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ABSTRACT

This paper provides insights into human mobility by analyz-
ing cell tower traces. Cell tower trace data is an attractive
method for studying mobility as the data can be collected
in an energy-efficient and privacy-preserving way.

Our new data set is useful for confirming or determin-
ing fundamental mobility parameters and for understanding
mobile networks. In particular, we identify patterns in the
data that would seem characteristic for particular behaviors,
such as travel or work.
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1. INTRODUCTION

In this paper, we take a close look at a set of cell tower
traces and identify interesting mobility patterns. Our goal
is to provide quantitative properties of mobility data as well
as to see which activities are likely recognizable in mobility
trace data. Our focus is primarily descriptive. We identify,
for instance, that the distribution of the number of times a
tower is visited is consistent with a power law, and that users
appear to sample the towers in their vicinity even though
they are probably stationary. We also provide various vi-
sualizations of the data from our mobility study that are
helpful for understanding mobility data.

For our study, we collected 59 traces with at least 14 days
worth of cell tower data from consenting volunteers using
Nokia N900s from all over the world [17]." High-resolution

!The data is set is available from http://hssl.cs.jhu.edu/
“neal/woodchuck/user_behavior_study/ and CRAWDAD.
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trace data was collected on the device by listening to op-
erating system events. The traces range from spanning the
14 day minimum to just under two years. We collected not
only the currently connected cell tower (the focus of this
analysis) and its signal strenth, but also recorded: periodic
scans of Wi-Fi access points, data transfer statistics, the bat-
tery’s charge as well as when and how it was charged, when
the user interacted with the device, what programs the user
ran, and when the device started and was shut down.

We were careful to not collect privacy-sensitive data. For
instance, instead of recording each cell tower’s identifier, our
logging program first obscured the cell id (CID) and the lo-
cation area identifier (LAC) on the device itself. A conse-
quence of this is that we cannot turn cell tower identifiers
into geographic coordinates, which means that we cannot
study the distribution of distances between visited locations.

The reason for the focus on cell tower traces is that this
method is power efficient. While the most straightforward
way to obtain the current location is to use GPS, this would
have placed a high load on the battery, and would not have
worked well indoors on in urban canyons. Using cell tow-
ers, we get globally unique identifiers, determining a nearby
tower does not require any extra energy, and coverage is
nearly ubiquitous.

Prior studies of this type have been limited to a more bi-
ased set of users [3,11,18], or were limited to certain activi-
ties, e.g., driving a cab [10], or students while on campus [8].
We are only aware of one study, device analyzer, that pro-
vides a larger and similarly diverse data set [15,16], but this
data set is not freely accessible and, as far as we know, has
not yet been analyzed along this dimension. Other comple-
mentary studies have looked at cell tower traces from the
network operator’s perspective using call data records [6,7,
9]. While these studies include millions of involuntary par-
ticipants, they typically only have a few dozen records per
participant per day, while we have virtually continuous cov-
erage. Jiang et al., for instance, have under a 1000 records
per user or just 24 records per day, on average [7].

2. VISUALIZING MOVEMENT

We visualize user movement by plotting the time that a
user’s device connects to a tower vs. that tower’s identifier.
We assign identifiers sequentially based on the time the user
first connects to them. Because the first visit to a location
or the first traversal of a route typically results in the discov-
ery of most of the towers in the vicinity, this ordering should
show the routes that the user traverses as steep, nearly ver-
tical lines, and the places that the user visits as horizontal
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Figure 1: The time the cell phone connects to a tower vs. tower identifiers. Towers are assigned identifiers according to the
order in which the user first connects to them. The number in parenthesis is the total number of towers seen. The plots reveal
that regime changes (moves, trips and changes in secondary activities) are common across users.

bands with the density of the band corresponding to how
often the location is visited.

Fig. 1 shows the first 18 weeks of two representative traces.
As expected we see near vertical lines, dark horizontal bands
and what appear to be dashed and dotted horizontal lines.
We speculate that these features correspond to the user’s
home, movement, and regular activities, respectively. We
assume that the dark bands correspond to the user’s home
based on the time and duration of the users’ stays at these
locations, and we use the label “home” accordingly.

