
 

Longitudinal fundus imaging and its genome-wide association analysis 1 
provide evidence for a human retinal aging clock 2 
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Abstract 28 

Biological age, distinct from an individual’s chronological age, has been studied extensively 29 
through predictive aging clocks. However, these clocks have limited accuracy in short time-30 
scales. Here we trained deep learning models on fundus images from the EyePACS dataset to 31 
predict individuals’ chronological age. Our retinal aging clocking, “eyeAge”, predicted 32 
chronological age more accurately than other aging clocks (mean absolute error of 2.86 and 33 
3.30 years on quality-filtered data from EyePACS and UK Biobank, respectively). Additionally, 34 
eyeAge was independent of blood marker-based measures of biological age, maintaining an all-35 
cause mortality hazard ratio of 1.026 even when adjusted for phenotypic age. The individual-36 
specific nature of eyeAge was reinforced via multiple GWAS hits in the UK Biobank cohort. The 37 
top GWAS locus was further validated via knockdown of the fly homolog, Alk, which slowed 38 
age-related decline in vision in flies. This study demonstrates the potential utility of a retinal 39 
aging clock for studying aging and age-related diseases and quantitatively measuring aging on 40 



 

very short time-scales, opening avenues for quick and actionable evaluation of gero-protective 41 
therapeutics. 42 

Introduction 43 

Aging causes molecular and physiological changes throughout all tissues of the body, 44 
enhancing the risk of several diseases.1 Identifying specific markers of aging is a critical area of 45 
research, as each individual ages uniquely depending on both genetic and environmental 46 
factors.2 While a variety of aging clocks have recently been developed to track the aging 47 
process, including phenotypic age3 (a combination of chronological age and 9 biomarkers 48 
predictive of mortality) and epigenetic clocks derived from DNA methylation,4 many require a 49 
blood draw and multiplex assay of many analytes. 50 
 51 
A growing body of evidence suggests that the microvasculature in the retina might be a reliable 52 
indicator of the overall health of the body’s circulatory system and the brain. Changes in the 53 
eyes accompany aging and many age-related diseases such as age-related macular 54 
degeneration (AMD),5 diabetic retinopathy,6 and neurodegenerative disorders like Parkinson’s5,7 55 
and Alzheimer’s.8 Eyes are also ideal windows for early detection of systemic diseases by 56 
ophthalmologists, including AIDS,9,10 chronic hypertension,11 and tumors.12 This broad utility is 57 
perhaps unsurprising, as any subtle changes in the vascular system first appear in the smallest 58 
blood vessels, and retinal capillaries are amongst the smallest in the body.  59 
 60 
The subtle changes induced in these small vessels often go undetected by even the most 61 
sophisticated instruments, necessitating the use of better approaches involving deep learning. 62 
Fundus imaging has proven to be a powerful and non-invasive means for identifying specific 63 
markers of eye-related health. Deep-learning was initially employed to predict diabetic 64 
retinopathy from retinal images at accuracies matching, or even exceeding, experts.13 Since 65 
then, retinal images have been employed to identify at least 39 fundus diseases including 66 
glaucoma, diabetic retinopathy, age-related macular degeneration,11,14 cardiovascular risk,15 67 
chronic kidney disease,16 and, most recently, in predicting age.17 Given its non-invasive, low-68 
cost nature, retinal imaging provides an intriguing opportunity for longitudinal patient analysis to 69 
assess the rate of aging. 70 
 71 
Here we use deep learning models to predict chronological age from fundus retinal images, 72 
hereafter “eyeAge”, and use the deviation of this value from chronological age, hereafter 73 
“eyeAgeAccel”, for mortality and association analyses. We train this model on the well-studied 74 
EyePACS dataset and apply it on both the EyePACS and UK Biobank cohorts. Together, our 75 
results suggest that the trajectory of an individual’s biological age can be predicted in timelines 76 
under a year and that statistically significant genome-wide associations are possible. 77 
Enrichment analysis of top GWAS hits as well as experimental validation of the Drosophila 78 
homolog of ALKAL2, a gene in the top GWAS locus, indicates genetic markers of visual decline 79 
with age and demonstrates the potential predictive power of a retinal aging clock in assessing 80 
biological age.  81 



 

Results  82 

Prediction of age from fundus images 83 

Figure 1 summarizes the analysis workflow for the study. Using the EyePACS dataset, we 84 
trained a fundus image model on 217,289 examples from 100,692 patients and tuned it on 85 
54,292 images from 25,238 patients. These models were employed for longitudinal analysis of 86 
repeat patients and also applied on the UK Biobank dataset (119,532 images) which had a 87 
notably distinct demographic distribution (Table 1). For both studies, most visits generated two 88 
images, one image each for the left and right eye, the EyePACs dataset had more repeat visits 89 
by patients making the ratio of total images to total patients slightly larger (Table 1). In both 90 
analyses, we took the average of the predictions between the left and right eye from a single 91 
visit to infer age (See Methods).  92 
 93 

