
Securing Enterprise DevOps
Environments

Modern App Development
and Enterprise DevOps Series

Securing Enterprise DevOps Environments 2

Summary

Introduction

Secure the developer environment

Secure the Enterprise DevOps platform environment

Secure the application environments

Secure Enterprise DevOps in practice

Closing thoughts

How Microsoft & Sogeti can help

Table of contents
03

05

06

17

30

44

52

51

Securing Enterprise DevOps Environments 3

Secure the developer environment

Secure the DevOps platform environments

Secure the application environments

Summary

To build a truly secure Enterprise DevOps platform,
each environment needs careful attention. This Ebook
will help guide you through the process—providing an
example breach and detailing best practices to fortify
your Enterprise DevOps security.

Securing your DevOps environments is no longer a choice – The hackers are shifting left too. Nefarious
and creative hackers have started compromising developer boxes, infecting release pipelines with malicious
scripts, and gaining access to production data via test environments.

In this Ebook, you’ll learn to fortify all three attack surfaces of enterprise DevOps environments and
implement the culture changes necessary to thrive in our dangerous new world. We’ll explore the ideal
secure and regulatory-ready setup of Enterprise DevOps tools and practices, focusing on three specific areas:

Securing Enterprise DevOps Environments 4

Below is a visualization of the developer, DevOps platform environment, and application environments covered within
this Ebook, along with the potential threats for each respective environment. Notice how the connections between
environments and to external integrations expand the threat landscape and lead to increased opportunities for hackers.
Leveraging the strategies discussed in the Ebook, will help you properly prepare your enterprise to deal with
next-generation threats from shift-left hackers.

Figure 1 - Enterprise DevOps Environments Overview

Securing Enterprise DevOps Environments 5

Introduction
Shifting security left further into development is hardly a secret. Hackers now shift left too and use DevOps
environments to gain access to the enterprise. These new attacks stretch across the enterprise and unlock new
dangers. Some of these new attacks may inject malicious code, assume powerful developer identities, and steal
production code, along with the typical breadth of cyber security breaches.

The developer environment includes everything a DevOps team member uses to produce code, test, and document,
from the laptop to the software. As companies transition to a ubiquitous, work-from-anywhere styled approach, the
control of these devices suffers greatly. Often, cyber security offices lack a consistent understanding of where and
how the code is secured and built. Hackers are taking advantage, with an uptick in remote connection hacks and
developer identity thefts.

Another key target for hackers is the DevOps platform environment. All tools that help enterprise DevOps teams to
function represent key entry points for attackers from pipeline automation to code validation, and code repositories.
A common example occurs when company code is infected by hackers before it reaches production systems and
thereby passes through cyber security checkpoints.

Hackers have sieged production environments for decades and generally there exists cyber security practices
to prevent them. However, now the environment has widened significantly to include all supply chain tools and
products that enterprises incorporate into their system. One breach at a third-party open-source tool can now lead
to a global cyber security pandemic.

The attack surface of enterprise DevOps environments covers three areas: The developer
environment, DevOps platform environment, and application environments—occurring
throughout the application development, and maintenance lifecycle.

This Ebook will guide you with best practices and platform capabilities
to harden your enterprise’s security and defend against shift-left
hackers in all three environments. It also closely examines real world
examples of hacks for each scenario. Additionally, your enterprise
needs ways to adopt practices, improve knowledge transfer, and
cross-functional team awareness. This Ebook will also help to realize
secure enterprise DevOps in practice.

Are your developers happy and productive? Developer velocity relies on developers’ ability to work how and where
they want, maximizing their impact on business outcomes. Generally, powerful, customizable machines top developer
wish lists. And in most cases, developers often require root or administrator access on their work environments. These
developer demands also run contrary to compliance regulations enterprises must adhere to, specifically the need to
audit and control what is accessed and stored on ‘private’ employee environments.

Adhering to diverse developer needs taxes enterprises. The thought of unmanaged machines connected to the
organizational network conjures up a nightmare for security teams, procurement, and the governance board. Even
the best-case scenario, providing developers with default and hardened employee environments, creates disdain from
both sides. This solution limits the capabilities of Enterprise DevOps team members and undoubtedly makes difficult
to access developers unhappy.

Explosive growth in remote working has further complicated this challenge. With employees connecting from
anywhere, these vulnerable Wi-Fi networks present an open door for cyber-attack. Physical loss or theft of a developer
machine is also a major concern as no-one is safe when data is on the street.

Secure the developer
environment

Unfortunately, enterprise vulnerability extends to the integrations developers use
in their development environments. Many development tools are rich in their
extensibility capabilities, featuring marketplaces with many unmaintained integrations.
For example, IDE marketplaces often contain thousands of community-made
extensions. And extensions endanger more than just main development tools and can
be found in all kinds of tools developers use. In a worst-case situation, a malicious
extension can result in a company-wide breach.

Let’s dive into each practice with several technical explanations that highlight the necessity of each security principle.

Unfortunately, enterprise
vulnerability extends
to the integrations
developers use in
their development

environments.

How do you give DevOps team members flexibility and control, without opening the door to malicious attacks?
This is the fundamental challenge for many security offices today.

To update your Enterprise DevOps cybersecurity, implement the following measures to help secure the developer
environment:

Control the developer environment
with a cloud environment

Limit who can change and approve
code with branch security

Adopt only trusted tools,
extensions, and integrations

Secure the developer
environment with containers

Configure least
privilege access

Securing Enterprise DevOps Environments 6

Securing Enterprise DevOps Environments 7

In the visualization of the developer environment below, notice that the environment connects to the DevOps tools
environment to affect the Git branches. It’s also widening the environment surface through its connection to 3rd

party open-source packages and application extensions. These extensions present new attack vectors for hackers in
dependency vulnerabilities and extension application vulnerabilities.

In this chapter, we’ll take a look at how to prevent hackers from compromising those connections along with defenses
against privileged credential hijacks and remote connection hacks.

Figure 2 - Developer Environment Overview

Securing Enterprise DevOps Environments 8

Attempts to steal customer information are reaching new levels of forethought. Developer machines have become a
key attack vector for hackers looking to install backdoors and download entire system’s source code.

In this chapter, we’ll take a look into how the attack could’ve
been stopped with more secure practices.

What happened?
Many developers for Apple systems use the developer
environment XCode, and this knowledge prompted
hackers to produce a “XcodeSpy,” a trojanized Xcode
project. This is a tainted version of a legitimate,
open-source project available on GitHub called
TabBarInteraction that’s used by developers to animate
iOS tab bars based on user interaction. However, in
this case, XCodeSpy installs a customer variant of the
EggShell backdoor on a macOS computer along with a
persistence mechanism.

Going further, this malicious project contained a
backdoor which, after installed on the developer
machine unlocks the ability to record information from
the victim’s microphone, camera, and keyboard. It’s

feasible that XcodeSpy could be targeted at a particular
developer or group of developers, but with the
capabilities to hinder other high-value victims. While
only one US firm reported a confirmed payload of the
EggShell payload there may be many unacknowledged
cases where hackers are simply gathering data for
future use.

Breaches often occur over time and hackers will group
interesting targets and data for future campaigns.
Every hour wasted without identifying malicious code
is another hour where company data is being stolen.
Here, the hackers most likely plan on leveraging the
AppleID credentials taken in this operation to install
malware with valid Apple Developer code signatures.

The real life (hack)
March 2021 - Hackers Infecting
Apple App Developers with
Trojanized Xcode Projects

https://thehackernews.com/2021/03/hackers-infecting-apple-app-developers.html

Securing Enterprise DevOps Environments 9

Control the developer environment
with a cloud environment

Centralized control and templates in a cloud
environment form the backbone of efficiency and
central management for developer environments. For
example, in the early days of cloud, Sogeti created
its OneShare solution. This self-service portal allows
DevOps teams to control enterprise environment needs
via the cloud. Teams can create developer machines
and test environments based on predefined templates
on any public cloud. Self-service support enables tight
cost control by initiating shutdowns, deletions, and
improving security through opinionated templates
and hardened images. Centralizing controls offers
a layer of governance to DevOps teams when they
must adhere to further developer requirements be it
networking, access, credentials, and/or certificates.

Many enterprise DevOps teams turn to public
clouds compute resource consumption for the
control and almost unlimited power to flexibly meet
business needs. Teams can recycle machines on a
daily basis and build them up again from scratch
automatically, giving hackers very little time to
investigate the developer environment. When a new
template is needed, new hardening requirements
can be easily updated for all teams to start using.

Azure Virtual Machines (VMs) is one of several types of
on-demand, scalable computing resources designed to
meet the needs of Enterprise DevOps teams. Typically,
VMs perform well in situations where you need more
control over the computing environment. But, when
creating a VM there are many elements to consider,
prominently how it’s created, and how it’s managed.

An Azure VM delivers the flexibility of virtualization
without having to buy and maintain the physical
hardware that runs it. However, every VM requires
maintenance tasks, such as configuring, patching,
and installing the software that runs on it. Azure VMs
offer a quick and easy way to spin up a developer
environment with specific configurations required
to code and test an application. For example, many
enterprises use a Virtual Machine with Visual Studio
on it to create and update secure environment
policies. And Gen2 VMs on Azure can even Secure
Boot using a virtualized TPM (i.e. no need for a
hardware root of trust). This is a highly recommended
feature to protect dev machines from unauthorized
access. After VMs are set up correctly, teams can
leverage solutions like Azure Policies to dynamically
update policies with each new threat discovery.

How to

Centralized control and
templates in a cloud
environment form the backbone
of efficiency and central
management for developer
environments.