We identify two important features. The first is the pres-
ence of regime changes, which occur when the user visits a
completely different set of towers for an extended period of
time. A regime change is often temporary, and lasts from a
few days to a few weeks. This pattern is seen in user e7d’s
trace in weeks 3 and week 11 when the user goes away for
the weekend, and in weeks 7 and 8 and in week 15 when
the user goes away for about a week. These regime changes
are circled in red on the plot. During these time periods,
a new primary band is established, which, again, probably
corresponds to where the user sleeps.

These trips are sometimes bookended by two nearly ver-
tical lines, the first rising and the second falling. This is
the case for the trips in week 3 and week 11 of user e7d’s
trace. During the first trip, the user visits about 200 new
towers. Most of these towers are visited twice, once at the
beginning and once at the end of the trip, and form the two
nearly vertical lines. The first vertical line means the user
is visiting many new towers in quick succession. The near
vertical line at the end of the trip is falling. This means that
the user is traversing many towers in the opposite order of
their discovery. That is, the user is taking the same route
in reverse to go “home”. Note: going “home”, the user visits
some new towers along the way: the segment of the graph
actual looks more like alligator jaws: . This illustrates the
second important feature: when traversing a known route,
the actual set of towers that are visited varies.

During the second trip, the user visits many of the same
towers (those in the lower circle) and again appears to use
nearly the same route to travel to the destination and return
“home”. The user also visits some new towers (those in the
upper circle) both while traveling and at the destination.
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Figure 2: The number of towers observed while the device
is connected to a wall charger (not USB) for some represen-
tative users.

These new towers appear to arise from the phone sampling
the towers in its vicinity. To confirm this, we examined the
number of towers that the cell phone observes while it is
connected to a wall charger (not a USB port). In most such
cases, we expect the device to be stationary. The exception
is if the charger is connected to power while in a car or train.
The results are shown in Fig. 2. Although the device often
stays connected to a single tower, often times it connects to
many different towers.

3. TOWER VISITS

In this section, we examine tower visits: how long the
participants in our study stayed at towers in total and during
individual visits, and the number of visits as well as when
those visits occur.

3.1 Tower Dwell Time

Fig. 3 shows complementary cumulative Pareto plots of
the total time spent at a tower for several representative
users. The z axis is the minimum number of visits, and the
y axis is the number of towers for which this is the case.
Thus, y(z = 1) is the number of towers that were visited at
least once, the number of towers that were visited exactly
once is y(2) —y(1), and the number of visits to the 10™® most
visited tower is y~*(10).

If data forms a straight line in a complementary cumula-
tive Pareto plot, this is a sign that the data may be con-
sistent with a power law [2]. Looking at the plots, we see
that for most users, the data forms a roughly straight line
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Figure 3: Complementary cumulative Pareto plots of the minimum total time spent at a tower and the portion of time spent
at the top 15 towers (ranked by time spent at the tower) vs. the cumulative portion of the total time connected to the top
towers. The numbers near the top of the bars indicate the portion of time spent at that tower (not cumulative). The plots
illustrate that the top few towers dominate in terms of the amount time the user spends at them. Of the 59 traces, 44 of the
fits to a power law (75.0%) are significant at the p = 0.05 level with an average « of 1.60, and a standard deviation of 0.15.

starting with dwell times that exceed a few minutes and has
a minor, downward deviation on the right.

To determine whether the data is consistent with a power
law, we used Clauset et al.’s methodology to fit the data
and to compute the goodness of fit [2]. Even without ex-
plicitly accounting for the deviation in the tail, we find that
44 of the 59 traces (75.0%) are consistent with a power law
at the p = 0.05 level, which suggests that this power law
behavior is common. Further, all of the data have similar
parameters: the average value of « is 1.60 with a modest
standard deviation of 0.15. And, the median i, is 3 min-
utes (170 seconds) with a median absolute deviation (MAD)
of 3 minutes (203 seconds).

