CADET: Confidential Ad-hoc Decentralized
End-to-End Transport

Bartlomiej Polot
Technische Universitidt Miinchen
Munich, Germany
Email: polot@net.in.tum.de

Abstract—This paper describes CADET, a new transport
protocol for confidential and authenticated data transfer in
decentralized networks. This transport protocol is designed to
operate in restricted-route scenarios such as friend-to-friend or
ad-hoc wireless networks.

We have implemented CADET and evaluated its performance
in various network scenarios, compared it to the well-known
TCP/IP stack and tested its response to rapidly changing network
topologies. While our current implementation is still significantly
slower in high-speed low-latency networks, for typical Internet-
usage our system provides much better connectivity and security
with comparable performance to TCP/IP.

I. INTRODUCTION

Existing IP networks are not suitable for secure, decen-
tralized ad-hoc networking applications. IP routing requires
trusted routers to assign structured addresses to their clients,
and at higher levels BGP requires business contracts to negoti-
ate peering relationships. Ad-hoc community networks require
protocols that avoid the resulting overheads in planning and
business negotiation, and eliminate the insecurities resulting
from the dependency of network users on network operators.

This paper presents CADET, a new algorithm for estab-
lishing robust end-to-end transport-layer connections in com-
pletely self-organized networks without a central authority.
Starting with an arbitrary network topology (such as a wireless
mesh, a physical LAN or the peering relationships between
autonomous systems), the algorithm uses modern “friend-to-
friend” distributed hash tables (DHTS) to discover a redundant
set of available paths, creates multiple, switched connections
between the endpoints and then uses those to create a robust
tunnel for end-to-end encrypted, authenticated communication.
Multiple applications can then multiplex TCP or UDP-like
channels over the tunnel.

A fundamental design principle of CADET is key-based
routing (KBR). Addressing systems by their public key elim-
inates the need to use a network protocol to obtain a network
address, and thus eliminates the use of insecure protocols like
RARP or DHCP, or manual management processes by which
users are assigned addresses out-of-band. A system which uses
a public key as its address has the fundamental benefit of
being able to cryptographically prove its ownership of the
address, as only it has knowledge of the respective private key.
However, using public keys as addresses creates the problem
of routing messages to the respective address, as public keys

Christian Grothoff
Technische Universitidt Miinchen
Munich, Germany
Email: grothoff @net.in.tum.de

have no address space structure that would be suitable for
making routing decisions.

Many existing overlay networks use distributed hash tables
(DHTs) to locate values by hash. While traditional DHTs
assumed an underlying (IP-based) routing layer, more recent
designs operate over an arbitrary mesh topology. CADET uses
a randomized friend-to-friend DHT to discover multiple paths
to the target system.

CADET can be viewed as a peer-to-peer (P2P) implementa-
tion of the TCP/IP protocol: it allows a node in a decentralized
and unstructured P2P network to find and connect to any other
peer in the network, and to confidentially exchange authenti-
cated data. Like SCTP, CADET supports transmitting multiple
reliable and unreliable channels over a single connection.

II. BACKGROUND
A. 802.11s

In ad-hoc wireless networks each node typically creates its
own routing tree. One of the most well-known implementa-
tions of mesh networks is IEEE 802.11s, which is designed
to be used in small area wireless networks. The standard does
not require the use of a particular routing protocol — any
suitable protocol may be used. However, the hybrid wireless
mesh protocol (HWMP) must be supported by any node that
complies with the standard. HWMP is based on the ad-hoc
on-demand distance vector protocol (AODV) [16] and tree-
based routing. The key property of the protocol is that it
simultaneously builds paths proactively, and on-demand. This
provides good performance for known nodes (as the paths
can be pre-built), and accommodates node churn by offering
an additional on-demand mechanism for nodes that recently
joined the network and are thus not yet well known.

Another routing algorithm that can be used in 802.11s
networks is B.A.TM.A.N. [13] In B.A.T.M.A.N., each node
broadcasts its existence; this information is re-broadcasted
by its neighbors with an increased hop count. Each node
remembers the hop count and neighbor the message came
from, putting the neighbor with the smallest hop count in the
routing table. This way each node is aware of each other node
in the network and has a first hop information to reach it.
Naturally, this approach does not scale to larger networks and
is problematic if there is significant churn. The re-broadcasting
can also lead to traffic amplification which might be used for

denial of service attacks. Existing B.A.T.M.A.N. deployments
are limited in size and are thus not affected by the scalability
problems.

B. F2F DHT

Distributed hash tables (DHT) are a useful tool to perform
routing in restricted topologies, such as mesh networks or
friend-to-friend networks. In a typical DHT, information is
identified by a key and stored at the peer in the network
whose ID is closest to the key. To do that, each DHT has a
routing algorithm that directs each request, identified by a key,
to the corresponding peer. This is sometimes called key-based
routing (KBR). While most popular DHTs (Kademlia [10],
Pastry [19]) require a well-connected group of peers to per-
form this routing correctly, there are some designs that work
in the absence of unrestricted connectivity.

