
Cryogenic:
Enabling Power-Aware Applications on Linux

Alejandra Morales∗, Wilfried Daniels†, Danny Hughes†, Christian Grothoff∗

∗Free Secure Network Systems Group, Technische Universität München, München, Germany
Email: {alejandra.morales,grothoff}@tum.de

†iMinds-DistriNet, KU Leuven, Heverlee, Belgium
Email: {firstname.lastname}@cs.kuleuven.be

Abstract—Modern hardware devices that are idle for a certain
period of time enter into sleep mode as a means of reducing power
consumption. Naturally, devices should remain in sleep mode
for as long as possible to maximize energy savings. However, a
growing number of applications perform non-urgent background
tasks, which may force hardware to wake up. It would be better
if such non-urgent activities could be scheduled to execute only
when the respective devices are already in use, as this would
maximize the duration of sleep-states. This requires cooperation
between applications and the kernel, as only the kernel can
coordinate between applications that access the same hardware,
and only applications know which tasks can be deferred and for
how long.

This paper presents the design and implementation of Cryo-
genic, a POSIX-compatible API that enables the clustering of
tasks that access the same hardware. Specifically, the Cryogenic
API allows applications to defer tasks until devices are used
by other processes. This way, non-urgent tasks can choose not to
wake up the device they require and instead defer their execution
until either other tasks force the device to be powered on, or until
the task becomes urgent.

Cryogenic has been realized as a new Linux module, which
integrates with the existing POSIX event loop system calls. This
allows the use of Cryogenic on many different platforms, as long
as the platform uses a Linux-kernel at the heart of the operating
system.

In addition to describing the design and implementation of
Cryogenic, this paper contains experimental results that demon-
strate Cryogenic’s ability to reduce power consumption using
physical measurements on a Raspberry Pi.

Index Terms—Task scheduling, energy efficiency, POSIX.

I. INTRODUCTION

Energy is a critical resource for mobile devices as it deter-
mines their lifetime. Modern smartphones and tablets allow
users to install a large number of applications on their devices
and some of these applications consume energy even when
the user is not interacting with them, due to background tasks.
Two examples of this behaviour are Google Latitude [1] and
Google Calendar [2]. The former was a feature of Google
Maps that allowed users to update their current location and
share it with their contacts. The task ran in the background
in order to periodically update the location of the device, so
that users were able to see their own location and the location
of their friends on a map. Google Calender allows users to
share calendars or single events with contacts. If users enable

background data on their devices, new events are automatically
updated and the user does not need to specifically request
synchronization.

Modern devices often have the capability to detect that they
have been idle for a certain period of time and then enter into
sleep mode as a means of reducing power consumption [3].
Naturally, waking up (i.e. resuming the activity of) suspended
devices takes both time and energy [4], [5], [6] and it is
therefore desirable to avoid unnecessary wake-ups. In this
paper, we present an approach to reducing the energy con-
sumption of background tasks that typically prevent hardware
from entering sleep mode or even force hardware to wake up.

The key contribution of this paper is Cryogenic, a mecha-
nism that permits developers to implement power-aware appli-
cations. Cryogenic achieves this by enabling the deferment of
non-urgent tasks that require use of a device that is currently
idle. As a result, background tasks wait until the corresponding
device is used by some other process, and are then executed
in a clustered fashion. This behaviour maximizes sleep periods
for every device and eliminates expensive wake-up operations.
Application developers may also specify a time-limit on task
deferral. Thus, Cryogenic allows programmers to trade-off
between the responsiveness of an application and the amount
of energy it consumes.

In contrast to prior energy saving approaches, Cryogenic
is implemented as a POSIX-compliant Linux kernel module,
making it easy to install using the normal Linux module
installation procedure. The Cryogenic API is simple and
elegant, allowing developers to schedule deferred background
tasks with just a few lines of code. Furthermore, installation
of the kernel module has no effect upon legacy software.

II. RELATED WORK

Prior work on reducing the power consumption of energy-
constrained devices has produced operating systems, kernel
extensions and specialized hardware.

A. Cinder

Cinder [7], [8] provides three basic mechanisms for energy
management: isolation, delegation and subdivision. Isolation
prevents applications from consuming too much energy or

starving other applications, delegation allows an application
to lend its energy to other applications and subdivision allows
an application to partition its available energy. By combining
the three mechanisms, Cinder provides fine-grained monitor-
ing and control of application energy consumption. Cinder
achieves this by extending the HiStar [9] operating system
with two new kernel objects: reserves and taps.

A reserve represents a right to use a given quantity of
energy. All threads are associated with a reserve from which
they draw energy, and every reserve has a label that controls
which threads can manipulate it. As an application consumes
energy, the relevant quantity is subtracted from the corre-
sponding reserve, and the kernel ensures that no application
performs actions for which its reserve does not have enough
energy. Threads may subdivide their available energy in order
to delegate some of their reserve to other threads and may then
track the energy that these threads consume. This provides
accounting information and permits applications to be made
power-aware.

A tap is an special-purpose thread whose job is to transfer
energy between reserves. While reserves provide quantities of
energy that may be consumed by threads, taps control the rate
at which these quantities may be consumed. A tap is composed
of a rate, a source reserve, a sink reserve, and a label that
determines the privileges needed to transfer energy from the
source to the sink.

Reserves and taps form an abstract graph of energy con-
sumption rights, wherein the system battery is represented as
the root reserve, whose energy is subdivided and thus allocated
to reserves for each thread.