 94 
Figure 1. Schematic of analysis pipeline. EyePACS images were split into train and tune sets based on the patient. 95 
The model was then trained with the final model step being selected via the tune set. Prediction results on the 96 
EyePACS tune set were used for longitudinal analysis of aging. After filtering for image quality, inference was 97 
performed with the same model on the UK Biobank dataset and filtering for image quality, and the resulting 98 
eyeAgeAccel was used for GWAS analysis. Enrichment analysis was performed on the GWAS hits with a homolog of 99 
the top gene (ALKAL2) validated experimentally in Drosophila.  100 
 101 
The model showed a strong correlation between chronological age and predicted age (eyeAge) 102 
in both the EyePACS (0.95) and UK Biobank (0.87) datasets (Figure 2-figure supplement 1). 103 
Using mean absolute error (MAE) to assess the fidelity of the aging clock showed that the 104 
model performed favorably on both datasets (2.86 and 3.30, respectively, after quality filtering) 105 
relative to previous studies.17–20 Next, we evaluated the efficacy of our predictions in one to two 106 
year time scales using longitudinal data. Using the EyePACS Tune dataset, we restricted 107 
ourselves to data from patients with exactly two visits (1,719 subjects) and examined the 108 
models’ ability to order the two visits over multiple time scales. Note that no longitudinal 109 



 

information about patients was specifically used to train or tune the model to predict 110 
chronological age. While the observed and predicted age differences between the two visits (M 111 
= 0.033, SD = 2.34, Figure 2-figure supplement 2) had low correlation (pearson ⍴ = 0.17, p-112 

value = 1.4e-12), Figure 2A shows that the model correctly ordered 71% of visits within a year 113 

with an MAE less than 2 years. In both metrics the fidelity decreased in older groups and with 114 

smaller age gaps.  115 
 116 
 117 
Table 1. Characteristics of patients in the development and validation sets (before filtering). 118 

 
Development set (EyePACS) 

Test set (UK Biobank) 
Train  Tune 

Patients 100,692 25,238 64,019 

Images 217,289 54,292 119,532 

Ethnicity 

Black: 11908 [7%] 
Asia Pacific Islander: 11842 [7%] 

White: 22539 [13%] 
Hispanic: 125595 [71%] 

Native American: 1791 [1%] 
Other: 3809 [2%] 

Black: 3040 [7%] 
Asia Pacific Islander: 2923 [7%] 

White: 5657 [13%] 
Hispanic: 31521 [71%] 

Native American: 426 [1%] 
Other: 918 [2%] 

Black: 1540 [1%] 
Asia Pacific Islander: 4183 [4%] 

White: 107967 [91%] 
Hispanic: 0 [0%] 

Native_american: 0 [0%] 
Other: 5015 [4%] 

Self- 
reported 
Sex 

Female: 127075 [59%] 
Male: 90128 [41%] 

Female: 31743 [58%] 
Male: 22531 [42%] 

Female: 65739 [55%] 
Male: 53793 [45%] 

Age 
median=55.13 
 mean=54.21 

std=11.50 

median=55.19 
 mean=54.20 

 std=11.46 

median=57.94 
 mean=56.85 

 std=8.18 

 119 
 120 
To understand if this effect was simply a result of the noise of our innate age prediction, we 121 
performed an age-matched control experiment. We compared correlations between data points 122 
of one individual to data from a random pair of age-matched individuals (see Methods). 123 
Comparisons were performed between each eye and timepoint. For all comparisons, the robust 124 
correlation observed within an individual’s data was lost in data between time-matched 125 
individuals (Figure 2B,D). Additionally, the positive predictive ratio and MAE exhibited reduced 126 
performance, 55% and 3.6 years (Figure 2-figure supplement 3), suggesting a reproducible, 127 
individual-specific eyeAge component. To further explore this individual-specific component, 128 
Figure 2C compares eyeAge and chronological age within an individual between eyes and 129 
timepoints, showing strong correlation in each quadrant. 130 



 