One such DHT is X-Vine [11]. Just like in Chord [21], X-
Vine maintains a so-called finger table. In X-Vine, a finger
is a sequence of peers needed to reach a destination. When
discovering peers close in the ID-space from existing peers
in the neighbor table, not only the ID of the new peer is
shared, but also the finger information. This is joined with the
finger towards the peer who shared the information, forming
the complete finger towards the new peer.

A particular problem in DHTs is the Sybil attack [6]. In this
attack, an adversary creates a great number of identities and
joins the network in order to disrupt it. DHTs follow different
approaches to mitigate this attack: Persea [1] divides the ID
space among a set of bootstrap nodes and assigns each one
management right over its chunk. Each peer in the network can
invite other peers, assigning them an ID as well as delegating
control over a subset of its own chunk. This way even if
an attacker obtains an invitation to the network via social
engineering, it could not choose it’s IDs freely and would be
limited to the chunk assigned by the inviting peer.

A different Sybil-resistant DHT, Whanau [9] has proposed
using the social graph and random walks to counter this threat,
although at the cost of high control overhead.

Another DHT that can deal with Sybil attacks and restricted
routes is RN [7]. R5N uses a recursive variant of Kademlia
for its routing table and mitigates attacks by randomizing the
destination peers and paths used to get there. Specifically,
random neighbours are chosen for the first O(logn) routing
steps where n is the size of the network to insure widespread
replication. Afterwards, instead of soliciting routing informa-
tion to determine the peer closest to the key, R°N greedily
forwards requests to the closest neighbors. When a peer is
closer to the target than any of its neighbors, R°N assumes
this to be the destination and performs the requested DHT
operation (i.e. store or lookup). The operation is thus carried
at the peer locally closest to the key, not necessarily the one
globally closest. To compensate for this, requests are repli-
cated to target several locally closest peers. The combination
of randomization, replication and local choices makes R°N
robust against active adversaries.

III. DESIGN

CADET is expected to operate above a restricted commu-
nication layer with properties similar to those of Ethernet or
WLAN, and in conjunction with a DHT that can operate in
the resulting restricted-route network.

Given these two lower-layer components, the roles of both
IP and TCP/UDP are then fulfilled by CADET. In particular,
CADET takes care of the connectivity needs of peers that
cannot establish direct connections. CADET uses the DHT to
discover routes, tries to optimize them and performs authenti-
cation, encryption and traffic control between any two peers in
the network. This should always succeed as long as the peers
are in a connected subgraph of honest participants.

CADET itself is organized in three layers. The bottom
layer provides connectivity, like IP. The middle layer provides
end-to-end authenticated encryption, similar to TLS. The top
layer provides multiplexing, traffic control and other optional
features, such as reliability, in a way similar to TCP, UDP or
SCTP.

A. Connectivity

The bottom layer of CADET provides connectivity between
two endpoints. By endpoints we understand peers that are
running the applications that are going to communicate with
each other. All the other peers may function as relays: peers
that participate in a communication but are neither the origin
nor the destination of the traffic. Relays simply forward
messages from one neighbor to another.

The connectivity layer has two important concepts: paths
and connections. A path is simply a sequence of peers, where
each pair of peers from the sequence is directly connected (on
the lower, Ethernet-like layer below CADET). A path is thus
just information about the topology of the network stored at
an individual peer; it does not carry any communication with
other peers. It is roughly the equivalent of a phone number
in the telephone system. On the other hand, a connection is
a reserved path that is in use; creating a connection from
a path is thus equivalent to the process of using a phone
number to create a phone circuit when a call is made. When
an origin peer wants to communicate with another peer in
the network to which it cannot connect to directly, the origin
peer discovers a path between the two and notifies all the
peers in the path about its intention to communicate with the
destination, thereby creating a connection.

Each connection has a unique 256 bit random ID. Each
peer on the path needs to store the connection ID, together
with information about the next and previous peer it should
relay traffic to. Two peers can have more than one connection
between each other; in fact, this is common to improve reli-
ability and performance. Whenever multiple connections are
available, they are used simultaneously by sending messages
on the connection that has the least load at the time.

1) Path discovery: In order to discover paths to other peers,
CADET uses two sources of information:

« Passive monitoring of connections being established by
other peers. Here, CADET simply analyzes the traffic

it relays for other peers and incorporates the topology
information contained in connection requests into its own
local view of the network.

« Explicit DHT requests, where the DHT is instructed to
record the route taken by GET and PUT requests. More
specifically, each peer periodically makes a PUT request
to the DHT with its ID and information that may help to
establish a direct connection to it (such as lower layer
addressing information). When CADET tries to connect
to a peer to which it does not know any path, CADET
issues a GET request using the ID of the destination peer.
By joining the PUT route and the GET route, CADET
obtains a path towards the destination peer. CADET
naturally also tries to make use of the information from
the DHT to try to establish a direct connection.

