
Engineering a Common Intermediate

Representation for the Ovm Framework

K. Palacz J. Baker C. Flack C. Grothoff H. Yamauchi

J. Vitek

S3 lab, Department of Computer Sciences, Purdue University

Abstract

The Ovm framework is a set of tools and components for building language runtimes.
We present the common intermediate representation of this framework and software
design patterns used throughout Ovm. One of the main themes in this work has
been to support experimentation with new linguistic constructs and implementation
techniques. To this end, Ovm components were designed to be parametric with
respect to the instruction set on which they operate and its semantics. We argue
that our approach eases the task of writing new components without sacrificing
efficiency.

Key words: Virtual machines, object-oriented languages, Java.

1 Introduction

The goal of the Ovm project is to deliver an open source framework for the
purpose of building language runtimes. Ovm is a toolkit that provides the
basic components of a virtual machine. These components can be specialized
and assembled into an Ovm configuration customized for a particular problem
domain. The framework is designed so as to be able to support different ob-
ject models, while our first emphasis is on supporting a Java personality, we
have plans to provide a C# personality. In Ovm, a configuration defines a new
runtime environment, for example we have developed a Real-Time Java con-
figuration which yields a virtual machine implementing part of the Real-time
Specification for Java.

The framework is composed of a number of tools and subsystems (interpreter,
verifier, rewriters, compilers) which must be kept operational whenever the in-
struction set on which they operate is modified or extended. One of the earliest

Preprint submitted to Elsevier Preprint 15 June 2004

design decisions in the project was to attempt to parameterize Ovm compo-
nents by their instruction set using a common and intermediate representation,
OvmIR, which can be easily customized to the specific needs of a particular
configuration. We consider components to be parametric if they can be applied
to different instruction sets with minimal changes to their implementation. In
Ovm this form of parameterization is achieved by a combination of a reflective
instruction set specification and consistent use of software design patterns [6].
Instructions in the OvmIR are represented by data structures that detail their
semantics and that can be inspected introspectively by the framework compo-
nents. The OvmIR specification uses a type hierarchy to classify instructions
according to their behavior. This classification is used by the tools to reduce
the amount of redundant code written for processing OvmIR.

In this paper we report on the design of the Ovm intermediate representation
and architecture of software components that manipulate it. The OvmIR em-
bodies a number of software engineering tradeoffs made to meet the specific
requirements of customizability. The OvmIR is a common code format to the
entire Ovm framework as illustrated in Figure 1. This representation is flexible
as it allows to define new operations and modify the semantics of existing ones.
In order to write tools that may adjust to changes in the instruction set, we
use a single semantic specification for the entire Ovm tool chain, from static
analysis to interpreter and code generation. While the OvmIR is instrumental
in generating an interpreter it is not unique in that respect [11,3].

The paper is structured as follows. Sec. 2 introduces the goals and architecture
of the Ovm framework. Sec. 3 describes how the OvmIR is specified. Sec. 4
introduces the design patterns that are used to operate on the IR. Sec. 5
describes components that have been build using the OvmIR. Sec. 6 describes
the use of OvmIR-to-OvmIR transformations in allowing necessary non-Java
semantics to be expressed in Java source. Sec. 7 gives a simple example of
extending the IR. We conclude with related and future work.

2 The Ovm Framework

This paper documents work on the Ovm project developed at Purdue and
intended as an open source framework for building language runtimes. The
framework provides basic components of a virtual machine, which can be spe-
cialized and combined as an Ovm configuration specific to a problem domain.
The Ovm components are written almost entirely in Java, which is also the
first language to be targeted by Ovm, an approach that has been referred to as
Java-in-Java. The framework contains more than 150K lines of code and over
2000 classes, including an interpreter, a just-in-time compiler and an ahead-of-
time compiler. The configurations currently supported by Ovm include a plain

2

Java configuration and a configuration implementing the Real-Time Specifi-
cation for Java. Several garbage collection algorithms are supported.

To obtain a virtual machine with the Ovm framework, a number of steps have
to be followed. First a personality must be chosen, such as Java, and a par-
ticular configuration, e.g. Real-time Java. The first stage of VM construction
involves loading Ovm within a host VM. All classes within the kernel of the
virtual machine (as opposed to user code) are loaded, along with their code.
The objects used to implement the kernel are also instantiated at this time.
Ovm then proceeds to analyze its own bytecode and recognize idioms. The
third stage involves creation of a binary image. At this point all objects be-
longing to the Ovm kernel are transformed into the Ovm object model. This
staged VM generation process is shown in Figure 2.

Ovm transforms incoming bytecode to an intermediate representation called
OvmIR that is the common input of all execution modes (interpret/compile).
An idiom whose effect can be stated as a transformation on this IR can be
added without touching an interpreter or compiler and will have well-defined
semantics independent of the execution mode. The transformations are effect
by a simple peep-hole rewriting tool. The architecture of Ovm is illustrated
in Figure 1.

Idiom recognition is implemented by an iterative process, target code frag-
ments are processed until a fixed point is reached. The effects of idioms as
well as replacement of some high-level Java operations with lower-level se-
quences, are performed iteratively until a fixed point is reached. This allows

Java
bytecode OvmIR

Verifier

Interpreter

AOT compiler

JIT compiler

Static analysis

IR Rewriter

Figure 1: OvmIR is the common input to all tools in the Ovm framework.

