Simplifying Parallel and Distributed Simulation with the DUP System

Nathan S. Evans* Chris GauthierDickey Christian Grothoft*
evans@net.in.tum.de chrisg@cs.du.edu grothoffl@net.in.tum.de
Krista Grothoff™ Jeff Keene' Matthew J. Rutherford"

kgrothoff@sec.in.tum.de

Abstract

This paper presents how the DUP System, a straightforward
POSIX-compatible framework that enables programming-
language-agnostic parallel and distributed stream process-
ing, can be used to facilitate parallel and distributed sim-
ulations. Specifically, we describe two ways of using DUP
to utilize available resources for efficient simulation: (1) a
straightforward technique for parallelizing multiple runs of
an existing simulation program with minimal changes, and
(2) FiDES, a Discrete-Event Simulation (DES) framework
built atop DUP that provides a simple, yet powerful, means of
implementing a parallel and/or distributed DES. We then de-
scribe a toolset for profiling, debugging and visualization that
aids the development of DUP simulations. To support these
claims, we present various performance benchmarks that col-
lectively demonstrate how DUP and FiDES can make high-
performance simulation accessible to everyone.

1. INTRODUCTION

There is a trend in commodity computer hardware toward
machines with multiple cores and/or processors, cheap high-
performance networking, and inexpensive specialized co-
processors. These features, in combination, put a tremendous
amount of processing power within the reach of most devel-
opers. For scientists, engineers, and business-people working
with simulations, access to such computing power promises
both larger-scale simulations and faster execution of multiple-
trial simulation experiments — but only if software that takes
advantage of the available hardware resources can be devel-
oped. Unfortunately, parallel and distributed software devel-
opment remains a challenging task; time devoted to mastering
this takes away from the main goal of modeling and simulat-
ing phenomena of interest. Furthermore, existing DES frame-
works that offer support for parallel and distributed execution
require the programmer to develop their simulations using
toolkit-specific programming languages and APIs.

*Fakultit fiir Informatik, Technische Universitit Miinchen
TDepartment of Computer Science, University of Denver

jefkeenelcs.du.edu

mjr@cs.du.edu

In this paper, we present the DUP Systenﬂ a straight-
forward POSIX-compatible framework that enables
programming-language-agnostic parallel and distributed
stream processing. The DUP System enables developers
to compose applications from stages written in almost any
programming language and to run distributed streaming
applications across all POSIX-compatible platforms. The
DUP System includes a range of simple stages that serve as
general-purpose building blocks for larger applications. The
DUP System is a general-purpose framework, and we have
successfully used it to rapidly parallelize and distribute a
wide variety of programs.

In this paper, we focus on uses of DUP that are germane to
simulation. In particular, we describe two ways in which we
use DUP to utilize available processing resources for efficient
simulation. In the first scenario, we describe a straightfor-
ward technique to solve the problem of parallelizing multiple
runs of a simulation and gathering the resulting output data.
Many readers will be familiar with this problem and have un-
doubtedly spent time developing scripts and other execution
harnesses to mitigate this issue. We believe the approach we
provide is elegant, powerful, and can be accomplished with
minimal changes to existing simulation programs.

In the second scenario, we consider the case where an in-
dividual simulation run either takes too long to complete or is
limited by the memory available on any one machine. In this
case, the developer would like to parallelize the simulation
(e.g., to take advantage of multiple cores/processors within a
single machine) and/or distribute the simulation (e.g., to take
advantage of memory resources available on other machines).
To tackle this problem, we have developed FiDES, a Discrete-
Event Simulation (DES) framework built atop DUP that pro-
vides a simple, yet powerful, means of implementing a paral-
lel and/or distributed DES. FiDES allows the simulation de-
veloper to build their DES out of a flexible number of operat-
ing system processes that can be easily moved between ma-
chines. The implementation of DES processes within FiDES
is quite straightforward and can be done in any programming

! Available at http: //dupsystem.org/

http://dupsystem.org/

language that supports reading and writing from standard in-
put and outputE] By providing flexible parallelization and dis-
tribution, FiDES allows the developer to decide how best to
organize their software such that available resources may be
utilized. To support the developer in this endeavor, we have
developed a suite of decision-support tools to assist with pro-
filing and visualization of DUP program behavior. These can
be applied easily to FiDES simulations in order to determine
how to organize and deploy the parts of the system.

