Byzantine Set-Union Consensus
using Efficient Set Reconciliation

Florian Dold
Inria
Email: florian.dold @inria.fr

Abstract—Applications of secure multiparty computation such
as certain electronic voting or auction protocols require Byzantine
agreement on large sets of elements. Implementations proposed
in the literature so far have relied on state machine replication,
and reach agreement on each individual set element in sequence.

We introduce set-union consensus, a specialization of Byzantine
consensus that reaches agreement over whole sets. This primitive
admits an efficient and simple implementation by the composition
of Eppstein’s set reconciliation protocol with Ben-Or’s ByzCon-
sensus protocol.

A free software implementation of this construction is available
in GNUnet. Experimental results indicate that our approach
results in an efficient protocol for very large sets, especially
in the absence of Byzantine faults. We show the versatility of
set-union consensus by using it to implement distributed key
generation, ballot collection and cooperative decryption for an
electronic voting protocol implemented in GNUnet.

I. INTRODUCTION

Byzantine consensus is a fundamental building block for
fault-tolerant distributed systems. It allows a group of peers
to reach agreement on some value, even if a fraction of the
peers are controlled by an active adversary. Earlier theory-
oriented work on Byzantine consensus has focused on finding
a single agreement on a binary flag or bit string. More recent
approaches for practical applications are mainly based on state
machine replication (SMR), wherein peers agree on a sequence
of state machine transitions. State machine replication makes
it relatively easy to lift existing, non-fault-tolerant services to
a Byzantine fault-tolerant implementation [1]. Each request
from a client triggers a state transition in the replicated state
machine that provides the service.

A major shortcoming of the SMR is that all requests to the
service need to be individually agreed upon in sequence by
the replica peers of the state machine. This is undesireable
since in unoptimized SMR protocols such as PBFT [1], a
single transition requires O(n?) messages to be exchanged
for n replicas. Some implementations try to address this
inefficiency by optimistically processing requests and falling
back to individual Byzantine agreements only when Byzantine
behavior is detected. In practice this leads to very complex
implementations whose correctness is hard to verify and that
have weak progress guarantees [2].

The canonical example for a service where this inefficiency
becomes apparent is the aggregation of values submitted by
clients into a set. This scenario is relevant for the imple-
mentation of secure multiparty computation protocols such

Christian Grothoff
Inria
Email: christian.grothoff @inria.fr

electronic voting [3], where ballots must be collected, and
auctions [4], where bids must be collected. A direct imple-
mentation that reaches agreement on a set of m elements with
SMR requires m sequential agreements, each consisting of
O(n?) messages.

We introduce Byzantine set-union consensus (BSC) as an
alternative communication primitive that allows this aggrega-
tion to be implemented more efficiently. In order to implement
the set aggregation service described above, the peers first
reconcile the their sets using an efficient set reconciliation
protocol that is not fault-tolerant but where the complexity is
bounded even in the case of failures. Then, they use a variant
of ByzConsensus [5] to reach Byzantine agreement on the
union.

We assume a partially synchronous communication model,
where non-faulty peers are guaranteed to successfully receive
values transmitted by other non-faulty peers within an existing
but unknown finite time bound [6]. Peers communicate over
pairwise channels that are authenticated. Message delivery
is reliable (i.e. messages arrive uncorrupted and in the right
order) but the receipt of messages may be delayed. We make
the same assumption as Castro and Liskov [1], [7] about
this delay, namely that it does not grow faster than some
(usually exponential) function of wall clock time. We assume a
computationally unbounded adversary that can corrupt at most
t = [n/3] — 1 peers creating Byzantine faults. The adversary
is static, that is the set of corrupted peers is fixed before the
protocol starts, but this set is not available to the correct peers.
The actual number of faulty peers is denoted by f, with f < t.

The BSC protocol has message complexity O(mn + n?)
when no peers show Byzantine behavior. When f peers show
Byzantine behavior, the message complexity is O(mnf +
kfn?), where k is the number of valid set elements exclusively
available to the adversary. We will show how k can be bounded
for common practical applications, since in the general case k
is only bounded by the bandwidth available to the adversary.
In practice, we expect kf to be significantly smaller than m.
Thus, O(mnf + kfn?) is an improvement over using SMR-
PBFT which would have complexity O(mn?).

We have created an implementation of the BSC protocol
by combining Ben-Or’s protocol for Byzantine consensus [5]
with Eppstein’s protocol for efficient set reconciliation [8]. We
demonstrate the practical applicability of our resulting abstrac-
tion by using BSC to implement distributed key generation,

ballot collection and cooperative decryption from the Cramer-
Gennaro-Schoenmakers remote electronic voting scheme [3]
in the GNUnet framework.

II. BACKGROUND
A. Byzantine consensus

The Byzantine consensus problem [9] is a generalization
of the consensus problem where peers might also exhibit
Byzantine faults. A fundamental result is that no Byzantine
consensus protocol with n peers can support [n/3] or more
Byzantine faults in the partially synchronous model [6].

Many specific variants of the agreement problem (such as
interactive consistency [10], k-set consensus [11], or leader
election [12] and many others [13]) exist. We will focus on
the consensus problem, wherein each peer in a set of peers
{P1,...,P,} starts with an initial value v; € M for an
arbitrary fixed set M. At some point during the execution
of the consensus protocol, each peer irrevocably decides on
some output value ©; € M. Informally, a protocol that solves
the consensus problem must fulfill the following properties:!

o Agreement: If peers P;, P; are correct, then v; = vj.

o Termination: The protocol terminates in a finite number
of steps.

o Validity: If all correct peers have the same input value 7,
then all correct peers decide on 2.

Some definitions of the consensus problem also include
strong validity, which requires the value that is agreed upon to
be the initial value of some correct peer [14]. The consensus
protocol presented in this paper does not offer strong validity.
Early attempts at implementing Byzantine consensus with state
machine replication are SecureRing [15] and Rampart [16];
they suffered from sacrificing correctness for progress guar-
antees in the presence of asynchrony [1].

Castro and Liskov’s Practical Byzantine Fault Tolerance
(PBFT) [1], [7] does not suffer from this problem. PBFT
guarantees progress as long as the message delay does not
grow indefinitely for some fixed growth function?. PBFT
uses a leader to coordinate peers (called replicas in BPFT
terminology). When replicas detect that the leader is faulty,
they run a leader-election protocol to appoint a new leader.

