
The GNU Name System

Christian Grothoff

Technische Universität München

30C3

1 / 69

Thanks
I Matthias Wachs, Martin Schanzenbach
I Werner Koch, Florian Dold, Bart Polot, Sree Harsha Totakura, Simon Dieterle,

Andreas Fuchs, Christian Fuchs, Stephan Posselt, Nils Durner, LRN, Ralph
Holz, Gabor Toth

I Kenneth Almquist, Jacob Appelbaum, Daniel Bernstein, Ludovic Courtès,
Krista Grothoff, Tanja Lange, Luke Leighton, Simon Josefsson, Nikos
Mavrogiannopoulos, Ondrej Mikle, Stefan Monnier, Niels Möller, Chris Palmer,
Martin Pool, Richard Stallman, Neal Walfield, Zooko Wilcox-O’Hearn

I This work was funded by the Deutsche Forschungsgemeinschaft (DFG) under
ENP GR 3688/1-1.

2 / 69

Where We Are

3 / 69

Where We Are

3 / 69

Adversary Model

I Any role
I Multiple Identities
I Computational Power
I Legal Power

But cannot:
I Break or prevent crypto
I Compromise end-user system
I Prevent network communication

4 / 69

Broken Pillars

Web Social Messaging

Encryption

Telephony

Public Key Infrastructure

5 / 69

Broken Pillars

Web Social Messaging

Encryption

Telephony

Public Key Infrastructure

6 / 69

We MUST Decentralize!
Centralized Internet infrastructure is easily controlled:

I Number resources (IANA)
I Domain Name System (Root zone)
I DNSSEC root certificate
I X.509 CAs (HTTPS certificates)
I Major browser vendors (CA root stores!)

Encryption does not help if PKI is compromised!

7 / 69

Zooko’s Triangle

Secure

Global Memorable

A name system can only fulfill two!

8 / 69

Zooko’s Triangle

Secure

Global MemorableHierarchical Registration

C
ry

pt
og

ra
ph

ic
 Id

en
tifi

er
s

Petnam
e System

s

DNS, “.onion” IDs and /etc/hosts/ are representative designs.

9 / 69

Zooko’s Triangle

Secure

Global MemorableHierarchical Registration

C
ry

pt
og

ra
ph

ic
 Id

en
tifi

er
s

Petnam
e System

s

 mnemonic
URLs

ce
rt

ifi
ca

te
s

SDSI

DNSSEC security is broken by design (adversary model!)

10 / 69

Namecoin

I Memorable: Check
I Global: Check
I Secure: different adversary model!
⇒ Availability of names (registration rate) is restricted
⇒ Adversary must not have 51% compute power

11 / 69

Namecoin
I Memorable:

Check
I Global: Check
I Secure: different adversary model!
⇒ Availability of names (registration rate) is restricted
⇒ Adversary must not have 51% compute power

11 / 69

Namecoin
I Memorable: Check
I Global:

Check
I Secure: different adversary model!
⇒ Availability of names (registration rate) is restricted
⇒ Adversary must not have 51% compute power

11 / 69

Namecoin
I Memorable: Check
I Global: Check
I Secure:

different adversary model!
⇒ Availability of names (registration rate) is restricted
⇒ Adversary must not have 51% compute power

11 / 69

Namecoin
I Memorable: Check
I Global: Check
I Secure: different adversary model!

⇒ Availability of names (registration rate) is restricted
⇒ Adversary must not have 51% compute power

11 / 69

Namecoin
I Memorable: Check
I Global: Check
I Secure: different adversary model!
⇒ Availability of names (registration rate) is restricted

⇒ Adversary must not have 51% compute power

11 / 69

Namecoin
I Memorable: Check
I Global: Check
I Secure: different adversary model!
⇒ Availability of names (registration rate) is restricted
⇒ Adversary must not have 51% compute power

11 / 69

The GNU Name System

Properties of GNS

I Decentralized name system with secure memorable names
I Delegation used to achieve transitivity
I Also supports globally unique, secure identifiers
I Achieves query and response privacy
I Provides alternative public key infrastructure
I Interoperable with DNS

Uses for GNS in GNUnet
I Identify IP services hosted in the P2P network
I Identities in social networking applications

12 / 69

Zone Management: like in DNS

13 / 69

Name resolution in GNS

Local Zone:

www A 5.6.7.8

Bob Bob's webserver

KBob
pub

KBob
priv

I Bob can locally reach his webserver via www.gnu

14 / 69

Secure introduction

Bob Builder, Ph.D.

