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> whoami

§ Alvaro Muñoz  a.k.a. @pwntester

- Principal security researcher with Micro Focus Fortify

- Presented my research at different conferences such as:

- BlackHat, Defcon, RSA, OWASP AppSecEU, AppSecUSA, JavaOne, etc.

- Responsibly reported critical vulnerabilities to companies/frameworks such as: 

- Microsoft, Oracle, Workday, Salesforce, HPE, Pivotal, Apache, Atlassian, Lightbend, 
etc.



Some serialization experience

http://blog.diniscruz.com/2013/08/using-xmldecoder-to-execute-server-side.html
http://www.pwntester.com/blog/2013/12/23/rce-via-xstream-object-deserialization38/
http://www.pwntester.com/blog/2013/12/16/cve-2011-2894-deserialization-spring-rce/
https://gist.github.com/pwntester/ab70e88821b4a6633c06
https://github.com/pwntester/SerialKillerBypassGadgetCollection
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Agenda

1. Serialization 101
2. .NET serializers
1. Native
2. 3rd Party

3. Detecting vulnerable endpoints
4. Fixing vulnerable endpoints
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Serialization 101



Marshalling Pickles



Marshalling Pickles
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Marshalling Pickles
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Marshalling Pickles
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Marshalling Pickles
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Marshalling Pickles
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Type Discriminator

Pickle Rick



Marshalling Pickles
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Marshalling Pickles
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Marshalling Pickles
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Marshalling Pickles
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Methods Invoked to Fully Reconstruct Objects

§ Deserialization callbacks:

- Java:
- readObject/readResolve

- .NET:
- Deserialization constructor overload
• <Type> (SerializationInfo, StreamingContext)

- IDeserializationCallback.OnDeserialization(Object)

- [OnDeserializing]/[OnDeserialized] annotated methods

§ Setters
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Gadgets

§ Attacker controls:

§ Gadget:
- Type which contains one or more methods invoked during the 

deserialization process that under controlled circumstances may do bad 
things
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Type Type Property 
Values



System.Windows.Data.ObjectDataProvider

set_MethodName()

BeginQuery()

QueryWorker()

InvokeMethodOnInstance() 

Refresh()

set_ObjectType()
set_ObjectInstance()



Gadgets
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ysoserial.net
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.NET Formatters



Introduction

§ Attacks on .NET formatters are not new

§ James Forshaw already introduced them at BlackHat 2012 for

- BinaryFormatter (Binary)

- NetDataContractSerializer (XML)

§ Lack of Remote Code Execution gadgets until 2017



Vulnerable in default configuration

§ BinaryFormatter (Binary)

- BinaryMessageFormatter (Binary) [MSMQ]

- ObjectStateFormatter (Binary) [ViewState]

- LosFormatter (Binary)

§ NetDataContractSerializer (XML)

§ SoapFormatter (XML)

§ FastJSON (JSON)

§ Sweet.Jayson (JSON)
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BinaryFormatter
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Eg: AppHarbor
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Eg: AppHarbor
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Super-Cookie AntiPattern

31 https://blog.appharbor.com/2012/04/04/cookietempdataprovider-for-asp-net (now deleted)



Actually that advice is everywhere :(
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Silently removed from ASP.NET MVC
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Demo
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Azure Active Directory Application Proxy
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Vulnerable if developers mess it up (1/2)

§Attacker can control Expected Type:

- DataContractSerializer (XML)

- DataContractJsonSerializer (JSON)

- XmlSerializer (XML)
- XmlMessageSerializer (XML) [MSMQ]
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XmlSerializer

38

DotNetNuke CMS (CVE-2017-9822 )

Do not let users control Expected Type



Vulnerable if developers mess it up (2/2)

§ Insecure Configuration:

- JavaScriptSerializer (JSON)

- JSON.NET (JSON)

- FSPickler (JSON)
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JavaScriptSerializer
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Do not use Type Resolver



JSON.NET

41
Do not use TypeNameHandling != None



Detecting Vulnerable 
Endpoints



Passive

§Magic numbers:
§Burp plugin

- pwntester/dotnet-deserialization-scanner
- False Positives

- Some Images may contain similar bytes

- May appear in signed ViewState

AAEAAAD/////…



Active

§Send payload and watch execute (DAST)
- Use ysoserial.net to generate:

- DoS gadget (sleep)

- URL gadget (DNS Lookup)

§ Instrument deserialize methods (IAST)
- Monitor running application
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Static

§ Single dataflow+controlflow

- Track data to be deserialized

- eg: BinaryFormatter

§ Dual dataflow+controlflow

- Track data to be deserialized and expected type

- eg: XmlSerializer
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Fixing vulnerable endpoints
46



1 - Stop using it



1 - Stop using it

§ Do you really need it?