Multiple technologies enable teams to manage, create,
and control developer environments from the cloud
to meet their needs. A solution like Azure Virtual
Machines gives developers the freedom to create
and switch the machines on and off themselves, to
more supported and controlled scenarios via solutions
like Sogeti OneShare or Azure DevTest Labs.

https://www.sogeti.com/explore/newsroom/sogeti-announces-the-launch-of-oneshare/
https://docs.microsoft.com/en-us/azure/architecture/guide/technology-choices/compute-decision-tree
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/using-visual-studio-vm
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/using-visual-studio-vm
https://docs.microsoft.com/en-us/azure/virtual-machines/trusted-launch
https://azure.microsoft.com/en-us/services/virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/
https://azure.microsoft.com/en-us/services/devtest-lab/

Securing Enterprise DevOps Environments 10

Figure 3 - Azure DevTest Labs Cost Visualization

There are two challenges when using Virtual Machines on the cloud for development and test activities. First, many
team members may not be required to have the expertise to create, start, stop, and delete a Virtual Machine from the
cloud—creating a knowledge gap. Another challenge is the awareness of cost control implications on Virtual Machine
cloud usage.

To address the knowledge gap, one solution is to provide expanded ease-of-use through cloud management platforms.
Sogeti’s cloud management platform, OneShare, allows teams to manage and monitor application development
environments, test environments and infrastructure resources in a systematic way. An integrated toolset on top of
Microsoft Azure, OneShare gives developer teams the ability to load, use, manage and monitor their environments.
Advanced capabilities grant enterprise DevOps teams granular control, which may include schedules that configure the
start/stop of Virtual Machines and enforced geofences that switch on or off Virtual Machines when the team member
enters a specified area.

To help DevOps teams learn and manage VMs varying cost, many solutions guide users with a visualized projection tool
aligned to company usage. For instance, in the screenshot below, notice how Azure DevTest Labs delivers visualized
usage trends and configurable costs thresholds that activate notifications and automatic shutdowns when needed.

Securing Enterprise DevOps Environments 11

Secure the developer environment with
containers

How to

It’s now relatively easy to
create a complete collection of
developer environments with
containers and maintain them in
a container registry with all the
necessary security boundaries
and validations around it.

Innovations with container development environments provide developers so many new ways to build, configure, and
craft efficient and secure applications. GitHub recently launched GitHub Codespaces, enabling developers to create an
environment in a container with the UI accessed through a browser. Visual Studio Code lets teams create developer
environments based on a .devcontainer (https://code.visualstudio.com/docs/remote/containers) folder which lives next
to the application code.

There are so many ways to start building developer environments on top of containers, make sure to select the service
that best fits your needs. For example, vscode.dev and github.dev provide file editing access to your files within a
GitHub repo in a developer environment. While this is a not a full developer environment it offers a way to access and
edit files securely.

While virtual machines may replicate hardened images or secure ARM templates with artifacts, they live and die in
the cloud. With container technology, developers can run their development environment in the cloud and on their
device. Although a developer machine in a container can be limited, the power and usages of local and cloud compute
resources make them as powerful as Virtual Machines. These powerful, portable machines provide more secure
options to enterprise DevOps teams looking to spin up developer environments, least of all being easy recreation.
While there is some security risk associated with containers, they do provide teams with options to limit the scope of
their development environments and projects. This limited scope provides teams with segmented and reproducible
environments that keep damage contained and update automatically.

Ultimately, the scale and control of containers
means DevOps teams can easily meet developer
needs while ensuring an added level of security.
It’s now relatively easy to create a complete
collection of developer environments with
containers and maintain them in a container
registry with all the necessary security boundaries
and validations around it.

For both this situation and the Virtual Machine
scenario, remember that base images must be
maintained and hardened at the organization
level and not be taken from public resources.

https://github.com/features/codespaces
https://code.visualstudio.com/docs/remote/containers

Securing Enterprise DevOps Environments 12

Configure least privilege access

Although developers may study and believe in their
ability to notice malware, phishing, or other breaches
on their environments, this is not always the case.
First, the large size of the developers’ environment
threat surface makes it unrealistic for a developer to
maintain omnipresent system knowledge. When a
developer environment outfitted with administrator
access to all systems is compromised by a hacker is
finally discovered, precious remediation may have
already passed. This opportunity is no secret to hackers
as software developers are the role most targeted by
hackers.

The use of least privilege and just-in-time access is not
only a good practice for system administrators and end
users, but also for Enterprise DevOps. It’s best that team
members maintain only minimal access to environments
for the shortest amount of time required. This covers
not only the administrator access rights on the main
device, but also access to the DevOps tools, release
pipelines, code repositories, environments, secret stores,
databases, and so on. For Enterprise DevOps teams, the
base requirement is a connection to the organization’s
identity store. Using identity federation for integrating
with SaaS environments avoids duplication of identities
on third party platforms, to reduce the risk of its
exposure.

In addition, to access SaaS-based DevOps tools, secure
practices for Enterprise DevOps teams span access to
the code repository, either via SSH, HTTPS, or a personal
access token, and a configuration that can control on
which developer device (local, cloud, container) the
systems code can be downloaded (cloned). One thing to
consider is that it is strongly recommended not to use
a personal access token for source code access. When
you access a SaaS-based environment, you need to have
clear instructions for how the access principles dictate
who can clone repos and from which device. OneDrive
is a good example of this where you can synchronize
folders on a local and cloud perspective. When an
unmanaged device attempts this, it’s prevented, and
unmanaged devices are never allowed access.

Most developers want to have administrator privileges to the environments
and tools they use, but with great administrative privilege comes a great
security challenge.

The use of least privilege
and just-in-time access
is not only a good
practice for system
administrators and
end users, but also for
Enterprise DevOps

https://www.zdnet.com/article/security-warning-for-software-developers-you-are-now-prime-targets-for-phishing-attacks/
https://www.zdnet.com/article/security-warning-for-software-developers-you-are-now-prime-targets-for-phishing-attacks/

Securing Enterprise DevOps Environments 13

GitHub recently implemented EMU user accounts which
are standardized and synchronized with each user’s
corporate identity. This means that GitHub usernames,
emails, and display names are defined directly in your
company’s identity store, making it easy for users to
identify with their collaborators, even if they’ve never
met face-to-face.

Figure 5 - Screenshot of SSH Certificates within GitHub

Lastly, for access, tools like VS will have built in support for shared windows
identities and VS Code will defer to a Git credential manager. The usage of a
Git credential manager is strongly recommended to harden access to your code.

How to

Generally, there are three ways for a developer to connect
to a SaaS environment, either via HTTPS with an identity,
a personal access token, or connecting with a SSH key.
In all scenarios a connection needs to be made with the
enterprise identity store. With GitHub, except for GitHub
EMU users, your identity is and always will be your public
identity, a connection with the enterprise identity store
is required to control access via SSO, just like in the
screenshot below.

Figure 4 - Screenshot of Sogeti Single Sign-On

With an SSH certificate authority, organizations or the
enterprise account lead may provide SSH certificates
members can then use to access the resources with Git
securely. An SSH certificate is a mechanism for one SSH
key to sign another SSH key. If you use an SSH certificate
authority (CA) to provide members of your organization
with signed SSH certificates, you can add the CA to your
enterprise account or organization to allow people to
use their certificates to access organization resources.

GitHub Enterprise Cloud supports SSH certificates
to give enterprises and organizations more control
over how their members access their repositories.
Admins can upload the public key of their SSH CA and
begin issuing certificates for their members to use for
Git authentication. Certificates can only be used for
accessing repositories belonging to that enterprise or
organization. Additionally, admins can require members
to use certificates when accessing their repositories like
in the screenshot below.

https://github.blog/2021-09-30-enterprise-managed-users-generally-available-github-enterprise-cloud/
https://github.com/GitCredentialManager/git-credential-manager
https://github.com/enterprise

Securing Enterprise DevOps Environments 14

Limit who can change and approve
code with branch security

Figure 6 - Branching Strategy Visualization

Figure 7 - Pull Request Policies Example

Figure 8 - Branch Reviewer Policies Screenshot

The control mechanism of branching strategies is in
the approval workflow. Protected branches require
certain validations, reviews, and approvals before they
can accept changes. Approval authorizations should be
controlled by the administrator of the GIT repository.

One option is to create a branch protection rule to
enforce certain workflows for one or more branches,
such as requiring an approving review or passing
status checks for all pull requests merged into the
protected branch shown in the example below.

How to

Branch policies help teams protect their important
branches of development. Policies enforce your team’s
code quality and change management standards.
This example below showcases how to set reviewer
requirements on a Git branch within an Azure repo.

There are many different approaches
for the branching strategy, but
one commonality is that protected
branches serve as the source for new
releases to production.

It is crucial that the repository used to store your system
code is adequately secure. The worst-case scenario
occurs when hackers gain access to the code repository
and modify code without the teams noticing and then
study how the system is secured.

To prevent this, implement a branching strategy
(see image below) to establish control over code
changes, protected branches with code reviews give
DevOps teams control over code changes and auditing
advances.

The visualization above articulates a controlled flow of
changes that delivers a clear chain of command and
blueprint for addressing code changes. There are many
different approaches for the branching strategy, but one
commonality is that protected branches serve as the
source for new releases to production.

https://docs.microsoft.com/en-us/azure/devops/repos/git/branch-policies?view=azure-devops

Securing Enterprise DevOps Environments 15

Adopt only trusted tools, extensions,
and integrations
Extensibility in integrated developer
environments (IDE) is so productive
that it’s essentially a mandated feature.
Every developer relies on the ability to
leverage and curate extensions within
the marketplace of that specific IDE to
make their optimal work environment.
The VSCode marketplace shown below
has thousands of extensions to make
developer’s lives easier. However,
whenever your teams are interested
in adopting new tools or extensions,
sometimes the most important aspect
is verifying the trustworthiness of
publisher. Make sure your teams
take the time to integrate only tools
from both trusted marketplaces and
publishers. Figure 9 - Screenshot of the VSCode Marketplace

Most IDE extensions require approving certain privileges to function. Often this is a file with read permissions on the
system to analyze code. Some extensions also require connections to cloud environments to function, as is common
in many metric tools. Approving all these additional functionalities on top of the IDE opens up enterprises to more
threats. It’s best to set up secure practices to control the extension use to limit the attack surface of developer
environments.

The guide on the next page offers some ways that the VSCode marketplace
helps to ensure the safety of the extensions within it. Take this approach and
review the safety of each extension you’re allowing into your codebase.