Discussion: The design philosophy of Cinder is quite dif-
ferent to that of Cryogenic. Cinder provides advanced en-
ergy management features, through a new operating system;
however, it provides no support for the execution of legacy
applications. In contrast, Cryogenic is realized as a standard
Linux kernel module that can be easily installed on existing
Linux systems and, critically, it does not interfere with the
execution of legacy software. Considering overhead, migrating
an application to the Cinder operating system is likely to
require a complete redesign. In contrast, the modifications
necessary to use Cryogenic are minimal: typically just a few
lines of code are needed to defer non-urgent tasks.

B. Energy-aware processing in the Windows 7 kernel

Processor activity has a significant influence on the power
consumption of a system. Modern processors enter into a low-
power state during periods of idleness between the execution
of instructions. However, if the idle period is too short, the
power required to enter and exit the low-power state could be
greater than the power saved. The Windows 7 kernel provides
two mechanisms that aim to reduce the power consumption
of periodic software activity: Timer coalescing [10] and
intelligent timer tick distribution [11].

Timer coalescing: The Windows kernel scheduler is driven
by a timer interrupt that has a default period. On every timer
interrupt the kernel checks whether scheduled timers have

expired and, if so, it performs a callback to the function
associated with the timer. Timer coalescing allows applications
and drivers to set a tolerable delay for the expiration of their
scheduled timers. The kernel then uses this delay to adjust
when the timer expires in order to maximize the coincidence of
timer expiration. Two approaches are provided through which
developers can take advantage of timer coalescing. In the case
of applications, a new user-mode function is provided that
allows developers to set the period after which a timer should
expire and its tolerable delay1. In the case of drivers, this
information may be specified through an equivalent kernel-
mode function2.

Intelligent timer tick distribution: In systems with multiple
logical processors, timer interrupts are mirrored on every pro-
cessor and callbacks for the corresponding expired timers are
performed. The intelligent timer tick distribution (ITTD) [11]
reduces the amount of timer interrupts by only waking appli-
cation processors from low-power states when software timers
expire or non-timer hardware interrupts occur. Application
processors (AP) are any processors in the system other than
the base service processor (BSP). ITTD provides maximum
benefits when combined with timer coalescing. After timer
coalescing has grouped callbacks in time, it is more likely
to find timer interrupts that have no work to do and thus
ITTD can remove them. While ITTD does not affect the
BSP, the extension of idle periods and thus energy savings
are significant for APs.

Discussion: The energy-aware processing approach of the
Windows 7 kernel is similar to that of Cryogenic. Both
approaches aim to conserve energy by maximizing idle periods
and reducing hardware wake-ups. However, the scope of
Cryogenic is different. While the Windows 7 kernel extensions
focus on minimizing processor energy consumption, Cryo-
genic focuses on reducing the energy consumption of devices
such as hard disks and network cards. In terms of deployment
effort, both systems require the installation of a new kernel
module. Considering developer overhead, both Cryogenic and
timer coalescing require similar effort to adapt applications
through use of the new APIs, while ITTD is completely
transparent to the developer and requires no modifications to
applications.

Timer coalescence has subsequently been adopted by Apple
in OS X Mavericks to reduce the amount of background
work that is performed while the machine is running on
battery power [12]. The Linux kernel also introduced a new
configuration parameter3 as of version 2.6.21 that allowed
CPUs in lower-power states to remain in this state longer.
This method was named tickless kernel [13] and has effects
similar to ITTD.

1http://msdn.microsoft.com/en-us/library/windows/desktop/dd405521(v=
vs.85).aspx

2http://msdn.microsoft.com/en-us/library/windows/hardware/ff553249(v=
vs.85).aspx

3NO HZ: http://lxr.hpcs.cs.tsukuba.ac.jp/linux/kernel/time/Kconfig

C. big.LITTLE Processing

big.LITTLE Processing [14], [15], [16] is an energy sav-
ing mechanism for mobile platforms developed by ARM.
big.LITTLE takes advantage of the different usage patterns
observed on smartphones and tablets, wherein periods of
high processing activity, such as gaming or web browsing,
alternate with longer periods of low intensity tasks like e-
mail or audio. Using this mechanism, software execution is
dynamically transitioned to the appropriate CPU depending on
performance needs. big.LITTLE achieves this by combining
two processors that implement the same instruction set, but
with different performance and energy profiles. Therefore, all
software instructions execute in an architecturally consistent
way on both the big and the LITTLE processor. The en-
ergy consumption and performance of each processor differs
due to their micro-architectures. The main difference being
that the LITTLE processor has a pipeline length between
8 and 10 stages, whereas the pipeline of the big processor
has a length between 15 and 24 stages; this is critical as
the energy consumed by the execution of an instruction is
related to the number of pipeline stages it must traverse [17].
big.LITTLE supports two approaches: Migration and Multi-
Processor (MP).

big.LITTLE Migration: In this model, the kernel scheduler
is unaware of the big and LITTLE cores and migration of
software is managed by a power management subsystem in
kernel space. When the LITTLE processor is executing at
capacity and more perfomance is demanded, a migration is
executed and both the operating system and the applications,
move to the big processor. big.LITTLE supports two classes
of migration: CPU migration and cluster migration. Cluster
migration transfers the context between all LITTLE CPUs
and the same number of big CPUs. Therefore, only one
cluster can be used at the same time. This is inefficient when
the computational load is asymmetrically distributed accross
cores. CPU migration addresses this problem by pairing each
LITTLE CPU with a big CPU. In this case, only one CPU
per processor pair can be used at once. Unused processors are
switched off in either case.

big.LITTLE MP: In this case, the performance requirements
of running tasks determine whether a big processor must be
powered on. If demanding tasks must be executed, a big
processor is powered on to run them while non-demanding
tasks can keep executing on a LITTLE processor. As in the
previous model, any processors that are not being used can be
powered off. MP thus permits the execution of applications
on the processing resource that is most appropriate to their
requirements.

