Bootstrapping of Peer-to-Peer Networks

Chris GauthierDickey
Department of Computer Science
University of Denver
chrisg@cs.du.edu

Abstract

In this paper, we present the first heuristic for fully
distributed bootstrapping of peer-to-peer networks. Our
heuristic generates a stream of promising IP addresses to
be probed as entry points. This stream is generated using
statistical profiles using the IP ranges of start-of-authorities
(SOAs) in the domain name system (DNS). We present ex-
perimental results demonstrating that with this approach it
is efficient and practical to bootstrap Gnutella-sized peer-
to-peer networks — without the need for centralized services
or the public exposure of end-user’s private IP addresses.

1 Introduction

The primary promise of peer-to-peer technology is the
decentralization of services and various associated benefits.
While peer-to-peer networks do not necessarily decentralize
all functions for reasons of performance, simplicity, control
and in particular security, it is generally desirable to have
available efficient and effective means for fully decentraliz-
ing any common peer-to-peer operation.

One key operation in any open peer-to-peer overlay net-
work is bootstrapping, the initial discovery of other systems
participating in the network. Nascent peers need to perform
such an operation in order to join the network. Bootstrap-
ping does not include the maintenance of connections or
exchange of topology information for peers that are already
connected to the network at large. However, in our defini-
tion, bootstrapping does include operations needed to repair
overlays that have split into disconnected subgraphs. To the
best of our knowledge, no effective and efficient protocol
for fully decentralized bootstrapping of open peer-to-peer
networks has been proposed previously.

One obvious approach for fully decentralized bootstrap-
ping is the method of brute-force scanning of the entire ad-
dress space for existing peers. Scanning 4 billion IP ad-
dresses is clearly an expensive proposition; however, it has
the advantage of being a completely decentralized opera-

Christian Grothoff
Department of Computer Science
University of Denver
grothoff @cs.du.edu

tion. Given an estimated size of about 1.3 million peers for
the Gnutella network [4], the chance of finding a peer is
less than 0.03%. In our experiments, a brute-force random
global scan for Gnutella peers requires on average 2425 at-
tempts before finding the first peer. The simple trick of ex-
cluding unallocated and reserved IP ranges can almost dou-
ble the chance of success.

In this paper, we will propose methods based on classi-
fication of IP address ranges using DNS that can help im-
prove the success rates of this completely decentralized ap-
proach for peer-to-peer bootstrapping. The fundamental as-
sumption of our research is that addresses in peer-to-peer
networks have a signficant bias in their distribution across
different organizations, as evidenced in Gnutella and Skype
measurements 2, 3]. By biasing the scan towards organiza-
tions with a disproportionally high number of participants,
we obtain an efficient and fully decentralized peer-to-peer
bootstrapping method that is competitive when compared
to approaches using somewhat outdated hostlists.

An extended version of this paper with a broader dis-
cussion of related work is available as a technical report at
http://grothoff.org/christian/pbtr.pdf.

2 Approach

Our approach to peer-to-peer bootstrapping consists of
two parts. First, a profile of the IP addresses of peers par-
ticipating in the P2P network is generated. Using this list,
a statistical profile is generated that describes, for each or-
ganization (as identified by DNS), the probability of how
likely it is to find peers in the IP space of the organization.
Second, the resulting statistical profile is used by peers to
generate a stream of promising IP addresses for bootstrap-
ping.

The specific method for obtaining a list of IP addresses
of peers in the P2P network is dependent on the specifics
of the network. In our experiments, we use a full graph
traversal (Gnutella) [4], random walks (DirectConnect) and
connection statistics from super-peers (E2DK). The result-
ing IP lists are matched against the start of authority (SOA)

for the respective IP address in DNS. In other words, the
range of IP addresses of an organizations is identified as the
range of IP addresses for which the same SOA is specified
in the global DNS database. The P2P vendor then ships the
resulting small database containing success probabilities for
various organizations with the P2P software.

