
Christian Grothoff

Productive Parallel Programming
for the Masses

Christian Grothoff
christian@grothoff.org

University of Denver

http://grothoff.org/christian/ 1



Christian Grothoff

Parallel Computing is Mainstream

• Desktop/Pentium Xeon: hyperthreading, SMP

• Notebook/Core Duo: 2 cores

• Playstation 3/Cell: 9 processing units

• Supercomputer/Blue Gene: 128k processors

Programming these systems well is hard, even at 50% of peak!

http://grothoff.org/christian/ 2



Christian Grothoff

The Problem:
Developing Parallel Stream Applications

• Developers know how to write sequential code

• Parallel programing is error-prone

• High-performance parallel programming is really hard

• With GPUs for $4,000, we could have 2,600 cores...

⇒ Developers much more expensive than hardware

http://grothoff.org/christian/ 3



Christian Grothoff

X10 vs. the DUP System1

X10

10x faster, 10x as productive in 10 years for BlueGene

DUP

1
2 the speed, 10x as productive in 10 months for POSIX

1Available at http://dupsystem.org/

http://grothoff.org/christian/ 4



Christian Grothoff

A Blast from the Past: CMS Pipelines

• Similar to UNIX pipes

• Sligthly different syntax

• NEW: multistream pipelines

See also: CMS Pipelines User’s Guide [7]

http://grothoff.org/christian/ 5



Christian Grothoff

Example: CMS Pipeline

Pipe < INPUT FILE A % input is a stage!
| drop 4 % like ‘‘eat 4’’
| sort 34-36 % sort by colums 34-36

| > OUTPUT FILE B % output is a stage!

http://grothoff.org/christian/ 6



Christian Grothoff

Example: CMS Multistream Pipeline

Pipe < INPUT FILE A
| d:drop 4 % label stage ‘‘d’’
| sort 34-36 %
| i:faninany % label stage ‘‘i’’
| > OUTPUT FILE B
? % end of primary pipeline
d: % take 2nd output of ‘‘d’’
| i: % make it the 2nd input of ‘‘i’’

http://grothoff.org/christian/ 7



Christian Grothoff

Limitations of CMS Pipeines

• Sequential execution on one CPU, no parallelism

• Only available on CMS and z/OS

• Record-oriented (CMS is a mainframe OS)

... but these are easy to address!

http://grothoff.org/christian/ 8



Christian Grothoff

Our Solution:
DUP ≡ Distributed Multi-Stream Pipelines

• Computation composed of stages in a flow-graph

• Stages run as individual processes in parallel

• Stages can have any number of inputs and outputs

• DUP used to connect stages

• DUP provides stages for common problems

⇒ Simple stream-oriented parallel programming model that also
guides developers towards modular design

http://grothoff.org/christian/ 9



Christian Grothoff

Example: DUP “Assembly”

dup <<EOF
drop@localhost[0<file.a,1|sort:0,3|merg:3] $ drop 4 ;
sort@localhost[1|merge:0] $ sort ;
merg@localhost[1>file.b] $ faninany;
EOF

http://grothoff.org/christian/ 10



Christian Grothoff

DUP Architecture

http://grothoff.org/christian/ 11



Christian Grothoff

Vision: DUP High-level Language

import duplib;

$in = read("file.a");
($body, $head) = drop ($in, "4");
write (faninany (sort ($body),

$head),
"file.b");

http://grothoff.org/christian/ 12



Christian Grothoff

DUP Limitations

• Stages communicate via streams

⇒ Computation must be stream-oriented

• Stages run in parallel, internals are up to the stage

⇒ DUP parallelism limited by stages

http://grothoff.org/christian/ 13



Christian Grothoff

DUP Application Domains

• Genome sequence processing

• Discrete event simulation

• Intrusion Detection

• Video conferencing

• Event surveillance

• System administration

• ...

http://grothoff.org/christian/ 14



Christian Grothoff

Related Work

• InfoSphere Streams [1] & Dryad [8]

• StreamFlex [10] & StreamIt [11]

• Kahn Process Networks [9]

• Linda [5]

http://grothoff.org/christian/ 15



Christian Grothoff

Future Work

• High-level DUP programming language (will be an
aspect-oriented coordination mini-language)

• Develop more filters/stages and applications

• Type systems for streams (see also: SPADE [6])