Address: Country, Street Name 23
Phone: 555-12345
Mobile: 666-54321
Mail: bob@H2R84L4JIL3G5C.zkey

I Bob gives his public key to his friends, possibly via QR code
15 / 69

Delegation

I Alice learns Bob’s public key
I Alice creates delegation to zone bob
I Alice can reach Bob’s webserver via www.bob.gnu

16 / 69

Name Resolution

Bob
Alice

DHT

...

...

www A 5.6.7.8

8FS7

Bob
A47G

...

...

bob PKEY 8FS7

Alice

17 / 69

Name Resolution

Bob
Alice

DHTPUT 8FS7-www: 5.6.7.8

0

...

...

www A 5.6.7.8

8FS7

Bob
A47G

...

...

bob PKEY 8FS7

Alice

18 / 69

Name Resolution

www.bob.gnu ?1

Bob
Alice

DHTPUT 8FS7-www: 5.6.7.8

0

...

...

www A 5.6.7.8

8FS7

Bob
A47G

...

...

bob PKEY 8FS7

Alice

19 / 69

Name Resolution

www.bob.gnu ?1

Bob
Alice

DHT

'bob'?2

PUT 8FS7-www: 5.6.7.8

0

...

...

www A 5.6.7.8

8FS7

Bob
A47G

...

...

bob PKEY 8FS7

Alice

20 / 69

Name Resolution

www.bob.gnu ?1

Bob
Alice

DHT

'bob'?23 PKEY 8FS7!

PUT 8FS7-www: 5.6.7.8

0

...

...

www A 5.6.7.8

8FS7

Bob
A47G

...

...

bob PKEY 8FS7

Alice

21 / 69

Name Resolution

www.bob.gnu ?1

Bob
Alice

DHT

'bob'?23 PKEY 8FS7!

8FS7-www?4PUT 8FS7-www: 5.6.7.8

0

...

...

www A 5.6.7.8

8FS7

Bob
A47G

...

...

bob PKEY 8FS7

Alice

22 / 69

Name Resolution

www.bob.gnu ?1

Bob
Alice

DHT

'bob'?23 PKEY 8FS7!

8FS7-www?4

A 5.6.7.8!5

PUT 8FS7-www: 5.6.7.8

0

...

...

www A 5.6.7.8

8FS7

Bob
A47G

...

...

bob PKEY 8FS7

Alice

23 / 69

GNS as PKI (via DANE/TLSA)

24 / 69

Security Issue: DHT

www.bob.gnu ?1

Bob
Alice

DHT

'bob'?23 PKEY 8FS7!

8FS7-www?4

A 5.6.7.8!5

PUT 8FS7-www: 5.6.7.8

0

...

...

www A 5.6.7.8

8FS7

Bob
A47G

...

...

bob PKEY 8FS7

Alice

25 / 69

Query Privacy: Terminology
G generator in ECC curve, a point
n size of ECC group, n := |G|, n prime
x private ECC key of zone (∈ Zn)
P public key of zone, a point P := xG
l label for record in a zone (∈ Zn)

RP,l set of records for label l in zone P
qP,l query hash (hash code for DHT lookup)
BP,l block with information for label l in zone P published in the DHT

under qP,l

26 / 69

Query Privacy: Cryptography

Publishing B under qP,l := H(dG)

h : = H(l ,P) (1)
d : = h · x mod n (2)

BP,l : = Sd(EHKDF (l,P)(RP,l)),dG (3)

