60 and 0.90 to perform a swap in order to min-
imize the distance product from Equation (1). Figure 3
shows the new assignment of locations after the swap. Note
that after a swap each node retains exactly the same set of
connections; the only change is in the location identifiers of
the nodes. This change in node locations impacts the order
of the traversal during routing.

Figure 4 shows how a GET request would be routed after
the swap (with a maximum value of hops-to-live larger or
equal to two). Starting at the node with location 0.90 and
targeting the key 0.23 the node picks its closest neighbor
(with respect to the key), which is 0.10. However, 0.10 does
not have the content and also lacks other neighbors to route
to and thus responds with content not found. Then 0.90 at-
tempts its’ second-closest neighbor, 0.60. Again, 0.60 does
not have the content, but it has other neighbors. The 0.25
neighbor is closest to 0.23. The content is found at that node
and returned via 0.60 (the restricted-route topology does not
allow 0.25 to send the result directly back to 0.90).

Finally, Figure 5 illustrates how Freenet routes a PUT re-
quest with a maximum value of 1 for hops-to-live (in prac-

tice, the maximum value would be bigger). The algorithm
again attempts to find the node with the closest location in
a greedy fashion. Once a node C is found where all neigh-
bors are further away from the node, the neighbors fail to
reset hops-to-live (since 0.90 is closer to the key than they
are), which ends the process.

4 Security Analysis
The routing algorithm works under the assumption that

the distribution of the keys and peer locations is random.
In that case, the load is balanced. In particular, all nodes
are expected to store roughly the same amount of content
and all nodes are expected to receive roughly an equivalent
numbers of requests.

The basic idea behind the attack is to de-randomize the
distribution of the node locations. The attacker tries to clus-
ter the locations around a particular small set of values.
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0.90

0.10

0.60
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0.30 0.45

0.40

0.25

Figure 5. The graph on top illustrates the path
of a PUT request inserting data with a key
of .96. The request is initiated from node
with location 0.25. The path that the PUT re-
quest travels is displayed as the dotted lines
which travel from 0.25 → 0.60 → 0.90, where
the data is stored. The bottom graph shows
what happens after a PUT has found a node
whose neighbors are all further away from
the key. The node 0.90 (as all of the prede-
cessors on the path) resets the hops-to-live
value to its maximum (in this case, one) and
forwards the PUT request to all of its neigh-
bors. Since these neighbors are not closer
to the key than their predecessor they do not
reset hops-to-live. Since the value reaches
zero, routing ends.



Since the distribution of the keys is still random and inde-
pendent of the distribution of the node locations, the clus-
tering of node locations around particular values results in
an uneven load distribution. Nodes within the clusters are
responsible for less content (because many other nodes are
also close to the same set of keys), whereas the load for
nodes outside of the clusters is disproportionately high.

We will now detail two scenarios which destroy the ini-
tial random distribution of node locations resulting in the
clustering of locations around particular values. The first
scenario uses attack nodes inside the network. This attack
quickly unbalances the load in the network, causing signif-
icant data loss; the reason for the data loss is that the im-
balance causes some nodes to greatly exceed their storage
capacity, whereas other nodes store nothing. The second
scenario illustrates how location imbalance can occur natu-
rally even without an adversary due to churn.

4.1 Active Attack
As described in Section 3.3, a Freenet node attempts to

swap with random peers periodically. Suppose that an at-
tacker wants to bias the location distribution towards a par-
ticular location, m. In order to facilitate the attack, the
attacker assumes that particular location (sets its location
to m). This malicious behavior cannot be detected by the
node’s neighbors because the attacker can claim to have ob-
tained this location from swapping. A neighbor cannot ver-
ify whether such a swap has occurred because the friend-to-
friend (F2F) topology restricts communication to immedi-
ate neighbors.