2) Connection establishment: When a peer decides to es-
tablish a new connection a destination peer, it first checks if
there are any known paths towards the destination. If there are
no paths, the service initiates a DHT query to find them.

When there is at least one known path, the origin peer
creates a connection with a random 256 bit ID and sends a
CONNECTION_CREATFE message containing a list of
all the peers in the path to the first peer on the path. Each
peer forwards the message to the next peer, while storing the
connection details to be able to forward subsequent messages
identified just by the connection ID. At the same time, each
peer uses the path to passively learn potential paths to reach
the origin, the destination, as well as all the intermediate peers
in the connection.

The destination receives the incoming connection and sends
a CONNECTION_ACK message to the origin peer in
order to confirm the correctness of the path. Each peer on the
path uses the stored information from the creation message to
send the message in the opposite direction. At the same time,
all the potential paths to peers participating in the connection
are considered confirmed.

The first peer sends another CONNECTION_ACK to
confirm the receipt of the first CONNECTION_ACK and
finish the connection creation. When a peer is expecting
a CONNECTION_ACK, it starts a timer to retransmit
the message it sent (either CONNECTION_CREATE
or CONNECTION_ACK) in case the message or the
acknowledgement was lost.

3) Keepalive: In order to avoid saturating the network with
connections, idle connections are destroyed after a timeout.
There are two idle counters, one for each direction, as any
endpoint being down is a reason to tear down the connection.
To avoid this timeout, peers periodically send keepalive traffic
on idle connections.

4) Congestion Control: To avoid saturating intermediate
peers with traffic, peers use an ACK mechanism for congestion
control on each hop of a connection. Each peer has a dedicated
buffer per connection and sends an ACK to the previous peer
in the connection when the buffer has room for new messages.
Since the lower layer is not expected to guarantee reliable
delivery, CADET uses a polling system to compensate for lost

data or ACK messages.

B. Security

The second CADET layer provides authentication and en-
cryption for the communication, encapsulating all traffic in
tunnels. A tunnel is a secured communication session between
two peers. The tunnel uses connections to send data to remote
peers, with a redundancy goal of having three independent
connections at any time. This redundancy serves both reliabil-
ity and performance purposes. The first messages exchanged
by two peers are a key exchange in which they authenticate
each other and use emphemeral keys establish a session key.
This session key is cycled periodically and once it is changes
it becomes impossible to decrypt captured traffic, even if the
endpoints are seized and forensically analyzed. Additionally,
each message uses a random initialization vector to prevent the
same transmitted plaintext from rendering the same cyphertext
and thus leaking information to an eavesdropper.

1) Tunnel establishment: When two peers first connect (and
periodically after that), they perform a handshake to establish
the tunnel’s encryption keys. Every peer in the network
maintains a Curve25519 [2] ephemeral key EdDSA-signed [3]
with the peer’s permanent identity key. The ephemeral key is
changed periodically every 12 hours, thus every tunnel’s keys
change on average every 6 hours. Once the ephemeral key
changes, all captured traffic that used the old ephemeral keys is
no longer decryptable, therefore providing forward secrecy [4].

To establish a tunnel, each peer sends the other endpoint
an initial ephemeral key message containing its identity (the
peer’s public key), the ephemeral key, the ephemeral key’s
validity period and a signature to validate the data. Both peers
send this in parallel, without waiting for each other.

On receipt of an ephemeral key message, each peer checks
the signature and validity period. If everything is correct,
CADET derives the key material from both ephemeral keys
using ECDH [2]. This key material is fed to a key derivation
function [8], together with the peers identities and a salt value
to obtain the symmetric keys used to encrypt payload traffic
in the tunnel. The symmetric keys are 512 bits which are split
into a 256 bit AES key and a 256 bit Twofish key.! CADET
uses different symmetric keys for sending and receiving; these
are obtained by feeding the identities of the peers in different
order to the key derivation function.

As soon as the symmetric keys are obtained, each peer sends
a challenge PING message to the other peer, encrypted with
the new keys containing the remote peer’s identity and a nonce.

To verify the correctness of the key exchange each peer
checks its own identity in the PING message and, if it is
correct, sends the PING’s nonce in a corresponding PONG re-
sponse message. Upon receipt of the PONG message, CADET
checks the nonce before it considers the tunnel established.

'We expect AES to be virtually free, as it is often implemented in hardware.
However, we want to avoid trusting the hardware implementation and thus
also encrypt with Twofish. As the two symmetric keys are independent, the
resulting security should be at least as good as the stronger of the two cipher
implementations.