Searching for l in zone P

h = H(l ,P) (4)
qP,l = H(dG) = H(hxG) = H(hP)⇒ obtain BP,l (5)
RP,l = DHKDF (l,P)(BP,l) (6)

27 / 69

Query Privacy: Cryptography

Publishing B under qP,l := H(dG)

h : = H(l ,P) (1)
d : = h · x mod n (2)

BP,l : = Sd(EHKDF (l,P)(RP,l)),dG (3)

Searching for l in zone P

h = H(l ,P) (4)
qP,l = H(dG) = H(hxG) = H(hP)⇒ obtain BP,l (5)
RP,l = DHKDF (l,P)(BP,l) (6)

27 / 69

Revocation

Revocation Basics
I Revocation certificate (RC): message signed with private key
I Peer receives new valid RC, floods to all neighbours
I All peers store all valid RCs forever
⇒ Expensive operation⇒ proof-of-work

Revocation Magic

I Peers maybe offline during initial flood
I Network might be temporarily partitioned
⇒ Need to reconsile revocation sets on connect

Whenever two peers establish a P2P connection, they must compute the set union
of their RC sets!

28 / 69

Revocation

Revocation Basics
I Revocation certificate (RC): message signed with private key
I Peer receives new valid RC, floods to all neighbours
I All peers store all valid RCs forever
⇒ Expensive operation⇒ proof-of-work

Revocation Magic

I Peers maybe offline during initial flood
I Network might be temporarily partitioned
⇒ Need to reconsile revocation sets on connect

Whenever two peers establish a P2P connection, they must compute the set union
of their RC sets!

28 / 69

Efficient Set Union
(based on “What’s the difference? Efficient Set Reconciliation without Prior Context”, Eppstein et al.,
SIGCOMM’11)

I Alice and Bob have sets A and B

I The sets are very large
I . . . but their symmetric difference δ = |(A− B) ∪ (B − A)| is small

I Now Alice wants to know B − A (the elements she’s missing)
I . . . and Bob A− B (the elements he’s missing)

I How can Alice and Bob do this efficiently?
I w.r.t. communication and computation

29 / 69

Bad Solution
I Naive approach: Alice sends A to Bob, Bob sends B − A back to Alice
I . . . and vice versa.

I Communication cost: O(|A|+ |B|) :(
I Ideally, we want to do it in O(δ).
I First improvement: Don’t send elements of A and B, but send/request hashes.

Still does not improve complexity :(

I We need some more fancy data structure!

30 / 69

Bloom Filters

Constant size data structure that “summarizes” a set.

Operations:
d = NewBF (size) Create a new, empty bloom filter.

Insert(d ,e) Insert element e into the BF d .

b = Contains(d ,e) Check if BF d contains element e.
b ∈ {“Definitely not in set”, “Probably in set”}

31 / 69

BF: Insert

0

0

0

0

0

0

0

HElement #1 H(Element #1) = (2,3,7)

32 / 69

BF: Insert

0

1

1

0

0

0

1

HElement #1 H(Element #1) = (2,3,7)

33 / 69

BF: Insert

0

1

1

0

0

0

1

HElement #2
H(Element #1) = (2,3,7)
H(Element #2) = (1,3,5)

34 / 69

BF: Insert

1

1

1

0

1

0

1

HElement #2
H(Element #1) = (2,3,7)
H(Element #2) = (1,3,5)

35 / 69

BF: Membership Test

1

1

1

0

1

0

1

HElement #3
H(Element #1) = (2,3,7)
H(Element #2) = (1,3,5)

36 / 69

BF: Membership Test (false positive)

1

1

1

0

1

0

1

HElement #4
H(Element #1) = (2,3,7)
H(Element #2) = (1,3,5)

37 / 69

Counting Bloom Filters
BF where buckets hold a positive integer.

Additional Operation:
Remove(d ,e) Remove element from the CBF d .

⇒ False negatives when removing a non-existing element.

38 / 69

Invertible Bloom Filters
Similar to CBF, but

I Allow negative counts
I Additionaly store (XOR-)sum of hashes in buckets.