3

Stage 1:
code, metadata
and data in

standard Java
format

JVM-hosted self-hosted

Stage 2:
code and
metadata in
OvmIR format

Stage 3:
data in Ovm
specific format

Stage 4:
complete Ovm
configuration

Rewriting Image serialization Loading

Figure 2: The staged image construction process. For any configuration,
the Ovm data structures and code are first loaded on standard JVM. Idiom
recognition is applied in the first transformation pass which yields OvmIR
code and metadata for the Ovm kernel. In the second stage, the objects that
compose the Ovm kernel are transformed into the Ovm object model and
serialized into a binary image. Finally, the image is loaded and the VM become
executable.

the effect of a pragma to be expressed in high-level IR constructs that may
even include other idioms as long as cycles are avoided.

3 A Reflective IR Specification

The intermediate representation currently in use in the Ovm framework is a
stack-based high-level intermediate language that closely mirrors Java byte-
code [12]. The choice to base OvmIR on bytecode was made for pragmatic
reasons. Java bytecode is a compact and executable representation with a well-
specified semantics. This entails a shorter learning curve for working with the
framework components and a natural path towards an interpreter. Of course,
there are also drawbacks. Bytecode is not fully typed; thus, it is necessary to
perform static analysis to recover type information. Other drawbacks include
relative addressing and the complexity of dealing with the stack when per-
forming code transformations. For our purposes, these drawbacks have turned
out to be minor.

The OvmIR specification is expressed as a set of classes, one class per instruc-
tion in the IR. This has the advantage of a close correspondence between the
textual form of the specification and the internal data structures used within
the VM and tools operating on this IR. Furthermore, this permits writing code
that operates on the IR by reflection. For example, the abstract interpreter

4

handles many instructions using introspection on their definition. It is possible
to programatically alter the instruction set to add new operations or modify
the semantics of existing ones. In many cases, such changes require minimal
changes on tools operating on the IR.

3.1 Abstract machine model

The semantics of instructions are defined with respect to an implicit abstract
machine. Currently, we use a stack-based machine similar to the one expected
by Java bytecode. Thus, every operation may read and write values from local
variables, push and pop variables from the stack, consume values from the
instruction stream, jump to a set of offsets, throw exceptions, have evaluation
side effects or access compile-time constant values contained in a constant pool.
The OvmIR specification consists of the definition of a number of instructions,
values and so-called value sources. While instructions are self-explanatory, it
is worth discussing values and value sources. A value object is the represen-
tation of a concrete value that will be manipulated at runtime by the virtual
machine. The Value class is used to represent runtime values and their types.
Typing constraints on the values consumed or produced by an instruction
are expressed by using subclasses of the Value class (e.g. integer values are
represented by instances of IntValue). Since it is not always possible or prac-
tical to model all the constraints on values using inheritance, further typing
constraints can be expressed as annotations on the value type. For example,
CPIndexValue is a subclass of IntValue used to denote constant pool indices
and declares a field indicating the type of constant pool entry, such as field
reference, type name reference etc.

3.1.1 Instructions

Each IR instruction corresponds to a subclass of the Instruction class. Anal-
yses written for the framework use the flyweight pattern [6] to avoid the need
for multiple instances of the same instruction class. The semantic specification
of every instruction is provided in the parameterless constructor of the respec-
tive class. Each instruction must at least implement the methods size(),
which returns the size of the instruction in bytes, and getOpcode(), which
returns a numeric instruction identifier. Further behavior is added only by
subclasses for which the behavior is meaningful. Thus, code manipulating the
OvmIR can rely on the type checker to prevent errors such as trying to use a
constant pool index as a jump target.

The semantics of instructions are characterized by the following arrays of
abstract values that are fields of Instruction (see Figure 3). Furthermore,

5

instructions that implement the Throwing interface define an array of excep-
tions that may be thrown as a side effect of executing the instruction.

streamIns values consumed from instruction stream

stackIns values consumed from the stack

stackOuts values produced on the stack

evals expressions evaluated for side effects

jumpTarget
target program counter value

(subtypes of FlowChange)

controlValue
value used to control branching

(subtpyes of ConditionalJump)

Figure 3: Fields that specify the input-output behavior of each instruction.

As an example of one of simple instruction specifications, consider the defini-
tion of the SWAP instruction which exchanges the two topmost stack values.
The code for SWAP is shown in Figure 4. SWAP is a concrete instruction in
that it corresponds to an actual operation in the instruction set. It is defined
as a subclass of the abstract class StackManipulation which in turn extends
Instruction. The hierarchy permits us to reuse code between related instruc-
tions by inheritance. Extensive examples for this are given in Sections 4 and 5.
The instruction hierarchy can also be used to classify instructions into various
categories.

class SWAP extends StackManipulation {{
stackIns = new Value[]{ new Value(), new Value()};
stackOuts = new Value[]{ stackIns[1], stackIns[0]};

}}

Figure 4: Specification of the SWAP instruction.

The specification of SWAP describes that the instruction consumes two values
from the stack and pushes two values back onto the stack. The fact that the
output values are identical to the input values, with the exception of their
order, is represented by pointer equality of the Value objects.

The core of the instruction hierarchy used within Ovm is shown in Figure 5.

6

The given hierarchy reflects properties of the Java bytecode instruction set
and is based on pragmatic considerations, not on any systematic analysis
of features of all conceivable instructions of stack machines. It turns out to
be impossible to model all the features of bytecode using single inheritance.
For example, FlowChange is an interface and is implemented by the concrete
instruction RET (return) that inherits from LocalAccess. Another example
is the Throwing interface which is implemented by all instructions that can
throw exceptions.

