Come as You Are: Helping Unmodified Clients
Bypass Censorship with Server-side Evasion

Kevin Bock George Hughey Louis-Henri Merino

Tania Arya

Daniel Liscinsky Regina Pogosian

Dave Levin

University of Maryland

ABSTRACT

Decades of work on censorship evasion have resulted in myriad
ways to empower clients with the ability to access censored con-
tent, but to our knowledge all of them have required some de-
gree of client-side participation. Having to download and run anti-
censorship software can put users at risk, and does not help the
many users who do not even realize they are being censored in the
first place.

In this paper, we present the first purely server-side censorship
evasion strategies—11 in total. We extend a recent tool, Geneva, to
automate the discovery and implementation of server-side strate-
gies, and we apply it to four countries (China, India, Iran, and Kaza-
khstan) and five protocols (DNS-over-TCP, FTP, HTTP, HTTPS,
and SMTP). We also perform follow-on experiments to understand
why the strategies Geneva finds work, and to glean new insights
into how censors operate. Among these, we find that China runs a
completely separate network stack (each with its own unique bugs)
for each application-layer protocol that it censors.

The server-side techniques we find are easier and safer to deploy
than client-side strategies. Our code and data are publicly available.

CCS CONCEPTS

« Social and professional topics — Technology and censor-
ship; « General and reference — Measurement;

KEYWORDS

Censorship; Geneva; Server-side

ACM Reference Format:

Kevin Bock, George Hughey, Louis-Henri Merino, Tania Arya, Daniel Liscin-
sky, Regina Pogosian, and Dave Levin. 2020. Come as You Are: Helping Un-
modified Clients Bypass Censorship with Server-side Evasion. In Annual con-
ference of the ACM Special Interest Group on Data Communication on the appli-
cations, technologies, architectures, and protocols for computer communication
(SIGCOMM °20), August 10-14, 2020, Virtual Event, USA. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3387514.3405889

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM °20, August 10-14, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-7955-7/20/08. .. $15.00
https://doi.org/10.1145/3387514.3405889

1 INTRODUCTION

For a client inside of a censoring regime to access censored con-
tent, it seems quite natural that the client would have to deploy
something. Indeed, to the best of our knowledge, all prior work in
censorship evasion has required some degree of deployment at the
clients within the censoring regime. Proxies [12, 15], decoy rout-
ing [40, 41], VPNs, anonymous communication protocols [13], do-
main fronting [16], protocol obfuscation [24, 25, 37], and recent ad-
vances that confuse censors by manipulating packets [9, 21, 23, 36]—
all of these prior solutions require various degrees of active partici-
pation on behalf of clients.

Unfortunately, active participation on the part of clients can
limit the reach of censorship evasion techniques. In some scenarios,
installing anti-censorship software can put users at risk [30]. For
users who are willing to take on this risk, it can be difficult to boot-
strap censorship evasion, as the anti-censorship tools themselves
may be censored [4, 39]. Worse yet, there are many users who do
not seek out tools to evade censorship because they do not even
know they are being censored [44].

Ideally, servers located outside of a censoring regime would be
able to help clients evade censorship without the client having to
install any extra software whatsoever. If possible, this could result
in a more open Internet for users who are otherwise unable (or
unfamiliar with how) to access censored content.

To our knowledge, there has been no prior work that has ex-
plored evasion techniques that involve no client-side participation
whatsoever. This is not for lack of want; rather, at first glance, it
would appear that server-side-only techniques could not possibly
provide a sufficient solution. To see why, let us consider all of the
packets that are transmitted that lead up to an HTTP connection be-
ing censored due to the client issuing a GET request for a censored
keyword. First, the client would initiate a TCP three-way hand-
shake, during which the client sends a SYN, the server responds
with a SYN+ACK, and the client responds with an ACK. Then, the
client would send a PSH+ACK packet containing the HTTP request
with the censored keyword, at which point the censor would tear
down the connection (e.g., by injecting RST packets to both the
client and the server). Note that the only packet a server sends before
a typical censorship event is just a SYN+ACK—this would seem to
leave very little room for a censorship evasion strategy.

In this paper, we present the first purely server-side censorship
evasion strategies—11 in total, spanning four countries (China,
India, Iran, and Kazakhstan). Like a recent string of papers [9, 21,
23, 36], these strategies do not involve a custom protocol, but rather
operate by manipulating packets of existing applications, e.g., by
inserting, duplicating, tampering, or dropping packets. We verify
that each of these strategies (sometimes with small tweaks) work

https://doi.org/10.1145/3387514.3405889
https://doi.org/10.1145/3387514.3405889

SIGCOMM 20, August 10-14, 2020, Virtual Event, USA

with completely unmodified clients running any major operating
system.

To find these strategies, we make use of an existing tool, called
Geneva [9], which has been shown to be able to automate the dis-
covery of client-side strategies. While this required several modest
extensions to the tool, we do not claim them as a primary con-
tribution of this paper. Rather, our primary contributions are the
discovery that server-side strategies are possible at all, and the
various insights we have gained from follow-up experiments that
explain why the strategies Geneva found work. Though the specific
circumvention strategies may be patchable, the underlying insights
they allowed us to glean are, we believe, more fundamental. These
findings include:

e Server-side-only circumvention strategies are possible! We suc-
ceeded in finding them in every country we tested (China, India,
Iran, and Kazakhstan) and for all of the protocols we were able
to trigger censorship with (DNS-over-TCP, FTP, HTTP, HTTPS,
and SMTP).

e The so-called Great Firewall (GFW) of China has a more nuanced
“resynchronization state” than previously reported [9, 36].

o China uses different network stacks for each of the protocols that
it censors; circumvention strategies that work for one application-
layer protocol (e.g., HTTPS) do not necessarily work for another
(e.g., HTTP or SMTP).

The rest of this paper is organized as follows. §2 reviews nation-
state censorship and prior work. §3 empirically shows that, unfor-
tunately, client-side techniques do not generalize to server-side. §4
presents our experiment methodology. We present 11 new server-
side evasion strategies in §5, and through further examination, shed
new light on the inner workings of censorship in China, India, Iran,
and Kazakhstan. §6 explores our theory that censors employ differ-
ent network stacks for each censored application. §7 shows that our
server-side strategies work for a wide diversity of client OSes. We
discuss deployment considerations in §8 and ethical considerations
in §9. Finally, §10 concludes.

2 BACKGROUND AND RELATED WORK

Here, we review nation-state network censors, and we provide an
overview of prior work on evading such censors.

2.1 Nation-state Censors

We focus on nation-state-level censors. These are very powerful
entities who are able to inspect [21], inject [5], and sometimes also
drop [31] traffic throughout their countries. Nation-state censors
operate in two broad ways: on-path (man-on-the-side) or in-path
(man-in-the-middle) [9, 36]. Our experiments span both kinds; we
describe them here.

On-path Censors On-path (man-on-the-side) censors can obtain
copies of packets, allowing them to overhear all communication
on a connection. To determine whether or not to censor, these
attackers perform deep-packet inspection (DPI) and typically look
for keywords they wish to censor, such as DNS queries [5, 6, 43] or
resources in HTTP GETs [11, 23, 36].

On-path censors are also able to inject packets to both ends of
the connection. Because they are able to view all traffic on the
connection, they can trivially inject packets that the end-hosts

Bock et al.

will accept—unlike traditional off-path attackers who must guess
sequence numbers, query IDs, or port numbers [10, 20]. On-path
censors have been observed to inject TCP RSTs to tear down con-
nections [3, 9, 11, 21, 23, 36, 38] and DNS lemon responses to thwart
address lookup [5, 6].

To reconstruct application-layer messages and track sequence
numbers, on-path censors maintain a Transmission Control Block
(TCB) for each flow. A TCB comprises sequence numbers, received
packets, and other information about the connection. A consid-
erable amount of work has gone into modeling and understand-
ing how censors synchronize and re-synchronize their TCB state
with the ongoing connection’s [23, 36]. Prior work has found, for
instance, that the presence of a SYN+ACK packet with an incor-
rect acknowledgement number will cause the GFW to enter a “re-
synchronization state,” after which it will update its TCB using
the next SYN+ACK packet from the server or the next data packet
from the client [36]. Prior work tacitly assumed that censors enter
these re-synchronization states in the same way regardless of the
application-layer protocol being censored; we show in §5 that this
is not the case.

Maintaining a TCB on a per-flow basis is challenging at scale, and
thus on-path censors naturally take several shortcuts. For example,
prior work has found that when on-path censors believe that a TCP
connection has been terminated (e.g., if one of the endpoints sent
a valid RST packet), then they delete the corresponding TCB and
ignore subsequent packets on that connection [9, 11, 23, 36]. Such
shortcuts make censors more scalable, but also more susceptible to
evasion.

In-path Censors In-path (man-in-the-middle) censors also per-
form DPI to determine whether to block a connection, but they
can do more than just inject a RST or lemon response. For example,
an in-path censor is able to simply drop a connection’s packets
altogether. Alternatively (as we will see in Kazakhstan), an in-path
censor can also hijack a connection entirely, inject a block-page,
and prevent the client’s packets from reaching the server. Evad-
ing an in-path censor requires tricking the censor into believing
that a connection should not be censored, for instance by hiding
the true identity of the server [13, 40, 41], obfuscating the proto-
col [18, 25, 37], or modifying the packets in such a way that the
censor no longer recognizes the forbidden query as a target.

