
Lattice Enumeration on GPUs for fplll

Simon Pohmann1, Marc Stevens2, and Jens Zumbrägel1

1University of Passau
2CWI Amsterdam

July 30, 2021

The Kannan-Fincke-Pohst lattice enumeration algorithm is the classical
method for solving the shortest vector problem in lattices. It is also a funda-
mental tool for most lattice reduction algorithms that provide speed-length
tradeoffs. As this algorithm allows efficient parallel implementations, it is
likely that implementing it on modern graphics processing units (GPUs) can
significantly improve performance. We provide such an implementation that
is compatible with the fplll lattice reduction library [fplll16] and achieves a
considerable speedup in higher lattice dimensions, compared to current, mul-
tithreaded versions. For this, we use the CUDA technology that provides an
abstract language for programming GPUs.

Keywords Lattice Enumeration, Shortest Vector, fplll, Cryptanalysis

1 Introduction

A lattice is a discrete free Z-submodule of the d-dimensional Euclidean space. Lattices
are usually considered together with the norm from this space, which then gives rise
to interesting computational problems. The most fundamental is the shortest vector
problem (SVP), which is to find a shortest nonzero lattice vector given a lattice basis.
This problem is often used as a basis for cryptography, as it is conjectured to be extremely
hard, even in approximative versions. In particular, the security of many promising
candidates for post-quantum cryptography can be reduced to SVP. Therefore, a good
understanding of its theoretical and practical hardness is important.

To solve this problem exactly, there are two main approaches: The classical method
is the Kannan-Fincke-Pohst lattice enumeration [Kan83; FP85], which performs an ex-
haustive search of all lattice points of a bounded norm. In practice, this algorithm
performs very well, also because many improvements have been introduced. However,

1

the time complexity is super-exponential and therefore not asymptotically optimal, while
the space complexity is only polynomial. The other approach is lattice sieving [AKS01],
which yields exponential running times, at the cost of needing exponential space. A lot
of work in this field has recently made this approach competitive. Nevertheless, lattice
enumeration is still widely used and for dimensions up to 70 the best known algorithm
[Alb+19].

Due to the conjectured hardness of SVP, it suggests itself to use general-purpose GPU
computing that has developed in the last decade. Graphics processing units (GPUs) are
optimized for highly parallelized workloads and have higher computing power than CPUs
for suitable algorithms. Therefore, they have been successfully used in various fields, like
machine learning, physical simulations and optimization/search problems, also including
cryptanalysis.

For example, an implementation of the sieving approach on GPUs has recently broken
current SVP records [DSW21]. Because of the high memory requirements of sieving, this
algorithm used 1.5 TB of system RAM on a GPU server. As current GPUs have at most
up to 32 GB of on-card memory, this introduced the main bottleneck of system-GPU
data transfers. On the other hand, for our implementation of the enumeration approach,
using only on-card memory is sufficient. Therefore, it also runs on commodity hardware.
Instead of the memory bottleneck, the enumeration algorithm leads to a lot of divergent
program flow (i.e. different branching behaviour in concurrent execution threads) that
is not well-suited for GPU architectures. Mitigating that problem is the main result of
this work.

Contribution We provide an implementation of the lattice enumeration algorithm that
is able to use the extensive parallelization capacities provided by GPUs and is able to
achieve a speedup of up to 5 compared to a multithreaded state-of-the-art implemen-
tation [fplll16]. For this, we used the CUDA technology by Nvidia that provides a
high-level language for programming Nvidia GPUs [Nic+08].

To design the algorithm, we focused on the view of lattice enumeration as a depth-
first tree search, and designed an algorithm that is optimized for GPUs and the concrete
structure of this tree. In general, tree algorithms are not optimal for GPU architec-
tures, because they usually require irregular, non-local memory accesses and non-uniform
branching. By using the properties of the enumeration tree however, we partly circum-
vent these problems and achieve better performance than in the case of DFS in general
trees, as studied e.g. in [Jen+11].

2 Preliminaries

2.1 Lattices

A lattice is a discrete subgroup L ⊆ Rn. It follows that each lattice is of the form
L = b1Z + ... + bmZ = rowspZ(B) for linearly independent bi resp. a matrix B ∈ Rm×n

with rows bi. To be consistent with the convention that the bi are the rows of B (as
opposed to columns), we also interpret lattice points as row vectors. These bi are called

2

basis of the lattice L, and are in general not unique. In particular, two bases (given as
their matrices) B and B′ generate the same lattice, if and only if B′ = UB for some
unimodular U ∈ Zm×m holds. The number m is called the rank of the lattice. Usually,
we will consider full-rank lattices, i.e. m = n.

