
Translation-Based Steganography∗

Christian Grothoff
Department of Computer Science
University of Denver, Colorado

christian@grothoff.org

Krista Grothoff
CERIAS

Purdue University
krista@grothoff.org

Ryan Stutsman Ludmila Alkhutova
Department of Computer Science

Purdue University
{rstutsma,lalkhuto}@purdue.edu

Mikhail Atallah
Department of Computer Science

Purdue University
mja@cs.purdue.edu

June 19, 2007

Abstract

This paper investigates systems that steganographically embed infor-
mation in the“noise”created by automatic translation of natural language
documents. The main thrust of the work focuses on two problems - gener-
ation of plausible steganographic texts, and avoiding transmission of the
original source for stego objects. Because the inherent redundancy of nat-
ural language creates plenty of room for variation in translation, machine
translation is ideal for steganographic applications. We describe the de-
sign and implementation of a scheme for hiding information in translated
natural language text and present experimental results using the imple-
mented system. While the initial work in this vein required the presence
of both the source and the translation, the system detailed in this pa-
per requires only the translated text for recovering the hidden message,
increasing security and improving resource usage. These improvements
occur not only because the source text is no longer available to the ad-
versary, but also because a broader repertoire of defenses (such as mixing
human and machine translation) can now be used.

∗Preliminary and shorter versions of this work appeared in [21, 38].

1

1 Introduction

Using machine translation for natural language text as a means for stegano-
graphically hiding information [21, 38] is a promising technique for text-based
steganography. The key idea behind translation-based steganography is to hide
information in the noise that invariably occurs in natural language translation.
When translating a non-trivial text between a pair of natural languages, there
are typically many possible translations. Selecting one of these translations
can be used to encode information. In order for an adversary to detect a hid-
den message transfer in such a scheme, the adversary would have to show that
the generated translation containing the hidden message could not plausibly
be generated by ordinary translation. Because natural language translation is
particularly noisy, this is inherently difficult. For example, the existence of
synonyms frequently allows for multiple correct translations of the same text.
The possibility of erroneous translations increases the number of plausible vari-
ations and, thus, the opportunities for hiding information. As compared with
other text-based steganographic solutions, the use of translations as a space
for hiding information has the advantage that the information can be hidden
in plausible variations of the text; except for plausible translation errors, the
generated texts are semantically and rhetorically sound, which is traditionally
a significant problem for steganographic encoders that rely on text synthesis.

In addition to making it difficult for the adversary to detect the presence of
a hidden message, translation-based steganography is also easier to use. The
reason for this is that unlike previous text-, image- or sound-based stegano-
graphic systems, the original data – which the steganographic encoder modifies
to generate the cover with the embedded hidden message – does not have to
be secret. In translation-based steganography, the original text in the source
language could be publically known, obtained from public sources, and even
exchanged between the two parties in plain sight of the adversary along with
the translation (if so desired). In traditional image steganography, the problem
often occurs that the source image in which the message is subsequently hid-
den must be kept secret by the sender and used only once (otherwise, a “diff”
attack would reveal the presence of a hidden message). This burdens the user
with creating a new, secret original work in order to generate a valid cover for
each message. Translation-based steganography does not suffer from this draw-
back, since the adversary cannot apply a differential analysis to a translation
to detect the hidden message. The adversary may produce a translation of the
original message, but the translation is likely to differ regardless of the use of
steganography, making the differential analysis useless for detecting a hidden
message.

This paper evaluates the potential of covert message transfer in natural lan-
guage translation that uses automatic machine translation (MT). In order to
explore the information-hiding space available within translation transforma-
tions, we have examined the different kinds of output and errors generated by
various MT systems, allowing us to characterize some of the variations in ma-
chine translations which appear to be plausible. While classifying some of the

2

common error and variation types, we found that some of the variations observed
in the machine translations are also clearly plausible for manual translations by
humans, affirming that many of the variations and errors we selected were not
just arbitrary execution behaviors of particular MT systems, but real choices
and mistakes inherent in the translation process.

In addition to discussing the use of translation as an information-hiding
transformation, this paper presents a new protocol for covert message transfer
in natural language text, for which we have a proof-of-concept implementation.
The initial version of this system as described in [21] required that both the
steganographically encoded translation and a reference to the source text must
be transmitted to the recipient. This was needed because the receiver was re-
quired to execute the same translation process as the sender in order to recover
the hidden message. This had several drawbacks: in addition to consuming
bandwidth and forcing the receiver to recompute the translations, transmitting
the source text also gives the adversary additional information to base his at-
tack on. While both the protocol’s resistance to differential analysis and the
plausible simultaneous existence of both the original and stego objects made
the transmission of this information less of a concern than with other stegano-
graphic systems which transform extant objects, it is still highly desirable to
provide the adversary with as little information as possible.

Thus, the protocol detailed in this paper (first described in [38]) extends
the initial system into one which allows the source text to remain secret, only
transmitting the translated text. Sender and receiver still share a secret key
which is used for hiding and retrieving the hidden message; however, the re-
ceiver no longer needs to have access to the machine translation system used
by the sender, nor does he need the original source text to decode the message.
Furthermore, the sender is now at liberty to mix human and machine trans-
lation, which may be of use in distracting adversaries who focus on machine
translations.

The basic idea of the new variant is best described by explaining the de-
coding algorithm. The receiver receives a translation from the sender which
contains a hidden message. He first breaks this received text into sentences us-
ing a standardized tokenization function. Then he applies a keyed hash to each
received sentence. The lowest h bits of the hash, referred to in this paper as
header bits, are interpreted as an integer b ≥ 0. 1 Then the lowest [h + 1, h + b]
bits in this hash contain the next b bits of the hidden message. The only other
step that the receiver must perform is to apply an error correction code to the
result, since the sender may not be able to generate a perfect encoding.

While decoding in this protocol is almost trivial, the difficult part is for the
encoder to generate a translation that decodes to the given hidden message. The
encoder uses the various translations generated for a given sentence by the Lost
in Translation (LiT) system [21] and performs a bounded search over multiple
sentences to try to match the hidden message against the keyed hashes of the

1Note that h can be transmitted between sender and receiver in any number of ways,
including as part of the shared secret.

3

various sentences. Given a large enough number of different translations per
sentence for a given h, the encoder statistically guarantees success. In the rare
case where the encoder would not be able to select a translation that decodes to
the desired bit sequence, the redundancy from the use of error correction codes
ensures the success of the decoder.

We have implemented a steganographic encoder and decoder that hides mes-
sages by selecting appropriate machine translations. The translations are gen-
erated to mimic the variations and errors that were observed in existing MT
systems. A version of the prototype is available on our webpage.2

The remainder of the paper is structured as follows. First, Section 2 reviews
related work. In Section 3, the basic protocol of the steganographic exchange is
described. In Section 4, we give a characterization of errors produced in existing
machine translation systems. Section 5 describes our prototype implementation
and Section 6 presents some of the experimental results obtained from the pro-
totype. Section 7 details some possible attacks on the protocol and Section 8
discusses variations of the ideas presented in this paper. Section 9 concludes.

2 Related Work

The goal of both steganography and watermarking is to embed information
into a digital object, also referred to as the cover, in such a manner that the
information becomes part of the object. It is understood that the embedding
process should not significantly degrade the quality of the cover. Steganographic
and watermarking schemes are categorized by the type of data that the cover
belongs to, such as text, images or sound.

2.1 Steganography

In steganography, the very existence of the secret message must not be de-
tectable. A successful attack consists of detecting the existence of the hidden
message, even without removing it (or learning what it is). This can be done
through, for example, sophisticated statistical analyses and comparisons of ob-
jects with and without hidden information.

Traditional linguistic steganography has used limited syntactically-correct
text generation [40] (sometimes with the addition of so-called “style templates”)
and semantically-equivalent word substitutions within an existing plaintext as
a medium in which to hide messages. Wayner [40, 41] introduced the notion of
using precomputed context-free grammars as a method of generating stegano-
graphic text without sacrificing syntactic and semantic correctness. Note that
semantic correctness is only guaranteed if the manually constructed grammar
enforces the production of semantically cohesive text. Chapman and Davida [8]
improved on the simple generation of syntactically correct text by syntactically
tagging large corpora of homogeneous data in order to generate grammatical
“style templates”; these templates were used to generate text which not only

2http://www.cs.purdue.edu/homes/rstutsma/stego/

4

had syntactic and lexical variation, but whose consistent register and “style”
could potentially pass a casual reading by a human observer. Chapman et al [9],
later developed a technique in which semantically equivalent substitutions were
made in known plaintexts in order to encode messages. Semantically-driven in-
formation hiding is a relatively recent innovation, as described for watermarking
schemes in Atallah et al [6]. Wayner [40, 41] detailed text-based approaches that
are strictly statistical in nature. However, in general, linguistic approaches to
steganography have been relatively limited. Damage to language is relatively
easy for a human to detect. It does not take much modification of a text for a
native speaker to judge it to be ungrammatical; furthermore, even syntactically
and grammatically correct texts can violate semantic constraints.

Non-linguistic approaches to steganography have sometimes used lower-order
bits in images and sound encodings to hide the data, providing a certain amount
of freedom in the encoding in which to hide information [41]. The problem with
these approaches is that the information is easily destroyed (the encoding lacks
robustness, which is a particular problem for watermarking), that the original
data source (for example the original image) must not be disclosed to avoid
easy detection, and that a statistical analysis can still often detect the use of
steganography (see, e.g., [16, 25, 28, 36, 41], to mention a few).

