
Securing web apps
with modern platform features



Securing web apps
with modern platform features

2019Google I/O

Artur Janc
aaj@google.com

Lukas Weichselbaum
lwe@google.com



1. Common web security flaws
2. Web platform security features



1. Common web security flaws
2. Web platform security features





Google Vulnerability Reward Program payouts in 2018

Mobile app vulnerabilities
Business logic (authorization)
Server /network misconfigurations



Injections

<?php echo $_GET["query"] ?>

foo.innerHTML = location.hash.slice(1)

1. Logged in user visits attacker's page
2. Attacker navigates user to a vulnerable URL

3. Script runs, attacker gets access to user's session

… and many other patterns

Bugs: Cross-site scripting (XSS)

https://victim.example/?query=<script src="//evil/">



Insufficient isolation

1. Logged in user visits attacker's page
2. Attacker sends cross-origin request to vulnerable URL

3. Attacker takes action on behalf of user, or infers information 
about the user's data in the vulnerable app. 

Bugs: Cross-site request forgery (CSRF), XS-leaks, timing, ...

<form action="/transferMoney">
  <input name="recipient" value="Lukas" />
  <input name="amount" value="10" />

<form action="//victim.example/transferMoney">
  <input name="recipient" value="Attacker" />
  <input name="amount" value="∞" />



New classes of flaws related to insufficient isolation on the web: 

- Microarchitectural issues (Spectre / Meltdown)
- Advanced web APIs used by attackers
- Improved exploitation techniques

The number and severity of these flaws is growing.

Insufficient isolation



Vulnerabilities by Industry

Source: HackerOne report, 2018

Consumer 
Goods

Financial services 
& insurance Government Healthcare Media &

Entertainment Professional 
services

Retail &
Ecommerce

Technology Telecom Transportation Travel & 
Hospitality

Figure 5: Listed are the top 15 vulnerability types platform wide, and the percentage of vulnerabilities received per industry

Cross Site scripting (XSS)

Information disclosure

 Improper authentication

Violation of secure 
design principles

Cross-site request 
forgery (CSRF)

Open redirect

Privilege Escalation

Improper access control

Cryptographic issues

Denial of service

Business logic errors

Code injection

SQL injection

https://www.hackerone.com/sites/default/files/2018-07/The%20Hacker-Powered%20Security%20Report%202018.pdf


Vulnerabilities by Industry

Source: HackerOne report, 2018

Consumer 
Goods

Financial services & 
insurance

Government Healthcare Media &
Entertainment

Cross Site scripting (XSS)

Information disclosure

 Improper authentication

Violation of secure 
design principles

Cross-site request 
forgery (CSRF)

Open redirect

23% 24% 26% 19% 28%

17%

7% 8% 3% 6% 9%

12% 10% 4% 8% 7%

18% 18% 16%25%

6% 9% 11% 10%10%

4% 6% 8% 7%5%

https://www.hackerone.com/sites/default/files/2018-07/The%20Hacker-Powered%20Security%20Report%202018.pdf


Source: @jvehent, Mozilla

Paid bounties by vulnerability on Mozilla websites in 2016 and 2017

Co
un

t o
f V

ul
ne

ra
bi

lit
y

wsec-xs
s

wsec-applogic

wsec-disclosure

wsec-im
personatio

n

wsec-objre
f

wsec-in
jectio

n

wsec-appmisconfig

wsec-authentic
atio

n

wsec-re
dire

ct

wsec-oscmd

wsec-http
-header-in

ject

wsec-serve
rm

isconfig

wsec-sqli

wsec-authoriz
atio

n

wsec-crossdomain

wsec-csrf

https://twitter.com/jvehent/status/911192609699373056


1. Common web security flaws
2. Web platform security features



1. Injection defenses 2. Isolation mechanisms



1. Injection defenses 2. Isolation mechanisms



Injection defenses: 
Content Security Policy Level 3

Mitigate XSS by introducing fine-grained controls on 
script execution in your application.



CSP Basics

CSP is a strong defense-in-depth mechanism against XSS

 

Note: CSP is not a replacement for proper escaping or fixing bugs!

<script>
scripts get executed plugins are loaded

Developers can control which



Enabling CSP

Response Header

Two modes

Enforcement: Content-Security-Policy

Report Only: Content-Security-Policy-Report-Only

https://example.com





Better, faster, stronger: 
nonce-based CSP!

Content-Security-Policy:

  script-src 'nonce-...' 'strict-dynamic';

  object-src 'none'; base-uri 'none'

No customization required! Except for the 
per-response nonce value this CSP stays the same.



