
GNU

Funded by the
European Union

taler.net
taler@twitter
taler-systems.com

Christian Grothoff
grothoff@taler.net

https://taler.net/
https://twitter.com/taler
https://taler-systems.com/

Agenda

Motivation & Background

GNU Taler: Introduction

Protocol Basics

Programmable money: Age restrictions

Blockchain integration: Project Depolymerization

Future Work & Conclusion

A Social Problem
This was a question posed to RAND researchers in 1971:

“Suppose you were an advisor to the head of the KGB,
the Soviet Secret Police. Suppose you are given the as-
signment of designing a system for the surveillance of all
citizens and visitors within the boundaries of the USSR.
The system is not to be too obtrusive or obvious. What
would be your decision?”

“I think one of the big things that we need to do, is we need to get
away from true-name payments on the Internet. The credit card
payment system is one of the worst things that happened for the
user, in terms of being able to divorce their access from their

identity.” –Edward Snowden, IETF 93 (2015)

A Social Problem
This was a question posed to RAND researchers in 1971:

“Suppose you were an advisor to the head of the KGB,
the Soviet Secret Police. Suppose you are given the as-
signment of designing a system for the surveillance of all
citizens and visitors within the boundaries of the USSR.
The system is not to be too obtrusive or obvious. What
would be your decision?”

“I think one of the big things that we need to do, is we need to get
away from true-name payments on the Internet. The credit card
payment system is one of the worst things that happened for the
user, in terms of being able to divorce their access from their

identity.” –Edward Snowden, IETF 93 (2015)

The Bank of International Settlements

GNU Taler: Introduction

GNU Taler

Digital cash, made socially
responsible.

Privacy-Preserving, Practical, Taxable, Free Software, Efficient

What is Taler?
https://taler.net/en/features.html

Taler is

▶ a Free/Libre software payment system infrastructure project

▶ ... with a surrounding software ecosystem

▶ ... and a company (Taler Systems S.A.) and community that
wants to deploy it as widely as possible.

However, Taler is

▶ not a currency or speculative asset

▶ not a long-term store of value

▶ not a network or instance of a system

▶ not decentralized

▶ not based on proof-of-work or proof-of-stake

https://taler.net/en/features.html

Design principles
https://taler.net/en/principles.html

GNU Taler must ...

1. ... be implemented as free software.

2. ... protect the privacy of buyers.

3. ... must enable the state to tax income and crack down on
illegal business activities.

4. ... prevent payment fraud.

5. ... only disclose the minimal amount of information
necessary.

6. ... be usable.

7. ... be efficient.

8. ... avoid single points of failure.

9. ... foster competition.

Taler Overview

Exchange

Customer Merchant

Auditor

w
ith
dr
aw

co
in
s deposit

coins

spend coins

verify

Architecture of Taler

Usability of Taler

https://demo.taler.net/

1. Install browser extension.

2. Visit the bank.demo.taler.net to withdraw coins.

3. Visit the shop.demo.taler.net to spend coins.

https://demo.taler.net/

Protocol Basics

How does it work?

We use a few ancient constructions:

▶ Cryptographic hash function (1989)

▶ Blind signature (1983)

▶ Schnorr signature (1989)

▶ Diffie-Hellman key exchange (1976)

▶ Cut-and-choose zero-knowledge proof (1985)

But of course we use modern instantiations.

Definition: Taxability

We say Taler is taxable because:

▶ Merchant’s income is visible from deposits.

▶ Hash of contract is part of deposit data.

▶ State can trace income and enforce taxation.

Limitations:

▶ withdraw loophole

▶ sharing coins among family and friends

Definition: Taxability

We say Taler is taxable because:

▶ Merchant’s income is visible from deposits.

▶ Hash of contract is part of deposit data.

▶ State can trace income and enforce taxation.

Limitations:

▶ withdraw loophole

▶ sharing coins among family and friends

Exchange setup: Create a denomination key (RSA)

1. Pick random primes p, q.

2. Compute n := pq,
ϕ(n) = (p − 1)(q − 1)

3. Pick small e < ϕ(n) such that
d := e−1 mod ϕ(n) exists.

4. Publish public key (e, n).

(p, q)

Merchant: Create a signing key (EdDSA)

▶ pick random m mod o as
private key

▶ M = mG public key

m

M

Capability: m⇒ M

Customer: Create a planchet (EdDSA)

▶ Pick random c mod o private key

▶ C = cG public key

c

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

Capability: c ⇒ X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

Customer: Blind planchet (RSA)

1. Obtain public key (e, n)

2. Compute f := FDH(C), f < n.

3. Pick blinding factor b ∈ Zn

4. Transmit f ′ := fbe mod n

b

b

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

Exchange

tr
an
sm

it

Exchange: Blind sign (RSA)

1. Receive f ′.

2. Compute s ′ := f ′d mod n.

3. Send signature s ′.
b

b

Customer

tr
an
sm

it

Customer: Unblind coin (RSA)

1. Receive s ′.

2. Compute s := s ′b−1 mod n

b
X

N
A

G
YE6P65735P4H1NGN8D

T5
28

W
S3

PX

ZT8T0YDYPS8770GCD
Z5

b

Customer: Build shopping cart

www
tr
an
sm

it

Merchant: Propose contract (EdDSA)

1. Complete proposal D.

2. Send D, EdDSAm(D)

M

Customer

m

tr
an
sm

it

Customer: Spend coin (EdDSA)

1. Receive proposal D,
EdDSAm(D).

2. Send s, C , EdDSAc(D)

M

M X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

c

Merchant

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

tr
an
sm

it

tr
an
sm

it

Merchant and Exchange: Verify coin (RSA)

se
?≡ FDH(C) mod n

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

?⇔

The exchange does not only verify the signature, but also checks
that the coin was not double-spent.

