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Parallel Computing is Mainstream

• Desktop/Pentium Xeon: hyperthreading, SMP

• Notebook/Core Duo: 2 cores

• Playstation 3/Cell: 9 processing units

• Supercomputer/Blue Gene: 128k processors

Programming these systems well is hard, even at 50% of peak!
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The Problem:
Developing Parallel Stream Applications

• Developers know how to write sequential code

• Parallel programing is error-prone

• High-performance parallel programming is really hard

• With GPUs for $4,000, we could have 2,600 cores...

⇒ Developers much more expensive than hardware
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X10 vs. the DUP System1

X10

10x faster, 10x as productive in 10 years for BlueGene

DUP

1
2 the speed, 10x as productive in 10 months for POSIX

1Available at http://dupsystem.org/
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A Blast from the Past: CMS Pipelines

• Similar to UNIX pipes

• Sligthly different syntax

• NEW: multistream pipelines

See also: CMS Pipelines User’s Guide [7]
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Example: CMS Pipeline

Pipe < INPUT FILE A % input is a stage!
| drop 4 % like ‘‘eat 4’’
| sort 34-36 % sort by colums 34-36

| > OUTPUT FILE B % output is a stage!
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Example: CMS Multistream Pipeline

Pipe < INPUT FILE A
| d:drop 4 % label stage ‘‘d’’
| sort 34-36 %
| i:faninany % label stage ‘‘i’’
| > OUTPUT FILE B
? % end of primary pipeline
d: % take 2nd output of ‘‘d’’
| i: % make it the 2nd input of ‘‘i’’
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Limitations of CMS Pipeines

• Sequential execution on one CPU, no parallelism

• Only available on CMS and z/OS

• Record-oriented (CMS is a mainframe OS)

... but these are easy to address!
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Our Solution:
DUP ≡ Distributed Multi-Stream Pipelines

• Computation composed of stages in a flow-graph

• Stages run as individual processes in parallel

• Stages can have any number of inputs and outputs

• DUP used to connect stages

• DUP provides stages for common problems

⇒ Simple stream-oriented parallel programming model that also
guides developers towards modular design
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Example: DUP “Assembly”

dup <<EOF
drop@localhost[0<file.a,1|sort:0,3|merg:3] $ drop 4 ;
sort@localhost[1|merge:0] $ sort ;
merg@localhost[1>file.b] $ faninany;
EOF
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DUP Architecture
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Vision: DUP High-level Language

import duplib;

$in = read("file.a");
($body, $head) = drop ($in, "4");
write (faninany (sort ($body),

$head),
"file.b");
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DUP Limitations

• Stages communicate via streams

⇒ Computation must be stream-oriented

• Stages run in parallel, internals are up to the stage

⇒ DUP parallelism limited by stages
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DUP Application Domains

• Genome sequence processing

• Discrete event simulation

• Intrusion Detection

• Video conferencing

• Event surveillance

• System administration

• ...
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Related Work

• InfoSphere Streams [1] & Dryad [8]

• StreamFlex [10] & StreamIt [11]

• Kahn Process Networks [9]

• Linda [5]
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Future Work

• High-level DUP programming language (will be an
aspect-oriented coordination mini-language)

• Develop more filters/stages and applications

• Type systems for streams (see also: SPADE [6])

• Add common features of distributed systems [2, 3]
while maintaining simplicity, portability and language
independence
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Questions

?
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Copyright

Copyright (C) 2009 Christian Grothoff

Verbatim copying and distribution of this
entire article is permitted in any medium,
provided this notice is preserved.
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CMS Pipeline Terminology

• Stage – Program that accomplishes a specific task

• Stage Separator – |

• Stream – flow of data into and out of a stage

• Device Driver – stage that interfaces with the
environment

• Filter – processes data without interfacing with
environment
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Common Filters in CMS

locate, find, nlocate, nfind: select records with specified target

between, inside, outside, ninside: select records between specified
targets

take, drop: select records by counter

combine, overlay: combine records

⇒ roughly equivalent to UNIX filters
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Pipeline Stalls

Multistream pipelines introduce a new potential problem:

• Every stage might be waiting for some other stage to
perform some function (read or write)

• Cause is usually stage that reads multiple inputs in a
particular order (or multiple records)

• Preceding stages may not be able to deliver order or
quantity required

When a stall occurs, you receive a return code of “-4095”.
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CMS Multistream Pipelines

• Multistream pipelines are pipelines that contains stages
that have multiple input or output streams

• Implement primary pipeline; place a label on every stage
with multiple input or output streams

• Use the endchar “?” to indicate the end of the primary
pipeline

• Write the next pipeline, using the labels to refer to
streams from the primary pipeline
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