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Abstract. Programmers increasingly implement plugin architectures in
type-safe object-oriented languages such as Java. A virtual machine can
dynamically load class files containing plugins, and a JIT compiler can
do optimisations such as method inlining. Until now, the best known
approach to type-safe method inlining in the presence of dynamic class
loading is based on Class Hierarchy Analysis. Flow analyses that are
more powerful than Class Hierarchy Analysis lead to more inlining but
are more time consuming and not known to be type safe. In this paper
we present and justify a new approach to type-safe method inlining in
the presence of dynamic class loading. First we present experimental
results that show that there are major advantages to analysing all locally
available plugins at start-up time. If we analyse the locally available
plugins at start-up time, then flow analysis is only needed at start-up
time and when downloading plugins from the Internet, that is, when
long pauses are expected anyway. Second, inspired by the experimental
results, we design a new framework for type-safe method inlining which
is based on a new type system and an existing flow analysis. In the
new type system, a type is a pair of Java types, one from the original
program and one that reflects the flow analysis. We prove that method
inlining preserves typability, and the experimental results show that the
new approach inlines considerably more call sites than Class Hierarchy
Analysis.

1 Introduction

In a rapidly changing world, software has a better chance of success when it is extensi-
ble. Rather than having a fixed set of features, extensible software allows new features
to be added on the fly. For example, modern browsers such as Firefox, Konqueror,
Mozilla, and Viola [25] allow downloading of plug-ins that enable the browser to dis-
play new types of content. Using plugins can also help keep the core of the software
smaller and make large projects more manageable thanks to the resulting modularisa-
tion. Plugin architectures have become a common approach to achieving extensibility
and include well-known software such as Eclipse (eclipse.org) and Jedit (jedit.org).

While good news for users, plug-ins architectures are challenging for optimising
compilers. This paper investigates the optimisation of software that has a plug-in ar-
chitecture and that is written in a type-safe object-oriented language. Our focus is
on method inlining, one of the most important and most studied optimisations for
object-oriented languages.
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Consider the following typical snippet of Java code for loading and running a plugin.

String className = ...;

Class c = Class.forName(className);

Object o = c.newInstance();

Runnable p = (Runnable) o;

p.run();

The first line gets from somewhere the name of a plugin class. The list of plugins is
typically supplied in the system configuration and loaded using I/O, preventing the
compiler from doing a data-flow analysis to determine all possible plugins. The second
line loads a plugin class with the given name. The third line creates an instance of the
plugin class, which is subsequently cast to an interface and used.

In the presence of this dynamic loading, a compiler has two choices: either treat
dynamic-loading points very conservatively or make speculative optimisations based
on currently loaded classes only. The former can pollute the analysis of much of the
program, potentially leading to little optimisation. The latter can potentially lead to
more optimisation, but dynamically-loaded code might invalidate earlier optimisation
decisions, and thus require the compiler to undo the optimisations. When a method
inlining is invalidated by class loading, the run-time must revirtualise the call, that
is, replace the inlined code with a virtual call. The observation that invalidations can
happen easily in a system that uses plugins leads to the question:

Question: If an optimising compiler for a plug-in architecture inlines aggres-
sively, will it have to revirtualise frequently?

This paper presents experimental results for Eclipse and Jedit that quantify the
potential invalidations and suggest how to significantly decrease the number of inval-
idations. We count which sites are likely candidates for future invalidation, which
sites are unlikely to require invalidation, and which sites are guaranteed to stay inlined
forever. These numbers suggest that speculative optimisation is beneficial and that
invalidation can be kept manageable.

In addition to the goal of inlining more and revirtualising less, we want method in-
lining to preserve typability. This paper shows how to do inlining and revirtualisation
in a way that preserves typability of the intermediate representation. The quest for
preserving typability stems from the success of several compilers that use typed inter-
mediate languages [9,15,16,17,26] to give debugging and optimisation benefits [16,24].
A bug in a compiler that discards type information might result in a run-time error,
such as a segmentation violation, that should be impossible in a typed language. On the
other hand, if optimisations are type preserving, bugs can be found automatically by
verifying that the compiler generates an intermediate respresentation that type checks.
Additionally, preserving the types in the intermediate code may help guide other opti-
misations. It is thus desirable to write optimisations in such a way that they preserve
typability.

Most of the compilers that use typed intermediate languages are “ahead-of-time”
compilers. Similar benefits are desired for “just-in-time” (JIT) compilers. A step to-
wards that goal was taken by the Jikes Research Virtual Machine [1] for Java, whose JIT
compilers preserve and exploit Java’s static types in the intermediate representations,
chiefly for optimisation purposes. However, those intermediate representations are not
typed in the usual sense—there is no type checker that guarantees type soundness
(David Grove, personal communication, 2004). In two previous papers we presented
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algorithms for type-safe method inlining. The first paper [11] handles a setting without
dynamic class loading, and the second paper [10] handles a setting with dynamic class
loading, but with the least-precise flow analysis possible (CHA). In this paper we im-
prove significantly on the second paper by presenting a new transformation and type
system that together can handle a similar class of flow analyses as in the first paper.

