
0

Efficient Relaxed Search in Hierarchically-Clustered Sequence
Datasets

KAI C. BADER, Technische Universität München
MIKHAIL J. ATALLAH, Purdue University
CHRISTIAN GROTHOFF, Technische Universität München

This paper presents a new algorithm for finding oligonucleotide signatures that are specific and sensitive
for organisms or groups of organisms in large-scale sequence datasets. We assume that the organisms have
been organized in a hierarchy, for example a phylogenetic tree. The resulting signatures, binding sites for
primers and probes, match the maximum possible number of organisms in the target group while having at
most k matches outside of the target group.

The key step in the algorithm is the use of the Lowest Common Ancestor (LCA) to search the organism
hierarchy; this allows to solve the combinatorial problem in almost linear time (empirically observed). The
presented algorithm improves performance by several orders of magnitude in terms of both memory con-
sumption and runtime when compared to the best-known previous algorithms while giving identical, exact
solutions.

This paper gives a formal description of the algorithm, discusses details of our concrete, publicly available
implementation and presents the results from our performance evaluation.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems; J.3 [Life and Medical Sciences]: Biology and Genetics

General Terms: Applied algorithms, data mining

Additional Key Words and Phrases: oligonucleotide, probe design, primer design, signature, phylogenetic,
tree, ribosomal rna

ACM Reference Format:
Bader, K. C., Atallah, M. J., and Grothoff, C. 2012. Efficient Relaxed Search in Hierarchically-Clustered
Sequence Datasets. ACM J. Exp. Algor. 0, 0, Article 0 (2012), 19 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
Molecular diagnostic techniques, which are applying polymerase chain reaction
(PCR) [Bartlett and Stirling 2003] or RNA/DNA hybridization [Amann et al. 1995;
Stahl et al. 1988], are becoming a standard in various fields of life sciences and
medicine. They rely on oligonucleotide primers and probes, short (15–25 bases) sub-

Portions of this work were supported by the Bayerische Forschungsstiftung AZ 767-07; the Deutsche
Forschungsgemeinschaft ENP GR 3688/1-1; the National Science Foundation Grants CNS-0915436,
CNS-0913875, Science and Technology Center CCF-0939370; by an NPRP grant from the Qatar National
Research Fund; by Grant FA9550-09-1-0223 from the Air Force Office of Scientific Research; and by spon-
sors of the Center for Education and Research in Information Assurance and Security. The statements made
herein are solely the responsibility of the authors.
Author’s addresses: Kai C. Bader, kb@tum.de, Technische Universität München, München, Germany;
Mikhail J. Atallah, mja@cs.purdue.edu, Purdue University, Computer Science Department, West Lafayette,
IN 47907; Christian Grothoff, grothoff@in.tum.de, Technische Universität München, München, Germany.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1084-6654/2012/-ART0 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Journal of Experimental Algorithmics, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:2 Bader et al.

sequences of DNA or RNA. These subsequences bind to longer sequences from a bio-
logical sample to start the desired biochemical reaction. Binding sites on the samples,
the complement of the primers or probes, are called oligonucleotide signatures (here-
after simply referred to as signatures). In order to interact only with sequences from
the target organism, they must be specific to the target organism or group of organ-
isms.

A source for such primers and probes can be curated databases like probeBase [Loy
et al. 2007], or in many cases, the design “by hand”. Given the size of modern sequence
datasets, software tools are necessary to design new or re-evaluate already published
candidates before testing in the wet lab. In this paper we present an efficient algorithm
for the comprehensive in silico search for good signature candidates (Figure 1). Main-
tainers of gene and genome databases, such as SILVA, RDP, or Greengenes [Pruesse
et al. 2007; Cole et al. 2009; DeSantis et al. 2006] could use it to precompute and offer
a collection of signature candidates along with their datasets. But it also is useful for
end-users with custom sequence collections based on projects like FunGene1.

For applications in this domain, our algorithm assumes that the organisms are hi-
erarchically clustered. Clusterings could be based on any kind of classification where
inner nodes represent related groups. An example is a phylogenetic tree: Inner nodes
represent derived evolutionary relationships between groups of organisms, and the
individual organisms correspond to the leaves. Phylogenetic trees, if not supplied
with sequence datasets, can be computed using third-party tools such as FastTree or
RAxML [Price et al. 2010; Stamatakis 2006].

The other main input is a bipartite graph (Figure 1, center) that relates signatures
to matched sequences (organisms). A relation means that a signature is present in a
sequence. Such a bipartite graph is easily computed using existing search index tools
that construct suffix trees over sequence data. Signatures are extracted by traversing
the tree until a certain (length) constraint is met, and references to the sequences can
be found in the underlying nodes.

It should be noted that depending on the target group and the available sequence
data, there may not be a perfect match; a perfect match would be a signature that
matches all target sequences and has no matches outside of the target group (no false-
positives). Thus, we are interested in algorithms that support relaxed search condi-
tions; the algorithm should minimize the number of target sequences that are not
matched (false-negatives) while allowing for at most k false-positives (where k is typ-
ically a small number). In practice, inaccuracies in the available sequence data and
additional constraints (such as melting point restrictions) complicate the situation fur-
ther. However, many of these issues have been addressed in prior work [Bader et al.
2011] and shall thus remain outside of the scope of this paper. In this work we concen-
trate on the central algorithm for the search for good signature candidates, hereinafter
referred to as CaSSiS-LCA.

We will use the following formalism to present and discuss our algorithm. Let G =
(U, V,E) be a bipartite graph where edges (u, v) ∈ E represent that a signature u ∈
U matches an organism v ∈ V . Furthermore, let T be a tree with leaves in V (for
example, T might represent a phylogenetic tree). Furthermore, let D(t) be the set of
all descendants of t ∈ T and P (t) the result set of signatures for t. Then, this paper
presents an O(k|U | log |V |+k|V |+ |E|) time algorithm (detailed analysis in Section 3.3)
which determines for all elements t ∈ T those element(s) u ∈ U which maximize the
number of edges (u, v) ∈ E with v ∈ D(t) while not having more than k edges (u, v′) ∈ E
with v /∈ D(t). For each t, the resulting signatures are stored in P (t). Note that in

1http://fungene.cme.msu.edu/

ACM Journal of Experimental Algorithmics, Vol. 0, No. 0, Article 0, Publication date: 2012.

