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Abstract. Future online social networks need to not only protect sen-
sitive data of their users, but also protect them from abusive behavior
coming from malicious participants in the network. We investigate the
use of supervised learning techniques to detect abusive behavior and de-
scribe privacy-preserving protocols to compute the feature set required
by abuse classification algorithms in a secure and privacy-preserving way.
While our method is not yet fully resilient against a strong adaptive ad-
versary, our evaluation suggests that it will be useful to detect abusive
behavior with a minimal impact on privacy.

1 Introduction

Users of online social networks (OSNs) currently face two systemic issues to
their well-being: mass-surveillance and abusive behavior. Mass-surveillance in
OSNs is a real threat for modern liberal societies [7]. OSN platform providers
do not just need to self-impose limits on users’ behavior3, but now also avoid
governments imposing draconian penalties to participants4. Abusive behavior
where users in the OSN platform [9] or governments [14] send messages designed
to harm potential victims, has been established as a significant risk factor for
suicide [13] and a previous study is reporting it almost doubling the number of
attempted suicides [8].

Future decentralised OSN designs such as [11, 17] propose to protect users
against censorship and mass-surveillance by decentralizing the OSN; namely es-
tablishing secure end-to-end encrypted communication between all participants,
hiding meta data at the network level, and allowing pseudonymous interactions
between participants. Thus it becomes plausible to address mass-surveillance
threats. However, at the same time one would expect that threats from abusive
behavior are likely to increase: Major centralised OSNs provide some safeguards,
such as the Facebook-Imune-System (FIS) [15], to detect and block abusive be-
havior. Naturally, these centralised solutions typically exploit the comprehensive
data available about the platform’s users. Thus, these existing techniques will

3 https://twitter.com/rules
4 http://www.bbc.com/news/technology-16810312
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not work in a privacy-preserving decentralised OSNs, where some of the data is
not supposed to be exposed due to privacy constraints, and other data may be
easily falsified by an adversary.

In this paper, we describe key building blocks for building a privacy-preserving
abuse detection system for future decentralised OSNs. As starting point we eval-
uate our abuse detection system with data from a centralised OSN, specifically
the second largest one as of today, Twitter. Our assumption is that the in-
teraction culture would remain similar between today’s Twitter and a future
decentralised OSN, and thus the results for analyzing abusive vs. non-abusive
interaction patterns would carry over. Like the FIS, we use supervised learning
to classify messages as acceptable or abusive. By incorporating a broad set of
features based on publicly available data from Twitter, we establish a baseline
for the accuracy of the method without privacy-preservation or adversarial adap-
tation to the method. We then study which features could be securely obtained
without unduly exposing sensitive data about users. Here, we propose two new
privacy-preserving protocols for secure set intersection, showing how efficient
secure multiparty computation can assist in obtaining key features for abuse
detection. We finally evaluate supervised learning using the resulting restricted
feature set to demonstrate the utility of the method.

2 Defining abuse

Before we can evaluate abuse detection methods, we need a definition of abusive
behavior. From the rich literature on abuse, we found the Joint Threat Research
Intelligence Group (JTRIG) of the British Government Communication Head
Quarter (GCHQ) provided the most comprehensive and still reasonably simple
definition in their characterization of their own work. JTRIG manipulates global
opinion using techniques that they characterize with the four Ds: [14].

– Deny: They encourage self-harm to others users, promoting violence (direct
or indirect), terrorism or similar activities. (This denies the victim health or
even life, which are human rights.)

– Disrupt: They disrupt activities they disagree with using distracting provo-
cations, denial of service, flooding with messages and generally promoting
abuse of the intended victim.

– Degrade: They disclose personal and private data of others without their
approval as to degrade their public image/reputation.

– Deceive: They deceive by spreading false information, including supplanting
a known user identity (impersonation) for influencing other users behavior
and activities, or assuming false identities. (The use of pseudonyms that are
recognizable as such is not a deception.)

We will now argue that these four terms nicely cover common characteriza-
tions of abusive behavior.

Several studies have defined cyber-bullying as the act of harassing another
person via any form of digital communications. This behavior is intended to
degrade the self-esteem or image of the victim [10].