Measuring Censors There has been a wide range of work mea-
suring how censors work. This can be broadly broken down into
two broad categories:

First are studies into what specific content or destinations cen-
sors block [27, 28, 31, 34]. Our work is largely orthogonal to these
prior efforts; our primary goal is not to discover who or what is
being censored, but to understand how it is being censored (and
evade it).

Second is the body of work that studies how censors operate [5,
7, 14, 19, 26, 42, 43]. Our work is complementary to these prior
efforts, in that we are able to lend new insights into how several
censors perform on-path censorship, as well as gaps in their logic
and bugs in their implementations. For instance, we believe we
are the first to observe that censors use different transport-layer
techniques depending on the overlying application.

Come as You Are: Helping Unmodified Clients
Bypass Censorship with Server-side Evasion

2.2 Evasion via Packet Manipulation

There is a long history of evading on-path and in-path censorship
through the application of packet-manipulation strategies. At a high
level, these techniques alter and inject packets at one of the com-
municating endpoints (typically the client). In so doing, their goal
is to either de-synchronize the censor’s state (e.g., by injecting TTL-
limited RSTs [29]) or to confuse the censor into not recognizing a
censored keyword (e.g., by segmenting TCP packets).

Client-side evasion The earliest packet-manipulation strategies
to evade on-path censors come from an open-source project from
2011, sniffjoke [3]. sniffjoke introduced a handful of client-side
strategies, such as injecting packets with random sequence numbers
or injecting packets that shift the sequence number but corrupt the
payload. Unfortunately, many of the specific strategies sniffjoke
employed have long been defunct, but its broad approaches were
later re-discovered by other work [23, 36].

Recently, there have been four key efforts towards evading
on-path censors. Khattak et al. [21], lib-erate [23], INTANG [36],
and Geneva [9] introduced myriad client-side packet-manipulation
strategies. Each of these focused primarily on strategies that ma-
nipulated IPv4 and TCP packets, along with a handful of strategies
that manipulated HTTP.

Our work is complementary to these prior efforts. Whereas prior
published work focused strictly on client-side strategies, we explore
server-side. Also, prior work focused almost exclusively on HTTP;
we explore strategies for more protocols, and show that many
strategies that work for one protocol do not work for another. Our
results from investigating multiple protocols lead us to refine prior
work’s findings. For instance, Wang et al. [36] showed that the
GFW was capable of reassembling TCP streams to detect censored
keywords in HTTP requests; our result confirms this for HT TP, but
show that the GFW is frequently incapable of doing so over FTP,
indicating that censors use different transport-layer techniques
depending on the application.

Server-side evasion To the best of our knowledge, all prior cen-
sorship evasion systems require some degree of client-side evasion
software. Even techniques that rely on server-side features, such
as domain fronting [16] or decoy routing [41], require client-side
changes. However, there are two server-side strategies that are
similar in spirit. In 2010, Beardsley and Qian [8] demonstrated that
a variant of TCP simultaneous open was able to bypass some intru-
sion detection systems; these do not appear to work against censors,
but we show in §5 that Geneva discovered multiple simultaneous
open-based strategies that work against China’s GFW. brdgrd [38]
intercepted packets sent by a Tor bridge to the Tor client, and em-
ployed a relatively simple strategy—it lowered the TCP window
size of outbound SYN+ACK packets. This caused Tor clients to seg-
ment their TLS handshake packets, splitting the set of supported
ciphersuites across multiple TCP packets. At that time, the GFW
was unable to reassemble TCP segments, and thus this strategy
avoided detection and blocking. In 2013, the GFW added the ability
to reassemble TCP segments, rendering brdgrd defunct. Since then,
we are aware of no other work on this topic: all prior literature in
this space has explored only client-side strategies [9, 21, 23, 36].

Geneva Geneva employs a genetic algorithm to automatically
discover packet-manipulation strategies to circumvent censorship.

SIGCOMM 20, August 10-14, 2020, Virtual Event, USA

Like with all genetic algorithms, Geneva composes basic “genetic
building blocks” to form more sophisticated actions. In particular, it
composes five packet-manipulation building blocks: (1) duplicate
(which duplicates a given packet), (2) fragment (which fragments
a packet at the IP- or TCP-layer), (3) tamper (which modifies fields
in a packet header), (4) drop (which discards a packet), and (5) send
(which sends the packet). For completeness, we include in the Ap-
pendix a short guide to Geneva’s syntax; for more details, see [9].
Bock et al. showed that Geneva’s simple primitives can be com-
bined to reconstruct virtually all previously discovered circumven-
tion strategies. Geneva trains against real censors by running from
within a censoring nation-state, and it uses its genetic algorithm to
generate, mutate, and evaluate new strategies. Because it is non-
deterministic, Geneva is in essence like a network fuzzer [22, 35],
and as a result has discovered both gaps in censors’ logic as well as
bugs in their implementations.

We extend this prior work in two fundamental ways: First, like all
prior censorship circumvention strategies of which we are aware [13,
21, 23, 36, 40, 41], Geneva was previously only run client-side. In
this paper, we apply Geneva to discover purely server-side strate-
gies with no extra deployment at the client. Second, like with other
similar systems, Geneva was only ever evaluated using HTTP, and
the authors tacitly assumed that if a circumvention strategy oper-
ates only at TCP/IP, then the strategy will work for all TCP-based
applications. In this paper, we evaluate over a wide range of appli-
cations (DNS-over-TCP, FTP, HTTP, HTTPS, and SMTP) and show
that this assumption is false.

First, we answer a natural question: do previously discovered
client-side results generalize to server-side?

3 CLIENT-SIDE STRATEGIES DO NOT
GENERALIZE

Prior work has identified a wealth of client-side strategies for cir-
cumventing censorship. Some of these strategies are tailored specif-
ically to the client; for instance, “Segmentation” strategies split up a
client’s HTTP GET request across multiple TCP packets, exploiting
an apparent bug in some censors’ packet reassembly code [9]. How-
ever, other client-side strategies appear as if they would work from
the server, as well. For example, a seminal circumvention strategy
has the client send a TCP RST with a TTL large enough to reach
the censor but too small to reach the server [9, 21, 23, 29, 36]. As a
result of this strategy, the censor believes the connection has been
torn down and thus pays no attention to future packets from that
connection, allowing the client to send requests that would have
otherwise been censored. Should such strategies not also work from
the server?

We experimentally evaluated whether client-side strategies can
be translated to work from the server-side, as well. Starting with all
36 of the currently working client-side strategies discovered by Bock
et al. [9], we manually identified 11 strategies that had no obvious
server-side analog (such as Segmentation) and discarded them. All
of the remaining 25 strategies involved sending an “insertion packet”
(a packet that is processed by the censor but not by the server,
like the TTL-limited RST) during or immediately after the 3-way
handshake.

SIGCOMM 20, August 10-14, 2020, Virtual Event, USA

The only packet a server typically sends before the censored
query is a SYN+ACK. For each strategy, we generate two new server-
side analogs: one that sends the insertion packet before the SYN+ACK,
and one that sends it after. We then tested these strategies with
clients at vantage points within China connecting to a server we
control at a vantage point in the US.

Unfortunately, none of these strategies worked when run server-
side. This is surprising: many of the “TCB Teardown” strategies
found by Bock et al. [9] involve the client sending tear-down pack-
ets (insertion packets with RST or RST+ACK flags) immediately after
receiving the server’s SYN+ACK; these server-side analogs also send
tear-down packets immediately after the SYN+ACK, the only dif-
ference being that they come from the server. We considered the
possibility that network delays were causing the server’s tear-down
packets to arrive at the censor after the client’s censored query?.
To account for this, we instrumented our client to delay sending
its query until it received the insertion packets, but this was also
unsuccessful at evading censorship.

In other words, for some of these strategies, the only difference
was whether it was the client or the server that sent the insertion
packets, and yet none of them work. We considered that the censor
may be treating inbound packets differently than outbound—for
instance, it may have been the case that the censor simply ignores
inbound RST packets. To test for this, we also ran the server from
inside China and the client in the US, but the strategies continued
to fail. This indicates that the GFW tries to determine which host
is the client (the one who initiated the connection), and processes
the client’s packets differently than the server’s.

Collectively, these results show that client-side strategies do not
generalize to server-side. Moreover, the results show that clients’
and servers’ packets are processed differently, and therefore the cen-
sors’ shortcomings that previous work exploited client-side do not
necessarily lend insight into how to circumvent from server-side. In
short: server-side censorship circumvention requires a blank-slate
approach.

4 SERVER-SIDE METHODOLOGY

4.1 Geneva Extensions

New Protocols Bock et al. [9] previously applied Geneva only to
HTTP. We have extended Geneva to be able to train over a variety
of applications across a variety of protocols. Specifically, we added
support for DNS-over-TCP, FTP, HTTPS, and SMTP.

Non-additions We also explored applying server-side evasion
to Tor Bridges and Telegram MTProxy servers [32, 33]. Although
Tor and Telegram are both blocked at the IP and DNS level, we are
unable to trigger active probing to private unpublished Tor bridges
or MTProxies. The Tor team is aware that Tor does not currently
trigger active probing, and these findings are consistent with recent
reports [9, 36]. We focus our efforts on the protocols that are getting
censored today, and we leave a deeper exploration of server-side
training over other anti-censorship protocols to later work.