The remainder of this paper is organized as follows: Sec-
tion [2.| provides a high-level introduction to the technical as-
pects of the DUP system. Sections[3]and[f]present the afore-
mentioned uses of DUP, while Section E] describes the sup-
porting toolset. Section [6] presents related work, and Sec-
tion[Z] concludes.

2. THE DUP SYSTEM

DUP is a stream processing language designed to allow a
broad range of users, from non-programmers to programming
experts, access to the benefits of parallel and distributed archi-
tectures. The key idea behind the DUP System is the multi-
stream pipeline programming paradigm [4]. Multi-stream
pipelines are a generalization of UNIX pipelines. Multi-
stream pipelines in DUP are composed of stages, which are
processes that read from any number of input streams and
write to any number of output streams. By generalizing UNIX
pipelines to multi-stream pipelines, we eliminate the main re-
striction of the UNIX pipeline paradigm, namely the inher-
ently linear data flow.

A DUP program is organized as a data-flow graph where
the nodes of the graph represent operating system processes,
and the edges represent directed data-flows between them.
The runtime system seamlessly handles the communication
setup for pipelines that connect processes — both on the same
machine, and across the network. The DUP System also in-
cludes useful stages for handling multiple data streams so
that, in most cases, the application developer must only write
simple deterministic single-threaded programs, without the
need for networking or complicated stream handling logic.
Stages do not share memory, so there is no possibility for
memory consistency issues or data races, and when the data-
flow graph is acyclic, there is no possibility for deadlock. As
a result, the DUP System allows task- and data-level paral-
lelism to be exploited with a minimum of programmer effort.

The DUP System runs on any POSIX-compatible system
and uses both pipes and TCP streams for the communication
between stages. Figure [I] illustrates how the components of
the system work together. The dup command interprets pro-
grams written in DUP Assembly language, which specifies

2FiDES includes a C++-specific library for deserialization (parsing), de-
multiplexing and serialization of event messages; this minimal language-
specific support code could be ported within hours to new languages — if
needed for developer convenience.

- 9TEP -
/ TCP TCP \
! \
————— -+ fanout | Y faninany - - -
y >
in.txt (\ /‘ out.txt
L TCP TCcP |/
Tt grep ~ =7
dupd dupd dupd

DUP
Code [\ dup
\

Figure 1. Overview of the DUP System. Red (curved,
dashed) lines show data flow. Black (straight, solid) lines cor-
respond to actions by DUP.

precisely how the various stages for the application should be
connected. dup then communicates this information to dupd
daemons running on each host. The dupd daemons are given
information about what stages to execute and how to con-
nect these stages to others. Stages communicate with each
other using standard file I/O operations (for example, read
and write), which are available for almost all programming
languages.

The main advantages of this approach are that stages can
be written in almost any programming language and can com-
municate with other stages running on different hosts or cores
without knowing how they are connected in the global topol-
ogy. This makes it easy to combine many small components
to form large applications. In particular, existing UNIX filters
(such as grep) can be used within the DUP System without
changes. The DUP System also includes stages for common
tasks. For example, fanout reads data from standard input
and writes it to all open and writable file descriptors (except
standard error). Many of these generic stages are inspired by
and named after similar stages available in CMS [4].

3. PARALLELIZING SIMULATION RUNS

This section describes how DUP can be used to parallelize
simple simulations and distribute them across a cluster of ma-
chines. In this section, we use a running example of a Black-
jack simulation developed independently to evaluate various
aspects of the game. The purpose of this example is to illus-
trate the best-case scenario for the use of DUP for simulation
and to provide a first motivation for the system deployment
tools presented in Section[5]

3.1. The Blackjack Simulation

The Blackjack simulation (BlackJackSim) is a simple
Java-based application which, given a set of parameters, sim-
ulates Blackjack hands using different player strategies. The

purpose of the simulation is to discover which strategies yield
the best results for the player over time. Some of the impor-
tant parameters to the simulation are the number of hands, the
players starting dollar amount, the casino rules and a player
strategy. The simulator reads a single line from a file or stan-
dard input containing the required simulation parameters and
then runs the simulation, writing the results to standard out-
put. The simulator then reads another set of parameters from
standard input and simulates those. This continues until there
are no more inputs provided to standard input. This design
allows the simulation to be run naturally within the DUP sys-
tem, as it operates in a stream-oriented fashion.