For a given lattice L, there is a (non-unique) nonzero vector v ∈ L of smallest Eu-
clidean norm. This norm is denoted by λ(L) := minv∈L\{0} ‖v‖. Now consider the
so-called shortest vector problem (SVP): Given a basis B ∈ Rn×n that generates a
full-rank lattice L, compute a point x ∈ L \ {0} such that ‖x‖ = λ(L). To solve this
problem exactly, there are mainly two approaches: The lattice enumeration algorithm,
as described in Section 3, and lattice sieve algorithms [AKS01; Alb+19].

2.2 Gram-Schmidt orthogonalization

Given a matrix B ∈ Rn×n with rows b1, ..., bn, the Gram-Schmidt process yields the
projections b∗i of bi onto 〈b1, ..., bi−1〉⊥. Denoting by B∗ the matrix whose rows are
the b∗i , this results in B = µB∗ where µ is a lower triangle matrix with a diagonal
of 1s. Furthermore, for i 6= j the vectors b∗i ⊥ b∗j are perpendicular, so with D =
diag(‖b∗1‖, ..., ‖b∗n‖) we have the decomposition

B = µDT where T = D−1B∗ is orthonormal.

The SVP problem is invariant under linear isometries, i.e. given a lattice L generated
by a basis B and an orthonormal matrix S, we have λ(LS) = λ(L) (where we denote
the lattice that is generated by BS by LS = {xS | x ∈ L}). Additionally, a solution to
SVP in LS can be easily transformed into a solution to SVP in L and vice versa. Hence,
to solve SVP it suffices to consider the lattice generated by µD. The fact that this is a
lower triangle matrix will be useful to formulate the calculations in a very concise way.

2.3 The CUDA programming model

CUDA is a language extension of C++ that allows writing code for execution on GPUs
[Nic+08]. The only difference between a CUDA application and a standard C++ one
is that the former can define and call “kernels”, which are similar to functions but are
executed on the GPU. As GPUs are optimized for heavily parallel algorithms, starting
a kernel usually means starting thousands of GPU threads, all executing the same code
in the kernel. These threads are grouped into the following units:

Warp The smallest unit of threads; on all current architectures, a warp consists of 32
threads. In CUDA, a thread is just a logical concept, and the hardware works
directly with warps. As a result, all threads in a warp classically share a program
counter, so they execute the same instruction at same time.

There are two important consequences impacting the performance: If threads in
the same warp take different paths during conditional code execution, these paths
are executed sequentially, and all threads that did not take the current path are
idle. Therefore, for high throughput, it is essential to avoid divergent code within a

3

warp. The second point deals with memory access. If threads within a warp access
sequential words in memory, all of them can be done by the memory controller in
one step (called “coalesced” memory access). These coalesced memory accesses
are crucial for avoiding huge memory latencies.

Block Up to 1024 threads can be grouped in a block. Within a block, it is possible to
use barrier-style synchronization. Except in very recent versions of CUDA, it is
impossible to synchronize threads between blocks (however, atomics are available).
Apart from this, one can allocate so-called “shared memory” that can be accessed
by all threads within a block. Shared memory is scarce (up to 100KB per block),
but accesses are significantly faster than the RAM-like global memory.

Grid The grid is the logical collection of all blocks that are started for the current kernel.

3 Approach

3.1 Lattice Enumeration

In this section, we describe the Kannan-Fincke-Pohst enumeration algorithm [Kan83;
FP85], as it is used in [fplll16].

Given an n-dimensional lattice L with basis b1, ..., bn, consider the projections πk onto
the space 〈b1, ..., bk〉⊥. Then the idea of lattice enumeration is to begin with the origin
0 ∈ πnL = {0} and repeatedly expand points of norm ≤ r in πk+1L to multiple points
of norm ≤ r in πkL.

For p ∈ πk+1L of norm ‖p‖ ≤ r we call all points p′ ∈ πkL of norm ‖p′‖ ≤ r with
πk+1p

′ = p the children of p. As the projections do not increase the norm of vectors, have
that for p′ ∈ πkL with norm ‖p′‖ ≤ r, also πk+1p

′ ∈ πk+1L is of norm ≤ r. Therefore,
considering the children of each point in πk+1L of norm ≤ r yield exactly all points in
πkL of norm ≤ r.