The approach taken by BPFT (and several derived protocols)
has several problems [2]: In practice, malicious participants
are able to slow down the system significantly or even reduce
the throughput to practically zero. Correctness proofs for the
respective protocols and the implementation of state machine
replication are notoriously difficult [17].

Some more recent Byzantine state machine replication pro-
tocols such as Q/U [18] or Zyzzyva [19] have less overhead
per request since they optimize for the non-Byzantine case.
This comes, however, often at the expense of robustness in
the presence of Byzantine faults [2].

I Different variations and names can be found in the literature. We have
chosen a definition that extends to our generalization to sets later on.
2In practice, exponential back-off is used.

B. Gradecast

A key building block for our protocol is Feldman’s Grade-
cast protocol [20]. In contrast to an unreliable broadcast,
Gradecast provides correctness properties to the receivers,
even if the leader is exhibiting Byzantine faults.

In a Gradecast, a leader P;, broadcasts a message m among
a fixed set P = {Py,..., P,} of peers. For notational conve-
nience, we assume that Py, € P. These are the communication
steps for peer P;:

1) LEAD: If « = L, send the input value vy, to P

2) ECHO: Send the value received in LEAD to P.

3) CONFIRM: If a common value v was received at least
n—t times in round ECHO, send 7 to P. Otherwise, send
nothing.

Afterwards, each peer assigns a confidence value ¢; €
{0,1,2} that “grades” the correctness of the broadcast. The
result is a graded result tuple (0;,c¢;) containing the output
value 9; and the confidence c;. The grading is done with the
following rules:

o If some v was received at least n—t times in CONFIRM,

output (7,2).
o Otherwise, if some © was received at least ¢ + 1 times in
CONFIRM, output (0, 1).
o Otherwise, output (L, 0). Here, L denotes a special value
that indicates the absence of a meaningful value.
For the c¢;, the following correctness properties must hold:

1) If ¢; > 1 then ©; = ¥; for correct P; and P;

2) If Py, is correct, then ¢; = 2 and ©v; = vy, for correct P;.

3) |e; — ¢j] <1 for correct P; and P;.

When a correct peer P; receives a Gradecast with confidence

2, it can deduce that all other peers received the same message,
but some other peers might have only received it with a
confidence of 1. Receiving a Gradecast with confidence 1 also
guarantees that all other correct peers received the same mes-
sage. However, it indicates that the leader behaved incorrectly.
No assumption can be made about the confidence of other
peers. Receiving a Gradecast with confidence 0 indicates that
the leader behaved incorrectly and, crucially, that all other
correct peers know that the leader behaved incorrectly.

A simple counting argument proves that the above protocol
satisfies the three Gradecast properties. [20]

C. ByzConsensus

ByzConsensus [5] uses Gradecast to implement a consensus
protocol for simple values. Each peer begins with a starting
value sgl) and the list of all n participants P. Each peer also
starts with an empty blacklist of corrupted peers. If a peer is
ever blacklisted, it is henceforth excluded from the protocol.
In ByzConsensus, Gradecast is used to force corrupt peers
to either expose themselves as faulty—and consequently be
excluded—by gradecasting a value with low confidence, or to
follow the protocol and allow all peers to reach agreement.

ByzConsensus consists of at most f + 1 sequentially exe-
cuted super-rounds r € 1... f+1 where f < t. In each super-
round, each peer leads a Gradecast using their candidate value

sgr); these n Gradecasts can be executed in parallel. Leaders
where the Gradecast results in a confidence of less than 2 are
put on the blacklist. Recall that different correct peers might
receive a Gradecast with different confidence; thus peers do
not necessarily agree on the blacklist.

At the end of each super-round, each peer computes a new
candidate value sgrﬂ) using the value that was received most
often from the Gradecasts with a confidence of as least 1. If
SET') was received more than n — ¢ times, then r = f and the
next round is the last round.

If the final candidate value does not receive a majority of
at least 2¢t + 1 among the n Gradecasts, or if the blacklist
has more than t entries, then the protocol failed: either more
than ¢ faults happened or, in the partially synchronous model,
correct peers did not receive a message within the designated
round due to the delayed delivery.

ByzConsensus has message complexity O(fn?). While the
asymptotic message complexity is obviously worse than the
O(n?) of PBFT, there is a way to use set reconciliation
to benefit from the parallelism of the Gradecast rounds and
thereby reduce the complexity to O(fn?).

D. Set reconciliation

The goal of set reconciliation is to identify the differences
between two large sets, say S, and Sy, that are stored on
two different machines in a network. A simple but inefficient
solution would be to transmit the smaller of the two sets,
and let then receiver compute and announce the difference.
Research has thus focused on protocols that are more efficient
than this naive approach with respect to the amount of data
that needs to be communicated when the sets S, and S} are
large, but their symmetric difference S, & Sy is small.

A practical protocol was first proposed by Eppstein et al. in
2011. [8] It is based on invertible Bloom filters (IBFs), a data
structure that is related to Bloom filters [21]. An attractive
property of this approach is that IBFs are used both to
construct an estimator for the size of the symmetric difference
between two sets, as well as for the the reconciliation itself,
which requires this estimate.

An existing generalization of IBFs to multi-party set rec-
onciliation [22] based on network coding requires trusted
intermediaries, and is thus not applicable in the presence of
Byzantine faults.

III. OUR APPROACH

We now describe how to combine the previous approaches
into a protocol for Byzantine fault-tolerant set consensus. The
goal of the adversary is to sabotage timely consensus among
correct peers, e.g. by increasing message complexity or forcing
timeouts.

A major difficulty with agreeing on a set of elements as a
whole is that malicious peers can initially withhold elements
from the correct peers and later send them only to a subset of
the correct peers. This could possibly happen at a time when
it is too late to reconcile the remaining difference caused by
distributing these elements. We assume that the number of

these elements that are initially known to the adversary but
not to all correct peers is bounded by k, where k exists but is
not necessarily known to the correct participants.