3.2. Parallelizing with DUP

The easiest way to parallelize the Blackjack simulation is
to dynamically split the single input file by newline delimiters
using DUP’s deal stage (which distributes the lines from
one input stream round-robin to n output streams) and then
pass these sets into multiple BlackJackSim processes. The
resulting output lines from the BlackJackSim processes
can then be joined into one meta simulation file using the
faninany stage (which merges lines from n input streams
into one output stream). Input and output are delineated by
newlines, and both deal and faninany operate on lines
by default. The graphical representation of the resulting DUP
configuration is shown in Figure 2}

Input.txt

deal

the low level DUP specification; they simply need to fill in
an XML file and execute the provided driver to generate the
DUP Assembly code. Listing[T|shows the high-level skeleton
XML specification needed for running a distributed version
of the BlackJackSim simulation.

Listing 1. Example XML Specification for running a dis-
tributed simulation of this type.

<dup._.simulation>
<local_data_dir >/path </local_data_dir >
<remote_data_dir >/tmp</remote_data_dir >
<simulation_.command>java BlackJackSim
</simulation_command >
<input_file >Input.txt </input_file >
<ssh_username>user </ssh_username >
<simsOut2Stdout >1</simsOut2Stdout>
<localOutFile >out.dat </localOutFile >
<remoteDUPPath >/path </remoteDUPPath>
<start_dupds >1</start_dupds >
<control_host>hostO0 </control_host>
<hosts >
<host>
<hostname>hostl </hostname >
<port >55555</port>
</host>

</hosts>
</dup_simulation >

javaBlackJackSim java BlackJackSim

’ javaBlackJackSim ‘ ’ javaBlackJackSim ‘

Figure 2. Illustration of a parallelized Blackjack simulation
setup. The simulation parameters are read from Input . txt
and sent to four BlackJackSim processes. The out-
put from these four processes is combined and written to
Output.txt.

The DUP Assembly code used to implement the parallel
simulation shown in Figure [2]is virtually the same for paral-
lel execution on one host and distributed execution using mul-
tiple hosts. The code only differs in the hostnames specified
for the various BlackJackSim stages. However, a user run-
ning this type of simulation with DUP need not worry about

3.3. Optimization

The basic DUP runtime system leaves the developer with
the task of selecting a mapping of stages to hosts. This choice
is not always obvious, especially for more complex simu-
lations, since resource constraints such as CPU utilization,
memory consumption and network bandwidth all need to be
considered in order to maximize performance.

The Blackjack simulation is primarily limited by the CPU.
Using more BlackJackSim stages only gives better perfor-
mance as long as there are more processors or cores idle on
the host. However, even in this simple case, developers might
want to confirm that performance is not limited by network
bandwidth. Furthermore, in the age of multi-core machines
and processor features like hyper-threading [6], it is not al-
ways obvious what the optimal number of stages per host is.

For the simple Blackjack simulation, it is relatively easy to
find the optimal allocation of processes to machines by try-
ing out combinations manually. Figure [3|shows that using the
right allocation strategy, the Blackjack simulation scales lin-
early with the number of available hosts. Naturally, this can-
not be expected to be the case in general, especially for more
demanding simulations. Section[5.]describes a convenient and
systematic approach for resource allocation within the DUP

system that makes it easy to perform resource allocation and
optimizations for all kinds of DUP applications.

Speedup Multiplier

Number of Hosts

Figure 3. This figure shows the speedup achieved when run-
ning our Blackjack simulation on varying numbers of ma-
chines (two cores per machine).

4. FIDES

The approach presented in the previous section is appropri-
ate for situations in which individual simulation runs can be
handled by a single computer. However, part of the promise
of access to powerful parallel and distributed hardware is to
enable “larger” simulations than have previously been pos-
sible — this means parallelizing and distributing single sim-
ulation runs. Parallel and distributed simulation engines are
not new; however, their complexity is a barrier to entry for
non-specialists. The goal of FiDES, therefore, is to provide
a parallel and distributed Discrete-Event Simulation (DES)
framework that can be easily mastered and is straightforward
to tune and adapt to different hardware platforms.