 131 
Figure 2. Longitudinal analysis of patients with exactly two visits in the EyePACS cohort. (A) Changes of PPR 132 
(positive prediction ratio: the ratio of data whose eyeAge increased between subsequent visits) and MAE (mean 133 
absolute error) calculated on the same individual in relationship to chronological age at the first visit (left) and time 134 
between longitudinal visits (right). (B) Scatter plots representing correlation between eyeAge Gap (difference between 135 
predicted age and chronological age) of two consecutive visits from an individual (Same) or two consecutive visits 136 
from two different individuals (Random). (C) Correlation of eyeAge and chronological age between left and right and 137 
two consecutive visits of the same individual. D) Scatter plots representing the correlation of left and right eyeAge 138 
Gap from the same or two random individuals. 139 

Testing the model in UK Biobank cohort 140 

We next applied our EyePACS-trained eyeAge model to the UK Biobank dataset. The UK 141 
Biobank cohort included retinal fundus images from 64,019 patients as well as extensive clinical 142 
labs and genomic data. These clinical markers enabled comparison of eyeAge with phenoAge, 143 
a clinical blood marker-based aging clock.3 The observed 0.87 correlation between eyeAge and 144 
chronological age in the UK Biobank cohort was consistent with (and slightly higher than) the 145 
observed correlation of phenoAge and chronological age (0.82) (Figure 3A and B). Notably, the 146 
correlation between phenoAge and eyeAge was substantially lower (0.72) (Figure 3-figure 147 
supplement 1) and, in fact, roughly equivalent to the product of their respective correlations with 148 
chronological age, suggesting that they were largely independent. To explore this further, we 149 
computed the residuals from linear models that independently regressed chronological age on 150 
phenoAge and eyeAge, as described previously,3 yielding phenoAge acceleration 151 
(phenoAgeAccel) and eyeAge acceleration (eyeAgeAccel), and observed little correlation 152 
between the two age acceleration measures (Figure 3C). We then performed Cox proportional 153 
hazards regression analysis to assess mortality risk.21 The hazard ratio for eyeAge was 154 
statistically significant when adjusting for (self-reported) sex (1.09, CI=[1.08, 1.10], p-155 
value=1.6e-53), sex and age (1.04, CI=[1.02, 1.06], p-value=1.8e-4), and sex, age, and 156 



 

phenoAge (1.03, CI=[1.01, 1.05], p-value=2.8e-3) (Figure 3D). Stratifying the hazard ratio 157 
analysis showed a slight increase in the hazard ratio for women compared to men (1.035 vs. 158 
1.026), however the confidence intervals overlapped heavily (Supplementary File 1). Hazard 159 
ratio results adjusted for visual acuity are presented in (Figure 3-figure supplement 2 and 160 
Supplementary File 2). 161 
 162 

 163 
 164 
Figure 3. Relationships between eyeAge, phenoAge, and chronological age in the UK Biobank cohort. (A) 165 
Correlation between eyeAge and chronological age (Pearson ⍴ = 0.86). (B) Correlation between phenoAge and 166 
chronological age (Pearson ⍴ =0.82). (C) Correlation between eyeAgeAcceleration and phenoAgeAcceleration 167 
(Pearson ⍴ = 0.12). (D) Forest plot of all-cause mortality hazard ratios (diamonds) and confidence intervals (lines) for 168 
the UK Biobank dataset.  Purple lines are adjusted only for sex; orange lines are adjusted for sex and age; blue lines 169 
are adjusted for sex, age, and phenoAge. 170 
 171 
We also investigated the relationship between eyeAge and multiple additional measures of 172 
morbidity and disability available in the UK Biobank. We performed Cox proportional hazards 173 
regression on six additional chronic disease outcomes when adjusting for age and sex: chronic 174 
obstructive pulmonary disease (COPD), myocardial infarction, asthma, stroke, Parkinsonism, 175 
and dementia. Nominally significant associations between eyeAge and both COPD (p-value = 176 
0.0048) and myocardial infarction (p-value = 0.049) were observed (Supplementary File 3). We 177 
performed linear regression on seven morbidity measurements reported at the time of imaging: 178 
fluid intelligence, systolic and diastolic blood pressure, the “Health score (England)” index of 179 
multiple deprivation, pulse wave arterial stiffness, self-reported overall health rating, and self-180 