Suppose an attacker node A intends to force a swap with
a victim N so that L(N) = m afterwards. Let N have
k neighbors. Then A will initiate a swap request with N
claiming to have at least k + 1 neighbors with locations fa-
voring a swap according to Equation (1). Specifically, the
locations of the neighbors should be either close to L(N)
or close to the maximum distance from L(A) = m. The
attacker then creates swap requests in accordance with the
Freenet protocol. Again, the F2F topology prevents the
neighbor involved in the swap from checking the validity of
this information. After the swap, the attack node can again
assume the original location m and continue to try to swap
with its other neighbors whose locations are still random.

The neighbors that have swapped with an attacker then
continue to swap in accordance with the swapping algo-
rithm, possibly spreading the malicious locations. Once
the location has been spread, the adversary subjects another
neighbor to a swap, removing yet another random location
from the network. Figure 6 illustrates the impact of a mali-
cious node on the example network after a few swaps (with
the attacker using m ≈ 0.5). The likelihood of neighbors
spreading the malicious location by swapping can be im-
proved by using multiple attack locations. Thus, a tradeoff

exists between the speed of penetration and the impact of
the attack in terms of causing load imbalances.
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Figure 6. This figure shows the example net-
work after a malicious node has started to
spread locations close to 0.5 by swapping. In
this figure the malicious node currently has
location = 0.504

4.2 Natural Churn
Network churn, the joining and leaving of nodes in the

network, is a crucial issue that any peer-to-peer routing pro-
tocol needs to address. We have ignored churn until now be-
cause the attack described in the previous section does not
require it. Intuition may suggest that natural churn may help
the network against the attack by supplying a constant influx
of fresh, truly random locations. This section illustrates that
the opposite is the case: natural churn can strengthen the at-
tack and even degenerate the Freenet network in the same
manner without the presence of malicious nodes.

For the purpose of this discussion, we need to distinguish
two types of churn. The first kind, leave-join churn, de-
scribes fluctuations in peer availability due to a peer leaving
the network for a while and then joining again. In this case,
the network has to cope with a temporary loss of availabil-
ity in terms of connectivity and access to content stored at
the node. Freenet’s use of content replication and its routing
algorithm are well-suited to handle this type of churn. Most
importantly, a node leaving does not immediately trigger
significant changes at any other node. As a result, an adver-
sary cannot use leave-join churn to disrupt network opera-
tions. Since honest Freenet peers re-join with the same loca-
tion that they last had when they left the network, leave-join
churn does not impact the overall distribution of locations
in the network.

The second kind, join-leave churn, describes peers who
join the network and then leave for good. In this case, the
network has to cope with the permanent loss of data stored
at this peer. In the absence of adversaries, join-leave churn
may be less common in peer-to-peer networks; however, it
is always possible for users to discontinue using a particular
application. Also, often users may just test an application
once and decide that it does not meet their needs. Again, we
believe that Freenet’s content replication will likely avoid



significant loss of content due to realistic amounts of join-
leave churn.

However, natural join-leave churn has another, rather
unexpected impact on the distribution of locations in the
Freenet overlay. This additional impact requires that the
overlay has a stable core of peers that are highly avail-
able and strongly interconnected, which is a common phe-
nomenon in most peer-to-peer networks. In contrast to this
set of stable core-peers, peers that contribute to join-leave
churn are likely to participate only briefly and have rel-
atively few connections. Suppose the locations γi of the
core-peers are initially biased towards (or clustered around)
a location α ∈ [0, 1). Furthermore, suppose that (over
time) thousands of peers with few connections (located at
the fringe of the network) contribute to join-leave churn.

Each of these fringe-peers will initially assign itself a
random location β ∈ [0, 1). In some cases, this random
choice β will be closer to α than some of the γi-locations of
the core nodes. In that case, the routing algorithm is likely
to swap locations between these fringe-peers and core-peers
in order to reduce the overall distances to neighbors (as cal-
culated according to Equation (1)). Peers in the core have
neighbors close to α, so exchanging one of the γi’s for β
will reduce their overall distances. The fringe peers are
likely to have few connections to the core group and thus
the overall product after a swap is likely to decrease.