A. Definition

We now give a definition of set-union consensus that
is motivated by practical applications to secure multiparty
computation protocols such as electronic voting, which are
discussed in more detail in Section VIL.

Consider a set of n peers P = { P4, ..., P, }. Fix some (pos-
sibly infinite) universe M of elements that can be represented
by a bit string. Each peer P; has an initial set Si(o) Cc M.

Let R 2M 5 2M be an idempotent function that
canonicalizes subsets of M by replacing multiple conflicting
elements with the lexically smallest element in the conflict set
and removes invalid elements. What is considered conflicting
or invalid is application-specific. During the execution of the
set-union consensus protocol, after finite time each peer P;
irrevocably commits to a set S; such that:

1) For any pair of correct peers P;, P; it holds that S; = S;.

2) If P; is correct and e € S? then e € S;.

3) The set S; is canonical, that is S; = R(S;).

The canonicalization function allows us to set an upper
bound on the number of elements that can simultaneously be in
a set. For example in electronic voting, canonicalization would
remove malformed ballots and combine multiple different
(encrypted) ballots submitted by the same voter into a single
“invalid” ballot for that voter.

B. Byzantine set-union consensus (BSC) protocol

Recall that every peer P;, 0 < i < n starts with a set Si(o).
The BSC protocol incorporates two subprotocols, bounded
Eppstein set reconciliation and lower bound agreement and
uses those to realize an efficient variant of ByzConsensus.

The basic problem solved by the two subprotocols is
bounding the cost of Eppstein’s set reconciliation. Given a
set size difference between two peers of k, the expected cost
of Eppstein’s set reconcilation is O(k) if both participants
are honest. However, we need to ensure that malcicious peers
cannot raise the complexity to O(m) where m is the size of
the union. There are two attacks, discussed in the next section,
that could degrade the performance of the unmodified Eppstein
protocol, causing it to either send or receive significantly more
than O(k) elements.

1) Bounded Eppstein set reconciliation: To send more than
O(k) elements, a malicious peer can send IBFs that fail to
decode, and cause the reconciliation algorithm to fall back
to sending the complete set, creating O(m) traffic instead of
O(k). This can be thwarted by forcing senders prove that their
sets are large enough to justify the IBF decoding failures.

In our bounded Eppstein set reconciliation protocol, a peer
that observes a modest (i.e. logarithmic in m) number of
IBF decoding failures requires a probabilistic proof of the
size of the sender’s set using sampling. Here, a receiver
experiencing IBF decoding failures transmits a challenge. The
sender must then respond with sample elements close to the

challenge’s value(s). The receiver can then estimate the size
of the sender’s set from the proximity of the results to the
challenge using [23]. If the size estimate is too low to justify
the IBF decoding failures, the receiver aborts the reconciliation
and blacklists the sender.

2) Lower bound agreement: To provide a lower bound
on the permissable set size for set reconciliation, BSC first
executes a protocol for lower bound agreement (LBA). In this
first step, every correct peer P; learns a superset 51(1) of the
union of all correct peers’ initial sets, as well as a lower bound
£; for the minimum number of elements shared by all correct
peers where n — ¢; < k. Note that neither Si(l) = Sj(l) nor
¢; = {; necessarily hold even for correct peers P; and P;. Our
LBA protocol proceeds in three steps:

(i) All peers reconcile their initial set with each other, using
pairwise (bounded) Eppstein set reconciliation.

(i1) All peers send their current set size to each other, and
each peer P; sets sets ¢; to the (¢ + 1)-smallest set size
that P; received.

(iii) All peers again reconcile their sets with each other, using
pairwise (bounded) Eppstein set reconciliation.

The third step is necessary to ensure that every correct P;
has at least ¢; elements, since malicious peers could use the &
elements initially withheld to force an honest peer’s set size
below the (¢ 4 1)-smallest set size. Thanks to the repetition
even if ¢; is different for each peer, it is guaranteed that P; has
at least ¢; elements in common with every other good peer.

In subsequent set reconciliations, ¢; can be used to bound
the traffic that malicious peers are able to cause by falsely
claiming to have a large number of elements missing. LBA
itself has complexity O(nmf): initially all malicious peers
can once claim to have empty sets with all other peers. LBA
ensures that for the remainder of the protocol, a correct peer
with m; elements can stop sending elements to malicious peer
Py after Py requested m; — ¢; < k elements.

3) Exact set agreement: After LBA, an exact set agreement
is executed, where all peers reach Byzantine agreement for a
super-set of the set reached in LBA. The exact set agreement
is implemented by executing a variant of ByzConsensus which
instead of sending values reconciles sets.

The Gradecast is adapted as follows:

(i) LEAD: If ¢+ = L, reconcile the input set V, with P.
(ii)) ECHO: Reconcile the set received in LEAD with P.
(iii) CONFIRM: Let Ur be the union of all sets received
in the ECHO round, and Ng(e) the number of times a
single set element e was received.
IfV, ey, t < Np(e) <n—t send L (where L # ().
Otherwise send Ug — {e | Ng(e) <t} to P.
The grading rules are also adapted to sets. Let /¢ be the union
of sets received in CONFIRM, N (e) the number of times a
single element e € Uc was received, and N (e) the number
of sets (not L) received in CONFIRM that excluded e.
. If/\eeuN+()>n—tVN;(e) >
output ({e | N+() > n—t} 2).

n —t,

o Otherwise if A, N&(e) >t A Nér(e) > Ng (e)
or A.cy. No (e)>t/\N (e) > N (e),
output <{e\N+() >tANZ(e) > Ng(e)}, 1).

o Otherwise, output (L, 0).

Similar to ByzConsensus, the BSC consists of at most f+1
super-rounds, where f < t. Each peer P; starts with Si(l)
as its current set. In sequential super-rounds, all peers lead a
Gradecast for their candidate set. Like in ByzConsensus, if P;
receives a Gradecast with a confidence value that is not 2, then
P; puts the leader of the Gradecast on its blacklist, and correct
peers stop all communictation with peers on their blacklist.

At the end of each super-round, peers update their candidate
set as follows. Let n’ be the number of leaders that gradecasted
a set with a non-zero confidence. The new candidate set
contains all set elements that were included in at least [n'/2]
sets that were gradecasted with a non-zero confidence value.
If all elements occur with a (n — t)-majority, then the next
round is the last round. The output of the consensus protocol
is the candidate set after the last round—or failure if f > ¢.