Our Results. We make two contributions. Our first contribution is to present ex-
perimental numbers for inlining and invalidation. These numbers show that if a com-
piler analyses all plugins that are locally available, then dynamically loading from these
plugins will lead to a miniscule number of invalidations. In contrast, when dynamically
loading an unanalysed plugin, the run-time will have to consider a significantly larger
number of invalidations. In order to ensure that loading unanalzed plugins happens less
frequently, the compiler should analyse all of the local plugins using the most powerful
technique available. That observation motivates our second contribution, which is a
new framework for type-safe method inlining. The new framework handles dynamic
class loading and a wide range of flow analyses. The main technical innovation is a
technique for changing type annotations both at speculative devirtualisation time and
at revirtualisation time, solving the key issue that we identified but side stepped in our
previous paper [10]. As in both our previous papers, we prove a formalisation of the
optimisation correct and type preserving. Using the most-precise flow analysis in the
permitted class, our new framework achieves precision comparable to 0-CFA [18,21].

2 An Experiment

Using the plugin architectures Eclipse and Jedit as our benchmark, we have conducted
an experiment that addresses the following questions:

– How many call sites can be inlined?
– How many inlinings remain valid and how many can be invalidated?
– How much can be gained by preanalysing the plugins that are statically available?

Preanalysing plugins can be beneficial. Consider the code in Figure 1. The analysis can
see that the plugin calls method m in Main and passes it an Main.B2; since main also
calls m with a Main.B1, it is probably not a good idea to inline the a.n() call in m as
it will be invalidated by loading the plugin. The analysis can also see which methods
are overridden by the plugin, in this case only run of Runnable is. The analysis must
still be conservative in some places, for example at the instantiation inside of the for

loop, as this statement could load any plugin. But the analysis can gather much more
information about the program and make decisions based on likely invalidations by
dynamically loading the known plugins.

Being able to apply the inlining optimisation in the first place still depends on the
flow analysis being powerful enough to establish the unique target. Thus, the answer
to each of the three questions depends on the static analysis that is used to determine
which call sites have a unique target. We have experimented with four different in-
terprocedural flow analyses, all implemented for Java bytecode, here listed in order of
increasing precision (the first three support type preservation, the last one does not):

– Class Hierarchy Analysis (CHA, [7,8])
– Rapid Type Analysis (RTA, [2,3])
– subset-based, context-insensitive, flow-insensitive flow analysis for type-safe method

inlining (TSMI, [11]) and
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class Main {

static Main main;

public static void main(String[] args) throws Exception {

main = new Main();

for (int i=0;i<args.length;i++) {

Class c = Class.forName(args[i]);

Runnable p = (Runnable) c.newInstance();

p.run(); // virtual if loaded plugins define multiple run methods

}

main.m(new B1()); // can stay optimised for given Plugin

}

void m(A a) { a.n(); // needs to be virtual for given Plugin }

static abstract class A {

abstract void n();

}

static class B1 extends A {

void n() { }

}

static class B2 extends Main.A {

void n() { }

}

}

class Plugin implements Runnable {

public void run() { new Main().m(new Main.B2()); }

}

Fig. 1. Example code loading a known plugin. The Plugin does not modify
Main.main, which ensures that the call to main.m() can remain inlined. If only
Plugin is loaded, p.run() can also be inlined. Pre-analysing Plugin reveals that
a.n() should be virtual, even if the flow analysis of the code without Plugin
may say otherwise.

– subset-based, context-insensitive, flow-insensitive flow analysis (0-CFA, [18,21]).

In order to show that deoptimisation is a necessity for optimising compilers for
plugin architectures, we also give the results for a simple intraprocedural flow analy-
sis (“local”) which corresponds to the number of inlinings that will never have to be
deoptimised, even if arbitrary new code is added to the system. The “local” analysis
essentially makes conservative assumptions about all arguments, including the possi-
bility of being passed new types that are not known to the analysis. A run-time system
that cannot perform deoptimisation is limited to the optimisations found by “local” if
loading arbitrary plugins is to be allowed.

The implementations of the five analyses share as much code as possible; our goal
was to create the fairest comparison, not to optimise the analysis time. All of our
experiments were run with at most 1.8 GB of memory. (1.8 GB is the maximum total
process memory for the Hotspot Java Virtual Machine running on OS X as reported by
top and also the memory limit specified at the command line using the -Xmx option.)

We use two benchmarks in our experiments:
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Jedit Can be inlined Cannot be inlined Total

Remain valid Can be invalidated
By DLCW By DLOW

not DLCW
app lib app lib app lib app lib app lib

Local 682 297 0 0 0 0 20252 7808 20934 8105

CHA 682 297 69 7 18720 6178 1463 1623 20934 8105

RTA 682 297 97 51 18723 6178 1432 1579 20934 8105

TSMI 682 297 99 59 19449 7091 704 658 20934 8105

0-CFA 682 297 103 83 19592 7191 557 534 20934 8105

Eclipse Can be inlined Cannot be inlined Total

Remain valid Can be invalidated
By DLCW By DLOW

not DLCW
app lib app lib app lib app lib app lib

Local 15497 472 0 0 0 0 481939 26512 497436 26984

CHA 15497 472 4105 61 366114 20796 111720 5655 497436 26984

RTA 15497 472 9024 169 366169 20797 106746 5546 497436 26984

TSMI 15497 472 11479 439 420029 23097 50431 2976 497436 26984

0-CFA 15497 472 9921 46 428944 23971 43074 2495 497436 26984

Fig. 2. Experimental results; each number is a count of virtual call sites

Jedit 4.2pre13 A free programmer’s text editor which can be extended with plugins
from http://jedit.org/, 865 classes; analysed with GNU classpath 0.09, from
http://www.classpath.org, 2706 classes.