Using translation as a medium for hiding information was first suggested
in [21] and extended in [38]. This approach exploits the expected errors in
the translation process to solve issues with plausible semantic and syntactic
generation. The approach described in [38] and the present work improves upon
this scheme by removing the requirement that the original text be transmitted
with the stego object to the receiver.

2.2 Machine Translation

Most Machine Translation (MT) systems in use today are statistical MT systems
based on models derived from a corpus, transfer systems that are based on
linguistic rules for the translations, or hybrid systems that combine the two
approaches. While other translation methodologies (e.g. semantic MT) exist,
they are not considered further as they are not commonly available at this time.

In statistical MT [2, 7], the system is trained using a bilingual parallel corpus
to construct a translation model. The translation model gives the translator sta-
tistical information about likely word alignments. A word alignment [34, 35] is
a correspondence between words in the source sentence and the target sentence.
For example, for English-French translations, the system “learns” that the En-
glish word “not” typically corresponds to the two French words “ne pas”. The
statistical MT systems are also trained with a monolingual corpus in the target
language to construct a language model which is used to estimate what con-
structions are common in the target language. The translator then performs an
approximate search in the space of all possible translations, trying to maximize
the likelihood that the translation will score high in both the translation model
and the language model. The selection of the training data for the construction
of the models is crucial for the quality of the statistical MT system.

5

2.3 Watermarking

The intended purpose of the watermark largely dictates the design goals for
watermarking schemes. The possible uses of watermarking include inserting
ownership information, inserting purchaser information, detecting modification,
placing caption information and so on. One such decision is whether the wa-
termark should be visible or indiscernible. For example, a copyright mark need
not be hidden; in fact, a visible digital watermark can act as a deterrent to an
attacker. Most of the literature has focused on indiscernible watermarks.

Watermarks are usually designed to withstand a wide range of attacks that
aim at removing or modifying the watermark without significantly damaging
the usefulness of the object. A resilient watermark is one that is hard to remove
by an adversary without damaging the object to an unacceptable extent. How-
ever, it is sometimes the case that a fragile watermark is desirable, one that is
destroyed by even a small alteration; this occurs when watermarking is used for
the purpose of making the object tamper-evident (for integrity protection).

The case where the watermark has to be different for each copy of the digital
object, is called fingerprinting. That is, fingerprinting embeds a unique message
in each instance of the digital object (usually the message makes it possible to
trace a pirated version back to the original culprit). Fingerprinting is easier to
attack because two differently marked copies often make possible an attack that
consists of comparing the two differently marked copies (the attacker’s goal is
then to create a usable copy that has neither one of the two marks).

Although watermarks can be embedded in any digital object, by far most of
the published research on watermarking has dealt with media such as images,
audio or video. There is some literature on watermarking other object types
such as software [11, 12, 13], databases [1, 37], and natural language text [5, 6].
Section 8.3 will describe how the scheme presented in this paper can be adopted
for watermarking.

3 Protocol

The steganographic protocol for this paper works as follows. It is assumed that
sender and receiver have previously agreed on a shared secret key. In order to
send a message, the sender first needs to obtain an original text in some source
language. That text does not have to be secret and can be obtained from public
sources – for example, a news website. The original text is allowed to be public
because its translations, which provide the cover for the hidden message, can
(and do) plausibly coexist with original source texts. However, a secret original
text can make various attacks on the system significantly harder.

The sender then translates the sentences in this source text into the target
language, embedding the message in the process. Specifically, for each sentence
in the source text, the steganographic encoder first attempts to create multiple
translations for that sentence, and subsequently selects one of these translations
in order to encode bits from the hidden message. The translated text is the cover

6

original text

��
translators

��hidden
data

''OOOOOOOO translations

��

secret key

vvllllllllll

''OOOOOOOO

vvllllllllll

''OOOOOOOO

vvllllllllll

''OOOOOOOO

vvllllllllll

''OOOOOOOO
hidden
data

encode

��

decode

::tttttt

/. -,() *+Alice
translation

///. -,() *+Bob

OO

Figure 1: Illustration of the basic protocol. The adversary can observe the
message between Alice and Bob containing the selected translation.

text which is then transmitted to the receiver, who retrieves the information by
applying a keyed hash to each sentence and then reading the hidden message
which is contained in the lowest bits of the hash codes. Figure 1 illustrates the
basic protocol.

The adversary is assumed to know about the existence of this basic pro-
tocol. The source text is not revealed by the protocol and is thus potentially
not available to the adversary. Back-translation into the source language, if the
adversary is able to discover what the source language is, is overwhelmingly
unlikely to enable the adversary to obtain the exact source text due to the de-
structive nature of natural language translation. It is also simply not practical
for the adversary to flag all seemingly machine-translated messages, since this
would almost certainly result in too large a number of false positives. In ad-
dition, the adversary does not know the secret shared key; thus, hashing the
sentences will not enable the adversary to obtain a secret message and thereby
detect its presence. If the keyed hash alone cannot be considered strong enough,
the hidden message itself can additionally be encrypted with a secret key prior
to the steganographic encoding process.

3.1 Producing translations

The first step for the sender, after finding a source text, is to produce multiple
translations of the text. More specifically, the goal of this step is to produce mul-
tiple different translations of each sentence. The simplest approach to achieving
this is to apply a subset of all MT systems available to the sender to each
sentence in the source text. However, in addition to using out-of-the-box trans-
lation systems, the sender may be able to generate his own; if the sender has
full access to the code of a statistical MT system, he can generate multiple MT
systems from the same codebase by training it with different corpora. Finally,

7

if desired, the user could hand-generate translations of his own.
In addition to generating different sentences using multiple translation sys-

tems, our prototype also applies post-processing transformations to the result-
ing translations to obtain additional variations. Such post-processing includes
transformations that mimic the noise inherent in any (MT) translation; for ex-
ample, post-processors could insert common translation mistakes (as discussed
in Section 4). Various post-passes are described in Section 5.

Because translation quality differs between different engines and also depends
upon which post-processing algorithms were applied to manipulate the result,
the steganographic encoder uses a heuristic to assign a quality level to each
translation. This quality level describes its relative “goodness” as compared
to the other translations. The heuristic is based on both experience with the
generators and on algorithms that rank sentence quality based on language
models [10]. The quality level is used to select the best translation at places
where the encoder has a choice between multiple translations. Translations that
are ranked as implausible by the language model could also, depending on the
details of an implementation, be excluded from the set of choices.

3.2 Tokenization

After obtaining the translations, the sender has to run the same tokenization al-
gorithm that the receiver will apply. Tokenization must be applied after transla-
tion because a single sentence in the source text may result in multiple sentences
in the translation. This can happen in particular with periods that confuse
the sentence tokenizer, such as those indicating abbreviation (for example, in
“e.g.”). The tokenizer can of course apply heuristics to detect such idioms, but
since it may fail in detecting unknown idioms, it is important that the sender
and receiver apply the same tokenization algorithm in order to obtain the same
sequence of sentences.

After tokenization, both sender and receiver apply a keyed hash to each
sentence. This hash will contain the bits representing the secret message. The
sender will choose a translation for each sentence in the source text, such that
the keyed hash of the selected translation represents the hidden message. Also
contained within each hash code is a header value indicating how many bits of
the hash represent the actual message (this is referred to as the length encoding).
Without the length encoding value contained in these header bits, it is impossible
for the receiver to determine how many bits of a particular hash match the valid
secret message, and how much of that hash is just noise.

This process is described in greater detail in Section 3.4.

3.3 Choosing the number of header bits, h

Sender and receiver must agree on a small constant h ≥ 0 which represents the
number of bits that will store the length encoding in each sentence. Selecting
this h appropriately is important. Because the number of bits that can be
transmitted in any sentence is bounded by 2h, selecting too small a value for

8

h will result in low transmission rates even if the number of variations for a
given sentence is high (i.e., a low h prevents such sentences from achieving
their potential to encode many bits). On the other hand, if h is too high,
the algorithm will frequently fail to find a proper encoding, resulting in a high
number of errors. Given k translations of a given sentence, the probability of
the encoder failing for a given value of h is:1− 1

2h
·
2h−1∑
i=0

1
2i

k

=

(
1− 1− 2−2h

2h−1

)k

. (1)

Note that if h is too large, the frequency of errors will result in a need for
stronger error correction codes, which will quickly reduce the amount of actual
information transmitted. If h is too large for the average number of available
translations, no data can be transmitted any more. For our prototype, it seems
that h ∈ [1, 4] is the useful range. The specific choice depends on both the source
text and the translation systems that are being used, since these parameters
change the average number of available translations per sentence.

When discussing the actual hashes in detail in this paper, our notation uses
a dot to denote the end of the header bits in a hash, and overlines the bits that
would be used to encode the message. For example, 10.01110 shows that the
header bits are the first two bits, 10, and the value of these header bits tells us
that the next two bits are valid message bits. The overlined value, 01, is the
value of the valid message bits contained within this hash.

3.4 Selecting translations

For all translations, the encoder first computes a cryptographic keyed hash of
each translation using the secret key that is shared with the receiver. The basic
idea is then to select one sentence among all translations for a given sentence that
hashes to the proper length encoding and the right bits in the hidden message.
However, since the number of bits encoded in a given sentence is variable, the
algorithm has substantial freedom in doing this. For example, if h = 2 and the
hidden message at the current position is 0110 . . ., then both a hash with 01.0
(encoding h = 01b = 1 and the first bit of the hidden message 0) and 10.01
(encoding h = 10b = 2 and the first two bits of the hidden message 01) are valid
choices that result in no encoding errors. One may be naturally inclined to use
a greedy algorithm that picks the translation that encodes the largest number
of bits. However, suppose that in our example the next sentence produces only
one available translation, and that this translation hashes to 11.110. In this
case, picking the shorter matching sequence in the previous sentence can help
avoid encoding errors in the future.