As with all DES engines, the principle abstractions pro-
vided to the developer are process and event. A central goal
of FiDES is to provide an architecture that does not require a
priori knowledge of how a particular simulation will be de-
composed to support parallelism and distribution. To achieve
this goal, a simulation written for FiDES can be executed en-
tirely within a single operating system process (of course, this
cannot be parallelized or distributed) or it can be executed, us-
ing DUP, as multiple operating system processes with one or
more simulation processes per program. When executed on a
single system, the operating system will schedule the FiDES
processes to execute on different cores/processors (thereby
leveraging more CPU power). If memory consumption be-
comes a problem, the configuration can be tweaked to sched-
ule the processes for execution on different machines. We use
the term FiDES stage to refer to an operating system process,
and simulation process to refer to the DES processes running
inside of FiDES stages.

For developer convenience, FiDES includes a simple C++

API supporting the basic concepts of process and event and
two different simulation engines: monolithic and parallel.
This support library is implemented in less than 450 lines of
actual C++ code and primarily supports the deserialization
(parsing), demultiplexing and serializing of events that is re-
quired for the parallel simulation. Porting this library to other
programming languages could be accomplished in a matter of
hours.

4.1. Events

Events consist of a type attribute and a collection of name/-
value pairs representing other application-specific values as-
sociated with the event. For language-independence, names
and values are simply strings as far as FiDES is concerned.
Of course, developers are free to provide application-specific
wrappers to support stronger typing and ease of use in their
applications. The C++ API represents events using the (triv-
ial) Event class.

4.2. Simulation logic

The simulation logic is expected to process a stream of in-
coming events, including “advance-time” events, and gener-
ate the respective state changes and output events. To facili-
tate routing of event messages, FiDES requires each simula-
tion process to have a unique identifier that is also specified
in events destined for this process.

The FiDES C++ API provides a Process class
that provides high-level abstractions for writing the
simulation logic. Derived classes must implement the
processEvent (const Eventé&) method that is called
by the framework when a scheduled event is due to be pro-
cessed. Derived classes can optionally override the init ()
method, which is called exactly once by the framework before
any events are processed — this is typically used to schedule
initial events for the simulation or perform other initializa-
tion.

Each Process instance maintains its own virtual clock,
updated in response to an “advance-time” message from
the simulation engine or when the simulation process it-
self advances time to represent processing or busy time
while handling events. Remote and local (self) events are
scheduled using one of several convenience variants of the
scheduleEvent () method. These methods perform dif-
ferently depending on the simulation engine being used.

Once the application-specific Process classes
are defined, they can be instantiated and bound to-
gether into a single monolithic FiDES stage using the
MonolithicEngine class. This engine is simple to
use: (1) an instance of the MonolithicEngine class is
created; (2) simulation processes are instantiated and added
to the engine instance; and (3) the simulation is executed.
The monolithic engine is included to facilitate development

of the application-specific elements of a simulation (i.e., for
testing) and to provide simulation developers with a fall-back
position in the event that parallel/distributed simulation is not
warranted for some simulation scenarios.

4.3. Parallel Engine

Parallel engine stages are the entities in a distributed FiDES
simulation that run the application-specific simulation pro-
cess logic. Each parallel FiDES stage can be responsible for
any number of simulation process instances. A parallel engine
must parse event messages, execute the respective process-
ing code and serialize event messages for other FiDES stages.
The ParallelEngine class provides a sample implemen-
tation of this simple core logic for C++. It is typically used in
conjunction with a main function that processes a configura-
tion file specifying which simulation processes should be run
by the FiDES stages.

4.4. FiDES Runtime Architecture

Figure [4] depicts a simplified logical organization of a
FiDES parallel simulation. In this figure, the grayed boxes
represent elements of the FiDES/DUP framework, while the
white boxes represent FiDES stages containing simulation
processes; lines with arrow-heads represent data flows. Con-
ceptually, the fanin connected to the fanout implements
a message bus between all FiDES stages — in practice, the
implementation is more sophisticated than this, employing
different strategies to filter and otherwise reduce unnecessary
data exchange. The white boxes labeled “PE 17, “PE 27, etc.
represent programs executing the ParallelEngine simu-
lation engine.