Consequently, non-adversarial join-leave churn strength-
ens any existing bias in the distribution of locations among
the long-lived peers. The long-term results of join-leave
churn are equivalent to what the attack from Section 4.1 is
able to produce quickly – most peers end up with locations
clustering around a few values. Note that this phenomenon
has been observed by Freenet users and was reported to the
Freenet developers – who so far have failed to explain the
cause of this degeneration.2 Since both the attack and natu-
ral churn have essentially the same implications for the rout-
ing algorithm, the performance implications established by
our experimental results (Section 5) hold for both scenarios.

5 Experimental Results
This section presents experimental results obtained from

a Freenet testbed with up to 800 active nodes. The testbed,
consisting of up to 18 GNU/Linux machines, runs the actual
Freenet 0.7 code. The nodes are connected to form a small-
world topology (using Kleinberg’s 2d-torus model [6]) with
on average O(log2 n) connections per node.

Each experiment consists of a number of iterations. In
each iteration, nodes are given a fixed amount of time to
swap locations. Then the performance of the network is

2https://bugs.freenetproject.org/view.php?id=647,
April 2007. We suspect that the clustering around 0.0 is caused by soft-
ware bugs, resulting in an initial bias for this particular value, which is
then strengthened by churn.

evaluated. The main performance metrics are the average
path length needed to find the node that is responsible for a
particular key, and the percentage of the content originally
available in the network that can still be retrieved.

All nodes are configured with the same amount of stor-
age space. Before each experiment, the network is seeded
with content with a random key distribution. The amount
of content is fixed at a quarter of the storage capacity of the
entire network. The content is always (initially and after
each iteration) placed at the node with the closest location
to the key. Nodes discard content if they do not have suffi-
cient space. Discarded content is lost for the duration of the
experiment.

Depending on the goals of the experiment, certain nodes
are switched into attack mode starting at a particular itera-
tion. The attacking nodes are randomly chosen, and behave
exactly as all of the other nodes, except for aggressively
propagating malicious node locations when swapping.

5.1 Distribution of Node Locations

Figures 7 and 8 illustrates the distribution of node lo-
cations on a circle before and after an attack. The initial
distribution in Figure 7 consists of 800 randomly chosen lo-
cations, which are largely evenly distributed over the entire
interval.

The distribution shown in Figure 8 illustrates the effect
of two nodes attacking the network in an attempt to create
eight clusters. Note that the number of attackers and the
number of cluster locations can be chosen independently.

Both plots use thicker dots in order to highlight spots
where many peers are in close proximity. Particularly af-
ter the attack peers often have locations that are so close to
each other (at the order of 2−30) that a simple plot of the
individual locations would just show a single dot. Thicker
dots illustrate the number of peers in close proximity, the
spread of their locations is actually much smaller than the
thickness may suggest.

5.2 Availability of Content

Figures 9, 10 and 11 show the data loss in a simulated
Freenet network with 800 nodes and two, four and eight
attackers respectively. The attackers attempt to use swap-
ping in order to cluster the locations of nodes in the network
around eight pre-determined values. The resulting cluster-
ing of many nodes around particular locations causes the re-
maining nodes to be responsible for disproportionately large
areas in the key space. If this content assignment requires
a particular node to store more content than the node has
space available for, content is lost.



Figure 7. Plot of 800 initial node locations be-
fore the attack. Plot points increase in diam-
eter as the density of peers nearby to that lo-
cation increases.

Figure 8. Plot of 800 node locations after the
attack by 2 malicious nodes. Plot points in-
crease in diameter as the density of peers
nearby to that location increases. The large
plot points indicate the success of the attack
in clustering most nodes around the 8 cho-
sen locations.
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Figure 9. Graph showing average data loss
over 5 runs with 800 total nodes and 2 attack
nodes using 8 bad locations with the attack
starting after about 2h.
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Figure 10. Graph showing average data loss
over 5 runs with 800 total nodes and 4 attack
nodes using 8 bad locations with the attack
starting after about 2h.
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Figure 11. Graph showing average data loss
over 5 runs with 800 total nodes and 8 attack
nodes using 8 bad locations with the attack
starting after about 2h.