Now, let us define a trace L = [S, f, p] as a tuple where S is an ordered set
of sentence translations selected so far during encoding, f is the number of bit
errors that occurred when matching S with the hidden message, and p is the
total number of bits encoded so far. Given a threshold t on the number of traces

9

to keep at any given point in time, the encoder uses the following heuristic to
construct a cover text that results in the desired hidden message:

The algorithm starts with the empty trace [∅, 0, 0]. For each sentence in the
original text, the encoder then performs the following steps. First, it obtains
all possible translations of that sentence. Then for each translation σ and trace
L = (S, f, p), it computes the number of errors e(σ, S) and bits encoded b(σ, S)
that would be incurred if translation σ was used after choosing S for the earlier
translations. The result is a new set of traces L′(L, σ) = [(S, σ), f + e(σ, S), p +
b(σ, S)]. In order to avoid an exponential explosion in the number of traces, the
algorithm then heuristically eliminates all but t traces before continuing with
the next sentence. The heuristic selects the t traces L = [S, f, p] with the lowest
number of failures f . If sentences have the same number of failures, the larger
offset p in the hidden message is preferred.

Error-correcting codes are used to correct errors whenever none of the at-
tempted combinations produces an acceptable hash code. Given the average
number of available translations, equation (1) can be used to compute the ex-
pected error frequency. Note that the sender can verify that the estimates were
sufficient by simply decoding the message with the decoding algorithm. If this
fails, the sender may choose to decrease h, to use a more redundant error cor-
rection code, or both. For h = 0, it is assumed that the lowest bit of the hash
is used to communicate the hidden message; in this case, the encoding becomes
equivalent to the watermarking scheme presented in 8.3.

Example

Suppose the encoder is using h = 2 header bits and trace threshold of t = 2 and
is requested to hide the message 0110. The process would proceed as follows.
Initially the list of traces contains only the empty trace encoding zero bits with
zero errors:

L0 = {[∅, 0, 0]}

Now suppose that for the first sentence in the original text the encoder finds
three translations A, B, and C. The encoder then computes the keyed hashes
Hk for each translation. The first h = 2 bits determine the number of bits in
the hash that will be matched against the message. Again, in our notation,
we use a dot to denote the end of those header bits and then overline the bits
that would be used to encode the message. The remaining bits of the hash are
ignored. For the sake of the example, suppose the keyed hash codes have the
following values:

Hk(A) = 01.0 . . .

Hk(B) = 10.11 . . .

Hk(C) = 11.100 . . .

10

Given those hash codes, the encoder then determines the resulting values
for b (number of bits encoded) and e (number of bit errors) for each of the
translations and each trace currently in the trace list:

Hk(A) = 01.0 ⇒ b(A, ∅) = 1, e(A, ∅) = 0

Hk(B) = 10.11 ⇒ b(B, ∅) = 2, e(B, ∅) = 1

Hk(C) = 11.100 ⇒ b(C, ∅) = 3, e(C, ∅) = 3

The trace list is updated to summarize the possible ways the translations of
the current sentence could be used:

L′
1 = {[[A], 0, 1], [[B], 1, 2], [[C], 3, 3]}

The resulting list of traces violates the t = 2 size threshold and is pruned,
leaving only the t most promising choices:

L1 = {[[A], 0, 1], [[B], 1, 2]}

Suppose the encoder finds two possible translations D and E for the second
sentence in the original text. Again, Hk is determined for both translations;
furthermore b and e are computed for the possible traces of L1:

Hk(D) = 11.101 ⇒ b(D, [A]) = 3, e(D, [A]) = 2, b(D, [B]) = 3, e(D, [B]) = 0

Hk(E) = 11.011 ⇒ b(E, [A]) = 3, e(E, [A]) = 2, b(E, [B]) = 3, e(E, [B]) = 2

The new trace list is computed by combining the previous traces with all
possible translations, yielding:

L′
2 = {[[A,D], 2, 4], [[B,D], 1, 5], [[A,E], 2, 4], [[B,E], 3, 5]}

The resulting list of traces again violates the t = 2 threshold and is pruned to

L2 = {[[A,D], 2, 4], [[B,D], 1, 5]}.

Assuming that this is the end of the hidden message, the encoder will select
[B,D] as the translation that most closely encodes the hidden message (encoding
five bits with one error). In this example, choosing to output the first sentence
with a bit error allowed the encoder to avoid making two bit errors in the next
sentence.

3.5 Optimized Handling of Hash Collisions

In the case where the hashes of two translations happen to collide in the in-
formation-transmitting lower bits, the protocol as presented above is unable
to encode additional information by choosing between these two translations –

11

either choice would encode exactly the same data. The probability that no two
of the k translations of a sentence have colliding hashes in the used lower bits is

1− 2−h ·
2h−1∑
j=0

2−j

k−1

=

(
2h+2h−1 − 22h

+ 1
2h+2h−1

)k−1

(2)

if k ≤ 22h−1, and is zero if k > 22h−1.
This probability can be small even for moderate values of k (the “birthday

paradox”), so collisions are quite likely for sentences that have many transla-
tions. This puts the new algorithm at a disadvantage when compared to the
original LiT protocol [22], which was always able to encode additional informa-
tion given additional choices. It would be advantageous if a modification to the
new protocol could be found such that additional bandwidth could be obtained
when a choice between different sentences that hash to the same (lower) bits
exists. This section describes such a scheme, in which the existence of many
hash collisions at one sentence helps in the sentences that follow it by providing
them with a richer set of hash choices.

The idea is to include, for the purpose of computing hashes, the previously
generated translations as well. In other words, the hash for encoding in the ith

sentence is the hash of the ith sentence concatenated with all previous sentences.
As a result, c collisions in the relevant bits of the hash codes of translations of
one sentence will result in c additional choices that will be available for the next
translation. In effect, the encoding capacity of sentences with collisions is moved
to later sentences (instead of being wasted).

Our implementation limits the number of previous sentences used in the hash
code to include only the last two sentences. This improves the efficiency of the
algorithm while still achieving good results in practice.

4 Lost in Translation

The previous section described the protocol but ignored the most important
aspect of the system, the generation of plausible translations. In order to de-
termine which translations are plausible, we need to study MT systems and
the errors that they make. The steganographic encoder can then be tuned to
mimic these errors. Modern MT systems produce a number of common errors
in translations. This section characterizes some of these errors. While the errors
we describe are not a comprehensive list of possible errors, they are represen-
tative of the types of errors we commonly observed in our sample translations.
Most of these errors are caused by the reliance on statistical and syntactic text
analysis by contemporary MT systems, resulting in a lack of semantic and con-
textual awareness. This produces an array of error types which we can use to
plausibly alter text, generating further marking possibilities.

12

4.1 Functional Words

One class of errors that occurs rather frequently without destroying meaning
is that of incorrectly-translated or omitted closed-class words such as articles,
pronouns, and prepositions. Because these functional words are often strongly
associated with another word or phrase in the sentence, complex constructions
often seem to lead to errors in the translation of such words. Furthermore,
different languages handle these words very differently, leading to translation
errors when using engines that do not handle these differences.

For example, languages without articles, such as Russian, can produce article-
omission errors when translating to a language which has articles (such as En-
glish): “To run cheerfully behind the sleigh” becomes “Behind sledge cheerfully
to run” [14]. Even if articles are included, they often have the wrong sense of
definiteness (e.g. “a” instead of “the”). Finally, if both languages have articles,
these articles are sometimes omitted in translations where the constructions be-
come complex enough to make the noun phrase the article is bound to unclear.

Many languages use articles in front of some nouns, but not others. This
causes problems when translating from languages that do use articles in front of
the latter set of nouns. For example, the French sentence “La vie est paralysée.”
translates to “Life is paralyzed.” in English. However, translation engines pre-
dictably translate this as “The life is paralyzed.”; “life” in the sense of “life in
general” does not take an article in English. This is the same with many mass
nouns like “water” and “money”, causing similar errors.

Furthermore, because articles are also used as pronouns in many languages,
they are often mistranslated as such. Many of these languages also indicate
gender with articles and pronouns, such that if “the armchair” is male, it might
be referred to as “he” (in English) at the beginning of the next sentence, instead
of “it”. Similarly, if there is a man being discussed in a sentence, he may become
an “it” in the next sentence due to the lack of context kept by today’s MT
engines. This problem of determining the right antecedent for a pronoun (or
other referent) is a well-known difficult problem in computational linguistics
called anaphora resolution (see, for example, [4, 17, 26, 32, 33]). For example,
the following two sentences were translated from a German article into English
with Systran (“Avineri” as mentioned below is the political scientist cited in the
article being translated): “Avineri ist nicht nur skeptisch. Er ist gleichzeitig
auch optimistisch.” is translated as “Avineri is not only sceptical. It is at the
same time also optimistic.” [30, 39]. The lack of context kept by the MT system
makes correctly translating such words difficult.

Prepositions are also notoriously tricky; often, the correct choice of preposi-
tion depends entirely on the context of the sentence. For example, “J’habite à
100 mètres de lui” in French means “I live 100 meters from him”. However, [39]
translates this as “I live with 100 meters of him”, and [14] translates it as “In
live in 100 meters of him.” Both use a different translation of “à” (“with/in”)
which is entirely inappropriate to the context.