C. Multiplexing

CADET uses fast Curve25519 public key cryptography [2],
but it is still important to minimize the use of this operation.
To avoid triggering a handshake every time two applications
on a pair of peers communicate, CADET multiplexes all
communication channels for a given pair of endpoints inside
one tunnel. A channel is a communication stream between
two applications running on peers participating in the network.
They can be on the same or different peers. In case they are on
different peers, the messages sent to each other are transmitted
in a CADET tunnel to the other peers, which demultiplexes
them and delivers them to the corresponding application. In
order to share a tunnel among multiple channels, each channel
has a unique ID. CADET offers optional, per channel options,
such as out of order delivery and reliability.

1) Channel establishment: Channel establishment happens
in a similar way to the connection establishment. First, the
application requests a new channel, with the destination spec-
ified by a peer ID and a port number. It identifies the channel
with a sequential 32 bit local ID with the most significant bit
set to 1. The local ID is unique per client and many clients
on a computer may use the same local ID.

CADET checks if there already is a tunnel towards the
destination peer. If there is no tunnel, it creates one as
described previously.

Given an existing tunnel, the origin peer creates a channel
with a sequential 32 bit ID and sends a CHANNEL_CREATE
message on the tunnel. The ID has the most significant bit
set to 0 and the second most significant bit depends of the
relation between the public keys of the endpoints to ensure
the IDs generated by the endpoints do not collide with each
other.

The destination receives the incoming channel and checks
the port number for local applications listening on that port. If
an application is listening, it sends a CHANNEL_ACK message
to the origin peer in order to confirm the channel and notifies
the application about an incoming channel. Otherwise it sends
a CHANNEL_NACK to reject the channel creation.

The first peer sends another CHANNEL_ACK to confirm the
receipt of the first CHANNEL_ACK and finish the connection
creation.

If the first peer receives a CHANNEL_NACK, it destroys the
channel and notifies the application about the failure.

When CADET expects a CHANNEL_ACK, it starts a timer
to retransmit the message it sent (either CHANNEL_CREATE
or CHANNEL_ACK) to handle the case where the message or
the ACK was lost.

2) Flow Control and Reliability: Similar to TCP streams,
CADET offers reliable channels. CADET uses message ACKs
for flow control on these channels, with a fixed window size of
64 messages. If a message is lost but subsequent messages are
received, this can be indicated, since each ACK message has a
64 bit mask to signal “future” received messages. This allows
the sender to retransmit only the messages that are really lost
while sending subsequent messages in the window. Messages

confirmed as received are not stored anymore and the timing
is used to adjust the retransmission delay for subsequent data.

Currently the delay is calculated as the average of the last
eight round-trip times, although different methods are possible
and this choice may be revisited in the future.

Unreliable channels, in a similar fashion to UDP, have no
flow control, although they benefit from the congestion control,
since it is done on the connection level.

3) Communication session: Now that we have presented
all CADET components, we describe how a typical CADET
communication session is established. An example session
with all elements can be seen in Figure 1

®

o
.
\.lQD

==mm Unencrypted user data channels
—— Encrypted redundant connections
------ Backup paths for new connections

=8

>

Fig. 1: Two channels inside a tunnel sending messages over
two connections with one known backup path.

First a client application requests a new channel to a certain
destination peer and port number. The destination peer is
defined by its public key and the port number is a 32 bit
number.

CADET receives the request and checks whether there
is an existing connection. If there is already an established
connection towards the destination peer, this connection is
used. Otherwise a new connection is established.

Then CADET checks for an existing tunnel towards the
destination peer. If there is no tunnel, CADET creates the
it. Both endpoints use the existing connections to perform
a handshake. In the handshake the peers authenticate each
other and establish the session keys to communicate securely.
If there is a tunnel when the request arrives (for instance,
because another application running on the peer is already
communicating with the remote peer, or did so recently), the
existing tunnel is used.

The service creates a new channel inside the tunnel, allo-
cating a unique number and specifyng the destination port. If
there is an application on the destination peer listening to the
given port, the channel is created.

The two proccesses can communicate on the new channel by
using the newly created channel. The tunnel is shared between

all channels and each message sent uses one of the available
connections.

If either of the endpoints does not need the channel any-
more, it requests its destruction. The service notifies the other
endpoint about the channel’s destruction.

When the last channel inside a tunnel is destroyed the
service starts a timer for the tunnel. After the timeout, the
service destroys the tunnel, deleting the encryption keys and
destroying all established connections.

IV. IMPLEMENTATION

We have implemented CADET in the GNUnet P2P frame-
work.2 Similar to TCP/IP, GNUnet is divided in several
layers, roughly equivalent to those in TCP/IP, as seen in
Figure 2. At the bottom we have the Transport layer, which
provides the most basic communication: moving bits from A
to B. Transport supports various plugins (TCP, UDP, HTTPS,
WLAN, Bluetooth, etc.) and selects a good one automatically.

On top of Transport, the Core layer is the GNUnet layer
directly comparable to Ethernet in the TCP/IP model. Core
creates direct “logical” links between two peers and (unlike
Ethernet) provides authentication and encryption. In GNUnet,
a direct link is any link that Transport can create. If Transport
cannot establish a link (for instance, due to firewall policy,
NAT gateways or range limitations for radio transmissions),
Core will also be unable to establish a link.