Make sure your teams take the time to integrate only
tools from both trusted marketplaces and publishers.

https://marketplace.visualstudio.com/vscode

Securing Enterprise DevOps Environments 16

It’s also important to track, on a developer machine how many extensions are used and what the maturity of those
extensions. This helps to understand the potential attack surface your allowing into your own environments. Try to
incorporate only VS Code marketplace extensions that come from verified publishers. When you’re installing extensions
of third-party application with VSCode, you must regularly check the extensions that you’re running with the command
line: code --list-extensions --show-versions. These steps will allow a better understanding of all the extensible
components you’re running in your developer environment.

Figure 10 - Marketplace Policies Overview

Secure the Enterprise
DevOps platform
environment

In this chapter, we’ll review how to implement the following aspects for securing the DevOps platform environment:

Ensure no team member has
access to secrets and certificates

Automate scans for Infrastructure-
as-Code (IaC) templates

Automate approval workflows

Equip every DevOps platform
environment with audit trails

Secure the software
supply chain

Allow only verified
DevOps tool integrations

But now, with hackers shifting left
and targeting these upstream tools,
a new approach is needed to secure
DevOps platform environments.

How and why are pipelines currently targeted?
Pipelines and production environments are extremely attractive to hackers because of how removed these
environments are from standard application security practices and processes. These environments typically require
high-level access credentials, so when compromised, these credentials allow deep and meaningful access to attackers.

While new attack types are being found each day, some of the most common attack vectors for pipelines are
extracting runtime variables or argument injection. Pipelines can also be targeted by scripts that retrieve service
principles or credentials from pipelines. A third scenario is the misconfiguration of personal access tokens, opening a
world of problems and allowing anyone with the key to access the DevOps platform environment.

On top of pipeline and personal access token scenarios, enterprises need to verify the security of their third-party
tool integrations, which are often required to fulfill automation system requirements. Most integrations, like test
frameworks and static/dynamic code testing require access to the code, often read-only, but sometimes also require
write access. A vulnerability or misconfiguration in the third-party integrated tool can lead to serious security
incidents.

To help defend against these incidents, your teams will need to fortify the DevOps platform environments. Start by
ensuring granular control and audit trails are available across each environment. You’ll also need to implement least
privilege access when you can and ensure the right level of read/write permissions. The goal is to build a secure setup,
minimizing exposure of secrets and parameters.

Modern enterprises rely on DevOps platforms for deployment,
including the pipelines and production environments that
developers require to be productive. Traditional application
security methods didn’t consider the increased attack surface
that these pipelines and production environments represent
for hackers. But now, with hackers shifting left and targeting
these upstream tools, a new approach is needed to secure
DevOps platform environments.

Securing Enterprise DevOps Environments 17

Securing Enterprise DevOps Environments 18

In the visualization of the DevOps platform environment above, notice that the environment connects to the
application environment as well as to CICD pipeline extensions. These extensions present opportunities for hackers
to engage in privilege escalations stemming from the application environment along with increased attack surface
vulnerabilities from the extensions. For the DevOps platform environments, it’s critical to defend against those threats
along with malware intrusions.

Figure 11 - DevOps Platform Environment Overview

Securing Enterprise DevOps Environments 19

Based in San Francisco, Codecov offers code coverage and software testing tools, so that the DevOps cycles can deploy
healthier code. However, in this example we’ll take a look at how an attacker was able to exploit an error in Codecov’s
Docker image creation process to tamper with the Codecov Bash Uploader script.

This type of supply chain hack is aimed to not only exploit Codecov software, but also to use the organization as a
springboard to compromise a huge number of corresponding customer networks. The end-goal in this scenario is the
theft of credentials, tokens, and keys running through client CIs, as well as “services, datastores, and application code
that could be accessed with these credentials,” according to Codecov. In addition, URLs of origin repositories using the
Bash Uploaders may have been exposed.

With over 29,000 enterprise clients, many startups, and open-source community projects, Codecov’s damage radius
immediately grew to an enormous scale. The initial exploit in the Bash Uploader impacted Codecov’s full set of “Bash
Uploaders” including the Codecov-actions uploader for GitHub, the Codecov CircleCl Orb, and the Codecov Bitrise Step.

Throughout this chapter, we’ll take a look at even more ways
enterprise clients can prevent a downstream hack from occurring in
the future, such as tighter access control and securing the software
supply chain.

What happened?
To recover, Codecov imposed strict security processes including rotating internal credentials and pulled in a third-
party cyber-forensics firm to conduct an audit. Codecov’s also adopted a new monitoring system to prevent such
“unintended changes” from happening in the future.

The real life (hack)
January 2021 - Hackers exploit
Codecov’s Docker image creation
process to tamper with scripts

https://www.zdnet.com/article/codecov-breach-impacted-hundreds-of-customer-networks/
https://www.zdnet.com/article/codecov-breach-impacted-hundreds-of-customer-networks/

Securing Enterprise DevOps Environments 20

Ensure no team member has access to
secrets and certificates
Avoiding a catastrophic breach can be as simple as effective secret management. Every stage in the application lifecycle
now uses secrets and certificates that must be stored securely. The graphic below visualizes effective secret management
where every secret, every password, access token, and certificate must be managed.

The secure development practice here is for the
Enterprise DevOps team to develop always as if it is an
open-source project. Ensure that teams are storing no
secrets anywhere in the code or on team environments,
rather they should be kept within key vaults.

Figure 12 - Secret Management Example

How to

Ensure that teams are storing no secrets
anywhere in the code or on team
environments, rather they should be
kept within key vaults.

You’ll need to start by selecting a key vault that best fits your enterprise, Azure Key Vault is a great choice for storing
secrets and certifications. Access to this vault is organized via network security and/or via access policies for Azure
Active Directory entries.

Azure Key Vault helps in securely managing and storing the secrets, keys, and certificates. With Azure Key Vault,
it’s easy to set up granular access control to pair keys in the vaults to Azure identities, groups, or roles. This helps
ensure control of the secrets while removing any direct access to the secrets within the application. Once users
enroll, it automatically renews certificates from supported public Certificate Authorities. Azure Key Vault also supports
monitoring and auditing of key usage with Azure logging. Later we’ll discuss the importance of sending logs into
security information and event management (SIEM) solutions for more analysis and preventative threat detection.

https://azure.microsoft.com/en-us/services/key-vault/
https://azure.microsoft.com/en-us/services/active-directory/
https://azure.microsoft.com/en-us/services/active-directory/

Securing Enterprise DevOps Environments 21

Teams can limit CI/CD deployment access with Azure Key Vault through constraints on access for the antifactory to
upload the build artifacts and restrictions on database access. This solution also helps fortify security by generating
encryption keys, only allowing authorized users to maintain read/write access. A big advantage is, that you can rotate,
change, update these secrets in the Key Vault, without worrying about exposure. Experiment with Azure Key Vault
variables (shown below) to harden data confidentially through encryption and limit exposure.

Figure 13 - Screenshot of Effective Azure Key Vault Variables

Securing Enterprise DevOps Environments 22

Automate scans for Infrastructure-as-
Code (IaC) templates
As ‘everything’ becomes code, how we automate
processes and checkpoints needs to evolve along with
the relatively new ways of working. DevOps teams use
a combination of tools and languages to get their job
done, but how do they verify their code is running
safely? To raise the maturity of your security posture
and ensure compliance, it’s necessary to automate
scans for IaC environments. With IaC environments, it’s
even easier to scan for misconfigurations, compliance
audits, and policies issues. If left unchecked, potential
issues can lead to an easy entry point for a potential
hacker. One such danger occurs when a VM is deployed
to a cloud, without the right access controls, any
malicious actor could connect to this instance.

Below is an example IaC automated scan using the
Sogeti CloudBoost Library. This is helpful in displaying
highlighted issues for remediation along with a
security posture score for the entire environment.

Figure 15 - Terraform IaC Example Code Scanning Sample

Figure 14 - Screenshot of Scan Results
within Sogeti CloudBoost Library

This scan found several issues including a missing HTTPS
enforcement on a storage account, which is seen as a
high severity case. Additionally, this scan flagged a few
keys in a Key Vault without expiry.

Now that you’ve seen an example, make sure to adapt this practice to your own enterprise’s needs.
Adding your own best-practices or compliance requirements is easy, making the checks automated
and safer than a manual check in peer review.

How to
There are 3 key components of any IaC template scan:
Access controls, static code analysis, and compliance
checks. You’ll also need to validate the cloud IaC
templates before you provision with static code analysis.
Furter, implementing compliance checks and access
controls raises the security posture of your entire
infrastructure.

It’s important to establish a first line of defense with
automated checks from trusted tools. There are many
tools available, but our recommendation is to use
Open Policy Agent (OPA) based tools. The language
for writing the OPA policy, rego, is easy to adopt for
untrained developers. Some companies create ready-
to-use policies and share them online in open-source
projects. One example, Kics.io, is loaded with the best
practices for numerous languages. An example running
against Terraform sample code is shown below:

https://www.openpolicyagent.org/
https://www.openpolicyagent.org/docs/latest/policy-language/
http://kics.io/

Securing Enterprise DevOps Environments 23

Equip every DevOps platform
environment with audit trails

How to

While already a default security practice to track changes made in production
environments, it’s time to extend those same logging processes to all Enterprise
DevOps environments. Ensure you’re tracking who gained access, what change
occurred, and the date/time for any active system. This specifically includes DevOps
platform that teams are using with CI/CD pipelines that flow into production. Audit
trails for DevOps tools provide robust ways to remediate threats quicker, find and alert
on suspicious activities to possible breaches or vulnerabilities, and to find potential
data or privilege misuse. Audit trails are a backbone of secure DevOps environments.

Audit trails are a
backbone of secure
DevOps environments.

It’s crucial to ensure everything is logged for analyzing what happens in the Enterprise DevOps platform. This includes
configuration changes of any DevOps tools to capture any edits or additions to access security. This helps guarantee
no one has gained unrestricted access to areas of the DevOps platform. Secret edits and views should be logged to
understand who gained access or has changed secrets that potentially can be used to access production environments.
Release pipelines must be monitored to understand what moved to production and who triggered the execution.