“Il est mort à 92 ans” (“He died at 92 years”) is given by [14, 39] as “He
died in 92 years”. To say “He waits for me” in German, one generally says “Er

13

wartet auf mich”. [39] chooses to omit the preposition “auf” entirely, making
the sentence incorrect (effectively, “He waits me.”) Similarly, “Bei der Hochzeit
waren viele Freunde” (“Many friends were at the wedding”) yields, in English,
“With the wedding were many friends.” In each of these cases, a demonstrably
incorrect translation (with respect to the specific context) for the preposition
occurs.

Another example is the following: in German, “nach Hause” and “zu Hause”
both translate roughly into English as “home”. The difference between the two
is that one means “towards home” and the other means “at home”. Because we
can say in English “I’m going home” and “I’m staying home”, we don’t need to
mention “towards” or “at”. When translating these two sentences to German
without explicitly stating “at home” in the second sentence, however, the en-
gines we examined produced incoherent sentences. [14] translated “I’m staying
home” as “Ich bleibe nach Hause” (“I’m staying to home”), and [39] rendered a
completely nonsensical “Ich bleibe Haupt” (“I’m staying head”).

4.2 Grammar Errors

Sometimes, even more basic grammar fails. While this may simply be a measure
of a sentence being so complicated that a verb’s subject cannot be found, it is
still quite noticeable when, for example, the wrong conjugation of a verb is used.
In the following translation, “It appeared concerned about the expressions of
the presidency candidate the fact that it do not fight the radical groups in the
Gaza Strip” from a German radio report [30] into English using Systran [39],
the third-person singular subject appears directly before the verb, and still the
wrong form of the verb is chosen.

4.3 Word-for-Word Translations

One phenomenon which occurs again and again is the use of partial or complete
word-for-word translations of constructions which are not grammatically correct
in the target language. At best, this only results in word-order issues: “Was
aber erwartet Israel wirklich von den Palästinensern nach der Wahl am 9.1.?”
(“But what does Israel really expect from the Palestinians after the election
on January 9?”) is translated by [39] as “What however really expects Israel
from the Palestinians after the choice on 9.1.?” In this case, the meaning is
not hampered because the construction is fairly simple, and the words translate
well between the two languages. However, in a language like Russian where
possession is indicated by something being “at” the owner, translation for things
like “I have the pencils” in Russian come out as “the pencils are at me” in a
word-for-word English translation. Unnatural constructions based on word-for-
word translations are by far the most noticeable flaw in many of the translations
we looked at.

14

4.4 Blatant Word Choice Errors

Less frequently, a completely unrelated word or phrase is chosen in the transla-
tion. As mentioned briefly in Section 4.1, “I’m staying home” and “I am staying
home”are both translated into German by [39] as “Ich bleibe Haupt” (“I’m stay-
ing head”) instead of “Ich bleibe zu Hause”. These are different from semantic
errors and reflect some sort of flaw in the actual engine or its dictionary, clearly
impacting translation quality.

4.5 Context and Semantics

As mentioned previously, the fact that most translation systems do not keep
context makes translation problematic. The Bare Bones Guide to HTML [42] is
a document giving basic web page authoring information. When the simplified
Chinese translation of this document’s entry for an HTML“Menu List” is trans-
lated into English, however, the result is “The vegetable unitarily enumerates”
[39, 44]. While one can see that whatever the Chinese phrase for “Menu List”
is might in fact have something to do with a vegetable, the context informa-
tion should lead to a choice that does not have to do with food. Similarly, the
German translation ([39]) of “I ran through the woods” gives a translation (“Ich
lief durch das Holz”) that implies running through the substance “wood”, not
the “forest” sense. Without having enough contextual information, either based
on statistics or the preceding verb/preposition combination, the translator is
unable to decide that a forest is more likely to be run through than lumber is,
and chooses the wrong word.

4.6 Additional Errors

Several other interesting error types were encountered which we will describe
here briefly:

• In many cases, words not in the source dictionary simply go untranslated,
as with the translation of the registration for a Dutch news site [23] which
gives “These can contain no spaties or leestekens” for “Deze mag geen
spaties of leestekens bevatten.” “Spaties” should be translated as “spaces”
and “leestekens” as “punctuation marks”.

• Incorrect mapping of reflexive constructions between languages causes re-
flexive articles to be erroneously inserted in target translations (e.g. “Ich
kämme mich” becomes “I comb myself” rather than “I comb my hair”
(“one’s hair” is implied in the German construction)). The English verb
“to comb” is not reflexive and requires an explicit direct object; the trans-
lation system does not consistently account for these features.

• Proper names are sometimes unnecessarily translated; “Linda es muy
Linda” (“Linda is very beautiful”) is translated by [39] as “It is contin-
guous is very pretty” and “Pretty it is very pretty” by [14]. Moving the

15

capitalized name in the sentence does not always stop it from being erro-
neously translated.

• Verb tense is often inexact in translation, due to the lack of direct mapping
between verb tenses in different languages.

4.7 Translations between Typologically Distant Languages

Typologically distant languages are languages whose formal structures differ
radically from one another. These structural differences manifest themselves
in many areas (e.g. syntax (phrase and sentence structure), semantics (mean-
ing structure) and morphology (word structure)). Not surprisingly, because of
these differences, translations between languages that are typologically distant
(Chinese and English, English and Arabic, etc) are frequently so bad as to be
incoherent or unreadable. We did not consider these languages for this work,
since the translation quality is often so poor that exchange of the resulting
translations would likely be implausible.

For example, when again translating the“Bare Bones Guide to HTML”page,
this time from Japanese [43] to English, [39] gives “Chasing order, link to the
HTML guide whom it explained and is superior WWW Help Page is reference.”
(Note that italicized portions were already in English on the Japanese page)
The original English from which the Japanese was manually translated reads:
“If you’re looking for more detailed step-by-step information, see my WWW
Help Page.” The original English sentence is provided only for general meaning
here, but it is clear that what is translated into English by the MT system is
incomprehensible.

Because many translation systems were originally designed as a rough “first
pass” for human translators who know both languages, it may well be that
knowing the original language makes it possible to understand what is meant
in the translation; in some sense, translators using such a tool would have to
consciously or unconsciously be aware of the error types generated by the trans-
lation tool in order to produce accurate translations from it. While we did not
explore these error types for this paper, an area for future improvement would
be to look into the error types in various language pairs by asking bilinguals
about the translations.

5 Implementation

This section describes some of the aspects of our prototype implementation
with focus on the different techniques that are used to obtain variations in the
generated translations. The system uses various commercial translation en-
gines [3, 20, 27, 39] to translate each sentence in the source text. The resulting
translations are then subjected to various post-passes that further increase the
number of different translations. The prototype is designed to be easily ex-
tended with additional translation engines and broader dictionaries to improve
the variety of translations generated.

16

5.1 Translation Engines

The current implementation uses different translation services that are available
on the Internet to obtain an initial translation. The current implementation
supports three different services, and we plan on adding more in the future.
Adding a new service only requires writing a function that translates a given
sentence from a source language to the target language. Which subset of the
available MT services should be used is up to the user to decide, but at least
one engine must be selected.

One possible problem with selecting multiple different translation engines
is that they might have distinct error characteristics (for example, one engine
might not translate words with contractions). An adversary that is aware of such
problems with a specific machine translation system might find out that half of
all sentences have errors that match those characteristics. Since a normal user
is unlikely to alternate between different translation engines, this would reveal
the presence of a hidden message.

A better alternative is to use the same machine translation software but train
it with different corpora. The specific corpora become part of the secret key
used by the steganographic encoder; this use of a corpus as a key was previously
discussed in another context (that of [6]) by Victor Raskin and Umut Topkara.
As such, the adversary could no longer detect differences that are the result of
a different machine translation algorithm. One problem with this approach is
that acquiring good corpora is expensive. Furthermore, dividing a single corpus
to generate multiple smaller corpora will result in worse translations, which can
again lead to suspicious texts. That said, having full control over the translation
engine may also allow for minor variations in the translation algorithm itself.
For example, the GIZA++ system offers multiple algorithms for computing
translations [18]. These algorithms mostly differ in how translation “candidate
outcomes” are generated. Changing these options can also help to generate
multiple translations.

After obtaining one or more translations from the translation engines, our
prototype produces additional variations using various post-processing algo-
rithms. Problems with distinct error characteristics arising from the use of
multiple engines can thus be avoided by just using one high-quality translation
engine and relying on the post-processing to generate alternative translations.

5.2 Semantic Substitution

Semantic substitution is one highly effective post-pass and has been used in
previous approaches to hide information [6, 9]. One key difference from previous
work is that errors arising from semantic substitution are more plausible in
translations compared to semantic substitutions in an ordinary text.

A typical problem with traditional semantic substitution is the need for sub-
stitution lists. A substitution list is a list of tuples consisting of words that
are semantically close enough that subtituting one word for another in an arbi-
trary sentence is possible. For traditional semantic substitution, these lists are

17

d1

''OOOOOOOOOOOOOOOO //

��?
??

??
??

??
??

??
??

??
??

?
e1

wwooooooooooooooo

����
��

��
��

��
��

��
��

��
��

�

w1 // e2

w2

77ooooooooooooooo
e3

Figure 2: Example of a translation graph produced by the semantic substitution
discovery algorithm. Here two witnesses (w1 and w2) and the original word d1

confirm the semantic proximity of e1 and e2. There is no witness for e3, making
e3 an unlikely candidate for semantic substitution.

generated by hand. An example of a pair of words in a semantic substitution
list would be comfortable and convenient. Not only is constructing substi-
tution lists by hand tedious, but the lists must also be conservative in what
they contain. For example, general substitution lists cannot contain word pairs
such as bright and light since light could have been used in a different sense
(meaning effortless, unexacting or even used as a noun).

