Marco Grassi K’ gggﬁ?ﬂi;é
Muqging Liu
Tiany AR Exploitation of a Modern

Smartphone Baseband

9.Aug.2018

ntroduction and Related Work
Background

Agenda Baseband Remote Code Execution from Mobile
Pwn20wn: A Case Study, Exploiting the Huawel
Baseband

Delivering the Exploit
Exploitation
Demo

Fscaping the Baseband
Conclusions

K>

About Us

Members of Tencent KEEN Security Lab (formerly
known as KeenTeam)

Marco Grassi (@marcograss):

* My main focus now is hypervisor, baseband, firmware. But sometimes | go back to
I0S/Android/macOS and sandboxes etc.

* pwn2own 2016 Mac OS X Team, Mobile pwn2own 2016 iOS team, pwn2own 2017 VMWare
escape team, Mobile pwn2own 2017 iI0S Wi-Fi + baseband team

Tianyi Xie:
e CTF player, captain of CTF Team eee and A*O*E.

* Champion of CODEGATE CTF 2015 as member of team Oops.
* Pwn20wn 2017 VMware escape team, Mobile Pwn20wn 2017 baseband team.

Muqging Liu
* CTF player, member of Team eee and A*OxE
* Mobile Pwn20wn 2017 baseband team

K>

About Tencent Keen Security Lab

White Hat Security Researchers
Several times pwn2own winners
We are based in Shanghai, China
Qur blog Is

Twitter @keen_lab

Research area:

* PC security: Browser, Sandbox, Kernel (Windows, Linux,
MacQOS)

Mobile security: Mobile Browser, Mobile sandbox,
Mobile kernel (Android, 10S)

Baseband and firmware

Virtualization: VMWare, Hyper-V, XEN, QEMU
Car research: Tesla, BMW

App security

http://keenlab.tencent.com/en/

INntroduction
And Related
Work

There is a relatively small amount of public research
on Basebands

The complexity Is quite high, having to deal with very
complex specifications, which means also a higher

entry barrier, since you need to know the topic at
least a little bit.

We have billions of smartphones in the world and
most of them have a Baseband processor.

Basebands can provide a first RCE bug triggered

over the air to compromise a smartphone without
user interaction.

Related Work

At Mobile Pwn20wn 2017 we successfully exploited
the Huawel baseband, so our showcase and analysis
will be on that baseband.

Other works on basebands:

* Comsecuris — Breaking Band (Samsung Shannon
Baseband)

* Amat Cama — A Walk with Shannon (Samsung Shannon
Baseband)

* Comsecuris - There's Life in the Old Dog Yet (Intel
Baseband)

* Guy — From 0 to Infinity (Intel Baseband)

* Muirurl, Artenstein, Dorfman — The Baseband Basics
(MTK Baseband)

* Ralf-Philipp Weinmann — Baseband Attacks and other
work (Qualcomm Baseband)

* There are also other resources omitted for space
constraints (sorry!)

A Modern Smartphone Architecture

A modern smartphone is not a single CPU Moble Device Complexty
executing an OS anymore. "
Several other processors involved in the S
radio area: \ l
* Baseband processor N o
* Wi-Fi and Bluetooth SoC Processor /| BT SeC
The baseband handles the radio
communication with many types of
netwalls: 2G. 3G, 4G etc. -

Those radio components can be attacked S

r‘e m Ote |y https://googleprojectzero.blogspot.com/2017/04/over-
air-exploiting-broadcoms-wi-fi_4.html

A Modern Smartphone Architecture 2

Source : https://www.evelta.com/introduction-smartphone-

The AP runs your OS and apps (Android) _architecture

The Baseband runs a RTOS

They communicate with

» USB
: gﬁ;}gd Memory Cellular Bascband Application Processor
) SD = MCU
Separate systems. If you get RCE gou run | zom |
code on the Baseband, not the AP.

The Basebands lags behind in terms of
mitigations compared to the AP

In Huawel we noticed they lack of ASLR

and even stack cookies, making the Yo

remote exploitation easier. AL adio bk
. . . _ . ransceiver — T

This lack of mitigations Is widespread : PL P

between all manufacturers.

\/\/hy target the It has several advantages:

baseband

1.
2.

L ess understood and less audited attack surface

It can be exploited remotely without user
Interaction, potentially from long distances

Lack of mitigations compared to a Modern
mobile OS

Often the device manufacturer doesn't have
access to the baseband code. They cannot easily
audit It.