According to5, an “Internet troll” or “cyber-troll” is a member of an online
community who posts abusive comments at worst or divisive information at best
to repeatedly create controversy. These actions are covered by the terms disrupt
and possibly deceive.

Trolldor6 allows users to search for the statistics of a particular user in Twit-
ter, and report him as “troll”. Key reasons Trolldor lists for users to report a
Twitter profile as a “troll” to Trolldoor include:

– Provocation: users who just look to provoke for fun (disrupt)
– Creep: users who fill other users timeline on a daily basis with messages

worshiping their idols, friends, relatives and colleagues. (disrupt)
– Retweeter/Favoriter: users who never create their own content and just

retweet and favorite other peoples messages.
– Insult/Threat: users who insult or threaten other users. (threats deny)
– False identity: profiles that seek to usurp anothers identity (deceive)

Twitter’s guidelines on abusive behavior explicitly prohibit: violent threats
(deny), harassment (degrade), hateful conduct (deny), multiple account abuse
(deceive), private information disclosure (degrade), impersonation (deceive), pro-
motion of self-harm (deny), and spam (disrupt).

The examples demonstrate that the four Ds cover common definitions of
abusive behavior.

3 Data model

We consider two directed graphs whose set of vertices V represent the about
one million user profiles collected from the OSN, Twitter. Let Gf=(V, Ef ) be a
directed graph of subscription relationships, where an edge (a, b) ∈ Ef represents
that user a is subscribed to posts from user b.

Let Gm=(V, Em) be a directed multi-graph of messaging relationships, where
an edge (a, b) ∈ Em implies that a directed a message specifically to b (on Twitter,
this is done by either mentioning @b or by responding to a message from b). Note
that Em does not contain all messages that a broadcasts to all its subscribers, so
it models the messages that are shown in the notifications of the user mentioned
(@b), and which are thus a vector for potential abusive behavior.

To establish ground truth about abuse, we asked six reviewers to use JTRIG’s
four Ds-definition to manually annotate about 1000 Twitter messages as abusive,
acceptable or undecided. The resulting data set (Table 3) provides the ground
truth for supervised learning and evaluation of the methods presented in this
paper.

Reviewers frequently disagreed about a message. For the # agreement value,
we computed the agreement among the other reviewers and then checked whether
this reviewer was in agreement with the rest of the reviewers about a tweet. On

5 What does Troll mean? http://www.techopedia.com/definition/429/troll
6 http://trolldor.com
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reviewer # reviews % abusive % accept. # agreement c-abusive c-accept. c-overall
1 754 3.98 83.55 703 0.71 0.97 0.93
2 744 4.30 82.79 704 0.66 0.97 0.94
3 559 5.01 83.90 526 0.93 0.95 0.94
4 894 4.03 71.92 807 0.61 0.94 0.90
5 939 5.54 69.54 854 0.88 0.90 0.91
6 1003 5.68 69.79 875 0.95 0.89 0.87

average 815 4.76 76.92 745 0.79 0.94 0.92
std. dev. 162 0.76 7.18 130 0.15 0.03 0.03

Table 1. Human baseline statistics. The c-values are explained in this Section, 3.

average, reviewer’s ratings matched with the agreement among the other re-
viewers 745 times, corresponding to 92% of the reviewed messages (c-overall).
c-abusive provides the agreement on abusive messages and c-accept. the agree-
ment for acceptable messages. As expected, agreement on abusive messages is
significantly lower: the reviewers agreed on about 79% of the abusive messages,
and on over 94% of the acceptable messages.

4 Learning without privacy

At a high-level, the system has each user locally compute whether a message is
likely to be abusive, and then allowing the user’s software to take appropriate
action, such as giving messages that are likely to be abusive a lower relevance
in the user’s timeline ranking. For this computation, the decision process should
only use data that is available in the vicinity of the respective user. This approach
ensures that the computation is compatible with decentralised OSNs that lack
a central service provider.

Table 2 summarizes the feature set we used to evaluate abusive behavior.
We experiment with various supervised models [1] from scikit-learn7. We present
data from those classifiers that performed best. Specifically, we compare decision
trees (DT), random forest (RF), extra trees (ET) and the gradient boosting (GB)
classifier [3]. We also configure all our classifiers with a “depth” of eight, and
using “balanced” for the “class weight” option. While we tried other supervised
earning algorithms such as logistic regression, k-means clustering and NB-trees,
the aforementioned tree-based methods performed best, and thus we limit our
presentation to those.