Eclipse 3.0.1 An open extensible Integrated Development Environment from
http://www.eclipse.org/, 22858 classes from the platform and the CDT, JDT,
PDE and SDK components; analysed with Sun JDK 1.4.2 for Linux, 10277 classes
(using the JARs dnsns, rt, sunrsasign, jsse, jce, charsets, sunjce provider, ldapsec
and localedata).

While we have “only” two benchmarks, note that the combined size of SPECjvm98 and
SPECjbb2000 is merely 11% of the size of Eclipse. Furthermore, these are the only freely
available large Java systems with plugin architectures that we are aware of. Analysing
benchmarks, such as the SPEC benchmarks, that do not have plugins is pointless. We
are not aware of any previously published results on 0-CFA for benchmarks of this size.

We will use app to denote the core application together with the plugins that are
available for ahead-of-time analysis. Automatically drawing a clear line between plugins
and the main application is difficult considering that parts of the “core” may only be
reachable from certain plugins.

Usually, flow analyses are implemented with a form of reachability built in, and
more powerful powerful analyses are better at reachability. To further ensure a fair
comparison of the analyses, reachability is first done once in the same way for all
analyses. Then each of the analyses is run with reachability disabled. The initial
reachability analysis is based on RTA and assumes that all of app is live, in particular,
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all local plugins are treated as roots for reachability. The analysis determines the part
of the library (classpath, JDK) which is live, denoted lib, and then we remove the
remainder of the library.

The combination app + lib is the “closed world” that is available to the ahead-of-
time compiler, in contrast to all of the code that could theoretically be dynamically
loaded from the “open world”. We use the abbreviations:

DLCW = Dynamic Loading from Closed World
DLOW = Dynamic Loading from Open World.

In other words, DLCW means loading a local plugin, whereas DLOW means loading
a plugin from, say, the Internet.

Figure 2 shows the static number of virtual call sites that can be inlined under
the respective circumstances. The numbers show that loading from the local set of
plugins results in an extremely small number of possible invalidations (DLCW). The
numbers also show that preanalyzing plugins is about 50% more effective for 0-CFA
than for CHA: the number of additional devirtualizations is respectively 57% and 49%
higher for 0-CFA after compensating for the higher number of devirtualizations of 0-
CFA. When loading arbitrary code from the open world (DLOW), the compiler has
to consider almost all devirtualised call sites for invalidation. Only a tiny fraction of
all virtual calls can be guaranteed to never require revirtualisation in a setting with
dynamic loading—a compiler that cannot revirtualise calls can only perform a fraction
of the possible inlining optimisations.

The data also shows that TSMI and 0-CFA are quite close in terms of precision,
which is good news since this means it is possible to use the type-safe variant with-
out loosing many opportunities for optimisation. As expected, using 0-CFA or TSMI
instead of CHA or RTA cuts in half the number of virtual calls left in the code after
optimization. Notice that for Eclipse, in the column for call sites that can be inlined
and invalidated by DLCW, 0-CFA has a smaller number than TSMI. This is not an
anomaly; on the contrary, it shows that 0-CFA is so good that it both identifies 7357
more call sites in app for inlining than TSMI and determines that many call sites
cannot be invalidated by DLCW.

The closest related work to our experiment is the extant analysis of Sreedhar,
Burke, and Choi [22] which determines whether a variable can only contain objects
of classes from the closed world. They did not consider the more detailed question of
whether inlining can be invalidated due to DLCW or only due to DLOW. Their largest
benchmark was jess which has 112 classes.

3 Overview of our Framework

Our framework uses a simple construct called dynnew which abbreviates the Java ex-
pression Class.forName(...).newInstance(), that is, an operation that loads some
class and immediately instantiates it. Using this construct means that we do not need
to model the result of Class.forName(...) and deal with objects that reify classes,
simplifying the operational semantics.

A New Type System. In later sections we will prove that TSMI supports type-safe
method inlining for a setting with dynamic class loading. We use a new type system
for the intermediate representation: each type is a pair of Java types. In this section we
explain the main problem that lead us to the new type system. Our running example
is an extended version of one from our paper on TSMI [11].
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class B { // code snippet 1:

B m() { return this; } B x = new C(); // x is a field

} x = x.m();

x = ((B)new C()).m();

class C extends B {

C f; // code snippet 2:

B m() { B y; // y is a field

return this.f; if (...) { y = new C(); }

} else { y = (B)dynnew; }

} y = y.m();

The two code snippets contain three method calls, each to a receiver object of type B.
CHA will for each method call determine that there are two possible target methods,
namely B.m and C.m, so CHA will lead to inlining of none of the three call sites.