Semantic substitution on translations does not have this problem. Using
the original sentence and a dictionary, it is possible to automatically generate
semantic substitutions that can even contain some of the cases mentioned above
(which could not be added to a general monolingual substitution list). The basic
idea is to translate back and forth between two languages to find semantically
similar words. Assuming that the translation is accurate, the word in the source
language can help provide the necessary contextual information to limit the
substitutions to words that are semantically close in the current context.

Suppose the source language is German (d) and the target language of the
translation is English (e). The original sentence contains a German word d1 and
the translation contains a word e1 which is a translation of d1. The basic algo-
rithm for finding candidates for semantic substitution (illustrated in Figure 2)
is the following:

• Find all other translations of d1 and call this set Ed1 . Ed1 is the set of
candidates for semantic substitution. Naturally e1 ∈ Ed1 .

• Find all translations of e1; call this set De1 . This set is called the set of
witnesses.

• For each word e ∈ Ed1−{e1} find all translations De and count the number
of elements in De ∩De1 . If that number is above a given threshold t, add
e to the list of possible semantic substitutes for e1.

A witness is a word in the source language that also translates to both words
in the target language, thereby confirming the semantic proximity of the two

18

words. The witness threshold t can be used to trade more possible substitutions
against a higher potential for inappropriate substitutions.

The threshold does not have to be fixed. A heuristic can be used to increase
the threshold if the number of possible substitutions for a word or in a sentence is
extraordinarily high. Since the number of bits that can be encoded only increases
with log2 n for n possible substitutions we suggest to increase t whenever n is
larger than 8.

Examples:

Given the German word “fein” and the English translation “nice”, the asso-
ciation algorithm run on the LEO (http://dict.leo.org/) dictionary gives the
following semantic substitutions: for three witnesses, only “pretty” is generated;
for two witnesses, “fine” is added; for just one witness, the list grows by “acute”,
“capillary”, “dignified” and “keen”. Without witnesses (direct translations), the
dictionary adds “smooth” and “subtle”. The word-pair “leicht” and ”light” gives
“slight” (for three witnesses). However, “licht” and “light” gives “bright” and
“clear”. In both cases the given substitutions match the semantics of the spe-
cific German word.

5.3 Adding plausible mistakes

Another possible post-pass adds mistakes that are commonly made by MT sys-
tems to the translations. The transformations that our implementation can use
are based on the study of MT mistakes from Section 4. The current system sup-
ports changing articles and prepositions using hand-crafted, language specific
substitutions that attempt to mimic the likely errors observed.

6 Experimental Results

The experimental results given in this section are for the limited implementation
described in Section 5. We expect that a more powerful translation system that
is capable of generating more diverse translations will perform even better.

6.1 Results from the Prototype

Different configurations of the system produce translations of varying quality,
but even quality degradation is not predictable. Sometimes our modifications
actually (by coincidence) improve the quality of the translation. For example,
a good translation of the original French sentence “Dans toute la région, la vie
est paralysée.” into English would be “Life is paralysed in the entire region.”
Google’s translation is“In all the area, the life is paralysed.”, whereas LinguaTec
returns “In all of the region the life is crippled.”. Applying article substitution
here can actually improve the translation: one of the choices generated by our
implementation is “In all of the region, life is crippled.” Even aggressive settings
are still somewhat meaningful: “In all an area, a life is paralysed.”

19

It should be noted that for simplicity that the engines currently used by the
prototype are publically available free web engines, and that this is not demon-
strative of the output of custom-generated engines or paid commercial software.
The following slightly more extensive example is given for better illustration of
the prototype system: The 8-bit string “l” was encoded in a translation of a
section taken from Marx’s The Communist Manifesto. The text was translated
from German to English by our prototype using three header bits, an empty
secret key, article and preposition replacement, and semantic substitution. The
source engines used were Google and Linguatec, and the text source comes from
[31] and reads as follows:

Obgleich nicht dem Inhalt, ist der Form nach der Kampf des Proletariats gegen die

Bourgeoisie zunächst ein nationaler. Das Proletariat eines jeden Landes muß natürlich

zuerst mit seiner eigenen Bourgeoisie fertig werden.

Our prototype system gives the following translation:
Not the contents are the more national for a form although, according to next to the

fight of a Proletariats against bourgeoisie. A proletariat of each country must become

ready naturally first with their own Bourgeoisie.

For comparison, we also give the Google and Linguatec translations. The
Google translation is as follows:

Although contents, after the form the fight of the Proletariats against the Bour-

geoisie is not first national. The Proletariat of each country must become finished

naturally first with its own Bourgeoisie.

The other source translation, from Linguatec, looks like this:
Not the contents are a more national for the form although, according to next to

the fight of the Proletariats against the bourgeoisie. Of course the proletariat of every

country must get finished with its own bourgeoisie first.

Clearly the addition of more engines would lead to more variety in the LiJtT
version, as would additional post-pass transformations. Both source translations
give a nearly incomprehensible first sentence, and LiJtT’s version is no more
or less comprehensible. Sometimes substitutions lead to quality degradation
(“against bourgeoisie” vs. “against the bourgeousie”), and sometimes not (“the
more national” vs. “a more national”). Often, the encoding mechanism acciden-
tally makes the engine choose the best (or worst) version of a sentence text to
modify among the source choices. And other times, semantic substitution can
(accidentally) choose a word which improves the resultant text.

The quality of the original source translations is not perfect. Furthermore,
our version contains many of the same“differences”when compared to the source
engines as the source engines have amongst themselves. Many of those differ-
ences are introduced by us (“must become ready”vs. “must become finished”) as
opposed to coming directly from the source engines. While none of the texts are
particularly readable, our goal is to plausibly imitate machine-translated text,
not to solve the problem of perfect translation.

One final note: even with our limited configuration and many sentences only
using article or preposition substitution, it should be noted that we found that
many MT systems employing the same underlying engine (e.g. Systran) produce
similar - but not identical - translations. The differences between these trans-

20

lations were generally much like those produced by our prototype - slightly dif-
ferent (or omitted) articles, different prepositions, and different near-synonyms.

6.2 Protocol Overhead

Figure 3 gives an estimate of the various sources of overhead in the new protocol.
The largest source of overhead is, as expected, the natural language text itself.
Considering that only a few bits can be hidden in a sentence that may possibly
occupy thousands of bytes, this is not surprising. Figure 3 also lists the overhead
for the length encoding (h). The error correction column lists the number of bits
that are needed to correct the number of bit errors that occur in the text using
Hamming codes. Note that in practice a few additional bits may be required,
since sender and receiver have to agree on the parameters for the error correction
code. In order to ensure success in encoding, users may choose to select slighly
more conservative estimates of the maximum number of errors than those listed
in Figure 5.

h = 0 h = 1 h = 2 h = 3 h = 4
Total 211264 211448 210840 210456 209816
Length 0 180 360 540 720
ECC 60 0 42 315 1362
Hidden 120 153 380 581 580

Figure 3: This figure shows the total number of bits that were transmitted
for various parts of the encoding algorithm for a sample message. Length is h
times the number of sentences. ECC is the number of bits reserved for error
correction (3 per bit error). The average number of translations per sentence
for this example was k = 72.79. The average length of the selected translated
sentences was 1,168 bits. A threshold of t = 64 was used for backtracking.

6.3 Effect of h and t

Selecting appropriate values for h and t is important in order to enable LiJiT
to encode reasonable amounts of data. In general, t should be chosen as high as
possible (that is, within the resource constraints of the encoder). As discussed
in Section 3.3, the optimal value of h depends on the configuration of the trans-
lation generation system that is used. Figure 4 shows the impact of different
values for h and t in terms of average number of bits hidden per sentence for a
particular LiT configuration.

6.4 Error Frequency

Figure 5 lists the number of bit errors that are produced by the encoding for
various values of h and different configurations for the translators. The config-
uration of the translators is abstracted into the average number of translations

21

generated per sentence. Figure 6 shows that the backtracking algorithm is ef-
fective at reducing the number of errors.

Header length (bits)
0 1 2 3 4 5 6

T
ra

ns
m

itt
ed

 (
bi

ts
 p

er
 in

pu
t s

en
te

nc
e)

0

0.5

1

1.5

2

2.5

3

3.5

4
t=1

t=8

t=32

t=64

Figure 4: This figure shows how important it is to use a good value for the
number of length bits (h) when encoding data. It also illustrates the effect of
the threshold t on the amount of data that can be hidden. The average number
of translations per sentence for this example was k = 72.79.

s h = 0 h = 1 h = 2 h = 3 h = 4
1.99 39 3 43 179 486

26.47 20 1 25 129 449
72.79 20 0 14 105 454

Figure 5: This table lists the number of bit errors encountered with a threshold
of t = 64 for different values of h. The value listed under s is the average number
of translations per sentence (k) generated by the selected configuration of the
translation engine.

t h = 0 h = 1 h = 2 h = 3 h = 4
1 20 11 41 157 511
8 20 0 23 139 473

32 20 0 25 131 446
64 20 0 14 105 454

Figure 6: This table shows the impact of changing the amount of backtracking
done (t) by the selection algorithm on the number of bit errors. The average
number of translations per sentence used for this figure was k = 72.79.