In general, it’s important that all Enterprise DevOps platforms have audit logs and audit events available for
administrators to review actions preformed on any DevOps system. Incorporating audit logs into the daily workflow for
teams and enterprises responsible for cyber security is more challenging. Audit logs from Enterprise DevOps tools are
often plain text JSON formatted log files, these logs can be queried by administrators. Note that many events may be
already tracked by default within the audit log feature. Within GitHub, have administrators set up audit trails for:

https://docs.github.com/en/enterprise-cloud@latest/organizations/keeping-your-organization-secure/managing-security-settings-for-your-organization/reviewing-the-audit-log-for-your-organization

Securing Enterprise DevOps Environments 24

One example is logging the addition of a member,
through the (add_member action) GitHub Action. More
advanced configurations stream audit logs to an external
data management system like Azure Event Hubs. Logs
can then be stored presentably, set up with automated
notifications, and with a serverless Azure function.

An even more advanced implementation of auditing and
comes from integration with Microsoft Sentinel. In this
setup, GitHub data is collected and pushed to Microsoft
Sentinel. From there, your team can create a baseline for
threat modeling process security scenarios which intake
anomaly detection alerts. Then Microsoft Sentinel takes
the prescribed actions and sends notifications to the
security team. To go deeper on this subject, check out
the Microsoft Sentinel GitHub repository (Azure/Azure-
Sentinel) example workbook to see how to make this
integration possible.

To tighten collaboration between DevOps and Security
teams, start by integrating logged DevOps events with
security tools. Better collaboration and logging also
leads to earlier threat detection and faster remediation
of breaches and vulnerabilities. Another integration
between the DevOps teams and cyber security is
described in the next chapter where container security
scan results are pushed from the release pipeline to
Microsoft Defender Security Center, giving cyber security
insights and the capability to act in what is deployed to
production.

Pipelines function as the place to build, test, and deploy
code from repositories to production. Generally, when
pipelines are written as-code and stored in the same Git
repository as the application code, teams are quicker
to embrace new code review expectations. This team
review process follows the branching structure and pull
request review processes configured in the DevOps
tool. Team reviews are one of the most crucial security
practices to include for pipeline security. Many teams
also dictate an additional security check to introduce an
approval step in the deployment workflow.

Next to the integration pipelines and Microsoft Security
Center, pipelines can also be used to audit the DevOps
environment. For example, this GitHub Action below
can perform an audit of member authorizations in the
GitHub organization; Membership Audit Action for
Enterprises and Organizations.

This action provides a CSV file listing all
members and their respective authorizations
on each repository. You can perform an issue
with the result and affect it to a responsible
who can check it.

Figure 16 - GitHub Actions - Membership Audit Action

To tighten collaboration between DevOps
and Security teams, start by integrating
logged DevOps events with security
tools. Better collaboration and logging
also leads to earlier threat detection
and faster remediation of breaches and
vulnerabilities.

https://azure.microsoft.com/en-us/services/microsoft-sentinel/#:~:text=Microsoft%20Sentinel%20is%20a%20cloud,data%20across%20an%20enterprise%E2%80%94fast.
https://github.com/Azure/Azure-Sentinel
https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/microsoft-defender-security-center?view=o365-worldwide#:~:text=Microsoft%20Defender%20Security%20Center%20is,experience%20to%20help%20secure%20networks.
https://github.com/marketplace/actions/membership-audit-action-for-enterprises-and-organizations
https://github.com/marketplace/actions/membership-audit-action-for-enterprises-and-organizations

Securing Enterprise DevOps Environments 25

Automate approval workflows
For any approval workflow to push code into production,
certain automatic or manual checks must confirm the
security, business value, status, and quality of each
request. These checks function as a gate between
development and production. Without checks, hackers
can render your environments offline with denial-of-
service attacks or easily inject code into production
environments without flagging or triggering an alert.

How to

More automation in security reduces the risk of human
error and provides efficiency gains, but some automated
actions depend on approvals or non-IT human actions.
Imagine you want to open a new feature and you need to
advertise beforehand. Then, you need a process to trigger
the installation in the production environment once it
is advertised. To do this, try tools like ServiceNow to
automate the approval request and process the response.

Figure 17 - Screenshot of Azure DevOps with a ServiceNow Change Management Gate

When setting up automatic CI/CD pipeline checks, there are many programs and tactics to leverage. In the example
below, we’ll look at integrating a change management system like ServiceNow. While some deem integrated gates
as a ‘step back’ in the DevOps world, this can help speed up approvals. Here is an example of Azure DevOps using a
standard ServiceNow Change Management gate:

Securing Enterprise DevOps Environments 26

Apply approval checks/gates on ADO environments instead of
individual pipelines to manage all gates in one place.

In approval gates, approvers should grant approval for Infrastructure
or Application deployment. Limit approvers to reviewers within a
particular ADO group. This will ensure that the deployment gets
reviewed before its deployed to a critical environment.

Set time out for approvals process to ensure they are completed
within a specific, predetermined period, after which, the pipeline will
not remain in queue.

Allow infrastructure and application deployment only from the main
branch. Ensure that no deployment via any feature or development
branch is allowed in Pre-Prod/Prod environments.

Set constraints so that the pipeline executor cannot approve his/her
own pipeline run.

Often updates are tracked using change requests in ServiceNow. Automating the link between your DevOps tool and
ServiceNow eliminates manual labor, updating issues, and reduces tickets. When using environments in either GitHub
or Azure DevOps (ADO), teams can configure approvals for deployments to certain environments. A secure practice is
to select environments per stage to contain credentials allowing for connecting and deployment to an Azure resource
group. This extra step ensures that only the specified workflow is able to deploy to that environment—minimizing the
attack surface when credentials are breached.

Once the ServiceNow or change management system is integrated, have your DevOps teams follow the practices
below for secure deployments across environments:

Securing Enterprise DevOps Environments 27

Secure the software supply chain

Figure 18 - Selected Passage from President Biden’s EO on Cybersecurity

With every library you bring into your codebase, you expand the software
supply chain and inherit dependencies from each open-source project or tool.
These downstream dependencies are often the Achilles’ heel of an application.

With every library you bring into your codebase, you expand the software supply chain and inherit dependencies
from each open-source project or tool. These downstream dependencies are often the Achilles’ heel of an
application. The first question you should ask yourself is, do I really need this dependency or library? If the answer
is no, it’s best to remove the library and reduce the attack surface of your software supply chain. However, it’s also
best to exercise caution. In a worst-case scenario, single-line libraries cause havoc when revoked from a store or
repository, breaking entire platforms. Another part of programming is the use of open-source components. Several
studies have shown that as much as 90% of applications contain open-source components, let alone other libraries
and frameworks. Keeping track of vulnerabilities and updates can be a daunting task.

Unfortunately, building everything yourself is not always the answer. Frameworks like .NET or Spring can be a solid
ground to build upon, but it is extremely important to understand what version you are running and if there are
vulnerabilities in your dependencies. Unknowingly running an older version or something with a known danger
invites dangerous scenarios for any enterprise.

Vulnerabilities stemming from dependencies, libraries, and open-source projects included in the software supply
chain are top of mind for governments too. President Biden’s Cyber Security Executive Order details the danger in
section 4 below:

https://www.securitymagazine.com/articles/92368-synopsys-study-shows-91-of-commercial-applications-contain-outdated-or-abandoned-open-source-components
https://www.whitehouse.gov/briefing-room/statements-releases/2022/01/19/fact-sheet-president-biden-signs-national-security-memorandum-to-improve-the-cybersecurity-of-national-security-department-of-defense-and-intelligence-community-systems/#:~:text=Today%2C%20President%20Biden%20signed%20a,14028%2C%20Improving%20the%20Nation's%20Cybersecurity.

Securing Enterprise DevOps Environments 28

To best track and update dependencies, there are several
options for both GitHub and Azure DevOps. Dependabot
helps GitHub teams with automated dependency
updates and will warn you about updates regarding high
or critical severity issues in your dependencies. GitHub
shows these as alerts in a dashboard and emails the
repository owner of these open issues:

In this example, the update is a major one, which
means you’ll need to ensure application still works as
expected. Assuming all the unit, integration, smoke, and
acceptance tests are fine, you can merge this and be
updated instantly. This style of proactive issue resolution
leads to a shift in mindset. No longer can you simply
ignore updates or major issues. Alerts will now force you
to think and address issues.

Sharing packages and artifacts across your organization
is something that should be set up properly. There are
numerous ways teams can share code, from sharing
actual binaries saved in Git or opening their source
code. Often these practices grow organically, exposing
your company to several risks. Using a package manager
solves a lot of the plumbing and reduces complexity
and risk. Examples of package managers are GitHub
Packages and Azure Artifacts. These package managers
will allow you to share the precompiled binaries in a
uniform way (maven/nuget/etc.) and will abstract away
a lot of the logic, simplifying the pipelines and setup of
the consuming teams.

Another benefit of using your own package manager
is that you control the deletion of files. For example,
keeping every public source package you use—including
packages from npmjs and nuget.org—safe in your feed
where only you can delete it. Historically, the removal
of a package from a public feed can cause many issues
downstream.

Another tool to keep track of dependencies is
WhiteSource Renovate. For GitHub there is an app
available for use, and for other systems an open-source
version is available. The great thing about this tool is
that it will create pull requests automatically, enabling
you to fix and update almost instantly. Note that
Dependabot also creates PRs in the same process.

An example of such a pull request is shown below:

How to

Figure 19 - Screenshot of Dependabot Alerts

Figure 20 - Dependencies within WhiteSource Renovate

https://github.com/dependabot
https://azure.microsoft.com/en-us/services/devops/artifacts/
https://azure.microsoft.com/en-us/services/devops/artifacts/
https://www.whitesourcesoftware.com/free-developer-tools/renovate/

Securing Enterprise DevOps Environments 29

Allow only verified DevOps tool
integrations

The same secure practice should be followed for integrations. Within GitHub,
these integrations can be deployed inside a GitHub application. Only enable
integrations that are both validated and configured with least privilege access.
Check out the GitHub Application overview for Sonar Cloud below, set up with
read and write access to code repositories and write access to pull requests.