In snippet 1, which does not have dynamic loading, both of the calls have unique
targets that are small code fragments, so it makes sense to inline these calls:

x = x.f; // does not type check

x = ((B)new C()).f // does not type check

These two assignments do not type check because while this in class C has static
type C, both x and (B)new C() have static type B. Since B has no f field, both field
selections fail the type checker. As explained in our previous paper [11], we remedy this
problem by changing static type information to reflect the more accurate information
the flow analysis has. In particular, the flow analysis has determined that x and the
cast expression only evaluate to objects of type C, and so we transform the static type
information to produce the following well-typed code snippet:

C x = new C();

x = x.f; // type checks

x = ((C)new C()).f; // type checks

To understand the problems introduced by dynamic class loading, let us consider code
snippet 2. The method call y.m() has a unique target method at least until the next
dynamic class loading. So it makes sense to inline the call, even though that decision
may be invalidated later. To see how this may be achieved, the key question is:

Question: What is the flow set for dynnew ?

With CHA, the answer is given by the static type of dynnew, which is Object, and
so the flow set is “all classes in the program”. Since dynnew has no impact on the
execution until the next dynamic class loading, we could assign dynnew the empty flow
set! We extend TSMI to dynamic loading in this way. However, this idea runs into a
difficulty quickly, as we explain next.

For code snippet 2, our previous approach transforms the types in a way that
preserves well-typedness:

C y; // the type of y is changed to C

if (...) { y = new C(); }

else { y = (C)dynnew; } // the type cast is changed to C

y = y.m();
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Let us now suppose that control reaches dynnew and that it loads and instantiates a
class D which extends class B and is otherwise unrelated to class C. In the original code
snippet 2, the cast of dynnew is to B, so it succeeds. However, in the transformed code
snippet, the cast of dynnew is to C, so it fails. Thus, if we transform the types in the
style of our previous paper [11] and we do not transform the types again at the time
of evaluating dynnew, we change the meaning of the program!

The source of the difficulty is that a type cast can viewed as doing double duty: it
does a run-time check and it helps the type checker. Our solution is to change the cast
into a form that uses a pair of types. In code snippet 2, we would change the cast of
dynnew to (B,C)dynnew. We say that B is the original type and that C is the current
type. The current type is based on the flow analysis. The original type is used to do
the run-time check while the current type is used to help the type checker. In fact, we
need to change the entire type system and use pairs of types everywhere, not just in
casts. Note, to be sound, the current type must be a subtype of the original type.

Armed with the idea of using pairs of types, we can now state the type of dynnew.
The original type continues to be Object and the current type is derived from the flow
set which is the empty set. The empty set corresponds to a type which is a subtype
of all other types. To reflect that, we introduce a type Null and give dynnew the type
(Object, Null). This has the pleasant side effect that we can remove an artificial
requirement from the original formulation of TSMI, namely that all flow sets have to
be nonempty.

Returning to code snippet 2, our approach will first transform the snippet into:

(B,C) y; // the type of y is changed to (B,C)

if (...) { y = new C(); }

else { y = (B,C)dynnew; } // the type cast is changed to (B,C)

y = y.m();

Next, evaluating dynnew and thereby loading and instantiating a class D can be modeled
as replacing dynnew with new D() as well as a new flow analysis of the program. The
new analysis changes the current types, resulting in the following type-correct code:

(B,B) y;

if (...) { y = new C(); }

else { y = (B,D)new D(); }

y = y.m();

Notice that the current type of y was B initially, then the TSMI-based optimization
changed it to the more specific type C, and then the dynamic loading of class D changed
the current type of y back to B.

In summary, the new ideas are:

– A type is a pair of Java types in which the second Java type is a subtype of the
first Java type.

– The Null type is used to type dynnew.
– A type cast uses the first Java type in the pair.

Our main theorem is that with a type system based on those three ideas, TSMI-
based devirtualisation and revirtualisation is type preserving. As our experiments in
the previous section show, the new approach will lead to considerably more inlining
than the previously best approach, namely CHA. Later we formalise our ideas and
prove the main theorem. First we clarify how revirtualisation is done and how we
formalise it, and clarify how we do our proofs.
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Patch Construct. Until now we have not said much about how a virtual machine
revirtualises a method invocation. The main problem with revirtualization is that an
invalidated method inlining may be in a currently executing method, requiring a non-
trivial update of the program state. We focus on a technique for doing this update
called patching, used by some virtual machines (for example [14] and ORP [5,6]). Patch-
ing is a form of in-place code modification for reverting to unoptimised code, and does
not require any update of the stack or recompilation of methods. The basic idea is to
compile the call x.m() to the following code:

label l1: [Inline x.C::m()]

label l3: ...

label l2: x.m(); [out of line]

jump l3;

(Where out of line means after the end of the function being compiled.) Then if a
class is loaded that invalidates the inlining, the virtual machine writes a jump l2;

instruction at address l1. There are important low-level details that we abstract (these
and techniques other than patching are described in our previous paper [10]).

To formalise this idea in a small language, we need an expression of the form
e1 patchto` e2 where ` is a label. Additionally, program states will have a component,
called the patch set, that is a set of labels of patches that have been applied. If ` is in
this set then the above expression acts like e2, if not it acts like e1. This idea models
what the assembly sequence above does.

