
Partitioning the Internet

Matthias Wachs
TU München

wachs@in.tum.de

Christian Grothoff
TU München

grothoff@in.tum.de

Ramakrishna Thurimella
University of Denver

ramki@cs.du.edu

Abstract
This paper presents experimental results for calcu-

lating both node- and edge separators on Autonomous
System graphs generated from BGP routing informa-
tion. The separator of a network graph describes a
range of interesting properties as it captures compo-
nents that are critical to overall connectivity. These
components play special roles in terms of routing and
deserve special attention from those in-charge of net-
work security and resilience.

We present empirical evidence showing that the Au-
tonomous System Graph (AS Graph) is hard to separate
and large portions always remain connected even in the
case of a significant number of concurrent Byzantine
failures of Autonomous Systems or connections between
Autonomous Systems.

1. Introduction

Internet connectivity can be surprisingly brittle
with respect to failures at physical locations. There are
several examples where failures at a single physical lo-
cation have had a significant impact on connectivity for
a whole region or country [8, 15, 18].

This work is about algorithms to help answer the
question of how resilient the Internet is against Byzan-
tine failure of a small set of providers (nodes) or peering
links between providers (edges).

To answer this question we analyzed the topology
of the Internet’s backbone by generating graphs from
Internet measurement data and used a new heuristic to
find the smallest possible set of networks or connections
to be removed to split the Internet. This paper presents
empirical evidence that the Internet’s backbone infras-
tructure is surprisingly well connected. The modern In-
ternet consists of Autonomous Systems (ASes) which
are linked together using BGP. A high-level approxi-
mation for the Internet topology is thus the AS Graph,
which models the peering relationships between ASes.

We use a graph-theoretic approach by finding sets
of nodes (networks) and edges (connections), the so

called separators, to be removed from the network
graph. A separator is a set of edges or nodes that par-
titions a graph into sizable connected components. We
will use the term separator to mean both edge separa-
tor and node separator; it will be clear from the context
which type of separator is used.

The primary goal of this work is to characterize the
size of the separator that would have to be removed to
fragment the AS graph and thereby the Internet. De-
termining separators for network topologies is useful in
various respects, in particular:

• Elements of the separator represent critical infras-
tructure since the removal of them would fragment
the network and significantly reduce its value. Net-
works with large separators have higher resilience.

• Elements of the separator are particularly useful
for the placement of traffic monitoring (or even
manipulation) equipment since a large fraction of
long-distance communications must cross those
links.

Any separator has to balance two goals: both the
size of the separator as well as the size of the largest
resulting component should be small. We will refer to
the size of the largest remaining connected component
in relation to the overall size of the graph as χ . For this
work, we will assume that a value for χ is given and
that the goal is to find a small χ-separator.

Using the AS graph creates the problem of obtain-
ing a sufficiently accurate approximation of the actual
graph. We address this problem by using two meth-
ods to obtain approximations of the AS graph. We then
demonstrate that the differences between these two ap-
proximations are small (in terms of the size of the sep-
arator in relation to the size of the AS graph). We also
consider the problem that not all ASes are of equal rel-
evance. By mapping page access statistics from Alexa
to ASes, we obtain a weighted AS graph which we then
try to separate as well.

2. Background and Related Work
Given a graph with n nodes of total weight W , a

χ-separator is a subset of nodes or edges whose dele-
tion partitions a connected graph into connected com-
ponents where the largest component has no more than
χW nodes, for some fixed 1/2 ≤ χ < 1. In other
words, χ determines how balanced a separator is. In
a connected graph of n nodes and m edges, one can
exhaustively delete every separator of size k, examine
the connected components for balance (e.g. size of the
largest connected component as a fraction of the origi-
nal graph). This gives us an O((m+ n)

(n
k

)
) time algo-

rithm.
For fixed k, this is a polynomial-time algorithm;

otherwise, this algorithm has Ω(nk) complexity. It
should be noted that even for constant values of k > 3,
this brute-force algorithm is impractical. Furthermore,
if there is a polynomial time algorithm for finding a χ

separator of size k, then that algorithm can be used to
find a k-clique in a given graph [14]. In light of this,
one can consider approximation algorithms that relax
the problem constraints: increase the size of the sepa-
rator for a given χ , or tolerate a slightly less balanced
separator in favor of a smaller separator.