—>» PE 1—
— PE 22—

—3» PE N—>

fanout
fanin

vtimekeeperJ

datakeeper |—

Figure 4. Conceptual organization of a FiDES parallel ex-
ecution. Grayed boxes represent elements of the FiDES in-
frastructure; white boxes represent application-specific pro-
cesses.

FiDES uses a conservative synchronization strategy with

a central virtual timekeeper process. While this limits ex-
ploitable parallelism, avoiding the need to support roll-
backs simplifies the development and integration of simula-
tion components written in many languages by keeping the
amount of language-specific support code minimal.

The simulation starts when the vt imekeeper simulation
process sends a VTIME 0 message (delimited by a newline)
to all the FiDES stages. The stages deserialize this message
and update the virtual time of all the simulation processes
it contains (initializing as necessary). During initialization,
some simulation processes may schedule events on other sim-
ulation processes — the events are simply serialized by the
FiDES stage and passed off to the message bus, where they
are handled by the FiDES stage that contains the designated
destination process. The vt imekeeper is also notified of
the time at which an event is scheduled to occur so it can
send a VT IME message appropriately.

The vt imekeeper process advances virtual time when
all simulation processes have finished processing the previ-
ous VTIME message. Simulation processes indicate this by
sending a VTACK message.

At any time, simulation processes can send a STATE mes-
sage with a snapshot of relevant elements of their internal
state. These messages are handled by the dat akeeper pro-
cesses and typically saved off to files for later analysis.

| Message || Source | Destination
VTIME vtimekeeper ParallelEngine
VTACK ParallelEngine | vtimekeeper
EVENT ParallelEngine | ParallelEngine
STATE ParallelEngine | datakeeper

Table 1. Summary of FiDES messages used to communicate
between the processes in a parallel simulation execution.

Table |1I| summarizes the major communication messages
exchanged between elements of a FiDES parallel simula-
tion. These messages are serialized into a newline-delimited
stream of text messages with a simple, easy-to-parse format.

Obviously, the flexible design of the parallel execution al-
lows for many configuration options: the developer has to de-
cide on the number FiDES stages and which type(s) to group
together within each. The system processes shown in Fig-
ure {4 can be located on different machines (in a distributed
scenario). As all of these decisions can impact the runtime
performance of the simulation, we have developed a suite of
tools for analyzing performance, as described in the next sec-
tion.

S. DUP OPTIMIZATION AND ANALYSIS

Distributed and parallel systems are, in general, difficult to
optimize, and simulation designers without a strong computer

science background can easily be overwhelmed when trying
to get simulations to run faster. To make this process easier,
we have developed profiling and analysis tools which help
determine the performance and interactions of individual sys-
tem components. We assume an iterative approach, where a
user creates a basic distributed pipeline in DUP and then uses
the analysis tools to discover the characteristics of each stage
and its interactions. This data can then be used to schedule
stages for better performance.

Our performance analysis tools treat stages as black boxes;
they can only observe the behavior of each stage from the
point of the operating system. They monitor memory and
CPU usage, network bandwidth and data, and system calls
(using strace). Additionally, I/O behavior is observed by
inserting stages into the data flow graph that monitor data
flow between the original stages. The various instrumenta-
tions are run independently over multiple profiling runs to
minimize interference. We currently do not have any sophisti-
cated support for alignment of traces, other than system times.

The DUP profiling infrastructure also creates standalone
configurations that are run on data captured by the full sys-
tem run. This allows profiling of individual components with-
out interference from other system components. This allows
a system designer to see best case performance of individual
stages and also provides a bound on the theoretical perfor-
mance of the overall system (by adding the individual stage
runtimes together). We provide the ability to record all data
transmitted between stages (to be played back offline or di-
rectly analyzed). We can also record standard runtime met-
rics such as CPU usage, memory consumption, system calls,
and timing information both on- and offline. Since one of the
bottlenecks that may be encountered is network bandwidth
and latency, we also record the throughput needed for each
stage in the system as well as bandwidth between possible
hosts. Since collecting so much data can be overkill, mixing
and matching of what is gathered is also supported.

To make the collected data more useful to a system de-
signer, the profiling tools can graph this data and merge the
plots into a single web page.

We will now present two case studies where we use the
profiling infrastructure to analyze and improve performance
of the Blackjack and FiDES simulations described in the pre-
vious sections.

