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Adversary Model

I Any role
I Multiple Identities
I Computational Power
I Legal Power

But cannot:
I Break or prevent crypto
I Compromise end-user system
I Prevent network communication
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Broken Pillars

Web Social Messaging

Encryption

Telephony

Public Key Infrastructure
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We MUST Decentralize!
Centralized Internet infrastructure is easily controlled:

I Number resources (IANA)
I Domain Name System (Root zone)
I DNSSEC root certificate
I X.509 CAs (HTTPS certificates)
I Major browser vendors (CA root stores!)

Encryption does not help if PKI is compromised!

7 / 69



Zooko’s Triangle

Secure

Global Memorable

A name system can only fulfill two!
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DNS, “.onion” IDs and /etc/hosts/ are representative designs.
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DNSSEC security is broken by design (adversary model!)
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Namecoin

I Memorable: Check
I Global: Check
I Secure: different adversary model!
⇒ Availability of names (registration rate) is restricted
⇒ Adversary must not have 51% compute power
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The GNU Name System

Properties of GNS

I Decentralized name system with secure memorable names
I Delegation used to achieve transitivity
I Also supports globally unique, secure identifiers
I Achieves query and response privacy
I Provides alternative public key infrastructure
I Interoperable with DNS

Uses for GNS in GNUnet
I Identify IP services hosted in the P2P network
I Identities in social networking applications

12 / 69



Zone Management: like in DNS
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Name resolution in GNS

Local Zone:

www     A       5.6.7.8

Bob Bob's webserver

KBob
pub

KBob
priv

I Bob can locally reach his webserver via www.gnu
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Secure introduction

Bob Builder, Ph.D.

Address: Country, Street Name 23
Phone:    555-12345    
Mobile:   666-54321
Mail:       bob@H2R84L4JIL3G5C.zkey

I Bob gives his public key to his friends, possibly via QR code
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Delegation

I Alice learns Bob’s public key
I Alice creates delegation to zone bob
I Alice can reach Bob’s webserver via www.bob.gnu

16 / 69



Name Resolution

Bob
Alice

DHT

...

...

www      A      5.6.7.8 

8FS7

Bob
A47G

...

...

bob     PKEY       8FS7   

Alice
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Name Resolution

Bob
Alice

DHTPUT 8FS7-www: 5.6.7.8

0

...
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Name Resolution
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Name Resolution

www.bob.gnu ?1

Bob
Alice

DHT

'bob'?2

PUT 8FS7-www: 5.6.7.8

0

...

...

www      A      5.6.7.8 

8FS7

Bob
A47G

...

...

bob     PKEY       8FS7   
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Name Resolution

www.bob.gnu ?1

Bob
Alice

DHT
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Name Resolution
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Name Resolution

www.bob.gnu ?1

Bob
Alice

DHT

'bob'?23 PKEY 8FS7!

8FS7-www?4

A 5.6.7.8!5

PUT 8FS7-www: 5.6.7.8

0

...

...

www      A      5.6.7.8 

8FS7

Bob
A47G

...

...

bob     PKEY       8FS7   

Alice
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GNS as PKI (via DANE/TLSA)
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Security Issue: DHT

www.bob.gnu ?1

Bob
Alice

DHT

'bob'?23 PKEY 8FS7!

8FS7-www?4

A 5.6.7.8!5

PUT 8FS7-www: 5.6.7.8

0

...

...

www      A      5.6.7.8 

8FS7

Bob
A47G

...

...

bob     PKEY       8FS7   

Alice
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Query Privacy: Terminology
G generator in ECC curve, a point
n size of ECC group, n := |G|, n prime
x private ECC key of zone (∈ Zn)
P public key of zone, a point P := xG
l label for record in a zone (∈ Zn)

RP,l set of records for label l in zone P
qP,l query hash (hash code for DHT lookup)
BP,l block with information for label l in zone P published in the DHT

under qP,l
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Query Privacy: Cryptography

Publishing B under qP,l := H(dG)

h : = H(l ,P) (1)
d : = h · x mod n (2)

BP,l : = Sd(EHKDF (l,P)(RP,l)),dG (3)

Searching for l in zone P

h = H(l ,P) (4)
qP,l = H(dG) = H(hxG) = H(hP)⇒ obtain BP,l (5)
RP,l = DHKDF (l,P)(BP,l) (6)
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Revocation

Revocation Basics
I Revocation certificate (RC): message signed with private key
I Peer receives new valid RC, floods to all neighbours
I All peers store all valid RCs forever
⇒ Expensive operation⇒ proof-of-work

Revocation Magic

I Peers maybe offline during initial flood
I Network might be temporarily partitioned
⇒ Need to reconsile revocation sets on connect

Whenever two peers establish a P2P connection, they must compute the set union
of their RC sets!
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Efficient Set Union
(based on “What’s the difference? Efficient Set Reconciliation without Prior Context”, Eppstein et al.,
SIGCOMM’11)

I Alice and Bob have sets A and B

I The sets are very large
I . . . but their symmetric difference δ = |(A− B) ∪ (B − A)| is small

I Now Alice wants to know B − A (the elements she’s missing)
I . . . and Bob A− B (the elements he’s missing)

I How can Alice and Bob do this efficiently?
I w.r.t. communication and computation
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Bad Solution
I Naive approach: Alice sends A to Bob, Bob sends B − A back to Alice
I . . . and vice versa.