Complexity.

Radio
technologies

Nowadays

Radio technologies made great

Improvements thanks to SDRs (Software Defined

Radios).

They allow
basebands

researchers to communicate with
and setup fake Base Stations.

They are affordable.
BladeRF, LimeSDR, USRP--

However o
cover SOM

pensource Implementations can only
E of the baseband radio stacks. We will

see later w

Ny this will turn into a problem for us.

How do we attack a baseband?

The «traditional» approach is to
fake a base station with a SDR.

The old networks blindly trust a
fake base station (In newer
networks there is mutual
authentication)

We can then send m_alformed
messages and exploit the
Baseband.

In our case it was not so simple
as we will see.

CDMA

Our showcase bug will be in CDMA, so you need
at least to know what CDMA s.

CDMA (in the context of cellular network) is: " a
family of 3G mobile technology standards for
sending voice, data, and signaling data between
mobile phones and cell sites. "

It was a competing technology of UMTS In
different part of the world.

Probably in USA you know what It Is anyway, since
you use It.

Background

Basebands are basically black boxes running a
flrmware on a separate CPU inside your smartphone

They are similar to some |loT devices, they run a Real
Time Operating Systems, with lot of tasks. Each
responsible for some layer or component.

The complexity 1s huge. You can get an idea by
checking the specifications of Layer 3 3GPP TS 04.08,
which consists of hundreds of pages, and covers only
1 layer of 1 radio network!

The Baseband RtOS

Source Baseband Attacks: Remote
Exploitation of Memory Corruptions in
Cellular Protocol Stacks

RTOS stands for Real Time Operating Ralf-Philipp Weinmann
Systems

It runs «tasks»

You can find tasks responsible for
some radio network layer, such as MM,
SM, RR etcetera.

Once found the correct task, the task
will dequeue a message usually and
process It. Between those messages

there are the radio messages you find
defined In the specifications and you
can audit.

How to collect We have 3 main sources of information

Nnformation 1. The firmware
2. Runtime Information

3. Online Information

et s check them out.

The Firmware

Library function [Regular function Instruction Data Unexplored External symbol

7] Functions window im0 x] 5] IDA Vie... @ [%5] Program Segment... @ [5] strings win... @ =% Recentsc.. @[A] Struct.. @ [Z] Local T... @ =] En...
. .text:808A09DE LDR , =as ; "%s \r\n"
Function name .text:808A09E0 LDR , =a NasGuSrcSmSrcNassmmultim ; "../../nas/gu/src/Sm/Src/Nas
= . .text:808A09E2 LDR , =DIAG_LogReport
sz]—anOthetJOQ .text:808A09E4 STR , [SP,#0x40+pszFmt] ; pszFmt
7] sub_82C64D30 .text:808A09E6 LDR , =aNas_sm_rcvtafbeareractivatei ; "NAS_SM RcvTafBearerActivate
.text:808A09ES8 STR , [SP,#0x40+a6] ; param

7] sub_82C64D38 .text:808A09EA LDR , =0x143 ; ulLineNo
- .text:808A09EC BLX ; DIAG_LogReport
(7] sub_82C64D40 .text:808A09EE B loc_808A09AC

The first thing we need to do Is to get our hands on the firmware and
Reverse It to find exploitable memory corruptions over the air.

We will focus on the Huawel firmware.
We can find the file «sec_balong_modem.bin» in the smartphone filesystem.

The Android Kernel loads it, then it's passed to TEE (Trusted Execution
Environment) for signature checks, then loaded into the baseband memory.

We can easily identify the code, and after some adjustments we can start to
Reverse Engineer it.

Runtime
INformation

Runtime info are very helpful in the RE process and
debugging

A previous talk mention «cshell», a runtime shell on
the baseband

Sadly now It Is disabled on newer versions.

However we found out that:

* When the baseband crashes, it will output back some
errors to the Application Processor (Android) and log it
on the filesystem.

* |t Is possible to read the baseband memory from the
Android kernel, dumping the physical memory from
0x80400000

This helped us a lot to adjust our exploit.

Online Obviously the Online specifications from 3GPP are
INformation mandatory to understand the systems.

We found on GitHub a old leaked version of part of
this Baseband source code.

This was very helpful in the reverse engineering
Process.