Note that, as in previous papers, we concentrate on devirtualisation, the first step of
method inlining, as the other step is straightforward. Given this focus, a general patch
construct is not needed. Instead we use a construct of the form e.[C::]`m(), which can
be though of as e.C::m() patchto` e.m() where e.C::m() invokes C’s implementation
of m on e, and ultimately should be thought of as the code above.

The correctness of speculative inlining with patching is far less obvious than the
correctness of inlining for whole programs. We use a proof framework developed in
our previous paper [10]. Note that we do devirtualization of both the initial program
and of dynamically loaded classes. Furthermore, the patching operation, which is part
of the optimisation, is a runtime operation. The usual formalisation methods do not
suffice, and instead we formalise the optimisation as a second semantics. This semantics
includes the transformation that does devirtualisation and the patching operation as
part of the semantics of dynnew. To prove correctness of the optimisation we show that
the optimising semantics gives the same meaning to a program as a standard semantics
does. To prove type preservation, we prove the optimising semantics type safe.

4 Dynamic Loading Language

This section begins the formal development of our results. It defines a simple language
with dynamic class loading that is the source language for the optimisation. The lan-
guage is a variant of Featherweight Java (FJ [13]), adding just one new expression
form for dynamically loading a new class. Due to space limitations we omit many
standard or obvious details (readers can refer to the original FJ paper or our previous
dynamic loading paper). The optimised code will use a slightly different syntax (see
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the following section), here is the common syntax:

Expressions e ::= x` | new C`(e) | e.f` | e.m`(e) | (t)`e | dynnew`

Method Declarations M ::= t` m(t x`) { return e; }
Class Declarations CD ::= class C1 extends C2 { t f

`
; M }

And here is the standard syntax:

Types t ::= C

Program State P ::= (CD;e)

We use standard metavariables and the bar notation from the FJ paper.
To simplify matters, we assume that field names are unique, that all x` expressions

have the same label as the binder of x, and that all labels of this in a class have the
same label. These restrictions mean that lab(f) identifies a unique label for each field
declared in a program, and that in the given scope lab(x) identifies a unique label for
each variable in that scope.

Some auxiliary definitions that are used in the rest of the paper appear in appendix
A. The standard operation semantics is similar to FJ extended with a rule for dynnew:

CD = class C extends · · · { · · · }

(CD;X〈dynnew`〉) CD,e,`′7→s (CD, CD;X〈new C`′(e)〉)
(1)

Here X ranges over evaluation contexts. To keep the semantics deterministic, we explic-
itly label the reduction with a label of the form (CD, e, `), where CD is the newly loaded
class, e are the initialiser expressions, and ` is the label to use on the new object.

The typing rules are those of Featherweight Java extended with a rule for dynnew;
they can be recovered from the more general rules in Figure 4 by ignoring the right type
in the type pairs. The type system is sound as can be proven by standard techniques.

5 Devirtualisation Optimisation

This section formalises speculative devirtualisation with patching for revirtualisation
as a second semantics, called the optimising semantics, for the language of the previous
section. The additional constructs required are described next, following by the actual
transformation, and finally the semantics and the type system.

Syntax. The optimised semantics needs a patching construct and an associated patch
set in the program states, and two types in each static typing annotation—the original
and the current type. The modified syntax is:

Types t ::= (C1,C2)

Expressions e ::= · · · | e.[C::]`m(e)

Program States P ::= (CD;S;e)

Here S, called the patch set , is the set of labels of the patch constructs that had to
be revirtualised. A patch construct has the form e.[C::]`m(e). If ` is in the patch set
S then this expression acts like a normal virtual method invocation e.m`(e). Otherwise
it acts like a nonvirtual method invocation—it invokes C’s version of m on object e with
arguments e. Types are now pairs where the left class name is the original type from
the unoptimised code, and the right class name is the current type based on the current
flow analysis.
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poly(P, φ) = {` | e.[C::]`
m(e) ∈ P,∃D ∈ φ(lab(e)) : impl(P, D, m) 6= C::m}

fields(CD, C) = t f;

(CD;S;X〈new C`1(e).f
`2
i 〉) 7→o (CD;S;X〈ei〉)

(2)

mbody(CD, C, m) = (x, e, `)

(CD;S;X〈new C`1(e).m`2(d)〉) 7→o (CD;S;X〈e{this, x := new C`1(e), d}〉)
(3)

CD ` C <: D

(CD;S;X〈((D,E))`′new C`(e)〉) 7→o (CD;S;X〈new C`(e)〉)
(4)

CD = class C extends · · · { · · · } P = (CD, CD;S;X〈new C`(e)〉) φ = fa(P)

CD′ = retype(CD, φ) X′ = retype(X, φ) CD′ = [[retype(CD, φ)]]
CD,CD,φ

e′ = [[retype(e, φ)]]
CD,CD,φ

S′ = S ∪ poly(P, φ)

(CD;S;X〈dynnew`〉) CD,e,`′7→o (CD′, CD′;S′;X′〈new C`′(e′)〉)
(5)

mbody(CD,

{
C `2 ∈ S

D `2 /∈ S

}
, m) = (x, e, `)