Figure 21 - Example of GitHub Actions Permissions

Figure 22 - GitHub Application
Overview for Sonar Cloud

As in developer environments, DevOps tools come with many extensions and integrations to make the DevOps team
efficient and secure. A secure practice is to only allow verified integrations that require the least privilege possible to
execute their work.

GitHub Actions and Azure DevOps offer extensive marketplaces with additional capabilities for CICD pipelines. When
the team doesn’t control or monitor an extension, it’s a clear security risk. A common practice is that teams only
use whitelisted and verified actions. GitHub organizations can be configured to follow this practice, as shown in the
example below:

https://docs.github.com/en/organizations/managing-organization-settings/disabling-or-limiting-github-actions-for-your-organization

Secure the application
environments

In this chapter, we’ll explore how to secure your application environments to defend and anticipate next-generation
threats, including:

Leverage Well Architected Framework
(WAF) for landing zone provisioning

Lock down environments with
segmentation

Remediate vulnerabilities quickly with
a SBOM

Provide visibility into delivery pipelines to
security teams	

An insecure software
development
environment leads to
breaches, but even
insecure non-production
environments can leave
a company open to
corporate espionage,
sabotage, and theft of
private consumer data.

While test and development environments serve a different purpose from production environments, they too, can
be open to the outside world and introduce risk if not secured. Chances are, the data you’re storing, analyzing, or
processing in non-production environments is just as sensitive as the data you push out to production. Application
environments, when not secured, present a dizzying array of opportunities for hackers, including configuration drift
between updates, open ports, access escalation, and vulnerability unawareness. So why skimp on security here just
because it’s not a production environment?

Companies often focus their privacy and data security teams on
their production workloads because they contain the most sensitive
and valuable data. Often attractive for intruders, the breach of this
data imposes the most risk for financial loss, reputation loss, and
regulatory fines. An insecure software development environment
leads to breaches, but even insecure non-production environments
can leave a company open to corporate espionage, sabotage, and
theft of private consumer data.

Security matters equally in every environment. Adopting the same
security practices and implementing security controls for every
environment should be a default requirement for any DevOps
team. What’s more, the application environment is home to many
of the strongest remediation tactics for any enterprise. Whenever
a breach occurs, the best outcomes belong to teams that have
enabled practices like environment standardization, automated
deployments, extensive monitoring, software bill of materials
(SBOM) creation, network segmentation, and repeatability of
provisioning.

Securing Enterprise DevOps Environments 30

Securing Enterprise DevOps Environments 31

In the visualization of the application environment above, notice that the environment inherits inputs from the DevOps
platform environment. The two largest areas of concern for this environment are privilege escalation hacks and data
breaches. Both attack types target the landing zone due to the high volume of secrets, subscriptions, and company
data located there. For this next chapter of the Ebook, let’s explore some strategies on how to secure your application
environment.

Figure 23 - Application Environment Overview

Securing Enterprise DevOps Environments 32

The real life (hack)
April 2021- A ‘Worst Nightmare’
Cyberattack: The Untold Story Of
The SolarWinds Hack

A potent combination of monitoring, segmentation environments, and careful
policy implementation through least-privilege access principles would have
limited the damage facing exposed enterprises in this SolarWinds example.

Limiting access and
separating environments
through security practices
like least privilege and
segmentation respectively
are two immensely powerful
techniques to limit damage
from a breach.

In securing application environments, many of the best practices covered in this chapter serve to create the quickest
response to an incident that occurs in any environment. In many breaches, attackers don’t need to gain access to
production because the DevSecOps team uses production data to validate and find bugs in the test environment.

For example, let’s examine a supply chain hack like the SolarWinds hack in 2020. In this instance, malicious code
was inserted into the SolarWinds solution and deployed from there to its many customers. Worldwide, this affected
thousands of organizations, not directly via production environments but through an automated update to customer
management environments. While this is an example of a supply chain hack, the main lesson here is that with the
proper application environment protections in place, enterprises can limit the blast radius of a hack and quickly
trace, remediate, and secure themselves once again.

How can an organization prepare for when their software
supply chain is compromised?
Limiting access and separating environments through security
practices like least privilege and segmentation respectively are two
immensely powerful techniques to limit damage from a breach. In this
hack, malicious actors depended on high-level access to impose their
will on threatened organizations. Confining access where possible
directly hampers this potential danger. Hackers also required the
ability to traverse across environments, which proper segmentation
would have prevented.

It is also important to provide continuous security monitoring across teams so that enterprise security teams receive
up-to-date reports and visualizations of their environments. The longer a hacker spends unnoticed by security teams,
the greater the cost of the breach. Fast remediation depends on an enterprise’s capability to monitor and report threats.

https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack
https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack

Securing Enterprise DevOps Environments 33

Threat
protection

Information
protection

Identity and access
management

Cloud
security

Insider risk
management

Compliance
management

Discover
and respond

Information
governance

Leverage Well Architected Framework
(WAF) for landing zone provisioning
A great place to start with securing application environments is by building a secure landing zone. Public cloud
providers build opinionated Well Architected Frameworks (WAF) to help guide this process. WAFs are a set of guiding
principles with practices that can be used to run cloud workloads in an efficient and secure way. Most Well Architected
Frameworks contain five architectural pillars: Cost Optimization, Operational Excellence, Performance Efficiency,
Reliability, and Security. Where security is embedded in every pillar, it has a special focus on protecting systems and
data from threats.

The graphic below shows the security pillar of the Microsoft Azure Well Architected Framework’s practices, guidelines,
and documentation:

Figure 24 - Microsoft Azure WAF’s Security Practices, Guidelines, and Documentation

https://docs.microsoft.com/en-us/azure/architecture/framework/

Securing Enterprise DevOps Environments 34

The result is an Azure configuration across multiple Azure subscriptions for scaling, securing, governance, networking,
and identity management with built-in security practices. From there, application teams can ‘land’ their application
resources on top of the landing zone to be sure enterprise and security concerns are met. There are multiple landing
zone designs, from starter setups to more advanced enterprise configurations, review all the options provided by the
Security Benchmark team to see which option best fits your organization. The example below is a detailed visualization
of a WAF in practice:

Cloud landing zone deployments need to be reliable, predictable, and gated with security at every deployment.
This means relying on automation to eliminate human mistakes as often as possible. To protect your WAF designed
landing zone against configuration drifts, misconfiguration, security risk, human mistakes and so on automation must
be in place for all components. Automation both quickens routine deployments and ensures conformity to security
protocols.

The system is designed to conform with industry standards and principles via the Well Architected Framework. Still
manual actions and choices create holes in the configuration which are exploited by attackers faster. In 2019 for
example, a hacker breached Capital One and gained access to production data via a misconfigured web application
firewall.

As landing zones become more automated, you’ll need to introduce even more standardization. In turn, more
standardized environments lend themselves to implement business functionality more easily. This high level of
automation also helps teams to be more productive. Now, it’s easy to create landing zones for workloads, automated
configuration of CI/CD tooling, deployment pipelines, and workload requirements. Automating the deployment helps
to accelerate the deployment and creation of application workloads with the correct access and resources built in.

To be in control and compliant with the guiderails, one option is to leverage this automation to apply tollgates or
quality gates prior to deployment. As most pipelines deployments start with the same basic steps, enterprises can then
create standardized pipelines for code deployment with mandatory stages with tollgates. Pipelines are then triggered
with code changes or updates but also at set time intervals. This practice applies to any code with landing zone
provisioning process, even automation scripts.

Figure 25 - Example of WAF in Practice

Cloud
landing zone
deployments
need to be
reliable,
predictable,
and gated with
security at every
deployment.

https://docs.microsoft.com/en-us/security/benchmark/azure/overview
https://docs.microsoft.com/en-us/security/benchmark/azure/overview
https://www.capitalone.com/about/newsroom/capital-one-announces-data-security-incident/

Securing Enterprise DevOps Environments 35

For any cloud, it is important that the foundation is extensible and maintainable, because foundational changes to
the landing zone will happen. Automation brings consistent quality, control, and the ability to update every day in a
controlled manner. Any update to the landing zone must be supported by quality gates. If the landing zone is highly
secure, anything built upon that foundation exists on top of secure services. This automation creates a desired state
where teams can reapply and reapply, including the required security and quality with each update.

How To – Automate the landing zone

Figure 26 - Quality Gates Example

Let’s examine a real-world example of these
automated quality gates and automated
landing zones which Sogeti teams built for
an energy company. Below, the screenshot
overviews that every firewall change results
in the execution of thousands of tests to
validate the new state of the network.

10 tips to automate WAF deployment and guidelines
to automate our WAF deployment

1.	 Automating the base deployment helps to accelerate deployments and as well as the deployment of
application workloads.

2.	 Ensure that when automated tasks run, fire and forget scripts are not allowed. Instead have them handled
and deployed as code.

3.	 There is no a silver bullet, every deployment tool/script language has challenges.

4.	 Perform monitoring and drift detection on WAF, WAF code, pipelines, IAC tooling and automation scripts
using your DevSecOps deployment process.

5.	 Automate pipelines from day 0 and build from a desired state.

6.	 Work in a modular model, small blocks enable you to create a complete package where features can be
disabled or enabled. Not every workload needs the same features.

7.	 When using tooling, set it to always update to the latest version and downgrade when needed.

8.	 Backup, restore, and monitor tooling and configuration as part of your standard pipeline process. Do the
same for each quality review, security review and even cost management.

9.	 Create and define a management structure, implement guidelines, and access controls at a high level.
Ensure the deployment of the guiderails is also automated.

10.	 The WAF landing zone or foundation should enable and accelerate teams. If your framework is not secure,
how do you expect the teams/workloads to be secure?

Securing Enterprise DevOps Environments 36

Without default definitions and example of what a landing zone should look like, it might be difficult to ensure every
DevOps team conforms to the security guidelines. By defining default landing zones for your applications, it is easier
for teams to do the right thing. Maintaining a library with cloud ‘building blocks’ containing snippets of code or cloud
resource templates compliant with the Well Architected Framework recommendations accelerates and makes the
deployment secure without losing speed.

