
.NET SERIALIZATION

Alvaro Muñoz
pwntester

> whoami

§ Alvaro Muñoz a.k.a. @pwntester

- Principal security researcher with Micro Focus Fortify

- Presented my research at different conferences such as:

- BlackHat, Defcon, RSA, OWASP AppSecEU, AppSecUSA, JavaOne, etc.

- Responsibly reported critical vulnerabilities to companies/frameworks such as:

- Microsoft, Oracle, Workday, Salesforce, HPE, Pivotal, Apache, Atlassian, Lightbend,
etc.

Some serialization experience

http://blog.diniscruz.com/2013/08/using-xmldecoder-to-execute-server-side.html
http://www.pwntester.com/blog/2013/12/23/rce-via-xstream-object-deserialization38/
http://www.pwntester.com/blog/2013/12/16/cve-2011-2894-deserialization-spring-rce/
https://gist.github.com/pwntester/ab70e88821b4a6633c06
https://github.com/pwntester/SerialKillerBypassGadgetCollection

3

XM
LD

ec
od

er
XS

tre
am

Sp
rin

g
RCE

Gaf
ge

t Apache Commons
Collections
RCE Gadget

Lo
ok

-A
he

ad
 B

yp
as

s

M
ult

ipl
e R

CE
Gad

ge
ts

JR
E

8u
20

 R
CE

Gad
ge

t
JS

ON D
es

er
ial

iza
tio

n

2013 2014 2015 2016 2017 2018

…

2012

4

1001010
0101001
0101010

5

6

Tic

Tic
Tic

Tic

Tic

Tic

TicTac

Tac

Tac

Tac

Tac

Tac

Tac

Tac

10101011001010110
1010101011011

1000

1000
1010101011010

101010110010101001

Agenda

1. Serialization 101
2. .NET serializers
1. Native
2. 3rd Party

3. Detecting vulnerable endpoints
4. Fixing vulnerable endpoints

Inside

Serialization 101

Marshalling Pickles

Marshalling Pickles

10

Marshalling Pickles

11

Marshalling Pickles

12

Pickle Rick

Marshalling Pickles

13

Pickle Rick

Marshalling Pickles

14

Type Discriminator

Pickle Rick

Marshalling Pickles

15

Pic
kle

 Rick

Marshalling Pickles

16

Pic
kle

 Rick

Marshalling Pickles

17

Morty
Pickle Rick

Marshalling Pickles

18

Pickle Rick
Morty

Methods Invoked to Fully Reconstruct Objects

§ Deserialization callbacks:

- Java:
- readObject/readResolve

- .NET:
- Deserialization constructor overload
• <Type> (SerializationInfo, StreamingContext)

- IDeserializationCallback.OnDeserialization(Object)

- [OnDeserializing]/[OnDeserialized] annotated methods

§ Setters

19

Gadgets

§ Attacker controls:

§ Gadget:
- Type which contains one or more methods invoked during the

deserialization process that under controlled circumstances may do bad
things

20

Type Type Property
Values

System.Windows.Data.ObjectDataProvider

set_MethodName()

BeginQuery()

QueryWorker()

InvokeMethodOnInstance()

Refresh()

set_ObjectType()
set_ObjectInstance()

Gadgets

22

ysoserial.net

23

24

.NET Formatters

Introduction

§ Attacks on .NET formatters are not new

§ James Forshaw already introduced them at BlackHat 2012 for

- BinaryFormatter (Binary)

- NetDataContractSerializer (XML)

§ Lack of Remote Code Execution gadgets until 2017

Vulnerable in default configuration

§ BinaryFormatter (Binary)

- BinaryMessageFormatter (Binary) [MSMQ]

- ObjectStateFormatter (Binary) [ViewState]

- LosFormatter (Binary)

§ NetDataContractSerializer (XML)

§ SoapFormatter (XML)

§ FastJSON (JSON)

§ Sweet.Jayson (JSON)

27

BinaryFormatter

28

Eg: AppHarbor

29

Eg: AppHarbor

30

Super-Cookie AntiPattern

31 https://blog.appharbor.com/2012/04/04/cookietempdataprovider-for-asp-net (now deleted)

Actually that advice is everywhere :(

32

Silently removed from ASP.NET MVC

33

Demo
34

Azure Active Directory Application Proxy

36

Vulnerable if developers mess it up (1/2)

§Attacker can control Expected Type:

- DataContractSerializer (XML)

- DataContractJsonSerializer (JSON)

- XmlSerializer (XML)
- XmlMessageSerializer (XML) [MSMQ]

37

XmlSerializer

38

DotNetNuke CMS (CVE-2017-9822)

Do not let users control Expected Type

Vulnerable if developers mess it up (2/2)

§ Insecure Configuration:

- JavaScriptSerializer (JSON)

- JSON.NET (JSON)

- FSPickler (JSON)

39

JavaScriptSerializer

40

Do not use Type Resolver

JSON.NET

41
Do not use TypeNameHandling != None

Detecting Vulnerable
Endpoints

Passive

§Magic numbers:
§Burp plugin

- pwntester/dotnet-deserialization-scanner
- False Positives

- Some Images may contain similar bytes

- May appear in signed ViewState

AAEAAAD/////…

Active

§Send payload and watch execute (DAST)
- Use ysoserial.net to generate:

- DoS gadget (sleep)

- URL gadget (DNS Lookup)

§ Instrument deserialize methods (IAST)
- Monitor running application

44

Static

§ Single dataflow+controlflow

- Track data to be deserialized

- eg: BinaryFormatter

§ Dual dataflow+controlflow

- Track data to be deserialized and expected type

- eg: XmlSerializer

45

Fixing vulnerable endpoints
46

1 - Stop using it

1 - Stop using it

§ Do you really need it?

- eg: Nancy (CVE-2017-9785)

- NCSRF cookie (CSRF token)

§ Do you really need Type discriminators in JSON/XML?

- eg: Breeze (CVE-2017-9424)

- Type information not needed since it works with JS clients

48

JSON.NET

49

Use TypeNameHandling == None

2 - Sign and verify it

§ Use HMAC, never MD5(secret + data) | SHA1(secret + data)

§ Examples:

- AppHarbor

- Azure Active Directory

§ ASP.NET MVC Futures -> ASP.NET MVC

- Uses the DataProtection API which offers both Integrity and Confidentiality

§ ASP.NET ViewState

50

Signed Cookie

51

DataProtector.Protect(bytes) == Sign it (and optionally encrypt it)

ViewState

§ ViewState contains the page state serialized using
ObjectStateFormatter.

§ Since 4.5.2 ASP.NET ignores `EnableViewStateMac` and will always
sign and encrypt the ViewState

- Patch was applied retroactively back to 1.1

§ Still found hundreds (200+) of servers using old versions without
signing/encryption!

52

ViewState

§ In 4.5 Microsoft added Purpose to derive unique keys for each request

53

KDFEncryption Key
Validation Key

Encryption Key
Validation Key

(per-request) Purposes Strings

MachineKey (per-request) keys

ViewState

§ PrimaryPurpose and some specific purposes are easily predictable,
but what about ViewStateUserKey …

54

URL: /Account/Register

ViewState

55

Careful with leaking the keys

§ Leak web.config through XXE vulnerabilities

- eg: AfterLogic WebMail Pro ASP.NET 6.2.6 - Administrator Account
Disclosure via XXE

§ Leak web.config through Padding Oracle

- (MS10-070) (CVE-2010-3332)

§ Vulnerability in .NET Framework Could Allow Information Disclosure

- (MS15-041) (CVE-2015-1648)

56

Yellow Screen of Death

57 https://www.troyhunt.com/owasp-top-10-for-net-developers-part-6/

Don’t make it public

58

Careful with One-Click Installers

59

Careful with leaking the key

60

https://msdn.microsoft.com/en-us/library/ms178199(v=vs.85).aspx

You can help prevent modification to your application configuration by
encrypting sections of configuration files.

For more information, see “Encrypting Configuration Information Using
Protected Configuration” (https://msdn.microsoft.com/en-
us/library/53tyfkaw(v=vs.85).aspx)

3 - Bind it

§ Constrain allowed types

§ Serialization binders

- Allows users to control class loading and mandate what class to
load.

§ Also Known As “look-ahead deserialization” in Java

61

Strict White List

62
Credit: Jonathan Birch - Microsoft Corporation

Strict White List

63

Never use BlackLists or Broad WhiteLists

64

Bypass Gadgets

65

System.Data.DataSet

Also …

66

•Don’t use IsAssignableFrom
• Attackers can find a generic Object type in the Object graph to place

the payload.
•Don’t return null for unexpected types

• Some serializers fall back to a default binder, allowing exploits.
•Don’t use reflection to look up types:

Assembly.Load(assemblyName).GetType(typeName);
• Reflection is slow, and a malicious user can DoS your application by

forcing it to spend memory and time loading irrelevant assemblies.

Credit: Jonathan Birch - Microsoft Corporation

4 - Replace It

§ Structured Data Approaches:

- You define how you want your data to be structured once, then
you can use special generated source code to easily write and read
your structured data to and from a variety of data streams and
using a variety of languages.

- Eg: Google Protocol Buffers

§ Untyped JSON/XML

- Eg: Json.NET with TypeNameHandling.None

67

Mahalo!
alvaro.munoz@microfocus.com
@pwntester

69