As the use of “children” already indicates, this defines a tree which we call the enu-
meration tree. This enumeration tree has root 0 and each maximal path has length
n + 1. Additionally, the leaf nodes are exactly given by the lattice points of norm ≤ r.
The standard method is now to perform a depth-first search on this tree, and return the
shortest nonzero leaf node that was encountered.

Therefore, the fundamental operation of the algorithm is the calculation of all children
points. Usually, instead of storing the points p ∈ πkL, the coefficients w.r.t. the projected
basis πkbi are stored. In this case, on tree level n − k, each point p ∈ πkL has a
representation p = πk

∑n
i=k+1 xibi, xi ∈ Z, so the coefficients for b1, ..., bk can be chosen

to be zero. It follows that the children p′ of a point p = πk
∑n

i=k+1 xibi are characterized
by their coefficient xk, so they are of the form

p′ = πk−1

n∑
i=k

xibi where ‖b∗k‖
∣∣∣xk +

n∑
i=k+1

xiµki

∣∣∣ ≤√r2 − ‖p‖2, xk ∈ Z,

4

which can be easily seen by calculating ‖p′‖∥∥∥πk−1 n∑
i=k

xibi

∥∥∥2 =
∥∥∥b∗k 1

〈b∗k, b∗k〉
〈b∗k,

n∑
i=k

xibi〉+ πk

n∑
i=k

xibi

∥∥∥2
=
‖b∗k‖2

〈b∗k, b∗k〉2
〈b∗k,

n∑
i=k

xibi〉2 +
∥∥∥πk n∑

i=k

xibi

∥∥∥2
= ‖b∗k‖2

(n∑
i=k

xiµki

)2
+
∥∥∥πk n∑

i=k+1

xibi

∥∥∥2 = ‖b∗k‖2
(
xk +

n∑
i=k+1

xiµki

)2
+ ‖p‖2.

Iterating over all children is therefore equivalent to iterate over all integers xk between

−
n∑

i=k+1

xiµki −
√
r2 − ‖p‖2
‖b∗k‖

≤ xk ≤ −
n∑

i=k+1

xiµki +

√
r2 − ‖p‖2
‖b∗k‖

This directly shows that each node has at most 2r/‖b∗k‖ children, giving a running
time of exp(O(n2)) on an LLL-reduced basis with r = ‖b1‖ ∈ O(2n/2)‖b∗k‖. A more
thorough analysis shows that under the right reduction assumptions on the input basis,
the enumeration algorithm has a running time of 2O(n logn) [Kan83; HS07].

The partial center sums

From this description we see that the major work is computing the sum
∑n

i=k+1 xiµki,
often called center as it is the center of the interval from which to choose xk. By keeping
track of all the partial sums

∑n
i=k xiµli for l < k, the center is always available, and

updating the partial sums requires n− k multiplications on tree level n− k. In the final
algorithm, we will compute and store these values lazily.

Decrease enumeration bound

When finding any leaf node in the enumeration tree, this node corresponds to a lattice
point x ∈ L. If x 6= 0, we know that there is a nonzero lattice point of norm ≤ ‖x‖ in the
lattice, so to find the shortest one, it suffices now to search only the points of norm ≤ ‖x‖.
In other words, we can potentially decrease the enumeration bound r by r := min{r, ‖x‖}
(there is some complication because of rounding errors during floating point arithmetic,
see [PS08]), which can significantly reduce the size of the tree. Therefore, finding leaf
nodes as early as possible is important for a fast algorithm. The resulting routine is
shown in Algorithm 1.

3.2 Parallelization of the Lattice Enumeration

The main difficulty of implementing the enumeration algorithm efficiently on GPUs is
the fact that nodes in the enumeration tree have greatly varying degree, so subtrees
may have completely different size and structure. This introduces a lot of branching and
makes it hard to evenly distribute work on the threads.