LoadConstant
BinOp ConstantPoolLoad
ConstantPoolRead

11bbbbbbbbbbb
// Resolution //

--\\\\\\\\\ FieldAccess
Conversion Invocation

ConditionalJump // If
FlowChange //_____

**TTTTTTTTT

11ccccc

--[[[[[
Gotos

Instruction

::ttttttttttttttttttttttt

88qqqqqqqqqqqqqqqqqqqqqq

66mmmmmmmmmmmmmmmmmmmm

55jjjjjjjjjjjjjjjjjjj
11cccccccccccc

--\\\\\\\\\\\

,,XXXXXXXXXXXXXXXX

((RRRRRRRRRRRRRRRRRRRR

&&NNNNNNNNNNNNNNNNNNNNN

$$JJJJJJJJJJJJJJJJJJJJJJJ

##FFF
FF

FFF
FF

FFF
FF

FFF
FF

FF
FFF

!!B
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

��?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

��
;

;
;

;
;

;
;

;
;

;
;

;
;

;
;

;
;

;
;

;
;

;
;

;
;

;
;

;
;

;
UnconditionalJump //

--\\\\\\\\
Jsrs

FlowEnd Switch
LocalAccess //

--\\\\\\\\\\

,,XXXXXXXXXXXXXXXX RET
LocalWrite

ShiftOp LocalRead
StackManipulation
Synchronization
ArrayAccess //

--[[[[[[[[[
ArrayRead

LinkSetAccess ArrayStore
FieldAccessQuick

Throwing //______

11cccccc

55j
j

j
j

jj
j

j
j

<<x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

InvocationQuick

Figure 5: The instruction hierarchy. The OvmIR consists of 237 concrete
instructions (RET is the only one shown here) that account for 3400 lines of
code.

Figure 6 gives a simple example of reflective programming. The method ini-
tializes a lookup table, the static variable instructionSet, with instances of
every concrete instruction. The code assumes that all instructions are inner
classes of the Instruction class and that they have a constructor with no
arguments. Only concrete instructions are instantiated.

3.1.2 Values and Value Sources

Another way to associate output values with input values in the specification
is to add value sources to values. Each Value object contains a reference to
an instance of the ValueSource interface. A variety of value source imple-
mentations are provided, such as binary arithmetic and logical expressions,
and routine invocation expressions. Since value sources are also represented as
Java data structures, they can be analyzed introspectively. Value sources can

7

void makeInstructionSet() {

Class[] inr = Instruction.class.getDeclaredClasses();

for (int i = 0; i < inr.length; i++)

if (Instruction.class.isAssignableFrom(inner[i])

&& !Modifier.isAbstract(inr[i].getModifiers())) {

Instruction inst =

(Instruction) inr[i].newInstance();

instructionSet[inst.getOpcode()] = inst; } }

Figure 6: Reflective instruction set initialization.

reference existing values, and hence the instruction specification forms an ex-
pression tree consisting of a sequence of expressions represented by the evals

array followed by a sequence of expressions in the stackOuts array. The eval-
uation of both sequences can introduce side effects. For example, IADD, which
has no side effects and pushes the sum of two integers on the stack could be
defined as given in Figure 7 1 .

class IADD extends BinOp {{

super(IADD);

stackIns = new Value[] {
new IntValue(), new IntValue()};

evals = new Value[] {};

stackOuts = new Value[] {
new IntValue(new BinExp(stackIns[0],

"+",

stackIns[1])) }; }}

Figure 7: Specification of the IADD instruction.

Individual instruction definitions are assumed to be fragments of code with
single input and single output modulo exceptions.

The IR supports flow control private to an instruction definition, as shown in
Figure 8.

1 In Ovm the specification of IADD is further abstracted to:
class IADD extends BinOp{IADD(){super(IADD,"+",intFactory);}}

8

class FCMP extends Instruction {{

stackIns = new Value[] {
new FloatValue(),

new FloatValue()};

IfExp e = new IfExp(

new CondExp(stackIns[1], ">",

stackIns[0]),

ONE,

new IntValue(new IfExp(

new CondExp(stackIns[1],

"==", stackIns[0]),

ZERO, MINUSONE)));

stackOuts = new Value[] new IntValue(e) ; }}

Figure 8: Specification of the floating point comparison instruction.

The IR can also specify control flow instructions that affect the program
counter. In this case instructions declare their control value and jump tar-
gets, as shown in Figure 9.

class IFNE extends ConditionalJump {{

stackIns = new Value[] { new IntValue(), new IntValue() };

streamIns = new IntValue[]{ new PCValue() };

jumpTarget = streamIns[0];

controlValue = new IntValue(

new CondExp(stackIns[0], "!=", stackIns[1]));}}

Figure 9: Specification of the IFNE branch instruction.

Note that instead of using pointer identity to bind stack output values to
input values, one can use a separate kind of value source to denote that a
value comes from a stack slot. However, the presented approach results in
more concise definitions.

The InstructionBuffer class maintains a notion of the current program
counter as well as the definitions of constants referenced from the bytecode
stream. Because of this design, instruction objects can retrieve and inter-
pret their immediate operands without any state of their own. For example,

9

the concrete instruction GETFIELD subclasses the abstract class FieldAccess.
FieldAccess provides a method getSelector(InstructionBuffer) to re-
turn information about the name and type of the field being accessed. The
state required by the method is encapsulated in the instruction buffer argu-
ment. This design follows the flyweight pattern [6], allowing the InstructionSet
class to hold a single instance of each concrete instruction.

The OvmIR specification contains approximately 3400 lines of code and 237
concrete instruction definitions which results in about 14 lines of code per
definition. The line count includes abstract classes and supporting methods.
Easily recognizable syntactic conventions (class and constructor declarations)
account for approximately 4 lines per instruction hence it requires about 10
lines of nontrivial code to specify an instruction.