Discussion: The big.LITTLE approach is quite different
to Cryogenic as it requires a specific hardware architec-
ture to reduce power consumption in addition to software
support. big.LITTLE is therefore a platform-specific rather
than a generic approach to energy conservation. Further-
more, big.LITTLE is only concerned with processor energy
consumption, whereas Cryogenic considers all devices. In

principle, systems with big.LITTLE processing could also use
Cryogenic as software migration would not interfere with its
operation. However, further study is required to identify and
eliminate problematic interactions between the two systems.
For example, if Cryogenic forces many tasks to defer their
execution, processing will occur in a clustered fashion. This
increased demand could force a processor migration and
therefore reduce power savings.

III. DESIGN AND IMPLEMENTATION OF CRYOGENIC

The main goal of Cryogenic is to reduce the number of
hardware wake-ups such that the duration of idle periods is
lengthened and thus devices can go into sleep for longer, which
is then expected to reduce overall power consumption.

t

W

sleep
idle
active
wake-up

ts ts

Fig. 1: Energy consumption model

Figure 1 provides a simplified model of device power
consumption which we will use to illustrate our design.
Devices can operate in four states that differ in their energy
consumption rate. These states are: active, idle, sleep and
wake-up. When a device is actually working, it remains in
the active state until it has completed its tasks. When this
happens, the device enters the idle state, that has a lower
consumption. At this point, two state transitions are possible:
it can become active again if it is requested to perform more
tasks or otherwise it enters the sleep state, which has the
lowest power consumption. This can only happen if the device
is idle enough time to reach the sleep timeout ts. Once the
device is sleeping it can be requested to work again and thus it
must change from the sleep to the active state. This transition
requires the device to cycle through the wake-up state, that
has the highest power consumption.

Although in the figure the increase of consumption from one
state to the next one with higher consumption is proportional
for all transitions, this is only a representation and the real
increases will heavily depend on the specific device. Similarly,
durations of the periods and especially the sleep timeout will
likely be different from one device to another.

t

W

A1

A2

U

sleep
idle
active
wake-up

Fig. 2: Illustration of power consumption with uncoordinated
tasks.

Figure 2 shows a hypothetical scenario where Cryogenic
would be beneficial. There are two applications, A1 and A2,
that execute tasks periodically, each one with a different
fixed period. Furthermore, there are jobs executed due to user
interaction, U; these have no predictable pattern. Assuming
that all tasks want to make use of the same device, e.g.
the network card, the figure illustrates the resulting power
consumption for this device. As we can see, every time tasks
need to use the device when it is currently sleeping, there is
an overhead power consumption caused by the transition from
sleeping to active. Then comes the active period and once
tasks are finished, the device becomes idle. In this example,
the frequency of execution forces the device to switch from
idle to active many times, preventing it from going to sleep.

sleep
idle
active
wake-up

t

W

A1

A2

U

Fig. 3: Power consumption with coordinated tasks A1 and A2.

Assuming that the tasks A1 and A2 are not urgent, they
could be deferred until other tasks interact with the device.
This way, the network card is already active when A1 or A2

need to use it, and the peak consumption caused by the state
transition is eliminated. Naturally, a task not being urgent
does not imply that it should not be performed at all. For
Cryogenic, we assume that — instead of a simple wake-up
time — tasks specify a time interval during which they should
be run. Figure 3 illustrates the resulting behaviour. Here, the
number of wake-ups has been reduced from 7 to 4. Note that
the user interaction, which is considered urgent and is thus not
coordinated by Cryogenic, acts as the main trigger for waiting
tasks. As a result, most tasks are clustered to be executed right
after the user’s tasks, which allows sleep periods to become
longer.

Cryogenic is implemented as a Linux kernel module that
enables the notification of processes that want to coordinate
their activities to reduce power consumption. Using the stan-
dard POSIX APIs, processes can specify a time interval and
a device which they want to use. They are then woken up
during that time interval, either because some other process is
using the device or because they have reached the end of the
time interval. We will now describe how the Cryogenic kernel
module operates, and then give a real-world example for how
application developers can use this new functionality.

A. Overview of the Cryogenic kernel module

The whole implementation of Cryogenic is embedded in a
kernel module that works as a character device driver [18,
Ch. 1]. Character device drivers are the most common class

of Linux drivers and offer direct, unbuffered access from user
processes to devices.

When Cryogenic is loaded, a set of character devices is cre-
ated and a subset of system calls is defined. The system calls
handle the character devices through the device nodes created
under /dev/cryogenic/. These device files are used by
developers to manage the interaction between applications and
hardware devices.

Nodes corresponding to SCSI devices are named after the
device serial number. For network devices, the default interface
name is used. Figure 4 shows the list of files in a system
that has attached three hard drives, two ethernet cards and a
wireless LAN card.