(CD;S;X〈new C`1(e).[D::]`2m(d)〉) 7→o (CD;S;X〈e{this, x := new C`1(e), d}〉)
(6)

Fig. 3. Optimised Operational Semantics

Transformation. The transformation of code is based on a flow that assigns sets of
class names, called flow sets, to expressions, fields, method parameters, and method
returns. The set should include all classes in the current program state that the ex-
pression might evaluate to. A flow analysis takes a program state and returns a flow
for it, and it should ignore the current types. Before applying the transformation, the
static type information must be transformed so that the current types reflect the flow
used. The retype function achieves this change. Its definition is in Appendix A, as the
only interesting clause is: retype((C1,C2)

`, φ) = (C1,tφ(`)). The transformation takes
an expression, method declaration, or class declaration and changes monomorphic vir-
tual method invocations into patchable nonvirtual method invocations. It appears in
Appendix A as the only interesting clause is:

[[e.m`(e)]]
CD,φ

= [[e]]
CD,φ

.[C::]`m([[e]]
CD,φ

) if ∀D ∈ φ(lab(e)) : impl(CD, D, m) = C::m

Optimised Semantics. The optimised semantics is parameterised by a flow analysis
fa (that is, a function that takes an optimised-syntax program state and returns a
flow for it). A standard syntax program (CD;e) starts in the optimised semantics state
([[retype(CD, φ)]]

CD,φ
;∅;[[retype(e, φ)]]

CD,φ
) where φ = fa(CD;∅;e). In other words a flow

analysis is performed on the initial program and used to transform it to form the initial
state along with an empty patch set.

The reduction rules for the optimised semantics appear in Figure 3. The rules are
similar to the standard semantics with the following modifications. The rule for cast
uses the original type in the cast rather than the current type to determine if the
cast should succeed. The rule for dynamic new is the most complex. It performs a
flow analysis on the unoptimised new program state. Then it uses this flow analysis
to retype the program state and to transform the new class declaration and initialiser
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expressions. Finally, it adds to the patch set the labels of patch constructs that are no
longer monomorphic. The rule for the patch construct is similar to the rule for method
invocation except in how it finds the method body. If the label is in the patch set, then
the construct is “patched” and should act like a virtual method invocation. In this case
it uses the object’s class to lookup the body as in the rule for method invocation. If
the label is not in the patch set, then the construct acts like a nonvirtual invocation,
and uses the class in the construct, D, to lookup the method body.

Type System. The typing rules appear in Figure 4. The rules are fairly straightfor-
ward. They essentially are checking the original and current typing in parallel. To look
up field or method types, since these are the same whether we look in the superclass
or subclass, we simply use the original type. Two rules treat the current and original
types differently. For dynamic new, the current is Null as it is always retyped before it
is replaced by an actual object, but its original type must be Object. For the patch-
ing construct, if not currently patched then the object must be in the type E being
dispatched to, so we require the current type to be a subtype of this.

Except for the details of subtyping, the rules are deterministic, and for a program
state P, there is a unique t and derivation of ` P ∈ t. Therefore, given a program and
an occurrence of a label in it, there is a uniquely determined type associated with that
occurrence: either the type of the expression it labels, or the field, return, or parameter
type that it labels. A flow φ for a program is type respecting if and only if for each label
` in the program, each class C in φ(`), and each original type D associated with `, C is
a subtype of D.

6 Correctness

In this section we prove the optimisation correct, that is, that it preserves typability
and operational semantics. The optimisation is correct, however, only for certain flow
analyses—the ones that respect the typing rules and approximate the operational se-
mantics. A flow φ for a program P is acceptable exactly when it satisfies the conditions
in Figure 5. A flow analysis fa is correct if fa(P) is an acceptable and type-respecting
flow for P whenever ` P ∈ t for some t. We prove the optimisation correct when it is
based on a correct flow analysis.

Typability Preservation. Since the optimisation is stated as a second semantics for
the language, typability preservation means that a well-typed standard syntax program
does not get stuck in the optimised semantics. However, it is not enough that the
original program type checks, all dynamically loaded classes must type check as well.
We say that (CD, e, `) type checks with respect to program (CD;S;e) exactly when
CD, CD; S ` CD and CD, CD; S; · ` e ∈ t where CD = class C extends · · · { · · · } and
fields(CD, CD, C) = t f;. We say that a reduction sequence type checks exactly when
the initial program state type checks and all the labels in the reduction sequence type
check with respect to the program state that precedes them.