Using this statistical profile, the proposed approach pro-
vides peers that are trying to bootstrap with a randomized
algorithm producing an infinite sequence of promising IP
addresses that the peer should probe. The algorithm to gen-
erate IP addresses to scan works as follows. First, the al-
gorithm uses a random number generator to generate three
8-bit values a, b and ¢, which are the the first 24 bits of
an IP address of the form a.b.c.z. It then determines the
probability of finding peers for the 256 possible values for
x € [0 : 255] based on the SOA for the particular subnet.
(While it is technically possible that the subnet is shared
by multiple SOAs, this is hardly ever the case in practice.)
Given a probability p of finding a peer in the address range
of the the entire organization, the peer then selects at most
k = |p-n| IP addresses in the subnet['| The parameter n is a
trade-off between finding peers with few attempts and prob-
ing a diverse set of networks. In our implementation, the
k values for x are determined using the equivalence class
z = b mod p with p = [4£] with a randomly selected
value for b. The smallest values for x are probed first —
most organizations allocate IP addresses sequentially, mak-
ing small values for x a bit more likely to result in active IP
addresses.

There are various reasons why the proposed approach
uses the SOA in order to determine the organization to
which an IP address belongs to. First, the DNS names of
large organizations are unlikely to change even as new IP
addresses are allocated to an organization. Also, if the SOA
of an IP address changed, it is likely that the corresponding
IP address space was allocated to a different organization;
naturally, the specific name of the SOA server may change
without significant changes in the organization; only the do-
main name should be considered significant. Given that or-
ganizations are unlikely to run a DNS server for only a few
IP addresses, using the SOA allows the client to determine
the organization for an entire range of IP addresses with just
a couple of DNS queries. The number of DNS queries is im-
portant since performing billions of DNS lookups would be
worse than scanning billions of IP addresses. Finally, unlike
hostnames, there is only one SOA for any given IP address.

3 Experimental Results

Experiments testing the proposed heuristic were per-
formed between October 2007 and February 2008 using IP

it p> %, all values for x will be used.

P2P Network

Gnutella (8/2007)
eDonkey (10/2007)
DirectConnect (10/2007)

‘ Unique IPs | Port
377,246 | 6346
80,728 | 411
175,139 | 4662

Table 1. Data sources and unique IP counts.
Note that the given number of unique IPs is
the number of IPs used for the generation of
the statistical profiles. The actual networks
maybe significantly larger.

Network Size (# IPs) | # SOAs
20 to 28 TPs 60,921
28 to 216 IPs 14,577
216 t0 224 IPs 1,296
224 t0 232 IPs 22
Total 76,816

Table 2. Categorization of DNS SOAs by the
size of the IP space that the SOA is responsi-
ble for.

lists for Gnutella [1]], E2DK (eMule) and DirectConnect.
The Gnutella IP list was extracted from a topology crawl
performed between September 2004 and August 2007 by
Cruiser [4]]. The IP addresses for E2DK and DirectCon-
nect were taken from topology crawlers in October 2007.
The number of IP addresses and their source are listed in
Table [T

3.1 Scanning DNS

Using GNU adns, we determined an approximation of
the SOAs for all IP addresses. The algorithm started with all
255 networks of size 224. For each network, the code would
first request the SOA for the first and last IP address in the
network. If the SOAs were identical, the heuristic would
assume that the entire range was under control of the par-
ticular SOA. If the SOAs were different, the network would
be split into 255 subnets which would again be subjected to
the same process.

Table [2] lists the number of IP addresses that each au-
thority is responsible for (according to the above heuristic).
For the statistics in Table 2| we used the full hostname of
the DNS server to identify the organization (in other words,
nsl.example.organdns2.example.org would be
treated as two different organizations).

