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Abstract. The contributions of this paper are twofold. First, we sim-
plify the description of the Unbalanced Oil and Vinegar scheme (UOV)
and its Rainbow variant, which makes it easier to understand the scheme
and the existing attacks. We hope that this will make UOV and Rainbow
more approachable for cryptanalysts. Secondly, we give two new attacks
against the UOV and Rainbow signature schemes; the intersection attack
that applies to both UOV and Rainbow and the rectangular MinRank
attack that applies only to Rainbow. Our attacks are more powerful than
existing attacks. In particular, we estimate that compared to previously
known attacks, our new attacks reduce the cost of a key recovery by a
factor of 217, 253, and 273 for the parameter sets submitted to the second
round of the NIST PQC standardization project targeting the security
levels I, III, and V respectively. For the third round parameters, the cost
is reduced by a factor of 220, 240, and 255 respectively. This means all
these parameter sets fall short of the security requirements set out by
NIST.

1 Introduction

The Oil and Vinegar scheme and its Rainbow variant are two of the oldest and
most studied signature schemes in multivariate cryptography. The Oil and Vine-
gar scheme was proposed by Patarin in 1997 [16]. Soon thereafter, Kipnis and
Shamir discovered that the original choice of parameters was weak and could
be broken in polynomial time [14]. However, it is possible to pick parameters
differently, such that the scheme resists the Kipnis-Shamir attack. This variant
is called the Unbalanced Oil and Vinegar scheme (UOV), and has withstood all
cryptanalysis since 1999 [13].

The rainbow signature scheme can be seen as multiple layers of UOV stacked
on top of each other. This was proposed by Ding and Schmidt in 2005 [8]. The
design philosophy is that by iterating the UOV construction, the Kipnis-Shamir
attack becomes less powerful, which allows for a more efficient choice of parame-
ters. However, the additional complexity opened up more attack strategies, such
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as the MinRank attack, the Billet-Gilbert attack [3], and the Rainbow Band
Separation attack [9]. Even though our understanding of the complexity of these
attacks has been improving over the last decade, there have been no new attacks
since 2008.

Multivariate cryptography is believed to resist attacks from adversaries with ac-
cess to large scale quantum computers, which is why there has been renewed
interest in this field of research during recent years. Seven out of the nineteen
signature schemes that were submitted to the NIST post-quantum cryptography
standardization project were multivariate signature schemes. From those seven
schemes, four were allowed to proceed to the second round [2, 4, 17, 7], and only
the Rainbow submission was selected as a finalist. The UOV scheme was not
submitted to the NIST PQC project.

Contributions. As a first contribution, we simplify the description of the UOV
and Rainbow schemes. Traditionally, the public key is a multivariate quadratic
map P, and the secret key is a factorization P = S ◦ F ◦ T where S and T are
invertible linear maps, and F is a so-called central map. Our description avoids
the use of a central map and only talks about properties of P instead. This new
perspective makes it easier to understand the scheme and the existing attacks.

Secondly, we introduce two new key-recovery attacks: the intersection attack
and the rectangular MinRank attack. The intersection attack relies on the idea
behind the Kipnis-Shamir attack and applies to both the UOV scheme and the
Rainbow scheme. The rectangular MinRank attack reduces key recovery to an
instance of the MinRank problem. In this problem the task is, given a number
of matrices, to find a linear combination of these matrices with exceptionally
low rank. When Ding and Schmidt designed the Rainbow scheme in 2005 they
were already aware that Rainbow was susceptible to MinRank attacks. However,
our new attack shows that there was another instance of the MinRank problem
lurking in the Rainbow public keys that went undiscovered until now. We call
our attack the rectangular MinRank attack because unlike previous attacks, the
matrices in the new MinRank instance are rectangular instead of square.

Roadmap. After giving some necessary background in Sect. 2, we introduce our
simplified description of the Oil and Vinegar scheme and the existing attacks in
Sect. 3. In Sect. 4 we introduce our intersection attack on UOV. In Sect. 5 we
give a simplified description of the Rainbow scheme, and we review the exist-
ing attacks. The following sections 6 and 7 introduce the intersection attack
for Rainbow and the rectangular MinRank attack respectively. We conclude in
Sect. 8 with an overview of our attack complexities and new parameter sets for
UOV and Rainbow.
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2 Preliminaries

2.1 Notation.

For a vector space V ⊂ Kn over a field K, we define its orthogonal complement
V ⊥ as the space of vectors that are orthogonal to all the vectors in V , i.e.
V ⊥ = {w|〈w,v〉 = 0 ,∀v ∈ V }. For a linear subspace W ⊂ V , we denote by
V/W the quotient space of V by W . This is the vector space whose elements are
the cosets of W in V :

V/W = {x := x +W |x ∈ V } .

Let x = x1, · · · , xnx
and y = y1, · · · , yny

be two groups of variables in Fq.
We denote by M(a, b) the number of monomial functions of degree a in the x
variables and degree b in the y variables. We denote by M(a, b) the number of
monomial functions of degree at most a in x and at most b in y. If a and b are
lower than q we have

M(a, b) =

(
a+ nx − 1

a

)(
b+ ny − 1

b

)
and M(a, b) =

(
a+ nx
a

)(
b+ ny
b

)

2.2 Multivariate quadratic maps

The central object in Multivariate Quadratic cryptography is the multivariate
quadratic map. A multivariate quadratic map P with m components and n vari-
ables is a sequence p1(x), · · · , pm(x) of m multivariate quadratic polynomials in
n variables x = (x1, · · · , xn), with coefficients in a finite field Fq.

To evaluate the map P at a value a ∈ Fn
q , we simply evaluate each of its com-

ponent polynomials in a to get a vector b = (b1 = p1(a), · · · , bm = pm(a)) of m
output elements. We denote this by P(a) = b.

MQ problem The main source of computational hardness for multivariate
cryptosystems is the Multivariate Quadratic (MQ) problem. Given a multivariate
quadratic map P : Fn

q → Fm
q , and given a target t ∈ Fm

q , the MQ problem asks to
find a solution s such that P(s) = t. This problem is NP-hard, and it is believed
to be exponentially hard on average, even for quantum adversaries. Currently, the
best algorithms to solve instances of this problem (for cryptographically relevant
parameters) are algorithms such as F4/F5 or XL that use a Gröbner-basis-like
approach [10, 5].

Polar forms. For a multivariate quadratic polynomial p(x), we can define its
polar form

p′(x,y) := p(x + y)− p(x)− p(y) + p(0) .

Similarly, for a multivariate quadratic map P(x) = p1(x), · · · , pm(x), we define
its polar form as P ′(x,y) = p′1(x,y), · · · , p′m(x,y). This polar form will allow
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us to simplify the descripion of the UOV and Rainbow schemes, and will play
a major role in the attacks on UOV and Rainbow. The multivariate quadratic
maps of interest in this paper are homogenous, so we will often omit the P(0)
term.

Theorem 1. Given a multivariate quadratic map P(x) : Fn
q → Fm

q , its polar
form P ′(x,y) : Fn

q × Fn
q → Fm

q is a symmetric and bilinear map.