Efficient Relaxed Search in Hierarchically-Clustered Sequence Datasets 0:3

G T T G C A A G T C T T C

CaSSiS

Genetic sequencing,
assembly & annotation

1

2

3

4

5

6

E
A

B
F

C
G

D
H

extract Bipartite Graph (G)

CaSSiS-LCA

create

Post in silico evaluation
(e.g. with the ARB tools)

Microarray with
oligonucleotide
RNA/DNA probes

5' 3'

5'3'

RNA/DNA primer pairs

by alignment
comparison

Output (P)

Primer & probe
candidates

published

Oligonucleotide
search index

(e.g. PT-Server)

Public
sequence
databases

Organisms (V) Signatures (U)

Phylogenetic tree (T)

Chip

Central algorithm:
computes signature candidates

for tree nodes

Result files:
List of signature
candidates for

tree nodes

applied
(e.g. in PCR)

ACCAGAAG

CCTGTAAG

TTGCAGGA

TGTTGAAC

AGATTACA

Fig. 1: Schematic of the primer and probe design pipeline in which CaSSiS is embed-
ded. The input data for the new algorithm CaSSiS-LCA comes from public sequence
and phylogenetic tree databases. The resulting signatures can be used as a template
for new RNA/DNA primers and probes, for example to provide diagnostic microarrays.

practice |E| is several orders of magnitude larger than k|U | log |V | and thus the runtime
is practically linear in the size of the input.

Following [Bader et al. 2011], we will call edges (u, v) ∈ E with v ∈ D(t) ingroup
matches for group t and edges (u, v′) ∈ E with v /∈ D(t) outgroup matches for group
t. The bound k is the maximum number of outgroup matches that can be tolerated.
If the resulting signature u is used for diagnostics, outgroup matches would result in
false-positive tests. The goal of the algorithm is to maximize the number of ingroup
matches. If there exist organisms v ∈ D(t) where (u, v) /∈ E, this would result in false-
negatives tests when using signature u to test for group t. In other words, the presented
algorithm finds for each group of organisms t ∈ T all of those signatures u ∈ U that
have less than k false-positives and minimize false-negatives.

The remainder of this paper is structured as follows. We review related work in
Section 2. Our algorithm is presented in Section 3. Details about our implementation
and its performance are given in Section 4. We do not include specific signatures as
the biological results are identical to those already presented in [Bader et al. 2011].

2. RELATED WORK
Nowadays the use of primers and probes is widespread in the field of medical diag-
nostics. In previous work we have shown that computational methods can find typ-
ical representatives that are applied in this field [Bader et al. 2011]. An example
is EUB338, a domain-specific probe used for the detection of organisms classified as
“Bacteria” [Amann and Fuchs 2008]. Our algorithm not only found the signature cor-

ACM Journal of Experimental Algorithmics, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:4 Bader et al.

responding to EUB338 but even presented a signature with a higher coverage (its
position was shifted by one base compared to EUB338) [Bader et al. 2011].

The in silico search for oligonucleotides is provided by various tools. Most of them are
specialized in either primer design [Duitama et al. 2009; Peterlongo et al. 2009; Fice-
tola et al. 2010; Riaz et al. 2011] for PCR applications, or the design of probes [Chung
et al. 2005; Feng and Tillier 2007] that could be applied in DNA microarrays. But also
more generic approaches exist that try to identify signature sites [Ludwig et al. 2004;
Lee et al. 2010].

For various reasons we found these tools unsuitable for the comprehensive com-
putation of hierarchically clustered sequence datasets. They are typically limited to
processing data sets of a few thousand gene sequences or a few genomes due to exces-
sive memory or time requirements [Bader et al. 2011]. In most cases, oligonucleotides
are computed only for one predefined set of targets and non-targets per run. Another
limit is the lack of relaxed non-heuristic search methods, which gain importance when
processing large datasets [Bader et al. 2011].

Prior to this paper, the only algorithms known to us capable of doing a comprehen-
sive non-heuristic signature computation based on large hierarchically linked gene and
genome sequence datasets were Insignia [Phillippy et al. 2007] and the first CaSSiS
implementation, hereinafter referred to as CaSSiS-BGRT [Bader et al. 2011].

2.1. Insignia
Insignia is a web application developed and maintained by the Center for Bioinfor-
matics and Computational Biology at the University of Maryland, USA. It currently
(March 2012) contains 13,928 genomic organism sequences (11,274 viruses/phages and
2,653 non-viruses).

Insignia consists of two pipelines. The first “match pipeline” is used to pre-compute
“match cover” arrays M for every pair of organisms. For example, for v1, v2 ∈ V and
v1 6= v2, the match cover array M(v1, v2) contains the positions and lengths of all se-
quence regions of v1 that are also present at one or more positions on v2. To find com-
mon regions for an organism pair, Insignia uses MUMmer [Kurtz et al. 2004] to build
a suffix-tree based search index. Signatures of a defined length matching v1 and v2 are
extracted, merged if their positions on v1 overlap, and added as regions to the match
cover.

A match cover consists of integers, i.e. position and length pairs on a reference se-
quence. The number of pairs in a match cover is bound by the sequence length l.
To process ≈ 80 billion nucleotides from NCBI RefSeq genome database 2, the first
pipeline had to be distributed across a a 192-node cluster [Phillippy et al. 2009]. The
authors did not provide information about the actual runtime of the algorithm. The
memory consumption for the match cover M for 300 organisms is reported to be only
≈ 2 GB [Phillippy et al. 2007].

After pre-computing the match cover, the second “signature pipeline” is triggered
over Insignia’s web interface. The signature pipeline computes regions (i.e. one or more
overlapping signatures) shared between a user-defined group of target organisms V ′ ⊆
V which must also be absent in the background V ′′ = V \V ′ [Phillippy et al. 2007]. One
target organism v′ ∈ V ′ is designated as the reference organism and used to visualize
the result.

The signature pipeline consists of three steps. In a first step, an intersection Iv′ :=⋂
vt∈V ′ M(v′, vt) of the match cover structures from v′ with the other target organisms

from V ′ is created. It contains only sequence regions on v′ that are shared by all targets

2http://www.ncbi.nlm.nih.gov/RefSeq/

ACM Journal of Experimental Algorithmics, Vol. 0, No. 0, Article 0, Publication date: 2012.

Efficient Relaxed Search in Hierarchically-Clustered Sequence Datasets 0:5

V ′. In a second step, a union Uv′ :=
⋃

vb∈V ′′ M(v′, vb) of the match cover structures from
v′ with all background organisms V ′′ is created. Uv′ thus contains all regions on v′ that
match one or more organisms from the background V ′′. In the last step the regions
from Iv′ are compared to the ones in Uv′ to find possible signature candidates. Valid
signatures for the targets V ′ have to completely lie within a region on Iv′ and must not
entirely lie within a region on Uv′ .

All operations in the signature pipeline have (practically) linear time complexity
in the size of the match cover [Phillippy et al. 2007]. The match cover intersection
Iv′ for a target group V ′ (and a reference organism v′) has a time complexity of
O(|Iv′ | log |V ′|). The log |V ′| factor can be treated as a constant due to the bounded
number of genomes [Phillippy et al. 2007]. A single query takes on average one minute
to process [Phillippy et al. 2007].

The final output of Insignia is a list of regions consisting of overlapping k-mer sig-
natures. Insignia was primarily designed to process single queries (single targets or
groups of target sequences) and not for handling deep hierarchies. In contrast to the
work presented in this paper, Insignia is only able to report k-mer signatures perfectly
matching the whole target group without allowing non-target matches. However, for
many reasonable groups of organisms such perfect signatures often simply do not ex-
ist. In our test datasets, only 55% of the organisms and 14% of all groups were per-
fectly covered [Bader et al. 2011, Section 3.5] by one or more signatures. Furthermore,
Insignia can also not be used to find signatures with small mismatches to the target
sequences (which is useful to tolerate sequencing errors) or to enforce larger Hamming
distances to non-target (background) organisms. CaSSiS and the improvements over
CaSSiS that are presented in this paper address these shortcomings.