The Idea Behind Nonce-Based CSP

When CSP is enforced

injected script tags without a nonce will be blocked by the browser

script tags with a valid nonce will execute

Content-Security-Policy: script-src 'nonce-random123'

<script>alert('xss')</script> // XSS injected by attacker - blocked by CSP

<script nonce="random123">alert('this is fine!')</script>
<script nonce="random123" src="https://my.cdn/library.js"></script>



The Problem of Nonce-Only CSP

An already trusted script cannot create new scripts without explicitly setting the nonce 

attribute!

ALL <script> tags need to have the nonce attribute!
✘ Third-party scripts/widgets (You may not control all scripts!)
✘ Potentially large refactoring effort

Content-Security-Policy: script-src 'nonce-random123'

✔ <script nonce="random123">

    var s = document.createElement('script')

    s.src = "/path/to/script.js";

✘   document.head.appendChild(s);

  </script>



Enabler: New strict-dynamic keyword

Only <script> tags in response body need the nonce attribute!
✔ Third-party scripts/widgets (You may not control all scripts!)
✔ Potentially large refactoring effort

Content-Security-Policy: script-src 'nonce-random123' 'strict-dynamic'

Wit 'strict-dynamic' an already trusted script can create new scripts without setting a 

nonce!✔ <script nonce="random123">

    var s = document.createElement('script')

    s.src = "/path/to/script.js";

✔  document.head.appendChild(s);

  </script>



STEP 1: Remove CSP blockers

STEP 2: Add CSP nonces to <script> tags

STEP 3: Enforce nonce-based CSP 

1..2..3 Strict CSP
How to deploy a nonce-based CSP? 



A strong CSP disables common dangerous patterns
  → HTML must be refactored to not use these

 javascript: URIs: <a href="javascript:void(0)">a</a>

 inline event handlers:  <a onclick="alert('clicked')">b</a>

STEP 1: Remove CSP blockers



 javascript: URIs

 inline event handlers

HTML refactoring steps:

<a href="#">a</a>

<a id="link">b</a>
<script>document.getElementById('link')
 .addEventListener('click', alert('clicked'));
</script>

STEP 1: Remove CSP blockers

<a href="javascript:void(0)">a</a>

<a onclick="alert('clicked')">b</a>



nonce-only CSPs (without 'strict-dynamic') must also propagate nonces to dynamically created scripts:

Only <script> tags with a valid nonce attribute will execute!

STEP 2: Add <script> nonces

HTML refactoring: add nonce attribute to script tags

<script src="stuff.js"/></script>

<script>doSth();</script>

<script nonce="{{nonce}}" src="stuff.js"/></script>

<script nonce="{{nonce}}">doSth();</script>

<script>
 var s = document.createElement('script');
 s.src = 'dynamicallyLoadedScript.js';
 document.body.appendChild(s);
</script>

<script nonce="{{nonce}}">
 var s = document.createElement('script');
 s.src = 'dynamicallyLoadedScript.js';
 s.setAttribute('nonce', '{{nonce}}');
 document.body.appendChild(s);
</script>



STEP 3: Enforce CSP
Enforce CSP by setting a Content-Security-Policy header

script-src 'nonce-...' 'strict-dynamic' 'unsafe-eval';

object-src 'none'; base-uri 'none'

script-src 'nonce-...' 'strict-dynamic';

object-src 'none'; base-uri 'none'

script-src 'nonce-...';

object-src 'none'; base-uri 'none'

Strong

Stronger

Strongest



CSP Adoption Tips

If parts of your site use static HTML instead of templates, use CSP hashes:

Content-Security-Policy: script-src 'sha256-...' 'strict-dynamic';

For debuggability, add 'report-sample' and a report-uri:

script-src … 'report-sample'; report-uri /csp-report-collector

Production-quality policies need a few more directives & fallbacks for old browsers

script-src 'nonce-...' 'strict-dynamic' https: 'unsafe-inline';

object-src 'none'; base-uri 'none'



Detailed guide at
csp.withgoogle.com

http://csp.withgoogle.com


Use the CSP Evaluator
to check your policy

csp-evaluator.withgoogle.com

https://csp-evaluator.withgoogle.com


+ Always the same CSP

+ More secure*

+ <script> tags with valid nonce 
attribute will execute

+ Mitigates stored/reflected XSS

<script> tags injected via XSS
(without nonce) are blocked 

+ NEW in CSP3: 'strict-dynamic'

* https://ai.google/research/pubs/pub45542

Content-Security-Policy:

  script-src 'nonce-...' 'strict-dynamic';

  object-src 'none'; base-uri 'none'

No customization required! Except for the 
per-response nonce value this CSP stays the same.