 

reported presence of a longstanding illness. Increased eyeAgeAccel corresponded to 181 
significantly increased systolic blood pressure (p-value = 1.025e-7) and decreased levels of 182 
deprivation (p-value = 2.26e-5) as measured by the Health score (England) index of multiple 183 
deprivation (Supplementary File 4). Interestingly, increased eyeAgeAccel also corresponded 184 
with significantly increased performance in fluid intelligence scores (p-value = 5.34e-27). 185 
 186 
As visual acuity has long been known to degrade with age,22 we examined the extent to which 187 
eyeAge explains the known correlation between chronological age and visual acuity. Though 188 

chronological age and eyeAge are highly correlated (Figure 3A), we observed a slightly higher 189 

correlation of eyeAge with visual acuity (⍴ = 0.221) compared to chronological age vs. visual 190 

acuity (⍴ = 0.218). Both measures of age appear relevant for visual acuity decline, as the 191 

influence of chronological age remained significant even after regressing out the influence of 192 

eyeAge on visual acuity (p-value = 1.6e-13, Supplementary File 5). 193 

GWAS and experimental validation of ALK  194 

Based on the patient-specific eyeAgeAccel effects and its independence from phenoAgeAccel, 195 
a GWAS was conducted to identify genetic factors associated with eyeAgeAccel. We subsetted 196 
the cohort to individuals of European ancestry, performed genotype quality control, and utilized 197 
a single eyeAgeAccel value per individual, resulting in a cohort of 45,444 individuals for GWAS 198 
analysis. GWAS was performed using BOLT-LMM (see Methods) with chronological age, sex, 199 
genotyping array type, the top five principal components of genetic ancestry, and indicator 200 
variables for the six assessment centers used for the imaging as covariates. Full GWAS 201 
summary statistics are available in Supplementary File 6. 202 
 203 
Genomic inflation was low (1.05) (Figure 4-figure supplement 1). The stratified linkage 204 
disequilibrium (LD) score regression-based intercept was 1.02 (SEM=0.01), indicating that 205 
polygenicity, rather than population structure, drove the test statistic inflation. The SNP-based 206 
heritability was 0.11 (SEM=0.02), an appreciable fraction of the estimated broad-sense 207 
heritability of biological age (27-57% via twin and family studies). The GWAS identified 38 208 
independent suggestive hits (R2 ≤ 0.1, p ≤ 1×10−6) at 28 independent loci, 12 of which reached 209 

genome-wide significance (p ≤ 5×10−8) (Figure 4, Supplementary File 7).  210 
 211 
 212 



 

 213 
 214 
Figure 4. GWAS analyses and experimental validation. (A) Manhattan plot representing significant genes 215 
associated with eyeAgeAcceleration. (B) P-values for enriched pathways: Macular thickness, ADHD (attention deficit 216 
hyperactivity disorder), AMD (age-related macular degeneration), spherical equivalent, and refractive error. (C) 217 
Assessment of visual performance of transgenic and control flies with age. P-value is relative to control (* = p < 0.05). 218 
P-value for ALK RNAi vs. control is 0.009; P-value for UAS-ALK-DN vs. control is 0.006. 219 
 220 
Many of the hits were associated with eye function and age-related disease (truncated list of 221 
candidate hits summarized in Supplementary File 8). The most significant locus spanned 650 kb 222 
and included three genes in a highly significant LD block: SH3YL1, ACP1, and ALKAL2 (Figure 223 
4-figure supplement 2). The SH3YL1 gene has recently been implicated as a biomarker for 224 
nephropathy in type 2 diabetes,23 whereas ALKAL2 enables protein tyrosine kinase activity.24 In 225 
other significant gene candidates, we identified variants in the genes OCA2, POC5, and GJA3, 226 
which have all been implicated in eye development and function. OCA2 specifically is known to 227 
be important for eye pigmentation,25 whereas POC5 is linked to AMD.26 GJA3 has been 228 
implicated in age-related cataract development.27 MEF2C has reported roles in numerous age-229 
related conditions, including Alzheimer’s disease28 and muscle wasting in cancer29 and GRM is 230 
associated with age-related hearing loss.30 Additional candidates are reported to be involved in 231 
cancer prognosis and progression, including TSPAN11,31 NKX6-1,32 and SLC16A1.33 232 
 233 
Gene enrichment analysis34 identified significant associations (adjusted p < 0.05) between our 234 
gene candidates and macular thickness and degeneration, as seen in previous human GWAS 235 
studies35 and cataract formation (Elsevier pathway collection),36 as well as non-eye related 236 
diseases such as bone mineralization, tumor suppression, and Amyloid Precursor Protein 237 