There Is also a existing project on the NVRAM
format: https://github.com/forth32/balong-nvtool

Huawel Baseband Vulnerability Case Study

K>

n this section we will show you the bug we used at
Mobile pwn2own 2017 to exploit over the air a
Huawel device baseband, gaining remote access on

It.
First we will show you the bug
Then how we triggered it

Then how we exploited it

Preface

Our mobile pwn2own 2017 vulnerability was Iin the
CDMA part of the baseband.

The . In detall, it was in the CDMA 1x SMS Transport
Vulnerability Layer Message, In a function responsible for PRL
messages.

A simplified version of the bug could be:

But what the heck iIs memcpy_s?
byte_pos = 0;

(index = 1; index < 20; index++ {

memcpy_s(parsedDst + byte_pos, someControlledLen,
smsInput + someControlledOffset, someControlledLen);

byte_pos += someControlledLen;

}

MemMcpy._S

MEMCPY_S IS a «Secure» memcpy.

It takes 4 parameters instead of 3, source and
destination size.

memcpy_s(void* destination, size_t dest_size, void* source,
Size_t src_size):

It checks that the copy doesn't exceed the
destination buffer size, or the source buffer size.

Kills lot of bugs actually, purely by chance.

Our bug Is not affected by memcpy_s because we
control the offset of the copy.

The
Vulnerability

In this message handler the message Is
parsed, and some offsets/lens are extracted.

They are then added to a byte pos without
checks, this can lead to writing out of bound
In the buffer (which is on the stack) leading to
a exploitable stack overflow.

byte_pos = 0;

(index = 1; index < 20; index++ {

memcpy_s(parsedDst + byte_pos, someControlledLen,
cchnpu+ - cnmnrnn+rn119dﬂffget' someCOntrolledLen);

byte_pos += someControlledLen;

}

Triggering and Delivering The Exploit

K>

Setting up a
CDMA
network

Unfortunately there is no public open source
software that allows you to run a proper CDMA
1x network with a SDR!

* There are many projects to setup cellular networks..
* OpenBTS
* OpenlLTE
* OpenAirinterface

* OpenBTS with testcall to send arbitrary payload
None of them seems to support CDMA 1x
Do we have to build a new OpenCDMA?

* We came up with a different solution.

Setting up a CDMA network

We «abuse» a multi protocol
tester by Rohde&Schwarz for
mobile radio networks.

It Is designed to test signal and
non signal functionalities of
mobile stations.

It supports different networks
(including CDMA 1x)

We will reverse engineer it
and patch it to make our own
‘testcall” feature.

Setting up a CDMA network = ——

We use the CMUZ200 together with a
faraday cage, In order to gain better
stability, avoid electromagnetic
Interference, and avoid to disturb other
communications.

F-rom the Ul of the CMUZ200 we can adjust
the network parameters (such as MCC,

VINC).

After connecting a mobile phone to the
CMUZ200 we can Initiate phone calls, and
send text messages from the Ul.

, , Base unit
Hacking into + Mainboard

the Machine * HDD with windows 3.x installed

Different optional link handler boards
plugged In mainboard:
* B21: GSM/GPRS signaling hardware
 B83: CDMAZ2000 1xRTT signaling unit

SMS pIaintexE encoded | assembled |
message PDU

, , Base unit
Hacking into + Mainboard

the Machine * HDD with windows 3.x installed

Different optional link handler boards
plugged In mainboard:
* B21: GSM/GPRS signaling hardware
 B83: CDMAZ2000 1xRTT signaling unit

s TR e (SR 0
A messaae PPHH
L . 4

CMUZ200 Base Unit Reversing

total 144
drwxr-xr-x 13 501 20 416 7 29 16:54 .

CMU200 base unit is built on top B TR
of MS-DOS and Windows 3.x G 15501 2 48 729 16137 U |

drwxr-xr-x 23 501 20 736 7 29 16:37 CMUDRV
-PWXP-Xr-X 1501 20 54645 7 29 16:37
-PWXP-Xr-X 1501 20 420 7 29 16:37
drwxr-xr-x 100 501 20 3200 7 29 16:52 DOS

20 @ 7 29 16:37

Users can send a SMS from Ul, or ey
Chose d predeflned one to Send -rwxe-xr-x 1501 20 462 7 29 1637

It Is all about PE reversing. Easy
to locate the procedure that
sending message to signaling
unit.