Summary: Nonce-based CSP

https://ai.google/research/pubs/pub45542


Injection defenses: 
Trusted Types

Eliminate risky patterns from your JavaScript by 
requiring typed objects in dangerous DOM APIs.



var foo = location.hash.slice(1);

document.querySelector('#foo').innerHTML = foo;

How does DOM XSS happen?

DOM XSS is a client-side XSS variant caused by the DOM API not being secure by default

○ User controlled strings get converted into code

○ Via dangerous DOM APIs like:

innerHTML, window.open(), ~60 other DOM APIs

Example:  https://example.com/#<img src=x onerror=alert('xss')>



HTMLFormElement.action

Element.innerHTML

location.open

HTMLAreaElement.href

HTMLMediaElement.src

HTMLFrameElement.src

HTMLSourceElement.src

HTMLTrackElement.src

HTMLInputElement.src

location.assign

location.hrefdocument.write

HTMLButtonElement.formAction

HTMLFrameElement.srcdoc

HTMLImageElement.src
HTMLEmbededElement.src

HTMLScriptElement.textContent

HTMLInputElement.formAction

HTMLScriptElement.InnerText

HTMLBaseElement.href



The idea behind Trusted Types

Require     strings     for passing (HTML, URL, script URL) values to DOM sinks.
typed objects

URL string
HTML string
Script string
Script URL string

TrustedURL
TrustedHTML
TrustedScript
TrustedScriptURL

becomes



When Trusted Types are enforced

DOM sinks reject strings

DOM sinks accept typed objects

Content-Security-Policy: trusted-types myPolicy

element.innerHTML = location.hash.slice(1); // a string

element.innerHTML = aTrustedHTML; // created via a TrustedTypes policy

The idea behind Trusted Types



When Trusted Types are in reporting mode

DOM sinks accept & report strings

DOM sinks accept typed objects

Content-Security-Policy-Report-Only: trusted-types myPolicy; report-uri /cspReport

element.innerHTML = location.hash.slice(1); // a string

element.innerHTML = aTrustedHTML; // created via a TrustedTypes policy

The idea behind Trusted Types



Creating Trusted Types

1. Create policies with validation rules

2. Use the policies to create Trusted Type objects

3. Enforce "myPolicy" by setting a Content Security Policy header
Content-Security-Policy: trusted-types myPolicy

const SanitizingPolicy = TrustedTypes.createPolicy('myPolicy', {
   createHTML(s: string) => myCustomSanitizer(s)
}, false);

// Calls myCustomSanitizer(foo).
const trustedHTML = SanitizingPolicy.createHTML(foo);
element.innerHTML = trustedHTML;



Trusted Types - default policy

The "default" policy is called as a fallback when a string is assigned to a sink.
Good way to get started and to identify dangerous DOM assignments.

Content-Security-Policy: trusted-types default

TrustedTypes.createPolicy('default', {
   createHTML(s) {
       console.log("Please fix! Insecure string assignment detected:", s);
       return s;
   }
}, true)



Reduced attack surface:

The risky data flow will always be:

Simpler security reviews - dramatically minimizes the trusted codebase
Compile time & runtime security validation
No DOM XSS - if policies are secure and access restricted

Currently in Chrome Origin Trials, but can already be polyfilled!

→

Trusted Types Summary

Source ... Policy Trusted Type→ → → ... DOM sink→



Try Trusted Types now!
bit.ly/trusted-types

https://bit.ly/trusted-types


Injection defenses: 2019 edition

Add hardening and defense-in-depth against injections:

Hardening: Use Trusted Types to make your client-side code safe from DOM XSS. 
Your JS will be safe by default; the only potential to introduce injections will be in 
your policy functions, which are much smaller and easier to review.

Defense-in-depth: Use CSP3 with nonces (or hashes for static sites) - even if an 
attacker finds an injection, they will not be able to execute scripts and attack users. 

Together they prevent & mitigate the vast majority of XSS bugs.

Content-Security-Policy: 

trusted-types myPolicy; script-src 'nonce-...'; object-src 'none'; base-uri 'none'



1. Injection defenses 2. Isolation mechanisms1. Injection defenses



Why do we need isolation?

evil.example

Attacks on resources

victim.example/sea
rch.html?q=...

Examples: CSRF, XSSI, clickjacking, web timing attacks, Spectre

Request to 
victim.example
(with cookies)

evil.example



evil.example

victim.example/sea
rch.html?q=...

Attacks on windows

Examples: XS-Search, tabnabbing, login detection, Spectre

Why do we need isolation?

Open new window

evil.example victim.example



Quick review: origins & sites

evil.example

victim.example/sea
rch.html?q=...