A lower bound for the performance of the classifiers is provided by a base
rate classifier (BR), where each messages is classified according to the most
predominant class (acceptable in our case). This classifier classifies all abusive
messages incorrectly, and all acceptable messages correctly. An upper bound for
our performance expectations is the human baseline classifier (HB), described in

7 http://scikit-learn.org/stable/supervised_learning.html
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Feature Description
5.1 # lists how many lists the sender has created

# subscriptions number of subscriptions of the sender
# subscriptions

age ratio of subscriptions made in relation to age of sender account
#subscriptions
#subscribers ratio of subscriptions to subscribers of sender

5.2 # mentions number of mentions in the message
# hashtags number of hashtags in the message
# mentions
# messages ratio of mentions made in relation to messages written the sender

# retweets number of retweets the sender has posted
# favorited messages number of messages favorited by sender

5.3 message invasive false if sender subscribed to receiver and receiver subscribed to sender

5.4 # messages
age ratio number of messages in relation to age of sender account

5.5 age of account days since sender account creation
5.6 # subscribers number of subscribers to public feed of the sender

# subscribers
age ratio of subscribers in relation to age of sender account

5.7 subscription ∩ subscription size of the intersection among subscriptions of sender and receiver
5.8 subscriber ∩ subscriber size of the intersection among subscribers of sender and receiver
5.9 subscriberr ∩ subscriptions size of the intersection among subscribers of receiver and subscriptions of sender

subscriptionr ∪ subscribers size of the intersection among subscriptions of receiver and subscribers of sender

Table 2. Features, ordered following use in Section 5

Classifier Metric Arithmetic Mean Geometric Mean Only Acceptable Only Abusive

HB
Precision 0.87 ± 0.09 0.86 ± 0.07 0.94 ± 0.03 0.79 ± 0.15
Recall 0.76 ± 0.06 0.72 ± 0.03 0.98 ± 0.01 0.53 ± 0.10
F-score 0.80 ± 0.07 0.78 ± 0.05 0.96 ± 0.02 0.63 ± 0.12

BR
Precision 0.48 ± 0.00 0.00 ± 0.00 0.95 ± 0.01 0.00 ± 0.00
Recall 0.50 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00
F-score 0.49 ± 0.00 0.00 ± 0.00 0.98 ± 0.00 0.00 ± 0.00

DT
Precision 0.66 ± 0.10 0.59 ± 0.04 0.98 ± 0.01 0.35 ± 0.19
Recall 0.77 ± 0.09 0.76 ± 0.10 0.94 ± 0.06 0.61 ± 0.18
F-score 0.70 ± 0.10 0.64 ± 0.07 0.96 ± 0.03 0.43 ± 0.18

RF
Precision 0.73 ± 0.08 0.69 ± 0.04 0.98 ± 0.01 0.49 ± 0.17
Recall 0.74 ± 0.10 0.70 ± 0.11 0.97 ± 0.05 0.51 ± 0.24
F-score 0.73 ± 0.05 0.68 ± 0.04 0.97 ± 0.02 0.48 ± 0.10

ET
Precision 0.62 ± 0.07 0.51 ± 0.04 0.99 ± 0.01 0.26 ± 0.14
Recall 0.82 ± 0.14 0.81 ± 0.12 0.89 ± 0.06 0.74 ± 0.26
F-score 0.66 ± 0.10 0.59 ± 0.08 0.93 ± 0.04 0.38 ± 0.16

GB
Precision 0.87 ± 0.25 0.87 ± 0.07 0.98 ± 0.01 0.77 ± 0.49
Recall 0.74 ± 0.05 0.70 ± 0.05 0.99 ± 0.04 0.49 ± 0.06
F-score 0.78 ± 0.12 0.75 ± 0.07 0.98 ± 0.02 0.58 ± 0.22

Table 3. Evaluation of classifiers trained using 5-fold cross validation

Section 3. While the classification algorithms have additional data available to
them, it is unrealistic for them to perform better than the individual reviewers
who provided the ground truth. Table 3 summarizes the results of the evalua-
tion. The key result is that even without extensive tuning, extra trees (ET) and
gradient boosting (GB) perform surprisingly well, with accuracies comparable
to those of individual reviewers.