Proof. We can write p(x) = x>Qx + v · x + c, where Q is an upper triangular
matrix that contains the coefficients of the quadratic coefficients of p, where v
contains the coefficients of the linear terms of p(x), and where c is the constant
term of p(x). Then we have

p′(x,y) := p(x + y)− p(x)− p(y) + p(0)

= (x + y)>Q(x + y)− y>Qy − x>Qx + v · (x + y)− v · x− v · y
= x>Qy + y>Qx

= x>(Q+Q>)y .

2.3 Solving MinRank with Support Minors Modeling

The MinRank problem asks, given k matrices L1, · · · , Lk with n rows and m
columns and a target rank r, to find coefficients yi ∈ Fq for i from 1 to k, not

all zero, such that the linear combination
∑k

i=1 yiLi has rank at most r.

Recently, Bardet et al. introduced the Support Minors Modeling algorithm for
solving this problem [1]. Let y ∈ Fk

q be a solution, and let C be a matrix

whose rows form a basis for the rowspan of Ly =
∑k

i=1 yiLi. For each subset
S ⊂ {1, · · · ,m} of size |S| = r, let cS be the determinant of the r-by-r submatrix
of C whose columns are the columns of C with index in S.

The Support Minors Modeling approach considers for each j ∈ {1, · · · , n} the
matrix

Cj =

(
rj
C

)
,

where rj is the j-th row of Ly. Then the rank of Cj is at most r, which implies
that all its (r+1)-by-(r+1) minors vanish. Using cofactor expansion on the first
row, each minor gives a bilinear equation in the yi variables and the cS variables.
The Support Minors Modeling algorithm then uses the XL algorithm to find a
solution to this system of n

(
m
r+1

)
bilinear equations.

Analysis. The attack constructs the Macaulay matrix Mb at bi-degree (b, 1),
a large sparse matrix, whose columns correspond to the monomials of degree b
in the yi variables, and of degree 1 in the cS variables. So at degree (b, 1), the
matrix has M(b, 1) columns. The rows of the matrix contain the degree (b, 1)
polynomials of the form µ(y) · f(y, c), where µ(y) is a monomial of degree b−1,
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and f(y, c) is one of the bilinear equations of the Support Minors Modeling sys-
tem. The goal of the attack is then to use the Wiedemann algorithm to find a
non-trivial solution to the linear system Mbx = 0, so that x reveals a solution
to the MinRank problem. This approach works if the rank of Mb isM(b, 1)− 1,
so that there is only a one-dimensional solution space that corresponds to the
unique (up to a scalar) solution of the MinRank problem.

Bardet et al. calculate that whenever b < r+2, the rank of the Macaulay matrix
is

Rk,n,m,r(b) =

b∑
i=1

(−1)i+1

(
m

r + i

)(
n+ i− 1

i

)(
k + b− i− 1

b− i

)
, (1)

unless Rk,n,m,r(b′) >M(b′, 1)−1 for some b′ ≤ b, in which case the rank is equal
to M(b, 1)− 1. This allows to calculate for which b the attack will succeed.

If bmin is the smallest integer for which the attack will succeed, then solving the
XL system with the Wiedemann algorithm requires

3M(bmin, 1)2(r + 1)k

field multiplications. Bardet et al. found that it is often advantageous to ignore
a number of columns of the Li matrices and only consider the first m′ columns
of the matrices, for some optimal value of m′ in the range [r + 1,m]. For more
details on the Support Minors Modeling algorithm, we refer to [1].

3 The UOV signature scheme

The Oil and Vinegar signature scheme, introduced in 1997 by Patarin [16], is
based on an elegant MQ-based trapdoor function. The trapdoor function is a
multivariate quadratic map P : Fn

q → Fm
q for which it is assumed that finding

preimages (i.e. solving the MQ problem) is hard. However, if one knows some
extra information (called the trapdoor), then it is easy to find preimages for any
arbitrary output. Originally, Patarin proposed to use the system with n = 2m.
This parameter choice was cryptanalyzed by Kipnis and Shamir [14], which is
why current proposals use n > 2m. This is known as the Unbalanced Oil and
Vinegar (UOV) signature scheme.

The UOV signature scheme is created from the UOV trapdoor function with
the Full Domain Hash approach: The public key is the trapdoor function P :
Fn
q → Fm

q , the secret key contains the trapdoor information, and a signature on
a message M is simply an input s such that P(s) = H(M ||salt), where H is a
cryptographic hash function that outputs elements in the range of P and where
salt is a fixed-length bit string chosen uniformly at random for every signature.
Therefore, to understand the UOV signature scheme, we only need to understand
how the UOV trapdoor function works.
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3.1 UOV trapdoor function

The UOV trapdoor function is a multivariate quadratic map P : Fn
q → Fm

q that
vanishes on a secret linear subspace O ⊂ Fn

q of dimension dim(O) = m, i.e.

P(o) = 0 for all o ∈ O .

The trapdoor information is nothing more than a description of O. To generate
the trapdoor function one first picks the subspace O uniformly at random and
then one picks P uniformly at random from the set of multivariate quadratic
maps with m components in n variables that vanish on O. Note that on top of
the qm “artificial” zeros in the subspace O, we expect roughly qn−m “natural”
zeros that do not lie in O.

Given a target t ∈ Fm
q , how do we use this trapdoor to find x ∈ Fn

q such
that P(x) = t? To do this, one picks a vector v ∈ Fn

q and solves the system
P(v + o) = t for a vector o ∈ O. This can simply be done by solving a linear
system for o, because

P(v + o) = P(v)︸ ︷︷ ︸
fixed by choice of v

+P(o)︸ ︷︷ ︸
=0

+ P ′(v,o)︸ ︷︷ ︸
linear function of o

= t .

With probability roughly 1 − 1/q over the choice of v the linear map P ′(v, ·)
will be non-singular, in which case the linear system P(v + o) = t has a unique
solution. If this is not the case, one can simply pick a new value for v and try
again.

3.2 Traditional description of UOV

Traditionally, the UOV signature is described as follows: The secret key is a pair
(F , T ), where T ∈ GL(n, q) is a random invertible linear map, and F : Fn

q → Fm
q

is the so-called central map, whose components f1, · · · , fm are chosen uniformly
at random of the form

fi(x) =

n∑
i=1

n−m∑
j=i

αi,jxixj .

Note that the second sum only runs from i to n −m. So all the terms have at
least one variable in x1, · · · , xn−m.

The public key that corresponds to (F , T ) is the multivariate quadratic map
P = F ◦ T . To sign a message M , the strategy is to first solve for s′ ∈ Fn

q

such that F(s′) = H(M), and then the final signature is s = T −1(s′), such that
P(s) = F(s′) = H(M).