For example, Sogeti maintains libraries with cloud resource templates ready to be used by any team. Visualized in the
diagram below, templates are automatically validated and maintained continuously. Used with pipelines as code to
provision full landing zones (2) for security and compliance. DevOps teams (3) use the templates to provision cloud
resources and conform them to company governance on top of the landing zone.

How to - Application team support with landing zones and InnerSource

Figure 27 - Example Maintenance of Cloud Resources and Libraries

It’s essential to run this store in an InnerSource model where
everybody can contribute to keeping the code and templates
evolving. Remember to pair this with automated processes so that
any update is automatically validated and tested.

https://devblogs.microsoft.com/premier-developer/innersource-with-azure-devops/

Securing Enterprise DevOps Environments 37

Lock down environments with
segmentation
To reduce cyber security risks, segmentation creates boundaries that hackers cannot
pass. The primary function of segmentation reduces the attack surface when a system is
hacked. Segmentation is accomplished by carefully configuring networks and identities,
where networks are physical boundaries with controlled access between them.

Segmentation limits the impact or blast radius when an application gets compromised.
If an application consists of several components, compromise of one component
doesn’t imply compromise of the entire application. This can only be achieved if
each component authenticates themselves with each other while communicating
using a definite port and protocol. Further, components must be grouped in different
security groups based on their sensitivity. It will ensure that these components will
only get selective access and limit the impact of any compromise. For example, a
database residing in different security group will not get compromised with the front-
end application as they were in two different security groups. In our earlier example
regarding Codecov, hackers would not have successfully exfiltrated secrets and
compromised their system if their environments were properly segmented to prevent
this type of supply chain attack.

Analogous to a fire alarm where users are instructed to “break the
glass in case of emergency”, a break glass mechanism provides
access to the system in an emergency, bypassing the authorization.
This can be useful for recovering from unforeseen circumstances.

A typical example is fixing the failure of the policy-based
authorization system that results in large-scale incorrect denial of
access. The engineer needs to circumvent the authorization system
via the break glass mechanism to fix it.

The highest level of segmentation on an Azure subscription is a management group. Management groups are a logical
hierarchical container which can contain other management groups and subscriptions. As your cloud estate grows,
so too will the number of subscriptions within it. It’s a good practice to enforce policies on Azure subscriptions using
management groups from the beginning so the ensuring policies are set properly everywhere.

Below is a visualization of how management groups are configured across an enterprise, with some management
groups housing several other groups and subscriptions.

How to - Setup management groups

Figure 28 - Example of Management Group Configurations

Segmentation
is accomplished
by carefully
configuring
networks and
identities,
where networks
are physical
boundaries with
controlled access
between them.

As there are many levels you can apply segmentation to, we’ve set apart some of the scenarios for you to start with.
There are segmentation capabilities at a management level all the way down to the actual resources.

Securing Enterprise DevOps Environments 38

Another deeper function of segmentation is isolation at the environment level. Follow the architecture principles of a
hub and spoke model to bring workload isolation to cloud resources. The hub virtual network acts as a central point
of connectivity to many spoke virtual networks. The hub can also be used as the connectivity point to on-premises
networks. The spoke virtual networks peer with the hub and are used to isolate workloads. These spokes can be setup
in isolation and without the ability to talk to each other. This way the workloads cannot talk to each other—reducing
the blast-radius if something goes wrong.

Below is an example of this hub and spoke model within a typical Azure environment. In this diagram, the designer
took careful consideration to separate the resources from other virtual networks and placed access controls where
necessary.

Even within the spoke and hub model, having a resource group that separates your application from the other spokes
is only the first step. Whichever spoke houses your application should also segment different parts of the application
within it. If your application for example has four components as shown below, you’ll want to make sure that only the
services that need to communicate can.

In this situation there are two subnets, and only one of
the workloads in subnet 1 should be able to connect to
a specific instance in subnet 2. Using application security
groups, segmentation is done on a network level, but
you can group the actual network rules from a logical
perspective, making it easier to implement and understand.
For this level of segmentation, it helps to understand the
connectivity and grouping of resources within your setup.

How to – Isolate environments

How to – Segment application workloads

Figure 30 - Network Segmentation Example

Figure 29 - Hub and Spoke Model Visualization

Securing Enterprise DevOps Environments 39

Provide security teams with visibility
into delivery pipelines
Security teams normally live in the production environment, securing the production data from being compromised
with their specific tools like Microsoft Sentinel and Microsoft Security Center. When DevOps teams share security
scans results, pipeline incidents and deployments with security teams, not only does the barrier between security and
DevOps teams decrease, but security issues are also found earlier. Security teams can then use the functionality of their
security tools to help find security issues before a system is deployed to production.

For example, pushing security scans of container images into Microsoft Security Center brings enhanced visibility
and control. Security teams can then access a holistic, 360-degree view across CI/CD pipelines and runtime resources
through CI/CD scan assessments in Azure Security Center. This helps create a greater shared insight into development
practices, potentially vulnerable code, containers, and deployments.

It is possible to configure security scanning into CICD pipelines with many different tools and publish the result to
any dashboard. Below is an example of an integration between GitHub and Microsoft Security Center. Once enabled,
the security scan results appear in security dashboards and help configure alerts for developers and environments to
operate more securely. CI/CD vulnerability scanning gives much needed visibility into container images and the GitHub
workflows that are pushing these images. Here is an example dashboard:

How to

Figure 31 - Example of Dashboard Scan Results

https://github.com/marketplace/actions/publish-security-assessments-to-azure

Securing Enterprise DevOps Environments 40

Alignment and collaboration between teams naturally grows as their tools share data. Sharing security scan data
between security and DevOps teams brings both worlds together. This collaboration is the hard part when integrating.
Only when the enterprise security team receives insights to the possible vulnerabilities deployed into production can
they act on it and help improve the DevOps team practices. This requires trust between teams and a shared goal—
unlocking improved remediation time and strengthening cloud security posture.

The above example only overviews security scan results shared from container scanning. Security teams require more
information, like which external packages are used along with which version, when and by whom a pipeline is executed,
who changed it and what were the components installed, which configurations were changed. This is a similar practice
to audit trails with Microsoft Sentinel covered in the last chapter.

Another integration between DevOps and security teams can be accomplished with Azure Security Benchmark. With
Azure Security Benchmark SecOps teams can continuously validate if new and existing deployments conform with
security and compliance policies. Company specific controls can be created and applied to all running workloads on all
environments.

Azure Security Benchmark reports on, and continuously validates if Azure resources are configured to conform to
security and compliance policies. Organizations can use Azure Security Benchmark to consistently and evaluate Azure
deployments against these industry standards such as CIS Controls v8 and v7, NIST SP800-53 Rev4 and PCI-DSS v3.2.1.

Below is an example scan in Microsoft Security Center that displays the compliance findings across environments.
Visualizations like this immediately indicate where problems occur so security teams can act swiftly. Powerful
capabilities like this rely on an intentional setup of visibility across environments, teams, and tools.

Figure 32 - Screenshot of Microsoft Security Center Scan Results

http://
https://docs.microsoft.com/en-us/security/benchmark/azure/overview

Securing Enterprise DevOps Environments 41

Remediate vulnerabilities quickly with
a software bill of materials (SBOM)

How to

Remediating vulnerabilities as soon as they occur is one of the easiest ways to
fortify application environments. However, this often requires a full redeployment
of production systems if a vulnerability is found.

Teams with fully automated release pipelines can redeploy the system almost instantly after the necessary fixes are
made. But not all systems have an automated deployment, let alone a list of systems running in production. What’s
more, without that production system knowledge, it is nearly impossible for teams to keep track of downstream
vulnerabilities as well. This lack of awareness brings security risks, even to systems which typically run stable in
production. A software bill of materials (SBOM) helps ensure companies remain cognizant of all software and software
dependencies running across environments.

One real-world example of this is the recent log4J vulnerability, which impacted hundreds of companies. For
companies with SBOMs and automated release pipelines, this vulnerability was fixed within days after it was found.
Teams with capabilities enabled like GitHub Dependabot received automatic notifications with pull requests to update
the version and automatic deployments updated the environments.

In many other cases, organizations couldn’t easily respond to vulnerability due to the unknowns within their system.
Not knowing how many or which systems, and where they exist in production, presents a significant security risk for
many organizations.

To bring insights into production systems, DevOps teams leverage DevOps tools with automatic audit trails, along
with workflow approvals and integrations with ITSM tools. Additional insights from production systems such as
components, dependencies, and packages require additional security practices to be adopted. Once sufficient insights
are gathered, DevOps teams should then extend automation with a generated SBOM and store it within easy access to
the security team.

Once this is set up, creating a software bill of materials every time the system is deployed to production is a rather
simple task. There are open-source and commercial tools available that can connect to the release automation to
trigger the SBOM creation.

OWASP and SPDX are the main two standards that drive the way systems communicate for SBOMs. OWASP CycloneDX
is a lightweight SBOM standard designed for use in application security contexts and supply chain component analysis.
SPDX is another widely used SBOM standard, but it is instead ISO licensed and certified. In both standards, there are
a wide variety of tools to couple them with. The screenshot below details some of the ways to integrate and generate
SBOMs using tools and actions from the GitHub Actions marketplace.

https://www.cisa.gov/uscert/apache-log4j-vulnerability-guidance
https://github.blog/2021-12-14-using-githubs-security-features-identify-log4j-exposure-codebase/
https://github.blog/2021-12-14-using-githubs-security-features-identify-log4j-exposure-codebase/
https://cyclonedx.org/tool-center/
https://spdx.dev/tools-community/

Securing Enterprise DevOps Environments 42

Figure 33 - Screenshot from GitHub Actions Marketplace

Once a SBOM is created, it’s time to put it to use! A SBOM is effective only when set up to trigger alerts based on
fragile dependencies, compromised packages, or when required updates are found. Generally, the trickier part comes
when integrating these alerts and insights within the workflow of security teams. Missing any of these insights or
suggested actions may result in triggered panic behaviors. For example, when a vulnerability appears that’s spread
over multiple environments like Log4J, a panic behavior will trigger ad-hoc and inefficient activities due to the lack
insights—losing precious time.