5 Privacy-preserving learning

We now consider how to adapt the abuse detection algorithm to a decentralised
privacy-preserving OSN, where we face an adaptive adversary who will change
his behavior to evade detection. In this setting, we need to consider how to obtain
the numeric value in a way that respects the privacy constraints, and how to
make it difficult for an attacker to forge or falsify the value of a given feature.

5.1 Account properties

Various features reflect properties of the sender’s account that are entirely under
the control of the sender. This includes the number of lists the user has created
and the set of subscriptions made by the sender. Given an adaptive adversary
who knows how the abuse detection algorithm uses these features, we have to
assume that the adversary can freely adapt these properties and thus deliberately
manipulates all such features.

5.2 Message properties

This feature simply counts the number of times a message contains some of the
special functions available in existing OSNs, such mentioning users (@user) or
highlighting a topic (#hashtags) in Twitter.

These two are examples of message properties that are trivial to evaluate
locally. The first one (mentions) seem to have negative implications for privacy
when the computation is performed by the receiver, while the latter does not.

In case of mentions, adaptive adversaries may again shape their messages as
to avoid a true positive in abuse classification, but possibly at the expense of
being less effective at hurting the victim (e.g., not being able to mention her,
thus not disrupting).

5.3 Message is invasive

acceptable abusive

invasive 440 31
non-invasive 196 1

Table 4. Relationship between
abusive behavior and invasiveness.

The feature “message invasive” is a predicate
that is false if sender and receiver of the mes-
sage are mutual subscribers, that is both the
sender subscribes to the receiver, and the re-
ceiver subscribes to the sender. If either party
is not subscribed to the other, the message
is considered “invasive”. Table 4 shows that
messages that are invasive are more likely to
be abusive.

The predicate is trivial to evaluate locally, as both parties know their sub-
scriptions and their subscribers. While an attacker can easily subscribe to the
victim, it would be hard to convince a victim to subscribe to the attacker’s feed.



5.4 Messages per day
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Fig. 1. CCDF of messages/day.

The feature “messages over age” represents
the number of public messages sent of aver-
age by a user to all of its subscribers each day.
The CCDF shows no clear trend as to whether
abusive users in our data set send fewer or
more messages per day (Figure 1). To estab-
lish this value securely, a user could subscribe
to the public feed and observe the message
stream. As these are public messages, there is
no privacy concern. Subscribing would—with
some delay—provide an accurate count of the
number of messages made per day.

By supporting anonymous subscriptions and gossip-based message distribu-
tion, an OSN could make it difficult for an adversary to give the victim an
inaccurate view of the public message stream of the adversary.

Naturally, the adversary may be able to adapt by sending fewer or more
messages, but this may have an adverse and indirect impact into other features,
particularly the adversary subscriber base. A similar analysis holds for features
like “retweets” and “favorited messages”.

5.5 Age of account
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Fig. 2. CCDF of age of account.

The “age of account” feature considers how
many days ago the account was created. The
classifiers generally assume that older ac-
counts are less likely to exhibit abusive be-
havior (which is supported by the CCDF in
Figure 2). Thus, an adversary has an inter-
est in making his accounts look old. Using the
age of an account is not privacy sensitive, as it
hardly can be considered to be sensitive per-
sonal information about the user.

In a fully decentralized network, a time-
stamping service [6] can be implemented to
prevent malicious participants from backdating the time at which their account
was created. Naturally, a time-stamping service does not prevent an adversary
from creating dormant accounts to be used at a later time for attacks. However,
time-stamping raises the bar in terms of required planning, and is thus unlikely
to be defeated by non-professional trolls.



5.6 Number of subscribers
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Fig. 3. CCDF of # of subscribers.

The feature “subscribers count” represents
the number of subscribers of the user send-
ing the message. Figure 3 shows that there is
no clear trend in our data set between abusive
and non-abusive senders. It is conceivable that
this is because the feature is trivial to ma-
nipulate: creating new accounts is generally
relatively cheap, and there are even existing
blackmarkets for Twitter [16].