Server-side Evasion Geneva is largely agnostic to packet seman-
tics; it is able to recompute checksums, but it is not configured

I This is not an issue when clients send both the tear-down and the query, because we
can generally expect packets to arrive FIFO.

Bock et al.

Country Vantage Points Protocols

China Beijing, Shanghai DNS, FTP, HTTP,
Shenzen, Zhengzhou HTTPS, SMTP

India Bangalore HTTP

Iran Tehran, Zanjan HTTP, HTTPS

Kazakhstan Qaraghandy, Almaty HTTP

Table 1: Client locations and protocols used in our experi-
ments.

to understand the meanings behind any particular packet header
fields. As a result, converting Geneva from client-side to server-side
was relatively straightforward, requiring only minor changes to its
implementation.

We configured Geneva to initialize each population pool with
300 individuals, and allowed evolution to take place for 50 genera-
tions, or until population convergence occurs. Although Geneva is
capable of evolving not only how it manipulates packets but also
which packets it triggers on, we observed that for DNS-over-TCP,
HTTP, HTTPS, and SMTP, the only packet the server could trigger
on before a censorship event was the SYN+ACK packet. Thus, as a
slight optimization, for these protocols, we restricted Geneva to
only be able to trigger on SYN+ACKs.

4.2 Data Collection Methodology

Over the span of five months, we ran Geneva server-side in six
countries—Australia, Germany, Ireland, Japan, South Korea, and the
US—on five protocols: DNS (over TCP), FTP, HTTP, HTTPS, and
SMTP (all over IPv4). We used unmodified clients within four nation-
state censors—China, India, Iran, and Kazakhstan—to connect to our
servers. For each nation-state censor, we trained on each protocol
for which we were able to trigger censorship; all four countries
censored HTTP, but only China censored all six protocols.? Table 1
shows the client locations and protocols we used throughout our
experiments. Within each censored regime, we find no significant
difference in strategy effectiveness across the different vantage
points or external servers.

Each country and protocol required a slightly different configu-
ration to trigger censorship:

® DNS-over-TCP (China): We make a censored request with an un-
modified DNS client to open resolvers (Google and Cloudflare),
as well as resolvers we control outside China.

e FTP (China): We sign into FTP servers we control and issue
requests for files with sensitive keywords as names (e.g., ul-
trasurf).

e HTTP (all countries): In China, we issue GET requests with a cen-

sored keyword in the URL parameters (for instance, 7q=ultrasurf).

In India, Iran, and Kazakhstan, we issue GET requests with a
blacklisted website in the Host : header.
e HTTPS (China and Iran): We perform a TLS handshake with a

forbidden URL (e.g., youtube . com in Iran and www.wikipedia.org

in China) in the Server Name Indication (SNI) field.

e SMTP (China): We connect to SMTP servers we control and,
from our unmodified clients, send an email to a forbidden email
address, xiazaiQupup.info [17].

%Contrary to the findings by Aryan et al. [7], we find that Iran no longer censors
DNS-over-TCP at all.

Come as You Are: Helping Unmodified Clients
Bypass Censorship with Server-side Evasion

In all of the above settings, we configure Geneva to consider cen-
sorship to have been avoided if the connection is not forcibly torn
down and if the client receives the correct, unaltered data.

Residual Censorship In China, we observe that different proto-
cols are handled differently by the GFW. For example, over HTTP,
the GFW has residual censorship: for approximately 90 seconds after
a forbidden request is censored, all TCP requests to the server IP and
port elicit tear-down packets from the GFW immediately following
the three-way handshake. Prior work has documented the existence
of residual censorship in some cases for HTTPS; however, we do
not observe this behavior from any of our vantage points during
our experiments and confirm that as of time of writing, HTTPS
residual censorship is not active in China. Further, we do not ob-
serve this behavior from any of our vantage points in China for
SMTP, DNS-over-TCP, or FTP; after the forbidden request on these
protocols is censored, the user is free to make a second follow-up
request immediately.

Evasion Success Rates It has been shown that, somewhat sur-
prisingly, some packet-manipulation strategies succeed only some
of the time; for instance, Bock et al. [9] found some client-side
strategies that work roughly 50% of the time. Throughout the paper,
we present the success rates of the various strategies Geneva has
found. For DNS in particular, this requires some special considera-
tion, because, according to RFC 7766 [2] on DNS-over-TCP: DNS
clients SHOULD retry unanswered queries if the connection closes
before receiving all outstanding responses. No specific retry algorithm
is specified in this document. Censorship by the GFW qualifies as
a premature connection close, and thus results in retries, but the
RFC leaves the exact number of retries up to the implementer. This
serves to greatly improve the success rates of any server-side strate-
gies for DNS-over-TCP: even if the strategy works only 50% of
the time, with just 2 retries (3 total queries), the success rates will
improve to 87.5%.

We have found that, in practice, applications choose different
numbers of DNS retries. Some dig versions make only 1 retry,
others retry repeatedly (sometimes 3-5 times), and others allow
the user to specify how many. Python’s DNS library tries 3 times
over TCP when faced with the GFW’s TCP RSTs. Google Chrome
on Windows retries 4 times after a censorship event (for a total of 5
requests per page load). Chrome also periodically retries failed page
loads (often over 20 times, we have observed). To be consistent with
most DNS clients, we test all of our strategies with a maximum of
3 tries.

Follow-up Experiments At the end of each run, Geneva out-
puts the packet-manipulation strategies that succeeded (and failed).
We then perform follow-up experiments to understand why the
strategies work (or fail) and to glean information about how these
various censors operate. We describe the specific steps we take
in-line with our results.

5 SERVER-SIDE RESULTS

Here, we detail newly discovered strategies that defeat censors from
the server-side. Table 2 summarizes our results across all countries
(China, India, Iran, and Kazakhstan) and applications (DNS-over-
TCP, FTP, HTTP, HTTPS, and SMTP).

SIGCOMM 20, August 10-14, 2020, Virtual Event, USA

Strategy Success Rates
Description DNS FTP HTTP HTTPS SMTP
China
— No evasion 2% 3% 3% 3% 26%
1 Sim. Open, Injected RST 89% 52% 54% 14% 70%
2 Sim. Open, Injected Load 83% 36% 54% 55% 59%
3 Corrupt ACK, Sim. Open 26% 65% 4% 4% 23%
4 Corrupt ACK Alone 7% 33% 5% 5% 22%
5 Corrupt ACK, Injected Load | 15% 97% 4% 3% 25%
6 Injected Load, Induced RST| 82% 55% 52% 54% 55%
7 Injected RST, Induced RST | 83% 85% 54% 4% 66%
8 TCP Window Reduction 3% 47% 2% 3% 100%
India
— No evasion 100% 100% 2% 100% 100%
8 TCP Window Reduction - - 100% - -
Iran
— No evasion 100% 100% 0% 0% 100%
8 TCP Window Reduction - - 100% 100% -
Kazakhstan
— No evasion 100% 100% 0% 100% 100%
8 TCP Window Reduction - - 100% - -
9 Triple Load - - 100% - -
10 Double GET - - 100% - -
11 Null Flags - - 100% - -

Table 2: Summary of server-side-only strategies and their
success rates. All of these strategies manipulate only TCP, and yet,
against China’s GFW, their success rates are application-dependent.
Kazakhstan’s HTTPS and Iran’s DNS-over-TCP censorship infras-
tructure are currently inactive.

5.1 Server-side Evasion in China

We applied Geneva from the server side against the GFW across
DNS, FTP, SMTP, HTTP, and HTTPS. Geneva identified 8 distinct
server-side only strategies that are successful at least 50% of the
time for at least one protocol in China: 4 for DNS, 5 for FTP, 1 for
SMTP, 4 for HTTP, and 2 for HTTPS. We provide packet waterfall
diagrams in Figure 1 which show the resulting server- and client-
behaviors when the strategies are run. Although the strategies
require no client-side modifications whatsoever, they induce client-
side behavior that assists in circumventing censorship. In the rest
of this subsection, we explore each of these strategies, explain why
they work, and describe what they teach us about China’s GFW.

Strategy 1: Simultaneous Open, Injected RST (China)
DNS (89%), FTP (52%), HTTP (54%), HTTPS (14%), SMTP (70%)

[TCP:flags:SA]-
duplicate(
tamper{TCP:flags:replace:R},
tamper{TCP:flags:replace:S})-| \/

Simultaneous Open Strategy 1 triggers on outbound SYN+ACK
packets. Instead of sending the SYN+ACK, it replaces it with two
packets—a RST and a SYN—and sends them instead. How does an
unmodified client respond to this strange sequence of packets?
First, the RST packet is actually ignored by the client, because it
does not have the ACK flag set and the TCP connection is not yet

SIGCOMM 20, August 10-14, 2020, Virtual Event, USA

Bock et al.