Taler is an online payment system.

Merchant and Exchange: Verify coin (RSA)

se
?≡ FDH(C) mod n

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

?⇔

The exchange does not only verify the signature, but also checks
that the coin was not double-spent.

Taler is an online payment system.

Giving change

It would be inefficient to pay EUR 100 with 1 cent coins!

▶ Denomination key represents value of a coin.

▶ Exchange may offer various denominations for coins.

▶ Wallet may not have exact change!

▶ Usability requires ability to pay given sufficient total funds.

Key goals:

▶ maintain unlinkability

▶ maintain taxability of transactions

Method:

▶ Contract can specify to only pay partial value of a coin.

▶ Exchange allows wallet to obtain unlinkable change for
remaining coin value.

Giving change

It would be inefficient to pay EUR 100 with 1 cent coins!

▶ Denomination key represents value of a coin.

▶ Exchange may offer various denominations for coins.

▶ Wallet may not have exact change!

▶ Usability requires ability to pay given sufficient total funds.

Key goals:

▶ maintain unlinkability

▶ maintain taxability of transactions

Method:

▶ Contract can specify to only pay partial value of a coin.

▶ Exchange allows wallet to obtain unlinkable change for
remaining coin value.

Giving change

It would be inefficient to pay EUR 100 with 1 cent coins!

▶ Denomination key represents value of a coin.

▶ Exchange may offer various denominations for coins.

▶ Wallet may not have exact change!

▶ Usability requires ability to pay given sufficient total funds.

Key goals:

▶ maintain unlinkability

▶ maintain taxability of transactions

Method:

▶ Contract can specify to only pay partial value of a coin.

▶ Exchange allows wallet to obtain unlinkable change for
remaining coin value.

Diffie-Hellman (ECDH)

1. Create private keys c , t mod o

2. Define C = cG

3. Define T = tG

4. Compute DH
cT = c(tG) = t(cG) = tC

t

C T

c

Strawman solution

Given partially spent private coin key cold :

1. Pick random cnew mod o private key

2. Cnew = cnewG public key

3. Pick random bnew

4. Compute fnew := FDH(Cnew), m < n.

5. Transmit f ′new := fnewb
e
new mod n

... and sign request for change with cold .

b

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

cnew

bnew

Exchange

tr
an
sm

it

Problem: Owner of cnew may differ from owner of cold !

Strawman solution

Given partially spent private coin key cold :

1. Pick random cnew mod o private key

2. Cnew = cnewG public key

3. Pick random bnew

4. Compute fnew := FDH(Cnew), m < n.

5. Transmit f ′new := fnewb
e
new mod n

... and sign request for change with cold .

b

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

cnew

bnew

Exchange

tr
an
sm

it

Problem: Owner of cnew may differ from owner of cold !

Customer: Transfer key setup (ECDH)

Given partially spent private coin key cold :

1. Let Cold := coldG (as before)

2. Create random private transfer key t mod o

3. Compute T := tG

4. Compute X := cold(tG) = t(coldG) = tCold

5. Derive cnew and bnew from X

6. Compute Cnew := cnewG

7. Compute fnew := FDH(Cnew)

8. Transmit f ′new := fnewb
e
new

t

C T

cold

cnew bnew

b

Exchange

tr
an
sm

it

Cut-and-Choose

t1

C T

cold

cnew ,1 bnew ,1

b

Exchange

tr
an
sm

it
t2

C T

cold

cnew ,2 bnew ,2

b

Exchange

tr
an
sm

it

t3

C T

cold

cnew ,3 bnew ,3

b

Exchange

tr
an
sm

it

Exchange: Choose!

Exchange sends back random γ ∈ {1, 2, 3} to the customer.

Customer: Reveal

1. If γ = 1, send t2, t3 to exchange

2. If γ = 2, send t1, t3 to exchange

3. If γ = 3, send t1, t2 to exchange

Exchange: Verify (γ = 2)

t1

C T

Cold

cnew ,1 bnew ,1

b

t3

C T

Cold

cnew ,3 bnew ,3

b

Exchange: Blind sign change (RSA)

1. Take f ′new ,γ .

2. Compute s ′ := f ′dnew ,γ mod n.

3. Send signature s ′.
b

b

Customer

tr
an
sm

it

Customer: Unblind change (RSA)

1. Receive s ′.

2. Compute s := s ′b−1
new ,γ mod n.

bnew ,γ
X

N
A

G
YE6P65735P4H1NGN8D

T5
28

W
S3

PX

ZT8T0YDYPS8770GCD
Z5

b

Exchange: Allow linking change

Given Cold

return Tγ , s := s ′b−1
new ,γ mod n.