The description in Sect. 3.1 is just a slightly different way of thinking about
the same scheme. In particular, the distribution of public keys for this signature
scheme is the same: The central map F is chosen uniformly from the set of maps
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that vanish on the m-dimensional space of vectors O′ that consists of all the
vectors whose first n−m entries are zero, i.e. O′ = {v | vi = 0 for all i ≤ n−m}.
After composing with T , we get a public key P = F ◦ T that vanishes on some
secret linear subspace O = T −1(O′).

3.3 Attacks on UOV

A straightforward approach to attack the UOV signature scheme is to com-
pletely ignore the existence of the oil subspace and directly try to solve the
system P(x) = H(M ||salt) to produce a signature for the message M . This can
be done with a Gröbner basis-like approach such as XL or F4/F5 [10, 5]. This is
called a direct attack.

More interestingly, the attacker can first try to find the oil space O. After O is
found, the attacker can sign any message as if he was a legitimate signer. Two
attacks in the literature take this approach.

Reconciliation attack. The reconciliation attack was developed by Ding et
al. as a stepping stone towards the Rainbow Band Separation (RBS) attack on
Rainbow [9]. As an attack on UOV, the reconciliation attack is not very useful,
since it never outperforms a direct attack on UOV for properly chosen param-
eters. Nevertheless, we describe the attack here, since it can also be seen as a
precursor to our intersection attack of Sect. 4.

The attack tries to find a vector o ∈ O by solving the system P(o) = 0. We
know that dim(O) = m, so if we impose m affine constraints on the entries of o,
we still expect a unique solution o ∈ O.

If n −m ≤ m, then we expect P(o) = 0 to have a unique solution after fixing
m entries of o. This is a system of m equations in fewer than m variables, so
solving this system is more efficient than a direct attack.

If n − m > m then P(o) = 0 will have a lot of solutions, only one of which
corresponds to an o ∈ O. Enumerating all the solutions is too costly, and the
attack will not outperform a direct attack. We can try to solve the following
system to find multiple vectors o1, · · · ,ok in O simultaneously:{

P(oi) = 0 ∀i ∈ {1, · · · , k}
P ′(oi,oj) = 0 ∀i < j ∈ {1, · · · , k}

.

However, this increases the number of variables that appear in the system, and
therefore the attack will usually not outperform a direct attack.
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Once a first vector in O is found, finding subsequent vectors is much easier. If o
is the first vector that we found, then a second vector o′ ∈ O will satisfy{

P(o′) = 0

P ′(o,o′) = 0
,

which means we get m linear equations on o′ for free. Therefore, the complexity
of the attack is dominated by the complexity of finding the first vector in O.

Kipnis-Shamir attack. Historically, the first attack on the OV signature
scheme was given by Kipnis and Shamir [14]. The basic version of this attack
works when n = 2m, which was the case for the parameter sets initially proposed
by Patarin.

Attack if n = 2m. The attack looks at the m components of P ′(x,y). Each
component p′i(x,y) = pi(x + y) − pi(x) − pi(y), defines a matrix Mi such that
p′i(x,y) = x>Miy. Kipnis and Shamir observed the following useful property of
Mi.

Lemma 2. For each i ∈ {1, · · · ,m}, we have that MiO ⊂ O⊥. That is, each
Mi sends O into its own orthogonal complement O⊥.

Proof. For any o1,o2 ∈ O we need to prove that 〈o2,Mio1〉 = 0. This follows
from the assumption that pi vanishes on O:

〈o2,Mio1〉 = o>2 Mio1 = p′i(o1,o2) = pi(o1 + o2)− pi(o1)− pi(o2) = 0 .

If n = 2m, then dim(O⊥) = n−m = m, so if Mi is nonsingular (which happens
with high probability1), then Lemma 2 turns into an equality MiO = O⊥. This
means that for any pair of invertible Mi,Mj , we have that M−1

j MiO = O, i.e.

that O is an invariant subspace of M−1
j Mi. It turns out that finding a common

invariant subspace of a large number of linear maps can be done in polynomial
time, so this gives an efficient algorithm for finding O. For more details we refer
to [14]

Remark 3. Note that, as a map from Fn
q to itself, Mi implicitly depends on a

choice of basis for Fn
q . A more natural approach would be to define Mi as a

map from Fn
q to its dual Fn

q
∨ given by x 7→ p′i(x, ·). Lemma 2 would then say

1 In fields of characteristic 2 and in case n is odd, the Mi are never invertible, because
Mi is skew-symmetric and with zeros on the diagonal and therefore has even rank.
(Recall that Mi = Qi + Q⊥i as in the proof of Theorem 1.) To avoid this case we
can always set one of the variables to zero. This has the effect of reducing n by one
(which gets us back to the case where n is even), and it also reduces the dimension
of O by one, which makes the attack slightly less powerful. Since this trick is always
possible, we will assume that n is even in the remainder of the paper.
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MiO ⊂ O0, where O0 ⊂ Fn
q
∨ is the annihilator of O. We chose not to take this

approach to avoid the dual vector space and annihilators, which some readers
might not be familiar with.

Fn
q Fn

q

O O⊥
M1

M2

Fn
q Fn

q

O
O⊥M1O

M2O

M1

M2

Fig. 1. Behavior of O under M1 and M2, in case n = 2m (on the left) and 2m < n < 3m
(on the right).

Attack if n > 2m. If n > 2m, then it is still the case that Mi sends O into
O⊥, but because dim(O⊥) = n −m > m = dim(O) the equality MiO = MjO
may no longer hold. Therefore, M−1

i Mj is no longer guaranteed to have O as an
invariant subspace and the basic attack fails. However, even though in general
MiO 6= MjO, they still have an unusually large intersection (see Figure 1): MiO
and MjO are both subspaces of O⊥, so their intersection has dimension at least
dim(MiO) + dim(MjO) − dim(O⊥) = 3m − n. Kipnis et al. [13] realized that
this means that vectors in O are more likely to be eigenvectors of M−1

j Mi.

Heuristically, for x ∈ O, the probability that it gets mapped by Mi to some
point in the intersection MiO ∩MjO is approximately

|MiO ∩MjO|
|MiO|

= q2m−n .

If this happens, then the probability that M−1
j maps Mix back to a multiple

of x is expected to be (q − 1)/|O| ≈ q1−m. Therefore, we can estimate that
the probability that a vector in O is an eigenvector of M−1

j Mi is approximately

q1+m−n, and the expected number of eigenvectors in O is therefore q1+2m−n.

The same analysis holds when you replace Mi and Mj by arbitrary invertible
linear combinations of the Mi. The attacker can repeatedly compute the eigen-
vectors of F−1G, where F and G are random invertible linear combinations of
the Mi. After qn−2m attempts he can expect to find a vector in O (he can verify
whether a given eigenvector x is in O by checking that P(x) = 0). The complex-
ity of the attack is Õ(qn−2m), so the attack runs in polynomial time if n = 2m,
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but quickly becomes infeasible for unbalanced instances of the OV construction2.
For more details on the attack, we refer to [13].

4 Intersection attack on UOV

In this section, we introduce a new attack that uses the ideas behind the Kipnis-
Shamir attack, in combination with a system-solving approach such as in the
reconciliation attack. We first describe a basic version of the attack that works
as long as n < 3m. Then we also give a more efficient version of the attack that
works if n < 2.5m.