To better understand the implications of the power law
behavior, we also plotted the portion of time spent at the
top 15 towers. We excluded all tower visits that are longer
than two days to avoid inflating the amount of influence
that the top towers have. (There are 47 such visits across
11 users.) We assume in these cases that the user forgot her
cell phone at home, for instance.

Even with these extreme cases removed, the data shows
that all users spend at least two-thirds of their time at their
top 15 towers, and most of them spend over 80% of their
time there. To keep this in perspective, most users visit
hundreds or thousands of towers over the course of their
trace (the exact number is shown in an inset). In other
words, the top 15 towers account for 80% of the time, but
correspond to only 1% of the towers that a user ever visits.

3.2 Visit Dwell Times

We now look at the duration of tower visits, i.e., the
amount of time spent at a tower during an individual visit.
Fig. 4 shows complementary cumulative Pareto plots of
the duration of tower visits. The x axis shows the minimum

dwell time and the y axis shows the number of visits for
which this is the case. We see that the middle part of the
data—Dbetween about 3 minutes and 12 hours—roughly fol-
lows a straight line, however, the left side of the plots and the
tails exhibit strong deviations. The practical result of the
upper deviation is that few of the traces are consistent with
an untruncated power law distribution: of the 59 traces,
only 18 (31.0%) follow a power law at the p = 0.05 level.
In fact, it is primarily the traces with at most 3 months
of data for which a power law is a significant fit. In these
traces, the deviation on the right is probably indistinguish-
able from noise. (The average value of « for all 59 traces is
1.86 with a standard deviation of 0.24.)

A close look at the data suggests four different behaviors
depending on the dwell time. These regions are demarcated
in the plots by gray bands in the background.

The first region consists of dwell times that are less than
about 10 or 20 seconds long. In this region, there are far
fewer visits with these dwell times than would be predicted
by the regression. This is not surprising. If the user needs
to traverse 1000 feet of a cellular tower’s area before chang-
ing to a new tower, the user would need to travel at nearly
70 miles per hour to complete the traversal in 10 seconds. In
places where a user can travel that fast, e.g., along a high-
way, the towers will be laid out to avoid too many handoffs,
i.e., the typical traversal will be longer, making such a fast
traversal unlikely. Thus, a lower cutoff of at least 10 sec-
onds and a correspondingly sharp drop in the number of
short visits, as observed in the plots, is reasonable.

The next region is from about 10 seconds up to approx-
imately 3 minutes. Many of the visits in this region likely
correspond to user movement: these dwell times correspond
to the dwell times along long chains of towers (not shown),
which we speculate are routes.
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Figure 4: Complementary cumulative Pareto plots of the time spent during each tower visit. 18 of the fits to a power law
(31.0%) are significant at the p = 0.05 level. The average « is 1.86, with a standard deviation of 0.24.

Dwell times in the region between 3 minutes and about
10 to 12 hours primarily correspond to the locations that
users visit. For most users, these dwell times appear to
follow a power law as can be seen from the roughly straight
line that the data forms in the CCDF plots.

The final region starts at between 10 and 12 hours and
also appears to roughly follow a straight line. This line,
however, is much steeper than the previous one. This region
consists of a very small portion of the total tower visits: the
median number of visits that are at least 10 hours long is
just 13% of the total number of days that the corresponding
trace covers! This consistent drop in the number of visits
is likely due to diurnal effects: most people leave the house
every day whether it is to go to work or to do some errands.

Some of the visits in this region are extremely long. For
instance, in user d21’s trace, we see several visits to a tower
for multiple weeks! Plausible reasons for such long visits
include the user leaving the cell phone at home or being too
sick to move.

3.3 Visit Dwell Times by Tower

We now examine the visit dwell time broken down for the
most significant towers, those at which the users spend the
most time. Fig. 5 shows e7d’s top four towers in terms of
the total time spent there. Each plot is a histogram of the
amount of time spent during each visit to the tower. The
x axis is the same for all plots to facilitate comparisons across
towers. The number at the bottom of each bar indicates the
portion of the total time spent at this tower that the visits
in this range constitute.