Additional Operations:
(e, r) = Extract(d) Extract an element (e) from the IBF d , with result code

r ∈ {left , right ,done, fail}

d ′ = SymDiff (d1,d2) Create an IBF that represents the symmetric difference of d1
and d2.

39 / 69

IBF: Insert

0 0000

0 0000

0 0000

0 0000

0 0000

0 0000

0 0000

HElement #1
H(Element #1) = (2,3,7)
H ′(Element #1) = 4242

40 / 69

IBF: Insert

0 0000

1 4242

1 4242

0 0000

0 0000

0 0000

1 4242

HElement #1
H(Element #1) = (2,3,7)
H ′(Element #1) = 4242

41 / 69

IBF: Insert

0 0000

1 4242

1 4242

0 0000

0 0000

0 0000

1 4242

HElement #2

H(Element #1) = (2,3,7)
H ′(Element #1) = 4242
H(Element #2) = (1,3,5)
H ′(Element #2) = 0101

42 / 69

IBF: Insert

1 0101

1 4242

2 4343

0 0000

1 0101

0 0000

1 4242

HElement #2

H(Element #1) = (2,3,7)
H ′(Element #1) = 4242
H(Element #2) = (1,3,5)
H ′(Element #2) = 0101

43 / 69

IBF: Extract

1 0101

1 4242

2 4343

0 0000

1 0101

0 0000

1 4242

pure bucket

I Pure bucket⇒ extractable element
hash

I Extraction⇒ more pure buckets
(hopefully/probably)

I Less elements⇒ more chance for
pure buckets

44 / 69

Symmetric Difference

We can directly compute the symmetric difference without extraction.

I Subtract counts
I XOR hashes

45 / 69

The Set Union Protocol
1. Create IBFs
2. Compute SymDiff
3. Extract element hashes

I Amount of communication and computation only depends on δ, not |A|+ |B|
:)

I How do we choose the initial size of the IBF?
I ⇒ Do difference estimation first!

46 / 69

Difference Estimation

I Needed: Estimator accurate for small distances
I Turns out we can re-use IBFs for difference estimation
I Sample the set by looking at hashes, create multiple IBFs

47 / 69

Strata Estimator

IBF 3

IBF 2

IBF 1

IBF 0

48 / 69

Strata Estimator

IBF 3

IBF 2

IBF 1

IBF 0

3

49 / 69

Strata Estimator

IBF 3

IBF 2

IBF 1

IBF 0

3

7

50 / 69

Strata Estimator

IBF 3

IBF 2

IBF 1

IBF 0

3

7

??

51 / 69

Estimation

IBF 3

IBF 2

IBF 1

IBF 0

3

7

?? Estimate as (3 + 7) · 22.
(Number of extracted hashes scaled by
expected number of elements in the
remaining IBFs)

52 / 69

The “.zkey” pTLD
I “LABELS.PKEY.zkey” format
I PKEY is the public key of the zone
I Works a bit like “.onion”
⇒ Globally unique identifiers!

Bob Builder, Ph.D.

Address: Country, Street Name 23
Phone: 555-12345
Mobile: 666-54321
Mail: bob@H2R84L4JIL3G5C.zkey

53 / 69

NICKnames
I “alice.bob.carol.dave.gnu” is a bit long for Eve (“.gnu”)
I Also, we need to trust Bob, Carol and Dave (for each lookup)
I Finally, Alice would have liked to be called Krista (just Bob calls her Alice)

I “NICK” records allow Krista to specify her preferred NICKname
I GNS adds a “NICK” record to each record set automatically
I Eve learns the “NICK”, and GNS creates “krista.short.gnu”
I Memorable, short trust path in the future! TOFU!
I Krista better pick a reasonably unique NICK.

