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Chapter 1: Public Key Infrastructure



Chapter 1: Public Key Infrastructure

Remark: Public Keys € Public Information



Censorship-Resistant Sharing
Design objectives

» Authorized users can decrypt shared data
» Intermediaries can verify reply matches request
» Intermediaries cannot decrypt shared data

» Intermediaries cannot understand query, other than via
guessing / confirmation attack

» Cost of all operations is O(1), bandwidth overheads
< 100/ bytes per request

Consequences

» P2P overlay can be used to efficiently replicate or cache data
(impossible with end-to-end encryption)

> Peers in the overlay cannot effectively censor or efficiently
Spy on participants



Name resolution in the GNU Name System

Local Zone: Kyip

Bob

www

A

5.6.7.8

Bob's webserver A

» Bob can locally reach his webserver via www.gnu



Secure introduction

T D

¥ Phone: 555-12345
Mobile: 666-54321
! Mail: bob@H2R84L4JIL3G5C.zkey

» Bob gives his public key to his friends, possibly via QR code




Delegation

Alice

> Alice learns Bob's public key

> Alice creates delegation to zone

Alice

Local Zone: Kqus

Bob

bob  PKEY Koun

@

under label bob

> Alice can reach Bob's webserver via www.bob.gnu



Name Resolution
¥ Q5 g

8FS7

A47G

www A 5.6.7.8

bob  PKEY 8FS7




Name Resolution

DPUT 8FS7 -www: 5.6.7.8

F

Alice

8FS7

bob  PKEY
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Name Resolution

@ www.bob.gnu ?

DPUT 8FS7 -www: 5.6.7.8 D

Alice

@ PKEY 8FS7! @ ‘bob'?

bob  PKEY 8FS7




Name Resolution

www.bob.gnu ?
DPUT 8FS7 -www: 5.6.7.8 ; 8FS7-www? D
‘ Alice

@ PKEY 8FS7! @ ‘bob'?

bob  PKEY 8FS7




Name Resolution

@ www.bob.gnu ?

DPUT 8FS7 -www: 5.6.7.8 ; 8FS7-www? D

@ A 5.6.7.8!
Alice

@ PKEY 8FS7! @ ‘bob'?

bob  PKEY 8FS7




Query Privacy: Terminology

()

S

ar,i
Bp,

generator in ECC curve, a point

size of ECC group, n:= |G|, n prime
private ECC key of zone (x € Z,)
public key of zone, a point P := xG
label for record in a zone (I € Zj)

set of records for label / in zone P
query hash (hash code for DHT lookup)

block with encrypted information for label /
in zone P published in the DHT under gp



Query Privacy: Cryptography

Publishing records Rp; as Bp; under key gp

h:=H(l,P)

d:=h-x modn
Bp; : = Sa(Eukor,p)(Rp.1)), dG
qp, : = H(dG)
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Query Privacy: Cryptography

Publishing records Rp; as Bp; under key gp

h:=H(l,P)

d:=h-x modn
Bp; : = Sa(Eukor,p)(Rp.1)), dG
qp, : = H(dG)

Searching for records under label / in zone P

h:=H(,P)
gp, = H(hP) = H(hXG) = H(dG) = obtain BP,I

Rp.; = Dukor,p)(Bp,1)

N

~
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Zooko's Triangle

Secure

Global Memorable

A name system can only fulfill two!



Zooko's Triangle

Secure
2
o
S ©
*>
IS Q
Q o)
> 2
N S
< >
Q ®
o 2
S S,
NS
AN >
G
Global Hierarchical Registration = Memorable

DNS, “.onion” IDs and /etc/hosts/ are representative designs.



Zooko's Triangle

Secure

certificates

Global Hierarchical Registration =~ Memorable

DNSSEC security is broken by design (adversary model!)



Summary: The GNU Name System!?

Properties of GNS

> Decentralized name system with secure memorable names

v

Delegation used to achieve transitivity

v

Supports globally unique, secure identifiers

v

Achieves query and response privacy

v

Provides alternative public key infrastructure
Interoperable with DNS

v

New applications enabled by GNS

» Name services hosted in P2P networks

» Name users in decentralized social networking applications

! Joint work with Martin Schanzenbach and Matthias Wachs



Chapter 2: Privacy-preserving Computation



Scalarproduct for GNUnet?