Information about the towers is inset in the plots. The
first line shows the total amount of time spent at the tower
and the tower’s rank according to this metric. This is fol-
lowed by the total number of visits and the tower’s rank ac-
cording to this metric. Then, the number of days on which
the tower is visited at least once is shown. Finally, the me-
dian number of visits per day for days on which the tower is
visited at least once is displayed as well as the corresponding
median absolute deviation.

A close look at the data reveals that in nearly all cases
the mode is less than about 7 minutes. In other words,
short visits dominate even for the towers that users spend
the most time at. In terms of the amount of time spent
at a tower, however, long visits generally dominate. Con-
sider, for instance, e7d’s top tower: 68% of the visits are
less than 10 minutes long. However, visits longer than an
hour account for nearly 90% of the time spent at the tower.

This distribution is surprising if we assume a fixed loca-

tion is generally covered by a single tower. It is, however,
explained if we assume that cell phones sample the towers
in their vicinity, a hypothesis that is also supported by the
alligator jaws we saw in Fig. 2.

The most important towers are typically visited a few
times per day. However, there are many towers that are
visited dozens of times per day. This is the case for af6’s
top tower (not shown), which is visited more than 40 times
per day! Such towers are most likely involved in oscilla-
tions where the phone constantly switches between two tow-
ers. This is likely because the location is on the border
of two cells, i.e., a location in which the two strongest cell
towers have a similar signal strength.

3.4 Number of Tower Visits

We now consider how many times each tower is visited.
Fig. 6 shows complementary cumulative Pareto plots of the
number of tower visits. The z axis shows the minimum
number of times the user visited a tower and the y axis
shows the number of towers for which this is the case. The
plots in the second row show CDF's of the number of times
the top tower towers are visited.

In many of the plots in Fig. 6, the data roughly follows a
straight line. There is some minor downward deviation on
the left side and some more significant downward deviation
in the tail. However, even without explicitly accounting for
the deviation in the tail, we find that 35 of the 59 traces
(59.0%) are consistent with a power law at the p = 0.05
significance level. Further, all of the traces have similar pa-
rameters: the average value of o across all 59 traces is 1.84
with a modest standard deviation of 0.22. This suggests
that this particular power law behavior may be common.

The deviation on the left—when there is one—is almost
always downward. Based on the selection of Zmin, we see
that the deviation is relatively small: the median value of
Tmin 18 6 with a MAD of 6. The downward deviation means
that fewer towers are visited at most a handful of times
than the model predicts. Nevertheless, the number of towers
with only a few visits is enormous: the median portion of
towers with at most three visits is 58.1% (MAD: 13.2%).
Interestingly, these towers correspond to just 1.0% of the
total time on average (MAD: 0.74%).

Based on the number of visits to these towers, and the
total amount of time spent connected to them, these towers
are probably along routes that are rarely taken. In practice,
the longest of these routes probably do not actually have any
cell towers: very long distance trips are more conveniently
made by airplane than by car or train and a cell phone’s
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are significant at the p = 0.05 level. Of the 59 fits, the average « is 1.84, with a standard deviation of 0.22.

radio is often turned off while in the air. This lack of cell
towers during flights may explain the downward deviation.

The deviation in the tail is also generally downwards. The
towers in this region correspond to those few towers that
users connect to many times, which are probably those near
where the participants live and work. In fact, even though
users visit thousands of different towers, the median portion
of tower visits to the top 15 towers is 57.0% (MAD: 21.0%).
Taking a close look at Fig. 6, we see that each user’s most
visited tower is visited thousands of times over the course
of the trace (median: 2830, MAD: 2940). On average, this
works out to dozens of visits per day (median: 28, MAD:
19). In fact, the most visited tower is visited 67017 times
(user: 9ed), which translates to 180 connections on average
per day. What is actually happening here is that the user’s
cell phone is oscillating between two towers. We already
observed this phenomenon in Sec. 3.3.

4. TOWER TRANSITIONS

We now examine tower transitions on the induced cell
tower network. It would have also been reasonable to use cell
tower co-occurrence, as in [4]; however, the target platform
for our study did not support collecting co-occurrence data.