CMUZ200 Base Unit Patching

1. sh (sh)

"C2KMS.DL3" read content from sh-3.28 cat
internal file, and send it to B83 I
S | g n a | | n g u n |t aS / / /7 /(ha /7 d /e /’ (;Iﬂi_:g=§§2§5320434D552053686F7274204D65737361676520536572766963652054657374202D2042696E617279205340
message '

\Ne Ca n S/? eC I fy th e te | ese rVI Ce Table 3.4.2.1-1. SMS Point-to-Point Message Parameters

|deﬂt|f|er Parameter Reference Type
* But cannot control full Bearer Data,

. Lot's ao fucdl.
g
-
Skip payload length check
Force the signaling unit to
-
upgra

| 7] C_NSIG_GENERATOR::RF_adjusted(USB_C ?1se if ((_WORD)v29 == *(_WORD *)(*(_DWORD *)(*(_DWORD *)(al + 545) + 4) + 558))
|#] C_NSIG_GENERATOR::send_ocns_level_re = *(_DWORD *)(*(_DWORD *)(al + 545) + 4);

LOWORD(v2) = *(_WORD *)(+ 564);
| 7] IMT2K_C_GENERATOR_CONTROL::get_ns = v2;

| 7] const PAR_C_ITEM::get_int32(void) , , ,
if ((signed __intl6) > 160) // length check for SMS
| 7] C_NSIG_GENERATOR::send_relative_level. = 14;

else
E IMT2K_C_GENERATOR_CONTROL::send_|) = ;
7] PAR_C_ITEM::get_string(void)

| 7] TIME_SET_CONTROL::set_linkhandler_tim
= i = *(J)onD *)(*JTORD *)(+.545) + 4);

D BA o o a a s QUARD * »

if (1(WORD)v33)

}
else if ((_WORD) == *(_WORD *) (*(_DWORD *)(*(_DWORD *)(al + 545) + 4) + 560))
{

Signaling unit

firmware
format

Found upgrade functionality of the B83
unit.
* Upgrade occurs when self-check falils.

* Found firmware package
YETIFLSH.FW&SASFLASH.FW

 Recover the format

sh-3.2% binwalk 0x@-0x900000

DECIMAL

HEXADECIMAL

* [t Is based on VxWorks for PowerPC!

2. sh (sh)

DESCRIPTION

1063092
1064501

Ox3AE1

0x10010C
0x1038B4
Ox103E35

Copyright string: "Copyright 1984-2004 Wind River Systems, Inc.8@"

VxWorks operating system version "5.5.1" , compiled: "Oct 20 2010, 15:53:04"
Z1lib compressed data, default compression

Copyright string: "Copyright 1984-2004 Wind River Systems, Inc.8@"

VxWorks operating system version "5.5.1" , compiled: "Oct 20 2010, 16:03:00"
Z1ib compressed data, default compression

94300 | 080VE8VEVE VEVBVEVE VEVEVBVE VBVEVEVE
504310 | 03030808 08080808 08080308 03030808
504320 | 08080808 08030808 08080808 03080808
. . . 594330 | 08080808 7A65726F G96ESF61 64647200 zeroin_addr
We a r‘e u Ite | u Ck th IS tl m e . 594340 | 7A65726F 4D657373 61676546 69656(64 | | zeroMessageField
. 594350 | 735F5F46 52313553 41535F4C 335F5052 | | s__FR1S5SAS_L3_PR
504360 | 4DSF5459 50450000 7A65726F 44736368 | |M_TYPE zeroDsch
. 504370 | 4F72646D 4D73675F 5F465232 31534153 | | OrdmMsg__FR21SAS
® POWGI’PC deCOI | |p| |er 504380 | SFAC335F 44534348 SFAF5244 4DS5F5459 | | _L3_DSCH_ORDM_TY
\ . : 594390 | 50450000 7A65726F 43736368 4F72646D | |PE zeroCschOrdm
| t 50430 | 4D73675F 5F465232 31534153 5F4C335F | |Msg__FR21SAS_L3_
S ' l ' I ' l ° m b | / m t bl 5043B0 | 43534348 SFAF5244 4DSF5459 50450000 | | CSCH_ORDM_TYPE
I g I g U | Sy Ol/Nna e 1a €S 5043C0 | 79797661 6000000 79797374 61727400 | |yyval yystart

5943D0 | 79797232 00000000 79797231 00000000 | |yyr2 yyrl

. . 594400 | 79796C76 616C0000 79796578 63610000 | | yylval yyexca

Va | | d atin g C h ec kS um 594410 | 79796572 72666C61 67000000 79796465 | | yyerrflag yyde
594420 | 66000000 79796465 62756700 79796368 | | f yydebug yych