54 / 69

NICKnames
I “alice.bob.carol.dave.gnu” is a bit long for Eve (“.gnu”)
I Also, we need to trust Bob, Carol and Dave (for each lookup)
I Finally, Alice would have liked to be called Krista (just Bob calls her Alice)
I “NICK” records allow Krista to specify her preferred NICKname
I GNS adds a “NICK” record to each record set automatically
I Eve learns the “NICK”, and GNS creates “krista.short.gnu”

I Memorable, short trust path in the future! TOFU!
I Krista better pick a reasonably unique NICK.

54 / 69

NICKnames
I “alice.bob.carol.dave.gnu” is a bit long for Eve (“.gnu”)
I Also, we need to trust Bob, Carol and Dave (for each lookup)
I Finally, Alice would have liked to be called Krista (just Bob calls her Alice)
I “NICK” records allow Krista to specify her preferred NICKname
I GNS adds a “NICK” record to each record set automatically
I Eve learns the “NICK”, and GNS creates “krista.short.gnu”
I Memorable, short trust path in the future! TOFU!
I Krista better pick a reasonably unique NICK.

54 / 69

Shadow Records
I Records change
I Expiration time controls validity, like in DNS
I DHT propagation has higher delays, compared to DNS

I SHADOW is a flag in a record
I Shadow records are only valid if no other, non-expired record of the same

type exists

55 / 69

Shadow Records
I Records change
I Expiration time controls validity, like in DNS
I DHT propagation has higher delays, compared to DNS
I SHADOW is a flag in a record
I Shadow records are only valid if no other, non-expired record of the same

type exists

55 / 69

Practical Concerns
I Name registration
I Support for browsing
I New record types
I Integration with applications
I State of the implementation

56 / 69

Registering a name in GNS

I Bob gives his PKEY to his friends via QR code

I or registers it at the GNUnet fcfs authority pin.gnu as ”bob”

I → Bob’s friends can resolve his records via *.petname.gnu

I → or *.bob.pin.gnu

57 / 69

From DNS to GNS

Names are not globally unique, but ...
... we need support for Virtual Hosting!
... we need support for SSL!

Solution: Client Side SOCKS Proxy

58 / 69

From DNS to GNS

Names are not globally unique, but ...
... we need support for Virtual Hosting!
... we need support for SSL!

Solution: Client Side SOCKS Proxy

58 / 69

Legacy Hostname (LEHO) Records
LEHO records give a hint about the DNS name the server expects.

Local

Proxy

HTTP GETHTTP GET
Host: www.buddy.gnu Host: www.bobswebsite.com

Dave

Local

Proxy

HTTP GETHTTP GET
Host: www.bob.gnu:443 Host: www.bobswebsite.com:443

Alice
www.bobswebsite.comwww.bob.gnu

Server

59 / 69

Legacy Hostname (LEHO) Records
LEHO records give a hint about the DNS name the server expects.

Local

Proxy

HTTP GETHTTP GET
Host: www.buddy.gnu Host: www.bobswebsite.com

Dave

Local

Proxy

HTTP GETHTTP GET
Host: www.bob.gnu:443 Host: www.bobswebsite.com:443

Alice
www.bobswebsite.comwww.bob.gnu

Server
59 / 69

Long-Term Vision
I Integration with browser and HTTP server
I HTTP server receives “GNS-Zone: PKEY” instead of “Hostname”
I HTTP client uses “TLSA” record of GNS, instead of “LEHO”

60 / 69

Relative Names
I GNS records can contain “.+”
I CNAME: “server1.+”
I MX: “mail.+”
I “.+” stands for “relative to current zone”

Supporting this for links in browsers would be nice, too.