4.1 Transition Directions

Fig. 7 shows histograms of the towers’ outgoing and in-
coming transition directions for the top four participants.
A transition direction is an edge in the induced cell tower
network. For example, if we observe that a user transitions
from tower a to tower b 100 times and from tower a to tower
¢ 50 times, then we have identified two edges, two outgoing
transition directions (¢ — b and a — ¢) and two incoming
transition directions (b <— a and ¢ < a). The inset in each
plot shows the number of towers with selected in or out de-
grees as well as the correlation between in degree and out
degree.
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Figure 7: Histogram of outgoing (dark left bar) and incoming (light right bar) tower transition directions. A tower a has the
two outgoing transition directions a — b and a — c if, when at tower a, the user only ever transitions to tower b or tower c.

The histogram does not show the relationship between
the number of outgoing and incoming transition directions.
However, the correlation between the number of outgoing
and incoming transition directions is significant. The mean
correlation coefficient for the 59 traces is 0.92 with a stan-
dard deviation of 0.024. (Note: a correlation whose magni-
tude exceeds 0.7 is considered to be strong [1].) Given the
large number of towers with just a single transition direc-
tions, we checked if the the correlation remains strong even if
we only consider towers that have at least three incoming or
outgoing transition directions. It does: the mean correlation
is 0.86 with a standard deviation of 0.060.

We can roughly divide the towers into three types: towers
with at most three incoming or outgoing transitions direc-
tions; those with more than 10 incoming or outgoing transi-
tion directions; and those that are in between.

Towers with no more than a few transition directions are
the most common. On average, 70% of the towers have no
more than three incoming or outgoing transition directions
(standard deviation: 12%). We speculate that these towers
typically correspond to routes taken by the user.

Based on our sampling hypothesis, the middle group is
what we intuitively expect for towers at significant fixed lo-
cations: the user transitions between most pairs of towers
as she moves around the area. Since cells are approximately
laid out in a hexagonal tessellation, we expect a given cell
tower to have at most 6 neighbors. However, a cell is often
subdivided into 2 to 6 sectors using multiple sector anten-
nas instead of a single omni-directional antenna [12]. When
dividing cells in this way, each sector is given its own unique
identifier and thus appears as a unique cell. Further, a cell
may be subdivided into smaller cells. If the neighboring cells
are sectored or subdivided, it is conceivable that a given cell
could have about a dozen immediate neighbors.

The last group consists of towers with more than 10 tran-
sition directions. These account for 4.2% of the towers, on
average (standard deviation: 3.7%). These typically corre-
spond to the towers the user visits most frequently, as we
find that there is a high correlation (median Spearman cor-
relation coefficient: 0.9; MAD: 0.028) between the number
of times a tower is visited and its out-degree. This suggests
that interference causes the modem to sample towers that
are far away.

The distribution of the number of transition directions
per tower appears to be distributed according to a right
heavy-tailed distribution: we have many towers with just a
few transition directions and a non-negligible number with
a huge number of transition directions. However, none of
the common distributions (power law, left-truncated expo-

nential or log normal) seem reasonable.

4.2 Transition Direction Popularity

We now investigate transition direction popularity, i.e.,
how often each transition direction is taken.

Fig. 8 shows a complementary cumulative Pareto plot of
the number of times each outgoing transition direction is
taken for the top 4 towers (according to the number of out-
going transition directions) for the top trace.

The first thing to notice is that the number of times a
transition direction is taken is not uniformly distributed.
Rather, half of the transition directions are taken at most
a handful of times, some are taken occasionally, and a few
dominate.

This distribution suggests that how often a transition di-
rection is taken is distributed according to a right heavy
tailed distribution. To confirm this, we fit the data for each
tower with at least 15 transition directions to a power law,
which is also shown in Fig. 8. There are 915 such towers
across all of the traces. Tbhl. 1 summarizes the findings. The
summary statistics for the « are calculated using just the
statistically significant results.

The table reveals that the fit is generally statistically sig-
nificant: for 91% of the towers, the fit of the popularity of
the transition directions to a power law is significant at the
p = 0.05 level. Moreover, the value of « is similar across
towers and traces: the mean value of the as is 1.71 with
a standard deviation of 0.330. Note: in terms of evaluating
the fit, the number of transition directions is relatively small
and the fit could partially be a product of overfitting.