2.2. CaSSiS-BGRT
The CaSSiS-BGRT [Bader et al. 2011] algorithm and the CaSSiS-LCA algorithm pre-
sented in this paper use the same input sources and provide the same outputs. Specif-
ically, both approaches use the ARB PT-Server [Ludwig et al. 2004] to construct a bi-
partite graph that matches signature candidates to organisms. ARB first generates all
possible signatures of the specified length and then matches them (using a suffix trie)
against the sequences of the organisms. The PT-Server supports approximate match-
ing, for example to compensate for sequencing errors in the database. The algorithms
then process the resulting data stream and generate a map P which contains for each
t ∈ T a set of promising signature candidates.

The two approaches differ in the central algorithm which searches and evaluates sig-
nature candidates. Given a phylogenetic tree and the bipartite graph, CaSSiS-BGRT
uses a new data structure, the bipartite graph representation tree (BGRT), to process
more than 460,000 gene sequences (660M nucleotides, matched without mismatches or
outgroup hits) in about 132h on an Intel Core i7 with 24 GB of system memory [Bader
et al. 2011]. The algorithm employed by CaSSiS has worst-case complexity O(|M | · |V |)
time where M is the size of the BGRT (which is in turn bounded by |U |, the number of
edges in the bipartite graph) and |V | is the set of all organisms. CaSSiS-BGRT uses a
time-memory trade-off to implement a bounded search to significantly reduce the exe-
cution time in practice; however, as a result, CaSSiS-BGRT requires O(d · |M |) memory
where d is the depth of the (phylogenetic) tree T .

While 132h may seem sufficient to find signatures for all sequences and sequence
groups of interest, SSURef 102 only contains long (> 900 nt) annotated aligned SSU
rRNA sequences and not full genomes. CaSSiS-BGRT cannot be expected to process
contemporary data sets containing full genomes as memory consumption is linear in
the number of nucleotides and 700 million nucleotides already require about 16 GB

ACM Journal of Experimental Algorithmics, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:6 Bader et al.

of RAM. For comparison, a human genome has 3.3 billion nucleotides and ideally
a signature search should to consider all available sequence data for all organisms.
The CaSSiS-LCA algorithm presented in this paper significantly outperforms CaSSiS-
BGRT both in terms of memory and time complexity and is thus able to process full
genomes.

3. OUR ALGORITHM
In this section we present our new algorithm CaSSiS-LCA. We build up to the full-
featured algorithm in three steps to introduce each of the key ideas separately and to
properly highlight how the algorithm handles the different cases.

The bipartite graph G = (U, V,E) has the key property that in practice we can expect
there to be a relatively small number of organisms in V (hundreds of thousands) and
many more signatures U (billions) and even more edges (Figure 2). Thus it is imprac-
tical to load E (or even U) into main memory at any given time. Existing tools that
generate signature candidates and match them against organisms can efficiently cre-
ate E in the form of a data stream, giving all of the tuples (u, v) ∈ E for a given u ∈ U in
a single contiguous block in the overall stream. The basic philosophy of our algorithm
is thus to do stream processing [Bader et al. 2010] over a stream that represents the
bipartite graph. Each round of the algorithm is given a u ∈ U and the set Su ⊆ V of all
organisms v ∈ Su that match signature candidate u. Our stream processing algorithm
must then decide to keep u in a preliminary result set or discard u for good.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000

S
ig

na
tu

re
s

Organisms

Number of organisms matched per signature

Fig. 2: This figure shows the number of signatures that reference a certain number
of organisms. It is based on the bipartite graph of the complete SSURef 108 dataset
(618, 442 organisms, 31, 976, 771 signatures). 57% of the signatures match a single or-
ganism, only 11% match 10 or more organisms. Both axis use a logarithmic scale.

Prior to the main algorithms, we always perform some basic precomputations. First,
we number the organisms sequentially in the tree T from left to right, thus (with-
out loss of generality) v ∈ N. Second, we precompute the sparse tables necessary for
computing lowest common ancestors in T . This precomputation can be done in O(|V |)
time [Bender and Farach-Colton 2000; Fischer and Heun 2006; Gabow et al. 1984].

ACM Journal of Experimental Algorithmics, Vol. 0, No. 0, Article 0, Publication date: 2012.

Efficient Relaxed Search in Hierarchically-Clustered Sequence Datasets 0:7

Henceforth, we can compute the Lowest Common Ancestor (LCA) of v and v′ (denoted
by LCA(v, v′)) for v, v′ ∈ T in O(1) time.

We will present the new algorithm in three consecutive steps. The simplest algo-
rithm, presented in Section 3.1, is only considering perfect matches. A more relaxed
algorithm which allows partial matches is given in Section 3.2. The actual algorithm
which additionally allows outgroup matches follows in Section 3.3. A list of notations
used in the three algorithms is shown in Table I.

C(t) Child nodes of node t ∈ T
D(t) Set of all descendants of t ∈ T

E Edges (u ∈ U, v ∈ V) in the bipartite graph
G Bipartite graph (U, V,E)

indexofmin(e, S) Returns the index of element e ∈ S in the array S, if e /∈ S, the
index e would have had if e was in S minus one is returned

indexofmax(e, S) Returns the index of element e ∈ S in the array S, if e /∈ S, the
index e would have had if e was in S is returned

LCA(v, v′) Lowest Common Ancestor of v ∈ V and v′ ∈ V
P (t) Result set for tree node t ∈ T

P (t, k) Result set for tree node t ∈ T and k ∈ N outgroup hits
Su Set of sequences Su ⊂ V that are matched by a signature u

sort S Returns a sorted array with the elements from S
T (Phylogenetic) Tree
U Signature set
V Sequence set

Table I: Notations that are used in the following three algorithms.

3.1. Perfect Match Algorithm
We begin our exposition with an algorithm for the simple case of finding a probe that
provides perfect group coverage, that is, we are only interested in finding probes that
match all sequences in the target group and have no outgroup hits.

Figure 3 illustrates the two key cases the perfect match algorithm considers. First,
the common case that the organisms matched by the signature do not correspond per-
fectly to any group, and second the desired case that the signature corresponds exactly
to a particular group, which LCA can identify in O(1) time.

Algorithm 1 can then be used to find perfect matches for each organism or group
of organisms (i.e. relation P). The key idea here is to use LCA to quickly determine
the only t ∈ T that might be matched perfectly by a given signature u, and then to
use arithmetic to determine if u matches all descendants D(t). For this algorithm, we
need to precompute the number of descendants |D(t)| for all t ∈ T (which is trivial to
do in O(|V |) time). For determining the LCA û, the minimum and maximum organism
identifiers vmin

u and vmax
u are fetched and used. This can be done in O(1) time in the

sorted list Su. Although sorting might be overdoing to find the minimum and maximum
identifiers, it was used for consistency to the third (implemented) algorithm where it
becomes mandatory.