5.1. Case Study - Blackjack

In order to determine performance bottlenecks of a simula-
tion, we first need to discover the CPU and memory character-
istics of each stage. Each stage is first examined in isolation,
where interactions between stages do not exist. This gives
baseline characteristics of the stages, which can be used to
decide what the bottlenecks are for the system. For instance,
our blackjack simulations require very little memory (see Ta-

Process Mem (MB) | % Time
deal 0.33 MB <0.001%
workerl 49.96 MB 19.999%
worker?2 49.66 MB 19.875%
worker3 65.15 MB 19.877%
workerd 52.24 MB 19.751%
worker5 50.33 MB | 20.354%
faninany 0.39 MB <0.001%

Table 2. Percentage of system memory (max) used by each
process during its lifetime, percentage of total CPU time for
each process compared to total simulation, and percentage of
CPU used when run in isolation.

ble [2). Table 2] further indicates that the stages used in the
simulation for sending simulation parameters and merging re-
sults (the deal and faninany stages) require so little CPU
time that they are unlikely to be bottlenecks in our simulation.
This indicates that memory is not a limiting factor, but CPU
usage is for these simulations.

Because the Blackjack simulation profiling data indicate
that the simulations are CPU-bounded stages, performance
should be improved simply by distributing the worker pro-
cesses to separate hosts. Concrete speedup results are shown
in Figure[3|and the reasons for those results are explained be-
low. In this example, we fix the number of worker stages at
five, vary the number of hosts used, and plot real time CPU
usage when these stages are distributed across one, two and
five machines. Real time CPU usage means that interactions
between stages can be seen.

Figure 5| shows the CPU usage when all worker stages are
run on a single host, two hosts and five hosts. The worker
stages when scheduled on a single host must share the avail-
able CPU and each get around 40 percent of the CPU on av-
erage as opposed to 100 percent when run in isolation. Fig-
ure [5] also shows the same five worker stages scheduled on
two hosts (three at one, two at the other). This shows that
worker2 and worker4 (scheduled together on a dual core
machine) each get roughly 100 percent of each core, finish-
ing faster than the three workers scheduled on the other host.
Figure [3] finally shows the extreme case where each worker
is scheduled on a separate host. Here we get the best perfor-
mance of the three, as each worker can use all of a single
core’s resources. Of course, in this final case the second core
on each host is not utilized at all which means the most effi-
cient use of the available resources is likely to schedule two
workers (or more) at each available host.

While improving the layout of this particular simulation
is a bit trivial because we knew that it was a CPU-bounded
application, the same approach can be used to discover the
behavior of stages that are not as easy to predict. Our profil-
ing tools provide memory and network usage data and graphs

(left out for brevity) so that the interactions of more com-
plex systems can also be discovered. This allows the designer
of the simulation to decide how best to utilize available re-
sources.

120

Worker] mmmmm

Worker2 =

Worker3 ——=—

o Workerd [£TxY

2\ Worker5 T
\ Faninany 1
Deal

100

Percent CPU
2
8
T

®
8
T
s j

1 Host 2 Hosts 5 Hosts

Figure 5. Average CPU usage of Blackjack simulation run-
ning on 1, 2 and 5 machines

5.2. Case Study - FiDES

A logistic queuing simulation very similar to SSIM [[1] was
used as an example FiDES application. This simulation uses
three types of FiDES stages: manufacturers (goods produc-
ers), retailers (get bulk goods from manufacturer), and con-
sumers (buy goods from retailers). This simulation is more
complex, and improving performance is not as straightfor-
ward as with the Blackjack simulation. FiDES allows us to
split up the manufacturer, retailer and consumer simulation
processes arbitrarily among FiDES stages.

The first simulation is run on a DUP configuration with
one FiDES stage for each type of simulation process. Ta-
ble El shows that, as with the Blackjack simulations, mem-
ory is not an issue — the CPU is the bottleneck when run
in this configuration. In the next step, we try to speed up the
simulation time by increasing the number of FiDES stages
and scheduling multiple stages for each host available. But,
as shown in Figure[6] while increasing the number of FIDES
stages and distributing the workload initially decreases total
runtime, as more FiDES stages are added, the performance
gain decreases.