Assuming that abusive accounts do need
to artificially inflate their subscriber base, one
could use proof-of-work based group size esti-
mation methods [5] to increase the cost of faking a large subscriber base. How-
ever, the network size estimation method presented in [5] would reveal the public
keys of some of the subscribers. Still, this is easily mitigated by having each sub-
scriber use a fresh pseudonym for each subscription, limiting the use of this
special pseudonym to the group size estimation protocol. This has the drawback
that the proof-of-work computation would have to be performed again for each
subscription.

In any case, we do not expect such methods to work particularly well: an
adversary can typically be expected to be willing to spend significant energy to
create fake accounts. As a result, preventing fake accounts from being created by
increasing the complexity is likely to deter normal users from using the system
long before this would become an effective deterrent for a determined adversary.

5.7 Subscription ∩ subscription
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Fig. 4. CCDF of subscription in-
tersection.

The “subscription ∩ subscription” feature is
measuring the size of the intersection among
the set of subscriptions of the sender and the
receiver in relation; it is normalized by divid-
ing it by the sum of the number of subscrip-
tions of the receiver and the sum of subscrip-
tions of the sender. Subscriptions are likely
private information, and thus neither sender
nor receiver can be expected to simply provide
this information in a privacy-preserving OSN
set up. In our data set, the resulting number
of this feature is substantially less for mes-
sages classified as abusive (Figure 4), thus an
adversary would attempt to increase the value. This requires the adversary to
guess which subscriptions the victim may have, and then to create (or pretend
to have made) the same subscriptions. We expect this to be costly, but not com-
putationally hard: by watching the victim’s public activity, it is likely possible
to deduce quite a bit of information about the victim’s subscriptions.



Our protocol part 1 We provide a new privacy-preserving protocol to compute
the size of the set intersections, which is a variation of the PSI-CA protocol
of [4]. Suppose each user has a private key ci and the corresponding public
key is Ci := gci where g is some generator. Let A be the set of public keys
representing Alice’s subscriptions and B be the set of keys representing Bob’s
subscriptions. Fix a cryptographic hash function h. For any list or set Z, define
Z ′ := {h(x)|x ∈ Z}. We also assume a fixed system security parameter κ ≥ 1
has been agreed upon.

Suppose Alice wishes to know n := |A∩B|. First, she generates an ephemeral
private scalar xA ∈ Z/pZ and sends Bob

XAlice := sort [CxA | C ∈ A ] (1)

Second, Bob picks ephemeral private scalars tBob,j ∈ Z/pZ for j ∈ 1, . . . , κ and
computes

XBob,j : = sort
[
CtBob,j

∣∣ C ∈ B ] (2)

YBob,j : = sort
[
C
tBob,j

∣∣∣ C ∈ XAlice

]
(3)

He then sends commitments X ′Bob,i and Y ′Bob,i for i ∈ 1, . . . , κ to Alice. Third,
Alice picks a non-empty random J ⊆ {1, . . . , κ} and sends J to Bob. Fourth, Bob
sends Alice his scalar tBob,j for j /∈ J , as well as XBob,j for j ∈ J . Fifth, Alice
checks the tBob,j matches the commitment Y ′Bob,j for j /∈ J . She also verifies the
commitment to XBob,j for j ∈ J . She then computes for j ∈ J

YAlice,j :=
{
ĈxA

∣∣∣ Ĉ ∈ XBob,j

}
(4)

Finally, Alice computes the result from |Y ′Alice,j ∩ Y ′Bob,j | = n for j ∈ J ,
checking that all |J | ≥ 1 values agree.

We note that the same privacy-preserving protocol also applies for comput-
ing the overlap between the sender’s subscriptions and the receiver’s subscribers.
However, in this case it is even easier for the adversary to manipulate the out-
come, as the adversary can simply create fake accounts to subscribe to the victim,
and it is trivial for the adversary to subscribe to these fake accounts. As a re-
sult, the adversary can increase the overlap for the “subscriberr-subscriptions”
feature limited only by the number of fake accounts. As with the “number of
subscribers” (Section 5.6), this attack can again be slightly mitigated by making
account creation expensive.