- eg: Nancy (CVE-2017-9785)

- NCSRF cookie (CSRF token)

§ Do you really need Type discriminators in JSON/XML?

- eg: Breeze (CVE-2017-9424 )

- Type information not needed since it works with JS clients
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JSON.NET
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Use TypeNameHandling == None



2 - Sign and verify it

§ Use HMAC, never MD5(secret + data) | SHA1(secret + data)

§ Examples:

- AppHarbor

- Azure Active Directory

§ ASP.NET MVC Futures -> ASP.NET MVC

- Uses the DataProtection API which offers both Integrity and Confidentiality

§ ASP.NET ViewState
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Signed Cookie
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DataProtector.Protect(bytes) == Sign it (and optionally encrypt it)



ViewState

§ ViewState contains the page state serialized using 
ObjectStateFormatter.

§ Since 4.5.2 ASP.NET ignores `EnableViewStateMac` and will always 
sign and encrypt the ViewState

- Patch was applied retroactively back to 1.1

§ Still found hundreds (200+) of servers using old versions without 
signing/encryption!
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ViewState

§ In 4.5 Microsoft added Purpose to derive unique keys for each request
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KDFEncryption Key
Validation Key

Encryption Key
Validation Key

(per-request) Purposes Strings

MachineKey (per-request) keys



ViewState

§ PrimaryPurpose and some specific purposes are easily predictable, 
but what about ViewStateUserKey …
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URL: /Account/Register



ViewState
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Careful with leaking the keys

§ Leak web.config through XXE vulnerabilities

- eg: AfterLogic WebMail Pro ASP.NET 6.2.6 - Administrator Account 
Disclosure via XXE

§ Leak web.config through Padding Oracle 

- (MS10-070) (CVE-2010-3332)

§ Vulnerability in .NET Framework Could Allow Information Disclosure 

- (MS15-041) (CVE-2015-1648)
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Yellow Screen of Death

57 https://www.troyhunt.com/owasp-top-10-for-net-developers-part-6/



Don’t make it public
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Careful with One-Click Installers
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Careful with leaking the key
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https://msdn.microsoft.com/en-us/library/ms178199(v=vs.85).aspx

You can help prevent modification to your application configuration by 
encrypting sections of configuration files. 

For more information, see “Encrypting Configuration Information Using 
Protected Configuration” (https://msdn.microsoft.com/en-
us/library/53tyfkaw(v=vs.85).aspx)



3 - Bind it

§ Constrain allowed types

§ Serialization binders

- Allows users to control class loading and mandate what class to 
load.

§ Also Known As “look-ahead deserialization” in Java
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Strict White List
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Credit: Jonathan Birch - Microsoft Corporation



Strict White List
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Never use BlackLists or Broad WhiteLists
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Bypass Gadgets
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System.Data.DataSet



Also …
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•Don’t use IsAssignableFrom
• Attackers can find a generic Object type in the Object graph to place 

the payload.
•Don’t return null for unexpected types

• Some serializers fall back to a default binder, allowing exploits.
•Don’t use reflection to look up types:

Assembly.Load(assemblyName).GetType(typeName);
• Reflection is slow, and a malicious user can DoS your application by 

forcing it to spend memory and time loading irrelevant assemblies.

Credit: Jonathan Birch - Microsoft Corporation



4 - Replace It

§ Structured Data Approaches:

- You define how you want your data to be structured once, then 
you can use special generated source code to easily write and read 
your structured data to and from a variety of data streams and 
using a variety of languages.

- Eg: Google Protocol Buffers

§ Untyped JSON/XML

- Eg: Json.NET with TypeNameHandling.None
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Mahalo!
alvaro.munoz@microfocus.com
@pwntester
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