Client Server Client Server Client Server Client Server Client Server Client Server Client Server Client Server Client Server
SYN
—
RST SYN SYN/ACK SYN/ACK FIN RST YN/ACK
| SwvAcK tT (bad ackno) (bad ackno) oAtk (w/ load) ‘_S/_ K
ACK —] (corrupted) SYN SYN/ACK RST (2:% (551';) (2:(% fk% ACK
T SYN/ACK >< Pl——— I
PSH/ACK [RST RST RST
(query) ACK SYN/ACK SYN/ACK PSH/ACK
. | ACK SYN/ACR AK o load) Ly segnens |
‘_& SYN/ACK SYN/ACK PSH/ACK
pSH/ACK 7k] Ak Lac | ak | Lquery segnens |
(response) PSH/ACK
(query segment)
] ~ Strategy 1 ~ Strategy 2 Strategy 3 Strategy 4 Strategy 5 Strategy 6 Strategy 7 Strategy 8
Normal behavior ~ Simultaneous open, ~ Simultaneous open, Corrupted ACK, Corrupted ACK, Corrupted ACK, Corrupted load, Injected RST, TCP window
injected RST injected load simultaneous open injected load induced RST induced RST reduction

Figure 1: Server-side evasion strategies in China. All of the strategies work without modifications to the client, and yet they induce
client-side behavior that helps circumvent censorship. (Standard packets at the beginning and the end are grayed out to emphasize the

critical differences from normal behavior.)

in a synchronized state. Despite RFC 793 [1] suggesting that the
connection be torn down, we find that in practice, TCP implementa-
tions across all modern operating systems ignore this RST. Second,
the injected SYN packet serves to initiate TCP simultaneous open.

RFC 793 [1] requires TCP implementations to support simultane-
ous open. Originally, simultaneous open was meant to occur when
two hosts attempt to open a connection by sending SYN packets to
each other at the same time. However, a server can simulate simul-
taneous open by responding to a SYN packet from the client with a
SYN packet of its own. To the client, this resembles simultaneous
open, since the client receives a SYN packet, and therefore must re-
spond with a SYN+ACK packet. This strategy employs simultaneous
open by first sending an inert RST packet, then by setting up the
connection with a SYN packet.

When used for HTTP, Strategy 1 has a success rate of 54%. We
see similar success rates for FTP and for each single DNS-over-TCP
query (recall that DNS will try up to 3 times).

It is tempting to assume that this strategy works because the
injected RST tears down the connection, and the SYN packet looks
like an entirely new connection in the reverse direction (thereby
making the censored request sent by the client ignored). However,
this is not the case—as demonstrated above, injected RST packets
either inside or outside the 3-way handshake from the server are
unable to tear down a connection. Another potential theory is
that the GFW simply cannot properly handle TCP simultaneous
open; this too, however, is incorrect: if the RST is removed from the
strategy, the strategy fails. Instead, we hypothesize that this strategy
is far more nuanced, and is actually performing a desynchronization
attack by exploiting a bug in the GFW’s resynchronization state.

Prior work has hypothesized that the presence of a RST packet
during the three-way handshake can put the GFW in a resynchro-
nization state with about 50% probability [9, 36]. Therefore, we
expect the injected RST packet not to tear down the connection,
but instead to put the GFW into the resynchronization state. Wang
et al. hypothesized that the only packets sent by the server that the
GFW resynchronizes on are SYN+ACK packets, so the next packet
for the GFW to resynchronize on is the SYN+ACK packet sent by the

client. At this point, the GFW should just properly resynchronize
onto our connection—but it does not. Why?

When TCP simultaneous open is performed, the sequence num-
ber does not advance during the handshake in the same fashion
as it does in a regular TCP three-way handshake. During TCP si-
multaneous open, the SYN+ACK packet sent by the client retains
the same sequence number as the original SYN packet, and 1 is
not added to the sequence number until the ACK packet is sent.
Therefore, if the GFW’s resynchronization state is not aware that
simultaneous open is being performed, it will synchronize onto this
SYN+ACK packet and assume that the sequence number has already
been incremented by 1, as it would be if this were an ACK packet
finishing the regular 3-way handshake. As such, the GFW will fail
to advance its sequence number by 1 when the request is sent by
the client, making the GFW desynchronized by 1 byte from the real
connection.

To test this theory, we instrumented a client-side request to
decrement the sequence number of the forbidden request by 1
while the strategy is run on the server side. If the theory holds, we
expect to experience censorship approximately 50% of the time (as
this is how frequently China’s censors enter the resynchronization
state [36]). Indeed, when we perform this experiment, that is exactly
the result we see. Note that if we perform this sequence number
adjustment experiment without running the server-side strategy,
we never experience censorship as expected, because the real query
is now desynchronized from the connection.

This experiment suggests that Strategy 1 actually performs a
desynchronization attack against the GFW, and that a bug exists in
the GFW’s resynchronization state handling of simultaneous open.
As we will see, this bug is quite powerful, and Geneva identifies it
repeatedly in our experiments.

Strangely, Strategy 1 does not work well against HTTPS. We
hypothesize this is because the RST does not cause the GFW to
enter the resynchronization state for HTTPS, but does for the other
protocols. The rest of this section explores a number of cases in
which TCP/IP-level attacks work well for one application-level
protocol but not another; §6 offers an explanation why this occurs.

Come as You Are: Helping Unmodified Clients
Bypass Censorship with Server-side Evasion

Strategy 2: Simultaneous Open, Injected Load (China)
DNS (83%), FTP (36%), HTTP (54%), HTTPS (55%), SMTP (59%)

[TCP:flags:SA]-
tamper{TCP:flags:replace:S}(
duplicate(,
tamper{TCP:load:corrupt}),)-| \/

Strategy 2 also relies on simultaneous open, but with a slightly
different mechanism. Rather than injecting a RST, it changes the
outgoing SYN+ACK packet into two SYN packets: the first SYN is well-
formed and the second has a random payload. It has comparable
success to Strategy 1, though slightly worse for FTP (36% vs. 52%)
and SMTP (59% vs. 70%), and better for HTTPS (55% vs. 14%).

Like with the first strategy, when the first SYN packet reaches
the client, it triggers simultaneous open, prompting the client to
respond with a SYN+ACK. Since both SYN packets are sent simulta-
neously, both likely cross the GFW before the client responds. The
second SYN packet with a payload will induce the GFW to enter the
resynchronization state, and like last time, the next packet available
for it to resynchronize on is the SYN+ACK packet from the client,
again desynchronizing the GFW by 1 from the connection. We
confirmed this by repeating the prior experiment on this strategy.

Strategy 2 does not damage the TCP connection despite the
client being unmodified. Although it is uncommon for SYN packets
to carry a payload, this is permitted by the RFC (this behavior is
required by TCP Fast Open), and the payload is ignored by the
client (though the client does respond with an ACK to acknowledge
the current sequence number).

Strategy 3: Corrupted ACK, Simultaneous Open (China)
DNS (26%), FTP (65%), HTTP (4%), HTTPS (4%), SMTP (23%)

[TCP:flags:SA]-
duplicate(
tamper{TCP:ack:corrupt},
tamper{TCP:flags:replace:S})-| \/

Geneva identified one final strategy relying on simultaneous
open. Strategy 3 copies the SYN+ACK packet: it corrupts the ack
number of the first, and converts the second to a SYN. The SYN+ACK
with the corrupted ack number induces the client to send a RST
packet, before responding with a SYN+ACK to initiate the TCP si-
multaneous open. However, unlike Strategies 1 and 2, this strategy
is the most successful for FTP.

Wang et al. [36], while studying HTTP censorship, hypothesized
that a SYN+ACK from the server with an incorrect ack number is
sufficient to trigger the GFW’s resynchronization state. We observe
that this is no longer true for; however, it does work for FTP censor-
ship. Therefore, when the SYN+ACK with the corrupted ack number
is sent, the FTP portion of the GFW enters the resynchronization
state and resynchronizes on the next packet from the client—the
RST induced by the incorrect ack number. Because the RST packet
has the incorrect sequence number, the GFW will become desyn-
chronized from the connection. Geneva also identified successful

SIGCOMM 20, August 10-14, 2020, Virtual Event, USA

variants of this species in which the order of the two packets is
reversed.

Strategy 4: Corrupt ACK Alone (China)
DNS (7%), FTP (33%), HTTP (5%), HTTPS (5%), SMTP (22%)

[TCP:flags:SA]-
duplicate(
tamper{TCP:ack:corrupt},)-| \/

Strategy 4 is identical to Strategy 3, but without simultaneous
open. This shows that, although simultaneous open is not required
to evade FTP censorship, it improves the success rate (33% vs. 65%).

Strategy 5: Corrupt ACK, Injected Load (China)
DNS (15%), FTP (97%), HTTP (4%), HTTPS (3%), SMTP (25%)

[TCP:flags:SA]-
duplicate(
tamper{TCP:ack:corrupt},
tamper{TCP:load:corrupt})-| \/

Strategy 5 offers an even greater improvement in success rate.
This strategy sends a SYN+ACK with a corrupted ack number, fol-
lowed by another SYN+ACK with a random payload. As with the
previous strategies, the corrupted ack number induces the client
to send a RST packet, which the GFW resynchronizes on. This RST
is critical to the strategy’s success: if we instrument the client to
drop this induced RST, the strategy stops being effective.

Strategy 5 is highly successful (97%), but again, largely only
applicable to FTP. We do not yet understand the reason for the
improvement in success rate with the inclusion of simultaneous
open or an inert payload.