Historically, Kernighan and Lin recognized the im-
portance of the graph partitioning problem and its var-
ious applications as far back as in 1970 [12]. In their
landmark paper, they also proposed a heuristic which
has served as a benchmark for other graph partitioning
heuristics ever since.

Another common class of partitioning heuristics
are derived from the technique of graph coarsening: the
graph to be partitioned is made smaller by collapsing
nodes and edges, the resulting smaller graph is parti-
tioned, and the separator in this smaller graph is ex-
tended to the original graph during the uncoarsening
step [4, 9]. Though it was apparent that these early
works were promising, it remained unclear whether
these heuristics would consistently produce good qual-
ity separators for graphs arising in a wide range of appli-
cation domains until Karypis and Kumar [11] explored
the partitioning problem systematically for various ver-
sions of the problem. They proposed refinements to
the coarsening heuristic and implemented them. Their
implementation, which they distribute under the name
Metis, is available for free. A remarkable feature of
Metis is its fast execution time and its applicability to
graphs arising out of varied domains. We compare our
results against those produced by Metis.

Kleinberg [13] defined (ε,k)-failures and proposed
an algorithm to monitor the connectivity of a network
against such failures. These failures are events in which
an adversary deletes up to k nodes or edges, after which

there are two sets of nodes A and B, each at least an ε

fraction of the network, that are disconnected from one
another. A set of nodes is an (ε,k)-detection set D if,
for any (ε,k)-failure of the network, some two nodes in
D are no longer able to communicate. Finding detection
sets, though appears superficially related to the problem
we consider in this paper, is simpler than finding good
separators.

Other related works include finding approximate
separators by Feige and Mahdian [7], polynomial time
approximation schemes for finding most balanced min-
imum separators that separate two designated vertices s
and t [3], and finding weak points in networks [2] using
semidefinite programming. The last paper is a study on
the impact on node and edge failures on connectivity
that is quite similar to the one presented in this paper.
The main difference is that they start with a network
where nodes are categorized into clients and servers and
where any server is able to provide the required service.
They present algorithms to calculate lower and upper
bounds on the minimum connectivity (after failures).
The results presented in [2] work for graphs that are typ-
ically orders of magnitude smaller than those presented
in this paper.

3. Calculating Separators
This section describes the heuristics we used to find

node and edge separators in the network graphs. We
initially attempted to find separators using Metis [11];
however, Metis did not produce good cuts for larger
values of χ and for weighted graphs the resulting sep-
arators were quite large. We believe this is mainly
because Metis is not optimized to create χ-separators
with χ > 3

4 . The separators calculated using our heuris-
tics are sometimes significantly smaller than those com-
puted by Metis, justifying the development of our own
heuristics.

3.1. Finding Edge Separators

We found that minor variations of the well-known
Kernighan-Lin heuristic for finding edge separators [12]
give us the best results for the network graphs consid-
ered in this paper. Define S(A,B), the separator for
a given vertex partition (A,B), to be the set of edges
which have one end point in A and the other in B.
We then intend to minimize the size of the separator,
|S(A,B)|. The KL heuristic tries to achieve this by start-
ing with an arbitrary partition and applying successive
vertex swaps until no amount of swapping helps, i.e.
when the heuristic reaches a local minimum. A feasible
starting solution is created using a breadth-first traver-
sal from a random starting node. To describe the algo-
rithm, we need the following definition. When a pair

of vertices a ∈ A,b ∈ B is swapped, we say it results
in gain(a,b) = |S(A,B)|− |S(A∪{b}−{a},B∪{a}−
{b})|. Note that the gain is negative if swapping a with
b increases the size of the separator.

When we are seeking to partition the input graph
into unequal parts (i.e. χ > 1

2), we employ the trick sug-
gested by Kernighan-Lin [12] of adding an appropriate
number isolated “dummy” nodes to the graph.