Theorem 1 (Typability Preservation). If P is a well-typed standard-syntax pro-
gram, then any well-typed reduction sequence in the optimised semantics, which starts
from a state corresponding to P and is based on a correct flow analysis, does not end
in a stuck state.
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CD ` Null <: Object CD ` Object <: Object
(7)

class C extends D { · · · } ∈ CD

CD ` Null <: C CD ` C <: C CD ` C <: D
(8)

CD ` C <: D CD ` D <: E

CD ` C <: E
(9)

CD ` C2 <: C1

CD ` (C1,C2)
(10)

CD ` C1 <: D1 CD ` C2 <: D2

CD ` (C1,C2) <: (D1,D2)
(11)

CD; S; Γ ` x ∈ Γ (x)
(12)

fields(CD, C) = t f; CD; S; Γ ` e ∈ t′ CD ` t′ <: t

CD; S; Γ ` new C`(e) ∈ (C,C)
(13)

CD; S; Γ ` e ∈ (C,D) fields(CD, C) = t f;

CD; S; Γ ` e.f`
i ∈ ti

(14)

CD; S; Γ ` e ∈ (C,D) mtype(CD, C, m) = t → t CD; S; Γ ` e ∈ t′ CD ` t′ <: t

CD; S; Γ ` e.m`(e) ∈ t
(15)

CD; S; Γ ` e ∈ t′ CD ` t

CD; S; Γ ` (t)`e ∈ t
(16)

CD; S; Γ ` dynnew` ∈ (Object,Null)
(17)

CD; S; Γ ` e ∈ (C,D)

mtype(CD, C, m) = t → t

CD; S; Γ ` e ∈ t′

CD ` t′ <: t

mtype(CD, E, m) is defined
` /∈ S ⇒ CD ` D <: E

CD; S; Γ ` e.[E::]`m(e) ∈ t
(18)

CD ` t CD ` t

CD; S; this : (C,C), x : t ` e ∈ t′ CD ` t′ <: t

can-declare(CD, C, m, t → t)

CD; S ` t` m(t x`) { return e; } in C
(19)

CD ` t CD; S ` M in C

CD; S ` class C extends D { t f
`
; M }

(20)

CD; S ` CD CD; S; · ` e ∈ t

` (CD;S;e) ∈ t
(21)

Fig. 4. Typing Rules for the Optimised Syntax
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– For each new C`(e) in P where fields(CD, C) = t f;:

φ(lab(e)) ⊆ φ(lab(f)) (22)

C ∈ φ(`) (23)

– For each e.f` in P:
φ(lab(f)) = φ(`) (24)

– For each e.m`(e) in P where (C1,C2) is the static type of e and mbody(P, C1, m) =
(x, e′, `′):

φ(lab(e)) ⊆ φ(lab(x)) (25)

φ(`′) = φ(`) (26)

And for each D ∈ φ(lab(e)) where impl(P, D, m) = E::m and `′ is the label of the
this occurrences in E:

φ(lab(e)) ⊆ φ(`′) (27)

– For each ((C,D))`e in P:

φ(lab(e)) ∩ subclasses(P, C) ⊆ φ(`) (28)

– For each dynnew` in P:

φ(`) = ∅ (29)

– For each e.[C::]`m(e) in P where (C1,C2) is the static type of e and
mbody(P, C1, m) = (x, e′, `′):

φ(lab(e)) ⊆ φ(lab(x)) (30)

φ(`′) = φ(`) (31)

And if ` ∈ S where P = ( · · · ;S; · · · ) then for each D ∈ φ(lab(e)) where
impl(P, D, m) = E::m and `′ is the label of the this occurrences in E:

φ(lab(e)) ⊆ φ(`′) (32)

And if ` /∈ S then the following where impl(P, C, m) = E::m and `′ is the label of
the this occurrences in E:

φ(lab(e)) ⊆ φ(`′) (33)

– For each class C in P with label ` for C’s this occurrences:

C ∈ φ(`) (34)

– For each method t` m(t x`) { return e; } in P:

φ(lab(e)) ⊆ φ(`) (35)

– If t`1 m(t x`1
1 ) { return e1; } overrides t`2 m(t x`2

2 ) { return e2; } in P then:

φ(`1) = φ(`2) (36)

φ(`1) = φ(`2) (37)

Fig. 5. The Conditions for an Acceptable Flow Analysis
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The proof is given in the full version of the paper which is available from our
webpages. The key to proving the theorem is proving that at each point in the reduction
sequence the program state type checks and there is an acceptable and type-respecting
flow for the program state. Formally, we define ` (P, φ) good to mean ` P ∈ t for some
t, φ is an acceptable and type-respecting flow for P, and the current type of every static
typing annotation in P is tφ(`) where ` is the label associated with the annotation. As
with standard type soundness arguments, we show that reduction preserves goodness
(rather than typability), and that typable (a subset of good) states are not stuck.

Operational Correctness. This section will prove that the optimisation preserves the
operational semantics. Specifically it will show that the optimised semantics simulates
the standard semantics and vice versa.

To state the result we need a correspondence relation correspondsφ(P, P′). This re-
lation generalises the transformation slightly to reflect the fact that the transformation
is applied at consecutive loading points rather than all at once. Its definition appears
in the full version of the paper. Essentially, where the left program has a virtual dis-
patch the right program may have one of two expressions. It can have a corresponding
virtual dispatch. It can also have an equivalent patch construct if the virtual dispatch
is monomorphic in the current program (the subscripts CD and φ on the relation) or if
the patch label is in the current patch set (the subscript S on the relation).

Given the correspondence relation, two facts are true. First, if P′ is the initial state
in the optimised semantics for program P then correspondsφ(P, P′) where φ is the flow
analysis used to compute the initial state. Second, the optimised semantics simulates
the standard semantics and vice versa, as stated in the following theorem.