61 / 69

New Record Types
I PKEY: delegate to another GNS zone
I NICK: preferred names for shortening
I LEHO: legacy hostname

I GNS2DNS: delegate to DNS
I VPN: peers hosting TCP/IP services
I PHONE: call users using gnunet-conversation

62 / 69

New Record Types
I PKEY: delegate to another GNS zone
I NICK: preferred names for shortening
I LEHO: legacy hostname
I GNS2DNS: delegate to DNS
I VPN: peers hosting TCP/IP services
I PHONE: call users using gnunet-conversation

62 / 69

DNS Delegation
I Delegate to DNS using GNS2DNS records
I GNS2DNS record specifies:

I Name of DNS resolver (i.e. “ns1.example.com” or “piratedns.+”)
I DNS domain to continue resolution in (i.e. “example.com” or “piratebay.org”)

I GNS will first resolve DNS resolver name to A/AAAA record
I GNS will then resolve “left.of.gns2dns.example.com” using DNS

63 / 69

VPN Delegation
I Delegates to GNUnet VPN
I VPN record specifies:

I Identity of hosting peer (no anonymity!)
I Service identifier (hash code)

I GNS can map VPN record to A/AAAA record of gnunet-vpn tunnel

64 / 69

PHONE service
I PHONE record specifies:

I Identity of hosting peer (no anonymity!)
I Line number (to support multiple phones per peer)

I gnunet-conversation uses reverse lookup for caller ID

ybti assembly plug

I Bart Polot will present more about Conversation
I Florian Dold will present more fun GNUnet crypto
I Julian Kirsch will present Knock

65 / 69

PHONE service
I PHONE record specifies:

I Identity of hosting peer (no anonymity!)
I Line number (to support multiple phones per peer)

I gnunet-conversation uses reverse lookup for caller ID

ybti assembly plug

I Bart Polot will present more about Conversation
I Florian Dold will present more fun GNUnet crypto
I Julian Kirsch will present Knock

65 / 69

Application Integration

I SOCKS proxy (gnunet-gns-proxy)
I NSS plugin
I DNS packet interception (gnunet-dns-service)
I GNS (C) API
I GNS (IPC) protocol
I GNS command-line tool

66 / 69

Application Integration
FILE *p;

char *cmd;

char line[128];

struct in_addr ip;

if (-1 == asprintf(&cmd, "%s %s\n", "gnunet-gns -r -u", name))

return -1;

p = popen(cmd,"r");

if (p != NULL)

{

if (fgets(line, sizeof(line), p) != NULL)

{

if (line[strlen(line)-1] == ’\n’)

{

line[strlen(line)-1] = ’\0’;

if (inet_pton(af, line, &ip)))

{

//Do something

}

else

{

fclose (p);

free (cmd);

return -1;

}

}

}

...

67 / 69

Current State
I GNS part of GNUnet since 0.9.3
I Crypto changed to Curve25519 in 0.10.0
I Internationalized Domain Names are supported

I Installation is “non-trivial” (for your parents)
I SOCKS proxy is known to be problematic
I No GUI for TLSA/CERT records yet

GNS Key Exchange Party Plug

I Matthias Wachs will describe process at Lightning Talks 2
I Install GNUnet today & create private key
I Use gnunet-bcd to create business cards
⇒ Print business cards at Wau Holland tomorrow!

68 / 69

Current State
I GNS part of GNUnet since 0.9.3
I Crypto changed to Curve25519 in 0.10.0
I Internationalized Domain Names are supported
I Installation is “non-trivial” (for your parents)
I SOCKS proxy is known to be problematic
I No GUI for TLSA/CERT records yet

GNS Key Exchange Party Plug

I Matthias Wachs will describe process at Lightning Talks 2
I Install GNUnet today & create private key
I Use gnunet-bcd to create business cards
⇒ Print business cards at Wau Holland tomorrow!

68 / 69

Current State
I GNS part of GNUnet since 0.9.3
I Crypto changed to Curve25519 in 0.10.0
I Internationalized Domain Names are supported
I Installation is “non-trivial” (for your parents)
I SOCKS proxy is known to be problematic
I No GUI for TLSA/CERT records yet

GNS Key Exchange Party Plug

I Matthias Wachs will describe process at Lightning Talks 2
I Install GNUnet today & create private key
I Use gnunet-bcd to create business cards
⇒ Print business cards at Wau Holland tomorrow!

68 / 69

End

Thank you!

grothoff@in.tum.de

Get the code:

https://gnunet.org/gns

69 / 69