The complexity of the computation given in Algorithm 1 is O(|U | + |E|) (|E| from
sorting arrays of integers with a total of |E| entries in linear time, |U | from processing
each signature u). Together with the precomputation, the overall complexity of this
first algorithm is thus O(|V |+ |E|+ |U |) time.

ACM Journal of Experimental Algorithmics, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:8 Bader et al.

ALGORITHM 1: This algorithm computes a relation P that maps for each organism or group of
organisms t ∈ T to signature that perfectly cover all organisms in D(t) (with no false-positives).
ALGORITHM: Perfect Matching
Input: G(U, V,E), T , LCA(v, v′), |D(t)|
Output: P : T → P(U)

1 for u ∈ U do
2 P (u)← ∅;
3 end
4 for u ∈ U do
5 Su ← sort {vu|(u, vu) ∈ E};
6 vmin

u ← min Su ;
7 vmax

u ← max Su ;
8 û← LCA(vmin

u , vmax
u);

9 if |Su| = |D(û)| then
10 P (û)← P (û) ∪ {u};
11 end
12 end

(a) No match. |Su| 6= |D(û)|

(b) Perfect match. |Su| = |D(û)|

Fig. 3: Illustration of Algorithm 1. In Case 3a the set size |Su| = 3 is smaller than
|D(û)| = 6, so the candidate u is not a perfect probe for any sequence or sequence
group. Case 3b shows a probe that would be a perfect match (|Su| = 2 = |D(û)|).

ACM Journal of Experimental Algorithmics, Vol. 0, No. 0, Article 0, Publication date: 2012.

Efficient Relaxed Search in Hierarchically-Clustered Sequence Datasets 0:9

3.2. Partial Group Coverage
The second version of the algorithm will now relax the constraint that the group cov-
erage must be perfect. Instead, we will permit that some organisms in the group are
not covered by the signature. The goal of the algorithm is to find those signatures that
provide the maximum group coverage (minimizing false-negatives) while not allowing
any outgroup hits (no false-positives).

Let r ∈ T be the root of the tree T and let C(t) ⊂ T denote the children of t ∈ T .
Algorithm 2 can then be used to find those signatures that maximize group coverage
(with no outgroup hits) in O(|U | + |E|) time. The result is stored in a map P which
maps each t ∈ T to a pair consisting of the set of signatures U ⊆ U and the number of
organisms matched in the target group by all u ∈ U .

ALGORITHM 2: This algorithm computes a relation P that maps for each organism or group
of organisms t ∈ T to the set of signatures that provide maximum coverage of the organisms in
D(t) (with no false-positives). The algorithm runs in O(|U |+ |V |+ |E|) time as we can use bucket
sort to sort in O(|E|) time and Procedure PropagateUp adds O(|V |) time.
ALGORITHM: Partial Group Coverage
Input: G(U, V,E), T , LCA(v, v′)
Output: P : T → (P(U),N)

1 for u ∈ U do
2 P (u) = (∅, 0);
3 end
4 for u ∈ U do
5 Su ← sort {vu|(u, vu) ∈ E};
6 vmin

u ← min Su ;
7 vmax

u ← max Su ;
8 û← LCA(vmin

u , vmax
u);

9 (U , n′)← P (û);
10 n← |Su|;
11 if n > n′ then
12 P (û)← ({u}, n);
13 end
14 if n = n′ then
15 P (û)← (U ∪ {u}, n′);
16 end
17 end
18 PropagateUp (T , r, P);

A key step in Algorithm 2 is the propagation of results up the tree in Proce-
dure PropagateUp. This step exploits the fact that the parent p′ of a node p ∈ T always
represents a superset of organisms and thus a probe that has no outgroup hits for p
will also have no outgroup hits for p′. A suitable probe candidate for p can therefore
also be a good candidate for p′. Thus, Procedure PropagateUp is needed to ensure that
probes which provide partial group coverage are found.

Note that for partial group coverage, the computation of |D(t)| is no longer required.
Figure 4 illustrates the key steps in Algorithm 2. Given a signature u, the algorithm

first determines vmin
u and vmax

u , then determines û using LCA, associates the signature
u with |S| = 2 ingroup hits with P (û), and finally (assuming there were no other, better
signatures found in U) propagates the signature u to the ancestors of û.

ACM Journal of Experimental Algorithmics, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:10 Bader et al.

Procedure PropagateUp(T, p, P): Helper function to propagate good matches up the
tree using depth first traversal (in O(|V |) time).
Input: T , p, P : T → (P(U),N)
Output: Updated P : T → (P(U),N)

1 foreach c ∈ C(p) do
2 PropagateUp (T , c, P);
3 if p 6= r then
4 p′ ← parent (p);
5 (U , n)← P (p);
6 (U ′, n′)← P (p′);
7 if n > n′ then
8 P (p′)← (U , n);
9 end

10 if n = n′ then
11 P (p′)← (U ∪ U ′, n′);
12 end
13 end
14 end

Fig. 4: Illustration of Algorithm 2. The coverage of the probe u is |Su| = 2. It is added
at the node û. Note that the PropagateUp step happens once (for each t ∈ T) at the end
of the algorithm and not after each u ∈ U .

3.3. Allowing at most k Outgroup Hits
Finally, we present the complete CaSSiS-LCA algorithm that computes for each t ∈
T those signatures u ∈ U that maximize the number of matched target organisms
v ∈ D(t), while not matching more than k organisms v′ /∈ D(T). More precisely, our
algorithm computes for each i ∈ {0, . . . , k} and each t ∈ T the set of signatures u ∈ U
that have exactly i outgroup hits and the maximum number of ingroup hits.

Before the main algorithm, we precompute for each t ∈ T its leftmost and rightmost
leaf in the subtree rooted at t, which we will refer to as the border B(t) = (vmin

t , vmax
t)

(where vmin
t := min(D(t)) and vmax

t := max(D(t))). It is trivial to do this precomputa-
tion in O(|V |) time.

Given this, Algorithm 3 computes P , a mapping from pairs (T, {0, . . . , k}) (repre-
senting a target organism or target group of organisms and a number of outgroup
hits) to a pair (P(U),N) consisting of a set of signatures and the number of organisms

ACM Journal of Experimental Algorithmics, Vol. 0, No. 0, Article 0, Publication date: 2012.