3.2. Edge Separators for Weighted Graphs

Let us now consider graphs with node weights
where weights model the relative importance of dif-

Algorithm: Weighted Edge Separator
Input: G(V,E) with node weights, a χ partition

A and B.
Output: Updated χ partition A,B with

potentially fewer edges between A and
B

1 Coarsen G by merging u with its neighbor v if
degree(u) is 1 and wu +wv < t;

2 Unmark all nodes;
3 max gain← 0 ;
4 cumulative gain← 0;
5 while unmarked nodes exist in A and B do
6 gA← gain from best feasible move from A ;
7 gB← gain from best feasible move from B ;
8 gAB← gain from best feasible swap ;

// only unmarked nodes are
feasible

9 g←max(gA,gB,gAB) ;
10 cumulative gain← cumulative gain+g;
11 switch g do
12 case gA
13 perform best feasible move from A ;
14 mark node;
15 endsw
16 case gB
17 perform best feasible move from B ;
18 mark node;
19 endsw
20 case gAB
21 perform best feasible swap ;
22 mark nodes;
23 endsw
24 endsw
25 if cumulative gain > max gain then
26 max gain← cumulative gain ;
27 checkpoint steps taken so far ;
28 end
29 end
30 undo the steps taken after the last checkpoint ;
31 return A,B;

ferent nodes. Clearly for this version of the problem,
dummy nodes cannot be used effectively. Let WA rep-
resent Σv∈Awv where wv is the weight of vertex v. For
brevity the total weight of the graph WV is denoted sim-
ply as W . We will refer to χ ·W as the threshold. A χ

partition, χ > 1
2 , of the node set V is a partition into

two sets A and B where both WA and WB are below
the threshold. Note that a χ partition always exists as
long as the weight of every individual node is under the
threshold.

For weighted graphs, we make three significant
changes to Kernighan-Lin. First, we use a simplistic
variant of graph partitioning [11] where we iteratively
merge all nodes of degree one with their neighbor as
long as the weight of the resulting node is under the
threshold. Especially for some of our larger and sparser
graphs, this results in a significant reduction in the prob-
lem size without impacting the quality of the solution.

Second, in order to deal with weighted nodes, we
introduce the notion of a feasible swap; a swap is fea-
sible if after the swap both sides are below the thresh-
old. Only feasible swaps are considered in our inner-
most loop of Kernighan-Lin.

Our third change is that in addition to swaps, we
consider (feasible) moves, where a single node is moved
from one side to the other side (and both sides are below
the threshold after the swap).

The algorithm is summarized in Algorithm
Weighted Edge Separator. The initial χ partition to our
algorithm is found as in the unweighted case. One key
implementation technique that we employed is ordering
the nodes in the decreasing order of gain and searching
on this ordered lists. This gives us the ability to abort
the search the moment we discover that the gain at the
current indices is less than what we already know is pos-
sible from the previous considerations. From this point
on, none of the remaining possibilities will offer a bet-
ter gain. Since searching takes place repeatedly in the
innermost loop of the heuristic, this simple observation
results in significant savings in the run time of the algo-
rithm.

3.3. Finding Node separators

Next we consider node separators. The discus-
sion given in this section applies to both weighted and
unweighted graphs. As in the previous section, for
weighted graphs we only consider feasible moves or
swaps.

A χ-node separator C is a subset of the node set V
such that the weight of every connected component in
the subgraph induced by V −C is under the threshold.
The size of the separator is |C| and it is this size we seek
to minimize. It is important to note that we only con-

Algorithm: Weighted Node Separator
Input: G(V,E) with node weights, a χ node

partition C derived from a good quality
edge separator.

Output: Updated χ partition A,B with
potentially fewer edges between A and
B

1 current best← cost of C;
2 for h max← 2 to 30 do
3 for heat← h max down to 1 do
4 ca← Best node separator cost from
5 20 iterations of Push(C, heat);
6 cb← Best node separator cost from
7 20 iterations of Pull(C, heat);

// Pull is the same as
Push, only with A and B
exchanged.

8 if current best ≥ min(ca,cb) then
9 current best← min(ca,cb);

10 C← node separator corresponding
11 to min(ca,cb);
12 end
13 end
14 if no change in C in the last 5 iterations then
15 return C;
16 end
17 end
18 return C;

sider the cardinality of C and not the sum of the weights
of the nodes in C. Note that if we have edge separator
of size k, then we can easily construct a node separator
of size at most k by picking, arbitrarily, either u or v for
each edge (u,v) from the edge separator.