Example. To demonstrate the expressiveness of a reflective specification, con-
sider the implementation of ovmp, the Ovm counterpart to the javap class file
disassambler. Ovmp prints the mnemonic of each opcode and, for instructions
such as branch or loads that have immediate arguments, the value of those
argument in the format specified by the instruction semantics. The main loop
is written as shown in Figure 10.

while (ib.remaining() > 0) {

Instruction i = ib.get();

print(i.getName());

if (isStreamReader(i))

iprinter.visitAppropriate(ib.currentOpcode()); }

Figure 10: Main loop of the Ovmp disassambler.

A runabout dispatches to the proper print method. Because the instruction
hierarchy lacks a type to characterize all iStream readers, the implementa-
tion takes advantage of the reflective IR specification. It filters calls to the
runabout based on the characteristics of instructions. This is done by the
method iStreamReader() which return true if an instruction has immediate
arguments (see Figure 11).

The argument printer runabout has sixteen methods and is a total of 120 lines
long. The entire ovmp has 520 lines (out of which 60 are comments).

10

iStreamReader(Instruction i) {

return i.istreamIns.length != 0; }

Figure 11: A method that selects instructions that have immediate argu-
ments.

4 Design patterns

The software architecture of the tools and components of the Ovm framework
has evolved over time. This section describes this evolution and the motiva-
tions behind the changes. Originally, the instruction objects used dedicated
methods to perform abstract execution of bytecode. The dedicated methods
accessed the state information of the current method via a helper object which
was provided to the constructor of every instruction object and stored in a field
of the instruction. This created problems in that the instruction objects could
not be used concurrently by multiple threads operating on different methods.

The use of dedicated methods also had the disadvantage that every additional
analysis or processing required changes to each instruction class. Thus, each
of the instructions was extended with an accept method and various analyses
were written as visitors operating on the instructions. In order to make code-
factoring easier, the instructions were arranged in a hierarchy (see Figure 5)
that reflects commonalities between the instructions. Convenience methods
implemented by the instructions were factored into common superclasses. An
example of such a method is getCPIndex, a method that returns the index
into the constant pool for every instruction that accesses the constant pool.

The visitors that implement the various analyses are also able to take advan-
tage of the instruction hierarchy; the visit methods can be refactored using
the hierarchical visitor pattern [10]. For example, our access modifier inference
tool does not need to distinguish between Java’s four field access operations
(GETFIELD, PUTFIELD, GETSTATIC, PUTSTATIC). Using the hierarchical visitor
pattern, Jamit only needs to implement the visit method for the abstract
FieldAccess instruction class. In order to make the hierarchical visitor pat-
tern work, a helper method that indirects calls from visit(PUTSTATIC i) to
visit(FieldAccess i) is required (see code in Figure 12).

Writing this indirection code, while conceptually trivial, turns out to be cum-
bersome over time. Each time the instruction hierarchy evolved, the base-
classes of the visitors needed to be rewritten. With over 200 instruction classes

11

class FieldAccess {
void accept(Visitor v) {

v.visit(this); } }

class GETFIELD extends FieldAccess {
void accept(Visitor v) {

v.visit(this); } }

class HierarchicalVisitor extends Visitor {
void visit(FieldAccess i) {

...

}
void visit(GETFIELD i) {

visit((FieldAccess) i); } }

class Main {
static void main() {

Visitor v = new HierarchicalVisitor();

Instruction i = new GETFIELD();

inst.accept(v); } }

Figure 12: Snippet of the Hierarchical Visitor design pattern used in previous
versions of Ovm.

it became difficult to track changes in the hierarchy. Probably worse, the in-
struction set needed to be expanded to support operations that are not part of
the JVM standard. The use of the visitor pattern required that every analysis
supplied visit methods for all instructions. Thus, every change in the hierarchy
of the instruction set required updates to several visitors. Considering that one
of the requirements for OvmIR is that the instruction set is customizable, this
was not practical.

The problem was solved by replacing the use of visitors with the Runabout
pattern [7]. Runabouts declare visit methods just like visitors, but instead of
doing double-dispatch with accept methods in the instruction objects, the
appropriate visit methods are found by reflection and invoked by dynamically
generated and loaded helper classes. The result of this final refactoring was
that hundreds of accept methods were removed from the instruction objects
and hundreds of visit methods that were either abstract (visitor interface),
empty (default base class) or indirecting to other visit methods (hierarchical
visitor) became obsolete. The Runabout code in Figure 13 is the equivalent

12

class FieldAccess { }

class GETFIELD extends FieldAccess { }

class MyRunabout extends Runabout {
void visit(FieldAccess i) {

... } }

class Main {
static void main() {

Runabout r = new MyRunabout();

Instruction i = new GETFIELD();

r.visitAppropriate(inst); } }

Figure 13: Snippet of Runabout about code with equivalent functionality to
the hierarchical visitor example.

to the visitor code in Figure 12. As the example shows, using the Runabout
eliminates the need for the accept methods and the code for the code for
the hierarchical indirection. The performance impact of the dispatch with the
Runabout on the framework was minor (a few percent depending on the analy-
sis), confirming expectations from the microbenchmarks (Figure 14). Figure 15
shows the various classes in the Ovm framework that are Runabouts visiting
the instructions. The table also lists the number of visit methods that each of
these classes implements. The total number of instruction classes in Ovm is
273 (237 of these are concrete instructions, but some tools only support the
201 instructions of the Java VM specification [12]).

5 Components built around Ovm

Various tools have been built around the OvmIR. Tools that are used by the
VM itself include a bytecode verifier, a simple JIT compiler, an interpreter
generator, a bytecode-to-C++ translator, and the OvmIR transformation in-
frastructure. The analysis framework has been used to implement Kacheck/J
[8], a tool to infer confined types, Jamit, an access modifier inference tool and
Hitsuji, a tool that performs control-flow analysis (for example, 0-CFA [15] or
type-safe method inlining [14]).