Efficient Relaxed Search in Hierarchically-Clustered Sequence Datasets 0:11

ALGORITHM 3: This algorithm computes a relation P that maps for each organism or group
of organisms t ∈ T to the set of signatures that provide maximum coverage of the organisms
in D(t) (with no false-positives). The algorithm runs in O(k|U | log |V | + k|V | + |E|) time. The
algorithm requires O(|V |) space for the LCA data structure and can process the bipartite graph
(u, vu) ∈ E in a streaming fashion; thus there is no need to store the entire bipartite graph in
memory. There are O(k|V |) result entries in the output P . As written, the union operation in
Line 17 creates the theoretical possibility of O(k · |V | · |U |) space (if every signature is a perfect
signature for some k and some sequence). If only a best match (instead of all best matches) is
desired, one can replace (U ∪{u}) with {u} to improve space consumption to O(k · |V |). In either
case, the algorithm requires space linear to the size of the output.
ALGORITHM: Partial Group Coverage With Outgroup Hits
Input: G(U, V,E), T , LCA(v, v′), k
Output: P : (T, {0, . . . , k})→ (P(U),N)

1 for u ∈ U do
2 for o ∈ {0, . . . , k} do
3 P (u, o) = (∅, 0);
4 end
5 end
6 for u ∈ U do
7 Su ← sort {vu|(u, vu) ∈ E};
8 vmin

u ← min Su ;
9 vmax

u ← max Su ;
10 û← LCA(vmin

u , vmax
u);

11 (U , n′)← P (û, 0);
12 n← |Su|;
13 if n > n′ then
14 P (û, 0)← ({u}, n);
15 end
16 if n = n′ then
17 P (û, 0)← (U ∪ {u}, n′);
18 end
19 PropagateDown (T, û, P, Su, k, u) ;
20 end
21 PropagateUpWithK (T , r, P , k);

matched by those signatures in the target group. The Procedure PropagateUpWithK
corresponds to the procedure PropagateUp, differing only in propagating k+1 matches
up.

Algorithm 3 requires another helper Procedure PropagateDown which propagates
signatures down the tree T . At the LCA node, a signature will only have ingroup
matches and it has the highest sensitivity. But the signature could also be valuable
candidate for its children, which in their case results in outgroup matches. Propagat-
ing signatures downwards requires recalculating the number of ingroup and outgroup
hits at each step. Given that at most k outgroup hits are allowed, the propagation stops
after a total of at most O(k) downward steps.3

At each step, the procedure uses the border B and a binary search to quickly
determine the number of outgroup and ingroup hits for the new target group. Let
indexofmin(e, S) be a function that returns the index of element e ∈ S in the zero-
indexed, sorted array S. If e /∈ S, the index of the element left of the position e would

3Without loss of generality, we can assume that T is a binary tree, thus |C(p)| ≤ 2 can be assumed and the
first iteration over |C(p)| children of p is also in O(k) time.

ACM Journal of Experimental Algorithmics, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:12 Bader et al.

Procedure PropagateUpWithK(T, p, P, k) Helper function to propagate good matches
up the tree using depth first traversal (in O(k|V |) time). This procedure closely corre-
sponds to Procedure PropagateUp, except that we need to propagate the best signa-
tures up k + 1 times.
Input: T , p, P : T → (P(U),N), k
Output: Updated P : T → (P(U),N)

1 foreach c ∈ C(p) do
2 foreach o ∈ {0, . . . , k} do
3 PropagateUpWithK (T , c, P , k);
4 if p 6= r then
5 p′ ← parent (p);
6 (U , n)← P (p, o);
7 (U ′, n′)← P (p′, o);
8 if n > n′ then
9 P (p′, o)← (U , n);

10 end
11 if n = n′ then
12 P (p′, o)← (U ∪ U ′, n′);
13 end
14 end
15 end
16 end

have had in S should be returned (we never use indexofmin(e, S) on elements e that
have no smaller element in S). Similarly, let indexofmax(e, S) be a function that returns
the index of element e ∈ S in the zero-indexed, sorted array S, and if e /∈ S returns the
index of the element right of the position e would have had in S (again, we never use
indexofmax(e, S) on elements e that have no larger element in S). Figure 6 illustrates
how indexof is used to quickly determine the number of outgroup hits o. As S is sorted,
both indexof computations can be done in O(log |S|) time using binary search. Proce-
dure PropagateDown then lists the steps necessary to propagate signatures down the
tree.

Figure 5 illustrates the downwards propagation for k = 1. Going towards the left,
the propagation immediately terminates as o = 2 > k. Propagating towards x, the
propagation first updates the result set for o = 1 outgroup hit and then terminates on
the next level as the number of outgroup hits again rises to o = 2 > k.

4. EXPERIMENTAL RESULTS
We implemented the CaSSiS-LCA algorithm from Section 3.3 in C++. The CaSSiS
tools and the source code are available as free software (LGPL) at http://cassis.in.
tum.de/. The website also contains supplementary material, e.g. test datasets, probes
mentioned in Section 2 and more detailed instructions.

All experiments were performed on an Intel Core i7-920 (2.67 GHz) Debian
GNU/Linux system with 16 GB of main memory. We evaluated the performance of
our algorithm using the sequence data and phylogenetic tree from the SILVA SSU-
Ref 1084 dataset. It should be noted that the output of the new algorithm is identical
to the output from CaSSiS-BGRT [Bader et al. 2011]. A detailed analysis of the output
can be obtained from the CaSSiS website.

4http://www.arb-silva.de/documentation/background/release-108/

ACM Journal of Experimental Algorithmics, Vol. 0, No. 0, Article 0, Publication date: 2012.

Efficient Relaxed Search in Hierarchically-Clustered Sequence Datasets 0:13

Procedure PropagateDown(T, p, P, S, k, u) Helper function to propagate good matches
down the tree, bounded by k. The recursion is bounded to at most O(k) calls, thus the
complexity of this procedure is O(k log |S|) time and thus O(k log |V |) as S ⊆ V .
Input: T , p, P : T → (P(U),N), S, k, u, indexof(e, S)
Output: Updated P : T → (P(U),N)

1 foreach c ∈ C(p) do
2 (vmin

c , vmax
c)← B(c);

3 imin
c ← indexofmin(v

min
c , S) ;

4 imax
c ← indexofmax(v

max
c , S) ;

5 o← imin
c + |S| − imax

c − 1;
6 n← |S| − o;
7 if o ≤ k then
8 (U ′, n′)← P (c, o);
9 if n > n′ then

10 P (c, o)← ({u}, n);
11 end
12 if n = n′ then
13 P (c, o)← (U ′ ∪ {u}, n′);
14 end
15 PropagateDown (T, c, P, S, k, u);
16 end
17 end

Fig. 5: Illustration of Algorithm 3. For the example, we use an outgroup limit of k := 1.
At û (and its parent nodes) no outgroup matches are possible, i.e. P (0, û)← (U , 3). The
match is then propagated towards the child nodes. At node x, the match is added with
1 outgroup match, i.e. P (1, x)← (U , 2). In the other child nodes, the outgroup limit k is
exceeded.

4.1. Implementation
The inputs to our implementation are a (binary) phylogenetic tree in the Newick for-
mat [Olsen 1990] and MultiFasta5 formatted 16S rRNA gene sequence datasets. Each
sequence represents an organism. For our experiments, we used a modified ARB PT-
Server to generate the bipartite graph that maps signature candidates to organisms.
The modifications allowed direct access to the result sets without double parsing (once

5http://blast.ncbi.nlm.nih.gov/blastcgihelp.shtml

ACM Journal of Experimental Algorithmics, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:14 Bader et al.

p

V

c

PropagateDown

S
0 1 2 3 4 5 6 7

imin
c =2 imax

c =5

vmin
c vmax

c

Fig. 6: Detailed illustration of one iteration in the foreach loop of the PropagateDown
procedure. The left- and rightmost descendants (vmin

c and vmax
c) of the node c are read.