594430 | 6B000000 79796368 61720000 79796163 | |k yychar yyac
594440 | 74000000 78737075 746ESFS5F 39737472 | |t xsputn__9str
594450 | 65616D62 75665043 63690000 78737075 | | eambufPCci xspu
594460 | 746E5F5F 38737464 696F6275 66504363 | | tn__8stdiobufPCc
594470 | 69000000 78737075 746ESF5F 3766696C | |i xsputn__7fil
594480 | 65627566 50436369 00000000 78737075 || ebufPCci Xspu
594490 | 746ES5F5F 3131696E 64697265 63746275 | |tn__1lindirectbu
5944A0 | 66504363 69000000 78736765 746ESFSF || fPCci xsgetn__
5944B0 | 39737472 65616D62 75665063 69000000 | | 9streambufPci
5944(0 | 78736765 746ES5F5F 3766696C 65627566 | | xsgetn__7filebuf
5944D0 | 50636900 78736765 746ESFS5F 3131696E | |Pci xsgetn__11in
5944E0 | 64697265 63746275 66506369 00000000 | | directbufPci
5944F0 | 78736574 666C6167 735F5F39 73747265 | | xsetflags__9stre
594500 | 616D6275 66696900 78736574 666(6167 | | ambufii xsetflag
594510 | 735F5F39 73747265 616D6275 66690000 | | s__9streambufi
594520 | 78707574 5F636861 725F5F39 73747265 | | xput_char__9stre
594530 | 616D6275 66630000 78666(61 67735FSF || ambufc xflags__
594540 | 39737472 65616D62 75666900 78666(61 | |9streambufi xfla
594550 | 67735F5F 39737472 65616D62 75660000 | | gs__9streambuf
594560 | 7864726D 656D5F63 72656174 65000000 | | xdrmem_create

I 5943E0Q | 79797067 6F000000 79797061 72736500
reve rSi N g * No signature check, only | e R e || e v roree

while (

}
if (MEMORY[0xF0040004] !=
{

printf ("<FLASH> ", ’ ’
!

’ ’ , &unk_620000) ;
Expected: 0x308X, computed: 0x308X\n", HENORSIONEODSOOOE],

= printf("Bad checksum
goto LABEL_8;

Signed Int little (select less data)

736 bytes selected at offset 0x594330 out of 7.1 megabytes

return 0;

}

SIgNa
patch
repac

KING

INg unit
INg and

| ocate function bulldSmsMsg’, etc.
Patch It to carry arbitrary bearer data

Repack the firmware, and upgrade the B83
signaling unit!

With our own testcall, we are able to crash the
baseband

Library function i Regular function

3
AL

Instruction

RE AN © 5] Strings window

Function name

[#] L3_SigTChFwdThread::

f| L3_SigTChFwdThrea
L3_SigTChFwdThrea
L3_SigTChFwdThread:
L3_SigTChFwdThrea
L3_SigTChFwdThrea
L3_SigTChFwdThrea
L3_SigTChFwdThread:
L3_SigTChFwdThrea

F| L3_SigTChFwdThrea

F| L3_SigTChFwdThread:
L3_SigTChFwdThread::
L3_SigTChFwdThread::
L3_SigTChFwdThread:
L3_SigTChFwdThread::
L3_SigTChFwdThread::
L3_SigTChFwdThread:
L3_SigTChFwdThread::
L3_SigTChFwdThread::
L3_SigTChFwdThread::
testConRefGet(void)
__tf18L3_SigTChFwdTh

ssignPCNM_PDUData(SAS
andleSendPowerControlP;
uildPCNPMMsg(ulong long
ssignPCNPM_MCSBData(t
ssignPCNPM_PDUData(S#
umpPCNPM_PDUData(SA
andleSendSMS(SAS_MSG
andleSendDBM(SAS_MSG
andleMSOrigSMSRsp(SAS
uildSmsMsg(SAS_L3_SEN
uildSmsAckMsg(SAS_L3_t
assignSMS_PDUData(SAS_
assignSMSAck_PDUData(S.
uildDataBurstMsg(ulong I¢
assignDBM_MCSBData(ulol
assignDBM_PDUData(SAS_
andleEnableRevSigTraffic
createL2DataReqMsgParan
computeActionTime(uint,ui
umpFwdMCSB(SAS_FWD_

read

A @ ‘ot i & Fy & mag X ' » @ O | Nodebugger
|]