4.1 Attack if n < 3m

Like in the Kipnis-Shamir attack, we consider for each i ∈ {1, · · · ,m} the matrix
Mi such that p′i(x,y) = x>Miy, and we choose two indices i, j ∈ {1, · · · ,m}
such that Mi and Mj are invertible matrices. The goal of our attack is to find
a vector x in the intersection MiO ∩MjO. Recall from Sect. 3.3 that this in-
tersection has dimension at least 3m−n, so non-trivial solutions exist if n < 3m.

If x is in the intersection MiO ∩MjO, then both M−1
i x and M−1

j x are in O.
Therefore, x is a solution to the following system of quadratic equations

P(M−1
i x) = 0

P(M−1
j x) = 0

P ′(M−1
i x,M−1

j x) = 0

. (2)

Since there is a 3m−n dimensional subspace of solutions, we can impose 3m−n
affine constraints on x, so that we expect a unique solution. The attack is then
to simply use the XL algorithm to find a solution to this system of 3m quadratic
equations in n− (3m− n) = 2n− 3m variables.

Once x is found, we know 2 vectors M−1
i x and M−1

j x in O, and the remaining
vectors in O can be found more easily with the approach described in Sect. 3.3.

4.2 Attack when n < 2.5m

If n is small enough compared to m we can make the attack more efficient
by solving for an x in the intersection of more than 2 subspaces MiO at the
same time. Suppose n < 2k−1

k−1 m for an integer k ≥ 1, and let L1, · · · , Lk be k
randomly chosen invertible linear combinations of the Mi, then the intersection
L1O ∩ · · · ∩ LkO will have dimension at least km − (k − 1)(n −m) > 0, which

2 The Õ-notation ignores polynomial factors.
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means there is a nonzero x such that L−1
i x ∈ O for all i from 1 to k. We can

then solve the following system of equations:{
P(L−1

i x) = 0 , ∀i ∈ {1, · · · , k}
P ′(L−1

i x, L−1
j x) = 0 , ∀i < j ∈ {1, · · · , k}

(3)

We expect to find a unique solution after imposing km− (k − 1)(n−m) linear
conditions on x to random values, so the complexity of the attack is dominated
by the complexity of solving a system of

(
k+1

2

)
m quadratic equations in nk −

(2k − 1)m variables.

Remark 4. Note that in the case n = 2m the requirement n < 2k−1
k−1 m is sat-

isfied for every k > 1. If we pick k ≈
√
m, then we have more than

(
m+1

2

)
equations in m variables, which means we can linearize the system and solve it
with Gaussian elimination in polynomial time. This is not surprising, because
Kipnis and Shamir have already shown that UOV can be broken in polynomial
time if n = 2m.

4.3 Complexity analysis of the attack

We noticed that the equations of system (3) are not linearly independent: even
though there are

(
k+1

2

)
m equations they only span a subspace of dimension(

k+1
2

)
m − 2

(
k
2

)
. This is because if we have Li =

∑m
l=1 αilMi, for all i from 1 to

k, then for all 1 ≤ i < j ≤ k we have

m∑
l=1

αilP ′l(L−1
i x, L−1

j x) =

m∑
l=1

αil(L
−1
i x)⊥MlL

−1
j x)

= (L−1
i x)⊥LiL

−1
j x)

= x⊥L−1
j x =

m∑
l=1

αjlPl(L
−1
j x)

Similarly, we have

m∑
l=1

αjlP ′l(L−1
i x, L−1

j x) = x⊥L−1
i x =

m∑
l=1

αilPl(L
−1
i x) ,

so for each choice of 0 ≤ i < j ≤ k there are two linear dependencies between
the equations of system (3). This explains why they only span a subspace of
dimension

(
k+1

2

)
m− 2

(
k
2

)
.

Our experiments show that, after removing the 2
(
k
2

)
redundant equations, the

systems (2) and (3) behave like random systems of M =
(
k+1

2

)
m−2

(
k
2

)
quadratic

equations in N = nk − (2k − 1)m variables. For some small UOV systems, we
computed the ranks of the Macaulay matrices at various degrees, and we found
that they exactly match the ranks of generic systems (see Table 1). That is, at
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degree d, the rank is equal to the coefficient of td in the power series expansion
of

1− (1− t2)M

(1− t)N+1
,

assuming that this coefficient does not exceed the number of columns of the
Macaulay matrix.

We can use the standard methodology for estimating the complexity of system
solving with an XL Wiedemann approach as

3

(
N + dreg
dreg

)2(
N + 2

2

)
field multiplications, where the degree of regularity dreg is the first d such that
the coefficient of td in

(1− t2)M

(1− t)N+1

is non-positive [7].

Table 1. The rank and the number of columns of the Macaulay matrices for the
system of equations of the intersection attack. The rank at degree d always matches
the coefficients of td the corresponding generating function, except if the coefficient is
larger or equal to the number of columns. In this case (marked by boldface in the table)
the rank equals the number of columns minus 1, and the XL system can be solved at
that degree d.

parameters Macaulay matrix at degree d Generating
n m k d = 2 d = 3 d = 4 d = 5 function

8 4 2
Rank 10 34 1−(1−t2)10

(1−t)5#Columns 15 35

10 4 2
Rank 10 90 405 1245 1−(1−t2)10

(1−t)9#Columns 45 165 495 1287

12 5 2
Rank 13 130 673 2001 1−(1−t2)13

(1−t)10#Columns 55 220 715 2002

12 5 3
Rank 24 288 1364 1−(1−t2)24

(1−t)12#Columns 78 364 1365

14 6 2
Rank 16 176 936 3002 1−(1−t2)16

(1−t)11#Columns 66 286 1001 3003

14 6 3
Rank 30 390 1819 1−(1−t2)30

(1−t)13#Columns 91 455 1820

Concrete costs To demonstrate that the new attack is more efficient than
existing attacks, we apply it to the UOV parameters proposed by Czypek et
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al. [6]. They proposed to use q = 256, n = 103,m = 44, targeting 128 bits of
security. More precisely, they estimate that the direct attack requires 2130 field
multiplications and that the Kipnis-Shamir attack requires 2136 multiplications.

Their parameter choice satisfies n < 2.5m, so we can use the more efficient
version of the attack with k = 3 (i.e. where we solve for x in the intersection of 3
subspaces of the formMiO). This results in a system ofM =

(
3+1

2

)
m−2

(
3
2

)
= 258

equations in N = nk − (2k − 1)m = 89 variables. The complexity of finding a
solution is 295 multiplications (dreg = 9), which is lower than the claimed security
level of 2128 multiplications.