Cold

Tγ
b

Customer

link

lin
k

Customer: Link (threat!)

1. Have cold .

2. Obtain Tγ , s from exchange

3. Compute Xγ = coldTγ

4. Derive cnew ,γ and bnew ,γ from Xγ

5. Unblind s := s ′b−1
new ,γ mod n

Tγ

Exchange

b

C T

bnew ,γ

cold

cnew ,γ

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

link

lin
k

Refresh protocol summary

▶ Customer asks exchange to convert old coin to new coin

▶ Protocol ensures new coins can be recovered from old coin

⇒ New coins are owned by the same entity!

Thus, the refresh protocol allows:

▶ To give unlinkable change.

▶ To give refunds to an anonymous customer.

▶ To expire old keys and migrate coins to new ones.

▶ To handle protocol aborts.

Transactions via refresh are equivalent to sharing a wallet.

Programmable money: Age restrictions

Age restriction in E-commerce

Problem:

Verification of minimum age requirements in e-commerce.

Common solutions:

Privacy Ext. authority

1. ID Verification

bad required

2. Restricted Accounts

bad required

3. Attribute-based

good required

Principle of Subsidiarity is violated

Age restriction in E-commerce

Problem:

Verification of minimum age requirements in e-commerce.

Common solutions:
Privacy

Ext. authority

1. ID Verification bad

required

2. Restricted Accounts bad

required

3. Attribute-based good

required

Principle of Subsidiarity is violated

Age restriction in E-commerce

Problem:

Verification of minimum age requirements in e-commerce.

Common solutions:
Privacy Ext. authority

1. ID Verification bad required

2. Restricted Accounts bad required

3. Attribute-based good required

Principle of Subsidiarity is violated

Age restriction in E-commerce

Problem:

Verification of minimum age requirements in e-commerce.

Common solutions:
Privacy Ext. authority

1. ID Verification bad required

2. Restricted Accounts bad required

3. Attribute-based good required

Principle of Subsidiarity is violated

Principle of Subsidiarity

Functions of government—such as granting and
restricting rights—should be performed
at the lowest level of authority possible,

as long as they can be performed adequately.

For age-restriction, the lowest level of authority is:

Parents, guardians and caretakers

Principle of Subsidiarity

Functions of government—such as granting and
restricting rights—should be performed
at the lowest level of authority possible,

as long as they can be performed adequately.

For age-restriction, the lowest level of authority is:

Parents, guardians and caretakers

Age restriction design for GNU Taler

Design and implementation of an age restriction scheme
with the following goals:

1. It ties age restriction to the ability to pay (not to ID’s)

2. maintains anonymity of buyers

3. maintains unlinkability of transactions

4. aligns with principle of subsidiartiy

5. is practical and efficient

Age restriction
Assumptions and scenario

▶ Assumption: Checking accounts are
under control of eligible adults/guardians.

▶ Guardians commit to an maximum age

▶ Minors attest their adequate age

▶ Merchants verify the attestations

▶ Minors derive age commitments from
existing ones

▶ Exchanges compare the derived age
commitments

E

C M

G

Commit

Attest

Verify

Derive

Compare

Note: Scheme is independent of payment service protocol.

Age restriction
Assumptions and scenario

▶ Assumption: Checking accounts are
under control of eligible adults/guardians.

▶ Guardians commit to an maximum age

▶ Minors attest their adequate age

▶ Merchants verify the attestations

▶ Minors derive age commitments from
existing ones

▶ Exchanges compare the derived age
commitments

E

C M

G

Commit

Attest

Verify

Derive

Compare

Note: Scheme is independent of payment service protocol.

Age restriction
Assumptions and scenario

▶ Assumption: Checking accounts are
under control of eligible adults/guardians.

▶ Guardians commit to an maximum age

▶ Minors attest their adequate age

▶ Merchants verify the attestations

▶ Minors derive age commitments from
existing ones

▶ Exchanges compare the derived age
commitments

E

C M

G

Commit

Attest

Verify

Derive

Compare

Note: Scheme is independent of payment service protocol.

Age restriction
Assumptions and scenario

▶ Assumption: Checking accounts are
under control of eligible adults/guardians.

▶ Guardians commit to an maximum age

▶ Minors attest their adequate age

▶ Merchants verify the attestations

▶ Minors derive age commitments from
existing ones

▶ Exchanges compare the derived age
commitments

E

C M

G

Commit

Attest

Verify

Derive

Compare

Note: Scheme is independent of payment service protocol.

Age restriction
Assumptions and scenario

▶ Assumption: Checking accounts are
under control of eligible adults/guardians.

▶ Guardians commit to an maximum age

▶ Minors attest their adequate age

▶ Merchants verify the attestations

▶ Minors derive age commitments from
existing ones

▶ Exchanges compare the derived age
commitments

E

C M

G

Commit

Attest

Verify

Derive

Compare

Note: Scheme is independent of payment service protocol.

Age restriction
Assumptions and scenario

▶ Assumption: Checking accounts are
under control of eligible adults/guardians.