Data Unexplored External symbol
© [5)10A View-A [RENIEREEICEEIDN @ (O] Hex View-1 @ [A] st

)i
err_Handler::errMsg(0, 0);

l(inwonu *) (*(_DWORD *)(v7 + 12) + 4) = *((_DWORD *)v5 + 8);
*((_DWORD *)v5 + 6), *(unsigned __int8 **)(*(_DWORD *)(v7 + 12) + 8),

or ((MASK_TYPE *)&v17, (const MASK_TYPE *)0x35C);

’
(const MASK_TYPE *)&vl7,
. ---> Sending SMS to Signaling SAP",

MASK_TYPE: : ~MASK_TYPE ((MASK_TYPE *)&v17);

L3_MSDatabase: : setSmsWaitingStateL2Ack (* (L3_MSDatabase **)(v2 + 192), 1);
L3_MSDatabase: : setSmsL2AckId(*(L3_MSDatabase **)(v2 + 192), v5[303]);

if (SignalSap::sendL3FdschMsg(*(_DWORD *)(v2 + 196)))

err_Handler::errMsg(0, 0);
}

else

or ((MASK_TYPE *)&v17, (const MASK_TYPE *)0x35C);
logISRMsg(

’
(const MASK_TYPE *)&v17,
" ---> SMS Sent to Signaling SAP ",

)i

Exploitation

K>

The exploit payload should be a
malformed CDMA 1x SMS Transport

Reaching the Layer Message

lts SMS_MSG_TYPE field must be
vulnerable 00000000, indicating an SMS Point-to-
function Point message

Table 3.4-1. SMS Transport Layer Messages

Message Type base station -> mobile station -> | SMS MSG TYPE
mobile station base station

SMS Point-to-Point 00000000’

SMSBroadeast | X | | 0000001
SMS Acknowledge 00000010

All other values are reserved.

The message consists of TLV format
PARAMETERs which must be set up properly
Reaching the toreach the vulnerable function
* Teleservice |dentifier (PARAMETER_ID 00000000)
vulnerable + Originating Address (PARAMETER_ID 00000010)

function

Table 3.4.2.1-1. SMS Point-to-Point Message Parameters

Teleservice Identifier | [3.4.31 |Mandaory
Originating Address | |3433 |Mandatory()

Destination Subaddress 3.4.3.4 Optional (2)
Bearer Reply Option 3.4.3.5
3437

(1) For mobile-terminated messages (not present in mobile-
originated messages)

(2) For mobile-originated messages (not present in mobile-
terminated messages)

The Bearer Data (PARAMETER_ID

- 00001000) Is parsed In the vulnerable
Reaching the oo 20 19P

\/ U | n e ra b | e Table 3.4.2.1-1. SMS Point-to-Point Message Parameters

memcpy

Destination Subaddress 3.4.3.4 Optional (2)
Bearer Reply Option 3.4.3.5
3.43.7

(1) For mobile-terminated messages (not present in mobile-
originated messages)

(2) For mobile-originated messages (not present in mobile-
terminated messages)

Reachmg the The Bearer Data (PARAMETER_ID
00001000) I1s parsed In the vulnerable

vulnerable e
memcpy * Which in turn consists of TLV format
SUBPARAMETERS

* [t should indicate itself a PRL message
through properly set SUBPARAMETERS

One or more occurrences of the following subparameter

record:

SUBPARAMETER ID s

SUBPARAM_LEN
Subparameter Data 8x SUBPARAM_LEN

Reaching the Message Display Mode
(SUBPARAMETER_ID Table #.5.1. Bearer Data Subparameter ldentifiers

vulnerable 00001111)

Message Identifier ‘00000000’

MemceCpy * MSG_DISPLAY_MODE field o

I I | u St b e OXOB Message Center Time Stamp ‘000000171’
Validity Period — Absolute ‘00000100’

o RESER\/ED f|e|d ”]ust be OX]_O Validity Period — Relative 00000101’
Deferred Delivery Time — Absolute ‘00000110’

Deferred Delivery Time — Relative ‘00000111’

Priority Indicator ‘00001000’
00001001
Reply Option ‘00001010’
Number of Messages ‘00001011’
Alert on Message Delivery ‘00001100’
Language Indicator ‘00001101’
Call-Back Number ‘00001110’

Message Display Mode | oovorii__|

Field |Lengthpits
SUBPARAMETER_ID

SUBPARAM_LEN s
MSG_DISPLAY_MODE

RESERVED

The vulnerable The vulnerable code basically sorts the sub
code parameters in the Bearer Data

And the buffer overflow happens right here

It seems trivia for the rest part of the exploitation

* Exploit a classical stack overflow just like in the 90s
* No NX/ASLR/Stack Canary

IS It true?