Motivation

» Scalarproduct trivially provides cosine similarity
» Useful for information retrieval and data mining
» Qur envisioned application:

privacy-preserving collaborative ranking in news distribution

Properties

» Scalarproduct over map on intersecting sets, not just vectors
» Privacy-preserving (but need to limit number of interactions)
> Relatively efficient in bandwidth and CPU usage

2 Joint work with Tanja Lange and Christian Fuchs



Background: Paillier

We use the Paillier cryptosystem:

Ex(m):=g™-r" mod n? (8)
A 2
-1
Dk(c) : = (c mo: ) -4t mod n 9)

where the public key K = (n, g), m is the plaintext, ¢ the
ciphertext, n the product of p, g € P of equal length, and g € Z7,.
The private key is (A, i), which is computed from p and g as
follows:

Ai=lem(p—1,q9 — 1), (10)

o= <(gA mod ) - 1>_1 mod n. (11)

n




Paillier offers additive homomorphism

Paillier offers additive homomorphic public-key encryption, that is:
Ex(a) ® Ex(b) = Ex(a+ b) (12)

for some public key K.



Background: Secure Multiparty Computation

v

Alice and Bob have private inputs a; and b;.

v

Alice and Bob run a protocol to jointly calculate f(aj, b;).

One of them learns the result.

v

v

Adversary model: honest but curious



Secure Scalar Product

» Original idea by loannids et al. in 2002 (use:
(a — b)? = a°> — 2ab + b?)
> Refined by Amirbekyan et al. in 2007 (corrected math)
» Implemented with practical extensions in GNUnet (negative

numbers, small numbers, concrete protocol, set intersection,
implementation).



Preliminaries

v

Alice has public key A and input map ma : My — Z.

v

Bob has public key B and input map mg : Mg — Z.

v

We want to calculate

> mam(i) (13)

iEMaNMpg

v

We first calculate M = My N Mp.
Define a; := ma(i) and b; := mg(i) for i € M.

v

v

Let s denote a shared static offset.



Network Protocol

» Alice transmits Ea(s + a;) for i € M to Bob.

» Bob creates two random permutations 7 and 7’ over the
elements in M, and a random vector r; for i € M and sends

R :=EAa(s + ax(i)) ® Ea(s — rr(iy — br(i)) (14)
=Ea(2- s+ az(i) — rx(i) — br(i)) (15)
R': =Ea(s + ap(j)) ® Ea(s — rri)) (16)
=Ea(2: s+ ar(i) — rx(i))s (17)

S:=) (r+b) (18)
= Z r? (19)



Decryption (1/3)

Alice decrypts R and R’ and computes for i € M:

ar(i) = br(iy = r=(i) = Da(R) =25, (20)
a7r/(,-) — r7r/(,-) = DA (R,) -2 S, (21)

which is used to calculate

T:=> a (22)

ieMm

U:== (an(i) = ba(i) — fx(i)° (23)
ieM

Ui == (am) — ()’ (24)

ieM



Decryption (2/3)

She then computes

P:

S+T+U

ieM

Z(b; +r)? 4 Z a7 + (‘ Z(a; —bj - r;)2>

ieM

ieM

=" (b +rf 43— (i = by = ri)?)

ieM

=2-) a

ieM

b"‘l_rl)

Plo=S'+T+U

_Zr +Za +
Y (R

ieM

ieM

ieM

(%)

aj — r;)z) =2 Zairi-

ieM



Decryption (3/3)

Finally, Alice computes the scalar product using:

P 2P/ Za, (bi +ri) Za,r, Za,-b;.

ieM ieM ieM

(25)



Performance Evaluation?

Length | RSA-2048 | RSA-1024

25 14 s 3s
50 21 s 5s
100 39s 7s
200 77 s 13 s
400 149 s 23 s
800 304 s 32s

3Wall-clock, loopback, single-core i7 920 at 2.67 GHz



Secure Scalar Product: ElIGamal/ECC-Variant

Alice's public key is A = g?, her private key is a. Alices sends to
Bob (g;, hi) = (g",g"#"?) using random values r; for i € M.
Bob responds with

b; b; . b; b; i ibi
(H g 15 > = <H g (]] &7)7g>eme )
ieM ieM ieM ieM
Alice can then compute
—a a
b; b; ; ibi _ i ibi
(112) (112 o
iem iem

Assuming ) ;- aib; is sufficiently small, Alice can then obtain the
scalar product by solving the DLP.



Performance Evaluation

Length | RSA-2048 | ECC-2%° | ECC-2%®

25 14 s 2s 29 s
50 21 s 2s 29 s
100 39s 2s 20 s
200 77 s 3s 30s
400 149 s OOR 31ls
800 304 s OOR 33s

800 | 3846 kb | OOR| 70kb

The pre-calculation of ECC-2%8 is x 16 more expensive than for
ECC-220 as the table is set to have size v/n.



Scalarproduct: Summary

» Homomorphic encryption probably fast enough for real
applications

» ECC/DLP-variant significantly better for small products or
with cost amortization over multiple runs

» Future privacy-enhancing applications should consider secure
communication and secure computation



Chapter 3: Electronic Cash



GNU Taler

Modern economies need a currency.



Motivation

Modern economies need a currency online.



SWIFT?