I Communication cost: O(|A|+ |B|) :(
I Ideally, we want to do it in O(δ).
I First improvement: Don’t send elements of A and B, but send/request hashes.

Still does not improve complexity :(

I We need some more fancy data structure!
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Bloom Filters

Constant size data structure that “summarizes” a set.

Operations:
d = NewBF (size) Create a new, empty bloom filter.

Insert(d ,e) Insert element e into the BF d .

b = Contains(d ,e) Check if BF d contains element e.
b ∈ {“Definitely not in set”, “Probably in set”}
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BF: Insert

0

0

0

0

0

0

0

HElement #1 H(Element #1) = (2,3,7)
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BF: Insert

0
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1

0

0

0
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BF: Insert

0

1

1

0

0

0

1

HElement #2
H(Element #1) = (2,3,7)
H(Element #2) = (1,3,5)
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BF: Membership Test

1

1

1

0

1

0

1

HElement #3
H(Element #1) = (2,3,7)
H(Element #2) = (1,3,5)
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BF: Membership Test (false positive)

1

1

1

0

1

0

1

HElement #4
H(Element #1) = (2,3,7)
H(Element #2) = (1,3,5)
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Counting Bloom Filters
BF where buckets hold a positive integer.

Additional Operation:
Remove(d ,e) Remove element from the CBF d .

⇒ False negatives when removing a non-existing element.
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Invertible Bloom Filters
Similar to CBF, but

I Allow negative counts
I Additionaly store (XOR-)sum of hashes in buckets.

Additional Operations:
(e, r) = Extract(d) Extract an element (e) from the IBF d , with result code

r ∈ {left , right ,done, fail}

d ′ = SymDiff (d1,d2) Create an IBF that represents the symmetric difference of d1
and d2.
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IBF: Insert

0 0000

0 0000

0 0000

0 0000

0 0000

0 0000

0 0000

HElement #1
H(Element #1) = (2,3,7)
H ′(Element #1) = 4242
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IBF: Insert

0 0000

1 4242

1 4242

0 0000

0 0000

0 0000

1 4242

HElement #1
H(Element #1) = (2,3,7)
H ′(Element #1) = 4242
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IBF: Insert

0 0000

1 4242

1 4242

0 0000

0 0000

0 0000

1 4242

HElement #2

H(Element #1) = (2,3,7)
H ′(Element #1) = 4242
H(Element #2) = (1,3,5)
H ′(Element #2) = 0101
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IBF: Insert

1 0101

1 4242

2 4343

0 0000

1 0101

0 0000

1 4242

HElement #2

H(Element #1) = (2,3,7)
H ′(Element #1) = 4242
H(Element #2) = (1,3,5)
H ′(Element #2) = 0101
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IBF: Extract

1 0101

1 4242

2 4343

0 0000

1 0101

0 0000

1 4242

pure bucket

I Pure bucket⇒ extractable element
hash

I Extraction⇒ more pure buckets
(hopefully/probably)

I Less elements⇒ more chance for
pure buckets
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Symmetric Difference

We can directly compute the symmetric difference without extraction.

I Subtract counts
I XOR hashes
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The Set Union Protocol
1. Create IBFs
2. Compute SymDiff
3. Extract element hashes

I Amount of communication and computation only depends on δ, not |A|+ |B|
:)

I How do we choose the initial size of the IBF?
I ⇒ Do difference estimation first!
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Difference Estimation

I Needed: Estimator accurate for small distances
I Turns out we can re-use IBFs for difference estimation
I Sample the set by looking at hashes, create multiple IBFs
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Strata Estimator

IBF 3

IBF 2

IBF 1

IBF 0
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Strata Estimator

IBF 3

IBF 2

IBF 1

IBF 0

3
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Strata Estimator

IBF 3

IBF 2

IBF 1

IBF 0

3

7
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Strata Estimator

IBF 3

IBF 2

IBF 1

IBF 0

3

7

??
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Estimation

IBF 3

IBF 2

IBF 1

IBF 0

3

7

?? Estimate as (3 + 7) · 22.
(Number of extracted hashes scaled by
expected number of elements in the
remaining IBFs)
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The “.zkey” pTLD
I “LABELS.PKEY.zkey” format
I PKEY is the public key of the zone
I Works a bit like “.onion”
⇒ Globally unique identifiers!

Bob Builder, Ph.D.