5

Algorithm 1 Find tree node children
Input: parent coefficients xk+1, ..., xn, parent norm ‖p‖2, partial center sums

∑
i xiµli

for l < k + 1, matrix (µij)

Output: coefficients x
(i)
k , ..., x

(i)
n and norms of the children πk−1

∑
n x

(i)
n bn of πk

∑
n xnbn

Set center :=
∑n

i=k+1 xiµkj
Set x0 = bcentere
Set δ = 1 if center ≥ x0, otherwise δ = −1
for all x ∈ {x0, x0 + δ, x0 − δ, x0 + 2δ, ...} do

If (x− center)2‖b∗k‖2 + ‖p‖2 > r2, exit
Otherwise, yield the point p′ with coefficients (x, xk+1, ..., xn) and norm ‖p′‖2 =
‖p‖2 + (x− center)2‖b∗k‖2

end for

These problems especially occur in the following “naive” approach: Enumerate all
points on a certain tree level on the host, and then assign each GPU thread one of these
points and let them enumerate the corresponding subtree. Nevertheless, this is still the
main idea of our approach. However, we try to counter the problems by assigning a
subtree not to a thread, but to a warp and using a work-stealing queue to distribute
work among warps.

3.3 Subtree enumeration within a warp

The main idea for the thread cooperation within a warp is to let every thread expand the
children of an assigned node, but not recurse into the corresponding subtrees. Instead,
all the created new children nodes are then written to memory and are assigned to
potentially different threads in the next step.

This prevents threads whose subtrees have different size to diverge and having to wait
for the longer one. Additionally, having a list of nodes whose subtrees must still be
searched also allows us to pick nodes that will be processed in the next step. This way,
we ensure that all threads always work on nodes on the same tree level, which allows
coalesced memory access, given a correct memory layout of the data.

The caveat of this approach is of course that it requires frequent memory accesses to
load/store the tree nodes. The latency introduced by this is the main factor limiting
performance. To at least reduce it, we apply the node shuffling not at each tree level,
but only at every k-th tree level, for a constant k (in experiments, k = 3 has yielded
the best results). In some more detail, this is described in Algorithm 2. For finding the
coefficients of the points childrenk({xi}) in the algorithm, an adaption of the efficient
(but branching) recursive enumeration procedure from fplll is used. It also uses the
previously calculated partial center sum values from Section 3.1.

6

Algorithm 2 Basic intra-warp enumeration
Input: subtree root R (with data required for Alg. 1), matrix (µij)
Output: Coeffients x1, ..., xn and norm ‖

∑
n xnbn‖ of shortest nonzero leaf vector in

the subtree spanned by R

Init buffer with single node R on level 0
while node buffer is not empty do
l := deepest tree level for which there are ≥ 32 nodes
If such a l does not exist, use highest level with 6= 0 nodes
Assign one node xi on level l to each thread i ∈ {0, ..., 31}
if l is leaf level of enumeration tree then

Thread i computes childrenk({xi}) using Alg. 1 recursively
If one of these is 6= 0 and shorter than the current optimal solution, update it

else
Thread i computes childrenk({xi}) using Alg. 1 recursively
Store their coefficients and norms
Calculate new partial center sums with a parallelized matrix-matrix multiplication

end if
end while

3.4 Parameters

To balance the cost induced by memory accesses, the percentage of cases in which there
are not enough tasks for all threads and the time threads of the same warp have to wait
for each other, we have introduced algorithm parameters that control the thresholds
used in the algorithm:

k = dimensions per level As described above, this is the amount of enumeration tree
levels that are expanded using Algorithm 1, before resulting nodes are written
into the buffer. The name dimensions per level refers not to the levels of the
enumeration tree, but to the levels of the “compacted” enumeration tree, in which
each level corresponds to k levels of the original tree. From this perspective, the
childrenk({xi}) are the direct children of xi in the compacted tree.

T = max subtree paths During the calculation of childrenk({xi}) using Algorithm 1,
if more than T leaves resp. root-leaf-paths of the induced small subtree are found,
the thread stops, and processing on the node will continue later. This can prevent
threads from waiting for the computation on a very big subtree, but different
subtree structures can still cause suspended threads. A similar idea was previously
used in [Her+10], but without the other techniques applied in this work.

q = min active parents percentage This parameter is used to determine on which
level nodes should be processed in the current step. Using the deepest level with
≥ 32 nodes as in Algorithm 2 does not work, as we store a reference to its parent
for each node. Therefore, a node cannot be deleted before all its children are,
otherwise, the parent reference would be invalid.