▶ Guardians commit to an maximum age

▶ Minors attest their adequate age

▶ Merchants verify the attestations

▶ Minors derive age commitments from
existing ones

▶ Exchanges compare the derived age
commitments

E

C M

G

Commit

Attest

Verify

Derive

Compare

Note: Scheme is independent of payment service protocol.

Age restriction
Assumptions and scenario

▶ Assumption: Checking accounts are
under control of eligible adults/guardians.

▶ Guardians commit to an maximum age

▶ Minors attest their adequate age

▶ Merchants verify the attestations

▶ Minors derive age commitments from
existing ones

▶ Exchanges compare the derived age
commitments

E

C M

G

Commit

Attest

Verify

Derive

Compare

Note: Scheme is independent of payment service protocol.

Formal Function Signatures

Searching for functions

with the following signatures

Commit

: (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest

: (m,Q,P) 7→ T NM×O×P→T∪{⊥},

Verify

: (m,Q,T) 7→ b NM×O×T→Z2,

Derive

: (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare

: (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

Basic and security requirements are defined later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs, P = Proof,
T = aTtestations, T = aTtestation, B = Blindings, β = βlinding.

Formal Function Signatures

Searching for functions with the following signatures

Commit : (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest

: (m,Q,P) 7→ T NM×O×P→T∪{⊥},

Verify

: (m,Q,T) 7→ b NM×O×T→Z2,

Derive

: (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare

: (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

Basic and security requirements are defined later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs,

P = Proof,
T = aTtestations, T = aTtestation, B = Blindings, β = βlinding.

Formal Function Signatures

Searching for functions with the following signatures

Commit : (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest : (m,Q,P) 7→ T NM×O×P→T∪{⊥},

Verify

: (m,Q,T) 7→ b NM×O×T→Z2,

Derive

: (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare

: (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

Basic and security requirements are defined later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs, P = Proof,
T = aTtestations, T = aTtestation,

B = Blindings, β = βlinding.

Formal Function Signatures

Searching for functions with the following signatures

Commit : (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest : (m,Q,P) 7→ T NM×O×P→T∪{⊥},

Verify : (m,Q,T) 7→ b NM×O×T→Z2,

Derive

: (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare

: (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

Basic and security requirements are defined later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs, P = Proof,
T = aTtestations, T = aTtestation,

B = Blindings, β = βlinding.

Formal Function Signatures

Searching for functions with the following signatures

Commit : (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest : (m,Q,P) 7→ T NM×O×P→T∪{⊥},

Verify : (m,Q,T) 7→ b NM×O×T→Z2,

Derive : (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare

: (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

Basic and security requirements are defined later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs, P = Proof,
T = aTtestations, T = aTtestation, B = Blindings, β = βlinding.

Formal Function Signatures

Searching for functions with the following signatures

Commit : (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest : (m,Q,P) 7→ T NM×O×P→T∪{⊥},

Verify : (m,Q,T) 7→ b NM×O×T→Z2,

Derive : (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare : (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

Basic and security requirements are defined later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs, P = Proof,
T = aTtestations, T = aTtestation, B = Blindings, β = βlinding.

Formal Function Signatures

Searching for functions with the following signatures

Commit : (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest : (m,Q,P) 7→ T NM×O×P→T∪{⊥},

Verify : (m,Q,T) 7→ b NM×O×T→Z2,

Derive : (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare : (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

Basic and security requirements are defined later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs, P = Proof,
T = aTtestations, T = aTtestation, B = Blindings, β = βlinding.

Age restriction
Näıve scheme

E

C M

G

Commit

Attest

Verify

Derive

Compare

Achieving Unlinkability

E

C

Derive()

Compare()

(Q
i
,
Q
i+

1
)

Simple use of Derive() and Compare() is problematic.

▶ Calling Derive() iteratively generates sequence
(Q0,Q1, . . .) of commitments.

▶ Exchange calls Compare(Qi ,Qi+1, .)

=⇒ Exchange identifies sequence

=⇒ Unlinkability broken

Achieving Unlinkability

E

C

Derive()

Compare()

(Q
i
,
Q
i+

1
)

Simple use of Derive() and Compare() is problematic.

▶ Calling Derive() iteratively generates sequence
(Q0,Q1, . . .) of commitments.

▶ Exchange calls Compare(Qi ,Qi+1, .)

=⇒ Exchange identifies sequence

=⇒ Unlinkability broken

Achieving Unlinkability

E

C

Derive()

Compare()

(Q
i
,
Q
i+

1
)

Simple use of Derive() and Compare() is problematic.

▶ Calling Derive() iteratively generates sequence
(Q0,Q1, . . .) of commitments.

▶ Exchange calls Compare(Qi ,Qi+1, .)

=⇒ Exchange identifies sequence

=⇒ Unlinkability broken

Achieving Unlinkability

Define cut&choose protocol DeriveCompareκ, using Derive() and
Compare().