GNUnet currently uses the R® N DHT for routing GET and
PUT requests in the resulting restricted environment. Together,
these three layers thus satisfy the design requirements for
CADET. On top of CADET, we are building other GNUnet
subsystems, like a VPN, file sharing or Conversation (a voice
application).

GNUnet
Applications

[
' CADET+R5N
{

Internet
Applications

| |
~ TCP/UDP+IP
{)
| |

Ethernet Core

Physical

Cable, Optic Flber Wireless, Cellular

Transport

TCP, UDP, HTTPS, raw WLAN Bluetooth

- J L sy

Fig. 2: On the left we present the current TCP/IP stack. On the
right we show roughly equivalent components in the GNUnet
system.

V. RESULTS

We evaluated CADET using the implemenation in GNUnet
and GNUnet’s testbed infrastructure [22] which can be used
to deploy, control and observe thousands of peers on a work-
station PC. For the tests, a small network with 100 peers was
used. Each of the experiments was repeated 10 times with a

Zhttps://gnunet.org/

different random underlay topology being emulated each time.
We introduce an artificial 20 ms round-trip delay on Transport
level links, to simulate a high-speed network.

All experiments were done running the normal GNUnet
production code, including operating system scheduling, cryp-
tographic operations and network I/O.

A. Churn Resistance

In the connectivity test we start a network with all peers
online and an average of 21 random connections per peer. We
select 10% of the peers to ping another randomly selected peer.
Then we start churning the network decreasing the number
of active peers to 80% of the original number, followed by
further decreases by 10% every 10 s until we reach 20%. We
just churn non-participating (relay) peers, and never disrupt
peers doing or receiving pings. It is possible that at the end,
when only peers sending and receiving pings are left, some of
them might be disconnected from the network.

We contemplate three different scenarios. In the most fa-
vorable one, peers are allowed to freely connect to other
peers as they see fit. This would correspond to Internet peers
with public IP addresses and no blocking firewall. In a more
restricted scenario we do not allow peers to establish new
connections, but before starting the test we “warm up” the
peers: we establish a random connection from each peer on
the network to another random peer. This allows peers to
observe some CONNECTION_CREATE messages for which
they are relays, and thereby learn a bit about the topology of
the network. In the most unfavorable scenario, we start the
network and right away start the benchmark, thus including
all operations that help discover and optimize routes in the
observed cost. We choose to only perform pings with 10% of
the peers so peers do not learn too much of the topology from
each other’s connections; otherwise the differences between
the “warm” and “cold” cases might be harder to observe.

100 —

Free ——3
| Warm o

90 - Cold m—

80 |
70 |
60 |
50 |
40 |

Connections alive (%)

30
20
10

100% 80% 70% 60% 50% 40%

Peers online (%)

30% 20%

Fig. 3: Percentage of peers that keep their connections as
the network is churned. The test labelled as “Free” peers are
allowed to establish new connections. In the “Warm” test the
peers have time to learn the topology of the network prior to
the churn. In the “Cold” test, peers have to find a route to
their destination as the network is started.

In Figure 3 we see that in all three scenarios every peer
initially manages to find a route to their destination. As we
churn the network peers start to disconnect; however, the
results vary. In the case of “Free” peers, they never lose
connectivity because they are permitted and thus quickly
manage to establish direct Transport connections to their
targets. As they no longer need relays, they remain unaffected
by churn. In the restricted route scenarios we observe that
knowledge about the topology accumulated during the warm-
up phase allow peers in the “Warm” scenario to keep their
connectivity much longer, due to knowledge of alternative
paths and the redundant connections that it allows. Even with
80% of the network gone, more than 50% of peers manage
to stay connected to their targets. In the worst case “Cold”
scenario, almost 40% of peers still manage to stay connected
after losing 80% of the network in just a minute.

Free Warm Cold
Avg 4426 ms | 49.18 ms | 53.39 ms
std dev 1397 ms | 17.93 ms | 18.64 ms
first round | 5599 ms | 55.87 ms | 62.38 ms
last round | 38.52 ms | 35.44 ms | 44.98 ms

TABLE I: Average and standard deviation of latency among
peers running under different network conditions (discon-
nected peers are excluded from the average).

Additionally, Table I shows the average latency between the
peers. Here, it is important to remember that the test was run
with 10 ms latency on each link between peers. As expected,
“Warm” peers that have gathered more information about the
network topology are able to achieve connections with shorter
paths earlier, which reduces latency. In the case of the “Free”
scenario, the lack of initial information is compensated by
establishing new, direct connections. Looking at the latency
in the last round, we can observe why the peers without
the extra initial information lost connectivity more frequently:
their average connection is significantly longer, therefore more
vulnerable to being disrupted by disconnected relay peers.