Once we have an initial node separator, we employ
simulated annealing to improve the quality of the node
separator (Algorithm Weighted Node Separator). For a
node u in the cut C, let NA(u) and NB(u) represent the
neighbors of u in A and B respectively. In each iteration,
we consider two operations for a vertex u from the cut:
push u and pull u. Push u removes u out C and places it
in A. In addition, this operation moves NB(u) from B to
C in order to maintain the invariant that C is a node cut.
Pull u, on the other hand, removes u out C and places
it in B. Also NA(u) is moved from A to C in order to
maintain the invariant that C is a node cut. Clearly, push
(resp. pull) u reduces the size C by one if NB(u) = /0
(resp. NA(u) = /0). If NB(u) 6= /0, a push u operation
increases the node cut size by NB(u)− 1. The cost of
a move, either a pull or a push, is the net change in
the number of nodes of C. As before, these moves are
performed only if they are feasible, i.e. after the move
both A and B are below the threshold. With simulated

Algorithm: Push(C, heat)
Input: Weighted graph G = (V,E), node

separator C, two partitions A and B of
V −C, and a positive integer heat

Output: Updated A,B,C after possibly moving
some nodes u from C to A and some
neighbors u from B to C.

1 current cost← cost of C;
2 foreach u ∈C do
3 Let NB denote {v | v is a neighbor of u in B};
4 if weight of (A∪{u})≤ χ ·W then
5 new cost← cost of (C∪NB−{u}) ;
6 δ ← new cost− current cost ;
7 r← random number between 0 and δ ;

// r can be negative if
δ < 0

8 if r ≤ heat then
9 move u from C to A ;

10 move NB from B to C ;
11 current cost← new cost ;
12 end
13 end
14 end

annealing, lower-cost moves are performed with higher
probability, with the general chance of success being
determined by the current amount of heat. The problem
with this approach is that if we were to use simulated
annealing in the usual fashion — slowly cooling down
from ‘infinite’ heat, the initial moves would destroy the
good properties possessed by our initial node cut which
was derived from a good edge cut.

4. Graph Generation

For our analysis, we generated graphs represent-
ing the Internet from actual measurement data. All
measurement data we used represent the state of the
Internet in late 2010 or early 2011. Section 4.1 de-
scribes how we used BGP routing information gathered
by the Route Views project 1 to generate a graph rep-
resenting peering relationships between Autonomous
Systems (ASes). Naturally, the resulting graph is only
a rough approximation of the actual relationships since
the data provide only a local view of the routing topol-
ogy and do not model policy restrictions that may be
present. In Section 4.2 we try to compensate for this
by combining the BGP generated AS graph with an
AS graph based on IP-level forward-path measurement
topology information provided by CAIDA 2.

Finally, we wanted to differentiate between net-

1http://www.routeviews.org/
2http://www.caida.org/

http://www.routeviews.org/
http://www.caida.org/

Table 1: Characterization of the AS graphs generated
using Route View’s BGP snapshot from December 30th
2010.

Monitor Name LINX SYDNEY WIDE
Prefixes 8,414,813 1,543,223 680,980
Nodes 35,872 36,543 36,315
Edges 75,170 67,485 52,885

works that provide “important” services and networks
that are not widely used. For example, AS 56357 is
currently an AS for research consisting only of a single
router — clearly this network is hardly significant to the
Internet as a whole. Section 4.4 describes how we used
HTTP access statistics as one possible method for eval-
uating network relevance and assigning weights to the
nodes in the graphs.

4.1. Construction of AS Graphs from BGP
Routing Information

We build a first set of AS graphs using the AS rout-
ing information collected by the Route Views project.
The Route Views project collects BGP information by
operating ten BGP routers in different locations. The
router’s routing tables and the received BGP updates are
written to disk and made publicly available on a daily
basis.

We use the path information from BGP for our
graph generation by adding occurring ASes to our graph
as nodes. For consecutive ASes in the AS Path we add
an edge to the graph.