 

pathways (Biocarta).37 Gene Ontology (GO) term analysis of our gene candidates revealed 238 
significant enrichment (adjusted p < 0.05) for protein tyrosine kinase activator activity, gap 239 
junction channel activity, and wide pore channel activity (Figure 4B).  240 
 241 
Sum of single effects regression38 was used to identify putative causal variants for each locus 242 
(Supplementary File 9). In the most significant locus (Figure 4-figure supplement 2), we 243 
identified the deletion variant rs56350804 as the single variant with a posterior inclusion 244 
probability (PIP) above 0.45 (rs56350804 PIP=0.9998). While rs56350804 is intronic to 245 
SH3YL1, expression quantitative trait locus (eQTL) analysis by the Genotype-Tissue Expression 246 
consortium identified significant eQTL between rs56350804 and each of SH3YL1, ACP1, and 247 
ALKAL2 (GTEx Consortium 2020). In particular, the ALKAL2 gene had its expression modulated 248 
by rs56350804 in cervical spinal cord tissue (p=3.0x10-16), and inhibition of the Drosophila 249 
homolog of ALKAL2, Alk, has been shown to extend lifespan,24 making it a good candidate for 250 
exploring a potential role in visual function. 251 
 252 
Previously, D. melanogaster has been used to study the impact of aging interventions on retinal 253 
health by using the phototaxis index, a fly’s ability to be attracted toward light.39 We used D. 254 
melanogaster to observe visual decline via phototaxis with transgenic ALK inhibition. We 255 
crossed the pan-neuronal RU486-inducible Gal4 driver elav-Gal4-GS with UAS-AlkRNAi flies or 256 
UAS-AlkDN to determine the effects of neuron-specific Alk inhibition. Both transgenic 257 
interventions resulted in significantly increased visual performance with age, whereas 258 
background controls showed no change in performance with RU486 treatment (Figure 4C). 259 
These results support the implication from the GWAS that ALK influences the aging of the visual 260 
system. 261 

Discussion  262 

Retinal health has long been an important factor for visual aging, manifested as glaucoma, 263 
AMD, and other age-related retinal diseases, but until recently it was not known whether it could 264 
be indicative of overall health and aging. In this study, we applied deep learning models for 265 
predicting an individual's age from retinal fundus images and showed that these predictions may 266 
be informative for tracking aging patterns longitudinally. While other cellular and blood-related 267 
molecular markers of aging have recently been identified, these are at times invasive and, 268 
although accurate, take a long time to develop.20 Other aging clocks from blood,20,40 saliva,41 269 
skin,41,42 muscle,43 and liver44 showed an MAE deviating 4-8 years from the actual age. More 270 
dynamic markers such as proteins and metabolites can track aging in shorter time intervals but 271 
are still limited to 2-4 years.2,44,45 In contrast, using deep learning models on retina fundus 272 
images, we were able to predict changes in aging at a granularity of less than a year. These 273 
small time-scales, and relative low-cost of imaging, makes eyeAge promising for longitudinal 274 
studies. 275 
 276 
Correlation and hazard ratio analyses from our study suggest that eyeAge and phenotypic age 277 
are conditionally independent given chronological age. Therefore, eyeAge is a potential 278 
biomarker that reflects a layer of biological aging not included in blood markers. This is 279 
supported by our GWAS findings; different genes were associated with eyeAgeAccel compared 280 



 

to  phenoAgeAccel.46 However, there are limitations with this approach. Similar to other aging 281 
clocks (such as DNA-methylome), eyeAge underperforms phenotypic age in mortality 282 
prediction.  This is likely because the biomarkers used to calculate phenotypic age were 283 
explicitly selected based on their ability to predict mortality. New algorithms that incorporate 284 
blood markers and retinal clocks have the potential to be better predictors of morbidity and 285 
mortality. Additionally, it remains to be seen whether eyeAgeAccel would reflect interventions 286 
such as behavioral changes or medication. 287 
 288 
Our GWAS identified candidate genes associated with several eye- and age-related functions, 289 
such as POC526 and GJA3.27 Additional significant candidates had previously identified 290 
functions that are not restricted to the eye but are still related to age, e.g. MEF2C being 291 
associated with Alzheimer’s disease 28 and multiple candidates (TSPAN11, NKX6-1, SLC16A1, 292 
RAET1G, SNTG1, ARRDC3, RASSF3, DIRC3, and GCNT3) associated with cancer 293 
(Supplementary File 8). These suggest that eyeAge may identify general signatures of aging 294 
rather than purely eye-related traits. Pathway analyses similarly were split between eye-related 295 
pathways and others that were not eye-specific. While we suspect many of the eye-related 296 
pathways to have an aging component, some pathways may be enriched artifactually.  For 297 
example, though melanin biosynthesis has been associated with protection from 298 
photodamage,39 the predicted quality of fundus images has also been shown to be influenced 299 
by eye color.47  Notably, an independent group separately identified our top GWAS candidate 300 
locus as the most significant locus.48 This combined with previous studies showing ALK to be 301 
important for lifespan extension in flies24 and our own experimental validation confirming 302 
improved ocular health in a fly homolog, Alk, is compelling evidence of a true biological signal in 303 
the GWAS.  304 
 305 
Taken together, our work reinforces the utility of fundus imaging for evaluating overall health 306 
and opens up new opportunities for using it to predict longevity. eyeAge has substantial 307 
applications in aging and aging-related diseases, from biomarker application to tracking 308 
therapeutics. In particular, the retinal aging clock because of its ease of use, low cost, and non-309 
invasive sample collection, has the unique potential to additionally assess lifestyle and 310 
environmental factors implicated in aging. Retinal aging clocks can be immensely valuable to 311 
future clinical trials of rejuvenation/anti-aging therapies and for personalized medicine to 312 
measure improvements in aging over short periods, not only improving actionability but also 313 
enabling rapid iteration.  314 