B. Latency

In order to measure the impact of the additional architec-
tural layers on latency, we measured the round trip times to
machines running the normal unmodified GNUnet code on
different types of networks, as depicted in Figure 4. First
we tested three types of networks with computers with direct
connectivity: in a gigabit LAN with a direct cable connection
(Peers A—C), in a 300 Mb/s wireless LAN on the same access
point (Peers A — B) and between a university network and a
typical home 16 Mb/s (down) and 1 Mb/s (up) ADSL Internet
connection (Peers A — D). The fourth scenario involves two
computers directly connected with a cable (A — C), of which
only A has Internet connectivity. The computer with no
Internet connectivity (C) pings the peer only reachable over
the Internet (D), using A as a relay. The control results are

obtained with a simple ICMP ping. Each connection was
evaluated using 150 round-trip measurements. The results are
presented in Table II.

|
W

D__ A %.,)) (g
=Yg A

Fig. 4: The test setup used for performance measurements.
Peers B and C' have no Internet connectivity.

RNl

ICMP CADET
Avg | Std Dev Avg Std Dev
LAN 02l ms | 0.04 ms | 14.31 ms 4.24 ms
WLAN 502ms | 3.85ms | 2623 ms | 15.05 ms
WAN 3794 ms | 1.0l ms | 44.66 ms 1.32 ms
Relay N/A N/A | 56.38 ms 5.02 ms

TABLE II: Average latency between systems running GNUnet
on different connections. The latency penalty, relative to the
absolute latency, is less significant over Internet connections.

The LAN connection has the biggest proportional latency
penalty, since the ICMP case is very close to hardware
performance and nearly instantaneous. Traffic in GNUnet has
to travese multiple layers in userspace and has the overhead
of encryption. This causes the latency to be 14 ms compared
to the 0.2 ms of ICMP. The absolute penalty is even bigger in
a wireless environment. The larger packet size of the GNUnet
ping probes causes collisions in the access point and the forced
retrasmissions increase the latency 21 ms over the ICMP case,
and the standard deviation spikes to 15 ms. When the test is
performed over a home Internet connection the proportional
impact is much smaller. In this case the pings over GNUnet
are only 6.5 ms longer with similar variance.

The reason why CADET increases latency by 14 ms in the
LAN experiment (compared to the ICMP baseline) but only 7
ms in the WAN case can be explained by the computing power
available: while the local area computers B and C' are laptops
the computer D is a workstation. Cryptographic operations
(and in particular ECHE) are significantly slower on B and
C, which explains the difference in this case.

Finally, when we ping the workstation from a computer
without Internet connectivity, we obtain 56 ms, which is
a latency 3 ms shorter than the LAN + Internet latencies
combined. This is due to the fact that the relay node does not
need to perform (re)encryption on the traffic on the CADET
level, although it does on Core level.

C. Throughput

In Table III, we present the results of our throughput tests.
Using the setup from the latency measurements, we transferred

several files between the computers. For the LAN test the files
were 100 MB. For the wireless LAN we used 100 MB and
10 MB files. For test over the Internet — due to the slow
1 Mb/s upload speed of the ADSL line — we used 1 MB
files. Each transfer was repeated 10 times. Between iterations,
the GNUnet tunnels were not torn down and thus only the
first transfer is affected by the full handshake (connection and
tunnel establishment); all subsequent transfers benefit from
tunnel reuse. However, the channels inside the tunnel were
re-established for every transfer.

To compare pure TCP speed we used the program netcat.
For CADET we used gnunet—-cadet, a custom netcat-
equivalent command line tool to access GNUnet’s CADET
implementation.

TCP CADET
LAN 105 MB/s | 15.0 MB/s
WLAN | 497 MB/s | 5.01 MB/s
WAN 114 KB/s 103 KB/s
Relay N/A 110 KB/s

TABLE III: Average throughput in the different network types.

For the high speed LAN test the throughput for GNUnet
was much smaller than with raw TCP. This is caused by the
high CPU utilization for cryptographic operations and user
space overheads. During these tests the CPU was operating at
100% while for raw TCP the load was not noticeably higher
than idle. A faster CPU would help the GNUnet stack offer
better performance results for LAN speeds. On the wireless
LAN tests both protocols offer similar results, as is the case
on the Internet tests: when the CPU is not saturated we see
that CADET performs about as well as TCP.

Surprisingly the test for Relay traffic yields slightly better
throughput compared to the WAN connection. We repeated
this test, with similar results. While not fully explained, the
difference is small, so it is conceivably due to fluctuations on
the ADSL connection outside of our control.

In these experiments CADET’s flow control did not seem
to negatively impact performance. However, additional exper-
iments (including traffic loss and message reordering) may be
done in the future to further refine the design.