13

5.1 Interpreter Generation

The Ovm framework includes a Java bytecode interpreter written in C. The
interpreter is automatically generated from the instruction specification which
ensures that the part of the system written in C is synchronized with the rest
of the codebase. In particular, this ensures that the C interpreter actually
operates on the same IR that is produced by tools written in Java without
forcing the interpreter to consult Instruction objects at runtime.

We chose to implement only a subset of Java bytecode instructions in C code.
The more involved instructions that require cooperation with the JVM run-
time such as, for example, the resolution of symbolic member references or
memory allocation, are reduced to invocations of methods of the runtime.
Because instruction specifications can be viewed as an abstract syntax tree
format for a subset of C expressions, the interpreter generator is fairly sim-
ple. Conceptually, each instruction is compiled to a case clause that copies
immediate and stack operands into local variables, computes the result, and
pushes it on the stack. For instance, IADD would be compiled to the following
code (Figure 16).

0

500

1000

1500

2000

2500

3000

0 50 100 150 200

tim
e

(m
s)

number of visit methods

Dedicated methods
Visit methods

Runabout

Figure 14: Runtime comparison of dedicated methods, visitors and the Run-
about in Micro-benchmark for 10.000.000 iterations on SUN JDK 1.4.1, P-III
1 GHZ, Linux 2.4.18. The time shown is for the dispatch only.

14

Runabout # visit methods

CloneInstructionVisitor 202

ClassCleaner 2

LinearPassController 1

AbstractInterpreter 27

ControlFlowInterpreter 8

BasicBlockJ2CTranslator 11

TypeNameClosure 10

SimpleJitVisitor 134

JamitConstraintGenerator 8

ZeroCFA 18

ConstraintGenerator 9

MaxStackHeightInference 30

Figure 15: List of the Runabouts working on the instructions.

case INSTR IADD: {
jint stack in 0 = POP().jint;

jint stack in 1 = POP().jint;

jint stack out 0 = stack in 1 + stack in 0;

PUSH P(stack out 0);

INCPC(1);

NEXT INSTRUCTION;

}

Figure 16: Interpreter generation.

Currently, our interpreter loop is not using a switch statement; instead, we
generate a threaded interpreter [3] using language extensions of the GCC
compiler. We had to change very few lines of code in the interpreter generator
to switch between these two techniques.

15

5.2 Ahead of Time Compilation

We are currently using the same instruction specification to implement a byte-
code to C++ compiler, J2c. This compiler does not use high-level C++ fea-
tures such as member functions and run-time type identification, but treats
C++ as a portable assembly language with exception-handling support. The
compiler may be configured for either conservative or precise garbage collec-
tion.

Although the instruction specification forms the basis of J2c’s intermediate
representation, J2c extends the specification in a few ways. For instance, the
OvmIR differentiates between explicit method invocations and traps into the
runtime. J2c translates both types of method calls into a single form so that
they can be devirtualized and inlined uniformly. J2c also defines a Value-

Source type corresponding to MULTIANEWARRAY’s operands. Such a type makes
sense for occurrences of the MULTIANEWARRAY instruction, but does not fit into
the singleton framework, since MULTIANEWARRAY takes a variable number of
arguments.

5.3 Just in Time Compilation

We have implemented a just-in-time compiler, SimpleJIT, which converts the
OvmIR into Intel x86 native code in one linear pass. SimpleJIT is not in-
tended to be an optimizing compiler, but rather a basic fast compiler like the
Jikes RVM baseline compiler [2]. SimpleJIT emulates the operand stack in the
native stack frame. Each concrete instruction is covered by a visit method in
the compiler. Figure 17 shows the visit method for the family of instructions
pushing an integer on the stack. The code exploits the instruction hierarchy
to cover nine concrete instructions.

public void visit(IConstantLoad instruction) {
asm.pushI32(instruction.getValue(this));

}

Figure 17: The visit method for ICONST 0, ICONST 1, ICONST 2, ICONST 3,
ICONST 4, ICONST 5, ICONST M1, BIPUSH, and SIPUSH.

16

5.4 Static Analysis

Ovm includes a number of classes for performing static program analysis.
Implementing a static analysis requires the implementation of a set of visit
methods for the instructions that are relevant for the analysis. Furthermore,
the analysis needs to select an iterator that specifies the traversal over the
code. Ovm provides two basic templates. The first one performs a linear pass
and that will visit every instruction once. The second runs a fixpoint iteration
that is coupled with a customizable abstract interpreter. For customization,
the analysis defines the level of abstraction by providing the set of abstract
values. Defining the abstract values requires code that provides tests for value
equality and merging of abstract values at join points. The default set of ab-
stract values in Ovm corresponds to the set used by a Java bytecode verifier
and distinguishes between four basic primitive types (int, float, double, long),
the null reference, jump targets (JSR), initialized objects and uninitialized ob-
jects. The default execution model also corresponds to the abstract execution
performed by a bytecode verifier.

A typical analysis uses this basic form of abstract execution and interposes
calls to analysis specific visitors that inspect the state of the abstract inter-
preter for information relevant to the particular analysis. If the value abstrac-
tions are extended to better match the different abstract domain of a given
analysis, visit methods of the abstract interpreter must be overriden to ensure
proper handling of the new values. Examples of existing extensions of the ab-
stract value set in Ovm include the addition of a special value for the this

reference in Kacheck/J [8] and the use of a flow sensitive type sets for the
implementation of 0-CFA [15].