7

Algorithm 3 Improved intra-warp enumeration
Input: list of subtree roots, whose subtrees are to be searched, matrix (µij)
Output: Coeffients x1, ..., xn and norm ‖

∑
n xnbn‖ of shortest nonzero leaf vector in

any of the subtrees spanned by the given roots

Start dN2/32e warps, with 32 threads each, that each execute the following:
Atomically (w.r.t. all warps), get next N1 root nodes R1, ..., RN1 from the input list
if No root nodes are left in the list then

Terminate the current warp; if all warps are done, the algorithm is finished
end if
Init the (shared by the threads in a warp) node buffer with R1, ..., RN1 on level 0
Set the current level l := 0
while node buffer is not empty do
while the last 32 nodes in the buffer on level l contain more than 32 · q unfinished
ones and new children points fit into the buffer do

Assign one node xi on level l to each thread i ∈ {0, ..., 31}
If not stored yet, cooperatively compute and store required center partsums
Thread i computes childrenk({xi}) using Alg. 1 recursively (possibly resume an
old computation); if their number exceeds T , stop and update the buffer, so that
Alg. 1 can be resumed later
if l is the leaf level of the enumeration tree then

If one of these is 6= 0 and shorter than the current optimal solution, update it
else

Store their coefficients and norms
end if

end while
if children points have been added to the buffer during the above loop then

Process the newly generated children points in the next step, i.e. set l := l + 1
else

Delete finished nodes among the last 32 ones on level l from the buffer
Note that here, there are no children that might refer to the deleted nodes
if the buffer contains no nodes on level l then

Go one level up, i.e. l := l − 1
end if

end if
end while
Goto the beginning

8

Therefore, in each step we process the deepest level with enough nodes. If now
after processing a level, the fraction of nodes that are not finished falls below q, we
completely process all nodes in the buffer below the current level, and then delete
the finished nodes.

N1 = initial nodes per group This is the number of subtree roots the buffer is ini-
tialized with in the first step; as opposed to Algorithm 2, this may be greater
than 1.

N2 = thread count The total number of CUDA threads that will be started.

Including these additional ideas yields Algorithm 3.
In experiments, the following set of parameters has yielded the best results:

k T q N1 N2

3 50 0.5 2 32 · 256

4 Performance

The following benchmark was done on a machine with an Intel core i7-7700K CPU and
a GeForce GTX 1080 Ti GPU. As a comparison for the CUDA implementation, we use
the multithreaded enumeration algorithm from the fplll library [fplll16] running on all
8 (logical) cores the CPU offers. For each dimension, four knapsack matrices with a
uniform 350-bit column were used as lattice, and the graph shows the median of the
running time of both implementations. The matrices can also be reproduced using the
tool latticegen from the fplll library (via latticegen -randseed $s r $dim 350 for
s ∈ {0, 1, 2, 3}). The results are displayed in Figure 1.

4.1 Pruning

Usually, lattice enumeration is used as a subroutine in the BKZ or similar algorithms
[SE94]. These provide speed-length tradeoffs by using the enumeration on sublattices
or projections of the lattice of smaller dimension. By choosing the dimension of the
enumerated lattices appropriately, working with lattices of much greater dimension is
possible. A technique that can significantly reduce the enumeration time is to work
with a reduced enumeration radius, risking that no lattice point within the bound ex-
ists [GNR10; CN11]. If no lattice point was found by the enumeration, the basis is
randomized and the enumeration is applied again. This reduces the “denseness” of the
enumeration tree, which leads to more branching during the algorithm. Hence, the
pruned enumeration tree is less suited for traversal on the GPU. Indeed, profiling our
code during pruned enumeration shows that during the children enumeration, only about
one quarter of all the threads in a warp are active on average. As a result, it is surpris-
ing that we still achieve a speedup of more than 2x compared to the multithreaded fplll
enumeration, as shown in Figure 2.

9

48 49 50 51 52 53 54 55 56 57 58 59
10−1

100

101

102

103

CUDA

Multithreaded

dim

m
in

Figure 1: Performance of CUDA enumeration (red) and multithreaded enumeration
(blue), the dashed lines are exponential regression curves; some data points
are clipped

10

The sharp jump in running time of almost two orders of magnitude between dimension
68 and 69 was not investigated further. We believe that it is just a coincidence, possibly
resulting from the choice of the heuristic pruning bounds.