Then, the indexof procedures are used to fetch their positions in the match set S:
imin
c = 2 and imax

c = 5. The number of outgroup matches at c is o = imin
c +|S|−imax

c −1 =
2 + 8− 5− 1 = 4, the number of matches therefore n = |S| − o = 4

in the PT-Server and again in CaSSiS). Also, the memory management was adapted to
reduce the memory consumption.

The PT-Server allows the definition of a Hamming distance when matching a signa-
ture against the sequences. Our implementation utilizes this to allow a certain Ham-
ming distance m1 for matches within the target group as well as enforcing a minimum
Hamming distance m2 > m1 to sequences outside of the target group. The latter is im-
plemented by adding the number of organisms with a distance between m1 and m2 to
the initial number of outgroup hits for the probe. This strategy was also used and dis-
cussed in [Bader et al. 2011]. In both approaches, using the same Hamming distance
values result in identical bipartite graphs.

For the precomputation, we used the canonical approach of reducing the LCA prob-
lem into a Range Minimum Query (RMQ) problem [Gabow et al. 1984]. We used the
Sparse Table (ST) algorithm described by Bender and Farach-Colton [Bender and
Farach-Colton 2000] to preprocess with a complexity of O(n log n) time and to achieve
O(1) time for the RMQ queries during the main phase of the algorithm. While solu-
tions for pre-processing the LCA lookup with linear runtime and memory complexity
exist [Bender and Farach-Colton 2000; Fischer and Heun 2006; 2007], we did not im-
plement those as the O(n log n) processing is not the bottleneck (costing less than 1%
of the total execution time) and the constant factors for the main phase of the algo-
rithm would be higher for those other schemes. However, for the complexity analysis,
we assume that the best-known linear algorithm for LCA could be used and thus the
LCA precomputation will take O(|V |) time and space.

4.2. Measurements
We created test datasets of increasing sizes by randomly selecting sequences from the
original SILVA SSURef 108 dataset. We reduced the phylogenetic trees to only include
leaves which reference the selected sequences. The test datasets range from 16, 000 to
512, 000 sequences (Table II).

As expected, the main phase of the algorithm spends most of its time performing the
downward propagation. However, execution time is dominated by far by the queries
to the ARB PT-Server (Figure 7), especially for larger Hamming distance values (m1

and m2; Table III). It should be noted that it would be trivial to run multiple instances

ACM Journal of Experimental Algorithmics, Vol. 0, No. 0, Article 0, Publication date: 2012.

Efficient Relaxed Search in Hierarchically-Clustered Sequence Datasets 0:15

Sequences |V | Bigraph Edges |E| Signatures |U | Nucleotides
16,000 22,675,424 3,035,608 22,961,088
32,000 45,332,247 4,654,334 45,882,367
64,000 90,712,819 7,110,160 91,766,991

128,000 181,546,054 10,767,681 183,567,793
256,000 363,195,618 16,219,346 367,064,051
512,000 726,690,069 24,125,196 734,101,089

(*) 618,442 882,460,379 31,976,771 891,481,250

Table II: Test datasets derived from the SSURef 108 (*) dataset. Sequences represent
rRNA genes of organisms. For each dataset, the total number of nucleotides and unique
exact-matching 18 mer signatures are shown. The bigraph edges represent matches
between 18 mer signatures and sequences.

of the ARB PT-Server in a cluster [Bader et al. 2010] (memory per node permitting).
Distributing the queries across multiple search indices and aggregating the results
afterwards would further decrease the runtime of our approach.

10

100

1,000

10,000

100,000

1,000,000

In
de

x
C

re
at

io
n

C
aS

S
iS

-L
C

A

B
G

R
T

C
re

at
e

B
G

R
T

S
e
ar

ch

In
de

x
C

re
at

io
n

C
aS

S
iS

-L
C

A

B
G

R
T

C
re

at
e

B
G

R
T

S
e
ar

ch

In
de

x
C

re
at

io
n

C
aS

S
iS

-L
C

A

B
G

R
T

C
re

at
e

B
G

R
T

S
e
ar

ch

In
de

x
C

re
at

io
n

C
aS

S
iS

-L
C

A

B
G

R
T

C
re

at
e

B
G

R
T

S
e
ar

ch

In
de

x
C

re
at

io
n

C
aS

S
iS

-L
C

A

B
G

R
T

C
re

at
e

B
G

R
T

S
e
ar

ch

In
de

x
C

re
at

io
n

C
aS

S
iS

-L
C

A

B
G

R
T

C
re

at
e

B
G

R
T

S
e
ar

ch

16,000 32,000 64,000 128,000 256,000 512,000

O
v
e
ra

ll
ru

n
ti

m
e
 (

s)

Search Index LCA-Tree BGRTree

Fig. 7: Overall runtime of the CaSSiS-BGRT and CaSSiS-LCA implementations for
growing dataset sizes (16, 000–512, 000 sequences) with with m1 = 0, m2 = 1 and k = 10.
CaSSiS-BGRT was split in its two computing stages BGRT Create and BGRT Search.
The creation of the BGRT and the CaSSiS-LCA approach runtimes include building
the search index. The measured runtimes grow linear with the dataset sizes.

Both algorithms, CaSSiS-BGRT and CaSSiS-LCA, begin with the computation of
the search index. Afterwards, the search index is loaded into memory for further pro-
cessing. Up to this point runtime and memory consumption for both algorithms are
identical. Afterwards, either a BGRT is created and in a later step processed (CaSSiS-
BGRT), or the results are directly inserted at the appropriate node in the phylogenetic

ACM Journal of Experimental Algorithmics, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:16 Bader et al.

Distances Runtime Edges Signatures
m1 m2 (secs) |E| |U |

0 1 54 22,675,424 3,035,608
0 2 188 3,669,142 1,932,039
0 3 1,167 1,746,651 1,113,679
0 4 5,292 752,918 534,838
1 2 259 369,546,279 3,035,608
1 3 1,233 4,399,485 1,229,004
1 4 5,378 1,315,221 566,610
2 3 1,488 1,386,742,230 3,035,608
2 4 5,628 3,402,659 646,788
3 4 6,203 3,349,697,538 3,035,608

Table III: Allowing mismatches within the target group by increasing the Hamming
distance m1 increases the number of edges |E| in the bipartite graph. The number
of signatures |U | decreases with growing Hamming distances m2 to non-targets. The
number of sequences, here |V | = 16, 000, stays constant. The total runtime is mainly
influenced by the time needed to process the search index queries, and therefore in-
creases with growing mismatch distances (m2).

tree (CaSSiS-LCA). Figure 8 illustrates the growth in memory requirement of all ma-
jor steps for different input sizes. With growing dataset sizes, the signature search
based on the BGRT becomes the most memory consuming step.