1 # ls -l /dev/cryogenic/
2 total 0
3 crw------- 1 root root 247, 0 Dec 9 16:03 9VP26KSV
4 crw------- 1 root root 247, 2 Dec 9 16:03 eth0
5 crw------- 1 root root 247, 3 Dec 9 16:03 eth1
6 crw------- 1 root root 247, 5 Dec 9 16:04 WD-WCAU46069319
7 crw------- 1 root root 247, 1 Dec 9 16:03 WD-WCAV90469334
8 crw------- 1 root root 247, 4 Dec 9 16:05 wlan0

Fig. 4: Sample list of device files in /dev/cryogenic/

B. Cryogenic system calls
As a device driver, Cryogenic must provide the necessary

system calls to manage the character devices it creates. In
addition to pretty canonical implementations of open and
release (which corresponds to close), Cryogenic pro-
vides implementations for poll (which corresponds to the
select-family of system calls) and ioctl. We will now
discuss these two operations in more detail.

1) ioctl: Cryogenic uses the ioctl [18, Ch. 6] system call
to allow applications to specify the desired time interval during
which an operation should be executed. Cryogenic defines the
ioctl request SET_DELAY_AND_TIMEOUT, which takes
an argument of type struct pm_times. This structure is
provided by Cryogenic and its definition is given in Code 1.

Code 1: Definition of pm_times
struct pm_times {

unsigned long delay_msecs;
unsigned long timeout_msecs;

};

When an application calls ioctl on a Cryogenic handle,
the respective delay and timeout values are simply associated
in the kernel with the respective handle. From the applica-
tion developers perspective, both values specified in struct
pm_times represent relative time in milliseconds.

2) poll: The poll [18, Ch. 6] system call determines
whether a task is allowed to perform an I/O operation or if it
must wait for some event to happen. Cryogenic’s implemen-
tation of poll first checks if the device was removed. If it
was, it returns a value indicating that the device is “ready”.
The application will then attempt to use the removed device,
resulting in an error that is handled in the standard manner.
Otherwise, poll_wait [18, Ch. 6] is called to queue the task
on an event queue for the corresponding device, and a timer
is added to wake up when the respective timeout is reached.

C. Hotplugging

Cryogenic detects when a hardware device is plugged or
unplugged and dynamically add or remove the corresponding
devices and structures. The handling for SCSI devices is
special in that Cryogenic can detect if a SCSI device is
unplugged and then read. In this case, applications do not have
to reopen the respective /dev/cryogenic/ file handle, as
Cryogenic will reuse the same minor number and thereby
preserve the association.

In contrast, the configuration of network devices is likely
to change after a reconnection. Thus, if network devices
are reconnected, the userspace application must open a fresh
handle. It should be noted that this is a design decision we
made, and it is possible to revise this decision in the future.

D. Waking up

Two events may resume the activity of waiting tasks: an
I/O operation on a device performed by other tasks, or the
expiration of their timer. Furthermore, when a hardware device
is unplugged or its device driver is unloaded, some actions
must be enacted in order to keep the system’s consistency and
avoid future errors. In particular, removal of a device will also
cause Cryogenic to wake up applications waiting for I/O on
that device.

In all of these cases, Cryogenic causes the system calls
that are currently blocked on poll to be woken up. If
the minimum delay has expired (or the hardware device
was removed), poll will return a value indicating that the
operation is ready to proceed. If the device was removed, the
userspace application still most likely try to perform an I/O
operation, and will then receive an error indicating that the
device is no longer present in the system. This way, error
handling is delegated to those calls that need to deal with
such errors regardless of whether Cryogenic is running.

E. Application migration

To demonstrate how existing applications can easily be
transformed to use the Cryogenic API, we added support for
Cryogenic to GNUnet, a framework for secure, decentralized
peer-to-peer networking. Specifically, we modified one par-
ticular aspect of the GNUnet system, namely the discovery
of neighbours in the LAN. We will now briefly describe
the existing functionality in the GNUnet system, and then
show the key modifications that were made to introduce the
Cryogenic API into the system.

Peers in the GNUnet overlay network obtain address infor-
mation of the other peers through UDP neighbour discovery
in LANs. Every five minutes, the broadcast addresses of each
IPv4 interface of the local system are gathered and a so-
called “HELLO” message is sent to each of these addresses.
Similarly, a “HELLO” message is multicast on each IPv6-
capable interface. As these periodic broadcasts are not urgent,
they represent a perfect opportunity for the introduction of
Cryogenic. As a preparatory step before introducing any
Cryogenic-specific code, the existing logic was slightly mod-
ified to use a separate task for each transmission. This step

was necessary, as we want to trigger transmissions for each
network interface independently.

The first modification was to add two additional fields to the
struct BroadcastAddress, which will be used to hold
the file descriptor of the corresponding character device and
the delay and timeout for the transmissions. The new fields
are illustrated in Code 2.

Code 2: New fields in struct BroadcastAddress

#if LINUX
/** Cryogenic handle. */
struct GNUNET_DISK_FileHandle *cryogenic_fd;

/** Timeout for Cryogenic. */
struct pm_times cryogenic_times;

#endif

The struct GNUNET_DISK_FileHandle is provided
by the GNUnet API as a generic container for open files on
different operating systems. Under GNU/Linux, it is simply a
wrapper around an int. The second new field is an instance
of the structure supplied by Cryogenic that we presented in
Section III-B1. We note that all of our modifications are
written in a way that ensures that the original application logic
functions correctly in the absence of Cryogenic.

Next, the device node corresponding to each interface
is opened if possible. This is done by extending the
iface_proc function, which contains the per-interface ini-
tialization logic (Code 3). Our modification uses the pre-
existing GNUNET_DISK_file_open function, which is a
GNUnet wrapper around the open system call.