We draw special attention here to the specific order that the
injected packets are sent (first, corrupted ack, followed by injected
payload). When we reverse the order of the packets, the strategy is
ineffective. However, Geneva discovered a successful species almost
identical to this experimental ineffective strategy, requiring only
one modification:

Strategy 6: Injected Load, Induced RST (China)
DNS (82%), FTP (55%), HTTP (52%), HTTPS (54%), SMTP (55%)

[TCP:flags:SAl-
duplicate(
duplicate(
tamper{TCP:flags:replace:F}(
tamper{TCP:load:corrupt},),
tamper{TCP:ack:corrupt}),)-| \/

Resynchronization State, Revisited Strategy 6 replaces the
outbound SYN+ACK with three packets: (1) A FIN with a random
payload, (2) A SYN+ACK with a corrupted ack number, and (3) The
original SYN+ACK. Note the apparent similarity with Strategy 5: an
inert payload and SYN+ACK with corrupted ack are both sent to the
client, but Geneva found that adding the FIN makes the strategy

SIGCOMM 20, August 10-14, 2020, Virtual Event, USA

more effective for all but FTP. We also found that this strategy
works equally well if an ACK flag is sent instead of FIN.

When the FIN (or ACK) packet with the payload arrives at the
client, it is ignored, and like with previous strategies, when the cor-
rupted SYN+ACK packet arrives, it induces a RST. However, unlike
the previous strategies, this RST packet is not a critical component
of the strategy, but rather a vestigial side-effect of it—if we instru-
ment the client to drop the RST, the strategy is still equally effective.
This is because the GFW is resynchronizing not on the RST, but
instead on the SYN+ACK packet with an incorrect ack number.

This presents a stark difference from Strategy 5—once the cor-
rupted ack number caused the GFW to enter the resynchronization
state over FTP, the GFW did not resynchronize on the next packet
in the connection (which would be a SYN+ACK with the correct
sequence and ack numbers), but rather on the next packet from
the client (the RST with an incorrect sequence number). This has a
surprising implication: depending on the reason the GFW enters
the resynchronization state, it behaves differently.

In summary, our hypothesis for the new behavior of the resyn-
chronization state is as follows:

(1) A payload from the server on a non-SYN+ACK packet causes
the GFW to resynchronize on the next SYN+ACK packet from
the server or the next packet from the client with the ACK
flag set for every protocol.

(2) A RST from the server causes the GFW to resynchronize
on the next packet it sees from the client for each protocol
except HTTPS.

(3) A SYN+ACK with a corrupted ack number only causes a
resync for FTP, and it resynchronizes on the next packet
from the client.

We test this theory with Strategy 7, which begins by copying the
SYN+ACK packet twice. To the first duplicate, the flags are changed
to RST, to the second duplicate, the ack number is corrupted, and
the third is left unchanged. All three packets are then sent. The first
RST packet is ignored by the client, the corrupted ACK induces the
client to send a RST, and finally the client responds to the server’s
SYN+ACK with an ACK to properly finish the handshake.

Strategy 7: Injected RST, Induced RST (China)
DN (83%), FIP (85%), HTTP (54%), HTTPS (4%), SMTP (66%)

[TCP:flags:SA]-
duplicate(
duplicate(
tamper{TCP:flags:replace:R},
tamper{TCP:ack:corrupt}),)-|

If our above new model for the resynchronization state holds
true, we expect the first RST packet of Strategy 7 to put the GFW
in the resynchronization state for every protocol but HTTPS, and
resynchronize not on the next packet it sees in the connection or
the next SYN+ACK, but on the next packet it sees from the client,
which is the induced RST with an incorrect sequence number.

To test this, we instrumented a client to adjust its sequence num-
bers to match that in the RST packet. This resulted in censorship,

Bock et al.

Strategy 8: TCP Window Reduction (China)
DNS (3%), FTP (47%), HTTP (2%), HTTPS (3%), SMTP (100%)

[TCP:flags:SA]-
tamper{TCP:window:replace:10}(
tamper{TCP:options-wscale:replace:},)-|\/

indicating that the GFW indeed synchronized on this packet, and
confirming our new model of GFW’s resynchronization state.

TCP Window Reduction Strategy 8 works by reducing the
TCP window size and removing wscale options from the SYN+ACK
packet, inducing the client to segment the forbidden request. This
strategy is almost the exact same strategy identified by brdgrd [38]
in 2012. The fact that this strategy works at all is highly surprising—
the GFW has had the capacity to reassemble segments since brdgrd
became defunct in 2012. It appears that the portion of the GFW
responsible for FTP censorship is incapable of reassembling TCP
segments. This strategy is also the most effective at evading SMTP
censorship in China, and as we show next, it is highly effective in
other countries, as well.

5.2 Server-side Evasion in India & Iran

Our vantage points in India are all within the Airtel ISP, and we
confirm that Airtel only censors over HTTP [43]. Our vantage
points in Iran are in Zanjan and Tehran; here, HTTP, HTTPS, and
DNS is censored (though DNS-over-TCP is uncensored, so we will
focus on HTTP and HTTPS here).

Airtel’s censorship injects an HTTP 200 with a block page with a
FIN+PSH+ACK packet instead of tearing down the connection. Iran’s
censorship simply “blackholes” the traffic, dropping the offending
packet and all future packets from the client in the flow for 1 minute.
In India, as reported by Yadav et al., we also observe a follow-up
RST packet from the middlebox for good measure [43].

We find that both countries only censor on each protocol’s de-
fault ports (80, 443); hosting a web server on any other port defeats
censorship completely. Both countries’ middleboxes also do not
seem to track connection state at all: sending a forbidden request
without performing a three-way handshake to the server elicits a
censorship response.

Given the lack of state tracking for these middleboxes, the prob-
lem of server-side evasion becomes even more challenging: there is
no censor state to invalidate or teardown, so the only feasible strate-
gies are those that mutate the client’s forbidden request in a manner
that cannot be processed by the censor. When deployed from the
server side, Geneva identifies one such strategy in both countries
that we have already seen: TCP Window Reduction (Strategy 8).

Again, simply by reducing the TCP window size of the SYN+ACK
packet, it induces the client to segment the forbidden request. This
works because the middleboxes in both countries appear incapable
of reassembling TCP segments, so once the forbidden request is
segmented, it is uncensored.

This result, combined with the similar success of this strategy in
China against FTP and SMTP, suggests a pattern of generalizability
for client-side strategies. Client-side strategy species that work by
performing simple segmentation can be re-deployed at the server-
side in the form of a strategy that induces simple segmentation.

Come as You Are: Helping Unmodified Clients
Bypass Censorship with Server-side Evasion

Client Server Client Server Client Server

SYN/ACK SYN/ACK S

(rand load) (benign GET) w
SYN/ACK SYN/ACK

(rand load) (benign GET) ‘w
SYN/ACK ACK

(rand load) ACK \

ACK
CK
Strategy 9 Strategy 10 Strategy 11
Triple Random Double Benign Null Flags

Payload HTTP GET

Figure 2: Server-side evasion strategies that are successful
against HTTP in Kazakhstan.

5.3 Server-side Evasion in Kazakhstan

Kazakhstan has deployed multiple types of censorship. Previous
works have explored weaknesses in their now-defunct HTTPS man-
in-the-middle [9]. Here, we focus on their in-network DPI censor-
ship of HTTP. Like the Airtel ISP, the censor steps in when a forbid-
den URL is specified in the Host : header of an HTTP GET request.
When the censor activates, it first performs a man-in-the-middle,
so all packets in the TCP stream (including the forbidden request)
for approximately 15 seconds are intercepted by the censor and
will not reach the server. The censor then injects a FIN+PSH+ACK
packet with a block page to inform the user the page is blocked and
the connection terminates.

We provide an overview of our successful server-side evasion
strategies against Kazakhstan in Figure 2.

Strategy 9: Triple Load (Kazakhstan)

[TCP:flags:SA]-
tamper{TCP:1load: corrupt}(
duplicate(
duplicate,),)-| \/

HTTP (100%)

Strategy 9 takes the outbound SYN+ACK packet, adds a random
payload, and then duplicates it twice, effectively sending three
back-to-back SYN+ACK packets with payloads. The payloads and
duplicate packets are ignored by the client, and the client completes
the 3-way handshake. This strategy works 100% of the time in
Kazakhstan.

Strangely, we find that Strategy 9 is effective only if the packet
with the load is sent at least three times. Increasing the number
of duplicates does not reduce the effectiveness of the strategy, but
removing any of them renders the strategy unsuccessful.

SIGCOMM 20, August 10-14, 2020, Virtual Event, USA

We find the size of the payload injected by the server does not
affect the success of the strategy; whether just 1 byte is injected or
hundreds, the strategy is equally effective. This suggests that it is
the presence of the payloads, not the length of the payloads, that
causes the censor to fail.

We also find that it is critical that each of the SYN+ACK packets
have the payload. If we instrument the strategy instead to send just
one SYN+ACK with a payload (either first, in the middle, or last), the
strategy fails, or if we instrument the strategy to send two SYN+ACK
with a payload (back-to-back in the beginning, back-to-back at the
end, and with an empty SYN+ACK in between), the strategy fails. The
strategy only works if three back-to-back packets with a payload
are sent during the handshake.

We first test if this strategy is causing a desynchronization in the
censor. If the censor advances its TCB upon seeing the SYN+ACK
payload, we do not know if the censor will advance it for all of the
packets, or just some subset of them. To test each of these cases,
we instrumented the client to increment the sequence number of
its forbidden request by single, double, and triple the length of the
injected payload. However, none of these instrumented requests
trigger censorship, suggesting that this attack does not perform a
desynchronization attack against the censor.