Sketch:

1. C derives commitments (Q1, . . . ,Qκ) from Q0

by calling Derive() with blindings (β1, . . . , βκ)

2. C calculates h0 := H (H(Q1, β1)|| . . . ||H(Qκ, βκ))

3. C sends Q0 and h0 to E

4. E chooses γ ∈ {1, . . . , κ} randomly

5. C reveals hγ := H(Qγ , βγ) and all (Qi , βi), except (Qγ , βγ)

6. E compares h0 and H (H(Q1, β1)||...||hγ ||...||H(Qκ, βκ))
and evaluates Compare(Q0,Qi , βi).

Note: Scheme is similar to the refresh protocol in GNU Taler.

Achieving Unlinkability

Define cut&choose protocol DeriveCompareκ, using Derive() and
Compare().

Sketch:

1. C derives commitments (Q1, . . . ,Qκ) from Q0

by calling Derive() with blindings (β1, . . . , βκ)

2. C calculates h0 := H (H(Q1, β1)|| . . . ||H(Qκ, βκ))

3. C sends Q0 and h0 to E

4. E chooses γ ∈ {1, . . . , κ} randomly

5. C reveals hγ := H(Qγ , βγ) and all (Qi , βi), except (Qγ , βγ)

6. E compares h0 and H (H(Q1, β1)||...||hγ ||...||H(Qκ, βκ))
and evaluates Compare(Q0,Qi , βi).

Note: Scheme is similar to the refresh protocol in GNU Taler.

Achieving Unlinkability

With DeriveCompareκ
▶ E learns nothing about Qγ ,

▶ trusts outcome with κ−1
κ certainty,

▶ i.e. C has 1
κ chance to cheat.

Note: Still need Derive and Compare to be defined.

Refined scheme

C

E

M

G

D
er
iv
eC
om

pa
re
κ

(Tm,Q)

Commit(a)

(Q
, P

a)

Attest(m,Q,Pa) Verify(m,Q,Tm)

Basic Requirements

Candidate functions

(Commit,Attest,Verify,Derive,Compare)

must first meet basic requirements:

▶ Existence of attestations

▶ Efficacy of attestations

▶ Derivability of commitments and attestations

Basic Requirements
Formal Details

Existence of attestations

∀
a∈NM
ω∈Ω

: Commit(a, ω) =: (Q,P) =⇒ Attest(m,Q,P) =

{
T ∈ T, if m ≤ a

⊥ otherwise

Efficacy of attestations

Verify(m,Q,T) =

1, if ∃
P∈P

: Attest(m,Q,P) = T

0 otherwise

∀n≤a : Verify
(
n,Q,Attest(n,Q,P)

)
= 1.

etc.

Security Requirements

Candidate functions must also meet security requirements. Those
are defined via security games:

▶ Game: Age disclosure by commitment or attestation

↔ Requirement: Non-disclosure of age

▶ Game: Forging attestation

↔ Requirement: Unforgeability of minimum age

▶ Game: Distinguishing derived commitments and attestations

↔ Requirement: Unlinkability of commitments and attestations

Meeting the security requirements means that adversaries can win
those games only with negligible advantage.

Adversaries are arbitrary polynomial-time algorithms, acting on all
relevant input.

Security Requirements
Simplified Example

Game GFA
A (λ)—Forging an attest:

1. (a, ω)
$←− NM−1 × Ω

2. (Q,P)← Commit(a, ω)
3. (m,T)← A(a,Q,P)
4. Return 0 if m ≤ a
5. Return Verify(m,Q,T)

Requirement: Unforgeability of minimum age

∀
A∈A(NM×O×P→NM×T)

: Pr
[
GFA
A (λ) = 1

]
≤ ϵ(λ)

Solution: Instantiation with ECDSA

To Commit to age (group) a ∈ {1, . . . ,M}

1. Guardian generates ECDSA-keypairs, one per age (group):

⟨(q1, p1), . . . , (qM, pM)⟩

2. Guardian then drops all private keys pi for i > a:〈
(q1, p1), . . . , (qa, pa), (qa+1,⊥), . . . , (qM,⊥)

〉
▶ Q⃗ := (q1, . . . , qM) is the Commitment,
▶ P⃗a := (p1, . . . , pa,⊥, . . . ,⊥) is the Proof

3. Guardian gives child ⟨Q⃗, P⃗a⟩

Solution: Instantiation with ECDSA

To Commit to age (group) a ∈ {1, . . . ,M}
1. Guardian generates ECDSA-keypairs, one per age (group):

⟨(q1, p1), . . . , (qM, pM)⟩

2. Guardian then drops all private keys pi for i > a:〈
(q1, p1), . . . , (qa, pa), (qa+1,⊥), . . . , (qM,⊥)

〉
▶ Q⃗ := (q1, . . . , qM) is the Commitment,
▶ P⃗a := (p1, . . . , pa,⊥, . . . ,⊥) is the Proof

3. Guardian gives child ⟨Q⃗, P⃗a⟩

Solution: Instantiation with ECDSA

To Commit to age (group) a ∈ {1, . . . ,M}
1. Guardian generates ECDSA-keypairs, one per age (group):

⟨(q1, p1), . . . , (qM, pM)⟩

2. Guardian then drops all private keys pi for i > a:〈
(q1, p1), . . . , (qa, pa), (qa+1,⊥), . . . , (qM,⊥)

〉
▶ Q⃗ := (q1, . . . , qM) is the Commitment,
▶ P⃗a := (p1, . . . , pa,⊥, . . . ,⊥) is the Proof