SWIFT /Mastercard/Visa are too transparent.



Let's make cash digital and socially
responsible.



Let's make cash digital and socially
responsible.

Taxable, Anonymous, Libre, Practical, Resource Friendly



Architecture of GNU Taler

Mint |¢——

Auditor

Customer

spend coins

Merchant




Taler /keys

Time

Wallet Mint

DK

Apk

SK

Financial regulator key

RSA public key
(“denomination key")

Value of coins signed by DK
Offline master key of mint

Online signing key of mint



Taler /withdraw/sign

Time

Wallet

POST /withdraw (Sg(DK, 55(9)

200 OK: Spk(Be(€))

402 PAYMENT REQUIRED

Mint

RK

Bp()

Sok ()

Reserve key

Some amount, A > Apyx
Blinding factor

RSA blinding

Coin key

(Blind) signature



Taler /deposit

Time

Merchant

Mint

DK
Spk ()

Sc()

SK
Ssk ()

Denomination key

RSA signature using DK
Coin key

EdDSA signature using C
Deposit details

Signing key

EdDSA signature using SK
Conficting deposit details



Taler /refresh/melt

x System-wide security
parameter

Customer Mint K := ECDHE(T, C)

Ex() Symmetric encryption using
key K

DK List of denomination keys
) List of coin keys
b) List of blinding factors

= Bb(,-) () Blinding with respective ()
T [Tpub]ri
£ (B (b, ) )l

N C By (C;(;:,)b)’ bk,
~ Random value in [0, k)



Taler /refresh/reveal

Customer Mint

PosT e. veal H(7 7
/refresh /pq, cal H(T, c. L), 7
:C. L),

Time

T [Tpriv]n\'y
W Blinded coins from C at

Z Cut-and-choose missmatch
information




Taler /refresh/link

Customer Mint

POST
0S /refresh/link Cous
Pl

Time

Ex(b®, c) ) Linkage data £ at ~

priv




GNU Taler: Summary

Taler compared to Chaum's DigiCash

+ 4+ + + + o+

Only online transactions (Chaum supported off-line)

All income based on Taler transactions visible to the state
Supports anonymous payments

Supports spending fractions of a coin (giving change)
Change can be made unlinkable to original transaction

Can support refunds to anonymous customers

Supports microdonations (borrowing ideas from Peppercoin)
Modern, RESTful API (with modernizations in primitives)

Free software, open protocol, no patents



Chapter 4: Key Exchange



3DH (trevp?)

Alice Bob

Time

P, Public EADSA key of Alice
Pg  Public EADSA key of Bob
Tx Ephemeral key from Alice
Tg Ephemeral key from Bob

K Key derived from
DH(Ta, Tg)|DH(Ta, Pg)|DH(Pa, Tg)




Fixing the Wildcard (Tarr)*

Alice Bob

P, Public EADSA key of Alice
Pg Public EDDSA key of Bob
T, Ephemeral key from Alice

Time

Tg Ephemeral key from Bob

K1 Key derived from
DH(Ta, Tg)|DH(Ta, Pg)

Ky Key derived from
DH(Ta, Tg)|DH(Ta, Pg)|DH(Pa, Tg)

“http://dominictarr.github.io/secret-handshake-paper/shs.pdf


http://dominictarr.github.io/secret-handshake-paper/shs.pdf

Deniable signatures (Burdges, Grothoff)

Assume Q, = daG and z = H(m). As in ECDSA, pick random

k € [1,n—1]. Let C := Ca + Cg be the random offset.

(x1,01) 1 =kG  +C
r:=x3 modn
s:=k Yz +rda) modn
Repeat until r,s # 0. To verify:

1

w:=s " modn
u1:=2zw mod n
u> = rw mod n

(x,0) =G+ wpQa  +C
r=x; mod n?

(26)
(27)
(28)

AN N N N N
w W
N =

S N N N N

w
w



Falsification of a deniable signature

Assume Q, = daG and z = H(m). As in ECDSA, pick random

r,s,k € [1,n—1]. Bob does not know da. So he calculates:

w:=s"1 modn
u1:=2zw mod n
u> = rw mod n

(x1,y1) i = 116G+ QA
C=xx—r modn

Bob now picks a random Cj4 and sets

Cg = C— Ca.

w
Yy

—_~ o~ o~ o~
w w
(o] [e))
— — — — ~—

(39)

For this Ca, Cg the “random” values (r,s) are a valid signature

(per construction).