Materials and Methods 315 

 316 

Key Resources Table 



 

Reagent type 
(species) or 
resource 

Designation Source or 
reference 

Identifiers Additional 
information 

Strain, wDah 
background 
(Drosophila 
melanogaster, 
females) 

wDah control 
strain 
 

Laboratory 
of Linda 
Partridge 

24 Maintained in 
Kapahi Lab 

Strain, wDah 
background 
(Drosophila 
melanogaster, 
females) 

UAS-ALKRNAi 
RNAi for ALK 

Laboratory 
of Linda 
Partridge 

VDRC GD 
11446 
24 

Maintained in 
Kapahi Lab 

Strain, wDah 
background 
(Drosophila 
melanogaster, 
females) 

UAS-ALKDN 

dominant 
negative ALK 
overexpressi
on 

Laboratory 
of Linda 
Partridge 

24 Maintained in 
Kapahi Lab 

Strain, wDah 
background 
(Drosophila 
melanogaster, 
females) 

elav-GS 
Ru486 
inducible 
Gal4 driver 

Bloomington 
Drosophila 
Stock Center 

BDSC 
43642 
49 

Maintained in 
Kapahi Lab 

Chemical 
compound, drug 

RU486 
(mifepristone) 

United 
States 
Biological 

282888 
  

For inducting 
fly 
GeneSwitch 
expression 
system; 200 
µM final 
concentration 
in food 50 

  317 
  318 
Ethics 319 

The UK Biobank study was reviewed and approved by the North West Multi-Centre Research 320 
Ethics Committee. For the EyePACS study, ethics review and IRB exemption was obtained 321 



 

using Quorum Review IRB (Seattle, WA). 322 

EyeAge model development 323 

Model development was done on the EyePACS train dataset (Table 1). A deep learning model 324 
with an Inception-v3 architecture 51,52 was trained to take a color fundus photo as input and 325 
predict the chronological age (referred to as chronologicalAge below) using L1 loss. Age values 326 
were normalized to have zero mean and unit variance before training (and during inference this 327 
normalization is reversed to get back to year units). Model training was stopped after 363,200 328 
steps by looking at performance on the EyePACS tune dataset. The hyperparameters of the 329 
model were as follows: the initial learning rate was 0.0001, which was warmed up to 0.001 over 330 
40,751 steps; after the warm up phase, the learning rate was decayed by a factor of 0.99 every 331 
13,584 steps; dropout was applied to the prelogits at a rate of 0.2; a weight decay of 4e-5 was 332 
used. The model backbone was pre-trained using the ImageNet dataset.51 As some of the color 333 
fundus images in the UK Biobank dataset were of very low quality, we also trained a separate 334 
deep learning model to predict image quality, similar to what was reported in our prior work.53,54 335 
 336 

EyeAge model evaluation 337 

The model described above was applied to images to predict chronological  age. The image 338 
quality model described above was used to discard low quality images – reducing the initial 339 
85,645 patient (174,049 image) dataset to 66,533 patients (120,362 images). Finally, we 340 
restricted the data to the first assessment visit to UK Biobank. This was done to reduce bias 341 
associated with image quality differences, as we observed quality differences between images 342 
captured in the later follow-up visits. Since these follow-up visits happened several years after 343 
the initial assessment, the time to event or censorship is much smaller, and a model could 344 
exploit this association. For participants that had images of both eyes passing the quality filter, 345 
we averaged the predictions across the two eyes. After these processing steps, we ended up 346 
with 55,267 data points total, one per remaining participant. Next, using the predicted eyeAge 347 
and the chronologicalAge of the participant at the time of imaging, an “eyeAgeAcceleration” 348 
score was calculated for each participant as the residuals of the ordinary least squares 349 
regression model “chronologicalAge ~ eyeAge”.3 In order to compare with another well known 350 
biological marker of age, phenoAge3 was also computed using the values of blood markers 351 
available for the participants. PhenoAgeAcceleration was then computed in an analogous 352 
manner to eyeAgeAcceleration.  353 