We give a correctness proof that generalizes Feldman’s
proof for Gradecast of single values [24, Section 4.1].

Lemma 1. If two correct peers send sets A+ 1 and B # 1
respectively in CONFIRM, then A = B.

Proof. Proof by contradiction and counting argument. Assume
w.lo.g. that e € A and e ¢ B. At least n — t peers must have
echoed a set that includes e to the first peer. Suppose f of
these peers were faulty, then at least n —t — f > ¢ good peers
included e in the ECHO transmission to the second peer. If
e ¢ B, thent < Ng(e) < n—t. In this case, an honest second
peer must output B = L. Contradiction. O

Theorem 2. The generalization of Gradecast to sets satisfies
the three Gradecast properties.

Proof. We show that each property holds:

o Property 1 (If ¢;,c; > 1 then V= V for correct P; and
P)): Assume w.lo.g. that e € V; \V
For e € V;, P; must have received e at least N, de) >t
times in CONFIRM. Given f < t failures, at least one
honest peer must thus have included e in CONFIRM.
According to Lemma 1, then all n — f honest peers must
either include e in CONFIRM or send L.

Because L is not a set, this leaves at most all f < ¢
faulty peers that can send a set without e. But for e ¢ VJ
we need N (e) > ¢+ 1. Contradiction.

e Property 2 (If Py, is correct, then ¢; = 2 and V; = V,
for correct P;): All n— f > n—t good peers ECHO and
CONFIRM the same set. By the grading rules, they must
output a confidence of 2.

o Property 3 (|¢; —c¢;| < 1 for correct P; and P;): Proof by
contradiction. Assume w.l.o.g. ¢; =2 and ¢; = 0. ¢; = 2
implies that for each x € V; at least n—t peers (and thus
(n—t)— f > t+1 correct peers) must have sent a set in
CONFIRM that includes . For any y ¢ Vion—t peers

(and thus (n —t) — f >t + 1 correct peers) must have
sent a non-_L set in CONFIRM that excludes y.

Given c; = 0, there must have been an element e such
that, NJ(e) < t and Nj (e) < t for P;. However, we
just derived that for all elements either N/ (e) > ¢ or
N¢ (e) > t. Contradiction. O

Given the Gradecast properties for sets, the correctness
argument given by Ben-Or [5] for the Byzantine consensus
applies to BSC’s generalization to sets.

As described, the protocol has complexity O(mnf+ fkn?).
However, the n parallel set reconciliation rounds in each super-
round can be combined by tagging the set elements that are
being reconciled in the LEAD, ECHO and CONFIRM rounds
with the respective leader L. Because LBA (via n — ¢; < k)
and bounded Eppstein set reconciliation limit mischief for the
combined super-round, each malicious peer can, as leader,
once cause bounded set reconciliation during the ECHO round
to all-to-all transmit at most k extra elements, resulting in
a total of O(fkn?) extra traffic over all f + 1 rounds.
Before exposing themselves this way, non-leading malicious
peers can only cause O(f2?kn) additional traffic during all
ECHO rounds. Finally, malicious peers can also cause at most
O(fkn?) traffic in the CONFIRM round. Thus, BSC has
overall message complexity of O(mnf + fkn?).

IV. IMPLEMENTATION

We implemented the BSC protocol in the SET and CON-
SENSUS services of GNUnet (https://gnunet.org/).

A. The GNUnet framework

GNUnet is composed of various components that run in
separate operating system processes and communicate via
message passing. Components that expose an interface to other
components are called services in GNUnet. The main service
used by our implementation is the CADET service, which of-
fers pairwise authenticated end-to-end encryption between all
participants. CADET uses a variation of the Axolotl public key
ratcheting scheme and double-encrypts using both TwoFish
and AES. [25] The resulting encryption is relatively expensive
compared to the other operations, and thus dominates in terms
of CPU consumption for the experiments.

B. Set reconciliation

Set reconciliation is implemented in the SET service. The
SET service provides a generic interface for set operations
between two peers; the operations currently implemented are
the IBF-based set reconciliation and set intersection [26].

In addition to the operation-specific protocols, the following
aspects are handled generically (i.e. independent of the specific
remote set operation) in the SET service:

Local set operations

Applications need to create sets and perform actions

(iteration, insertion, deletion) on them locally.
Concurrent modifications

While a local set is in use in a network operation,

the application may still continue to mutate that set.

To allow this without interfering with concurrent
the network operations, changes are versioned. A
network operation only sees the state of a set at the
time the operation was started.

Lazy copying
Some applications building on the SET service—
especially the CONSENSUS service described in the
next section—manage many local sets that are large
but only differ in a few elements. We optimize for
this case by providing a lazy copy operation which
returns a logical copy of the set without duplicating
the sets in memory.

Negotiating remote operations
In a network operation, the involved peers have one
of two roles: The acceptor, which waits for remote
operation requests and accepts or rejects them, as
well as the initiator, which sends the request.

Our implementation estimates the initial difference between
sets only using strata estimators as described by Eppstein [8].
However, we compress the strata estimator—which is 60KB
uncompressed—using gzip. The compression is highly ef-
fective at reducing bandwidth consumption due to the high
probability of long runs of zeros or ones in the most sparse
or most dense strata respectively.

We also use a salt when deriving the bucket indices from
the element keys. When the decoding of an IBF fails, the
IBF size is doubled and the salt is changed. This prevents
decoding failures in scenarios where keys map to the same
bucket indices even modulo a power of two, where doubling
the size of the IBF does not remove the collision.

C. Set-Union consensus

To keep the description of the set-union consensus protocol
in the previous section succinct, we merely stated that peers
efficiently transmit sets using the reconciliation protocol. How-
ever, given that the receiving peer has usually many sets to
reconcile against, an implementation needs to be careful to
ensure that it scales to large sets as intended.