5 The Rainbow signature scheme

The Rainbow signature scheme is a variant of the UOV signature scheme pro-
posed in 2004 by Ding and Schmidt [8]. The Rainbow trapdoor function is a
multivariate quadratic map P : Fn

q → Fm
q . The trapdoor consists of a sequence

of nested subspaces Fn
q = O0 ⊃ O1 ⊃ · · · ⊃ Ol of the input space, and a sequence

of nested subspaces Fm
q = W0 ⊃W1 ⊃ · · · ⊃Wl = {0} of the output space, with

dimO1 = m, and dimOi = dimWi−1 for i > 1 and such that the following hold:

1. P(x) ∈Wi for all x ∈ Oi, and
2. P ′(x,y) ∈Wi−1 for all x ∈ Fn

q , all y ∈ Oi.

Rainbow with one layer (i.e. l = 1) is nothing more than UOV. In the rest
of the paper, we focus on Rainbow with two layers (i.e. l = 2), because this
results in the most efficient schemes and because this covers all the parameter
sets submitted to the NIST PQC standardization project. In this case, there are
3 secret subspaces: O1, O2 and W (see Figure 2). An instantiation of Rainbow
is then described by 4 parameters:

– q: the size of the finite field
– n: the number of variables
– m: the number of equations in the public key, also the dimension of O1.
– o2: the dimension of O2, also the dimension of W .

Given the trapdoor information (i.e. O1, O2 and W ), a solution s to P(s) = t
can be found with an efficient 2-step algorithm.

1. In the first step, pick v ∈ Fn
q uniformly at random, and solve for o1 ∈ O1/O2,

such that P(v + o1) +W = t +W . This can be rewritten as

P(v)︸ ︷︷ ︸
fixed by choice of v

+P(o1)︸ ︷︷ ︸
∈W

+ P ′(v,o1)︸ ︷︷ ︸
linear in o1

+W = t +W.

This is a system of linear equations in the quotient space Fm
q /W , so we can

efficiently sample a solution with Gaussian elimination. Note that the system
has m−dimW constraints and m−dimW degrees of freedom, so we expect
there to be a unique solution (mod O2) with probability approximately 1−
1/q. If there is no unique solution we pick a new value of v and start over.



14 Ward Beullens

Fn
q O1 O2

Fm
q W {0}

P P′(x,·) P P′(x,·) P

Fig. 2. The structure of a Rainbow public key with 2 layers. The polar form P ′(x, ·)
maps O2 to W for every x ∈ Fn

q .

2. In the second step, we solve for o2 ∈ O2, such that P(v + o1 + o2) = t.
Writing it as

P(v + o1)− t︸ ︷︷ ︸
fixed,∈W

+P(o2)︸ ︷︷ ︸
=0

+P ′(v + o1,o2)︸ ︷︷ ︸
linear in o2,∈W

= 0 ,

we see that this is a system of dimW linear equations (because all the values
are in W ) in dimW variables, so we expect to find a unique solution with
Gaussian elimination with probability 1 − 1/q. If no unique solution exists
we return to step 1 with a new guess of v.

Remark 5. If we put W = Fm
q and O1 = O2, or if we put O2 = {0} and W = {0}

then we get back the original UOV construction.

5.1 Traditional description of Rainbow

Traditionally, a Rainbow public key is generated as P = S ◦ F ◦ T , where
S ∈ GL(m, q) and T ∈ GL(n, q) are uniformly random invertible linear maps,
and where F(x) = f1(x), · · · , fm(x) is the so-called central map, whose first o1

components f1(x), . . . , fo1(x) are of the form

fi(x) =

n−o1∑
j=1

n−m∑
k=1

αijkxjxk ,

and whose remaining components fo1+1(x), · · · , fm(x) are of the form

fi(x) =

n∑
j=1

n−o1∑
k=1

αijkxjxk .

Let O′1 be the subspace of Fn
q consisting of all the vectors whose first n − m

entries are zeros, and let O′2 be the subspace consisting of the vectors whose first
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n−o2 entries are zero. Then all the polynomials in the central map vanish on O′2,
and the first o1 polynomials also vanish on O′1. In other words, F(O′2) = 0 and
F(O′1) ⊂ W ′, where W ′ is the subspace of Fm

q consisting of the vectors whose
first o1 entries are zero. Moreover, F ′(x,y) ∈W ′ for any x ∈ Fn

q and any y ∈ O2.
Therefore, the central map F satisfies the diagram in Figure 2 with the publicly
known subspaces O′1, O′2 and W ′ taking the roles of O1, O2 and W . This means
that after composing F with secret random linear maps S and T we obtain a
public key P = S ◦ F ◦ T that satisfies the diagram in Figure 2 for uniformy
random secret subspaces O1 = T −1O′1, O2 = T −1O′2 and W = S−1W ′.

5.2 Rainbow NIST PQC parameter sets

In this paper, we focus on the Rainbow parameter sets that were proposed to the
second round and the finals of the NIST PQC standardization project [7]. These
parameter sets and the corresponding key and signature sizes are displayed in
Table 2.

Table 2. The Rainbow parameter sets that were submitted to the second round and
the finals of the NIST PQC standardization project.

Parameter Parameters |pk| |sk| |sig|
set q n m o2 (kB) (kB) (Bytes)

Second
Ia 16 96 64 32 149 93 64

Round
IIIc 256 140 72 36 710 511 156
Vc 256 188 96 48 1705 1227 204

Ia 16 100 64 32 157 101 66
Finals IIIc 256 148 80 48 861 611 164

Vc 256 196 100 64 1885 1376 212

5.3 Attacks on Rainbow

A straightforward method to forge a signature is to simply try to find a solution s
to the system P(s) = H(M ||salt). This is called a direct attack. More interesting
attacks try to exploit the hidden structure of the Rainbow trapdoor.

OV attack. The OV attack of Kipnis and Shamir to find the subspace O in
the OV construction can be used against Rainbow to find O2. The complexity
of the attack is Õ(qn−2o2).

When O2 is found, it is easy to find W , because

{P ′(x,y) | x ∈ Fn
q ,y ∈ O2} ⊂W ,
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and with overwhelming probability this will be an equality. Once W is found, we
have reduced the problem to a small UOV instance with parameters n′ = n− o2

and m′ = m − o2, so the Kipnis and Shamir attack can be used again to find
O1, with complexity Õ(qn

′−2m′) = Õ(qn+o2−2m), which is negligible compared
to the complexity of the first step.

MinRank/HighRank attack. For all i ∈ {1, · · · ,m}, we define Mi ∈ Fn×n
q

like we did in the description of the OV attack. For v ∈ Fm
q we define the linear

combination Mv :=
∑m

i=0 viMi. Then it follows that 〈v,P ′(x,y)〉 = x>Mvy.
The second property of the Rainbow public key says that if v ∈ W⊥, then
〈v,P ′(x,y)〉 = x>Mvy = 0 for all values of x and all y ∈ O2. This implies that
O2 is in the kernel of Mv, so Mv has an exceptionally small rank of at most
n− dimO2.