5.8 Subscriber ∩ subscriber

The “subscriber ∩ subscriber” feature is measuring the size of the intersection
among the set of subscribers of the sender and the receiver; it is again normalized
by the sum of the number of subscribers of sender and receiver. Unlike their
subscription set, a user cannot freely determine the set of their subscribers: A
user needs to actually convince other users that they should subscribe to their



public channel. We assume the channel owner knows its subscribers, and that
the subscribers are willing to cryptographically sign a message saying that they
are subscribed to the user’s channel.
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Fig. 5. CCDF of subscriber inter-
section.

Given this, we create a stronger version of
the protocol from Section 5.7, which uses sig-
natures that allow Bob to prove to Alice that
his input consists really of his subscribers. The
tricky part here is that the identities of the
subscribers are still sensitive private informa-
tion, so we need to use a particular signature
scheme for our privacy-preserving computa-
tion of the overlap in subscriber sets. The fact
that subscribers provide the signatures and
not a certification authority is a key difference
to the private set intersection with certificate
authority (PSI-CA) of [4].

The Boneh-Lynn-Shacham (BLS) signature scheme We first outline the
BLS signature scheme [2], which begins with a Gap co-Diffie-Hellman group pair
(G1, G2) of order p with an efficiently-computable bilinear map e : G1×G2 → GT ,
a generator g2 of G2, and a cryptographic hash function H : {0, 1}∗ → G1.

In the BLS scheme, a private key consists of a scalar c ∈ Z/pZ, while the
corresponding public key is C := gc2, and a signature on a message m by C is
σ := H(m)c.

A signature σ is verified by checking that e(H(m), C) = e(σ, g2). If σ =
H(m)c then this holds by bilinearity of e.

Our protocol part 2 We again define Z ′ := {h(x)|x ∈ Z} whenever Z is some
set under discussion, and assume a fixed system security parameter κ ≥ 1 has
been agreed upon. Each participant is identified by a public key pair C = gc2 for
the BLS signature scheme. Each participant A has a subscriber list LA consisting
of tuples (C, σA,C) where σA,C := H(A, date)c is a BLS signature affirming
that C = gc2 was subscribed to A until some expiration date, the specifics of
which depend on the application. We envision these signatures being provided in
advance so that Bob’s subscribers need not be online when running the protocol.

Suppose Alice wishes to know n := |LAlice ∩ LBob|. First, she generates an
ephemeral private scalar xA ∈ Z/pZ and sends Bob

XAlice := sort [CxA | (C, σA,C) ∈ LAlice ] (5)

Second, Bob picks ephemeral private scalars tBob,j ∈ Z/pZ for j ∈ 1, . . . , κ and
computes

XBob,j : = sort
[

(CtBob,j , σ
tBob,j

B,C )
∣∣∣ (C, σB,C) ∈ LBob

]
(6)

YBob,j : = sort
[
C
tBob,j

∣∣∣ C ∈ XAlice

]
(7)



He then sends commitments X ′Bob,i and Y ′Bob,i for i ∈ 1, . . . , κ to Alice. Third,
Alice picks a non-empty random J ⊆ {1, . . . , κ} and sends J to Bob. Fourth, Bob
sends Alice his scalar tBob,j for j /∈ J , as well as XBob,j for j ∈ J . Fifth, Alice
checks the tBob,j matches the commitment Y ′Bob,j for j /∈ J . She also verifies
the commitment to as well as the signatures in XBob,j for j ∈ J . The signatures
in XBob,j validate because we employ the BLS pairing based signature scheme
where:

e(CtBob,j , H(m)) = e(C,H(m))tBob,j

= e(P1, σB,C)tBob,j = e(P1, σ
tBob,j

B,C )

Alice then computes for j ∈ J

YAlice,j :=
{
ĈxA

∣∣∣ Ĉ ∈ XBob,j

}
(8)

Finally, Alice obtains the result from |Y ′Alice,j∩Y ′Bob,j | = n for j ∈ J , checking
that all |J | ≥ 1 values agree.

An attack on this blinded signature scheme translates into an attack on the
underlying BLS signature scheme. If Bob tries to manipulate to increase the
overlap, the cut-and-choose part detects this with probability 1 : 2κ.