This result suggests that although some towers have many
transition directions, most of them are unimportant and
can generally be ignored. This should simplify predicting
a tower’s successor even if it has ten or twenty transition
directions: only a few are common.

4.3 Discussion

When looking at transition direction popularity, we found
that half of the tower transitions are taken at most a handful
of times. If we ignore these transition directions, the 4.2%
of towers with more than 10 transition directions shrinks
dramatically. We refer to these transition directions as rare
transition directions. They are rare not because they occur
infrequently (indeed, they are very common), but because
they are taken infrequently. We now consider reasons for
the large number of transition directions observed at some
towers. All of these reasons also contribute to the tower
sampling, which we previously observed.

The most convincing explanation for rare transition di-
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Figure 8: Complementary cumulative Pareto plot of the popularity of outgoing transition directions for the top towers
(according to the number of outgoing transition directions) in user e7d’s trace.

rections is due to interference. Schwartz observes that if
a receiver moves just half of a wave length—21.4 cm for
700 MHz radio waves and 7.5 cm for 2 GHz radio waves—
the signal “may vary many dB” due to multipath fading,
which is “the destructive/constructive phase interference of
many received signal paths” [12, Section 2.2]. Thus, it is
likely that the nearby towers sometimes appear to be rela-
tively weak and a distant tower appears to be strong.

This is compounded by the layout of networks. First, a cell
tower often does not cover a circular region, but a cone due
to sectoring. Further, as cells become smaller (to increase
capacity), overlap increases. 2

Umbrella cells also increase the number of logical neigh-
bors. An umbrella cell is a macrocell that overlays a group
of microcells [5,14]. An example is shown in Fig. 9. The cel-
lular concept is based on fractals: if the system needs more
capacity, instead of using more spectrum, a cell is split into
a number of smaller cells, say 7, and each is configured to
transmit with just enough power to cover 1/7 of the area.
This results in (ideally) a 7 fold increase in the amount of
capacity in the area. The most obvious additional costs of
splitting a cell are the additional equipment, their mainte-
nance and the rent for the new locations’ real estate. There
is, however, another cost: cellular stations need to change
towers more often when moving. The umbrella cell reduces
this overhead: when a station starts to move, instead of
connecting to the neighboring microcell, it connects to the
umbrella cell. When it is stationary and again needs to
transmit, it may switch back to a microcell.

Umbrella cells are a possible cause of the numerous transi-
tion directions that many cell towers have: the user can tran-
sition not only to the umbrella cell’s neighbors, but to any
of the umbrella cell’s microcells. Many of these transition
directions are likely to be infrequent. For instance, when the
user moves from A to B in Fig. 9, he might not immediately
transition to M upon leaving A: the handoff to the um-

2If the lower limit at which a cell phone can communicate
with a cell tower is -100 dBm, then we do not want to con-
figure the tower such that the expected signal at its border
is -100 dBm. This would result in dead spots if there was
interference. Instead, we might aim for, say, -90 dBm. Since
the distance that it takes -100 dBm to decay to -90 dBm
is the same (ignoring interference) independent of how far
away the source is or how strong the signal initially was,
smaller cells will overlap more than larger cells. That is,
if there is minimal overlap when a cell’s radius is r, then
when r is increased by ¢, the cell overlaps approximately

7 (r +6)> — 7r? with its neighbors. Thus, the ratio of the
overlap to its area (7(r+8)%-77%/,2) shrinks as r increases.

Figure 9: An umbrella cell tower with 10 microcells. Note:
the microcells need not completely fill the umbrella cell;
they only need to be deployed where additional capacity is
needed. In such a configuration, moving from A to B could
result in the following tower sequence A - M — B.