22

6.5 Translation Count Distribution

One important parameter for both LiT and LiJiT is the configuration of the
translation generation system. That configuration selects the machine transla-
tors and the modification passes that are applied to each sentence in the source
text. As Figure 5 shows, more choices in terms of translations have an immedi-
ate impact on how much data can be hidden – and on what reasonable values for
h are. However, the average number of translations can be misleading. Figure 7
shows the distribution for a particular configuration.

Translations per Sentence (log base 2)
0 1 2 3 4 5 6 7 8 9 10 11

F
re

qu
en

cy

0

20

40

60

80

100

Figure 7: This figure shows the distribution of the number of translations gener-
ated for the various sentences for a particular LiT configuration, namely the one
that generates 72.79 translations on average. Since the number of translations
differs widely, sentences were grouped into categories of [2k, 2k−1) translations.
As a result, the value on the x-axis corresponds to the number of bits that we
can hope to encode with the given sentence.

6.6 Data Rate Variance

Figures 8 and 9 show how the difference in terms of number of translations
available for a given sentence impacts the number of bits stored in that sentence.
Note that for large values of t (Figure 9), the encoding algorithm balances the
encoding capacity (and error potential) between sentences with few translations
and those with many.

The balance is not perfect; in particular, sentences with a sizeable number of
translations still hide many more bits and have fewer bit errors on average than
those that produce few. This shows that a higher threshold could theoretically
still improve the encoding; however, our implementation cannot handle higher
values for t at this time. The variance in the distribution should be useful as a
metric to estimate the potential for improvement in using higher values for t.

23

6.7 Information Leakage

One important point of reference is the total amount of information that is
transmitted for a given bit. Compared with the previous protocol [21] (LiT),
the LiJtT protocol presented here needs to transmit additional information.
Specifically, the new protocol adds length information for each sentence as well
as the additional data for the error correction code. On the other hand, LiJtT
no longer needs to transmit the source text. This raises the question of which
protocol is better in terms of total amount of information (in bits) that is leaked
to the adversary. Figure 10 lists the ratio of the number of bits of information
transmitted to the number of bits of information communicated for different

Hashes per Sentence (log base 2)
0 1 2 3 4 5 6 7 8 9 11

A
ve

ra
ge

 b
its

0

2

4

6

8

10

12

14

16

18
Stored

Errors

Figure 8: This figure shows the average number of bits stored and the average
number of bit errors for sentences with different numbers of translations. As in
Figure 7, sentences were grouped into categories of [2k, 2k−1) translations. The
data is for a threshold of t = 1 with a header of h = 4 bits.

Hashes per Sentence (log base 2)
0 1 2 3 4 5 6 7 8 9 11

A
ve

ra
ge

 b
its

0

2

4

6

8

10

12

14

16

18
Stored

Errors

Figure 9: This figure shows the same data as Figure 8, except that the threshold
used by the encoder in this figure is t = 32.

24

settings of h and for different configurations of the base system. The results
show that the new protocol leaks slightly more information in terms of raw bit
counts. However, the benefit of sending text in only one language makes the
transmission significantly more plausible – most parties have a single preferred
language that they use almost exclusively for their communication.

s LiT h = 0 h = 1 h = 2 h = 3 h = 4
1.99 0.12% 0.03% 0.04% 0.07% 0.07% 0.02%

26.47 0.29% 0.06% 0.07% 0.16% 0.23% 0.22%
72.79 0.37% 0.06% 0.07% 0.18% 0.28% 0.28%

Figure 10: Information density comparison between LiT and LiJtT. The value
listed under s is the average number of translations per sentence generated by
the selected configuration of the translation engine. The values in the table list
the ratio of the number of bits transmitted on the wire to the number of bits
that were hidden. In the same amount of traffic LiJiT is able to hide about
25-50% less data given reasonable choices of h.

6.8 Human Translation

So far we have only considered results that use machine translation and auto-
matic translation variant generation as proposed in [21]. This makes sense for a
direct comparison between the original LiT protocol and the new protocol dis-
cussed in this paper. However, in addition to not revealing the original source
text to the receiver, the new protocol has the additional advantage that it can
use human translations as a source for additional translations in the encoding
process. LiT cannot use human translators since it is impossible to guarantee
that encoder and decoder would independently end up with the same human
translation of the original text.

In contrast, the protocol presented in this paper does not require the receiver
to translate at all. Thus it is conceivable that the sender may use human
translation or machine translation or both to generate sentences. We have used
the new protocol with a high-quality human translation that was generated
independently of any machine translation system as an additional source for
translations. Both the human translation and the existing machine translations
were then subjected to the translation variant generation process of LiT to
increase the number of available translations even further. With this approach,
it was possible to achieve an information density of 0.332% (t = 64, h = 4,
s = 120.11).

While using human translations is obviously very expensive, this might be
a feasible choice in extreme cases where the total amount of information leaked
is considered to be critical. Using multiple human translations of the same
text without any machine translators and without automatic variant genera-
tion could also be useful in cases where sending machine translated text is not
plausible.

25

7 Attacks

This section describes various attacks on the steganographic protocol. The
presented protocol makes the canonical assumption that its security rests in the
secrecy of the key shared between sender and receiver. An attack is considered
successful if the adversary is able to detect the presence of a hidden message;
decoding the message is not required. However, destroying the hidden message
(say by altering the cover message) without discerning its presence first is not
considered a valid attack.

The attacks are described in general terms and apply to any implementation
of the proposed protocol. How resilient a particular transmission using the pro-
tocol will be against these attacks depends on the quality of the implementation,
the user’s choices of configuration parameters and source text and the size of
the transmission.

7.1 Statistical Attacks

Statistical attacks have been extremely successful at defeating image, audio and
video steganography (see, e.g., [16, 28, 36]). In the case of translation-based
steganography, an adversary may have a statistical model (e.g. a language
model) that translations from all available MT systems obey. For example,
Zipf’s law [29] states that the frequency of a word is inversely proportional to its
rank in the sorted-by-frequency list of all words. Zipf’s law holds for English, and
in fact holds even within individual categories such as nouns, verbs, adjectives,
etc.

Assuming that all plausible translation engines generally obey such a sta-
tistical model, the steganographic encoder must be careful not to cause telltale
deviations from such distributions. Naturally, this is an arms race. Once such a
statistical law is known, it is actually easy to modify the steganographic encoder
to eliminate translations that deviate significantly from the required distribu-
tions. For example, Golle and Farahat [19] point out (in the different context
of encryption) that it is possible to extensively modify a natural language text
without straying noticeably from Zipf’s law. In other words, this is a very man-
ageable difficulty, as long as the steganographic system is made “Zipf-aware”.

Statistical attacks fall into two categories. The first attacks the translation.
The translation models look at both the source and the target text. The second
category, language models, only look at the generated translations and try to
find inconsistencies within that text, without reference to the original text.

7.1.1 Statistical attacks on the translation model

The protocol presented in this paper makes statistical attacks on the trans-
lation model significantly harder by hiding the source text. Previously, if the
attacker could construct a translation model which translations from all avail-
able MT systems obey but which was violated by the steganographic encoder,

26

he could succeed in detecting the messages. In constructing this model, the
attacker would have been able to use statistical properties of the entire trans-
lation process (in particular, correlations between source text and generated
translations). We give two simple examples for such statistical models:

Word Count

The average word count may yield a different ratio between the source
and target languages when steganography is in use. The rationale is that
the steganographic engine will discard words more readily than inserting
them (though insertion of more words can occur in the current engine
through preposition substitution). An unmodified translation would then
yield a higher ratio of average number of words in the source language to
the average number of words in the target language compared to a text
that had information hidden in it.

Engine Errors

Certain engines are given to certain types of errors. If a text is translated
by an engine and has no information hidden in it, then it should make
the errors characteristic to that engine 100% of the time. Taking the ratio
of the number of errors characteristic to one engine over the number of
errors characteristic to another should always yield a 0 or 1 (tolerance can
be allowed in case the user hand corrected some errors). If the ratio yields
something outside of that tolerance it can be seen that there are a mixture
of error types, and therefore a mixture of engines being used. Automatic
classification of engine-specific errors is likely to be rather difficult. Also,
if the translation engines used by the encoder are unknown to the attacker
this attack cannot be used.

While constructing good statistical translation models is admittedly already
difficult, such statistical attacks are no longer possible with the new protocol,
since the attacker no longer has access to the source text. This limits the
construction of the attack model to only the resultant translations, leaving less
diverse information to base the attack on.

7.1.2 Statistical attacks on the language model

Using language models to detect statistical anomalies in the generated trans-
lation is an attack vector that still applies to the protocol presented in this paper.
We give three examples:

Character Count

The idea here is quite similar to the previous model. An untouched trans-
lation will yield a lower ratio of average number of characters in the source
language to the average number in the target language. The rationale here
is when substitution occurs the substituted word is more likely to be more
complex and longer than the original translation.

27

Nouns Without Articles

Since the current steganographic engine discards articles for nouns on oc-
casion and never inserts new ones (since it does not have enough semantic
knowledge to detect nouns) the total percentage of nouns without articles
should be higher for a text containing hidden information.

Witness Count

When a semantic substitution is made by our system the word that is
chosen for replacement is likely to be more specific or complex than the
word that it is replacing. With that in mind the number of witnesses
for the word selected to hide information should ordinarily be lower than
the word that it is replacing. A normal translation might thus yield a
higher ratio between semantic substitution witnesses from the target to
the source language than a translation that contains a hidden message.

We still cannot preclude the existence of yet-undiscovered language models
for translations that might be violated by our existing implementation. However,
we expect that discovering and validating such a model is a non-trivial task for
the adversary. On the other hand, as pointed out already in [21], given such
a model, it is easy to modify the steganographic system so as to eliminate
deviations by avoiding sentences that would be flagged.