The instruction specification isolates the analysis code from irrelevant changes
in the OvmIR. Often a single visit method covers the behavior of multiple
instructions that are equivalent from the point of view of the analysis. For ex-
ample, the default abstract interpreter has generic code for instructions that
merely perform basic operations such as moves or arithmetic. Thus, instruc-
tions that fall into these categories can be added trivially without changing
the abstract interpreter.

Example. Figure 18 gives a simple example of a visit method that overrides
the default behavior of the abstract interpreter for the NEW instruction. In the
context of 0-CFA, a NEW instruction pushes a flow set on the stack that contains
the type of the object being constructed. The visit method is located within
the body of a runabout called within the fixpoint iteration. The method starts
by querying the NEW instruction for the name of the class under construction.
Since the instruction is a flyweight object, the runabout passes the current
instruction buffer to the instruction so that it can retrieve the type name.

17

void visit(NEW instruction) {

TypeName type = instruction.getClassName(ibuf);

getFrame().push(valueFactory.makeSet(type));

}

Figure 18: The visit method for the NEW instruction.

The valueFactory object is an abstract value factory that creates the flow
set which is then pushed onto the operand stack. The implementation of
getClassName in the NEW instruction class is shown in Figure 19. The method
is written in terms of operation on the state of the instruction buffer and an
auxiliary getCPIndex method which returns the constant pool index immedi-
ately following the opcode of the current instruction.

TypeName getClassName(InstructionBuffer ibuf) {

int index = getCPIndex(ibuf));

return ibuf.getConstantPool().getTypeNameAt(index);

}

int getCPIndex(InstructionBuffer ibuf) {

return ibuf.getCode().getChar(ibuf.getPC() + 1);

}

Figure 19: The NEW flyweight instruction object extracts context dependent
information from the instruction buffer.

Performance. The code needed to extract information from the abstract ex-
ecution is typically small. For instance, the addition of the this pointer to the
abstract value set for our confinement checker Kacheck/J [8] is specified in 160
lines of code. Flow sensitive types for the 0-CFA algorithm are implemented
in 370 lines. The code for constraint generation in Kacheck/J is merely 660
lines; obtaining type set information for the 0-CFA takes 530 lines.

The use of the flyweight pattern for instructions is key for achieving high
throughput. Kacheck/J, which can be run as a standalone application and
performs what amounts to a slightly extended variant of bytecode verifica-
tion, has competitive running times. Figure 20 shows the running time of the
analysis on a set of large benchmark programs. The graph plots the number

18

of MB of bytecode (size of class files inclusive of constant pools) in the bench-
mark against the time required for the analysis proper (we did not include
the time it takes to load the bytecode and parse the constant pools). This
amounts to roughly 10MB per second, which appears competitive with tools
written in C.

10

100

1000

10000

1 k 10 k 100 k 1 MB 10 MB 100 MB

tim
e

(m
s)

size of class files (uncompressed)

Kacheck/J analysis time without parsing

Figure 20: Performance of the analysis framework for Kacheck/J on a PIII-
800 running Sun JDK 1.4.1.

5.5 Code Manipulation

Code manipulation of OvmIR is performed by Editor objects. Editors operate
on instruction buffers and provide two abstractions, Cursors and Markers.
Cursors are used for inserting instructions. Markers act as symbolic jump
targets. Like the analyses, editing is typically performed by a visitor that
iterates over the code in some application specific order. A transformation
consists of a sequence of edit operations followed by a commit. The original
code remains visible until the commit is performed.

Cursors have methods to create all of the concrete instructions. These methods
often provide slightly higher-level abstractions than the actual instructions
of the IR. For example, the cursor will emit appropriate code for a branch
instruction, i.e. either a short branch or a sequence of instructions that use a
combination of short branch and long jump. Similarly, an insertion operation

19

like load constant will automatically choose the best instruction for the given
value (such as ICONST3 for 3, or BIPUSH(42) for 42). The required constant
pool entries are also automatically generated.

The editor uses stateful instruction objects. The reason for this is that code
generation requires context information, such as the location of a jump target,
that is not always available before a commit. Correctness of the resulting
code is not enforced. In fact, the cursor API allows the insertion of arbitrary
sequences of bytes into the instruction stream.

Complex modifications such as code motion are possible within the framework,
but can quickly become complicated to express since the client code is not
provided with any automated mechanisms to deal with data-flow. Moving a
single instruction such as IADD will always be difficult because the surrounding
instructions that first prepare the operand stack and later process the result
must also be moved. An SSA-based IR would make these dependencies more
explicit. We are planning to provide a higher-level abstraction of the IR that
will give client code a more SSA-like view.

6 Idiom Recognition

Because OvmIR is the input accepted by the interpreter, ahead-of-time com-
piler, and just-in-time compiler, a uniform approach is possible to the various
unsafe or “magic” operations (e.g. memory dereferencing) that must be avail-
able to a VM implementation but cannot be expressed in pure Java. Most such
operations are very short sequences of code, often heavily executed, so that
it would not be practical to implement them with a heavyweight mechanism
such as the Java Native Interface; in any case a single native library imple-
menting the operations would not suffice, as the interpreter and compilers will
use different techniques to realize the same operations.

We include in OvmIR a small set of opcodes for non-Java primitive opera-
tions that can, either singly or in combination, express the special operations
Ovm needs. The interpreter and compilers simply need to support these op-
codes as well. To make the extended semantics available at the level of Ovm’s
Java source, we do idiom recognition[9]: we attach special semantics to cer-
tain idiomatic uses of standard Java constructs and, in an OvmIR-to-OvmIR
transformation pass, replace those idioms with appropriate IR sequences. The
transformation pass can be iterated to a fixed point, allowing new idioms to
be defined in terms of existing ones. A report[4] more fully describes this as-
pect of Ovm; this section provides a brief overview. Figure 1 illustrates the
architecture.