The key goal is to avoid duplicating full sets and to instead
focus on the differences. New sets usually differ in only a
few elements, thus our implementation avoids copying entire
sets. Instead, in the leader round we just store the set of
differences with a reference to the original set. In the ECHO
and CONFIRM round, we also reconcile with respect to the set
we received from the leader, and not a peer’s current set. In the
ECHO round, we only store one set and annotate each element
to indicate which peer included or excluded that element. This
also allows for a rather efficient computation of the set to
determine the _L-result in the CONFIRM round.

D. Evaluating malicious behavior

For the evaluation, our CONSENSUS service can be con-
figured to exhibit the following types of adversarial behavior:

o SpamAlways: A malicious peer adds a constant number
of additional elements in every reconciliation.

o SpamLeader: A malicious peer adds a constant number
of additional elements in reconciliations where the peer
is the leader.

e SpamEcho: A malicious peer adds a constant number of
additional elements in echo rounds.

e Idle: Malicious peers do not participate actively in the
protocol, which amounts to a crash fault from the start of
the protocol. This type of behavior is not interesting for
the evaluation, but used to test the implementation with
regards to timeouts and majority counting.

For the Spam-* behaviors, two different variations are
implemented. One of them (“*-replace”) always generates new
elements for every reconciliation. This is not typical for real
applications where the number of stuffable elements ought to
be limited by set canonicalization. However, this shows the
performance impact in the worst case. The other variation (“*-
noreplace”) reuses the same set of additional elements for all
reconciliations, which is more realistic for most cases. We
did not implement adversarial behaviour where elements are
elided, since the resulting traffic is the same as for additional
elements, and memory usage would only be reduced.

V. EXPERIMENTAL RESULTS

All of the experiments were run on a single ma-
chine with a 24-core 2.30GHz Intel Xeon ES5-2630
CPU, and GNUnet SVN revision 36765. We used the
gnunet-consensus-profiler tool, which is based on
GNUnet’s TESTBED service [27], to configure and launch
multiple peers on the target system. We configured the profiler
to emulate a network of peers connected in a clique topology
(via loopback, without artificial latency). Elements for the set
operations are randomly generated and always 64 bytes large.

Bandwidth consumption was measured using the statistics
that GNUnet’s CADET service [25] provides. Processor time
was measured using GNUnet’s resource reporting functional-
ity, which uses the wait3 system call for that purpose.

A. Set reconciliation

Figure 1 summarizes experimental result for the set rec-
onciliation protocol between two peers. We first measured the
behavior of the set reconciliation if identical sets were given to
both peers (Figure 1a and 1b). Figure 1a shows that total CPU
utilization generally grows slowly as the set size increases.
The sudden jump in processing time that is visible at around
7,000 elements can most likely be explained by cache effects.
The effect could not be observed when we ran the experiment
under profiling tools.

Figure 1b shows that bandwidth consumption does not grow
linearly with the total set size, as long as the set size difference
between the two peers is small. The logarithmic increase of
the traffic with larger sets can be explained by the compression
of strata estimators: The k-th strata samples the set with
probability 27%, and for small input sets the strata tends to
contain long runs of zeros that are more easily compressed.

We also measured the behavior of the set reconciliation
implementation if the sets differed. Figure Ic and 1d show

1.2 T T T T

0.8 -

0.6 |

0.4 |

0.2 |

SET service user CPU time (seconds)

0 T L L L
0 2000 4000 6000 8000

total set size

10000
(a) CPU system time for the SET service in relation to total set size.

10000

9000
8000
7000
6000
5000
4000
3000

CADET traffic in bytes

2000

1000 b

0 I I I I
0 2000 4000 6000 8000

total set size

(b) CADET traffic for the SET service in relation to total set size.

10000

4.5 T T T T

IS
T

35

25 F

SET service user CPU time (seconds)

0 L L L
0 2000 4000 6000 8000

symmetric set difference

10000

(c) CPU system time for the SET service in relation to symmetric set
difference.

1.6x107 T T T T

1.4x107 |- B
1.2x107 |
1x107 E

8x10°

6x10° - R

CADET traffic in bytes

4x10°

2x10°

0 I I I I
0 2000 4000 6000 8000

symmetric set difference

10000

(d) CADET traffic for the SET service in relation to symmetric difference.

Fig. 1: SET reconciliation benchmarks. No common elements.
Average over five executions.

that—as expected—CPU time and bandwidth do grow linearly
with the symmetric difference between the two sets.

Closer analysis of the data (not shown here due to space
limitations) suggests that our difference estimator tends to
underestimate the difference for larger symmetric differences.
The estimation could be improved according to Eppstein et
al. by combining strata estimation with MinWise difference
estimators [28], which are more accurate for larger differences
but less accurate for smaller ones.

B. Set consensus

For our experiments with the BSC implementation, all
ordinary peers start with the same set of elements; different
sets would only affect the all-to-all union phase of the protocol
which does pairwise set reconciliation, resulting in increased
bandwidth and CPU consumption proportional to the set
difference as shown in the previous section.

As expected, traffic increases cubically with the number of
peers when no malicious peers are present (Figure 2a). Most
of the CPU time (Figure 2b) is taken up by CADET, which
uses expensive cryptographic operations [25]. Since we ran the
experiments on a multicore machine, the total runtime follows
the same pattern as the traffic (Figure 2c).

We now consider the performance implications from the
presence of malicious peers. Figures 3 and Figure 4 show that
bandwidth and runtime increase linearly with the additional
elements malicious peers can exclusivly supply, in contrast to
the sub-linear growth for the non-Byzantine case (Figure 1b).

Figure 4 highlights how the different attack strategies im-
pact the number of additional elements that were received
during set reconciliations: The number of stuffed elements
for the “SpamEcho” behavior is significantly larger than for
“SpamLead”, since multiple ECHO rounds are executed for
one LEAD round, and the number of stuffed elements is fixed
per reconciliation. When malicious peers add extra elements
during the LEAD round, the effect of that is amplified, since all
correct receivers have to re-distribute the additional elements
in the ECHO/CONFIRM round. Even though adding elements
in the LEAD round requires the least bandwidth from the
leader the effect on traffic and latency is the largest (see
Figures 2d and 3).

As expected, when the number of stuffed elements is
limited to a fixed set, the effect on the performance is limited
(“SpamAll-noreplace” in Figures 2d, 3, 4).