For this work we initially selected three different
BGP datasets from three different BGP routers to in-
vestigate which impact the number of announced IP
prefixes in the routing tables on the resulting graph
has: The LINX dataset (London, UK) contained over
8 million announced prefixes, the average size SYD-
NEY dataset (Sydney, Australia) contains 1.5 million
prefixes and the very small WIDE dataset only about
680,000 prefixes. The resulting graphs have almost the
same number of nodes with around 36,000 nodes. The
number of edges differs, depending if the router is lo-
cated in a well-connected area of the core Internet or if
it is located in a peripheral area. When we merge the
resulting graphs, we obtain a graph with 36,697 nodes
and 79,464 edges. Based on this modest increase in the
graph size from merging multiple points of view, we ex-
pect that using a few more vantage points would not add
a significant number of additional nodes or edges. Still
the resulting AS graph is incomplete; alternative meth-
ods, such as the one discussed in the next section, can
be used to discover some of the missing edges, such as

Table 2: Characterization of the AS graphs generated
using CAIDA’s Routed AS Links dataset

Dataset Cycle 1249 Cycle 1248 Cycle 1250
AS Sets 63 54 63
MOAS 1,456 1,455 1,263
Nodes 19,376 19,416 19,343
Edges 43,654 44,371 42,273

those that typically are not widely advertised via BGP.
Table 1 provides some further statistics on the re-

sulting AS graphs.

4.2. Construction of AS Graphs from Trace-
routes

In addition to the graphs from section 4.1, we gen-
erated AS graphs based on IP-level forward path mea-
surements conducted by CAIDA. CAIDA performs reg-
ular path measurements to every routed /24 IP network.
Based on this measurements CAIDA provides the “IPv4
Routed /24 AS Links Dataset” [10] where they mapped
the contained IPs to ASes using Route Views BGP data
and extracted the connections between the ASes. This
dataset contains pairs of connected ASes and additional
information about the processing process. In particular,
the data distinguishes between direct and indirect links.
Links are marked as indirect if one or more hops on the
IP-path cannot be mapped to an AS.

Table 2 characterizes the AS graphs generated us-
ing the “IPv4 Routed /24 AS Links Dataset”. Combin-
ing the AS graphs from the three datasets results in an
AS graph with 22,271 nodes and 57,867 edges.

4.3. Merge of BGP and Traceroute graphs

To obtain a best possible graph representation of
the Internet, we merged all the graphs mentioned before
into one big graph. So we can prevent the drawbacks
from both graphs and get a graph with a non-local, non-
directed view on the Internet.

We merged the BGP-based graphs and the CAIDA
AS links based graphs in an resulting graph containing
36,715 nodes and 99,852 edges.

4.4. Weight Generation

We also wanted to be able to assign a weight to
each AS reflecting its importance, where importance is
based on the popularity of the service the AS provides
to end-users. Ideally, the importance rating would re-
flect the impact of separating the AS from the rest of
the network. As a simple approximation of actual im-

portance, we used the popularity of hosted websites as
an indicator for the importance of networks. As a ba-
sis for the popularity of websites we used a ranked list
of websites provided by Alexa3. To use this list to as-
sign weights based on the total number of page views to
ASes, we had to link DNS names to AS numbers.

First, we mapped DNS names to IP addresses,
which can then be mapped to its AS. A simple DNS
lookup up for each hostname is not sufficient as this
would not consider DNS caching, DNS-based load bal-
ancing and ultimately only provides a local view of
name resolution from the view of our system. Instead,
we obtained a global view of DNS resolution using 89
nodes on PlanetLab from all over the world. Each of the
nodes was used to perform DNS lookups for the com-
plete list of the top 100,000 websites. To bypass web
server load balancing and DNS caching, three sequen-
tial lookups of the whole list were performed.

The resulting dataset consists of 27,801,818 IP ad-
dresses; 18,066 IP addresses from invalid private IP
blocks were filtered and 1,269,239 lookups failed. Af-
ter filtering invalid and duplicate addresses, 159,247
unique IP addresses were found. These IP addresses
were then mapped to AS numbers using CAIDA’s
“Routeviews Prefix to AS mappings Dataset”, a dataset
available from CAIDA providing an IP prefix to AS
number mapping based on BGP dumps.

5. Experimental Results

We used the heuristics presented in Section 3 to
calculate separators for χ ∈ [1

2 ,1). Since the heuristics
are randomized, running the heuristic several times typ-
ically yields significantly different results. The plots in
this section all show the results for five runs (not aver-
aged, each run is represented by a single dot) where the
result for each run is the best result obtained during 10
iterations of the original heuristic. On an Intel i7 920,
our Java implementation used about 1 GB of memory
and took typically around a minute to execute a single
iteration of either heuristic.