Code 3: Opening the character device for an IPv4 interface
#if LINUX

char filename[128];

sprintf (filename,
"/dev/cryogenic/%s",
name);

if (0 == access (name, R_OK)) {
ba->cryogenic_fd
= GNUNET_DISK_file_open (filename,

GNUNET_DISK_OPEN_WRITE,
GNUNET_DISK_PERM_NONE);

}
#endif

The next modification is about calculating and setting the
delay and the timeout for the transmission using ioctl
and scheduling the transmission job using select. Code 4
shows the new logic that was added to the functions that
schedule the transmission of a message (which happens in
the udp_ipv4_broadcast_send function).

Code 4: Setting the delay and timeout and calling select
#if LINUX

if (NULL != baddr->cryogenic_fd) {
baddr->cryogenic_times.delay_msecs

= (plugin->broadcast_interval.
rel_value_us/1000.0)*0.5;

baddr->cryogenic_times.timeout_msecs
= (plugin->broadcast_interval.

rel_value_us/1000.0)*1.5;
ioctl(baddr->cryogenic_fd->fd,

PM_SET_DELAY_AND_TIMEOUT,
&baddr->cryogenic_times);

GNUNET_SCHEDULER_add_write_file (
GNUNET_TIME_UNIT_FOREVER_REL,
baddr->cryogenic_fd,
&udp_ipv4_broadcast_send, baddr);

}
else

#endif
/* existing logic (without cryogenic) */
baddr->broadcast_task =
GNUNET_SCHEDULER_add_delayed (plugin->

broadcast_interval,
&udp_ipv4_broadcast_send, baddr);

In order to calculate the delay and the timeout we make
use of the broadcast interval, which is already stored in
the plugin structure that is passed to the functions as a
parameter. As we want to place the new tolerance window in a
symmetrical position with respect to the current transmission
period, the delay is set to the broadcast interval minus 50%,
and the timeout is set to the broadcast interval plus 50%.

GNUnet does not define a wrapper function to call ioctl,
thus the call is performed directly on the file handle. Here, we
omitted the error handling for the sake of brevity.

In contrast to ioctl, the call to select is performed
indirectly using GNUnet’s event loop API. The call adds the
given file handle to the respective select set and calls the
given function if select determines that the descriptor is
ready.

Finally, all of the open file descriptors should be closed ,
which in this case was done by adding the code from Code 5
in the appropriate place.

Code 5: Closing the character device descriptor
#if LINUX

GNUNET_DISK_file_close(p->cryogenic_fd);
#endif

All modifications we made were limited to the file
plugin_transport_udp_broadcasting.c, which is
part of the GNUnet transport subsystem. The code shown
includes the modifications for IPv4; equivalent changes were
made for IPv6.

The code samples shown above represent all of the signif-
icant changes. We thus conclude that modifying existing ap-
plications to support Cryogenic typically requires simple and
localized changes. The main change relates to the scheduling
logic of tasks, which are typically already scheduled with an

artificial delay. The required changes are also small because
the implementation of Cryogenic — by means of a module
and its redefinition of the POSIX system calls — allows the
developer to reuse existing APIs in most cases. As a result,
the developer does not need to invest in building or supporting
significant changes to existing abstractions or APIs in the
application.

IV. EXPERIMENTATION

We will now present experiments we performed to evaluate
Cryogenic’s operation on the Raspberry Pi. To ensure the
reproducibility of our results, we have evaluated Cyrogenic at
two independent sites: TU München (TUM) and KU Leuven
(KUL). Each site evaluated Cryogenic using a different energy
measurement methodology, a different networking device and
different Linux distributions. We first present the experimental
setup and then discuss the experimental results.

A. Test programs

We created three test programs to simulate applications
causing network traffic. Each program sends fixed-size UDP
packets at particular times, and outputs the time of transmis-
sion to stdout. The first test program (F) sends packets at a
specified frequency. The second program (R) randomizes the
delay between transmissions within a specified range, and the
third program (C) uses Cryogenic to send packets within a
specified time interval, trying to align its transmissions with
those of the other processes. In our experiments, we first
compare the energy consumption of running four (F) processes
in parallel using fixed, prime-numbered frequencies against
running two (F) processes and two (C) Cryogenic processes
using equivalent frequencies. This corresponds to a system
with four periodic background tasks, where two have been
modified to use Cryogenic.

We also evaluated the effect of converting one (F) process
into a randomized (R) process, in effect replacing one back-
ground process with unpredictable, high-priority user interac-
tions. The exact test scripts and client applications are available
from the project’s website.4

B. Configuration of the Raspberry Pi

The TUM site used the latest version of the Debian-
based distribution Raspbian, which at the time of writ-
ing is wheezy and can be downloaded from http://www.
raspberrypi.org/Downloads. The KUL site used ArchLinux
version 2014.01.08, which can be downloaded from http:
//archlinuxarm.org/platforms/armv6/raspberry-pi.

In the case of Raspbian, the Cryogenic kernel modules
were cross compiled on a general purpose PC before being
loaded on the Raspberry Pi, while in the case of ArchLinux
the kernel modules were compiled locally on the Raspberry
Pi. Detailed instructions for how to compile and load the
Cryogenic module can be found in [19]. Furthermore, in order
to manage the general purpose input/output (GPIO) pins, the

4https://gnunet.org/cryogenic

bcm2835 library had to be installed on the Raspberry Pi. We
used version 1.32 for our experiments.

C. Circuit assembly

The assembly of the circuits in Figure 6 and Figure 7 is
achieved through the pin header embedded in the Raspberry
Pi. Figure 5 shows the pin header layout.