VI. OPPORTUNITIES FOR FURTHER IMPROVING BSC

We now discuss some of the key limitations of the current
implementation and, how it could be optimised further.

A. Extension to partial synchrony

The prototype used in the evaluation only works in the
synchronous model. It would be trivial to extend it to the
partially synchronous model with synchronous clocks by using
the same construction as BPFT [1], namely retrying the
protocol with larger round timeouts (usually doubled on each
retry) when it did not succeed.

1.6x10° T T T T T T

1.4x106 | E
1.2x106 | E

1x10° E
800000 E

600000 | b

CADET traffic in bytes

400000 b

200000 [b

0 I I I I I I
2 4 6 8 10 12 14 16

number of peers

(a) CADET traffic per peer for 100 elements and only correct peers.

35 T T T T T —
cadet service
set service = = =
3 consensus service X
m
T 25 B
o
o
1]
2 2 F 4
v
£
=
S 15F B
a
s}
g 1r 1
=1
0.5 -
0 572 X w.-"Tu"——w-- % X%
2 4 6 8 10 12 14 16

number of peers

(b) CPU of consensus for 100 elements of 64 bytes and only correct peers.

end-to-end latency in seconds

2 4 6 8 10 12 14 16
number of peers

(c) Runtime of consensus for 100 elements of 64 bytes and only correct
peers.

600000 T T T T

T T
SpamEcho-replace
SpamLead-replace = = »

500000 [SpamAll-noreplace , X |
.

400000
300000

200000

CADET traffic in bytes

100000

o 5 % ¥ § 5« %
0 10 20 30 40 50 60 70
number of stuffed elements per reconciliation
(d) CADET traffic for consensus on 100 elements of 64 bytes and one
malicious peer with the indicated mode.

Fig. 2: Consensus benchmarks. Average over five executions.

It might be worthwhile to further investigate the Byzan-
tine round synchronization protocols discovered independently
by Attya and Dolev [29] as well as Dwork, Lynch and
Stockmeyer [6]. Running a Byzantine clock synchronization
protocol interleaved with consensus protocol might lead to a
protocol with lower latency, since the timeouts are dynamically
adjusted instead of being increased for each failed iteration.

B. Persistent data structures

Both the SET and CONSENSUS service have to store
many variations of the same set when faulty peers elide or
add elements. While the SET service API already supports
lazy copying, the underlying implementation is inefficient and
based on a log of changes per element with an associated
version number. It might be possible to reduce memory usage
and increase performance of the element storage by using data
structures that are more well suited, such as the persistent data
structures described by Okasaki [30].

C. Fast dissemination

Recall that in order to be included in the final set, an element
must be sent to at least ¢+ 1 peers, so that at least one correct
peer will receive the element. In applications of set-union

110

T T
SpamEcho-replace

SpamLead-replace = = 7 -
SpamAll-noreplace ' =+
-

90

latency in seconds

0 10 20 30 40 50 60 70
number of stuffed elements per reconciliation

Fig. 3: Latency for consensus with 4 peers on 100 elements
of 64 bytes and one malicious peer with the indicated mode.
Average over five executions.

25000

T T
SpamEcho-replace
SpamlLead-replace = = =

SpamAll-noreplace ¢ -
20000 - RN

15000 - 1

10000 |- B

total extra elements

5000 |- 8

0 10 20 30 40 50 60 70
number of stuffed elements per reconciliation

Fig. 4: Total number of extra elements received by each peer

for consensus on 100 elements of 64 bytes and one malicious

peer with the indicated mode. Average over five executions.

consensus such as electronic voting, the effort to the client
should be minimized, and thus in practice elements might be
sent only to ¢ + 1 peers, which would lead to large initial
symmetric differences between peers.

A possible optimization would be to add another dis-
semination round that only requires nlogy n reconciliations
to achieve perfect element distribution when only correct
peers are present. The n? reconciliations that follow will
consequently be more efficient, since no difference has to
be reconciled when all peers are correct. In the presence of
faulty peers, the optimization adds more overhead due to the
additional dissemination round.

More concretely, in the additional dissemination round the
peers reconcile with their 2¢-th neighbour (for some arbitrary,
fixed order on the peers) in the ¢-th subround of the dissem-
ination round. After [log,] of these subrounds, the elements
are perfectly distributed as long as every peer passed along
their current set correctly.

VII. APPLICATION TO SMC

Secure multiparty computation (SMC) is an area of cryp-
tography that is concerned with protocols that allow a group
of peers P = Pi,..., P, to jointly compute a function y =
f(x1,...,2,) over private input values x1,...,x, without
using a trusted third party [31]. Each peer P; contributes
its own input value z;, and during the course of the SMC
protocol, P; ideally only learns the output y, but no additional
information about the other peers’ input values. Applications
of SMC include electronic voting, secure auctions and privacy-
preserving data mining.

SMC protocols often assume a threshold ¢ < n on the
amount of peers controlled by an adversary, which is typically
either honest-but-curious (i.e. tries to learn as much informa-
tion as possible but follows the protocol) or actively mali-
cious. The actively malicious case mandates the availability
of Byzantine consensus as a building block [32].3

In practical applications, the inputs typically consist of sets
of values that were given to the peers P by external clients:
In electronic voting protocols the peers need to agree on the
set of votes; with secure auctions, the peers need to agree on
bids, and so on.

In this section, we focus on one practical problem, namely
electronic voting. We show how BSC is useful at multiple
stages of the protocol, and discuss how our approach differs
from existing solutions found in the literature.

A. Bulletin board for electronic voting

The bulletin board is communication abstraction commonly
used for electronic voting [33], [34]. It is a stateful, append-
only channel that participants of the election can post messages
to. Participants of the election identify themselves with a

3 An attempt has been made to relax the definition of SMC to alleviate this
requirement, resulting in a weaker definition that includes non-unanimous
aborts as a possible result [31]. This definition is mainly useful in scenarios
without an non-faulty 2/3 majority, where Byzantine consensus is not possible
in the asynchronous model [6].

public signing key and must sign all messages that they post to
the bulletin board. The posted messages are publicly available
to facilitate independent auditing of elections.

Existing work on electronic voting either does not provide
a Byzantine fault-tolerant bulletin board in the first place [35]
and instead relies on trusted third parties, or suggests the use
of state machine replication [3].