VI. RELATED WORK
A. TCP/IP

TCP/IP [17] shares most of the functionality with CADET.
The three distinct functions (connectivity, state maintenance
and multiplexing) are divided in just two layers, with IP
providing connectivity, TCP or UDP multiplexing and the state
maintenance shared between the two, with each connection
defined by a S-tuple of IP addresses, TCP/UDP ports and
protocol. This causes any change in the connectivity (switch to
a different address, for instance) to break all established com-
munications. In CADET all application level communication
happens in channels inside a tunnel, which is independent from

the connection used to send the data, therefore connections can
and do change without affecting the application.

Regarding the individual components, IP solves the con-
nectivity problem using hierarchical routing. This requires an
authority to assign the addresses and a coordinated protocol
to spread the routing information over the network, which
GNUnet in general and CADET in particular, avoid as a
design principle. IP addressing does not only create security
problems, but also implies the need for routing algorithms
(such as BGP or OSPF) to work; as the IPv4 address space
is exhausted, fragmentation causes the routing tables to grow
exponentially in size. While IPv6 addresses some of this
issues, it fails to address key issues such as ownership, man-
in-the-middle attacks or mass surveillance.

TCP solves the reliability problem with byte-oriented ACKs
while CADET uses per-message ACKs, since GNUnet’s
Transport layer does not deliver fragmented messages to the
Core layer. The biggest difference, however, is the flow and
congestion control. TCP uses a sliding window for flow control
and different congestion windows for congestion control. The
basic mechanism is additive increase and multiplicative de-
crease in the window size. The window grows slowly until
a duplicated ACK is received, which means a packet was
lost, most probably due to a router dropping it due to a full
buffer. The reaction to this depends on the implementation, but
usually implies reducing the window size by a big step and
resuming the slow increase. Since UDP does not use ACKs,
it lacks flow or congestion control; this again can then be
abused. Since CADET uses ACKs for congestion control, it is
guaranteed that it will never drop a message due to full buffers.
This also allows the unreliable, UDP-like mode to benefit from
congestion control and a rudimentary flow control. The extra
traffic generated by the hop-by-hop congestion control ACK is
minimized by using bigger message sizes (64 kB vs typically
1500 bytes for IP/Ethernet), which minimize the overhead used
by the ACKs.

A related transport protocol, SCTP [20], designed as part
of the TCP/IP stack, implements some improvements like
message-oriented transmissions, multihoming, multistreaming
and individual selection of features like in-order delivery and
reliability. However, it still does not offer payload security and
still suffers from the problems associated with IP routing.

The Host Identity Protocol [12] is a proposed additional
layer in the TCP/IP stack to separate the host addresses from
the host identity. Using host identity tags (public key hashes)
to identify a host, it allows the IP address to change while
maintaining any TCP connections established. The protocol
adds a Diffie-Hellman exchange to each TCP connection and
allows for authentication and optional payload encryption.

B. Tor

While Tor [5] also uses P2P relay nodes to forward data be-
tween endpoints, the goals of the systems are totally different.
Tor uses forwarding to achieve annonymity and requires all
nodes to be able to communicate with one another to create
random paths among all the peers in the network. CADET

operates in environments with limited connectivity and uses
forwarding to improve connectivity, therefore often using the
shortest path it can find. Tor uses onion encryption to hide
the full paths from each relay peer, while CADET keeps them
in the clear such that other peers can cheaply learn about the
topology of the network and optimize their own connections.

C. net2o

net2o [15] also uses source routing, but instead of es-
tablishing a connection by explicitly allocating resources at
every relay peer on the path, net2o uses a bitmap in the
message header to tell every hop which neighbor to send the
message to. Each hop consults this bitmap and retransmits
the message to the neighbor whose number is indicated in
the field corresponding to it. This way the relay does not
need to store any infromation regarding the connections that
traverse it. On the other hand, the source peer must know all
the neighbors of all the relays on the path, as well as find the
path itself, which is not trivial and the solution proposed by
net20 has exponential complexity. While this method might be
possible in an infrastructure setting where the neighbors of a
core router rarely change, the dynamic nature of P2P scenarios
make this impracticable, as it would require constant updates
to the peering information of each relay.

D. Level 2 systems: PSTN, ATM, MPLS

CADET connections are similar to circuits in the tradi-
tional telephone system, virtual circuits in ATM [14] or label
switched paths in MPLS [18]. In all of these designs, all relay
nodes must be informed of a connection before they forward
payload traffic. A significant difference between CADET and
the traditional layer 2 designs is how routing is performed:
PSTN uses hierarchical phone numbers to route calls. ATM
and MPLS use external protocols based on shortest-path-first
to perform the routing (PNNI- and OSPF-based protocols,
respectively). ATM uses fixed 48 bytes of payload with 5 bytes
of routing information. This causes the need to use additional
mechanisms to transport payload, like the AAL protocols. The
small message size causes the routing overhead to be as much
as 10%. CADET allows messages of up to 64 kB, which can
help lower the relative overhead of the headers. In MPLS
and CADET data can travel on different paths. Unlike MPLS,
the CADET connection identifier/label is global and does not
change at every hop.