Method on selection of random set 354 

Figure 2 required identification of matched, random individuals to assess the potential person-355 
specific component of eyeAge predictions. For Figure 2-figure supplement 3, we created 356 
matched sets of visit pairs for each patient's first visit by identifying a randomly matching patient 357 
visit that was 0-2 years after a patient's first visit. To eliminate artifacts due to sampling 358 
differences between first and second visits, once we identified a patient's first visit to match, we 359 
constrained its set of potential randomly matched patient visits to only be from second visits. For 360 
the longitudinal analysis in 2B (right), individuals were split both by age and by time between 361 



 

visits (using 2 month buckets) and, again, randomly matched. For Figure 2D, the individuals 362 
were split evenly in 2 year buckets. Individuals within the same bucket had their left and right 363 
predictions compared to one another. 364 
 365 
 366 
Regression analyses in UK Biobank 367 

Cox proportional hazards regression was performed using the lifelines package, 368 
https://github.com/CamDavidsonPilon/lifelines. Since retinal imaging was performed at the initial 369 
visit, individuals with events with an unknown date or date prior to the initial visit were excluded. 370 
All UK Biobank algorithmically-defined outcomes with at least 4,000 events were analyzed: 371 
asthma (field 42014), COPD (field 42016), dementia (field 42018), myocardial infarction (field 372 
42000), all-cause Parkinsonism (field 42030), and stroke (field 42006). We note that because 373 
eyeAgeAccel is defined as eyeAge - alpha * age - beta for constants alpha and beta 374 
identified through regression of age on eyeAge, hazard ratios for eyeAge are identical to those 375 
in which eyeAgeAccel is used in the model instead. 376 
 377 
Linear regression was performed on morbidity-related measurements taken at the same visit 378 
during which retinal imaging occurred, and was implemented using the statsmodels package 379 
with the model INT(outcome) ~ INT(age) + sex + INT(eyeAgeAccel), where 380 
INT(...) represents the rank-based inverse normal transformation. Individuals for which any 381 
of the outcome, age, or eyeAgeAccel variables were in the top 1% of outlier values were 382 
excluded. Measurements analyzed were: Overall health rating (field 2178), Long-standing 383 
illness (field 2188), Systolic blood pressure (field 4080), Diastolic blood pressure (field 4079), 384 
Pulse wave arterial stiffness index (field 21021), Health score (England) (field 26413), Fluid 385 
intelligence score (field 20016). 386 
  387 
GWAS 388 

The eyeAgeAccel value defined above was used as the target for GWAS analysis. GWAS 389 
analysis was performed on the fundus-based phenotype as described previously.55 Briefly, 390 
samples were restricted to individuals of European ancestry to avoid confounding effects due to 391 
population structure. European genetic ancestry was defined by computing the medioid of the 392 
15-dimensional space of the top genetic principal components in individuals who self-identified 393 
as “British” ancestry and defining all individuals within a distance of 40 from the medioid as 394 
“European” (corresponding to the 99th percentile of distances of all individuals who self-395 
identified as British or Irish). Samples were further restricted to those who also passed sample 396 
quality control measures computed by UK Biobank, i.e. those not flagged as outliers for 397 
heterozygosity or missingness, possessing a putative sex chromosome aneuploidy, or whose 398 
self-reported and genetically-inferred sex were discordant. 399 
 400 
BOLT-LMM v2.3.4 was used to examine associations between genotype and 401 
eyeAgeAcceleration in European individuals in the UK Biobank (n=45,444). All genotyped 402 
variants with minor allele frequency > 0.001 were used to perform model fitting and heritability 403 



 

estimation. GWAS was performed in genotyped variants and imputed variants on autosomal 404 
chromosomes, with imputed variants filtered to exclude those with minor allele frequency (MAF) 405 
< 0.001, imputation INFO score < 0.8, or Hardy-Weinberg equilibrium (HWE) P < 1×10-10 in 406 
Europeans. In total, 13,297,147 variants passed all quality control measures. Covariates 407 
included in the association study were chronological age, sex, genotyping array type, the top 408 
five principal components of genetic ancestry, and indicator variables for the six assessment 409 
centers used for the imaging. 410 
 411 
Genome-wide suggestive (p ≤ 1 × 10−6) lead SNPs, independent at R2≤0.1, were identified 412 

using the –clump command in PLINK version v1.90b4. The LD reference panel contained 413 

10,000 unrelated UK Biobank subjects of European ancestry (as defined above). To identify 414 

distinct non-overlapping loci of association, all variants with R2 ≥ 0.1 with a lead SNP were 415 

grouped into a “cluster” with that lead SNP, and subsequently clusters within 250 kilobases of 416 

each other were merged, with the lowest p-value lead SNP retained as the locus representative. 417 