64.5 65 65.5 66 66.5 67 67.5 68 68.5 69 69.5 70 70.5 71 71.5

10−3

10−2

10−1

100

CUDA
Multithreaded

dim

m
in

Figure 2: Performance of CUDA enumeration (red) and multithreaded enumeration
(blue) with pruning, the dashed lines are exponential regression curves; some
data points are clipped

5 Source Code

At github.com/FeanorTheElf/fplll-cuda-enumeration the source code can currently be
found. It is possible that it will be moved to the fplll organization github.com/fplll soon.

References

[Kan83] Ravi Kannan. “Improved Algorithms for Integer Programming and Related
Lattice Problems”. In: Proceedings of the Fifteenth Annual ACM Symposium

11

https://github.com/FeanorTheElf/fplll-CUDA-enumeration
https://github.com/fplll

on Theory of Computing. STOC ’83. New York, NY, USA: Association for
Computing Machinery, 1983, pp. 193–206.

[FP85] U. Fincke and M. Pohst. “Improved methods for calculating vectors of short
length in a lattice, including a complexity analysis”. In: Math. Comp. 44
(170) (1985), pp. 463–471.

[SE94] C. P. Schnorr and M. Euchner. “Lattice basis reduction: Improved practical
algorithms and solving subset sum problems”. In: Mathematical Programming
66 (1994), pp. 181–199.

[AKS01] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. “A Sieve Algorithm for the
Shortest Lattice Vector Problem”. In: Proceedings of the Thirty-Third Annual
ACM Symposium on Theory of Computing. STOC ’01. Hersonissos, Greece:
Association for Computing Machinery, 2001, pp. 601–610.

[HS07] Guillaume Hanrot and Damien Stehlé. “Improved Analysis of Kannan’s Short-
est Lattice Vector Algorithm”. In: Advances in Cryptology - CRYPTO 2007.
Ed. by Alfred Menezes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 170–186.

[Nic+08] John Nickolls et al. “Scalable Parallel Programming with CUDA: Is CUDA
the Parallel Programming Model That Application Developers Have Been
Waiting For?” In: Queue 6 (Mar. 2008), pp. 40–53.

[PS08] Xavier Pujol and Damien Stehlé. “Rigorous and Efficient Short Lattice Vec-
tors Enumeration”. In: Advances in Cryptology - ASIACRYPT 2008. Ed. by
Josef Pieprzyk. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 390–
405.

[GNR10] Nicolas Gama, Phong Q. Nguyen, and Oded Regev. “Lattice Enumeration
Using Extreme Pruning”. In: Advances in Cryptology – EUROCRYPT 2010.
Ed. by Henri Gilbert. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 257–278.

[Her+10] Jens Hermans et al. “Parallel Shortest Lattice Vector Enumeration on Graph-
ics Cards”. In: Progress in Cryptology – AFRICACRYPT 2010. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2010, pp. 52–68.

[CN11] Yuanmi Chen and Phong Q. Nguyen. “BKZ 2.0: Better Lattice Security Esti-
mates”. In: Advances in Cryptology – ASIACRYPT 2011. Ed. by Dong Hoon
Lee and Xiaoyun Wang. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 1–20.

[Jen+11] John Jenkins et al. “Lessons Learned from Exploring the Backtracking Para-
digm on the GPU”. In: Proceedings of the 17th International Conference
on Parallel Processing - Volume Part II. Euro-Par’11. Bordeaux, France:
Springer-Verlag, 2011, pp. 425–437.

[fplll16] The FPLLL development team. “fplll, a lattice reduction library”. 2016. url:
https://github.com/fplll/fplll.

12

https://github.com/fplll/fplll

[Alb+19] Martin R. Albrecht et al. “The General Sieve Kernel and New Records in
Lattice Reduction”. In: Advances in Cryptology – EUROCRYPT 2019. Ed.
by Yuval Ishai and Vincent Rijmen. Cham: Springer International Publishing,
2019, pp. 717–746.

[DSW21] Léo Ducas, Marc Stevens, and Wessel van Woerden. Advanced Lattice Sieving
on GPUs, with Tensor Cores. Cryptology ePrint Archive, Report 2021/141.
https://eprint.iacr.org/2021/141. 2021.

13

https://eprint.iacr.org/2021/141

	Introduction
	Preliminaries
	Lattices
	Gram-Schmidt orthogonalization
	The CUDA programming model

	Approach
	Lattice Enumeration
	Parallelization of the Lattice Enumeration
	Subtree enumeration within a warp
	Parameters

	Performance
	Pruning

	Source Code