Cookies

Two URLs are same-origin if they share the same scheme, host and port.

https://www.google.com/foo and https://www.google.com/bar

Two URLs are same-site if they share the same scheme & registrable domain.

https://mail.google.com/ and https://photos.google.com/

Otherwise, the URLs are cross-site.

https://www.youtube.com/ and https://www.google.com/

https://www.google.com/foo
https://www.google.com/bar
https://www.google.com/foo
https://www.google.com/bar
https://www.google.com/foo
https://www.google.com/bar


Isolation for resources: 
Fetch Metadata request headers

Let the server make security decisions based on the 
source and context of each HTTP request. 



Three new HTTP request headers sent by browsers:

Sec-Fetch-Site:  Which website generated the request?
    same-origin, same-site, cross-site, none

Sec-Fetch-Mode:  The Request mode, denoting the type of the request
    cors, no-cors, navigate, nested-navigate, same-origin

Sec-Fetch-User:  Was the request caused by a user gesture?
    ?1   if a navigation is triggered by a click or keypress



https://site.example
GET /foo.png
Host: site.example
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors

GET /foo.png
Host: site.example
Sec-Fetch-Site: cross-site
Sec-Fetch-Mode: no-cors

fetch("https://site.example/foo.json")

https://evil.example
<img src="//site.example/foo.json" />



# Reject cross-origin requests to protect from CSRF, XSSI & other bugs
def allow_request(req):
  # Allow requests from browsers which don't send Fetch Metadata
  if not req['sec-fetch-site']:
    return True

  # Allow same-site and browser-initiated requests 
  if req['sec-fetch-site'] in ('same-origin', 'same-site', 'none'):
    return True

  # Allow simple top-level navigations from anywhere
  if req['sec-fetch-mode'] == 'navigate' and req.method == 'GET':
    return True

  return False



Adopting Fetch Metadata

1. Monitor: Install a module to monitor if your isolation logic 
would reject any legitimate cross-site requests.

2. Review: Exempt any parts of your application which 
need to be loaded by other sites from security restrictions.

3. Enforce: Switch your module to reject untrusted requests.
★  Also set a  Vary: Sec-Fetch-Site, Sec-Fetch-Mode  response header.

Enabled behind a flag (Experimental Web Platform Features) in           , shipping in M76.



Bonus: SameSite cookies

Applications which don't have resources that need to be fetched by other sites can 
add the SameSite flag to prevent cookies from being sent on cross-site requests.

★  Adds security by protecting against cross-site attacks. 
★  Ensures your site will work properly as browsers roll out 3p cookie restrictions.

Fetch Metadata headers can identify cross-site resource requests to your application 
and help you test your migration to SameSite cookies.

Set-Cookie: SESSION=<cookie-value>; Secure; HttpOnly; SameSite=Lax;



Isolation for windows: 
Cross-Origin Opener Policy

Protect your windows from cross-origin tampering.



victim.example/se
arch.html?q=...

Open new window

evil.example

w = window.open(victim, "_blank")

// Send messages
w.postMessage("hello", "*")

// Count frames
alert(w.frames.length);

// Navigate to attacker's site
w.location = "//evil.example"

victim.example



Isolation: Cross-Origin Opener Policy

victim.example/se
arch.html?q=...

evil.example victim.example

Cross-Origin-Opener-Policy: same-origin

victim.example

)

Cross-Origin-Opener-Policy: same-siteor



Adopting COOP 

A window with a Cross-Origin-Opener-Policy will be put in a different 
browsing context group from its cross-site opener:

- External documents will lose direct references to the window

Side benefit: COOP allows browsers without Site Isolation to put the document in a 
separate process to protect the data from speculative execution bugs.

Currently implemented as a prototype in          , coming to           soon.



Recap: Web Security, 2019 Edition

Defend against injections and isolate your 
application from untrusted websites.



CSP3 based on script nonces
- Modify your <script> tags to include a nonce which changes on each response

Trusted Types
- Enforce type restrictions for unsafe DOM APIs, create safe types in policy functions

Fetch Metadata request headers
- Reject resource requests that come from unexpected sources
- Use the values of                                         and                                         request headers 

Cross-Origin Opener Policy
- Protect your windows references from being abused by other websites

Content-Security-Policy: trusted-types default

Content-Security-Policy: script-src 'nonce-...' 'strict-dynamic' ...

Cross-Origin-Opener-Policy: same-origin 

Sec-Fetch-Site Sec-Fetch-Mode



Thank you! 
csp.withgoogle.com

csp-evaluator.withgoogle.com

bit.ly/trusted-types

Helpful resources

Artur Janc

@arturjanc

Information Security Engineer, Google

Lukas Weichselbaum
Information Security Engineer, Google 

@we1x

@lweichselbaum

http://csp.withgoogle.com
https://csp-evaluator.withgoogle.com/
http://bit.ly/trusted-types