Using the bandwidth profiling graphs and CPU usage, we
determined that the cause is the “global bus” that FiDES em-
ploys. Any data sent from any virtual process is broadcast to
every other virtual process. Essentially, the output from any
single stage is sent to every other stage. This means that in-
creasing the number of stages also increases the amount of
data sent over the network. Since sending data over network
links is slower than data sent via pipes, this increases latency
and adversely effects our performance. Once we increase the
number of FiDES processes per machine beyond one, the cost

of sending and processing the data causes the time for the
simulation to run to begin to increase, as FiDES processes
are waiting for the signal to run instead of running.

Process Mem (MB) | % Time
fanin 0.41 MB 1.98%
fanout 0.41 MB 7.86%
timekeeper 0.74 MB 2.45%
manufacturer 0.98 MB 26.74%
retailer 41.89 MB | 26.41%
consumer 30.74 MB | 34.55%

Table 3. Percentage of system memory (max) used by each
process during its lifetime and percentage of total CPU time
for each process compared to total simulation time. These
data are for a 6,300 virtual process simulation with 3 FIDES
processes (one per virtual process type).

Time to perform simulations
800

3 Processes mmmm—m
9 Processes
15 Processes =71

700 - 30 Processes [t 7|

500 -

Time (secs)

400 |-

300 -

200 |-

N\ N\ N\)
P J

100

/
13 Machines

Figure 6. Time to run a 6,300 virtual process simulation
varying the number of FiDES processes and the number of
machines.

6. RELATED WORK

The grand vision for component-based simulation frame-
works is to provide component libraries that can be easily
customized and composed to quickly build custom simula-
tions [8]]. Virtually all existing simulation frameworks at-
tempt to enable composition by providing either a new lan-
guage [[11}[12] or an API [3L 518,19, [10] (which is often com-
bined with a GUI for composition) that components must uti-
lize. The core of the simulation framework then provides ex-
ecution (in particular scheduling), coupling and analysis ca-
pabilities for the simulator.

In contrast, FiDES is much closer to the DEVS formal-
ism [13]]. An atomic DEVS model is a tuple of input events,
output events, states, state changes due to progress in time, in-
ternal events, and transition functions describing under which
conditions output events are generated. The DEVS formalism

combines atomic DEVS into coupled DEVS by specifying
how input and output events are coupled.

In FiDES, atomic DEVS are essentially represented as
processes. This has numerous advantages. Using separate
processes liberates components from their particular simu-
lation API or simulation language and enables the compo-
sition of components written in many different languages.
At this point, many different simulation frameworks exist
that largely differ in the host language (for example, CoS-
MoS [10] uses Java, and DEVS# [3] uses C#); some frame-
works [[7, [11]] even provide APIs for multiple languages (for
example, Mimosa [7] supports Java, Scheme, Python and
Smalltalk). However, the approach of using language-based
APIs inherently limits which simulation components can be
combined.

In addition to enabling composition of components written
in any language, DUP and FiDES also facilitate hierarchical
composition particularly nicely. Hierarchical composition is
also facilitated since an atomic DEVS “process” can be any-
thing from a simple state machine to another FiDES simu-
lation. This way, FiDES can even be combined with exist-
ing simulation systems that provide an API that is compatible
with the atomic DEVS model.

Some simulation frameworks include support for parallel
and distributed execution [2,9]. For example, the SIMA sim-
ulation environment [9] offers parallel (but not distributed)
execution of discrete event simulations. FiDES is also unique
in that it enables parallel and distributed simulation with a
minimal and portable run-time system; the DUP runtime is
only a few thousand lines of C++ code and it runs on any
POSIX system.

As far as performance is concerned, the importance of par-
titioning and mapping simulation tasks in distributed environ-
ments is well known [2]. However, to the best of our knowl-
edge, FiDES is the first discrete event simulation framework
with built-in profiling and resource allocation capabilities.