We provide all experimental results for the AS
graph generated by combining the data from BGP rout-
ing tables (Section 4.1) with the traceroute graph. The
combined graph has 36,715 nodes and 99,852 edges.

5.1. Unweighted AS Graphs

First, we determined the size of the separators for
the AS graph without weights. A χ-separator in this
case simply ensures that the largest remaining con-
nected component would contain at most a fraction of

3http://www.alexa.com/

0
2000
4000
6000
8000

10000
12000
14000

0.5 0.625 0.75 0.875 1

E
dg

e
se

pa
ra

to
rs

iz
e

χ

Presented heuristic
Metis

++++++++++
++

+

Figure 1: Size of the computed edge separators for dif-
ferent values of χ for the unweighted AS graph.

0
200
400
600
800

1000
1200
1400
1600

0.5 0.625 0.75 0.875 1
N

od
e

se
pa

ra
to

rs
iz

e

χ

Presented heuristic
Metis

+
+
++
+++++ +

+
++

++
+

+ +
+ ++++ +

+

Figure 2: Size of the computed node separators for dif-
ferent values of χ for the unweighted AS graph.

χ of the number of ASes. Figure 1 shows the size of the
edge separators found by our heuristic (Section 3.1) in
relation to χ . The relationship between the size of the
edge separator and χ is linear, suggesting that separat-
ing the graph by edge removal requires incrementally
cutting of ASes at the corners of the network.

When compared to Metis, the main difference is
that our heuristic is able to produce good separators for
larger values of χ .

Figure 2 shows the size of the node separators in
relation to χ . As expected, the size of the node separa-
tors is significantly smaller. What is surprising is that
the heuristic does not seem to always work consistently
well for values of χ close to 1; after all, the size of any
separator should be monotonically decreasing as χ in-
creases.

For unweighed node separators, Metis produces
significantly better results compared to the heuristic
presented earlier. However, the results are somewhat
less predictable as well.

5.2. Weighted AS Graphs

Figure 3 shows the size of the edge separator in
relation to χ for weighted graphs. As expected, it is
monotonically decreasing. However, the sharp drop
from over 15,000 edges to around 500 edges at only
54% is quite surprising. The reasons for this are likely

http://www.alexa.com/

0
5000

10000
15000
20000
25000
30000

0.5 0.625 0.75 0.875 1

E
dg

e
se

pa
ra

to
rs

iz
e

χ

Presented heuristic
Metis

+
+
+++
+++++++++++++

++ ++++++++++++++
++++++++++++++++

+

Figure 3: Size of the computed edge separators for dif-
ferent values of χ for the weighted AS graph.

two-fold. First, achieving near-perfect balance for the
weighted graph is harder because it essentially requires
solving two knapsack problems, leaving little room for
minimizing the size of the separator. Second, the ex-
treme weight distribution of the ASes permits rather
small separators (compared to the unweighted graph)
because isolating a few ASes can have a huge impact
on the size of the largest connected component.

For node separators, this second effect is even
stronger. Figure 4 shows that removing a handful of
ASes could be in theory quite devastating for reachabil-
ity. These ASes are typically a combination of high-
traffic ASes (such as Google) and ASes that are key
for connectivity (such as Level 3). The first effect is
less strong here, because the ASes that are part of the
node separator are not part of any connected compo-
nent, making it much easier to achieve a separation
where the remaining connected components have less
than χ weight. As a result, for node separators, χ close
to 1

2 is not as restrictive.
For the weighted AS graphs, the size of the edge

separator is again significantly larger for the AS graph
combining BGP and traceroute data (Figure 3). What
is surprising here is that the size of the edge separator
typically increases by 100%, not just by the 37–64%
range one might predict from the increase in the AS
graph size. We suspect that this is because the ASes
present in the BGP graph but absent in the traceroute
data typically have the minimum weight, making their
separation insignificant. So the algorithm is forced to
separate the same high-weight ASes, just this time with
a significant number of additional edges.