12 16 18 22

7 11 13 15

Fig. 5: Pin header layout

The pins surrounded by red circles are 5V power pins, the
ones surrounded by white circles are ground pins, and the ones
surrounded by green circles are GPIO pins. Thus, we connect
the positive pole of the power supply to one of the 5V pins,
and the negative pole to one of the ground pins.

The number next to each GPIO pin in Figure 5 is its
identifier inside the pin header and is the number used to
control the behaviour of the pin. The scripts that drive the
experiments call C programs that set the corresponding GPIO
pin to its high and low values when they start and finish
their execution respectively. This allows measurement data
to be precisely aligned with the actions performed by the
applications.

Both sites used an oscilloscope to perform their measure-
ments, wherein one voltage probe was connected to the GPIO
pin used for signaling and the ground clamp of the probe
was connected to one of the ground pins. Current draw was
measured differently at each site.

At TUM, power draw was measured using a current probe
placed around one of the cables that connect the Pi to the
power supply, taking care to match the current direction
indicator with the polarity of the circuit. If the probe were
incorrectly connected, there would be no danger of damage,
but the signal of the sample would be inverted. This is shown
in Figure 6.

R-Pi

Oscilloscope

Fig. 6: Circuit diagram for measurements using a current
clamp.

At KUL, current draw was measured by applying Ohm’s
law to the voltage drop accross a shunt resistor connected in

series with the power supply of the Raspberry Pi, as shown in
Figure 7. KUL used a high precision 1.5 Ohm resistor with a
maximum relative error of 0.1%.

R-Pi

Oscilloscope

Fig. 7: Circuit diagram for measurements using a shunt
resistor.

D. Experimental results

In this section we present the results of our experiments.
Each experiment consists of a batch run of the scripts pre-
sented in Section IV-A. In order to obtain statistically signifi-
cant results, each script was executed several times for every
experiment and then the mean and the standard deviation of
each set of results were calculated.

At both sites, experiments were run with a HDMI monitor
and a wired USB keyboard connected to the Pi. At TUM,
Cryogenic was tested with an Edimax EW-7811Un wireless
WiFi USB adapter. At KUL, Cryogenic was tested with an
Option IconXY 3G Modem.

1) Baseline consumption: In order to isolate the power
savings arising from the use of Cryogenic, we measured the
baseline power consumption of the Pi with the WiFi and 3G
devices plugged in but idle. Table I illustrates the results of
these measurements. For the following experiments, we sub-
tracted the average baseline consumption from the total energy
consumed to calculate the power consumption of the network
devices (and the minimal additional CPU time required to
prepare the transmissions); we added the standard deviation
obtained to the standard deviation of every experiment.

As shown in Table I, the experiment run times differ
between both experiments. The 3G experiments run longer
because the embedded power saving strategy of the 3G modem
spans longer time intervals than the WiFi modem. In order to
properly capture this, all 3G experiments have a run time of
five minutes, while for the WiFi dongle one minutes suffices.
These experiment run times are propagated in all results dis-
cussed in this section. Table I also includes a time independent
average power draw to facilitate direct comparisons between
both baseline consumptions.

TABLE I: Baseline power consumptions.

WiFi 3G
Total energy 113.50 J 686.34 J

Std. dev. 0.57 J 3.38 J
Experiment run time 60 s 300 s

Average power 1.89 W 2.29 W

 1
 2
 3
 4

 0 10 20 30 40 50 60

C
lie

nt

Time (s)

No Cryogenic
Cryogenic

Fig. 8: Packet transmission times for non-randomized test programs. Clients 1 and 2 did not offer any scheduling flexibility to
Cryogenic, while Clients 3 and 4 allowed Cryogenic limited scheduling flexibility in the pass where Cryogenic was enabled.
As a result, execution times are then shifted slightly in an attempt to cluster network activities. The power-savings reported in
the paper were observed on the basis of these limited shifts for Clients 3 and 4.

2) Packet transmission time: To illustrate how Cryogenic
modifies the transmission time of packets, we plotted the times
when packets are sent by the periodic test programs with
and without Cryogenic (Figure 8). The figure shows that the
transmissions of client 1 and 2 (type (F)) remain identical
between both runs, while the transmissions of clients 3 and
4 shift when moving from type (F) (without Cryogenic) to
type (C) (with Cryogenic). The figure also shows that the
shifted transmissions of the (C) clients are now aligned with
the remaining (F) clients.

3) Current draw due to packet transmission: Figure 9a
and Figure 9b show the current draw when sending packets
without Cryogenic over WiFi and 3G respectively. Figure 9c
and Figure 9d show the current draw for the same time span
with Cryogenic enabled. The timescale of each set of figures
is quite different. In the case of WiFi, packet transmissions
are separated by a few milliseconds, while in the case of 3G
packet transmission are separated by a several seconds. It can
be seen that the number of current peaks (caused by the wake-
up of transmission hardware) decreases in both cases, reducing
the overall amount of energy consumed.

When we compare the WiFi test runs on Figure 9a and
Figure 9c, the packet sent by client 3 defers its transmission,
while the transmission of the packet that belongs to client 4 is
anticipated, so that both packets are sent almost simultaneously
with the packet that belongs to client 2, which does not use
Cryogenic. This results in one wake-up instead of three.

The 3G test runs shown in Figure 9b and Figure 9d exhibit
a more complex behaviour. The packet transmissions in both
figure do not always line up with peaks in current draw. This
is because the 3G modem is cycling between a high power
mode and a low power mode and is able to send and receive
packets in both modes. The specific logic behind the power
saving modes are proprietary and specific to each 3G modem,
but from the figures we can observe that by rescheduling
packets in a clustered fashion more time is spent in the low
power mode. This validates that the power savings achieved

by Cryogenic are truly generic.
4) WiFi Measurements at TUM: In this experiment, we

connected the Pi to a protected WiFi network that was used
only for the experiment. Nevertheless, we could not control
interference from other WiFi networks and other devices in
the vicinity operating in the ISM* frequency range.