3.2 Predicted Discovery Efficiency

Using the list of IPs for a peer-to-peer network and the
break down of the IPv4 address space into domains by the
SOA for each IP address, it is possible to determine how
many peers are active in each domain. The resulting sta-
tistical profile is likely to differ between peer-to-peer net-
works; different networks appeal to different groups, for
example, some peer-to-peer applications may have clients
that are only available in certain languages. Similarly, sup-
port groups for particular networks also operate in a social
and cultural context. This bias is not a problem for the
proposed approach; in fact, the proposed approach works
better because of this bias which is reflected in particularly
high and particularly low probabilities for different organi-
zations. However, this bias also means that statistical pro-
files must be created for each peer-to-peer application.

Table [3| provides a list of SOAs, the number of IPs for
which the DNS server is the authority and the number of
Gnutella peers falling into that range taken from the largest
snaphots in our sets. The most stunning result is that at the
time of the snapshot, almost 6% of the IPs in two organi-
zations run Gnutella peers. Consequently, a peer scanning
these organizations would be expected to succeed after an
average of only 17 attempts. Given the size of the snapshot,
a scan that would be oblivious to organizational bias would
be expected to take on average 1,250 attempts.

This improvement in the number of peers that need to
be probed is not realistic in practice. The reason is that
achieving this kind of performance assumes that the net-
work characteristics do not change over time, that current
DNS information is available for free for the peer, and that
the peer only scans the most promising organization. How-
ever, in order to repair network splits and to achieve the
desired decentralization and its load balancing benefits, any
heuristic must choose a trade-off between scanning highly
promising organizations and scanning a broad range of or-
ganizations. The heuristic described in Section [2 will even-
tually return all IP addresses that have a probability higher
than n—!. For our experiments, we use n = 1024, ensuring
that even in the worst case the probability of a single probe
is still slightly better than a brute-force scan while also dis-
tributing the load among a broad range of organizations and
IP addresses.

3.3 Observed Discovery Efficiency

The bootstrapping peers were provided with statistical
information generated from that profile. The sizes of the
generated statistical profiles, including full SOA names, IP
ranges and respective probabilities, are given in Table [
SOAs where the probability of finding a peer (based on
the IP statistics available) is zero are not included in the

database. Using this index, IP addresses were generated ac-
cording to the heuristic presented in Section 2| The code
then attempted to establish a TCP connection on the default
port for the respective P2P protocol. The experiment con-
sidered a peer to be running a peer if the TCP connection
was established successfully.

Since SOA range information was included in the
database, no DNS requests were performed in the final ex-
periment. In practice, an implementation would perform
DNS queries to keep the SOA database up-to-date. The
amount of DNS queries required corresponds to the fre-
quency at which new DNS SOAs are created; we expect
the necessary traffic to be insignificant, especially since the
algorithm would tolerate somewhat outdated SOA informa-
tion.

Table [also lists the average number of connection at-
tempts needed to discover a peer. The “random global scan”
does not use any statistical profiling data and just gener-
ates random IP addresses. The four “biased” approaches
use (portions of) the hostname of the SOAs to map IP ad-
dresses to organizations. For example, “biased using TLD
only” considers only the top-level domain as the “organiza-
tion”; in other words, all IPs in the UK would be part of the
same organization. Finally, “recent hostlist” uses random
IPs from a list of IP addresses that is only a few months old
(representing a common approach used today).

Table] shows the average number of IP probes required
to discover a single peer over 50 runs; however, due to
the randomized algorithm and the structure of the statistical
profile, the variance is quite high. Depending on the P2P
network, biasing the scan towards certain organizations im-
proves the performance of random probing by a factor of 2
to 105. Unsurprisingly, the data also shows that using a suf-
ficiently recent hostlist can produce connections with fewer
probes. However, the results for E2DK are surprising, both
in terms of how well the biased scan performs and in terms
of how terribe a hostlist (which in this case is not even four
months old) performs. This may in fact indicate that a sta-
ble core, i.e., long lived peers, for E2DK is relatively small.
The smaller the stable core for a P2P network, the less use-
ful a hostlist remains over time.

In all cases, the number of probes could be acceptable for
an actual implementation, and as mentioned before, ship-
ping a database with specific IP addresses raises various se-
curity and privacy concerns which do not apply to the sta-
tistical profiles.