Compared to Metis, the edge separators for the
weighted graphs are significantly smaller using our
heuristic. Metis seems to be unable to take advantage
of the significant weight differences between the nodes.
Again, Metis also does not produce separators for val-
ues of χ > 3

4 .
For node separators, this effect is less pronounced

(Figure 4). This is likely because targeting ASes with

0
100
200
300
400
500
600
700

0.5 0.625 0.75 0.875 1

N
od

e
se

pa
ra

to
rs

iz
e

χ

Presented heuristic
Metis

+
+

+
+
+
+

++

+

+
+

+

++

++

+
+

+
+

+

+
+
+
++ +

+

Figure 4: Size of the computed node separators for dif-
ferent values of χ for the weighted AS graph.

high weights or high degree is equally effective in both
cases. As a result, the increase in the size of the node
separator for the combined AS graph is typically mod-
est, with the exception of χ values close to 0.5.

For node separators on the weighted graph, Metis
performs again significantly worse than the presented
heuristic; furthermore, Metis’s results are widely dis-
persed and lack a clear trend towards smaller separators
for increasing values of χ .

6. Discussion

This research followed the common approach of
combining traceroute and BGP data to obtain a reason-
able approximation of the AS graph. Similar to existing
studies that attempt to characterize AS graphs [16], the
resulting AS graphs are not complete [5, 6, 17]. The AS
graphs could theoretically be augmented to be more ac-
curate, for example using additional or simply more ac-
curate measurements such as those described in [1, 19].
In an AS graph critical infrastructure is often not rep-
resented according to her significance for connectivity.
Internet Exchange Points (IXPs) might be treated as sets
of highly-connected nodes whereas a single undersea-
cable might be represented as multiple logical edges
which are much harder to separate. So applying our
heuristic to a physical map of the Internet could bring
interesting insights how to disconnect a certain region
and partition the Internet.

Based on the observed differences in terms of sep-
arator sizes between the experimental results using only
traceroute data and the results for the combined graph,
we conclude that our heuristic for determining separa-
tors would remain a good method for calculating sepa-
rators, and we suspect that the changes in the size of the
separators would not be too dramatic.

We believe that the calculated separators are appli-
cable to the various applications stated in the introduc-
tion:
• The elements of the separators do represent criti-

cal infrastructure; while additional edges in the AS
graph may make them less critical and a smaller
separator would point to even more critical sys-
tems, the separators do point to organizations and
relationships that are key to global connectivity.
The weighted AS graphs are useful in this appli-
cation domain.

• The locations calculated would be useful for the
placement of traffic monitoring equipment; addi-
tional edges might allow some traffic to escapes
surveillance (but many applications, such as early
warning systems, do not require completeness).
Even smaller separators may reduce the cost; nev-
ertheless, the heuristic represents an advance over
existing algorithms.

7. Conclusion

This work characterized small edge and node sep-
arators in AS graphs and provided extensive data on
the size of χ-separators for various values of χ . An-
alyzing the AS graphs, we found that allowing only a
slight imbalance between the resulting connected com-
ponents can significantly reduce the size of the separa-
tor. However, it would take the failure of 20–30 ASes
to make make about 40% of HTTP accesses fail for the
AS graphs used in this study (Figure 4). Furthermore,
this number represents only a lower bound, as the ob-
servable AS graph is naturally a subset of the actual AS
graph. As Byzantine failure of more than 20–30 ASes
seems unlikely, separating the Internet on the AS-level
is thus unlikely to work; future work in this area will
thus have to include additional information about BGP
routing policies or geographical knowledge about phys-
ical connections to detect critical infrastructure.

References

[1] Brice Augustin, Balachander Krishnamurthy, and Wal-
ter Willinger. Ixps: mapped? In Proceedings of the 9th
ACM SIGCOMM conference on Internet measurement
conference, IMC ’09, pages 336–349, New York, NY,
USA, 2009. ACM.

[2] George Dean Bissias, Brian Neil Levine, and Ramesh K.
Sitaraman. Assessing the vulnerability of replicated
network services. In Proceedings of the 6th Interna-
tional COnference, Co-NEXT ’10, pages 24:1–24:12,
New York, NY, USA, 2010. ACM.

[3] Paul S. Bonsma. Most balanced minimum cuts. Discrete
Applied Mathematics, 158(4):261–276, 2010.