Table II illustrates the period and tolerance values used
for the experiment. Note that we use prime numbers to
minimize the chance of tasks transmitting at the same time.
The tolerance used for Cryogenic tasks is set to about 50% of
the transmission period.

TABLE II: Programs, transmission periods and tolerances (in
milliseconds) for the WiFi experiment.

No Randomization Randomization
Without
Cryogenic
(P1)

With
Cryogenic
(P2)

Without
Cryogenic
(P3)

With
Cryogenic
(P4)

(F) 2503 (F) 2503 (R) 2503 (R) 2503
(F) 1747 (F) 1747 (F) 1747 (F) 1747
(F) 1499 (C) 1499±751 (F) 1499 (C) 1499±751
(F) 1249 (C) 1249±631 (F) 1249 (C) 1249±631

As can be seen from Table II, the use of Cryogenic
introduces significant variability (of up to 0.75 seconds) into
the transmission timings for the low-priority programs P2 and
P4, this allows their transmissions to be synchronized with
those of the high-priority programs P1 and P3.

Since Cryogenic may defer the transmission of some pack-
ets, it may slightly reduce the total number of packets sent
during the course of an experiment (by 1–3% compared to
non-Cryogenic runs). To ensure a fair comparison, we counted
the number of packets sent during each experiment and report
the energy consumption per packet transmitted using WiFi.
The results are given in Table III.

Table III shows that for WiFi transmissions, Cryogenic
achieves power savings in all scenarios (from 2.3% to 6.8%).
It should be noted that the results described above are a

 1
 2
 3
 4

42.00 42.25 42.50 42.75

 0.4

 0.5

 0.6

C
lie

nt

C
ur

re
nt

 (A
)

Time (s)

Current sample
Transmission start time

(a) Current draw of WiFi non-Cryogenic test run.

 1
 2
 3
 4

25 30 35 40
 0.5

 0.6

 0.7

 0.8

C
lie

nt

C
ur

re
nt

 (A
)

Time (s)

Current sample
Packet transmission

(b) Current draw of 3G non-Cryogenic test run.

 1
 2
 3
 4

42.00 42.25 42.50 42.75

 0.4

 0.5

 0.6

C
lie

nt

C
ur

re
nt

 (A
)

Time (s)

Current sample
Transmission start time

(c) Current draw of WiFi Cryogenic test run.

 1
 2
 3
 4

25 30 35 40 45
 0.5

 0.6

 0.7

 0.8

C
lie

nt

C
ur

re
nt

 (A
)

Time (s)

Current sample
Packet transmission

(d) Current draw of 3G Cryogenic test run.

Fig. 9: Current draw of test runs.

TABLE III: Power consumption for the WiFi experiment.

No Randomization Randomization
Without
Cryogenic

With
Cryogenic

Without
Cryogenic

With
Cryogenic

Total 123.51 J 122.83 J 123.83 J 123.46 J
- Baseline 10.01 J 9.33 J 10.32 J 9.95 J

Std. dev. 0.92 J 1.02 J 1.05 J 0.99 J
Savings 6.76% 3.58%

Per Packet 0.068 J 0.064 J 0.068 J 0.067 J
Std. dev. 0.006 J 0.007 J 0.007 J 0.007 J

Reduction 5.29% 2.34%

representative subset of a larger series of experiments, which
are described in [19].

5) 3G Measurements at KUL: In this experiment, we
connected the Pi to the public BASE cellular network. As
with the WiFi experiment, the tolerance used for Cryogenic
tasks is set to about 50% of the transmission period and prime
numbers are used to minimize the likelihood of simultaneous
transmissions Table IV presents the period and tolerance
values used for the experiment, while Table V reports the
energy consumption per packet transmitted using 3G.

TABLE IV: Programs, transmission periods and tolerances (in
milliseconds) for the 3G experiment.

No Randomization Randomization
Without
Cryogenic
(P1)

With
Cryogenic
(P2)

Without
Cryogenic
(P3)

With
Cryogenic
(P4)

(F) 20011 (F) 20011 (R) 20011 (R) 20011
(F) 15013 (F) 15013 (F) 15013 (F) 15013
(F) 12161 (C) 12161±6080 (F) 12161 (C) 12161±6080
(F) 8009 (C) 8009±4004 (F) 8009 (C) 8009±4004

As can be seen from Table IV, Cryogenic introduces a
variability of up to 6 seconds into the transmission timings
for the low-priority programs P2 and P4, which allows their
transmissions to be synchronized with those of the high-
priority programs P1 and P3.

As with WiFi, Table V shows that for 3G transmissions,
Cryogenic achieves power savings in all test scenarios.

The experiments reported in this paper should not be seen
as the best-case energy savings that can be achieved with
Cryogenic, but rather as a challenging and yet representative

TABLE V: Power consumption for the 3G experiment.

