
Surviving Private Key Compromise in Electronic Payment
Systems

GNU

❬T a l e r❭
taler.net

IRC#taler
(on freenode)

twitter@taler
mail@taler.net

Florian Dold &
Christian Grothoff
{dold,grothoff}@taler.net

taler.net


Prelude: draft-dold-payto

payto://

See also:

https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml

https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml




payto: Uniform Identifiers for Payments and Accounts

Like mailto:, but for bank accounts instead of email accounts!

payto://<PAYMENT-METHOD>/<ACCOUNT-NR>

?subject=InvoiceNr42

&amount=EUR:12.50

Default action: Open app to review and confirm payment.



Benefits of Payto

I Standardized way to represent financial resources (bank
account, bitcoin wallet) and payments to them

I Useful on the client-side on the Web and for FinTech backend
applications

I Payment methods (such as IBAN, ACH, Bitcoin) are
registered with IANA and allow extra options



GNU Taler

Digital cash, made socially
responsible.

❬T a l e r❭
Privacy-Preserving, Practical, Taxable, Free Software, Efficient



What is Taler?

Taler is an electronic instant payment system suitable for a CBEC.

I Uses electronic coins stored in wallets on customer’s device

I Like cash

I Pay in existing currencies (i.e. EUR, USD, BTC)



Taler Overview

Exchange

Customer Merchant

Auditor

w
ith

dr
aw

co
in

s deposit
coins

spend coins

verify



Architecture of Taler

⇒ Convenient, taxable, privacy-enhancing, & resource friendly!



How does it work?

We use a few ancient constructions:

I Cryptographic hash function (1989)

I Blind signature (1983)

I Schnorr signature (1989)

I Diffie-Hellman key exchange (1976)

I Cut-and-choose zero-knowledge proof (1985)

But of course we use modern instantiations.



Exchange setup: Create a denomination key (RSA)

1. Pick random primes p, q.

2. Compute n := pq,
φ(n) = (p − 1)(q − 1)

3. Pick small e < φ(n) such that
d := e−1 mod φ(n) exists.

4. Publish public key (e, n).

(p, q)



Merchant: Create a signing key (EdDSA)

I pick random m mod o as
private key

I M = mG public key

m

M

Capability: m⇒ M



Customer: Create a planchet (EdDSA)

I Pick random c mod o private key

I C = cG public key

c

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

Capability: c ⇒ X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5



Customer: Blind planchet (RSA)

1. Obtain public key (e, n)

2. Compute f := FDH(C ), f < n.

3. Pick blinding factor b ∈ Zn

4. Transmit f ′ := fbe mod n

b

b

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

Exchange

tr
an

sm
it



Exchange: Blind sign (RSA)

1. Receive f ′.

2. Compute s ′ := f ′d mod n.

3. Send signature s ′.
b

b

Customer

tr
an

sm
it



Customer: Unblind coin (RSA)

1. Receive s ′.

2. Compute s := s ′b−1 mod n

b
X

N
A

G
YE6P65735P4H1NGN8D

T5
28

W
S3

PX

ZT8T0YDYPS8770GCD
Z5

b



Customer: Build shopping cart

www

Merchant

tr
an

sm
it



Merchant: Propose contract (EdDSA)

1. Complete proposal D.

2. Send D, EdDSAm(D)

M

Customer

m

tr
an

sm
it



Customer: Spend coin (EdDSA)

1. Receive proposal D,
EdDSAm(D).

2. Send s, C , EdDSAc(D)

M

M X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

c

Merchant

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

tr
an

sm
it

tr
an

sm
it



Merchant and Exchange: Verify coin (RSA)

se
?≡ FDH(C ) mod n

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

?⇔



Warranting deposit safety

Exchange has another online signing key W = wG :

Sends E , EdDSAw (M,H(D),FDH(C )) to the merchant.

This signature means that M was the first to deposit C and that
the exchange thus must pay M.