Some of the bulletin board protocols surveyed by Peters
[34] use threshold signatures to certify to the voter that the
vote was accepted by a sufficiently large fraction of the peers
that jointly provide the bulletin board service. With a naive
approach, the message that certifies acceptance by ¢ peers is
the concatenation of the peers’ individual signatures and thus
O(t) bits large. Threshold signature schemes allow smaller
signatures, but at the expense of a more complex protocol.
Since the number of peers is typically not very large, a linear
growth in ¢ is acceptable, which makes the simple scheme
sufficient for practical implementations.

It is easy to implement a variant of the bulletin board
with set-union consensus. In contrast to traditional bulletin
boards, this variant has phases, where posted messages are
only visible after the group of peers have agreed that a
phase is concluded. The concept of phases maps well to
the requirements of existing voting protocols. Every phase
is implemented with one set-union consensus execution. To
guarantee that a message is posted to the bulletin board, it
must be sent to at least one correct peer from the group of
peers that jointly implements the bulletin board.

B. Distributed threshold key generation and cooperative de-
cryption

Voting schemes as well as other secure multiparty com-
putation protocols often rely on threshold cryptography [36].
The basic intuition behind threshold cryptography is that
some operations—such as signing a message or decrypting
a ciphertext—should only succeed if a large enough fraction

voting

distributed key generation cooperative decryption
~ A A

set union

consensus

vy

set reconciliation

Fig. 5: Relation of different SMC protocols and communica-
tion primitives in GNUnet. Dashed arrows indicate optional
dependencies.

of some group of peers cooperate. Typically the public key of
the threshold cryptosystem is publicly known, while the private
key is not known by any entity but reconstructible from the
shares that are distributed among the participants, for example
with Shamir’s secret sharing scheme [37].

Generating this shared secret key either requires a trusted
third party, or a protocol for distributed key generation [38],
[39]. The former is undesirable for most practical applications
since it creates a single point of failure.

In a distributed key generation protocol, each peer con-
tributes a number of pre-shares. The peers agree on the set
of pre-shares and each peer re-combines them in a different
way, yielding the shares of the private threshold key.

In the key generation protocol used for the Cramer et al.
voting scheme, the number of pre-shares that need to be
agreed upon is quadratic in the number of peers. Every peer
needs to know every pre-share, even if it is not required
by the individual peer for reconstructing the share, since
the pre-shares are accompanied by non-interactive proofs of
correctness. Thus the number of values that need to be agreed
upon is quadratic in the number of peers, which makes the
use of set-union consensus attractive compared to individual
agreement.

Even though the pre-shares can be checked for correctness,
Byzantine consensus on the set of shares is still necessary
for the case when a malicious peer submits a incorrect share
to only some peers. Without Byzantine consensus, different
correct recipients might exclude different peers, resulting in
inconsistent shares.

Similarly, when a message that was encrypted with the
threshold public key shall be decryped, every peer contributes
a partial decryption with a proof of correctness. While the set
of partial decryptions is typically linear in the number of peers,
set-union consensus is still a reasonable choice here, this way
the whole system only needs one agreement primitive.

C. Electronic voting with homomorphic encryption

Various conceptually different voting schemes use homo-
morphic encryption; we look as the scheme by Cramer et
al. [3] as a modern and practical representative. A fundamental
mechanism of the voting scheme is that a set of voting
authorities Aj,..., A, establish a threshold key pair that
allows any entity that knows the public part of the key to
encrypt a message that can only be decrypted when a threshold
of the voting authorities cooperate. The homomorphism in the
cryptosystem enables the computation of an encrypted tally
with only the ciphertext of the submitted ballots. Ballots repre-
sent a choice of one candidate from a list of candidate options.
The validity of encrypted ballot is ensured by equipping them
with a non-interactive zero-knowledge proof of their validity.

It is assumed that the adversary is not able to corrupt more
than 1/3 of the authorities. The voting process itself is then
facilitated by all voters encrypting their vote and submitting
it to the authorities. The encrypted tally is computed by every
authority and then cooperatively decrypted by the authorities
and published. Since correct authorities will only agree to

decrypt the final tally and not individual ballots, the anonymity
of the voter is preserved. For the voting scheme to work
correctly, all correct peers must agree on exactly the same
set of ballots before the cooperative decryption process starts,
otherwise the decryption of the tally will fail.

Using BSC for this final step to agree on a set of ballots
again makes sense, as the number of ballots is typically much
larger than the number of authorities. Figure 5 summarizes the
various ways how BSC and is used in our implementation [40]
of Cramer-style [3] electronic voting.

VIII. CONCLUSION

Given m ballots, n authorities, f Byzantine faults and &
ballots exclusively available to the adversary, voting with BSC
achieves a complexity of O(mn+(f+k)n®), which in practice
is better than the O(mn?) complexity of using SMR as m
is usually significantly larger than n. Equivalent arguments
hold for other applications requiring consensus over large
sets. Furthermore, BSC remains advantageous in the absence
of Byzantine failures, and the set reconciliation makes it
particularly efficient at handling various non-Byzantine faults.

ACKNOWLEDGMENT

This work benefits from the financial support of the Brittany
Region (ARED 9174) and the Renewable Freedom Founda-
tion. We thank Jeffrey Burdges and the anonymous reviewers
for comments on an earlier draft of this paper.

REFERENCES

[1] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
OSDI, vol. 99, 1999, pp. 173-186.

[2] A. Clement, E. L. Wong, L. Alvisi, M. Dahlin, and M. Marchetti,
“Making byzantine fault tolerant systems tolerate byzantine faults.” in
NSDI, vol. 9, 2009, pp. 153-168.

[3] R. Cramer, R. Gennaro, and B. Schoenmakers, “A secure and optimally
efficient multi-authority election scheme,” European transactions on
Telecommunications, vol. 8, no. 5, pp. 481-490, 1997.

[4] P. Bogetoft, D. L. Christensen, I. Damgérd, M. Geisler, T. Jakobsen,
M. Krgigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter et al.,
“Secure multiparty computation goes live,” in Financial Cryptography
and Data Security. Springer, 2009, pp. 325-343.