3. Guardian gives child ⟨Q⃗, P⃗a⟩

Solution: Instantiation with ECDSA

To Commit to age (group) a ∈ {1, . . . ,M}
1. Guardian generates ECDSA-keypairs, one per age (group):

⟨(q1, p1), . . . , (qM, pM)⟩

2. Guardian then drops all private keys pi for i > a:〈
(q1, p1), . . . , (qa, pa), (qa+1,⊥), . . . , (qM,⊥)

〉
▶ Q⃗ := (q1, . . . , qM) is the Commitment,
▶ P⃗a := (p1, . . . , pa,⊥, . . . ,⊥) is the Proof

3. Guardian gives child ⟨Q⃗, P⃗a⟩

Instantiation with ECDSA
Definitions of Attest and Verify

Child has

▶ ordered public-keys Q⃗ = (q1, . . . , qM),

▶ (some) private-keys P⃗ = (p1, . . . , pa,⊥, . . . ,⊥).

To Attest a minimum age m ≤ a:
Sign a message with ECDSA using private key pm

Merchant gets

▶ ordered public-keys Q⃗ = (q1, . . . , qM)

▶ Signature σ

To Verify a minimum age m:
Verify the ECDSA-Signature σ with public key qm.

Instantiation with ECDSA
Definitions of Attest and Verify

Child has

▶ ordered public-keys Q⃗ = (q1, . . . , qM),

▶ (some) private-keys P⃗ = (p1, . . . , pa,⊥, . . . ,⊥).

To Attest a minimum age m ≤ a:
Sign a message with ECDSA using private key pm

Merchant gets

▶ ordered public-keys Q⃗ = (q1, . . . , qM)

▶ Signature σ

To Verify a minimum age m:
Verify the ECDSA-Signature σ with public key qm.

Instantiation with ECDSA
Definitions of Attest and Verify

Child has

▶ ordered public-keys Q⃗ = (q1, . . . , qM),

▶ (some) private-keys P⃗ = (p1, . . . , pa,⊥, . . . ,⊥).

To Attest a minimum age m ≤ a:
Sign a message with ECDSA using private key pm

Merchant gets

▶ ordered public-keys Q⃗ = (q1, . . . , qM)

▶ Signature σ

To Verify a minimum age m:
Verify the ECDSA-Signature σ with public key qm.

Instantiation with ECDSA
Definitions of Attest and Verify

Child has

▶ ordered public-keys Q⃗ = (q1, . . . , qM),

▶ (some) private-keys P⃗ = (p1, . . . , pa,⊥, . . . ,⊥).

To Attest a minimum age m ≤ a:
Sign a message with ECDSA using private key pm

Merchant gets

▶ ordered public-keys Q⃗ = (q1, . . . , qM)

▶ Signature σ

To Verify a minimum age m:
Verify the ECDSA-Signature σ with public key qm.

Instantiation with ECDSA
Definitions of Derive and Compare

Child has Q⃗ = (q1, . . . , qM) and P⃗ = (p1, . . . , pa,⊥, . . . ,⊥).

To Derive new Q⃗′ and P⃗′: Choose random β ∈ Zg and calculate

Q⃗′ :=
(
β ∗ q1, . . . , β ∗ qM

)
,

P⃗′ :=
(
βp1, . . . , βpa,⊥, . . . ,⊥

)
Note: (βpi) ∗ G = β ∗ (pi ∗ G) = β ∗ qi
β ∗ qi is scalar multiplication on the elliptic curve.

Exchange gets Q⃗ = (q1, . . . , qM), Q⃗′ = (q′1, . . . , q
′
M) and β

To Compare, calculate: (β ∗ q1, . . . , β ∗ qM)
?
= (q′1, . . . , q

′
M)

Instantiation with ECDSA
Definitions of Derive and Compare

Child has Q⃗ = (q1, . . . , qM) and P⃗ = (p1, . . . , pa,⊥, . . . ,⊥).
To Derive new Q⃗′ and P⃗′: Choose random β ∈ Zg and calculate

Q⃗′ :=
(
β ∗ q1, . . . , β ∗ qM

)
,

P⃗′ :=
(
βp1, . . . , βpa,⊥, . . . ,⊥

)
Note: (βpi) ∗ G = β ∗ (pi ∗ G) = β ∗ qi
β ∗ qi is scalar multiplication on the elliptic curve.

Exchange gets Q⃗ = (q1, . . . , qM), Q⃗′ = (q′1, . . . , q
′
M) and β

To Compare, calculate: (β ∗ q1, . . . , β ∗ qM)
?
= (q′1, . . . , q

′
M)

Instantiation with ECDSA
Definitions of Derive and Compare

Child has Q⃗ = (q1, . . . , qM) and P⃗ = (p1, . . . , pa,⊥, . . . ,⊥).
To Derive new Q⃗′ and P⃗′: Choose random β ∈ Zg and calculate

Q⃗′ :=
(
β ∗ q1, . . . , β ∗ qM

)
,

P⃗′ :=
(
βp1, . . . , βpa,⊥, . . . ,⊥

)
Note: (βpi) ∗ G = β ∗ (pi ∗ G) = β ∗ qi
β ∗ qi is scalar multiplication on the elliptic curve.