7.2 Repeated Sentence Problem

The original translation-based steganographic encoder [21] was open to vari-
ous attacks. One problem was that since the source text was known to the
attacker, translating the same sentence in two different ways would raise suspi-
cion since MT systems are deterministic. The solution to this problem was to
not use repeated sentences in the source text to hide data, and always output
the translation that was used for the first occurence of the sentence.

For the protocol presented in this paper the repeated sentence problem no
longer exists. The source text can be kept secret and thus translating the same
sentence in different ways is acceptable – the attacker cannot detect this since
he is unable to discover that the source sentences were identical to begin with.

7.3 Future Machine Translation Systems

A possible problem that the presented steganographic encoding might face in
the future is significant progress in machine translation. If machine translation
were to become substantially more accurate, the possible margin of plausible
mistakes might get smaller.

However, a large category of current machine translation errors results from
the lack of context that the machine translator takes into consideration. In order
to significantly improve existing machine translation systems, one necessary
feature would be the preservation of context information from one sentence to
the next. Only with that information will it be possible to eliminate certain

28

errors. Introducing this context into the machine translation system also brings
new opportunities for hiding messages in translations. Once machine translation
software starts to keep context, it would be possible for the two parties that use
the steganographic protocol to use this context as a secret key. By seeding their
respective translation engines with k-bits of context they can make deviations
in the translations plausible, forcing the adversary to potentially try 2k possible
contextual inputs in order to even establish the possibility that the mechanism
was used. This is similar to the idea of splitting the corpus based on a secret
key, with the difference that the overall quality of the per-sentence translations
would not be affected.

8 Discussion

This section discusses variations of the proposed protocol. We begin with a
description of the original LiT protocol [21] and its shortcomings. We then
describe an alternative to the protocol presented in this paper that addresses
these shortcomings in a different way, specifically by using wet paper codes [15].
Finally, we discuss alternative ways to apply some of the ideas presented in this
paper.

8.1 The original LiT protocol

As with the protocol presented in this paper, in the original LiT protocol [21],
the sender first needed to obtain some original text in the source language.
This original text was not assumed to be secret and could thus be obtained from
public sources (the original text would have to be transmitted or referenced along
with the translation in any event). The sender then translated the sentences
in the source text into the target language, generating multiple translations for
each sentence. Instead of using a keyed hash for embedding the message, the
encoder built a Huffman tree [24] of the available translations for each sentence.
Then the algorithm selected the sentence in the tree that corresponded to the
bit-sequence that was to be encoded.3

The translated text was then transmitted to the receiver, together with in-
formation sufficient to obtain the source text. This could either be the source
text itself or a reference to the source. The receiver then also translated the
source text using the same steganographic encoder configuration. By comparing
the resulting sentences, the receiver reconstructed the bitstream of the hidden
message. Figure 11 illustrates the basic protocol.

The primary disadvantage of the original LiT protocol compared to the pro-
tocol presented in this paper is that the adversary could have had access to the
original text in the source language due to the need to transmit the original text
along with the stego object.

3Wayner [40, 41] uses Huffman trees in a similar manner to generate statistically plausible
cover texts on a letter-by-letter basis.

29

original text

**UUUUUU
secret configuration

ssggggggggg
ssggggggggg
ssggggggggg
ssggggggggg

translators

��hidden
data

((PPPPPP translations

uujjjjjjjjj

++VVVVVVVVVVVV
hidden
data

encode
��

decode

55jjjjjjjjjj

/. -,() *+Alice
translation
original text

///. -,() *+Bob

OO

Figure 11: Illustration of the original LiT protocol. The adversary can observe
the public news and the message between Alice and Bob containing the selected
translation and the (possibly public) original text.

8.2 Wet Paper Codes

An alternative approach to addressing the source text transmission problem
in the original LiT protocol was suggested by Fridrich and Goljan.4 Wet pa-
per codes [15] are a general mechanism that allows the sender to transmit a
steganographic message without sharing the selection channel used to hide the
information with the receiver. The fundamental idea behind wet paper codes
is that the sender is only able to modify certain locations in the cover object
– so-called dry spots. The rest of the object remains the same as the origi-
nal cover object. The receiver cannot differentiate between dry and wet spots
and performs a uniform computation on the cover object to retrieve the hidden
message.

In the original wet paper codes protocol, the cover object X is assumed to
have n discrete elements within range J , including k predetermined dry spots.
The sender and receiver have agreed on a parity function P which maps J to
{0, 1}. They also share a q × n binary matrix D where q ≤ k is the maximum
message size. Let X ′ be the cover object that was modified to hide a message.
The receiver obtains the q bits of the hidden message m from the transmission
X ′ using a simple computation:

m = D · P (X ′). (3)

In [15] the sender solves this system of linear equations for P (X ′) and inverts
P to obtain a suitable variation X ′ of the cover object X. The dry spots in X
correspond to the free variables that the sender solves for. What is important to
note is that the linear equation solver used by [15] relies on fixed locations and
values for the wet spots of X. These locations have to be fixed upfront - before
the application of the algorithm. This is the reason why a direct adoption of this

4Personal communication, June 2005.

30

algorithm is infeasible for the translation-based encoder: in general, choosing
a different translation can change both the length of the sentence as well as
any of the words in the sentence. In other words, the choice between multiple
translations does not allow for an upfront categorizations of wet and dry spots.

However, this categorization becomes possible if the LiT protocol is changed
such that a translation is generated before encoding takes place; the choices made
in generation of this translation cannot directly encode any information, since
the cover object is not yet fixed such that wet and dry spots can be determined.
However, once an initial translation has been chosen, wet paper encoding can
be done by making modifications to this translation. Because dry spots have to
be predetermined by the sender, they are limited to single word changes such as
semantic substitution and article and preposition changes. In this application,
the dry spots would then be located where there are words in the translation
for which substitutions exist. We did not pursue this particular direction in
this paper since we felt that limiting the generator to word substitutions might
exclude too many plausible variations in the translations. However, adaptation
of wet paper codes to future work is one direction worth investigating.

8.3 Use for Watermarking

The technique of this paper can be used for watermarking in a manner that
does also not require the original text (or any reference translation) for reading
the mark. The encoder computes a (cryptographic) hash of each translated
sentence. It then selects a sentence such that the last bit of the hash of the
translated sentence corresponds to the next bit in the hidden message that
is to be transmitted. The decoder then just computes the hash codes of the
received sentences and concatenates the respective lowest bits to obtain the
hidden message.

To explain this in further detail, we begin with a fragile version of the scheme.
Let the bits of the mark be denoted by b1, . . . , bn. Let k ∈ N be a parameter
that will be determined later. The technique consists of using a (secret) random
seed s as key for determining those places where the n bits of the mark will be
embedded. Let the random sequence generated by the seed consist of numbers
r1, . . . , rk·n and let the corresponding places in the text where the bits of the
mark will be embedded be p1, . . . , pk·n (with pi denoting the spot for the ith

bit). Of course pi is determined by ri.
The pi’s are partitioned into groups of size k each. Let the resulting groups

be C1, . . . , Cn (C1 consists of p1, . . . , pk). In what follows Pj will denote the
concatenation of the contents of the k positions pi that are in group Cj (so Pj

changes as the algorithm modifies those k positions – e.g., when the algorithm
replaces “cat” by “feline” that replacement is reflected within Pj). Each Cj is
associated with sj which is defined to be the least significant bit of Hs(Pj) where
Hs is a keyed cryptographic one-way hash function having s as key (recall that
s is the secret seed that determined the ri).

As a result, sj changes with 50% probability as Pj is modified. In order to
embed bj in Cj the algorithm “tortures Cj until it confesses”: Cj is modified

31

until its sj equals bj . Every one of the k possible changes made within Cj has
a 50% change of producing an sj that equals the target bj , and the probability
that we fail e times is 2−e. A large choice for k will give the algorithm more room
for modifications and thus ensure that the embedding will fail with reasonably
low probability. It is possible to choose a small k and use an error-correcting
code in order to correct bits that could not be embedded properly.

The advantage of the scheme is that the receiver can receive all of the sj from
the seed s without needing the original text or any reference baseline translation
of it: the received message and the seed are all that is required to retrieve the
mark.

More robust versions of the scheme can be obtained by using the techniques
described in [6], which include the use of markers (a marker is a sentence that
merely indicates that the group of contiguous sentences that immediately follow
it are watermark-carrying, so the marker is not itself watermark-carrying). One
of the ways of determining markers is by a secret (because keyed) ordering of
the sentences, the markers being the sentences that are lowest in that secret
ordering – see [6] for details, and for an analysis that quantifies the scheme’s
resilience against different kinds of attacks.

This scheme assumes that sentences are long enough to almost always have
enough variation to obtain a hash with the desired lowest bit. Error-correcting
codes must be used to correct errors whenever none of the sentences produces
an acceptable hash code. Using this variation reduces the bitrate that can be
achieved by the encoding.

8.4 Other applications

While we have explored the possibility of using the inherent noise of natural
language translation to hide data, we suspect that there may be other areas
where transformation spaces exist which exhibit a similar lack of rigidity. For
example, compilers doing source translation have a variety of possible output
possibilities that still preserve semantics. Finding a way to hide information with
these possibilities while still mimicking the properties of various optimization
and transformation styles is a possibility for future work.