No Randomization Randomization
Without
Cryogenic

With
Cryogenic

Without
Cryogenic

With
Cryogenic

Total 861.56 J 848.95 J 858.41 J 852.40 J
- Baseline 175.22 J 162.61 J 172.07 J 166.06 J

Std. dev. 8.5013 J 5.2165 J 9.4671 J 8.6167 J
Savings 7.20% 3.49%

Per Packet 1.788 J 1.694 J 1.654 J 1.628 J
Std. dev. 0.006 J 0.007 J 0.0910 J 0.0845 J

Reduction 5.26% 1.57%

case-study. Reflecting upon the low-priority applications that
we discussed in the introduction, such as Google Latitude [1]
and Google Calendar [2], the delays introduced by Cryogenic
(under 6.1 seconds in the worst case) are inconsequential. We
therefore believe that Cryogenic offers generic energy savings
for the large class of low-priority applications that can tolerate
the necessary transmission delays.

V. CONCLUSION AND FUTURE WORK

For the experiments in this paper two independent research
groups have validated the performance of Cryogenic. Each
site used a different energy monitoring methodology, network
device and version of the operating system. This approach
suggests that our results are repeatable and that the Cryogenic
approach to power conservation will generalise.

The main limitation of the Cryogenic approach is that it can
only provide benefits for applications that can defer operations
and thus can leave some scheduling flexibility to the operat-
ing system. However, this class of applications is large and
growing, as the intermittent connectivity afforded by mobile
devices already requires that developers build applications in
a way that can tolerate transmission delays.

While the specific hardware and software stack of each
platform has a significant impact on power consumption,
Cryogenic reduces the energy consumed of networking in all
cases, achieving power savings of between 2.3% and 6.8%
for WiFi and between 1.6% and 7.2% for 3G. The reductions
achieved are moderate, but the modifications required to the
original application are simple and localized, as discussed in
Section III-E. It is important to note that: (i.) these savings
are achieved while performing the same amount of work and
(ii.) the Cryogenic test programs were not completely flexible
to obtain savings, since Cryogenic was only allowed to defer
about half of the transmissions. This evaluation is therefore
far from the best case for Cryogenic.

Our future work will proceed on three fronts. First, we
will evaluate the power savings that Cryogenic achieves for
mass storage devices. Second we will integrate Cryogenic
with a broader range of existing applications. Third, for
integration into the Linux mainline kernel, Hans Peter An-
vin (a Linux co-maintainer) suggested on the Linux Ker-
nel Mailinglist (LKML) to add a Cryogenic-style timeout
fcntl for all file descriptors instead of the device-specific
/dev/cryogenic/ file descriptors. This would further sim-
plify the API.

ACKNOWLEDGMENTS

This work was funded by the Deutsche Forschungsgemein-
schaft (DFG) under ENP GR 3688/1-1 and the Agency for
Innovation by Science and Technology in Flanders (IWT).

REFERENCES

[1] “Google latitude,” http://en.wikipedia.org/wiki/Google Latitude, Febru-
ary 2014.

[2] “Google calendar,” http://en.wikipedia.org/wiki/Google Calendar,
February 2014.

[3] A. Mahesri and V. Vardhan, “Power Consumption Breakdown on a
Modern Laptop,” in Proceedings of the 4th International Conference
on Power-Aware Computer Systems, 2005.

[4] A. Hylick, R. Sohan, A. Rice, and B. Jones, “An Analysis of Hard Drive
Energy Consumption,” in IEEE International Symposium on Modelling,
Analysis and Simulation of Computers and Telecommunication Systems,
2008.

[5] R. Kravets and P. Krishnan, “Power Management Techniques for Mobile
Communication,” in Proceedings of the 4th Annual ACM/IEEE Interna-
tional Conference on Mobile Computing and Networking, 1998.

[6] P. Reviriego, J. A. Hernández, D. Larrabeiti, and J. A. Maestro, “Per-
formance Evaluation of Energy Efficient Ethernet,” in IEEE Communi-
cations Letters, 2009.

[7] A. Roy, S. M. Rumble, R. Stutsman, P. Levis, D. Mazières, and
N. Zeldovich, “Energy Management in Mobile Devices with the Cinder
Operating System,” in Sixth Conference on Computer Systems, 2011.

[8] S. M. Rumble, R. Stutsman, P. Levis, D. Mazières, and N. Zeldovich,
“Apprehending Joule Thieves with Cinder,” in 1st ACM Workshop on
Networking, Systems and Applications for Mobile Handhelds, 2009.

[9] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières, “Making
Information Flow Explicit in HiStar,” in 7th USENIX Symposium on
Operating Systems Design and Implementation, 2006.

[10] Microsoft Corporation, “Windows Timer Coalescing,” 2009.
[11] Microsoft Corporation, “Timers, Timer Resolution and Development of

Efficient Code,” 2010.
[12] Apple Inc., “OS X Mavericks Core Technologies Overview,” 2013.
[13] D. Domingo, R. Landmann, and J. Reed, “Red Hat Enterprise Linux 6

Power Management Guide,” 2010.
[14] P. Greenhalgh, “big.LITTLE Processing with ARM Cortex-A15 &

Cortex-A7,” 2011.
[15] B. Jeff, “Advances in big.LIITLE Technology for Power and Energy

Savings,” 2012.
[16] R. Randhawa, “Software Techniques for ARM big.LITTLE Systems,”

2013.
[17] S. Nikolaidis, N. Kavvadias, T. Laopoulos, L. Bisdounis, and S. Blionas,

“Instruction Level Energy Modeling for Pipelined Processors,” in Inter-
national Workshop on Power And Timing Modeling, Optimization and
Simulation, 2003.

[18] J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux Device Drivers, 3rd
Edition. O’Reilly Media, Inc., 2005.

[19] A. Morales, “Cryogenic: Enabling Power-Aware Applications on
Linux,” Master’s thesis, Technische Universität München, 2014.