The MinRank attack attempts to exploit this property to find a vector in W⊥.
The problem is, given the Mi for i ∈ {1, · · · ,m}, to find a linear combination of
these maps that has rank n− dimO2. This can be done with 2 strategies:

Guessing strategy [12]. Repeatedly pick v ∈ Fm
q . With probability q−o2 , we

have v ∈ W⊥. To check if a guess is correct, we simply check if the rank of
Mv is at most n − dimO2. The complexity of the attack is Õ(qo2). There is
a more efficient version of this attack by Billet and Gilbert, that runs in time
Õ(q2n−3m+o2+1) [3].

Algebraic strategy. One expresses rank(Mv) ≤ n−dimO2 as a system of mul-
tivariate polynomial equations in the entries of v and uses an algorithm such as
XL to find a solution. There exist several methods to translate the rank condi-
tion into a system of polynomial equations, such as the Kipnis-Shamir modeling,
and Minors modeling [15, 11]. Recently, a more efficient approach by Bardet et
al. called “Support Minors Modeling” drastically improved the efficiency of this
attack (see Sec. 2.3 and [1]). The algebraic approach is asymptotically more ef-
ficient than the guessing strategy.

As soon as a single vector v ∈W⊥ is found, the attacker knows O2, because it is
the kernel of Mv. Then, once O2 is known he can finish the key recovery attack
as described in the previous section on the UOV attack.

Rainbow band separation attack This attack, proposed by Ding et al. [9],
tries to simultaneously find a vector o ∈ O2, and a vector v ∈ W⊥. This gives
rise to the following system of equations{

P(o) = 0

〈v,P ′(o,x)〉 = 0 , ∀x ∈ Fn
q

. (4)
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To get a unique solution, we can impose o2 linear relations on the entries of o
and m − o2 linear relations on the entries of v. This results in a system with
n− o2 variables for o and o2 variables for v, which makes a total of n variables.
It looks like we get qn bilinear equations (one for each choice of x ∈ Fn

q ), but these
equations are obviously not independent. Extend o to a basis x1 = o,x2, · · · ,xn

for Fn
q (since we fixed some entries of o, we can pick the xi with i > 1 without

having to know the precice value of o). We can rewrite system (4) as{
P(o) = 0

〈v,P ′(o,xi)〉 = 0 , ∀i ∈ {1, · · · , n}
. (5)

Note that the first bilinear equation is 〈v,P ′(o,o)〉 = 0, which is equivalent to
〈v, 2P(o)〉 = 0, so this equation is already implied by the P(o) = 0 equations.
This leaves us with a system of m quadratic equations in o, and n− 1 bi-linear
equations in the entries of o and v. The complexity of this attack is studied in
detail in [18], where they introduce a variant of the XL algorithm that exploits
the bi-homogenous structure of the system.

6 Intersection attack on Rainbow

In this section we introduce a new key-recovery attack against the Rainbow
signature scheme that is similar to our intersection attack on UOV from Sect. 4.
Let k be such that n < 2k−1

k−1 o2, and pick invertible matrices L1, · · · , Lk from the
span of the Mi. Our goal is to find a vector x in the intersection

x ∈
k⋂

i=1

LiO2 .

This intersection has dimension at least ko2 − (k − 1)(n − o2) > 0, so non-zero
vectors in the intersection exist. We could try to find x by solving the system (3).
However, similar to the RBS attack, we can improve the efficiency of the attack
by simultaneously looking for a vector v ∈W⊥. Let e1, · · · , en be a basis for Fn

q ,
where all the entries of ei are zero, except the i-th entry which equals 1. Then
we get the following system of quadratic equations:

P(L−1
i x) = 0 , ∀i ∈ {1, · · · , k}

P ′(L−1
i x, L−1

j x) = 0 , ∀i < j ∈ {1, · · · , k}
〈v,P ′(L−1

i x, ej)〉 = 0 , ∀i ∈ {1, · · · , k} and ∀j ∈ {1, · · · , n}
. (6)

If we impose ko2 − (k − 1)(n − o2) affine constraints on the entries of x, and
m−o2 affine constraints on the entries of v we expect to have a unique solution.

It looks like we get
(
k+1

2

)
m quadratic equations in the x variables and kn equa-

tions that are linear in the x variables and the v variables. However, the quadratic
equations are the same set of equations as in the Intersection attack on UOV,
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so we know that they give only
(
k+1

2

)
m − 2

(
k
2

)
linearly independent equations.

We can then use the Bilinear XL variant of Smith-Tone and Perlner [18] to find
the unique solution to the system of equations.

Remark 6. If we put k = 1 then we recover the Rainbow Band Separation attack
(see Sect. 5.3), so our attack can be seen as a generalization of the RBS attack.
However, note that previous works have assumed that only n − 1 out of the n
bilinear equations are useful. We find that this is not quite correct. Even though
there is a syzygy at degree (2, 1) (which we will discuss later) it is still useful to
consider all n bilinear equations.

6.1 Extending to n ≥ 3o2

If n ≥ 3o3, then we expect there to be no non-trivial intersection, so the attack
is not guaranteed to succeed with k = 2. However, if we model L1O2 and L2O2

as uniformly random subspaces of O⊥2 , then the probability that they intersect
non-trivially is approximately q−n+3o2−1. Therefore, we can expect the attack
to succeed after qn−3o2+1 guesses for (L1, L2).

6.2 Complexity analysis of the attack

The system of equations (6) is clearly not generic, since the first
(
k+1

2

)
m equa-

tions only contain the entries of x as variables, and the remaining k(n − k)
equations are bi-linear in the entries of x and v. This is the same structure as
the systems that appear in the RBS attack (Sec. 5.3). Smith-Tone and Perl-
ner investigated the complexity of solving such systems, and they proposed a
variant of the XL algorithm that exploits the bi-homogeneous structure of the
system [18]. Their algorithm works for systems of polynomial equations in nx+ny
variables, where mx equations are quadratic in the first nx variables, and mxy

equations are bi-linear in the first nx and last ny variables respectively. Under
a maximal rank assumption, their XL variant terminates at bi-degree (A,B) if
the coefficient corresponding to tasb in

(1− t2)mx(1− ts)mxy

(1− t)nx+1(1− s)ny+1
(7)

is non-positive for some a, b with a ≤ A and b ≤ B. If this is the case, an upper
bound for the number of multiplications in the attack is given by

3M(A,B)2

(
nx + 2

2

)
, (8)

where M(A,B) is the number of monomials with bi-degree bounded by (A,B).
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The maximal rank assumption is not valid for small instances of Rainbow, be-
cause there are k2 non-trivial syzygies: For each (i, j) ∈ {1, · · · , k}2 we have

〈v,P ′(L−1
i x, L−1

j x)〉 =

m∑
l=1

vl · P ′l(L−1
i x, L−1

j x)

=

m∑
t=1

〈v,P ′(L−1
i x, et)〉 · (L−1

j x)t ,

which gives a non-trivial syzygy for the system (6) at bi-degree (2, 1).

Since adding an equation with bi-degree (a, b) to the polynomial system cor-
responds to an extra factor (1 − tasb) in the generating function (7), it seems
natural that a syzygy at degree (a, b) results in a factor (1−tasb)−1. We therefore
conjecture that the generating function for the system (6) is

(1− t2)mx(1− ts)mxy (1− t2s)−k2

(1− t)nx+1(1− s)ny+1
(9)

where

nx = min(nk − (2k − 1)o2, n− 1), ny = o2,

mx =

(
k + 1

2

)
m− 2

(
k

2

)
, and mxy = kn .