We used the largest test dataset to provide a detailed comparison of the two ap-
proaches (Figure 9). Due to the identical search index computation and result pro-
cessing in both implementations, the most significant difference is the runtime of the
search for promising signatures at the BGRT- and the LCA-Tree-traversal steps.

5. CONCLUSIONS
We have presented a runtime and memory efficient solution for the the in silico search
for promising signature candidates even under relaxed search conditions. Combined
with modern algorithms for genome-scale pattern matching this approach will allow
the computation of specific and sensitive primers and probes.

While the resulting primers and probes are optimal from a computational point of
view, future work should also consider biochemical properties such as melting points.
The current CaSSiS implementation already contains appropriate filters. Another line
for future work will be the search for combinations of multiple probes to cover all
organisms in a target group, as for some groups of organisms probes with perfect cov-
erage simply do not exist.

While CaSSiS-BGRT and the CaSSiS-LCA solution presented in this paper are
based on the ARB PT-Server, it should be easy to switch to a different search index
for pattern matching, such as PtPan [Eißler et al. 2011] or SeqAn [Doring et al. 2008].
PtPan supports Levenshtein distances (the PT-Server currently only supports Ham-
ming distances), which might lead to better results during relaxed searches. SeqAn
provides suffix array search structures which are considered more memory efficient
than suffix tree structures [Abouelhoda et al. 2004]. Both approaches are slower in
answering queries when compared to the ARB PT-Server [Eißler et al. 2011].

By partitioning the search index in a cluster, we predict that CaSSiS-LCA should
be able to process genome data of virtually arbitrary size. It would mostly be limited
by the size of the clustering which is used to store the resulting signature candidates.
First promising tests were carried out in a previous work [Bader et al. 2010].

ACM Journal of Experimental Algorithmics, Vol. 0, No. 0, Article 0, Publication date: 2012.

Efficient Relaxed Search in Hierarchically-Clustered Sequence Datasets 0:17

0

2

4

6

8

10

12

14

16

In
de

x
C

re
at

io
n

C
aS

S
iS

-L
C

A

B
G

R
T

C
re

at
e

B
G

R
T

S
e
ar

ch

In
de

x
C

re
at

io
n

C
aS

S
iS

-L
C

A

B
G

R
T

C
re

at
e

B
G

R
T

S
e
ar

ch

In
de

x
C

re
at

io
n

C
aS

S
iS

-L
C

A

B
G

R
T

C
re

at
e

B
G

R
T

S
e
ar

ch

In
de

x
C

re
at

io
n

C
aS

S
iS

-L
C

A

B
G

R
T

C
re

at
e

B
G

R
T

S
e
ar

ch

In
de

x
C

re
at

io
n

C
aS

S
iS

-L
C

A

B
G

R
T

C
re

at
e

B
G

R
T

S
e
ar

ch

In
de

x
C

re
at

io
n

C
aS

S
iS

-L
C

A

B
G

R
T

C
re

at
e

B
G

R
T

S
e
ar

ch

16,000 32,000 64,000 128,000 256,000 512,000

M
e
m

o
ry

 C
o
n

su
m

p
ti

o
n

 (
G

B
)

Search Index LCA-Tree BGRTree

Fig. 8: Comparison of the memory consumption of CaSSiS-BGRT and CaSSiS-LCA for
growing dataset sizes (16, 000–512, 000 sequences) computed with m1 = 0, m2 = 1 and
k = 10. Results for the complete SSURef 108 dataset are not shown as the BGRT
search step exceeded the available main memory on our test system (20.1 GB; the
CaSSiS-LCA implementation only required 10.8 GB). Note that the CaSSiS-BGRT ap-
proach was split into its two main steps BGRT Create and BGRT Search. The memory
consumption of the search index after its computation is identical for CaSSiS-LCA and
BGRT Create. For the BGRT search/traversal the search index is not needed anymore.
Traversing the BGRT consumes far more memory than the LCA approach, although
the same phylogenetic tree structure is used to store the results (in the nodes).

REFERENCES
ABOUELHODA, M. I., KURTZ, S., AND OHLEBUSCH, E. 2004. Replacing suffix trees with enhanced suf-

fix arrays. Journal of Discrete Algorithms 2, 1, 53 – 86. The 9th International Symposium on String
Processing and Information Retrieval.

AMANN, R. AND FUCHS, B. M. 2008. Single-cell identification in microbial communities by improved fluo-
rescence in situ hybridization techniques. Nat. Rev. Microbiol. 6, 5, 339–348.

AMANN, R. I., LUDWIG, W., AND SCHLEIFER, K. H. 1995. Phylogenetic identification and in situ detection
of individual microbial cells without cultivation. Microbiol Rev. 59, 1, 143–169.

BADER, K. C., EISSLER, T., EVANS, N., GAUTHIERDICKEY, C., GROTHOFF, C., GROTHOFF, K., KEENE, J.,
MEIER, H., RITZDORF, C., AND RUTHERFORD, M. J. 2010. Distributed stream processing with DUP. In
Network and Parallel Computing. Lecture Notes in Computer Science Series, vol. 6289. Springer Berlin
/ Heidelberg, 232–246.

BADER, K. C., GROTHOFF, C., AND MEIER, H. 2011. Comprehensive and relaxed search for oligonucleotide
signatures in hierarchically clustered sequence datasets. Bioinformatics 27, 1546–1554.

BARTLETT, J. M. S. AND STIRLING, D. 2003. A short history of the polymerase chain reaction. In PCR
Protocols, J. M. Bartlett and D. Stirling, Eds. Methods in Molecular Biology Series, vol. 226. Humana
Press, 3–6. 10.1385/1-59259-384-4:3.

BENDER, M. AND FARACH-COLTON, M. 2000. The lca problem revisited. In LATIN 2000: Theoretical In-
formatics, G. Gonnet and A. Viola, Eds. Lecture Notes in Computer Science Series, vol. 1776. Springer
Berlin / Heidelberg, 88–94.

ACM Journal of Experimental Algorithmics, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:18 Bader et al.

1 hour

BGRT Search:
BGRT Traversal
Match/Result Processing

BGRT Create:
Create Index
Query Index
BGRT Creation

CaSSiS-LCA:
Create Index
Query Index
LCA Search/Traversal
Match/Result Processing

84 hours

36 minutes

97 minutes

Fig. 9: Detailed comparison of the runtime of CaSSiS-BGRT and CaSSiS-LCA algo-
rithm for the dataset with 512, 000 sequences. CaSSiS-BGRT was split in its two com-
puting stages BGRT Create and BGRT Search. Steps with a runtime below one minute
(e.g. loading the BGRT) are not shown. The runtime is represented by area. The most
notable difference is the reduction of the 83 hours of the BGRT Traversal step to
148 seconds during LCA Search/Traversal”.