20

By tag idiom, we denote an idiom that can be recognized unequivocally, such as
implementing a specific marker interface or including a marker exception type
in a throws clause. By heuristic idiom, we mean one that is detectable with
some finite risk of false negatives or false positives, such as a sequence of related
operations in some order (perhaps altered by javac before the recognizer sees
it). We use guarded idiom to name the combination of those techniques, a
heuristic idiom that is associated with a tag and is only recognized where
the tag is used. Guarded idioms can be elaborate enough to express special
operations at a usefully high level, while eliminating the risk of false positives
and mitigating false negatives: if the tag is seen and the rest of the idiom is
not recognized a warning can be given.

public static ObjectModel getObjectModel()

throws InvisibleStitcher.PragmaStitchSingleton {

return (ObjectModel) InvisibleStitcher

.singletonFor("ovm.core.domain.ObjectModel"); }

Figure 21: A stitched Abstract Factory method. It returns singleton of an
abstract implementing class. The stitcher idiom transforms all call sites to
constant-loads of the singleton.

Ovm provides a small set of primitive tag idioms, based on marker interfaces
and exceptions, with which other tag and guarded idioms can be defined. We
define a new idiom by subclassing an existing tag and writing its IR trans-
formation in terms of the Editor and Cursor interfaces. No other code—in
particular, no compiler or interpreter code—needs to be touched to implement
a new idiom as long as its semantics can be expressed with some sequence of
existing OvmIR operations. The idiom in the following example has a defini-
tion that occupies 32 lines in a single source file.

Figure 21 illustrates an idiom we use throughout to achieve configurability
using the familiar Abstract Factory design pattern[6] without paying the in-
direction cost that might otherwise weigh against heavy use of this pattern in
a VM.

7 Customizing the Instruction Set

The Ovm framework allows us to experiment with many aspects of the vir-
tual machine design space, some of which require changes to the instruction
set. Consider, for instance, a change to the VM internal data structures that

21

static class LDC W extends ConstantPoolLoad { {

CPIndexValue val = new CPIndexValue(

CPIndexValue.CONSTANT Any,

TypeCodes.USHORT);

streamIns = new IntValue[] val;

stackOuts = new Value[] { new Value(

new CPAccessExp(val)) };

exceptions = new TypeName.Scalar[] {
VIRTUALMACHINE ERROR };

}

final TypeName.Scalar[] exceptions ;

TypeName.Scalar[] getThrowables() {
return exceptions ; }

}

static class LDC DW extends LDC W { {

CPIndexValue val = new CPIndexValue(

CPIndexValue.CONSTANT Any, TypeCodes.UINT);

streamIns = new IntValue[] val;

stackOuts = new Value[] {
new Value(new CPAccessExp(val)) }

}

Figure 22: The specification of Java’s LDC W instruction, which loads a
constant using a 16 bit index, and LDC DW, which loads a constant using a 32
bit index.

merges per-class constant pools into a global shared data structure (as done
in Jikes [2]). The current limit on constant pool indices (65535) must be over-
come by extending the OvmIR with new instructions to load values from 32
bit constant pool indices.

To define the new instructions LDC DW and LDC 2D, one must define compile-
time constants for the new opcodes, define the new instructions, and add these
new instructions to the instruction set. This amounts to adding roughly 20
lines of code. One must also teach the Cursor class used in bytecode rewriting
how to generate the new instructions.

As shown in Figure 22, the specification for LDC DW is similar to that of LDC W.
The only difference between the two is the size of the integer constant in

22

streamIns. This value is used by ConstantPoolRead.getCPIndex to decode
the immediate operand statically and by the interpreter generator to choose
the decoding macro to invoke at runtime.

Finally, one must check that the new instruction is supported by all visitors
that may encounter the new opcode. For LDC DW, the only place that requires
a change is the CloneInstructionVisitor that needs to use the new method
in the Cursor to clone the LDC DW instruction. More elaborate additions of
new instructions, especially if they can not simply be modelled as subtypes
of existing instructions, typically require slightly more extensive additions to
visitors that need to handle the new instruction.

8 Related work

Interpreter generation has been employed by many systems, among them Java
Virtual Machines (e.g. Hotspot) and Scheme interpreters ([11]). Recent re-
finements in interpreter implementation techniques [5] suggest that a sophis-
ticated interpreter may be a valid alternative to an unsophisticated dynamic
compiler. The Virtual Virtual Machine project aims to build a dynamically

reconfigurable virtual machine capable of running a variety of bytecode based
languages [1]. vmgen [3] is a tool capable of generating interpreters for a variety
of virtual machines. vmgen accepts instruction definitions in form of textual
description in a special purpose programming language. We decided to express
the instruction definitions directly as Java data structures and hence removed
the necessity of a parser for the special purpose language. In effect, we have
sped up the development process (since no parser is needed) as well as the
development cycle (since the textual definition does not have to be processed
to generate a representation the Java tools can work on).