Deniable signatures illustrated

Time

Alice

H(C)

Ca

Cp
5

Randomly chosen offset from
Alice

Randomly chosen offset from Bob

Deniable signature using offset C
and private key A



Burdges, Grothoff + Tarr

P4 Public EdDSA key of Alice
Pg  Public EADSA key of Bob

C,x  Randomly chosen offset from
Alice

Cg Randomly chosen offset from Bob

Alice Bob

D, Randomly chosen offset from
Alice

Dg Randomly chosen offset from Bob

Time

Ta Ephemeral key from Alice
Tg Ephemeral key from Bob

K1 Key derived from
DH(Ta, Tg)|DH(Ta, Pg)

Ky Key derived from
DH(Ta, Tg)|DH(Ta, Pg)|DH(Pa, Tg)




KX Evolution

1. DH, STS, TLS, SSH (does sign, not deniable, no wildcard)

2. CurveCP, OTR, TextSecure, Axolotl (do not sign, deniable,
wildcard)
3. Tarr (does sign, not deniable, no wildcard, expensive)

4. BG+T (fully deniable, no wildcard, still expensive)



More Information

» Florian Dold on the Cramer-style electronic voting protocol
implemented in GNUnet: https://gnunet.org/31c3videos

» Nicolas Benes on hardware-based intrusion detection for your
home router: https://gnunet.org/31c3videos

> Julian Kirsch on defeating port scanners:
https://gnunet.org/ghm2014knock

» Markus Teich on data minimization for bug reporting:
https://gnunet.org/markus2013bsdefense

» Christian Grothoff and Florian Dold on GNS and revocation in
GNUnet: https:
//gnunet.org/video-30c3-talk-gnu-name-system


https://gnunet.org/31c3videos
https://gnunet.org/31c3videos
https://gnunet.org/ghm2014knock
https://gnunet.org/markus2013bsdefense
https://gnunet.org/video-30c3-talk-gnu-name-system
https://gnunet.org/video-30c3-talk-gnu-name-system

Conclusion

» Decentralization is necessary
» Decentralization creates challenges for research:

» Privacy-enhancing network protocol design
» Secure software implementations
» Software engineering and system architecture

Dé |Sé 4 in{%ﬂ?’mamémanques

—



Questions?

Find more information at:
> https://gnunet.org/
> https://gnunet.org/videos
> http://www.taler.net/

Slides will be at http://grothoff.org/christian/.


https://gnunet.org/
https://gnunet.org/videos
http://www.taler.net/
http://grothoff.org/christian/

Chapter 5: Fun with Hash Functions



Motivation

Purpose of Network Size Estimation

» Human curiosity

v

Detection of unusual events

Value of a botnet

v

v

Tuning parameter



Functional Goals

» All peers obtain the network size estimate

» Supports churn

» Fully decentralized

» Efficient, secure with good load-balancing

» Operates in unstructured topologies

» Works well with modest clock skew between peers

> Ability to trade-off precision vs. efficiency



Intuitive ldea

v

Set of elements distributed in a space

v

Pick a random spot

v

Measure distance to nearest element

v

More elements = smaller distance, more overlapping



Intuitive ldea




Intuitive ldea

AT L A




Intuitive ldea




Intuitive ldea




Intuitive ldea - Applied to networks

» Space: all possible IDs
» Population: randomly distributed peer IDs

» Overlap: number of leading bits in common with a random ID



Theorem

Let p be the expected maximum number of leading overlapping
bits between all n random node identifiers in the network and a
random key. Then the network size n is approximately

2P

> 1=2
» 6= 64
» 22 =4 M



Theorem

Let p be the expected maximum number of leading overlapping
bits between all n random node identifiers in the network and a
random key. Then the network size n is

2ﬁ—0.332747

> 1= 1-2
» 6 = 50
» 22 =33 M



Our Approach: Key Points

v

Use the current time to generate a random number

v

More overlapping bits = gossip earlier

v

Also delay gossip randomly to avoid traffic spikes
Proof-of-Work to make Sybil attacks harder
Implemented! (=~ 1500 lines C code in GNUnet)

v

v



Security

Attacker Model

Freely participate

v

v

Multiple identities

v

May alter, drop, send/receive data

» Same resources as “normal” peers

Security Properties

» Resistant to malicious participants (DoS, Manipulation)
» No trusted third parties
» Reliable



Processing results

> Final agreed value fluctuates around the actual size
» Last / protocol rounds are analyzed

» Weighted average
» Standard Deviation

» Precision - Cost tradeoff



Precision

bits of standard deviation

vs. Rounds of Measurement

1.8
1.6
14
1.2

0.8
0.6
0.4
0.2

T T
unweighted average
weighted average

1 2 4 8 16 32
# protocol rounds

64



Agreement between peers

Network Size Estimate

100

10

T T
Actual Network Size ]
Peer Measurements — 1

500

1000 1500
Seconds Running

2000

2500



Conclusion

» Mathematical foundation applicable broadly for group size
estimates
> Secure & Efficient Network Size Estimation Protocol

» Arbitrary Topologies, Clock Skew harmless, DoS resistant
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