While the presented experimental data is for IPv4, the
overall size of the IP address space should not matter, as
long as SOAs are not assigned to large amounts of unused
address space. In contrast, the size of the peer-to-peer net-
work in relation to the overall size of the Internet obvi-
ously still matters. However, small peer-to-peer networks
can generally use hostlists — the costs of operating such a

Organization (SOA) ‘ # 1Ps # Peers
ns.pc-network.ro 254 15 (5.91%)
nsl.netplanet.ro 254 12 (4.72%)
ns.rdstm.ro 11,244 517 (4.60%)
ns-a.bbtec.net 10,829,308 4 (0.00%)
rev1.kornet.net 10,857,115 1 (0.00%)

Total ‘

232 [3,741,099 (0.09%)

Table 3. Frequency of Gnutella peers in various domains taken from the largest snapshots in our
sets. The table lists the three most dense domains, the least dense domain and the average density.

P2P Network Gnutella E2DK DirectConnect
Probes | DB size Probes | DB size Probes | DB size
Random global scan || 2425 £ 3089 0K | 1875 £ 1780 0K | 3117 £ 3080 0K
Biased, TLD only 833 + 897 96K 18 +43 32K | 1252 + 1874 38K
Biased, domainname || 1150 & 1181 123K 74 + 86 42K | 623 £ 1599 52K
Biased, subdomain 849 + 820 136K 56 + 71 47K | 1786 &+ 2545 58K
Biased, FQN 817 £ 856 158K 51 +92 50K | 1397 £ 2320 60K
Recent hostlist 245 + 245 | 14964K | 7039 + 7185 320K 217 + 211 712K

Table 4. Success statistics (average number of probes needed to find an open port and std. dev.)
and compressed database sizes (in kilobytes) for various P2P networks.

centralized service for a small network would be insignifi-
cant and the likelihood of attention by powerful adversaries
should be low.

4 Conclusion

By considering the geographic and organizational bias
in the distribution of IP addresses participating in peer-to-
peer networks, it is possible to construct a biased global ad-
dress space scan that can efficiently bootstrap sufficiently
large peer-to-peer networks. The main requirements for this
method of peer-to-peer bootstrapping are that most peers
use a default port and that the developers are able to obtain
a list of IP addresses for the network; peer-to-peer networks
usually grow over time, so it can be expected that by the
time that centralized solutions become problematic devel-
opers will have access to such a list.

While the new approach has a clear advantage in terms
of decentralization and elimination of critical points of fail-
ure, it cannot be expected to outperform the distribution of
recent hostlists with the software in terms of the number of
probes required. In particular, by providing a recent crawl
of a given peer-to-peer network and using it as a hostlist,
one can ensure with high probability that new peer can boot-
strap into the system with minimal probing.

Acknowledgements

The authors thank David Barksdale, Nils Durner, Reze
Rejaie and Daniel Stutzbach for providing us with a list of
IP addresses for the various P2P networks. We also thank
Hamid Hanifi for support with running the experiments.

References

[1] Clip2 DSS. Gnutella protocol specification v0.4.
http://www.limewire.com, 2007.

[2] A. Gish, Y. Shavitt, and T. Tankel. ~Geographical
statistics and characteristics of p2p query strings. In
6th International Workshop on Peer-to-Peer Systems
(IPTPS’06), Feb 2007.

[3] Saikat Guha, Neil Daswani, and Ravi Jain. An experi-
mental study of the skype peer-to-peer voip system. In
The 5th International Workshop on Peer-to-Peer Sys-
tems (IPTPS’06), Feb 2007.

[4] Daniel Stutzbach, Reze Rejaie, and Subhabrata Sen.
Characterizing unstructured overlay topologies in mod-
ern p2p file-sharing systems. ACM Transactions on
Networking, 2007.

	Introduction
	Approach
	Experimental Results
	Scanning DNS
	Predicted Discovery Efficiency
	Observed Discovery Efficiency

	Conclusion