Without this, an evil exchange could renege on the deposit
confirmation and claim double-spending if a coin were deposited

twice, and then not pay either merchant!



Online keys

I The exchange needs d and w to be available for online
signing.

I The corresponding public keys W and (e, n) are certified using
Taler’s public key infrastructure (which uses offline-only keys).

What happens if those private keys are compromised?



Denomination key (e, n) compromise

I An attacker who learns d can sign an arbitrary number of
illicit coins into existence and deposit them.

I Auditor and exchange can detect this once the total number
of deposits (illicit and legitimate) exceeds the number of
legitimate coins the exchange created.

I At this point, (e, n) is revoked. Users of unspent legitimate
coins reveal b from their withdrawal operation and obtain a
refund.

I The financial loss of the exchange is bounded by the number
of legitimate coins signed with d .

⇒ Taler frequently rotates denomination signing keys and deletes
d after the signing period of the respective key expires.



Online signing key W compromise

I An attacker who learns w can sign deposit confirmations.

I Attacker sets up two (or more) merchants and customer(s)
which double-spend legitimate coins at both merchants.

I The merchants only deposit each coin once at the exchange
and get paid once.

I The attacker then uses w to fake deposit confirmations for
the double-spent transactions.

I The attacker uses the faked deposit confirmations to complain
to the auditor that the exchange did not honor the (faked)
deposit confirmations.

The auditor can then detect the double-spending, but cannot tell
who is to blame, and (likely) would presume an evil exchange, forcing
it to pay both merchants.



Detecting online signing key W compromise

I Merchants are required to probabilistically report signed
deposit confirmations to the auditor.

I Auditor can thus detect exchanges not reporting signed
deposit confirmations.

⇒ Exchange can rekey if illicit key use is detected, then only has
to honor deposit confirmations it already provided to the
auditor and those without proof of double-spending and those
merchants reported to the auditor.

⇒ Merchants that do not participate in reporting to the auditor
risk their deposit permissions being voided in cases of an
exchange’s private key being compromised.



Summary and further reading

I We can design protocols that fail soft.

I GNU Taler’s design limits financial damage even in the case
private keys are compromised.

I GNU Taler does more:
I Gives change, can provide refunds
I Integrates nicely with HTTP, handles network failures
I High performance
I Free Software
I Formal security proofs

I More information at https://taler.net/.

https://taler.net/


How to support?

I GNU, TUM, INRIA and BFH are not banks.

I We created Taler Systems SA for commercial support and
development of GNU Taler.

I We are in discussions with central banks, commercial banks,
suppliers, merchants and various Free Software projects to get
GNU Taler into operation.

I More banking partners and venture capital would be welcome.

Talk to us!



Do you have any questions?

References:
1. Christian Grothoff, Bart Polot and Carlo von Loesch. The Internet is broken: Idealistic Ideas for Building a

GNU Network. W3C/IAB Workshop on Strengthening the Internet Against Pervasive Monitoring
(STRINT), 2014.

2. Jeffrey Burdges, Florian Dold, Christian Grothoff and Marcello Stanisci. Enabling Secure Web Payments
with GNU Taler. SPACE 2016.

3. Florian Dold, Sree Harsha Totakura, Benedikt Müller, Jeffrey Burdges and Christian Grothoff. Taler:
Taxable Anonymous Libre Electronic Reserves. Available upon request. 2016.

4. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer and Madars
Virza. Zerocash: Decentralized Anonymous Payments from Bitcoin. IEEE Symposium on Security &
Privacy, 2016.

5. David Chaum, Amos Fiat and Moni Naor. Untraceable electronic cash. Proceedings on Advances in
Cryptology, 1990.

6. Phillip Rogaway. The Moral Character of Cryptographic Work. Asiacrypt, 2015.

7. Florian Dold. The GNU Taler System: Practical and Provably Secure Electronic Payments. PhD thesis.
University of Rennes 1, 2019.


	payto://
	What is Taler?