Exchange gets Q⃗ = (q1, . . . , qM), Q⃗′ = (q′1, . . . , q
′
M) and β

To Compare, calculate: (β ∗ q1, . . . , β ∗ qM)
?
= (q′1, . . . , q

′
M)

Instantiation with ECDSA

Functions (Commit, Attest, Verify, Derive, Compare)
as defined in the instantiation with ECDSA

▶ meet the basic requirements,

▶ also meet all security requirements.
Proofs by security reduction, details are in the paper.

Reminder: GNU Taler Fundamentals

E

C M
w
ith
dr
aw

re
fr
es
h

purchase

deposit

▶ Coins are public-/private key-pairs (Cp, cs).

▶ Exchange blindly signs FDH(Cp) with denomination key dp
▶ Verification:

1
?
= SigCheck

(
FDH(Cp),Dp, σp

)
(Dp = public key of denomination and σp = signature)

Integration with GNU Taler
Binding age restriction to coins

To bind an age commitment Q to a coin Cp, instead of signing
FDH(Cp), E now blindly signs

FDH(Cp,H(Q))

Verfication of a coin now requires H(Q), too:

1
?
= SigCheck

(
FDH(Cp,H(Q)),Dp, σp

)

Integration with GNU Taler
Integrated schemes

C

E

M

G

wit
hdr

aw,
usin

g

FD
H(C

p,
H(Q)

)

re
fr
es
h
+

D
er
iv
eC
om

pa
re
κ
purchase + (Tm,Q)

deposit
+

H
(Q

)

Commit(a)

(Q
, P

a)

Attest(m,Q,Pa) Verify(m,Q,Tm)

Instantiation with Edx25519

Paper also formally defines another signature scheme: Edx25519.

▶ Scheme already in use in GNUnet,

▶ based on EdDSA (Bernstein et al.),

▶ generates compatible signatures and

▶ allows for key derivation from both, private and public keys,
independently.

Current implementation of age restriction in GNU Taler uses Edx25519.

Discussion

▶ Our solution can in principle be used with any token-based
payment scheme

▶ GNU Taler best aligned with our design goals (security,
privacy and efficiency)

▶ Subsidiarity requires bank accounts being owned by adults
▶ Scheme can be adapted to case where minors have bank

accounts
▶ Assumption: banks provide minimum age information during

bank transactions.
▶ Child and Exchange execute a variant of the cut&choose

protocol.

▶ Our scheme offers an alternative to identity management
systems (IMS)

Related Work

▶ Current privacy-perserving systems all based on
attribute-based credentials (Koning et al., Schanzenbach et
al., Camenisch et al., Au et al.)

▶ Attribute-based approach lacks support:
▶ Complex for consumers and retailers
▶ Requires trusted third authority

▶ Other approaches tie age-restriction to ability to pay (”debit
cards for kids”)
▶ Advantage: mandatory to payment process
▶ Not privacy friendly

Conclusion

Age restriction is a technical, ethical and legal challenge.
Existing solutions are

▶ without strong protection of privacy or

▶ based on identity management systems (IMS)

Our scheme offers a solution that is

▶ based on subsidiarity

▶ privacy preserving

▶ efficient

▶ an alternative to IMS

Blockchain integration: Project Depolymerization

Blockchain based cryptocurrencies

Biggest cryptocurrencies

▶ BTC Bitcoin

▶ ETH Ethereum

Common blockchain limitations
▶ Delay block and confirmation delay

▶ Cost transaction fees

▶ Scalability limited amount of transaction per second

▶ Ecological impact computation redundancy

▶ Privacy

▶ Regulatory risk

Taler
Architecture

Exchange

Customer Merchant

W
it
hd
ra
w
co
in
s

Spend coins

D
eposit

coins

Deposit money Withdraw money

Auditor

Verify

Settlement Layer

Taler payment system

Settlement layer

▶ For Depolymerization:
Blockchain!

Taler payment system

▶ Realtime transactions, 1 RTT

▶ Scalable microtransactions

▶ Blind signatures (privacy)

Taler
Blockchain settlement layer

Taler

Exchange

Depolymerization

Node

Blockchain

Off-chain transactions

Credit Debit

Challenges

Taler Metadata
▶ Metadata are required to link a wallet to credits and allow

merchant to link deposits to debits

▶ Putting metadata in blockchain transactions can be tricky

Blockchain based cryptocurrencies

▶ Blockchain transactions lack finality (fork)

▶ Transactions can be stuck for a long time (mempool)

Blockchain challenges
Chain reorganization

D0 D1

D2 fork

active

A fork is when concurrent blockchain states coexist. Nodes will
follow the longest chain, replacing recent blocks if necessary during
a blockchain reorganization. If a deposit transaction disappears from
the blockchain, an irrevocable withdraw transactions would no longer
be backed by credit.

Blockchain challenges
Stuck transactions

We want confirmed debits within a limited time frame.