[4] Thang Nguyen Bui and Curt Jones. A heuristic for re-
ducing fill-in in sparse matrix factorization. In PPSC,
pages 445–452, 1993.

[5] Qian Chen, Hyunseok Chang, Ramesh Govindan, Sugih
Jamin, Scott Shenker, and Walter Willinger. The origin
of power-laws in internet topologies revisited. In INFO-
COM, 2002.

[6] Rami Cohen and Danny Raz. The internet dark matter
- on the missing links in the as connectivity map. In
INFOCOM, 2006.

[7] Uriel Feige and Mohammad Mahdian. Finding small
balanced separators. In Proceedings of the thirty-eighth
annual ACM symposium on Theory of computing, STOC
’06, pages 375–384, New York, NY, USA, 2006. ACM.

[8] M. Hachman. Sabotage Suspected in Silicon Valley
Cable Cut. http://www.pcmag.com/article/
print/239065, April 2009.

[9] Bruce Hendrickson and Robert W. Leland. A multi-level
algorithm for partitioning graphs. In SC, 1995.

[10] Young Hyun, Bradley Huffaker, Dan Ander-
sen, Emile Aben, Matthew Luckie, kc claffy,
and Colleen Shannon. The ipv4 routed /24 as
links dataset - 12/30/2010,12/29/2010. http:
//www.caida.org/data/active/ipv4_
routed_topology_aslinks_dataset.xml.

[11] George Karypis and Vipin Kumar. A fast and high qual-
ity multilevel scheme for partitioning irregular graphs.
SIAM J. Sci. Comput., 20:359–392, December 1998.

[12] B. W. Kernighan and S. Lin. An Efficient Heuristic Pro-
cedure for Partitioning Graphs. The Bell system techni-
cal journal, 49(1):291–307, 1970.

[13] Jon Kleinberg, Mark Sandler, and Aleksandrs Slivkins.
Network failure detection and graph connectivity. SIAM
J. Comput., 38:1330–1346, August 2008.

[14] Dániel Marx. Parameterized graph separation problems.
Theor. Comput. Sci., 351:394–406, February 2006.

[15] Brid-Aine Parnell. Epic net outage in Africa as FOUR
undersea cables chopped: Ship blunders allegedly
to blame. http://www.theregister.co.
uk/2012/02/28/east_africa_undersea_
cables_cut/, February 2012.

[16] Amir H. Rasti, Nazanin Magharei, Reza Rejaie, and
Walter Willinger. Eyeball ases: from geography to con-
nectivity. In Internet Measurement Conference, pages
192–198, 2010.

[17] Matthew Roughan, Simon Jonathan Tuke, and Olaf
Maennel. Bigfoot, sasquatch, the yeti and other miss-
ing links: what we don’t know about the as graph. In
Proceedings of the 8th ACM SIGCOMM conference on
Internet measurement, IMC ’08, pages 325–330, New
York, NY, USA, 2008. ACM.

[18] R. Sauder. Connecting The Many Undersea Cut
Cable Dots. http://www.cyberspaceorbit.
com/ConnectingTheDots.htm, February 2008.

[19] Fabien Viger, Brice Augustin, Xavier Cuvellier,
Clémence Magnien, Matthieu Latapy, Timur Friedman,
and Renata Teixeira. Detection, understanding, and pre-
vention of traceroute measurement artifacts. Comput.
Netw., 52:998–1018, April 2008.

http://www.pcmag.com/article/print/239065
http://www.pcmag.com/article/print/239065
http://www.caida.org/data/active/ipv4_routed_topology_aslinks_dataset.xml
http://www.caida.org/data/active/ipv4_routed_topology_aslinks_dataset.xml
http://www.caida.org/data/active/ipv4_routed_topology_aslinks_dataset.xml
http://www.theregister.co.uk/2012/02/28/east_africa_undersea_cables_cut/
http://www.theregister.co.uk/2012/02/28/east_africa_undersea_cables_cut/
http://www.theregister.co.uk/2012/02/28/east_africa_undersea_cables_cut/
http://www.cyberspaceorbit.com/ConnectingTheDots.htm
http://www.cyberspaceorbit.com/ConnectingTheDots.htm