Instead, we hypothesize the censor monitors connections specif-
ically for patterns that resemble normal HTTP connections, and
seeing payloads from the server during the handshake violates this
model, causing it to ignore the connection. However, we do not
understand why three payloads are required to enter this state. The
next strategies identified by Geneva support this hypothesis.

Strategy 10: Double GET (Kazakhstan)

[TCP:flags:SA]-
tamper{TCP:load:replace:GET / HTTP1.}(
duplicate,)-| \/

HTTP (100%)

Strategy 10 duplicates the outbound SYN+ACK packet and sets
the load to the first few bytes of a well-formed, benign HTTP GET
request. Since this payload is on the SYN+ACK, the client ignores it,
and the TCP connection is unharmed, but the payload is processed
by the censor. The above strategy shows the minimum portion of a
HTTP GET request required for the strategy to work (if the “.” is
removed, the strategy stops working). As long as the GET request
is well-formed up to the “.”, the strategy works; for example, the
strategy works equally well if we specify the rest of the GET request
or use a different or longer path. We also find that the duplicate is
required for this strategy to work; if the GET is only sent once, the
strategy does not work.

Frankly, we do not understand why this strategy works. We
hypothesize the request is just enough to pass a regular expression
or pattern matching inside the censor, and seeing the well-formed
GET request is sufficient for the censor to think the server is actually
the client. To confirm the censor is processing injected packets, we
try probing the censor by injecting forbidden GET requests. We
find two ways to inject the content such that it elicits a response
from the censor: injecting two GET requests during the handshake,
or performing simultaneous open and injecting one GET request
after during the handshake.

SIGCOMM 20, August 10-14, 2020, Virtual Event, USA

We do not understand why two requests are required to elicit a
response during the handshake; we hypothesize the first request
is needed to break out of the censor’s “handshake” state and the
second request is then processed. To test this hypothesis, we try
injecting a forbidden request followed by a benign request, and
no censorship occurs. This indicates that when content is injected
before a connection is established, it is the second request that the
Censor processes.

Strategy 11: Null Flags (Kazakhstan)

[TCP:flags:SA]-
duplicate(
tamper{TCP:flags:replace:},)-| \/

HTTP (100%)

Strategy 11 duplicates outbound SYN+ACK packet. To the first
duplicate, all of the TCP flags are cleared before it is sent, and the
second duplicate is sent unchanged. We find this strategy works
100% of the time. Although Geneva first discovered this strategy
by clearing the TCP flags, it also identified the strategy works as
long as FIN, RST, SYN, and ACK are not used. We hypothesize the
censor is monitoring for “normal” TCP handshake patterns, and
when those patterns are violated, the connection is ignored.

Finally, as expected, Strategy 8 also works in Kazakhstan: induc-
ing client segmentation is sufficient to defeat the censor.

6 MULTIPLE CENSORSHIP BOXES

The server-side evasion strategies from §5 exhibit a surprising prop-
erty: although they strictly operate at the level of TCP (specifically
the 3-way handshake), they have varying success rates depending
on the higher-layer application within a given country. This defies
expectation: our evasion strategies exploit gaps in censors’ logic or
implementation at the transport layer, and thus those same gaps
ought to be exploitable by all higher-layer applications. Exceptions
to this indicate either a cross-layer violation or a different network
stack implementation for each application—two phenomena that
are necessarily rare in the layered design of the Internet.

The remaining explanation is that China uses distinct boxes—
with distinct network stack implementations—for each of the appli-
cation protocols they censor. We depict this in Figure 3.

This raises an important question: how does the censor know
which box to apply? This is not as simple as triggering on port
numbers; recall that, in our experiments, we randomize the server’s
port numbers, and yet still experience censorship for each protocol.
Indeed, most of the GFW’s censorship is not port-specific.

We posit that each of the GFW’s separate censorship boxes in-
dividually track all TCP connections until it identifies network
traffic that matches its target protocol (i.e., until the request). Note,
however, that most of our strategies complete before the end of the
3-way handshake—before it can be determined which application
is using it. Thus, if our theory is correct, then when an application-
specific TCP-level strategy is used, all of the protocols’ processing
engines react, but only some of them respond incorrectly.

Separate censoring boxes would also explain why the GFW never
“fails closed”; i.e., it does not default to censorship if it observes
packets that are not associated with a TCB or that it cannot parse.

Bock et al.

Network path

DNS FTP HTTP | |HTTPS| | SMTP
TCP TCP
1P IP

(a) Single censorship box

DNS
FTP
HTTP
HTTPS
SMTP

(b) Multiple censorship boxes

Figure 3: Single versus multiple censorship boxes. A standard
assumption is that evasion strategies that work for one application
will work for another within a given country. However, our results
indicate that China’s GFW uses distinct censorship boxes for each
protocol, each with their own network stacks (and bugs).

Our multi-box theory suggests that the GFW can never fail closed
because, although one box may not recognize a packet, it must
assume that another box might. If each censorship box were fail-
closed, the GFW would destroy every connection.

To see if we can detect the presence of multiple boxes, we sought
to locate them via TTL-limited censored probes [43]. We instru-
mented a client to perform 3-way handshakes with servers of vari-
ous protocols, and then send the query repeatedly with increment-
ing TTLs until it elicits a response from a censor. We found that, in
China, censorship occurred at the same number of hops for each
protocol at each vantage point. This indicates that, if there are
indeed multiple boxes, then China collocates them.

7 CLIENT COMPATIBILITY

The evasion strategies presented in §5 take advantage of esoteric
features of TCP that appear to have faulty implementations in
nation-state censors’ firewalls. Server-side deployment risks mak-
ing the server unreachable to any client that also has the same
shortcomings. Conversely, strategies that work for a diverse set of
clients are readily deployable. Here, we comprehensively evaluate
of all of the strategies against a diversity of client operating systems,
and we provide some anecdotal evidence across different link types.

Experiment Setup We formed a private network consisting of an
Ubuntu 18.04.3 server running each of the server-side TCP strate-
gies (using Apache2.4 for HTTP and HTTPS). For our clients, we
used 17 different versions of 6 popular operating systems: Win-
dows (XP SP3, 7 Ultimate SP1, 8.1 Pro, 10 Enterprise (17134), Server
2003 Datacenter, Server 2008 Datacenter, Server 2013 Standard,
Server 2018 Standard), MacOS (10.15), iOS (13.3), Android (10),
Ubuntu (12.04.5, 14.04.3, 16.04.4, 18.04.1), and CentOS (6, 7). We
tried each protocol and each server-side strategy against each client.

OS Results We found that all but three strategies worked on every
version of every client OS. The only exceptions were Strategies 5, 9,
and 10, each of which failed to work on any of the versions of
Windows and MacOS. These three strategies all involve sending
a SYN+ACK with a payload; Linux’s TCP stack ignores these, but
Windows’ and MacOS’s do not.

However, we can slightly alter Strategies 5, 9, and 10 to make
them work with all clients. The key insight is that these strategies
work on Linux precisely because Linux ignores the payload (but
censors do not). However, we can modify the strategy in other ways

Come as You Are: Helping Unmodified Clients
Bypass Censorship with Server-side Evasion

to make the client ignore the packet while the censor still accepts
it; this is commonly referred to as an “insertion” packet, and there
are other ways to create insertion packets [9]. For instance, we can
send the payload packets with a corrupted chksum (so they are
processed by the censor but not the client), and send the original
SYN+ACK packet unmodified afterwards. We re-evaluated these
three strategies with this modification, and found that with this
small change, the strategies worked for all client operating systems.
An area of future work is evolving strategies directly against many
operating systems to avoid requiring these post-hoc modifications.

Results Can Vary by Network We close this section with an
anecdotal observation. In addition to the tests on our private net-
work, we also tested all strategies from a Pixel 3 running Android
10 on wifi and two cellular networks: T-Mobile, and AT&T in a
non-censoring country (anonymized for submission). All strategies
worked over wifi, and all worked on the two cellular networks
except Strategies 1 and 3 for T-Mobile and Strategies 1, 2, and 3
(all of the simultaneous open strategies) for AT&T. We speculate
that the failures were caused by other in-network middleboxes.
This indicates that, while the client may not be an issue with some
server-side strategies, the client’s network might.

These results collectively demonstrate that, when deploying
server-side strategies, it is important to test across a wide range of
clients and network middleboxes. Fortunately, many of the strate-
gies we have found appear to work across a very wide range of
networks and client types, but for practical deployments, a global
study of network compatibility would be an important and inter-
esting avenue of future work.

8 DEPLOYMENT CONSIDERATIONS

Where to Deploy? Though we refer to them as “server-side,” the
strategies we have presented could be deployed at any point in
the path between the censor and the server. For instance, a reverse
proxy (such as a CDN), a common hosting platform (like Amazon
AWS), or even a middlebox along the path (like in TapDance [40])
could run our strategies by manipulating packets in-flight. However,
for ease of deployment, we anticipate that our strategies will mainly
be run at whichever host is performing the 3-way handshake with
the client. Our strategies incur little computation or communication
overhead (at most three extra payloads), so we expect that they
could be deployed even in performance-critical settings.

Which Strategies to Use? As our results have shown, strategies
that work in one country or ISP do not necessarily work in another.
Thus, in deployment, the server must determine which strategy
to use on a per-client basis. This may prove challenging, as the
server must make its determination based only on the client’s SYN
packet. Coarse-grained, country-level IP geolocation may suffice
for nation-states that exhibit mostly consistent censorship behavior
throughout their borders (like China). However, for countries with
region-specific behavior (such as Iran or Russia), finer-grained de-
termination of ISP may be required. Rapid, accurate determination
of which strategies to use is an important area of future work.