Address: Country, Street Name 23
Phone:    555-12345    
Mobile:   666-54321
Mail:       bob@H2R84L4JIL3G5C.zkey
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NICKnames
I “alice.bob.carol.dave.gnu” is a bit long for Eve (“.gnu”)
I Also, we need to trust Bob, Carol and Dave (for each lookup)
I Finally, Alice would have liked to be called Krista (just Bob calls her Alice)

I “NICK” records allow Krista to specify her preferred NICKname
I GNS adds a “NICK” record to each record set automatically
I Eve learns the “NICK”, and GNS creates “krista.short.gnu”
I Memorable, short trust path in the future! TOFU!
I Krista better pick a reasonably unique NICK.
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Shadow Records
I Records change
I Expiration time controls validity, like in DNS
I DHT propagation has higher delays, compared to DNS

I SHADOW is a flag in a record
I Shadow records are only valid if no other, non-expired record of the same

type exists
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Practical Concerns
I Name registration
I Support for browsing
I New record types
I Integration with applications
I State of the implementation
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Registering a name in GNS

I Bob gives his PKEY to his friends via QR code

I or registers it at the GNUnet fcfs authority pin.gnu as ”bob”

I → Bob’s friends can resolve his records via *.petname.gnu

I → or *.bob.pin.gnu
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From DNS to GNS

Names are not globally unique, but ...
... we need support for Virtual Hosting!
... we need support for SSL!

Solution: Client Side SOCKS Proxy
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Legacy Hostname (LEHO) Records
LEHO records give a hint about the DNS name the server expects.

Local 

Proxy

HTTP GETHTTP GET
Host: www.buddy.gnu Host: www.bobswebsite.com

Dave

<a href= "www.carol.buddy.gnu"> <a href= "www.carol.+">

Local 

Proxy

HTTP GETHTTP GET
Host: www.bob.gnu:443 Host: www.bobswebsite.com:443

Alice
www.bobswebsite.comwww.bob.gnu

Server

59 / 69



Legacy Hostname (LEHO) Records
LEHO records give a hint about the DNS name the server expects.

Local 

Proxy

HTTP GETHTTP GET
Host: www.buddy.gnu Host: www.bobswebsite.com

Dave

<a href= "www.carol.buddy.gnu"> <a href= "www.carol.+">

Local 

Proxy

HTTP GETHTTP GET
Host: www.bob.gnu:443 Host: www.bobswebsite.com:443

Alice
www.bobswebsite.comwww.bob.gnu

Server
59 / 69



Long-Term Vision
I Integration with browser and HTTP server
I HTTP server receives “GNS-Zone: PKEY” instead of “Hostname”
I HTTP client uses “TLSA” record of GNS, instead of “LEHO”
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Relative Names
I GNS records can contain “.+”
I CNAME: “server1.+”
I MX: “mail.+”
I “.+” stands for “relative to current zone”

Supporting this for links in browsers would be nice, too.
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New Record Types
I PKEY: delegate to another GNS zone
I NICK: preferred names for shortening
I LEHO: legacy hostname

I GNS2DNS: delegate to DNS
I VPN: peers hosting TCP/IP services
I PHONE: call users using gnunet-conversation
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DNS Delegation
I Delegate to DNS using GNS2DNS records
I GNS2DNS record specifies:

I Name of DNS resolver (i.e. “ns1.example.com” or “piratedns.+”)
I DNS domain to continue resolution in (i.e. “example.com” or “piratebay.org”)

I GNS will first resolve DNS resolver name to A/AAAA record
I GNS will then resolve “left.of.gns2dns.example.com” using DNS
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VPN Delegation
I Delegates to GNUnet VPN
I VPN record specifies:

I Identity of hosting peer (no anonymity!)
I Service identifier (hash code)

I GNS can map VPN record to A/AAAA record of gnunet-vpn tunnel
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PHONE service
I PHONE record specifies:

I Identity of hosting peer (no anonymity!)
I Line number (to support multiple phones per peer)

I gnunet-conversation uses reverse lookup for caller ID

ybti assembly plug

I Bart Polot will present more about Conversation
I Florian Dold will present more fun GNUnet crypto
I Julian Kirsch will present Knock
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Application Integration

I SOCKS proxy (gnunet-gns-proxy)
I NSS plugin
I DNS packet interception (gnunet-dns-service)
I GNS (C) API
I GNS (IPC) protocol
I GNS command-line tool
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Application Integration
FILE *p;

char *cmd;

char line[128];

struct in_addr ip;

if (-1 == asprintf(&cmd, "%s %s\n", "gnunet-gns -r -u", name))

return -1;

p = popen(cmd,"r");

if (p != NULL )

{

if (fgets( line, sizeof(line), p ) != NULL)

{

if (line[strlen(line)-1] == ’\n’)

{

line[strlen(line)-1] = ’\0’;

if (inet_pton(af, line, &ip)))

{

//Do something

}

else

{

fclose (p);

free (cmd);

return -1;

}

}

}

...
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Current State
I GNS part of GNUnet since 0.9.3
I Crypto changed to Curve25519 in 0.10.0
I Internationalized Domain Names are supported

I Installation is “non-trivial” (for your parents)
I SOCKS proxy is known to be problematic
I No GUI for TLSA/CERT records yet

GNS Key Exchange Party Plug

I Matthias Wachs will describe process at Lightning Talks 2
I Install GNUnet today & create private key
I Use gnunet-bcd to create business cards
⇒ Print business cards at Wau Holland tomorrow!
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End

Thank you!

grothoff@in.tum.de

Get the code:

https://gnunet.org/gns
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