[5] M. Ben-Or, D. Dolev, and E. N. Hoch, “Simple gradecast based
algorithms,” arXiv preprint arXiv:1007.1049, 2010.

[6] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” Journal of the ACM (JACM), vol. 35, no. 2, pp.
288-323, 1988.

[71 M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Transactions on Computer Systems (TOCS),
vol. 20, no. 4, pp. 398461, 2002.

[8] D. Eppstein, M. T. Goodrich, F. Uyeda, and G. Varghese, “What’s the
difference?: efficient set reconciliation without prior context,” in ACM
SIGCOMM Computer Communication Review, vol. 41, no. 4. ACM,
2011, pp. 218-229.

[9] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-

lem,” ACM Transactions on Programming Languages and Systems

(TOPLAS), vol. 4, no. 3, pp. 382-401, 1982.

M. J. Fischer and N. A. Lynch, “A lower bound for the time to assure

interactive consistency,” DTIC Document, Tech. Rep., 1981.

R. De Prisco, D. Malkhi, and M. Reiter, “On k-set consensus problems

in asynchronous systems,” Parallel and Distributed Systems, IEEE

Transactions on, vol. 12, no. 1, pp. 7-21, 2001.

N. Malpani, J. L. Welch, and N. Vaidya, “Leader election algorithms

for mobile ad hoc networks,” in Proceedings of the 4th international

workshop on Discrete algorithms and methods for mobile computing

and communications. ACM, 2000, pp. 96-103.

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[31]

[32]

[33]
[34]
(35]
[36]
[37]

[38]

[39]

[40]

M. J. Fischer, N. A. Lynch, and M. Merritt, “Easy impossibility proofs
for distributed consensus problems,” Distributed Computing, vol. 1,
no. 1, pp. 26-39, 1986.

G. Neiger, “Distributed consensus revisited,” Information Processing
Letters, vol. 49, no. 4, pp. 195-201, 1994.

K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, “The securering
protocols for securing group communication,” in System Sciences, 1998.,
Proceedings of the Thirty-First Hawaii International Conference on,
vol. 3. IEEE, 1998, pp. 317-326.

M. K. Reiter, “The rampart toolkit for building high-integrity services,”
in Theory and Practice in Distributed Systems. Springer, 1995, pp.
99-110.

P-L. Aublin, R. Guerraoui, N. Knezevi¢, V. Quéma, and M. Vukoli¢,
“The next 700 bft protocols,” ACM Trans. Comput. Syst., vol. 32, no. 4,
pp. 12:1-12:45, Jan. 2015. [Online]. Available: http://doi.acm.org/10.
1145/2658994

M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and J. J.
Wylie, “Fault-scalable byzantine fault-tolerant services,” ACM SIGOPS
Operating Systems Review, vol. 39, no. 5, pp. 59-74, 2005.

R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
speculative byzantine fault tolerance,” in ACM SIGOPS Operating
Systems Review, vol. 41, no. 6. ACM, 2007, pp. 45-58.

P. Feldman and S. Micali, “Optimal algorithms for byzantine agree-
ment,” in Proceedings of the twentieth annual ACM symposium on
Theory of computing. ACM, 1988, pp. 148-161.

B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422-426, 1970.
M. Mitzenmacher and R. Pagh, “Simple multi-party set reconciliation,”
arXiv preprint arXiv:1311.2037, 2013.

N. Evans, B. Polot, and C. Grothoff, “Efficient and secure decentralized
network size estimation,” in Proceedings of the 11th international IFIP
TC 6 conference on Networking-Volume Part I. Springer-Verlag, 2012,
pp. 304-317.

P. N. Feldman, “Optimal algorithms for byzantine agreement,” Ph.D.
dissertation, Massachusetts Institute of Technology, 1988.

B. Polot and C. Grothoff, “Cadet: Confidential ad-hoc decentralized end-
to-end transport,” in Ad Hoc Networking Workshop (MED-HOC-NET),
2014 13th Annual Mediterranean. 1EEE, 2014, pp. 71-78.

S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and practice
of bloom filters for distributed systems,” Communications Surveys &
Tutorials, IEEE, vol. 14, no. 1, pp. 131-155, 2012.

S. H. Totakura, “Large scale distributed evaluation of peer-to-peer
protocols,” Master’s Thesis, Technische Universitit Miinchen, Garching
bei Miinchen, 06/2013 2013.

P. Li and A. C. Konig, “Theory and applications of b-bit minwise
hashing,” Communications of the ACM, vol. 54, no. 8, pp. 101-109,
2011.

C. Attiya, D. Dolev, and J. Gil, “Asynchronous byzantine consensus,”
in Proceedings of the third annual ACM symposium on Principles of
distributed computing. ACM, 1984, pp. 119-133.

C. Okasaki, Purely functional data structures. Cambridge University
Press, 1999.

S. Goldwasser and Y. Lindell, “Secure multi-party computation without
agreement,” Journal of Cryptology, vol. 18, no. 3, pp. 247-287, 2005.

J. Saia and M. Zamani, “Recent results in scalable multi-party compu-
tation,” in SOFSEM 2015: Theory and Practice of Computer Science.
Springer, 2015, pp. 24-44.

J. D. C. Benaloh, Verifiable secret-ballot elections.
Department of Computer Science, 1987.

R. Peters, “A secure bulletin board,” Master’s Thesis, Technische Uni-
versiteit Eindhoven, 2005.

B. Adida, “Helios: Web-based open-audit voting.” in USENIX Security
Symposium, vol. 17, 2008, pp. 335-348.

Y. G. Desmedt, “Threshold cryptography,” European Transactions on
Telecommunications, vol. 5, no. 4, pp. 449—458, 1994.

A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612-613, 1979.

P-A. Fouque and J. Stern, “One round threshold discrete-log key gener-
ation without private channels,” in Public Key Cryptography. Springer,
2001, pp. 300-316.

T. P. Pedersen, “A threshold cryptosystem without a trusted party,” in
Advances in CryptologyEUROCRYPT91. Springer, 1991, pp. 522-526.
F. Dold, “Cryptographically secure, distributed electronic voting,” Bach-
elor’s Thesis, Technische Universitidt Miinchen, 2014.

Yale University.