9 ETHICAL CONSIDERATIONS

Ethical Experiments We designed our experiments to have min-
imal impact on other hosts and users. All of our testing and training

SIGCOMM 20, August 10-14, 2020, Virtual Event, USA

was done from machines directly under our control. Geneva gener-
ates relatively little traffic while training [9] and does not spoof IP
addresses or ports. We follow the precedent of evaluating strategies
strictly serially, which rate-limits how quickly it creates connec-
tions and sends data. We believe this mitigates any potential impact
it may have had on other hosts on the same network.

Ethical Considerations of Server-side Evasion In traditional,
client-side tools for censorship evasion, the user is directly respon-
sible for attempting to evade the censor, and is taking a deliberate
action to do so. As such, the user has the opportunity to both decide
and consent to the evasion, and (ideally) is knowledgeable of the risk
associated with attempting to (and/or failing to) evade censorship.

However, such an opportunity may not always be present when
server-side strategies are applied to traditional, non-evasive proto-
cols (like DNS, FTP, HTTP, and SMTP). Every server-side strategy
discussed in this work runs during the 3-way handshake, so the
user has no in-band opportunity to be informed or consent to the
server applying strategies over their connection. This raises an eth-
ical question: Should servers have to seek informed consent from
users before evading censorship on their behalf?

There are several precedents that lead us to believe that such
consent is not necessary. Various evasion techniques are regularly
deployed without explicit support from users, such as wider de-
ployments of HSTS, HTTPS, or encrypted SNI, and new techniques
such as DNS-over-TLS and DNS-over-HTTPS.

Whatever the answer to this question, we did not face any of
these concerns during our experimentation: our servers were not
public-facing, served no sensitive content, and were not connected
to by anyone besides our own clients.

10 CONCLUSION

We have presented eleven server-side packet-manipulation strate-
gies for evading nation-state censors—ten of which are novel and,
to our knowledge, the only working server-side strategies today.
Our results lend greater insight into how the national censors in
China, India, Iran, and Kazakhstan operate: we find, for instance,
that the GFW appears to use separate censoring systems for each
application it censors, and that each such system has gaps in its
logic, bugs in its implementation, and different network stacks—
all of which we have shown can be exploited to evade censorship.
Such heterogeneity severely complicates the process of evading cen-
sorship. Fortunately, we have shown that, by applying automated
tools like Geneva [9], it is possible to efficiently evade (across mul-
tiple protocols) and understand a threat as nuanced (and buggy) as
nation-state censors. Our code and data are publicly available at
https://geneva.cs.umnd.edu

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful feedback. We
also thank our collaborators from the OTF and OONI communi-
ties, who have contributed insights and resources that made this
work possible. This research was supported in part by the Open
Technology Fund and NSF grants CNS-1816802 and CNS-1943240.

https://geneva.cs.umd.edu

SIGCOMM 20, August 10-14, 2020, Virtual Event, USA

REFERENCES

(1]

[11]

[12

[13]

[14

[15]

[16

[17

(18]

[19]

[20]

[21]

[22

[23]

[24]

[25

[26

[27

1981. Transmission Control Protocol. RFC 793. RFC Editor. https://www.
rfc-editor.org/rfc/rfc793.txt

2016. DNS Transport over TCP - Implementation Requirements. RFC 7766. RFC
Editor. https://tools.ietf.org/html/rfc7766

Claudio Agosti and Giovanni Pellerano. 2011. SniffJoke: transparent TCP con-
nection scrambler. https://github.com/vecna/sniff joke. (2011).
agrabeli. 2017. Internet Censorship in Iran: Find-
ings from 2014-2017. https://blog.torproject.org/
internet-censorship-iran-findings-2014-2017.(2017).

Anonymous. 2012. The Collateral Damage of Internet Censorship. ACM SIG-
COMM Computer Communication Review (CCR) 42, 3 (2012), 21-27.
Anonymous. 2014. Towards a Comprehensive Picture of the Great Firewall’s
DNS Censorship. In USENIX Workshop on Free and Open Communications on the
Internet (FOCI).

Simurgh Aryan, Homa Aryan, and J. Alex Halderman. 2013. Internet Censorship
in Iran: A First Look. In USENIX Workshop on Free and Open Communications on
the Internet (FOCI).

Tod Beardsley and Jin Qian. 2010. The TCP Split Handshake: Practical Effects
on Modern Network Equipment. Network Protocols and Algorithms 2, 1 (2010),
197-217.

Kevin Bock, George Hughey, Xiao Qiang, and Dave Levin. 2019. Geneva: Evolv-
ing Censorship Evasion. In ACM Conference on Computer and Communications
Security (CCS).

Yue Cao, Zhiyun Qian, Zhongjie Wang, Tuan Dao, Srikanth V. Krishnamurthy,
and Lisa M. Marvel. 2016. Off-Path TCP Exploits: Global Rate Limit Considered
Dangerous. In USENIX Security Symposium.

Richard Clayton, Steven J. Murdoch, and Robert N. M. Watson. 2006. Ignoring the
Great Firewall of China. In Privacy Enhancing Technologies Symposium (PETS).
Roger Dingledine. 2012. Obfsproxy: the next step in the
censorship arms race. https://blog.torproject.org/
obfsproxy-next-step-censorship-arms-race. (2012).

Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The Second-
Generation Onion Router. In USENIX Security Symposium.

Roya Ensafi, David Fifield, Philipp Winter, Nick Feamster, Nicholas Weaver,
and Vern Paxson. 2015. Examining How the Great Firewall Discovers Hidden
Circumvention Servers. In ACM Internet Measurement Conference (IMC).

David Fifield, Nate Hardison, Jonathan Ellithorpe, Emily Stark, Dan Boneh, Roger
Dingledine, and Phil Porras. 2012. Evading Censorship with Browser-Based
Proxies. In Privacy Enhancing Technologies Symposium (PETS).

David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and Vern Paxson. 2015.
Blocking-resistant communication through domain fronting. In Privacy Enhanc-
ing Technologies Symposium (PETS).

fqrouter. 2015. Detailed GFW’s three blocking methods for SMTP pro-
tocol. https://web.archive.org/web/20151121091522/http:
//fqrouter.tumblr.com/post/43400982633/,E8%AF,A64ESYBFY,
BOgfw/ESYAF/,B9smtp/E5Y%8D%8FLES%AELAELET 49AY,847,E4/,B8%89%ET%
A7%8D%E5%B0%81%E9%94%81%E6%89%8B%E6%B3%95. (2015).

Amir Houmansadr, Chad Brubaker, and Vitaly Shmatikov. 2013. The Parrot is
Dead: Observing Unobservable Network Communications. In IEEE Symposium
on Security and Privacy.

Jill Jermyn and Nicholas Weaver. 2017. Autosonda: Discovering Rules and Trig-
gers of Censorship Devices. In USENIX Workshop on Free and Open Communica-
tions on the Internet (FOCI).

Dan Kaminsky. 2008. It’s The End of the Cache As We Know It. http://
kurser.lobner.dk/dDist/DMK_B0O2K8.pdf. (2008).

Sheharbano Khattak, Mobin Javed, Philip D. Anderson, and Vern Paxson. 2013.
Towards Illuminating a Censorship Monitor’s Model to Facilitate Evasion. In
USENIX Workshop on Free and Open Communications on the Internet (FOCI).
George T. Klees, Andrew Ruef, Benjamin Cooper, Shiyi Wei, and Michael Hicks.
2018. Evaluating Fuzz Testing. In ACM Conference on Computer and Communica-
tions Security (CCS).

Fangfan Li, Abbas Razaghpanah, Arash Molavi Kakhki, Arian Akhavan Niaki,
David Choffnes, Phillipa Gill, and Alan Mislove. 2017. lib.erate, (n): A library
for exposing (traffic-classification) rules and avoiding them efficiently. In ACM
Internet Measurement Conference (IMC).

Richard McPherson, Amir Houmansadr, and Vitaly Shmatikov. 2016. Covert-
Cast: Using Live Streaming to Evade Internet Censorship. In Privacy Enhancing
Technologies Symposium (PETS).

Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad Derakhshani, and Ian
Goldberg. 2012. SkypeMorph: Protocol Obfuscation for Tor Bridges. In ACM
Conference on Computer and Communications Security (CCS).

Zubair Nabi. 2013. The Anatomy of Web Censorship in Pakistan. In USENIX
Workshop on Free and Open Communications on the Internet (FOCI).

Kei Yin Ng, Anna Feldman, and Chris Leberknight. 2018. Detecting Censorable
Content on Sina Weibo: A Pilot Study. In Hellenic Conference on Artificial Intelli-
gence (SETN).

Bock et al.

[28] Paul Pearce, Ben Jones, Frank Li, Roya Ensafi, Nick Feamster, Nick Weaver, and
Vern Paxson. 2017. Global Measurement of DNS Manipulation. In USENIX Security
Symposium.

[29] Thomas H. Ptacek and Timothy N. Newsham. 1998. Insertion, Evasion, and

Denial of Service: Eluding Network Intrusion Detection. In Secure Networks.