Theorem 2 (Operational Correctness). If correspondsφ1
(P1, P

′
1) and the flow-analysis

is correct then:

– If P1
L7→s P2 then P′

1
L7→o P

′
2 and correspondsφ2

(P2, P
′
2) for some P′

2 and φ2.

– If P′
1

L7→o P
′
2 then P1

L7→s P2 and correspondsφ2
(P2, P

′
2) for some P2 and φ2.

The proof of both these facts is very similar to the proof in our previous paper [10].

7 Conclusion
We have presented a new type system and a theorem that shows that TSMI is type
preserving in the presence of dynamic class loading. Our experimental results show
that TSMI will lead to considerably more inlining than the currently best approach,
namely CHA. Our experimental results also show the value of analyzing all locally
available plugins at start-up time: only few inlinings will be invalidated when loading
a plugin which is locally available. The flow analysis has to be recomputed only when
a plugin is loaded from non-local sources. Since a delay is to be expected for such
remote operations anyway, the extra delay from redoing the flow analysis can probably
be afforded at that time without an overly negative impact on the user’s experience.

Researchers have recently developed many new ideas for efficiently doing flow anal-
ysis, virtualisation, and devirtualisation in JIT compilers [4,12,19,20]. Our results can
form the basis of a new generation of typed intermediate representations used by pow-
erful, type-preserving JIT compilers.

In future work we would like to go beyond the static counts of virtual call sites. We
would like to count how many times each call site is executed, and count how many
call sites turn out to be monomorphic at run time. Researchers might also explore how
our results fit with recent work on dynamic code updates [23].
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Appendix A: Details of the Formalisation

The function fields(CD, C) returns C’s fields (declared and inherited) and their types;
mtype(CD, C, m) returns the signature of m in C, it has the form t → t where t are the
argument types and t is the return type; mbody(CD, C, m) returns the implementation
of m in C, it has the form (x, e, `) where e is the expression to evaluate, x are the
parameters, and ` is the label of the method return; impl(CD, C, m) returns the class
from which C inherits m (this could be C itself), it has the form D::m where D is the
class; can-declare(CD, C, m, t → t) checks that C is allowed to declare m with signature
t → t—this would not be the case if one of C’s ancestors in the class hierarchy also
declared m with a different signature.
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Field Lookup, Method Information and Inheritance Checking

fields(CD, Object) = ·
CD(C) = class C extends D { t f

`
; M } fields(CD, D) = t′ f′;

fields(CD, C) = t′ f′;t f;

CD(C) = class C extends D { t f
`
; M } t` m(t x`) { return e; } ∈ M

mtype(CD, C, m) = T → t

mbody(CD, C, m) = (x, e, `)
impl(CD, C, m) = C::m

CD(C) = class C extends D { t f
`
; M } m not defined in M

mtype(CD, C, m) = mtype(CD, D, m)
mbody(CD, C, m) = mbody(CD, D, m)

impl(CD, C, m) = impl(CD, D, m)

CD(C) = class C extends D { · · · } mtype(CD, D, m) = t′ → t′ implies t = t′ ∧ t = t′

can-declare(CD, C, m, t → t)

The Retyping Function and the Transformation

retype((C1,C2)
`, φ) = (C1, t φ(`))

retype(x`, φ) = x`

retype(new C`(e), φ) = new C`(retype(e, φ))

retype(e.f`, φ) = retype(e, φ).f`

retype(e.m`(e), φ) = retype(e, φ).m`(retype(e, φ))

retype((t)`e, φ) = (retype(t`, φ))`retype(e, φ)

retype(dynnew`, φ) = dynnew`

retype(e.[C::]`m(e), φ) = retype(e, φ).[C::]`m(retype(e, φ))

retype(t` m(t x`) { return e; }, φ) = retype(t`, φ)` m(retype(t
`
, φ) x`)

{ return retype(e, φ); }
retype(class C1 extends C2 { t f

`
; M }, φ) = class C1 extends C2

{ retype(t
`
, φ) f

`
; retype(M, φ) }

[[x`]]
CD,φ

= x`

[[new C`(e)]]
CD,φ

= new C`([[e]]
CD,φ

)

[[e.f`]]
CD,φ

= [[e]]
CD,φ

.f`

[[e.m`(e)]]
CD,φ

= [[e]]
CD,φ

.[C::]`m([[e]]
CD,φ

)

if ∀D ∈ φ(lab(e)) : impl(CD, D, m) = C::m

[[e.m`(e)]]
CD,φ

= [[e]]
CD,φ

.m`([[e]]
CD,φ

)

otherwise

[[(t)`e]]
CD,φ

= (t)`[[e]]
CD,φ

[[dynnew`]]
CD,φ

= dynnew`

[[e.[C::]`m(e)]]
CD,φ

= [[e]]
CD,φ

.[C::]`m([[e]]
CD,φ

)

[[t` m(t x`) { return e; }]]
CD,φ

= t` m(t x`) { return [[e]]
CD,φ

; }

[[class C1 extends C2 { t f
`
; M }]]

CD,φ
= class C1 extends C2 { t f

`
; [[M]]

CD,φ
}
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