Assessment In our data set, the size of the subscriber set intersection is again
substantially lower for messages classified as abusive (Figure 5), thus an adver-
sary would attempt to increase the value. It is hard for an adversary to try to get
the subscribers of the victim to subscribe to the adversary’s feed, especially given
that the subscribers are typically unknown to the adversary as subscriptions are
private information.

It is again possible for the adversary to create fake accounts which subscribe
to both the adversary and the victim. While these accounts may be relatively
new, the “age of account” feature only considers the age of the sender’s account,
not the age of the accounts of subscribers. As with the “subscribers count”
feature, proof-of-work techniques may increase the cost of this attack.

5.9 Subscribers ∩ subscriptionr

Finally, we consider the size of the intersection among the set of subscribers of the
sender and the subscriptions of the receiver. Figure 6 shows that, an adversary
would try to increase the intersection of their subscribers (subscribers) with the
subscriptions of the receiving victim (subscriptionr). This feature is particularly
interesting, as the sending attacker cannot easily influence set of subscriptions
of the receiver, and will similarly have a hard time obtaining subscriptions from
the user’s to whom the victim is subscribed to. Unlike “subscriber ∩ subscriber”,
creating fake accounts is ineffective unless the receiver subscribes to these fake
accounts.
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Fig. 6. CCDF of subscribers-
subscriptionr intersection.

Naturally, computing the subscribers-
subscriptionr overlap is again dependent on
privacy-sensitive information. However, the
protocol from the previous section can be triv-
ially adapted to the situation where Alice uses
her set of subscriptions instead of her set of
subscribers.

6 Evaluation

We have shown how to obtain some of the
key features from our original abuse detection
heuristic even in a privacy-preserving decen-
tralised OSN. While many of the features can be inherently manipulated by
a sophisticated adversary, others can be made robust even against strong and
adaptive attacks.

We now evaluate the abuse detection system in the context of an adaptive
adversary. In particular, we assume that the adversary can trivially adapt all
of the account properties of the sender’s account, possibly create fake accounts

Feature Falsification/Adaptation Crypto helps?
# lists trivial n/a
# subscriptions trivial n/a
# subscriptions

age trivial n/a
#subscriptions
#subscribers trivial n/a

# mentions costly n/a
# hashtags costly n/a
# messages

age costly yes
# mentions

age costly yes
# mentions
# messages costly n/a

# retweets costly n/a
# favorited messages costly n/a
age of account hard yes
# subscribers possible minimally
# subscribers

age possible minimally

subscription ∩ subscription costly w. privacy
subscriber ∩ subscriber possible w. privacy
subscribers ∩ subscriptionr very hard yes
subscriptions ∪ subscriberr possible w. privacy
message invasive hard n/a

Table 5. Summary of how difficult it would be for an adversary to manipulate features.



Classifier Metric Arithmetic Mean Geometric Mean Only Acceptable Only Abusive

DT
Precision 0.64 ± 0.09 0.54 ± 0.04 0.98 ± 0.01 0.30 ± 0.17
Recall 0.78 ± 0.12 0.76 ± 0.14 0.91 ± 0.08 0.64 ± 0.26
F-score 0.67 ± 0.11 0.62 ± 0.09 0.95 ± 0.05 0.40 ± 0.18

RF
Precision 0.67 ± 0.12 0.59 ± 0.05 0.98 ± 0.01 0.36 ± 0.24
Recall 0.76 ± 0.08 0.74 ± 0.09 0.94 ± 0.09 0.58 ± 0.19
F-score 0.69 ± 0.12 0.64 ± 0.10 0.96 ± 0.05 0.43 ± 0.20

ET
Precision 0.58 ± 0.05 0.40 ± 0.04 0.99 ± 0.02 0.16 ± 0.08
Recall 0.80 ± 0.17 0.79 ± 0.16 0.79 ± 0.08 0.80 ± 0.33
F-score 0.58 ± 0.08 0.49 ± 0.08 0.88 ± 0.05 0.27 ± 0.13

GB
Precision 0.71 ± 0.10 0.66 ± 0.04 0.97 ± 0.01 0.45 ± 0.20
Recall 0.70 ± 0.07 0.64 ± 0.07 0.97 ± 0.03 0.42 ± 0.15
F-score 0.70 ± 0.08 0.64 ± 0.05 0.97 ± 0.02 0.42 ± 0.14

Table 6. Classifiers trained with 5-fold cross validation and hard to forge features

(Sybils) and fake subscriptions, and is willing to make costly behavioral adap-
tations, e.g. by adapting the text of messages to avoid message properties as
mentions’ 5.2 and the frequency at which messages of any type are sent (Ta-
ble 5). However, the adversary is unable to manipulate the age of accounts (by
breaking the timeline service) or to break the cryptographic primitives used in
the protocols presented in this paper.