Exp|0it a stack Multiple paths to the vulnerable function exist

* Two of them are not reachable over the air (only

OV@FﬂOV\/(?) N used in MO Message)

baseband * One of them are reachable through MT Message,
but the buffer is inside global variable section,
rather than on stack

Who said it Is a stack overflow?

Exploit a stack There do exist one path to the vulnerable function
f Ay with the buffer on stack
Over OW(') I * However, It is only used when reading out an SMS

baseband from USIM
Looks we are out of options

Where there is a will, there Is a way

We discovered a deep but stable path all the way
down to the vulnerable function, following this
seemingly useless path

Exp|0it 3 stack The whole process of handling a PRL message
fl N goes like this
Over OW() In * Recelve the message over the air

base ba ﬂd * Decode the message (15t time with the vulnerable
function but buffer not on stack)

* Encode the message
* Write the message into USIM
* Read the message out from USIM

Construct the The payload must survive the first

decoding & encoding cycle, and
pay|Oad overflow the stack in the second

decoding process
Not so trivia right?

Construct the Let's do some simple math

payload The payload: x
Decoding function — dec(x)

Encoding function — enc(x)
Stack overflow ROP chain: p

Goal: Find an xfor a given p such that p =
dec(enc(dec(x)))

Construct the
payload

Solve a mathematical problem in a more
mathematical way

Qur goal:

* Find an xfor a given p such that p = dec(x) and x =
enc(dec(x))

* x1Is the 7ixed point of function enc(dec(x))
So that p = dec(x) = dec(enc(dec(x)))
Such a payload works for arbitrary levels of
decoding & encoding cycle

~urthermore, the CMUZ200 machine restricts the
ength of TP layer message to be less than 130
oytes

Construct the Constructing such a payload Is not trivia, but

2vload possible
pay For more detalls please refer to the white paper

And | adapted it to one CTF challenge
* Mighty Dragon (OCTF/TCTF 2018 Quals)

* Named after the codename of the modem
“balong” (F5)

So we gained RCE on the baseband, but how can we
demonstrate 1t?

Payba,d We cannot pop «calc.exe» like on windows, there is
Execution and no clear UL

Ca pabilities We decided to change the phone IMEI to give a
visual confirmation of successful exploit.

It can be viewed In the Settings of the Phone.

From the baseband we have access all
calls/SMS/mobile internet traffic, sniffing it or
tampering It.

DEMO

K>

Vendor Huawel quickly patched the issue releasing
Response Updates
P Good communication with their security

response team
We follow up after pwn2own with the
vendor

Responsive feedback and they seems to
care about security.

3ase
-Urth

—scaping the

nand and
er

Com

oromise

Escaping the baseband was not required by the
contest rules, so we didn't do It.

This Is not a very publicly studied topic, but there are
good examples of similar scenarios:

(using
unrestricted DMA to overwrite AP memory)

(path traversal in a usermode component allows an
attacker to modify files in the AP filesystem)

An attacker can chain a baseband escape to a RCE,
just like a Sandbox escape can be chained to a
Browser RCE

Gain complete control of the target device.

The attack surface Is significant, since a lot of
Information must be exchanged between the
baseband and the AP.

https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://comsecuris.com/blog/posts/path_of_least_resistance/

Conclusions

We demonstrated that a Baseband RCE Is not only
possible, but also practical for a determined attacker.

Basebands are very complex software, with a huge
remote attack surface.

They are written In memory unsafe language (c/cpp
mainly) and they lack of even basic mitigations.

It should not surprise that a determined attacker can
gain RCE on them.

We hope In the future more mitigations are deployed
IN basebands, and hopefully in the long term a switch
to more memory safe languages will happen.

This long timeframe should be addressed temporarily
by more security scrutiny.

Acknowledgements

Wushi

/hao

Anton

Wenkal Zhang
Haljlang Xie

K>

Questions?

K>