While a fantastic tool for any enterprise, a SBOM with insights on packages, versions, licenses, vulnerabilities can
be even more valuable. To decrease security risks even more, start tracking how projects are maintained, what best
practices they follow, and which tools do they use. For example, it’s possible to bring more cyber resilience to a system
when relied upon packages are maintained by multiple people. Fragile dependencies occur when packages rely on only
one maintainer.

Once you’ve located insecure sources, there’s another step to ensure they’re addressed. It’s crucial to both execute a
static security test and additionally perform a digital signage to confirm packages and build releases. Think of this rich
security information as the recipe alongside the ingredients for each package. Most importantly, guarantee all of this
information is readily visible for security teams to audit the safety and resilience of environments.

With all of this information successfully documented, how can you verify the safety and security of each SBOM? You
can actually grade your SBOM against security scorecards, which initially started as a Google project in partnership with
GitHub. These security scorecards check and report automatically the security practices a team follows against industry
standard practices.

Securing Enterprise DevOps Environments 43

A great way to start is running scorecards against a Git Repo to give insights into how the repo compares to industry
standards. The easiest way to use scorecards on GitHub projects you own is with the Scorecards GitHub Action. The
Action runs on any repository change and issues alerts maintainers to view the results in the repository’s Security tab.
The scorecards GitHub Action is free for all public repositories. Private repositories are supported if they have GitHub
Advanced Security. Private repositories without GitHub Advanced Security can run scorecards from the command line
by following the standard installation instructions. With this Action you’ll receive a “report card” like the screenshot
below that details how secure your repository is compared with industry standards.

Scorecards are an automated tool that assesses a number of important heuristics (“checks”)
associated with software security and assigns each check a score of 0-10. You can use these
scores to understand specific areas to improve in order to strengthen the security posture of
your project. You can also assess the risks that dependencies introduce, and make informed
decisions about accepting these risks, evaluating alternative solutions, or working with the
maintainers to make improvements. Check out more on the OSSF Scorecard Repository

Figure 34 - Screenshot of GitHub Actions Analysis

https://github.com/ossf/scorecard-action
https://docs.github.com/en/get-started/learning-about-github/about-github-advanced-security
https://docs.github.com/en/get-started/learning-about-github/about-github-advanced-security
https://github.com/ossf/scorecard#using-scorecards-1
https://github.com/ossf/scorecard#scorecard-checks
https://github.com/ossf/scorecard

As technology continuously evolves, a developer’s work never remains the same, and failing to keep up can mean
exposing the business to cyber threats or failing to meet deadlines. Some of these threats like social engineering,
inability to drive consistent policies, difficulties raising issues, and siloed teams have consistently remained a thorn in
the side of every enterprise.

Operating Model A outlines a more traditional way of working where teams are beholden to multiple dependencies
due to legacy components or specific restrictions for the system they’ve built and maintained over time. Contrast
this with the DevOps team in Model D. With almost no dependencies, this team is much more independent. Count
on better performance from these independent teams, especially when switching to a product-centric setup.

For security officers, different operating models can mean tending to requirements of disparate teams. Moreover,
different operating states create issues for automation practices across teams as well. Ultimately, teams that
operate without rigid boundaries share knowledge. If this practice is not followed throughout the company,
knowledge gaps arise.

Secure Enterprise
DevOps in practice

Figure 35 - Operating Models Overview

Keep in mind that not every team works in the
same way. In large enterprises with teams and
systems built up over decades, teams create and
adapt their own working styles and behaviors.
Let’s explore some of these working styles in a
visualization of DevOps operating models in the
diagram below.

In this chapter, we’ll review some ways for your teams to align different operating models within the organization
to better support security teams and the automation capabilities DevOps and DevSecOps teams need to function,
such as:

Teach DevSecOps best practices with
InnerSource and security champions

Find ways to leverage self-service support

Switch to product-centric DevOps teams

To mitigate these risks, it is important to drive awareness on Secure Enterprise DevOps best practices in
our teams. Start by providing continuous training, a self-service portal, blending teams, and embedding
security in every aspect of team practices and stages in the application lifecycle.

Securing Enterprise DevOps Environments 44

Securing Enterprise DevOps Environments 45

Social engineering, the use of deception to manipulate individuals into divulging confidential or personal information,
tends to target the most high-value targets. And members of a DevOps teams are no exception. Although they’re
among the most tech-savvy users within an enterprise, hackers continue to develop new phishing mails and malicious
websites tactics to circumvent developer security measures. In 2021, a hacker compromised a developer’s account with
a phishing mail from a Word macro attachment that ultimately led to the theft of $55M from a crypto company.

Phishing can compromise everyone in an organization, including the DevOps
team. What’s worse, when a developer is breached, the impact can be
catastrophic. How do we confront the constant reality of social engineering?
The answer is to focus on expanding awareness and continuous training
for all employees to remain vigilant on cyber security. Most importantly,
team members need a complete understanding of not only the developer
environment, but also the configuration and capabilities of the DevOps tools
and the application environments. Moreover, it’s crucial to create a reporting
mechanism like a self-service portal, so that employees get support as quickly
as possible. With awareness, training, and tools, your DevOps teams will be
much more prepared to outpace social engineering.

The real life (hack)
November 2021 - $55M Stolen
from Crypto Company

Phishing can
compromise
everyone in an
organization,
including the
DevOps team.

https://www.infosecurity-magazine.com/news/55m-stolen-from-crypto-company
https://www.infosecurity-magazine.com/news/55m-stolen-from-crypto-company

Securing Enterprise DevOps Environments 46

Teach DevSecOps best practices with
InnerSource and security champions
Often, DevOps teams stray away from the required security, quality, and compliance policies expected of them on a
daily basis. It’s likely not intentional. Too frequently, these issues stem from a lack of awareness and understanding of
the expectations asked of them. Making teams aware of these policies is an important first step in closing potential
security issues.

To truly adopt and maintain Secure Enterprise DevOps, usage
and setup policies for development processes must remain
front and center. These policies need to be supported by
written best practices, automated guiderails, self-service
opportunities, and clear documentation. Make sure to leverage
your combined team’s knowledge and draft a security strategy
with the joint DevSecOps team. This strategy and set of policies
should then undergo a thorough review by security, legal, data
protection, and software development specialists. Drawing from
a combined set of expertise makes a policy understandable
and objective. Below are some examples of these policies, with
even more examples of shared practices to be found here.

To truly adopt and
maintain Secure
Enterprise DevOps,
usage and setup policies
for development
processes must remain
front and center.

Branch protection policies

Usage of verified
GitHub Actions

Environment and Secret
management

Usage of copyleft licenses
in private/internal

repositories

Usage of incompatible
OSS licenses

Storing personal data
in GIT

Keeping client assets/
data secure

Example
security policies

Example
legal policies

Example data
protection policies

https://www.microsoft.com/en-us/securityengineering/sdl/practices

Securing Enterprise DevOps Environments 47

Generally, teams focus on the system they develop and maintain, but they also build best practices on how to be
compliant with their security and DevOps policies. Issues arise when trying to share this knowledge across the
enterprises and with other DevOps teams in the organization. It is not that teams don’t want to share the knowledge;
they are simply focused on their system and workload. So how do you ensure that employees across teams become
aware and retain knowledge of these different practices?

Security champions and InnerSourcing work best when used in tandem.
Together they offer the quickest path to policy and best practice adoption,
providing teams both a leader and a repository for examples.

One option is to expand the use of InnerSource practices
to immediately increase security ownership and shared
responsibility across teams. InnerSourcing is where teams
compile best practices across domains and share them
in a central repository to be viewed and leveraged in a
repeatable way. It is important to note that InnerSource
(and open-source) methods also require policies setting and
awareness across teams. Anytime an individual makes a secure
contribution, they must be guided by clear and simple policies.

Successful enterprises leverage the champion model to improve security policy awareness, where one team
member is the security representative in each respective team for the organization. These leaders are responsible
for disseminating security knowledge to their teams. They also develop security practices within their teams that are
communicated back to the entire organization. When both functions of the security champion model are implemented,
information is shared from the ground up and from a central source.

One option is to expand the
use of InnerSource practices
to immediately increase
security ownership and shared
responsibility across teams.

Securing Enterprise DevOps Environments 48

Find ways to leverage self-service
support
With so many ways to secure DevOps environments, building one that truly works for your organization may feel
daunting. However, sometimes the optimal path is the easiest. When building secure DevOps environments, feel
empowered to leverage all the best practices that GitHub provides including ways to secure your GIT repository, the
code it holds, and access policies for contribution. Once you have created the environments leverage templates and
APIs to develop a self-service API portal. The foundation of the templates and support from the self-service portal
when used together provide a secure backbone for any enterprise.

Enterprises with multiple teams often face the same legal and security issues when securing their DevOps
environments. Legal and security experts cannot control each individual GIT repository and environment but need a
way to ensure the security and legality of all the GIT repositories in their organization. The best way to free up DevOps
teams while providing control to legal/security experts is through self-service support. This support configures
GitHub conform enterprise requirements, so a controlled and secured DevOps platform is available for teams. With
all stakeholders the support team defines the policies with which DevOps teams need to be compliant. Automation
of GitHub using GitHub Apps, Code Scanning, Dependabot Alerts, and WebHooks can validate the defined policies
and support the teams to apply to the policies. Automated report findings of non-compliance will cycle back to the
DevOps teams or assigned security team.

Use templates, automation, and insights to help your DevOps team
configure environments the right way from the start. One example
configuration captures how to create scratch branch protection
rules, enable Dependabot, assign maintainers, and configure GitHub
Advanced Security. By providing the DevOps team with insights,
governance is then automatically provisioned for each project. With
insights, DevOps teams also better understand the behavior of their
contributors. For example, when someone works with GitHub for the
first time, it’s possible to automate a message for their first contribution
with guidance on how to secure secrets with GitHub Actions. Leveraging
automation to provide specific training and guidance helps define the
learning expectations for each role on the team.

The foundation of the
templates and support
from the self-service
portal when used
together provide a
secure backbone for
any enterprise.

Leveraging automation to provide specific training and
guidance helps define the learning expectations for each
role on the team.