Given this adversary model, only three features remain: the age of the ac-
count, the subscriberr ∩ subscriptions intersection size, and the invasive predi-
cate. All other features need to be excluded from the classification algorithm’s
inputs, as we have to assume that the adversary will adapt to provide the worst-
case input, thereby making abusive messages seem more benign.

We evaluated the accuracy of the supervised learning techniques presented
in Section 4 on this modified feature set. Table 6 summarizes the results for
the various classifiers. As before, the ET and GB classifiers generally perform
better than DT and RF for our data set; however, the high variance means that
this comparison may not generalize. The reduced feature set largely impacts the
precision for abusive messages, cutting it by a bit more than a third in the best
case scenario, and more than two-thirds in a worst case one (e.g., DT). Still,
even with this strong adaptive adversary, the GB classifier performs at slightly
more than half the precision and nearly the same recall of a human reviewer for
abusive messages.

Figures 7 to 10 provide the ROC curve, precision-recall (P-R) curves and the
confusion matrix (CM). In terms of relative importance (RI), the age of account
has always the highest importance (DT: 0.64%, RF: 0.59%, ET: 0.44%, GB:
0.80%) and the invasive predicate ranks pretty low in importance (DT: 0.00%,
RF: 0.07%, ET: 0.27%, GB: 0.01%).
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Fig. 7. Evaluation for decision trees (with strong adaptive adversary)
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Fig. 8. Evaluation for random forest (with strong adaptive adversary)
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Fig. 9. Evaluation for extra trees (with strong adaptive adversary)
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7 Discussion

Many of the features we originally considered could not be effectively secured
against an adversary creating fake accounts and fake subscriptions. It might
be possible to use some of these features if we additionally considered the age
of the accounts: given a time-stamping service, the adversary may be able to
create fake accounts, but it would be very hard to back-date them. Combining
timestamped public keys with the privacy-preserving set intersection protocols
is thus an interesting open problem for future work.

That said, even if we included some of these features that could be secured,
the performance of the privacy-preserving classifiers did not significantly im-
prove. The more substantial gains seem to depend on features involving basic
account properties and sender behavior which fundamentally cannot be secured
against an adaptive adversary as they are under full control of the adversary.
Real-world deployments will thus have to figure out whether including those
features would help (because real-world adversaries are not that adaptive) or
hurt (because real-world adversaries would adapt to use these features to their
advantage).

We envision that future decentralised privacy-preserving OSNs will use the
sort of abuse classifiers discussed here as part of ranking messages in the user’s
timeline, not for binary filtering of messages for an inbox. By timeline, we mean
any interface that displays short message summaries ordered so that users never
feel the desire to read all listed messages. After browsing only a brief portion of
their timeline, a user should firstly feel they have skimmed enough summaries to
be up to date on any topics about which they consult the application, and sec-
ondly not have spent time on matters they might later regret, such as responding
to abusive messages.

We have treated abuse as a binary classification problem in this article, but
actually one would prefer the different features to report back a numerical risk
score for timeline construction. As a result, the concerns around bias one encoun-
ters with binary classifiers [12] seem unnecessary here. Instead, actual timeline
constructions requires integrating an array of features with both positive and
negative aspects.

In terms of concrete deployments, we envision that future OSNs would in-
clude a decision tree baked into the code and not expect users to train their own
classifier. This will simplify the deployed software, improve usability and avoid
users running expensive training algorithms.

8 Conclusion

Our results show how to combine local knowledge with privacy-preserving pro-
tocols to detect abuse in future decentralised online social networks. Given an
adaptive adversary that would be able to manipulate most features we propose
in our supervised learning approach, it is surprising that with just three fea-
tures resistant to adversarial manipulation, the algorithms still provide useful
classifications classifications for timeline construction.
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