The attack is initiated after 75 iterations of ordinary net-
work operation. After just 200 iterations (an iteration corre-
sponds to 90s of Freenet 0.7 operations) the network has lost
on average between 15% and 60% of its content, depending
on the number of attackers. Note that in our model, an in-
dividual attacker is granted precisely the same resources as
any ordinary user. The figures show the average data loss
(and standard deviations) over five runs. For each run, the
positions of the attackers were chosen randomly among the
800 nodes.

5.3 Simulation of Churn

Figures 12, 13, and 14 show the results of a simulation
of join-leave churn on the distribution of node locations in
the Freenet network. The total network size was 600 nodes,
out of which 500 are stable. In each round, ten of the re-
maining hundred nodes drop out of the network and join
as fresh nodes with a new random location and randomly
chosen connections. During each round, the network per-
forms the swap protocol corresponding to about 400ms of
a real Freenet network. The experiment was done with var-
ious different topologies with similar results. The figures
show the results for a topology where the 500 stable nodes
are randomly chosen from a small world network, that is,
they are not better connected than any of nodes experienc-
ing churn. In all of our simulations, the locations rapidly
converge towards a small set of possible locations.

6 Discussion

Various strategies could be used to limit the impact of the
proposed attack, including changing the swapping policy,
malicious node detection, and secure multiparty computa-
tion. While some of these strategies can reduce the impact
of the attack, we do not believe that adopting any of the sug-
gested measures would address the attack in a satisfactory
manner.

One possibility for reducing the effect of the attack pro-
posed in this paper is to increase the amount of time be-
tween attempts to swap, or to have each node in the network
periodically reset its location to a random value. The idea is
that the malicious node locations would spread more slowly
and be eventually discarded. However, while this limits the
impact of the attack, this defense also slows and limits the
progress of the network converging to the most fortuitous
topology.

However, the negative impact of churn may be handled
by swapping locations only with long lived peers. Recent
measurement studies in peer-to-peer networks have shown
a power-law distribution of the uptime of peers; a large per-
centage of peers have a short uptime [16]. By adjusting the
probability of location swapping to be proportional to the

Figure 12. Initial (random) node locations be-
fore simulation of join-leave churn.

Figure 13. Distribution of the node locations
of the stable core of 500 nodes after 100
rounds of churn.

Figure 14. Distributions of the node locations
of the stable core of 500 nodes after 100,000
rounds of churn.



uptime of both peers, the network may be able to reduce
clustering of the locations of long-lived peers due to join-
leave churn.

Another possible method attempts to detect a malicious
node based on knowing the size of the network. If a Freenet
node were able to accurately produce a close estimation of
the size of the network, it could detect if an attacker was
swapping locations that are significantly closer than what
would be likely with a random distribution of locations. The
problem with this approach is that in an open F2F network
it is difficult to reliably estimate the network’s size.

If there were a way for a node which purported to have
a certain number of friends to prove that all those friends
existed, nodes could be more confident about swapping.
The Freenet developers suggested using a secure multiparty
computation as a way for a node to prove that it has n con-
nections. The idea would be for the swapping peers to ex-
change the the results of a computation that could only be
performed by their respective neighbors. But because nodes
can only directly communicate with their peers (F2F), any
such computation could easily be faked given appropriate
computational resources. Of course, if a node could directly
communicate with another node’s neighbors, then the topol-
ogy could be discerned. However, in that case the protocol
no longer works for restricted-route networks.

7 Conclusion

The new Freenet routing algorithm is unable to provide
performance guarantees in networks where adversaries are
able to participate. The algorithm also degenerates over
time (even without active adversaries) if the network ex-
periences churn. The recommended approach to address
both problems is to periodically reset the locations of peers.
While this limits the deterioration of the routes through ad-
versaries and churn, such resets also sacrifice the potential
convergence towards highly efficient routes. Secure and ef-
ficient routing in restricted route networks remains an open
problem.
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