9 Conclusion

This paper presented an improved steganographic protocol based on hiding mes-
sages in the noise that is inherent to natural language translation. A study of
common mistakes in machine translation was used to come up with plausible
modifications that could be made to the translations. The steganographic mes-
sage is hidden in the translation by selecting between multiple translations which
are generated by either modifying the translation process or by post-processing
the translated sentences. The protocol also allows the sender to mix human
and machine translation in the encoding process. The protocol does not require

32

transmission of the source text; the decoding process is simple: the decoder only
applies a keyed hash function to the text and does not perform any translations.

In order to defeat the system, an adversary has to demonstrate that the
resulting translation is unlikely to have been generated by any legitimate trans-
lation system. This task is made more difficult by the fact that the translation
is transmitted with no reference to the source text. It was demonstrated that
the variations produced by the steganographic encoding are similar to those of
various unmodified machine translation systems, showing that it would be im-
practical for an adversary to establish the existence of a hidden message. To
date, the highest bitrate that our prototype has achieved with this new stegano-
graphic protocol is roughly 0.33%; future modifications to the encoding scheme
may yet yield increased capacity.

Acknowledgements

Portions of this work were supported by sponsors of the Center for Education
and Research in Information Assurance and Security, by Grants IIS-0325345,
IIS-0219560, IIS-0312357, and IIS-0242421 from the National Science Founda-
tion, Contract N00014-02-1-0364 from the Office of Naval Research, and by
Purdue Discovery Park’s e-enterprise Center.

References

[1] R. Agrawal, P. Haas, and J. Kiernan. Watermarking relational data: Framework,
algorithms and analysis. The VLDB Journal, 12(2):157–169, 2003.

[2] Yaser Al-Onaizan, Jan Curin, Michael Jahr, Kevin Knight, John Lafferty,
Dan Melamed, Franz-Josef Och, David Purdy, Noah A. Smith, and David
Yarowsky. Statistical machine translation, final report, JHU workshop,
1999. http://www.clsp.jhu.edu/ws99/projects/~mt/final_report/mt-final-
report.ps.

[3] AltaVista. Babel fish translation. http://babelfish.altavista.com/.

[4] Chinatsu Aone and Scott Bennett. Evaluating automated and manual acquisition
of anaphora resolution strategies. In Meeting of the Association for Computational
Linguistics, pages 122–129, 1995.

[5] Mikhail J. Atallah, Viktor Raskin, Michael Crogan, Christian Hempelmann, Flo-
rian Kerschbaum, Dina Mohamed, and Sanket Naik. Natural language water-
marking: Design, analysis, and a proof-of-concept implementation. In Proceedings
of the 4th International Information Hiding Workshop 2001, 2001.

[6] Mikhail J. Atallah, Viktor Raskin, Christian Hempelmann, Mercan Karahan,
Radu Sion, and Katrina E. Triezenberg. Natural language watermarking and tam-
perproofing. In Proceedings of the 5th International Information Hiding Workshop
2002, 2002.

[7] Peter F. Brown, Stephen Della Pietra, Vincent J. Della Pietra, and Robert L.
Mercer. The mathematics of statistical machine translation: Parameter estima-
tion. Computational Linguistics, 19(2):263–311, 1993.

33

[8] Mark Chapman and George Davida. Hiding the hidden: A software system for
concealing ciphertext in innocuous text. In Information and Communications
Security — First International Conference, volume Lecture Notes in Computer
Science 1334, Beijing, China, 11–14 1997.

[9] Mark Chapman, George Davida, and Marc Rennhard. A practical and effective
approach to large-scale automated linguistic steganography. In Proceedings of the
Information Security Conference (ISC ’01), pages 156–165, Malaga, Spain, 2001.

[10] Philip R. Clarkson and Ronald Rosenfeld. Statistical language modeling using
the cmu-cambridge toolkit. In Proceedings of ESCA Eurospeech, 1997.

[11] C. Collberg and C. Thomborson. On the limits of software watermarking. Tech-
nical Report 164, Department of Computer Science, The University of Auckland,
Private Bag 92019, Auckland, New Zealand, Aug. 1998.

[12] C. Collberg and C. Thomborson. Software watermarking: Models and dynamic
embeddings. In ACM Symp. on Principles of Programming Languages (POPL),
pages 311–324, 1999.

[13] C. Collberg and C. Thomborson. Software watermarking: models and dynamic
embeddings. In ACM SIGPLAN–SIGACT POPL’99, San Antonio, Texas, USA,
Jan. 1999.

[14] Smart Link Corporation. Promt-online. http://translation2.paralink.com/.

[15] Jessica Fridrich, Miroslav Goljan, Petr Lisonek, and David Soukal. Writing on
wet paper. In Proc. EI SPIE San Jose, CA, January 16-20, pages 328–340, 2005.

[16] Jessica Fridrich, Miroslav Goljan, and David Soukal. Higher-Order Statistical
Steganalysis of Palette. In Proceedings of the SPIE International Conference on
Security and Watermarking of Multimedia Contents, volume 5020, pages 178–190,
San Jose, CA, 21 – 24 January 2003.

[17] N. Ge, J. Hale, and E. Charniak. A statistical approach to anaphora resolution,
1998.

[18] U. Germann, M. Jahr, D. Marcu, and K. Yamada. Fast decoding and optimal
decoding for machine translation. In Proceedings of the 39th Annual Conference
of the Association for Computational Linguistics (ACL-01), 2001.

[19] P. Golle and A. Farahat. Defending email communication against profiling attacks.
In Proceedings of the 2004 ACM workshop on Privacy in the electronic society
(WPES 04), pages 39–40, 2004.

[20] Google. Google translation. http://www.google.com/language tools.

[21] Christian Grothoff, Krista Grothoff, Ludmila Alkhutova, Ryan Stutsman, and
Mikhail J. Atallah. Translation-based steganography. In Proceedings of Informa-
tion Hiding Workshop (IH 2005), pages 213–233. Springer-Verlag, 2005. steganog-
raphy translation machine statistical information hiding text natural language.

[22] Christian Grothoff, Krista Grothoff, Ludmila Alkhutova, Ryan Stutsman, and
Mikhail J. Atallah. Translation-based steganography. Technical Report CSD
TR# 05-009, Purdue University, 2005. http://grothoff.org/christian/lit-tech.ps.

[23] NRC Handelsblad. Gratis registratie basissite.
http://www.nrc.nl/gatekeeper/register.jsp.

[24] D. Huffman. A method for the construction of minimum redundancy codes.
Proceedings of the Institute of Radio Engineers, 40:1098–1101, 1951.

34

[25] N. F. Johnson and S. Jajodia. Steganalysis of images created using current
steganography software. In IHW’98 - Proceedings of the International Information
hiding Workshop, April 1998.

[26] Shalom Lappin and Herbert J. Leass. An algorithm for pronominal anaphora
resolution. Computational Linguistics, 20(4):535–561, 1994.

[27] Linguatec. Linguatec translation. http://www.linguatec.de/.

[28] S. Lyu and H. Farid. Detecting Hidden Messages using Higher-Order Statistics
and Support Vector Machines. In Proceedings of the Fifth Information Hiding
Workshop, volume LNCS, 2578, Noordwijkerhout, The Netherlands, October,
2002. Springer-Verlag.

[29] C. D. Manning and H. Schuetze. Review of Foundations of Statistical Natural
Language Processing. MIT Press, Cambridge, MA, 1999.

[30] B. Marx. Friedensverhandlungen brauchen ruhe. Deutsche Welle Online, Jan
2005.

[31] Karl Marx. Manifest der kommunistischen partei.
http://marx.org/deutsch/archiv/marx-engels/1848/manifest/1-bourprol.htm.

[32] R. Mitkov. Factors in anaphora resolution: They are not the only things that
matter, 1997.

[33] R. Mitkov. Anaphora resolution: The state of the art, 1999.

[34] Franz Josef Och and Hermann Ney. A comparison of alignment models for statisti-
cal machine translation. In COLING00, pages 1086–1090, Saarbrücken, Germany,
August 2000.

[35] Franz Josef Och and Hermann Ney. Improved statistical alignment models. In
ACL00, pages 440–447, Hongkong, China, October 2000.

[36] A. Pfitzmann and A. Westfeld. Attacks on steganographic systems. In Third
Information Hiding Workshop, volume LNCS, 1768, pages 61–76, Dresden, Ger-
many, 1999. Springer-Verlag.

[37] Radu Sion, Mikhail J. Atallah, and Sunil Prabhakar. Rights protection for rela-
tional data. IEEE Trans. Knowl. Data Eng., 16(12):1509–1525, 2004.

[38] Ryan Stutsman, Mikhail Atallah, Christian Grothoff, and Krista Grothoff. Lost
in just the translation. In Proceedings of the 2006 ACM Symposium on Applied
Computing, pages 338–345. ACM, 4 2006. steganography translation machine
statistical information hiding text natural language.

[39] Systran Language Translation Technologies. Systran. http://systransoft.com/.

[40] Peter Wayner. Mimic functions. Cryptologia, XVI(3):193–214, 1992.

[41] Peter Wayner. Disappearing Cryptography: Information Hiding: Steganography
and Watermarking. Morgan Kaufmann, 2nd edition edition, 2002.

[42] Kevin Werbach. The bare bones guide to html.
http://werbach.com/barebones/download.html, 1999.

[43] Kevin Werbach and Hisashi Nishimura. The bare bones guide to html (japanese
translation). http://werbach.com/barebones/jp/barebone-j.html.

[44] Kevin Werbach and Iap Sin-Guan. The bare bones guide to html (simplified
chinese translation). http://werbach.com/barebones/barebone cn.html.

35