We experimentally verified that this generating function exactly predicts the
ranks of the Macaulay matrices for small instances of Rainbow (see Table 4).
That is, we found that the rank of the Macaulay matrix at bi-degree (A,B)
equals M(A,B) minus the coefficient of tAsB in (9), unless one of the coeffi-
cient of tasb with a ≤ A and b ≤ B is non-positive, in which case the rank is
M(A,B)− 1, and the bilinear XL algorithm will succeed at bi-degree (A,B).

Under our assumption, we can estimate the cost of our attack by iterating over
all minimal bi-degrees (A,B) for which the attack will succeed (i.e. for which
the coefficient of tAsB in the generating function is non-positive), and picking
the bi-degree (A,B) that minimizes the cost (8).

6.3 Application to Rainbow NIST submissions

We now estimate the complexity of our attack on the Rainbow parameter sets
that were submitted to the NIST PQC project. For all the proposed parameter
sets we have n ≥ 3o2, which means the basic attack will need to be repeated
multiple times before we expect to recover the secret key. For the Ia parameter
set on the second-round submission, we have n = 3m, and for all the parameter
sets of the final round submission we have n = 3m+ 4. In these cases, we need
to repeat the attack q and q5 times respectively. For the IIIc and Vc parameter
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set of the second-round submission, n is much larger than 3m, so the attack is
very inefficient in these cases.

Table 3 reports the estimated gate count of our attack. To convert from the
number of multiplications to the gate count, we use the model that is standard
in the MQ literature; each multiplication costs 2(log2(q)2+log2(q)) gates. We see
that our attack outperforms the best known attacks for 4 out of the 6 proposed
parameter sets. The improvement is the largest for the Ia parameter set of the
first round and the Vc parameter set of the finals, where we improve on existing
attacks by almost 20 bits.

Table 3. The estimated gate count of our Intersection attack on Rainbow compared
to the best known attacks.

Parameter Attack parameters New Known
set nx ny mx mxy guesses (A,B) attack attacks

Second
Ia 95 32 190 192 q1 (10,1) 123 140

round
IIIc 139 36 214 280 q33 (6,9) 412 204
Vc 187 48 286 376 q45 (6,15) 548 264

Ia 99 32 190 200 q5 (7,4) 140 147
Finals IIIc 147 48 238 296 q5 (10,6) 213 217

Vc 195 64 298 392 q5 (10,12) 262 281

7 The Rectangular MinRank Attack

In this section we introduce a new MinRank attack that exploits the property
that for y ∈ O2, we have that P ′(x,y) ∈ W for all x ∈ Fn

q . Let e1, · · · , en be
the basis for Fn

q where ei is a vector whose entries are zero, except for the i-th
entry which equals one. For a vector x ∈ Fn

q , we define the matrix

Lx =

P ′(e1,x)
· · ·

P ′(en,x)

 .

If y ∈ O2, then all the rows of Ly are in W , which implies that the matrix has
rank at most dimW = o2. Moreover, it follows from the bilinearity of P ′ that

Ly =

n∑
i=1

yiLe1
.

Since the Lei
matrices are public information, it follows that finding y ∈ O re-

duces to an instance of a rectangular MinRank problem; if an attacker can find a
linear combination

∑n
i=1 Lei

yi with rank at most o2, then we can assume that y



Improved cryptanalysis of UOV and Rainbow 21

Table 4. The rank and the number of columns of the Macaulay matrices for the system
of equations of the intersection attack. The rank at degree (A,B) always matches the

coefficient of tAsB in 1−(1−t2)mx (1−ts)mxy (1−t2s)−k2

(1−t)nx (1−s)ny , except if the coefficient is larger

or equal to the number of columns. In this case (marked by boldface in the table)
the rank equals the number of columns minus 1, and the XL system can be solved at
bi-degree (A,B).

parameters Macaulay matrix at bi-degree (A,B)
n m o2 k (2, 0) (1, 1) (3, 0) (2, 1) (1, 2) (3, 1) (2, 2) (1, 3)

8 6 3 2
rank 16 12 119 143 64 159
cols 36 32 120 144 80 160

10 6 3 1
rank 6 10 48 103 40 479 331 100
cols 36 32 120 144 80 480 360 160

12 8 4 1
rank 8 12 72 147 60 795 589 180
cols 45 45 165 225 135 825 675 315

12 8 4 2
rank 22 24 264 389 120 360
cols 78 60 364 390 180 420

14 10 5 1
rank 10 14 100 199 84 1220 953 294
cols 55 60 220 330 210 1320 1155 650

14 10 5 2
rank 28 28 392 556 168 3359 2204 588
cols 105 84 560 630 294 3360 2205 784

is in O2. If we set o2−1 entries of y to zero, we still expect a non-trivial solution,
so it suffices to look for a linear combinations of only the matrices Le1

up to
Len−o2+1

. Note that this MinRank instance is fundamentally different from the
one that was already known in the literature (see Table 5).

Table 5. Comparison of the new MinRank instance with the known instance of the
MinRank problem.

Known instance New instance
of MinRank problem of MinRank problem

Size of matrices n-by-n n-by-m
Number of matrices o2 + 1 n− o2 + 1
Rank of linear combination m o2
Solution vector in W⊥ vector in O2

We can use generic algorithms to solve this instance of the MinRank problem,
such as the guessing strategy, or the algebraic methods of Sect. 5.3. However,
in our case we can do slightly better because we have more information about
y; on top of knowing that Ly has low rank, we also know that P(y) = 0. Note
that the variables yi already appear in the system of equations that model the
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rank condition rank(Ly) ≤ o2. Therefore, we can add the equations P(y) = 0 to
the system without having to introduce additional variables. This will make the
attack slightly more efficient.

7.1 Complexity Analysis

We first estimate the complexity of solving the pure MinRank problem with the
support minors modeling approach of Sect. 2.3, without using the additional
equations P(y) = 0. From experiments it seems that in case we are working
in a field of odd characteristic, the MinRank instance behaves like a generic
instance of the MinRank problem, so we can use the methodology of Bardet et
al. to estimate the complexity of a random MinRank instance with n − o2 + 1
matrices of size n-by-m with target rank o2 (see Sect. 2.3). However, in case of a
field with characteristic 2 (which includes all the Rainbow parameters submitted
to NIST), there are some syzygies that do not appear in the case of random
MinRank instances. This stems from the fact that, in characteristic 2, we have

P ′(y,y) = P(2y)− P(y)− P(y) = 2P(y) = 0 ,

so the (r + 1)-by-r + 1 minors of(
P ′(y,y)

C

)
=

n∑
i=0

yi

(
P ′(ei,y)

C

)
all vanish, which gives

(
m
r+1

)
non-trivial linear relation between the equations

at degree (2, 1). It is possible to carefully count how many linearly independent
equations we have at each degree (b, i), with an analysis similar to the analysis
of Bardet et al. [1].