CHUNG, W. H., RHEE, S. K., WAN, X. F., BAE, J. W., QUAN, Z. X., AND PARK, Y. H. 2005. Design of
long oligonucleotide probes for functional gene detection in a microbial community. Bioinformatics 21,
4092–4100.

COLE, J. R., WANG, Q., CARDENAS, E., FISH, J., CHAI, B., FARRIS, R. J., KULAM-SYED-MOHIDEEN, A. S.,
MCGARRELL, D. M., MARSH, T., GARRITY, G. M., AND TIEDJE, J. M. 2009. The Ribosomal Database
Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, D141–145.

DESANTIS, T. Z., HUGENHOLTZ, P., LARSEN, N., ROJAS, M., BRODIE, E. L., KELLER, K., HUBER, T.,
DALEVI, D., HU, P., AND ANDERSEN, G. L. 2006. Greengenes, a chimera-checked 16S rRNA gene
database and workbench compatible with ARB. Appl. Environ. Micorbiol. 72, 7, 5069–5072.

DORING, A., WEESE, D., RAUSCH, T., AND REINERT, K. 2008. Seqan an efficient, generic c++ library for
sequence analysis. BMC Bioinformatics 9, 1, 11.

DUITAMA, J., KUMAR, D. M., HEMPHILL, E., KHAN, M., MANDOIU, I. I., AND NELSON, C. E. 2009. Primer-
Hunter: a primer design tool for PCR-based virus subtype identification. Nucleic Acids Res. 37, 2483–
2492.

EISSLER, T., HODGES, C. P., AND MEIER, H. 2011. Ptpan — overcoming memory limitations in oligonu-
cleotide string matching for primer/probe design. Bioinformatics 27, 20, 2797–2805.

FENG, S. AND TILLIER, E. R. M. R. 2007. A fast and flexible approach to oligonucleotide probe design for
genomes and gene families. Bioinformatics 23, 1195–1202.

FICETOLA, G. F., COISSAC, E., ZUNDEL, S., RIAZ, T., SHEHZAD, W., BESSIERE, J., TABERLET, P., AND
POMPANON, F. 2010. An in silico approach for the evaluation of DNA barcodes. BMC Genomics 11, 434.

ACM Journal of Experimental Algorithmics, Vol. 0, No. 0, Article 0, Publication date: 2012.

Efficient Relaxed Search in Hierarchically-Clustered Sequence Datasets 0:19

FISCHER, J. AND HEUN, V. 2006. Theoretical and practical improvements on the rmq-problem, with appli-
cations to lca and lce. In Combinatorial Pattern Matching, M. Lewenstein and G. Valiente, Eds. Lecture
Notes in Computer Science Series, vol. 4009. Springer Berlin / Heidelberg, 36–48.

FISCHER, J. AND HEUN, V. 2007. A new succinct representation of rmq-information and improvements in
the enhanced suffix array. In Combinatorics, Algorithms, Probabilistic and Experimental Methodologies,
B. Chen, M. Paterson, and G. Zhang, Eds. Lecture Notes in Computer Science Series, vol. 4614. Springer
Berlin / Heidelberg, 459–470.

GABOW, H. N., BENTLEY, J. L., AND TARJAN, R. E. 1984. Scaling and related techniques for geometry
problems. In Proceedings of the sixteenth annual ACM symposium on Theory of computing. STOC ’84.
ACM, New York, NY, USA, 135–143.

KURTZ, S., PHILLIPPY, A., DELCHER, A. L., SMOOT, M., SHUMWAY, M., ANTONESCU, C., AND SALZBERG,
S. L. 2004. Versatile and open software for comparing large genomes. Genome Biol. 5, R12.

LEE, H. P., SHEU, T.-F., AND TANG, C. Y. 2010. A parallel and incremental algorithm for efficient unique
signature discovery on dna databases. BMC Bioinformatics 11, 132.

LOY, A., MAIXNER, F., WAGNER, M., AND HORN, M. 2007. probeBase–an online resource for rRNA-targeted
oligonucleotide probes: new features 2007. Nucleic Acids Res. 35, Database issue, D800–804.

LUDWIG, W., STRUNK, O., WESTRAM, R., RICHTER, L., MEIER, H., YADHUKUMAR, BUCHNER, A., LAI,
T., STEPPI, S., JOBB, G., FÖRSTER, W., BRETTSKE, I., GERBER, S., GINHART, A. W., GROSS, O.,
GRUMANN, S., HERMANN, S., JOST, R., KÖNIG, A., LISS, T., LÜSSMANN, R., MAY, M., NONHOFF, B.,
REICHEL, B., STREHLOW, R., STAMATAKIS, A., STUCKMANN, N., VILBIG, A., LENKE, M., LUDWIG, T.,
BODE, A., AND SCHLEIFER, K. H. 2004. ARB: a software environment for sequence data. Nucleic Acids
Res. 32, 4, 1363–1371.

OLSEN, G. 1990. The “Newick’s 8:45” tree format. http://evolution.genetics.washington.edu/phylip/
newick_doc.html.

PETERLONGO, P., NICOLAS, J., LAVENIER, D., VORCH, R., AND QUERELLOU, J. 2009. c-
gamma:comparative genome analysis of molecular markers. In Pattern Recognition in Bioinformatics,
V. Kadirkamanathan, G. Sanguinetti, M. Girolami, M. Niranjan, and J. Noirel, Eds. Lecture Notes in
Computer Science Series, vol. 5780. Springer Berlin / Heidelberg, 255–269.

PHILLIPPY, A. M., AYANBULE, K., EDWARDS, N. J., AND SALZBERG, S. L. 2009. Insignia: a DNA signature
search web server for diagnostic assay development. Nucleic Acids Res. 37, W229–234.

PHILLIPPY, A. M., MASON, J. A., AYANBULE, K., SOMMER, D. D., TAVIANI, E., HUQ, A., COLWELL, R. R.,
KNIGHT, I. T., AND SALZBERG, S. L. 2007. Comprehensive DNA signature discovery and validation.
PLoS Comput. Biol. 3, e98.

PRICE, M. N., DEHAL, P. S., AND ARKIN, A. P. 2010. Fasttree 2 approximately maximum-likelihood trees
for large alignments. PLoS ONE 5, 3, e9490.

PRUESSE, E., QUAST, C., KNITTEL, K., FUCHS, B. M., LUDWIG, W., PEPLIES, J., AND GLÖCKNER, F. O.
2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence
data compatible with ARB. Nucleic Acids Res. 35, 21, 7188–7196.

RIAZ, T., SHEHZAD, W., VIARI, A., POMPANON, F., TABERLET, P., AND COISSAC, E. 2011. ecoPrimers:
inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Res. 39,
e145.

STAHL, D. A., FLESHER, B., MANSFIELD, H. R., AND MONTGOMERY, L. 1988. Use of phylogenetically based
hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54, 1079–1084.

STAMATAKIS, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands
of taxa and mixed models. Bioinformatics 22, 2688–2690.

Received January 2012; revised April 2012; accepted April 2012

ACM Journal of Experimental Algorithmics, Vol. 0, No. 0, Article 0, Publication date: 2012.