Sigal Samuel. 2019. China is installing a secret surveillance app on touristsaAZ

phones. https://www.vox.com/future-perfect/2019/7/3/20681258/

china-uighur-surveillance-app-tourist-phone. (2019).

Rachee Singh, Rishab Nithyanand, Sadia Afroz, Paul Pearce, Michael Carl

Tschantz, Phillipa Gill, and Vern Paxson. 2017. Characterizing the Nature and

Dynamics of Tor Exit Blocking. In USENIX Security Symposium.

TelegramMessenger. 2019. MTProxy. https://github.com/

TelegramMessenger/MTProxy. (2019).

[33] Inc. The Tor Project. [n. d.]. Tor Project: Bridges. https://2019.www.

torproject.org/docs/bridges.html.en. ([n. d.]).

Benjamin VanderSloot, Allison McDonald, Will Scott, J. Alex Halderman, and

Roya Ensafi. 2018. Quack: Scalable Remote Measurement of Application-Layer

Censorship. In USENIX Security Symposium.

Spandan Veggalam, Sanjay Rawat, Istvan Haller, and Herbert Bos. 2016. IFuzzer:

An Evolutionary Interpreter Fuzzer using Genetic Programming. In European

Symposium on Research in Computer Security (ESORICS).

Zhongjie Wang, Yue Cao, Zhiyun Qian, Chengyu Song, and Srikanth V. Krishna-

murthy. 2017. Your State is Not Mine: A Closer Look at Evading Stateful Internet

Censorship. In ACM Internet Measurement Conference (IMC).

Zachary Weinberg, Jeffrey Wang, Vinod Yegneswaran, Linda Briesemeister,

Steven Cheung, Frank Wang, and Dan Boneh. 2012. StegoTorus: A Camou-

flage Proxy for the Tor Anonymity System. In ACM Conference on Computer and

Communications Security (CCS).

Philipp Winter. 2012. brdgrd (Bridge Guard). https://github.com/

NullHypothesis/brdgrd. (2012).

Philipp Winter and Stefan Lindskog. 2012. How the Great Firewall of China

is Blocking Tor. In USENIX Workshop on Free and Open Communications on the

Internet (FOCI).

[40] Eric Wustrow, Colleen M. Swanson, and J. Alex Halderman. 2014. TapDance: End-
to-Middle Anticensorship without Flow Blocking. In USENIX Annual Technical
Conference.

[41] Eric Wustrow, Scott Wolchok, Ian Goldberg, and J. Alex Halderman. 2011. Telex:

Anticensorship in the Network Infrastructure. In USENIX Annual Technical Con-

ference.

Xueyang Xu, Morley Mao, and J. Alex Halderman. 2011. Internet Censorship in

China: Where Does the Filtering Occur?. In Passive and Active Network Measure-

ment Workshop (PAM).

[43] Tarun Kumar Yadav, Akshat Sinha, Devashish Gosain, Piyush Kumar Sharma,
and Sambuddho Chakravarty. 2018. Where The Light Gets In: Analyzing Web
Censorship Mechanisms in India. In ACM Internet Measurement Conference (IMC).

[44] Li Yuan. 2018. A Generation Grows Up in China Without Google, Face-
book or Twitter. https://www.nytimes.com/2018/08/06/technology/
china-generation-blocked-internet.html. (2018).

[30

(31

[32

[34

[35

[36

[37

[38

[39

[42

Appendices are supporting material that has not been peer-reviewed.

APPENDIX: GENEVA’S SYNTAX

For completeness, we include in this appendix a review of Geneva’s
syntax, which we use throughout the paper. For more details, please
see [9].

Actions Geneva forms action sequences by composing any number
of its five genetic building blocks, all of which mirror the packet
manipulations that can occur at the network layer:

(1) duplicate (A1, Az) duplicates a given packet and applies
action sequence A; to the first copy and then Ay to the
second.

(2) fragment{protocol:offset:inOrder}(A;, As)
performs IP-level packet fragmentation or transport-layer
packet segmentation, thereby replacing one packet with two
packets, and can deliver the fragments in- or out-of-order. It
applies A; to the first fragment and A; to the second.

(3) tamper{protocol:field:mode[:newValue]l}(A)
modifies a particular field in the protocol header (or pay-
load) of the packet. There are two modes: replace changes

https://www.rfc-editor.org/rfc/rfc793.txt
https://www.rfc-editor.org/rfc/rfc793.txt
https://tools.ietf.org/html/rfc7766
https://github.com/vecna/sniffjoke
https://blog.torproject.org/internet-censorship-iran-findings-2014-2017
https://blog.torproject.org/internet-censorship-iran-findings-2014-2017
https://blog.torproject.org/obfsproxy-next-step-censorship-arms-race
https://blog.torproject.org/obfsproxy-next-step-censorship-arms-race
https://web.archive.org/web/20151121091522/http://fqrouter.tumblr.com/post/43400982633/%E8%AF%A6%E8%BF%B0gfw%E5%AF%B9smtp%E5%8D%8F%E8%AE%AE%E7%9A%84%E4%B8%89%E7%A7%8D%E5%B0%81%E9%94%81%E6%89%8B%E6%B3%95
https://web.archive.org/web/20151121091522/http://fqrouter.tumblr.com/post/43400982633/%E8%AF%A6%E8%BF%B0gfw%E5%AF%B9smtp%E5%8D%8F%E8%AE%AE%E7%9A%84%E4%B8%89%E7%A7%8D%E5%B0%81%E9%94%81%E6%89%8B%E6%B3%95
https://web.archive.org/web/20151121091522/http://fqrouter.tumblr.com/post/43400982633/%E8%AF%A6%E8%BF%B0gfw%E5%AF%B9smtp%E5%8D%8F%E8%AE%AE%E7%9A%84%E4%B8%89%E7%A7%8D%E5%B0%81%E9%94%81%E6%89%8B%E6%B3%95
https://web.archive.org/web/20151121091522/http://fqrouter.tumblr.com/post/43400982633/%E8%AF%A6%E8%BF%B0gfw%E5%AF%B9smtp%E5%8D%8F%E8%AE%AE%E7%9A%84%E4%B8%89%E7%A7%8D%E5%B0%81%E9%94%81%E6%89%8B%E6%B3%95
http://kurser.lobner.dk/dDist/DMK_BO2K8.pdf
http://kurser.lobner.dk/dDist/DMK_BO2K8.pdf
https://www.vox.com/future-perfect/2019/7/3/20681258/china-uighur-surveillance-app-tourist-phone
https://www.vox.com/future-perfect/2019/7/3/20681258/china-uighur-surveillance-app-tourist-phone
https://github.com/TelegramMessenger/MTProxy
https://github.com/TelegramMessenger/MTProxy
https://2019.www.torproject.org/docs/bridges.html.en
https://2019.www.torproject.org/docs/bridges.html.en
https://github.com/NullHypothesis/brdgrd
https://github.com/NullHypothesis/brdgrd
https://www.nytimes.com/2018/08/06/technology/china-generation-blocked-internet.html
https://www.nytimes.com/2018/08/06/technology/china-generation-blocked-internet.html

Come as You Are: Helping Unmodified Clients
Bypass Censorship with Server-side Evasion

the fieldto the newValue, whereas corrupt sets the field
to an equal number of random bits. tamper recomputes the
appropriate checksums and lengths, unless field itself is
a checksum or length; corrupt does not recompute check-
sums.

(4) drop discards the packet.

(5) send sends the packet.

Note that these primitives can be composed to construct any
stream of packets, so long as tamper supports their protocol
and field. In its original implementation [9], Geneva’s tamper
supported modifications of IPv4 and TCP; we explain in §4 how we
extend this to also support IPv6, UDP, DNS, and FTP.

Triggers Geneva applies each action sequence only to packets that
match a particular protocol:field:value. For example, a trigger
of TCP:flags:S would apply to all TCP SYN packets. Geneva’s
triggers demand an exact match: for instance, TCP: flags:S does
not match SYN+ACK packets.

SIGCOMM 20, August 10-14, 2020, Virtual Event, USA

Syntax Geneva represents its packet-manipulation strategies
with a domain-specific language that composes the above actions.
Geneva’s syntax for representing a trigger:action-sequence pair
is [<trigger>]-<action sequence>-|. A Geneva strategy can
have a trigger:action-sequence pair for both inbound and outbound
packets; the syntax for this is <outbound> \/ <inbound>.

As an example, Strategy 1 in §5 includes an outbound action se-
quence that triggers on SYN+ACK packets. It duplicates the SYN+ACK
packet: it converts the first copy into a RST packet by overwriting
the TCP flags, and likewise it converts the second copy to a SYN
packet, and sends them both in that order. (Note that there is no
“send” listed for the tamper; to simplify presentation, when no
action is given, it defaults to send.) This strategy has no inbound
action sequence. As we have shown, this is an effective server-side
evasion strategy for evading censorship of DNS, FTP, HTTP, and
HTTPS in China.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Nation-state Censors
	2.2 Evasion via Packet Manipulation

	3 Client-Side Strategies do not Generalize
	4 Server-side Methodology
	4.1 Geneva Extensions
	4.2 Data Collection Methodology

	5 Server-Side Results
	5.1 Server-side Evasion in China
	5.2 Server-side Evasion in India & Iran
	5.3 Server-side Evasion in Kazakhstan

	6 Multiple Censorship Boxes
	7 Client Compatibility
	8 Deployment Considerations
	9 Ethical Considerations
	10 Conclusion
	References