Securing Enterprise DevOps Environments 49

With automation of policy validation, the DevOps team environment can be secured at scale. Whenever policy
infringements are detected, a direct response is then initiated. By knowing the responsible project lead and Security
Officer we can escalate when infringements aren’t resolved.

A self-service portal for DevOps teams is the forcing function to activate these automatic validations, security checks,
environment provisioning, and governance reviews. Each repository created via this self-service portal can easily be
controlled on all aspects of project governance including security. For example, it is relatively easy to set up a self-
service portal that validates the security and analysis features enabled on your environments. If these services have
not been enabled, the self-service APIs send notifications on how to enable these features to the team. At the same
time, this API can be configured to send a training resource that details the policy, the value of the setting, and more
documentation to the team.

Self-service portals also support the use of GitHub project administration systems and can immediately escalate high
priority incidents to the project lead even when he isn’t a member of the GitHub project. Or, when a high severity issue
occurs on multiple projects directly, the portal can automate a report out to the cybersecurity department with full
coverage of all affected projects.

Figure 36 - SSO Policy Example

Securing Enterprise DevOps Environments 50

Switch to product-centric
DevOps teams
For greater agility, organizations are moving from centralized “project-centric” models to de-centralized “product-
focused” delivery models, where DevOps product teams take full ownership of the end-to-end cycle of a product or
service. This product-centric approach provides the decentralization and adaptive structure that teams and enterprises
need to succeed in their digital transformation journey. Instead of sourcing from a technology siloed approach, teams
are built solely to help product-focused ideas and goals.

Time and tools are the key ingredients for product-
centric team success. Time will help these DevOps
teams mature their collaboration, fine-tune practices,
and automate where needed. But they’ll also need the
tools to define, build, test, and release in an efficient and
secure way powered by automation, innovation, and
best practices.

DevOps product teams can start by establishing a
training program so that each new team member learns
various platforms, standards, tools, best practices and
earns recommended certifications before they become
part of a team. Once a new team is constructed, build up
their work experience via DevOps dojo’s, InnerSource,
and hackathons. Direct the product team support unit to
provide training, team building capability, and staffing
requests via demand forecasting.

As a result, business leaders can request a cross-
functional, autonomous team that’s used to working
together to solve a business problem instead of
requesting a specific number of analytics specialists,
infrastructure professionals, developers, security
practitioners. The maturity of their collaboration and
simplicity of team structure allows for a reduction
in project startup time, tightened security practices,
and a higher likelihood for project success.

Time and tools are the key
ingredients for product-centric
team success.

The maturity of their collaboration and simplicity
of team structure allows for a reduction in project
startup time, tightened security practices, and a higher
likelihood for project success.

Securing Enterprise DevOps Environments 51

Closing thoughts
It’s clear, one of the pitfalls of enterprise security is focusing solely
on building and maintaining secure applications. While a critical
undertaking, applications are not the hackers’ only playing field
and many attacks target developer environments. Enterprises need
to defend developer boxes, release pipelines, and production data
within test environments. These hacks are increasingly well-known,
including the Codecov and SolarWinds breaches, where hackers
gained access to organizations’ intellectual property via either
pipeline tools or maintenance tools.

Stay one step ahead of shift-left hackers using the
practices in this Ebook. While there is no best-fit option
that’ll work in every scenario, the practices outlined here
can be easily adapted to work for any enterprise.

For regulated industries, security now requires an upheaval of compliance and security practices. The new
mandate for compliance is for organizations to know which software is up to date, who initiated it, and for
this historical data to be recorded in audit trails. Second, from a security perspective, it is vital to know what
code is deployed to production and which software can interact with production data. Further, enterprise
DevOps cybersecurity methodologies must incorporate a secure and governed approach to dictate who
edits release pipelines, provisions environments, sets configurations, and makes code changes. This should
govern not only their own environments and code, but also the dependencies and integration across teams.

The pressures of this new threat landscape are not only being felt at corporations. President Biden’s
Executive Order on cybersecurity and The European Union Agency for Cybersecurity (ENISA) 2021
publication, ‘ENISA Threat Landscape for Supply Chain Attacks’, have made it clear that securing enterprise
DevOps environments is top of mind for governments as well. In Biden’s executive order, he calls for the
formation of security standards to improve supply chain security. Whereas the ‘ENISA Threat Landscape for
Supply Chain Attacks’ publication details new cybersecurity methodologies to educate organizations on
supply chain attacks.

Stay one step ahead of shift-left hackers using the practices in this Ebook. While there is no best-fit option
that’ll work in every scenario, the practices outlined here can be easily adapted to work for any enterprise.
Remember, that without awareness and training, your teams won’t truly accept and adopt the changes
you’ve implemented. The journey, to securing enterprise DevOps environments is a continuous one. Take
every opportunity to stay on top of new trainings, best practices, and the latest standards to best guard
against risks.

While a critical
undertaking,
applications are not the
hackers’ only playing
field and many attacks
target developer
environments.

Securing Enterprise DevOps Environments 52

Resources

Microsoft DevSecOps solution: Integrate security into every
aspect of the software delivery lifecycle. Learn how Microsoft
offers a complete solution to enable DevSecOps, or secure
DevOps, for apps on the cloud (and anywhere) with Azure and
GitHub.

GitHub: Secure at every step. GitHub helps enterprises stay
ahead of security issues, leverage the security community’s
expertise, and use open source securely.

Microsoft Azure: Strengthen your security posture with Azure.
Gain unique security advantages derived from global security
intelligence, sophisticated customer-facing controls, and a
secure hardened infrastructure.

Documentation: Learn how Azure security helps to protect your
applications and data, support your compliance efforts, and
provide cost-effective security for organizations of all sizes.

Talk to our sales team: Talk to our specialists to see how
Microsoft can help your DevSecOps team.

Sogeti works with Microsoft and GitHub to ensure its clients create value
from their DevOps platform, approaches, and cloud capabilities.

Sogeti DevSecOps Adoption Framework: Release faster with a DevSecOps
Enterprise Reference Architecture, product descriptions, and DevSecOps
Blueprints.

Sogeti CloudBoost Library: Fully automated Cloud Landing zones, a Cloud
foundation for Enterprise DevOps teams to land applications on a
secure base.

Sogeti OneNative Services: Support for the cloud native journey by
providing Sogeti Product and Feature teams which create business value
with experienced DevOps teams on a secure and compliant foundation.

Inspire other technical
leaders to integrate security
into their DevOps practices
by sharing this whitepaper
on social media or email.

How
Microsoft
& Sogeti
can help
Secure DevOps or DevSecOps for
enterprises requires secure DevOps
environments powered by cross-team
collaboration, a focus on developer
velocity, and cutting-edge tooling.
Microsoft offers learning resources,
products, and services to position
all DevSecOps teams for innovation,
regardless of language, framework,
or cloud.

Azure expert managed service
provider, Sogeti, continuously
improves business-focused digital
delivery for DevSecOps teams
utilizing cloud and DevOps Centers
around the globe. Sogeti uses its
DevSecOps Adoption Framework
and CloudBoost library to drive
continuous improvement and
InnerSource adoption within
DevSecOps teams—leveraging the
full platform capabilities of Azure for
governance, security, and compliance
as a cloud-native foundation.

https://azure.microsoft.com/en-us/solutions/devsecops/
https://github.com/features/security
https://azure.microsoft.com/en-us/overview/security/
https://docs.microsoft.com/en-us/azure/security/
https://azure.microsoft.com/en-us/overview/meet-with-an-azure-specialist/
https://www.sogeti.com/services/devops-services/
mailto:?subject=Securing%20your%20DevOps%20Environments&body=%20I%20just%20learned%20how%20to%20secure%20my%20DevOps%20environments.%20You%20should%20too%20by%20reading%20this%20book%20from%20Microsoft%20and%20Sogeti:%20http://aka.ms/DevSecOpsEBook2%20
https://twitter.com/intent/tweet?text=I%20just%20learned%20how%20to%20secure%20my%20DevOps%20environments.%20You%20should%20too%20by%20reading%20this%20book%20from%20from%20Microsoft%20and%20Sogeti:%20https://aka.ms/DevSecOpsEBook2/

Securing Enterprise DevOps Environments 53

Authors

Samit Jhaveri is the Director of Product Marketing
with Microsoft Azure focused on cloud application
development, DevSecOps, and DevOps with GitHub.
He serves as the business leader working across
product management, sales leadership & finance
with responsibility for defining and executing the e2e
go-to-market strategy including pricing & offers and
execution plans such as campaigns and field & partner
motions for growing the business. Prior to his current
role, Samit led an engineering team at Microsoft’s
Server and Tool Division and was responsible for
shipping several B2B solutions for different vertical
industries. Samit earned his MBA from the University
of Washington and a Masters in Management
Information Systems from the University of Arizona.

Clemens Reijnen is Sogeti’s Global CTO Cloud Services
and DevOps leader. He has been awarded the Microsoft
Most Professional Award for 10 years in a row and is
a SogetiLabs Technical Fellow. He co-authored the
books ‘6 tips to integrate security into your DevOps
practices’ and ‘Enterprise DevOps Report 2020-2021’
with Microsoft and writes frequently on cloud and
DevOps on Sogeti.com. As a global DevOps leader, he
works closely with Sogeti’s large enterprise customers
to ensure their cloud adoption and Enterprise DevOps
transformation programs create value for the business.

© 2022 Microsoft Corporation. All rights reserved. This document is provided “as is.” Information and views
expressed in this document, including URL and other internet website references, may change without notice.
You bear the risk of using it. This document does not provide you with any legal rights to any intellectual
property in any Microsoft product. You may copy and use this document for your internal, reference purposes.

Sogeti co-authors:
Peter Rombouts, Matt Braafhart, Rahul Sharma, Sandra Parlant, Martijn Mulder, Andre Andersen, & Yogesh Patil.

https://azure.microsoft.com/en-us/resources/6-tips-to-integrate-security-into-your-devops-practices/
https://azure.microsoft.com/en-us/resources/6-tips-to-integrate-security-into-your-devops-practices/
https://azure.microsoft.com/en-us/resources/enterprise-devops-report-20202021/
https://www.linkedin.com/in/samitj/
https://www.linkedin.com/in/clemensreijnen/