• Add common features of distributed systems [2, 3]
while maintaining simplicity, portability and language
independence

http://grothoff.org/christian/ 16



Christian Grothoff

Questions

?

http://grothoff.org/christian/ 17



Christian Grothoff

Copyright

Copyright (C) 2009 Christian Grothoff

Verbatim copying and distribution of this
entire article is permitted in any medium,
provided this notice is preserved.

http://grothoff.org/christian/ 18



Christian Grothoff

CMS Pipeline Terminology

• Stage – Program that accomplishes a specific task

• Stage Separator – |

• Stream – flow of data into and out of a stage

• Device Driver – stage that interfaces with the
environment

• Filter – processes data without interfacing with
environment

http://grothoff.org/christian/ 19



Christian Grothoff

Common Filters in CMS

locate, find, nlocate, nfind: select records with specified target

between, inside, outside, ninside: select records between specified
targets

take, drop: select records by counter

combine, overlay: combine records

⇒ roughly equivalent to UNIX filters

http://grothoff.org/christian/ 20



Christian Grothoff

Pipeline Stalls

Multistream pipelines introduce a new potential problem:

• Every stage might be waiting for some other stage to
perform some function (read or write)

• Cause is usually stage that reads multiple inputs in a
particular order (or multiple records)

• Preceding stages may not be able to deliver order or
quantity required

When a stall occurs, you receive a return code of “-4095”.

http://grothoff.org/christian/ 21



Christian Grothoff

CMS Multistream Pipelines

• Multistream pipelines are pipelines that contains stages
that have multiple input or output streams

• Implement primary pipeline; place a label on every stage
with multiple input or output streams

• Use the endchar “?” to indicate the end of the primary
pipeline

• Write the next pipeline, using the labels to refer to
streams from the primary pipeline

http://grothoff.org/christian/ 22



Christian Grothoff

References
[1] Lisa Amini, Henrique Andrade, Ranjita Bhagwan, Frank Eskesen, Richard King, Philippe Selo, Yoonho Park,

and Chitra Venkatramani. Spc: A distributed, scalable platform for data mining. In Workshop on Data Mining
Standards, Services and Platforms (DM-SPP), 2006.

[2] Hari Balakrishnan, Magdalena Balazinska, Don Carney, Uğur Çetintemel, Mitch Cherniack, Christian Convey,
Eddie Galvez, Jon Salz, Michael Stonebraker, Nesime Tatbul, Richard Tibbetts, and Stan Zdonik. Retrospective
on aurora. The VLDB Journal, 13(4):370–383, 2004.

[3] Magdalena Balazinska, Hari Balakrishnan, Samuel R. Madden, and Michael Stonebraker. Fault-tolerance in the
borealis distributed stream processing system. ACM Trans. Database Syst., 33(1):1–44, 2008.

[4] Ian Buck. Gpu computing: Programming a massively parallel processor. In Proceedings of the International
Symposium on Code Generation and Optimization, 2007.

[5] Nicholas Carriero and David Gelernter. Linda in context. Commun. ACM, 32(4):444–458, 1989.

[6] Martin Hirzel, Henrique Andrade, Bugra Gedik, Vibhore Kumar, Giuliano Losa, Robert Soule, and Kun-Lung-Wu.
Spade language specification. Technical report, IBM Research, March 2009.

[7] IBM. CMS Pipelines User’s Guide. IBM Corp., http://publibz.boulder.ibm.com/epubs/pdf/hcsh1b10.pdf, version
5 release 2 edition, Dec 2005.

[8] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: Distributed data-parallel
programs from sequential building blocks. In European Conference on Computer Systems (EuroSys), pages 59–72,
Lisabon, Portugal, March 2007.

[9] Gilles Kahn. The semantics of a simple language for parallel programming. Information Processing, (74):993–998,
1974.

http://grothoff.org/christian/ 23



Christian Grothoff

[10] Jesper H. Spring, Jean Privat, Rachid Guerraoui, and Jan Vitek. Streamflex: high-throughput stream programming
in java. SIGPLAN Not., 42(10):211–228, 2007.

[11] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. Streamit: A language for streaming applications.
In CC ’02: Proceedings of the 11th International Conference on Compiler Construction, pages 179–196, London,
UK, 2002. Springer-Verlag.

http://grothoff.org/christian/ 24