Tx conf

When we trigger a debit with a fee too small, it may not be confirmed
in a timely fashion.

Blockchain challenges
Stuck transactions

We want confirmed debits within a limited time frame.

Figure: Bitcoin average transaction fee over 6 months (ychart)

However, transaction fees are unpredictable.

Depolymerization
Architecture

Taler Exchange

Wire Gateway PostgreSQL DLT Adapter

DLT Full Node

HTTP

SQL SQL

RPC

Wire Gateway API DLT specific

▶ Common database to store transactions state and
communicate with notifications

▶ Wire Gateway for Taler API compatibility

▶ DLT specific adapter

Storing metadata
Bitcoin

Bitcoin - Credit
▶ Transactions from code

▶ Only 32B + URI

▶ OP RETURN

Bitcoin - Debit
▶ Transactions from common wallet software

▶ Only 32B

▶ Fake Segwit Addresses

Storing metadata
Ethereum

Smart contract ?
▶ Logs in smart contract is the recommend way (ethereum.org)

▶ Expensive (additional storage and execution fees)

▶ Avoidable attack surface (error prone)

Custom input format

Use input data in transactions, usually used to call smart contract,
to store our metadata.

Handling blockchain reorganization

D0 D1

D2 fork

active

As small reorganizations are common, Satoshi already recommended
to apply a confirmation delay to handle most disturbances and at-
tacks.

Handling blockchain reorganization

D0 D1

D2 fork

active

If a reorganization longer than the confirmation delay happens, but
it did not remove credits, Depolymerizer is safe and automatically
resumes.

Handling blockchain reorganization

D0 D3 D1

D ′
3 D2 fork

active

If a fork removed a confirmed debit, an attacker may create a con-
flicting transaction. Depolymerizer suspends operation until lost
credits reappear.

Related work

Centralization - Coinbase off-chain sending

+ Fast and cheap: off chain transaction

− Trust in Coinbase: privacy, security & transparency

Layering - Lightning Network

+ Fast and cheap: off-chain transactions

− Requires setting up bidirectional payment channels

− Fraud attempts are mitigated via a complex penalty system

Conclusion

Blockchains can be used as a settlement layer for GNU Taler with
Depolymerizer.

− Trust exchange operator or auditors

+ Fast and cheap

+ Realtime, ms latency

+ Linear scalability

+ Ecological

+ Privacy when it can, transparency when it must (avoid tax
evasion and money laundering)

Future work:

▶ Universal auditability, using sharded transactions history

▶ Smarter analysis, update confirmation delay based on currency
network behavior

▶ Multisig by multiple operator for transactions validation

Future Work & Conclusion

How to support?

Join: https://lists.gnu.org/mailman/listinfo/taler

Develop: https://bugs.taler.net/,
https://git.taler.net/

Apply: https://nlnet.nl/propose, https://nlnet.nl/taler

Translate: https://weblate.taler.net/,
translation-volunteer@taler.net

Integrate: https://docs.taler.net/

Donate: https://gnunet.org/ev

Partner: https://taler-systems.com/

https://lists.gnu.org/mailman/listinfo/taler
https://bugs.taler.net/
https://git.taler.net/
https://nlnet.nl/propose
https://nlnet.nl/taler
https://weblate.taler.net/
translation-volunteer@taler.net
https://docs.taler.net/
https://gnunet.org/ev
https://taler-systems.com/

Do you have any questions?

References:
1. Özgür Kesim, Christian Grothoff, Florian Dold and Martin Schanzenbach. Zero-Knowledge Age Restriction

for GNU Taler. 27th European Symposium on Research in Computer Security (ESORICS), 2022.

2. David Chaum, Christian Grothoff and Thomas Moser. How to issue a central bank digital currency. SNB
Working Papers, 2021.

3. David Chaum, Christian Grothoff and Thomas Moser. How to issue a central bank digital currency. SNB
Working Papers, 2021.

4. Christian Grothoff, Bart Polot and Carlo von Loesch. The Internet is broken: Idealistic Ideas for Building a
GNU Network. W3C/IAB Workshop on Strengthening the Internet Against Pervasive Monitoring
(STRINT), 2014.

5. Jeffrey Burdges, Florian Dold, Christian Grothoff and Marcello Stanisci. Enabling Secure Web Payments
with GNU Taler. SPACE 2016.

6. Florian Dold, Sree Harsha Totakura, Benedikt Müller, Jeffrey Burdges and Christian Grothoff. Taler:
Taxable Anonymous Libre Electronic Reserves. Available upon request. 2016.

7. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer and Madars
Virza. Zerocash: Decentralized Anonymous Payments from Bitcoin. IEEE Symposium on Security &
Privacy, 2016.

8. David Chaum, Amos Fiat and Moni Naor. Untraceable electronic cash. Proceedings on Advances in
Cryptology, 1990.

9. Phillip Rogaway. The Moral Character of Cryptographic Work. Asiacrypt, 2015.

	Motivation & Background
	GNU Taler: Introduction
	Protocol Basics
	Programmable money: Age restrictions
	Blockchain integration: Project Depolymerization
	Future Work & Conclusion