However, to simplify the analysis, we can side-step the syzygies by ignoring one
of the rows of the L1, · · · , Ln−o2+1 matrices; since all the syzygies use all the
rows of the Li, the syzygies do not occur anymore if we omit a row from all
the Li matrices. Experimentally, we find that after removing a row, the instance
behaves exactly like a random instance of the MinRank problem with n− o1 + 1
matrices of size (n−1)-by-m and with rank o2. We can therefore use the method-
ology of Bardet et al. to estimate the complexity of the attack (see Sect. 2.3).
The first half of Table 6 reports on the estimated complexities for the Rainbow
parameter sets that were submitted to the second round and the finals of the
NIST PQC standardization project.

The attack using P(y) = 0. We use the notation of Sect. 2.3, where Mb is the
Macaulay matrix at bi-degree (b, 1), and where M(b, 1) is the number of mono-
mials of degree b in the yi variables and of degree 1 in the cS variables. Let I ′ be
the ideal generated by the Support Minors Modeling equations (omitting one row
of the Li matrices, as discussed earlier), and let I = I ′+ 〈pi(y)〉i∈{1,··· ,m} be the
ideal generated by the Support Minors Modelling equations and the P(y) = 0
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Table 6. The optimal attack parameters of the new MinRank attack, and the cor-
responding gate complexity for the Rainbow parameter sets submitted to the second
round and the finals of the NIST PQC standardization project.

Parameter Plain MinRank MinRank and P(y) = 0
set m′ b log2 gates m′ b log2 gates

Second
Ia 51 2 131 40 6 124

round
IIIc 59 2 153 52 4 151
Vc 80 2 197 74 3 191

Ia 51 2 131 44 4 127
Finals IIIc 72 3 184 68 4 177

Vc 95 4 235 87 6 226

equations. We let I ′b and Ib be the space of equations of bi-degree (b, 1) in I ′

and I respectively. We want to figure out the minimal value of b, such that the
dimension of Ib is equal toM(b, 1)−1, because in that case the system Mbx = 0
will have a one-dimensional solution space that corresponds to the solutions of
the MinRank problem.

Bardet et al. already computed the dimension of I ′b, so we only need to figure
out how much the dimension increases by including the P(y) = 0 equations. Let
G′(t) be a generating function for the dimension of Fq[y, c](b,1)/I

′
b, and G(t) a

generating function for the dimension of Fq[y, c](b,1)/Ib, where Fq[y, c](b,1) is the
space of multivariate polynomials in y, c with bi-degree (b, 1). Note that, even
though we do not have a nice expression for G′(t), we can compute its coeffi-
cients from the expression of Bardet et al. for the dimension of I ′b. Under some
genericity assumptions we have that G(t) = (1− t2)mG′(t), from which we can
get the dimension of Ib.

Experimentally, we found that for small instances of Rainbow this predicts the
dimension of Ib exactly (see Table 7).

To estimate the complexity of the attack, we compute the first few terms of
G(t) until we encounter the first non-positive coefficient. If the first non-positive
coefficient corresponds to tb, then we assume the bilinear XL algorithm will work
at bi-degree (b, 1) and we can estimate its cost as

3M(bmin, 1)2(o2 + 1)(n− o2 + 1)

multiplications. We found that, as already observed by Bardet et al. , it is helpful
to consider only the first m′ columns of the matrices Lei

. For each value of m′ ∈
[r+1,m] we estimate the attack cost, and we pick the value of m′ that results in
the smallest cost. The optimal attack parameters (m′, b) and the corresponding
costs (in terms of gate count) are reported in Table 6. We see that adding the
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Table 7. The rank and the number of columns of the Macaulay matrices for the system
of equations of the rectangular MinRank attack. The rank at bi-degree (b, 1) always
matches the predicted values, except if the prediction is larger or equal to the number
of columns. In this case (marked by boldface in the table) the rank equals the number
of columns minus 1, and the XL system can be solved at bi-degree (b, 1).

parameters Macaulay matrix at bi-degree (b, 1)
n m o2 m′ b = 1 b = 2 b = 3 b = 4

rank 40 244 839
9 6 3 5 rank with P(y) = 0 40 279

number of columns 70 280 840

rank 66 528 2376 7424
12 8 4 6 rank with P(y) = 0 66 648 2474

number of columns 135 675 2475 7425

rank 14 154 924 4004
15 10 5 6 rank with P(y) = 0 14 214 1444 6005

number of columns 66 396 1716 6006

rank 136 1615 10387
18 12 6 8 rank with P(y) = 0 136 1951 12739

number of columns 364 2548 12740

P(y) = 0 equations to the Support minors modeling system reduces the attack
complexity by a modest factor between 22 and 29 for the NIST parameter sets.

8 Conclusion

This paper offers a new perspective on the UOV and Rainbow signature schemes
that avoids the use of a central map. This makes it easier to understand the ex-
isting attacks on these schemes, and allowed us to discover some new, more
powerful, attacks. We hope that our simpler perspective will encourage more
researchers to scrutinize the UOV and Rainbow signature schemes.

We introduce two new attacks: the intersection attack, which applies to both the
UOV and the Rainbow signature schemes, and the rectangular MinRank Attack
that applies only to the Rainbow scheme. Although methods for solving systems
of multivariate quadratic equations (and our understanding of their complexity)
have been improving over the last decades, the intersection attack is the first
improvement in the cryptanalysis of UOV that is specific to the structure of the
UOV public keys since 1999. Similarly, even though our understanding of the
complexity of attacks on Rainbow has been improving (recent examples are [18]
and [1]), there had not been any fundamentally new attacks on Rainbow since
2008.

New parameters for UOV and Rainbow. Both of our attacks reduce the
security level of the Rainbow NIST submission below the requirements set out
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Table 8. An overview of the estimated gate counts of our attacks versus known attacks
and the target security level for the six Rainbow parameter sets submitted to the second
round and the finals of the NIST PQC standardization project.

Parameter set Intersection
attack

New MinRank
attack

Known
attacks

Security
target

Second
Ia 123 124 140 143

round
IIIc 412 151 204 207
Vc 548 191 264 272

Ia 140 127 147 143
Finals IIIc 213 177 217 207

Vc 262 226 281 272

by NIST (see Table 8). However, our attacks are still exponential, and Rainbow
can be saved by increasing the parameter sizes by a relatively small amount.
For example, using q = 16, n = 109,m = 68, o2 = 36 would presumably reach
NIST security level I and would result in a signature size of 71 Bytes (a 10 %
increase) an key size of roughly 203 KB (an increase of 25 %). Alternatively, one
could use the UOV scheme with q = 64, n = 118,m = 47, which results in 89
Byte signatures and a key size of 242 Kilobytes. It seems questionable whether
the small performance advantage of Rainbow over UOV is worth the additional
complexity. We leave a more carefully optimized parameter choice for UOV and
Rainbow for future work.
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