S
P

Figure 10: Although towers A and C are not adjacent, it
is conceivable that the user could transition directly from
A to C if B is overloaded and refuses a handoff. In this
situation, the user could still remain connected to A until
it reaches C: A and B do not interfere, because they use
different frequencies; A’s reception will, however, be weak.

brella cell only happens if the user appears to have reached
a velocity that suggests longer movement. Thus, he might
first connect to the right neighboring cell and then to M.
Another possibility is that the user is transferring data and
the station switches to a microcell when the user is at a stop
light, because it has more capacity than the umbrella cell.

The phone may also behave slightly different when it has
an active connection to the network. For instance, if the
strongest tower is refusing handoffs, perhaps because it is
overloaded [13, Sect. 7.12.3], then the phone may appear to
make a large jump, as shown in Fig. 10.

Finally, firmware bugs and bugs in our logging software
as well as changes to the network layout could also result in
these rare transition directions.

5. CONCLUSION

We have presented results from a mobility study using
cell tower trace data and have illustrated how the collected
data could be used to identify various patterns of life. In
future work, we plan to use the data set to evaluate context
prediction algorithms.



Towers «

User Time Total p > 0.05 w o
e7rd 854w 62 56/ 90% 1.73 0.311
af6  73.7Tw 44 38/ 8% 1.70 0.370
d21 778w 39 35/ 90% 1.65 0.316
8b4 614w 28 27/ 96% 1.76 0.393
8be 57.3 w 62 56/ 90% 1.74 0.389
532 514w 43 40/ 93% 1.69 0.317
715 333w 55 47/ 8% 1.77 0.377
2ee 46.1 w 4 4 /100% 1.77 0.386
0b9 319w 33 31/ 94% 1.66 0.258
593 349w 5 5/100% 1.49 0.177
5cd 321w 11 11 /100% 1.93 0.633
640 26.5 w 99 86 / 8% 1.78 0.335
020 283w 39 31/ 7% 1.75 0.356
Tel 271w 1 1/100% 1.36 —
5a9 204 w 38 37/ 9% 1.60 0.357
99e 225w 64 62/ 9% 1.67 0.278
87e 194w 50 45/ 90% 1.75 0.300
b37 165w 12 10/ 83% 1.90 0.323
c2b 173w 21 20/ 95% 1.77 0.341
b84 16.8 w 15 15 / 100% 1.55 0.210
935 175w 20 15/ 75% 1.67 0.175
bb7 163 w 10 9/ 90% 1.59 0.317
fl4 162w 28 25/ 89% 1.75 0.330
26c  14.3 w 21 21 / 100% 1.86 0.309
9cf 7.4 w 5 4/ 80% 1.58 0.0738
05b 11.6 w 7 7 /100% 1.60 0.142
chd 105w 3 3/100% 1.54 0.172
b7e 126 w 22 20/ 91% 1.74 0.307
772 9.6 w 1 1/100% 1.75 —
0al 12.7w 4 4 /100% 1.52 0.106
062 11.8 w 2 2 /100% 1.60 0.163
c6b 11w 14 13/ 93% 1.70 0.288
949 9.7 w 2 2 /100% 1.45 0.0947
8f4 7w 6 5/ 8% 1.46 0.0467
3a7 73w 4 4 /100% 1.80 0.315
60 5.3 w 10 9/ 90% 1.57 0.135
23b 59w 2 2 /100% 1.88 0.252
bc2 3.6 w 1 1/100% 1.46 —
fb9 18.7d 1 1/100% 1.57 —
ebe 4w 4 4 /100% 1.98 0.482
140 15.9d 6 4/ 67% 1.41 0.0691
ccf 10d 1 1/100% 1.39 —
026 13.3d 1 1/100% 1.67 —
499 11.4d 7 6/ 8% 1.71 0.221
482 10.8d 1 1/100% 1.49 —
ef0 11d 6 6 /100% 1.68 0.282
lee 12.8d 1 1/100% 1.82 —

915 829/ 91% 1.71 0.330

Table 1: The distribution of visits to tower transition direc-
tions. We only consider towers with at least 15 transition
directions (12 users had no such towers). Visits to nearly all
of the towers considered are distributed among the outgress
transition directions according to a power law distribution.
The average values of a are computed across the statistically
significant towers. The mean across all users and towers is

a = 1.71 with a modest standard deviation of 0.330.
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