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Prelude: draft-dold-payto

payto://

See also:

https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml

https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml




payto: Uniform Identifiers for Payments and Accounts

Like mailto:, but for bank accounts instead of email accounts!

payto://<PAYMENT-METHOD>/<ACCOUNT-NR>

?subject=InvoiceNr42

&amount=EUR:12.50

Default action: Open app to review and confirm payment.



Benefits of Payto

I Standardized way to represent financial resources (bank
account, bitcoin wallet) and payments to them

I Useful on the client-side on the Web and for FinTech backend
applications

I Payment methods (such as IBAN, ACH, Bitcoin) are
registered with IANA and allow extra options



GNU Taler

Digital cash, made socially
responsible.

❬T a l e r❭
Privacy-Preserving, Practical, Taxable, Free Software, Efficient



What is Taler?

Taler is an electronic instant payment system suitable for a CBEC.

I Uses electronic coins stored in wallets on customer’s device

I Like cash

I Pay in existing currencies (i.e. EUR, USD, BTC)
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Architecture of Taler

⇒ Convenient, taxable, privacy-enhancing, & resource friendly!



How does it work?

We use a few ancient constructions:

I Cryptographic hash function (1989)

I Blind signature (1983)

I Schnorr signature (1989)

I Diffie-Hellman key exchange (1976)

I Cut-and-choose zero-knowledge proof (1985)

But of course we use modern instantiations.



Exchange setup: Create a denomination key (RSA)

1. Pick random primes p, q.

2. Compute n := pq,
φ(n) = (p − 1)(q − 1)

3. Pick small e < φ(n) such that
d := e−1 mod φ(n) exists.

4. Publish public key (e, n).

(p, q)



Merchant: Create a signing key (EdDSA)

I pick random m mod o as
private key

I M = mG public key
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Customer: Create a planchet (EdDSA)

I Pick random c mod o private key

I C = cG public key
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Customer: Blind planchet (RSA)

1. Obtain public key (e, n)

2. Compute f := FDH(C ), f < n.

3. Pick blinding factor b ∈ Zn

4. Transmit f ′ := fbe mod n
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Exchange: Blind sign (RSA)

1. Receive f ′.

2. Compute s ′ := f ′d mod n.

3. Send signature s ′.
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Customer: Unblind coin (RSA)

1. Receive s ′.

2. Compute s := s ′b−1 mod n
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Customer: Build shopping cart
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Merchant: Propose contract (EdDSA)

1. Complete proposal D.

2. Send D, EdDSAm(D)
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Customer: Spend coin (EdDSA)

1. Receive proposal D,
EdDSAm(D).

2. Send s, C , EdDSAc(D)
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Merchant and Exchange: Verify coin (RSA)

se
?≡ FDH(C ) mod n
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Warranting deposit safety

Exchange has another online signing key W = wG :

Sends E , EdDSAw (M,H(D),FDH(C )) to the merchant.

This signature means that M was the first to deposit C and that
the exchange thus must pay M.

Without this, an evil exchange could renege on the deposit
confirmation and claim double-spending if a coin were deposited

twice, and then not pay either merchant!



Online keys

I The exchange needs d and w to be available for online
signing.

I The corresponding public keys W and (e, n) are certified using
Taler’s public key infrastructure (which uses offline-only keys).

What happens if those private keys are compromised?



Denomination key (e, n) compromise

I An attacker who learns d can sign an arbitrary number of
illicit coins into existence and deposit them.

I Auditor and exchange can detect this once the total number
of deposits (illicit and legitimate) exceeds the number of
legitimate coins the exchange created.

I At this point, (e, n) is revoked. Users of unspent legitimate
coins reveal b from their withdrawal operation and obtain a
refund.

I The financial loss of the exchange is bounded by the number
of legitimate coins signed with d .

⇒ Taler frequently rotates denomination signing keys and deletes
d after the signing period of the respective key expires.



Online signing key W compromise

I An attacker who learns w can sign deposit confirmations.

I Attacker sets up two (or more) merchants and customer(s)
which double-spend legitimate coins at both merchants.

I The merchants only deposit each coin once at the exchange
and get paid once.

I The attacker then uses w to fake deposit confirmations for
the double-spent transactions.

I The attacker uses the faked deposit confirmations to complain
to the auditor that the exchange did not honor the (faked)
deposit confirmations.

The auditor can then detect the double-spending, but cannot tell
who is to blame, and (likely) would presume an evil exchange, forcing
it to pay both merchants.



Detecting online signing key W compromise

I Merchants are required to probabilistically report signed
deposit confirmations to the auditor.

I Auditor can thus detect exchanges not reporting signed
deposit confirmations.

⇒ Exchange can rekey if illicit key use is detected, then only has
to honor deposit confirmations it already provided to the
auditor and those without proof of double-spending and those
merchants reported to the auditor.

⇒ Merchants that do not participate in reporting to the auditor
risk their deposit permissions being voided in cases of an
exchange’s private key being compromised.



Summary and further reading

I We can design protocols that fail soft.

I GNU Taler’s design limits financial damage even in the case
private keys are compromised.

I GNU Taler does more:
I Gives change, can provide refunds
I Integrates nicely with HTTP, handles network failures
I High performance
I Free Software
I Formal security proofs

I More information at https://taler.net/.

https://taler.net/


How to support?

I GNU, TUM, INRIA and BFH are not banks.

I We created Taler Systems SA for commercial support and
development of GNU Taler.

I We are in discussions with central banks, commercial banks,
suppliers, merchants and various Free Software projects to get
GNU Taler into operation.

I More banking partners and venture capital would be welcome.

Talk to us!



Do you have any questions?
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