7. CONCLUSION AND FUTURE WORK

We have presented the DUP System, a language-agnostic
system which allows users to easily create correct parallel and
distributed programs. The main purpose of the DUP System
is to promote productivity in programming and system de-
sign. Simulation designers can leverage the DUP System in
two ways: running many small simulations across multiple
hosts or distributing large simulations that cannot be run on a
single system. The DUP System provides simple tools to au-
tomatically distribute small simulations and includes FiDES,
which can be extended to simulate more complex problems.
Utilizing DUP for our own simulations has shown real per-
formance increases. The DUP System also includes profiling
and debugging tools which can help designers better under-
stand their systems bottlenecks and guide their optimization

work. In the future, we intend to extend these profiling and
debugging tools to automatically perform certain optimiza-
tions. Unlike other parallel and distributed simulation sys-
tems, DUP requires no specific language or language exten-
sions to be used in the main simulation code; in fact, DUP
can be used in conjunction with legacy code across hetero-
geneous systems. The DUP System is useful as lightweight
middleware for stream-oriented simulations.

Acknowledgements

The authors would like to thank Nathaniel Sandford for
allowing us to experiment with his Blackjack simulation, and
Min Qi and Craig Ritzdorf for their contributions to early ver-
sions of DUP.

REFERENCES

[1] Antonio Carzaniga. SSim — A Simple Discrete-Event Simula-
tion Library. http://www.inf.usi.ch/carzaniga/ssim/
index.html, 2005.

[2] G. Chiola and A. Ferscha. A distributed discrete event simulation
framework for timed petri net models. Technical report, Series of the
Austrian Center for Parallel Computation, ACPC/TR, 1993.

[3] Moon Ho Hwang. Modeling and Simulation using DEVS#. http:
//xsy—-csharp.sourceforge.net/DEVSsharp, first edition,
May 2007.

[4] IBM. CMS Pipelines User’s Guide. IBM Corp., http://publibz.
boulder.ibm.com/epubs/pdf/hcshlbl0.pdf, version 5 re-
lease 2 edition, Dec 2005.

[5] Edward A. Lee. Ptolemy ii.
berkeley.edu/ptolemyII/.

http://ptolemy.eecs.

[6] Deborah T. Marr, Frank Binns, David L. Hill, Glenn Hinton, David A.
Koufaty, J. Alan Miller, and Michael Upton. Hyper-threading technol-
ogy architecture and microarchitecture. Intel Technology Journal, 6(1):
1, 2002. ISSN 1535864X.

[7] Jean-Pierre Miiller. MIMOSA user’s manual. Cirad, 1.3.0beta edition,
Dec 2009.

[8] Herbert Prachofer, Johannes Sametinger, and Alois Stritzinger. Con-
cepts and architecture of a simulation framework based on the jav-
abeans component model. In Proceedings of WEBSIM99, 1999 Inter-
national Conference On WebBased Modeling & Simulation. Elsevier,
1999.

[9] Hassan Rajaei. Sima: an environment for parallel discrete-event sim-
ulation. In Simulation Symposium, 1992. Proceedings. 25th Annual,
pages 147155, Apr 1992. doi: 10.1109/SIMSYM.1992.227567.

[10] Hessam S. Sarjoughian and Vignesh Elamvazhuthi. CoSMoS 2.0.0
Guide. Arizona Center for Integrative Modeling and Simulation, 2009.

[11] Andras Varga. OMNet++ User Manual, version 4.0 edition, 2009.

[12] P. Wonnacott and D. Bruce. The apostle simulation language: granular-
ity control and performance data. In Tenth Workshop on Parallel and
Distributed Simulation, pages 114—123, 1996.

[13] Bernard Zeigler. Multifacetted Modelling and Discrete Event Simula-
tion. Academic Press, Boston, 1984.

http://www.inf.usi.ch/carzaniga/ssim/index.html
http://www.inf.usi.ch/carzaniga/ssim/index.html
http://xsy-csharp.sourceforge.net/DEVSsharp
http://xsy-csharp.sourceforge.net/DEVSsharp
http://publibz.boulder.ibm.com/epubs/pdf/hcsh1b10.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsh1b10.pdf
http://ptolemy.eecs.berkeley.edu/ptolemyII/
http://ptolemy.eecs.berkeley.edu/ptolemyII/

	Introduction
	The DUP System
	Parallelizing Simulation Runs
	The Blackjack Simulation
	Parallelizing with DUP
	Optimization

	FiDES
	Events
	Simulation logic
	Parallel Engine
	FiDES Runtime Architecture

	DUP Optimization and Analysis
	Case Study - Blackjack
	Case Study - FiDES

	Related Work
	Conclusion and Future Work