VII. CONCLUSION

We have presented CADET, a secure decentralized transport
for ad-hoc networks. CADET provides a secure communica-
tion channel by combining active DHT searches with passive
monitoring to achieve good connectivity in most scenarios.

We have shown that — while having notably higher la-
tency and resource utilization compared to TCP in fast, high-
bandwidth networks — in Internet-like scenarios normal end-
users are likely to experience today, the performance differ-
ences are small. We also have demonstrated that CADET
adapts quickly to dramatic changes in the topology of the
network, as it may be necessary for P2P or ad-hoc networks.

Acknowledgments

This work was funded by the Deutsche Forschungsgemein-
schaft (DFG) under ENP GR 3688/1-1.

REFERENCES

[1] M. N. Al-Ameen and M. Wright, “Persea: a sybil-resistant social dht,”
in Proceedings of the third ACM conference on Data and application
security and privacy. ACM, 2013, pp. 169-172.

[2] D. J. Bernstein, “Curve25519: new diffie-hellman speed records,” in
PKC, 2006.

[3] D.J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-
speed high-security signatures,” Journal of Cryptographic Engineering,
vol. 2, no. 2, pp. 77-89, 2012.

[4] N. Borisov, I. Goldberg, and E. Brewer, “Off-the-record communication,
or, why not to use pgp,” in Proceedings of the 2004 ACM Workshop on
Privacy in the Electronic Society, ser. WPES °04. New York, NY, USA:
ACM, 2004, pp. 77-84.

[5] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” DTIC Document, Tech. Rep., 2004.

[6] J. R. Douceur, “The sybil attack,” in IPTPS ’01: Revised Papers from
the First International Workshop on Peer-to-Peer Systems. London,
UK: Springer-Verlag, 2002, pp. 251-260.

[71 N. Evans and C. Grothoff, “R5n: Randomized recursive routing for
restricted-route networks,” in 5th International Conference on Network
and System Security. Milan, Italy: IEEE, 2011, pp. 316-321.

[8] B. Kaliski, “PKCS #5: Password-Based Cryptography Specification
Version 2.0,” RFC 2898 (Informational), Internet Engineering Task
Force, Sep. 2000.

[9] C. Lesniewski-Lass and M. F. Kaashoek, “Whanau: A sybil-proof

distributed hash table,” in 7th USENIX Symposium on Network Design

and Implementation, 2010, pp. 3-17.

P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer

information system based on the xor metric,” in Revised Papers from

the First International Workshop on Peer-to-Peer Systems. Springer-

Verlag, 2002, pp. 53-65. [Online]. Available: http://portal.acm.org/

citation.cfm?id=646334.687801

P. Mittal, M. Caesar, and N. Borisov, “X-vine: Secure and pseudonymous

routing using social networks,” arXiv preprint arXiv:1109.0971, 2011.

R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson, “Host Identity

Protocol,” RFC 5201 (Experimental), Internet Engineering Task Force,

Apr. 2008, updated by RFC 6253.

A. Neumann, C. Aichele, and M. Lindner, “B.a.t.m.a.n status report,”

The Better Approach To Mobile Ad-Hoc Networking Project, Tech.

Rep., June 2007, http://open-mesh.net/batman.

T. S. S. of ITU., ITU-T Recommendation 1.150: Integrated Services Dig-

ital Network (ISDN) General Structure : B-ISDN Asynchronous Transfer

Mode Functional Characteristics. International Telecommunication

Union, 1993.

B. Paysan, 2009. [Online]. Available: http://net2o0.de/internet-2.0.html

C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-Demand Distance

Vector (AODV) Routing,” RFC 3561 (Experimental), Internet Engineer-

ing Task Force, Jul. 2003.

J. Postel, “Transmission Control Protocol,” RFC 793 (Standard), Internet

Engineering Task Force, Sep. 1981, updated by RFCs 1122, 3168, 6093,

6528.

E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switch-

ing Architecture,” RFC 3031 (Proposed Standard), Internet Engineering

Task Force, January 2001.

A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object lo-

cation, and routing for large-scale peer-to-peer systems,” in Middleware

2001. Springer, 2001, pp. 329-350.

R. Stewart, “Stream Control Transmission Protocol,” RFC 4960 (Pro-

posed Standard), Internet Engineering Task Force, Sep. 2007, updated

by RFCs 6096, 6335.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,

“Chord: A scalable peer-to-peer lookup service for internet applications,”

in ACM SIGCOMM Computer Communication Review, vol. 31, no. 4.

ACM, 2001, pp. 149-160.

S. H. Totakura, “Large scale distributed evaluation of peer-to-peer

protocols,” Masters, Technische Universitaet Muenchen, Garching bei

Muenchen, 06/2013 2013.

[10]

(11]
[12]

[13]

[14]

[15]
[16]

(17]

(18]

[19]

[20]

[21]

[22]