The joeq virtual machine [16] is a compiler infrastructure that provides an
intermediate representation modeling Java bytecode. The latest source distri-
bution of joeq uses two variations of the visitor pattern to access the bytecode
IR. The first variant is a nonhierarchical visitor that uses a switch statement
on the opcode to dispatch to visit methods for the concrete instruction classes
(e.g., GETFIELD). The visit methods take opcode-specific arguments that
specify the parameterization of the instruction (for example, the selector of
a field). These arguments are retrieved from the instruction stream by the
code in the switch statement. The other style of visitor is a hierarchical vis-
itor that dispatches over an instruction hierarchy with multiple inheritance,
similar to the one used in Ovm. The major difference is that joeq uses accept
methods that always sequentially call all applicable visit methods in abstract-
to-concrete order (e.g., ExceptionThrower, StackConsumer, StackProducer,
TypedInstruction, LoadClass, CPInstruction, FieldOrMethod, FieldInstruc-

23

tion, and GETFIELD for GETFIELD.accept()). For this visitor, information
from the instruction stream is passed to the visitor using state in the in-
struction objects, preventing the use of singleton instruction objects for all
parametrized opcodes. In Ovm, all instructions are flyweight objects and the
required state is passed as an argument to the methods of the instructions that
decode the bytecode stream. Notably, joeq’s bytecode-related analyses use the
switch-based nonhierarchical visitor almost exclusively in favor of the more
object-oriented hierarchical visitor. Joeq also has a hierarchical visitor for its
quad-based IR, which is similar to the hierarchical visitor for the bytecode IR.

9 Future Work

The instruction hierarchy is mostly ad hoc and tied to the Java bytecode in-
struction set. However, instead of static categorization in terms of the type
system, one can envision dynamic inference of bytecode specification proper-
ties since most of the necessary information is present in the IR definition
of instructions. For example, it is possible to infer that IINC both reads and
writes local variables because of the way that LocalAccess code sources are
used in its definition. Instructions could be dynamically annotated with ap-
propriate properties in the inference phase. This would remove the burden of
manual categorization from the programmer and ensure that categorization is
consistent with the semantics given by the IR. This new approach assumes a
static set of properties according to which the inference would proceed. As an
extension, one could provide a way to specify new properties outside of the
standard set supplied by the framework. Tools interested in such properties
would have a way to specify them, and the inference engine would be able to
discover these properties. For example, a tool performing stack height infer-
ence might be interested in identifying all the instructions that do not change
the stack height. The tool would register a predicate, for example.

boolean hasInvariantStackHeight(Instruction instr) {
return instr.stackIns.length == instr.stackOut.length;

}

The instruction property inference engine would annotate the appropriate in-
structions with the InvariantStackHeight property. The stack height infer-
ence tool would then ignore all instructions that have this property.

Currently, expression trees are given for each individual instruction. Opti-
mizing compilers, however, typically operate on intermediate representations
of entire functions. It is conceivable to convert the expression trees forming
instruction definitions to standard three address code form and obtain an in-
termediate representation of any function by combining the expression trees

24

from the sequence of bytecodes constituting the definition of this function.

10 Conclusion

We have presented how certain design patterns can be used to build an ex-
tensive set of VM components around the specification of an intermediate
representation. The resulting IR is customizable and the components using
the IR can be easily adapted to changes in the configuration. Static analysis
tools that use our implementation of a bytecode-based IR show competitive
performance.

Acknowledgments. This work is supported by grants from DARPA (PCES),
and NSF (CCR–9734265). The authors are grateful to Tony Hosking, Doug
Lea, David Holmes and Krista Bennett for their comments and Jacques Thomas
for implementing ovmp. We thank the anonymous reviewers of IVME’03 as
well as the attendees for valuable comments.

References

[1] B. Baillarguet and I. Piumarta. A highly-configurable, modular system for
mobility, interoperability, specialization, and reuse. In 2nd ECOOP Workshop
on Object-Orientation and Operating Systems, June 1999.

[2] M. Burke, J. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar, M. Serrano,
V. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeño dynamic optimizing
compiler for Java. In Proceedings ACM 1999 Java Grande Conference, pages
129–141. ACM, June 1999.

[3] M. Anton Ertl and David Gregg. Building an interpreter with vmgen. In
Compiler Construction (CC’02), pages 5–8. Springer LNCS 2304, 2002.

[4] C. Flack, T. Hosking, and J. Vitek. Idioms in Ovm. Technical Report CSD-
TR-03-017, Department of Computer Sciences, Purdue University, 2003.

[5] E. Gagnon and L. Hendren. Effective inline-threaded interpretation of
java bytecode using preparation sequences. In Compiler Construction, 12th
International Conference, Jan 2003.

[6] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design
Patterns. Addison-Wesley, 1994.

[7] Christian Grothoff. Walkabout revisited: The runabout. In ECOOP 2003 -
Object-Oriented Programming, Berlin, Heidelberg, New York, 2003. Springer-
Verlag.

25

[8] Christian Grothoff, Jens Palsberg, and Jan Vitek. Encapsulating objects with
confined types. In Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 241–253. ACM SIGPLAN, 2001.

[9] David Hovemeyer, William Pugh, and Jaime Spacco. Atomic instructions in
java. In Magnusson [13], pages 133–154.

[10] Martin E. Nordberg III. Variations of the Visitor Pattern. 1996.

[11] Richard A. Kelsey and Jonathan A. Rees. A tractable Scheme implementation.
Lisp and Symbolic Computation, 7(4):315–335, 1994.

[12] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison-Wesley, Reading, Massachusetts, 1996.

[13] Boris Magnusson, editor. ECOOP 2002 — Object-Oriented Programming: 16th
European Conference, Málaga, Spain: proceedings, volume 2374 of Lecture Notes
in Computer Science, Berlin, Heidelberg, New York, June 2002. Springer-Verlag.

[14] Jens Palsberg and Neal Glew. Type-safe method inlining. In Magnusson [13],
pages 525–544.

[15] Olin Shivers. Control-flow analysis of higher-order languages. PhD thesis,
Carnegie Mellon University, 1991.

[16] John Whaley. Joeq: A Virtual Machine and Compiler Infrastructure. In ACM
SIGPLAN 2003 Workshop on Interpreters, Virtual Machines and Emulators
(IVME 2003). ACM SIGPLAN, 2003.

26