Putative causal variants were identified using susieR version 0.9.0. At each locus containing at 418 

least 10 variants in LD, the susieR::susie_suff_stat function was used to estimate posterior 419 

inclusion probabilities for each variant in the locus, using the same LD reference panel as was 420 

used to generate loci and with a maximum of L=10 causal variants per locus and 200 iterations 421 

of coordinate ascent. 422 
 423 
Validation of Alk in fly 424 

Fly husbandry and phenotyping: For fly crosses, 15 virgin females were crossed with 3 males in 425 
bottles containing 1.55% live yeast, cornmeal, sugar, and agar.49 Crosses were dumped 5 days 426 
following crossing, and female progeny were sorted into 4 replicate vials of 25 flies each, with 427 
food containing 200μm RU486 to induce activation of the Gal-UAS system.56 Flies were 428 
maintained in 65% relative humidity at 25oC in a 24-hour light/dark cycle throughout life. Two 429 
weeks post-induction, phototaxis was tested as previously described39 by placing flies in a clear, 430 
empty 30 cm.-long vial horizontally in a dark room. Light was shined on one end and the 431 
number of flies in the last 10 cm. closest to the light source after 1 minute was scored for 432 
responsiveness to light signals. This was tested across each of the 4 vials per group in 3 433 
biological replicates (total 100 flies per replicate). Strains used were 3xelav-GS (provided from 434 
the lab of Geetanjali Chawla)57 for RU486-dependent pan-neuronal Gal4, wDah control strain, 435 
UAS-AlkRNAi, and UAS-AlkDN (provided from the lab of Linda Partridge)24. 436 

Pathway analysis 437 

All significant (p < 1.0x10-6) GWAS candidates were used to assess pathway enrichment via 438 
Enrichr34. 439 



 

Statistical analysis 440 

For Drosophila phototaxis results, significance (p < 0.05) was assessed using unpaired t-test. 441 
For Figure 4C, error bars represent SD across at least three biological replicates. Significant 442 
differences between experimental groups and controls are indicated by *. *, p < 0.05. Statistical 443 
analyses were calculated with GraphPad Prism 4. 444 
 445 

Data and Code availability  446 

A subset of EyePACS data is freely available online 447 
(https://www.kaggle.com/competitions/diabetic-retinopathy-detection/data). To enquire about 448 
access to the full EyePACS dataset, researchers should contact Jorge Cuadros 449 
(jcuadros@eyepacs.com). The UK Biobank data are available for approved projects (application 450 
process detailed at https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access) 451 
through the UK Biobank Access Management System (https://www.ukbiobank.ac.uk) . We have 452 
deposited the derived data fields and model predictions following UK Biobank policy, which will 453 
be available through the UK Biobank Access Management System. Full GWAS summary 454 
statistics are available in the Supplementary File. To develop the eyeAge model we used the 455 
TensorFlow deep learning framework, available at https://www.tensorflow.org . Code and 456 
detailed instructions for both model training and prediction of chronological age from fundus 457 
images is open-source and freely available as a minor modification 458 
(https://gist.github.com/cmclean/a7e01b916f07955b2693112dcd3edb60) of our previously 459 
published repository for fundus model training (https://zenodo.org/record/7154413). 57 460 
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Legends for Supplementary Figures and Files 599 

Figure 2-figure supplement 1. Scatter plot of eyeAge with chronological age (Pearson ⍴ = 0.96) 600 
Figure 2-figure supplement 2. Scatterplot showing the time elapsed (x-axis) vs. the difference 601 
between time elapsed and change in eyeAge (y-axis). 602 



 

Figure 2-figure supplement 3. Positive prediction ratio and MAE for random, time-matched 603 
individuals. Plots shown in relationship to chronological age (left) and time between longitudinal 604 
visits (right).  605 
Figure 3-figure supplement 1.Scatter plot of eyeAge and phenoAge (Pearson ⍴ = 0.71) 606 
Figure 3-figure supplement 2. eyeAge hazard ratio adjusted with and without visual acuity. 607 
Figure 4-figure supplement 1. eyeAgeAcceleration qq-plot.  608 
Figure 4-figure supplement 2.  Zoom in on significant locus covering three genes in a highly 609 
significant LD block. This block includes the three genes: SH3YL1, ACP1, and ALKAL2. 610 
 611 
Supplementary File 1. Hazard ratio results for men and women  612 
Supplementary File 2. Hazard ratio results with adjustments  613 
Supplementary File 3: Cox proportional hazards regression of Outcome on Age, Sex, and 614 
eyeAge. P-value and Hazard ratio are reported for eyeAge. 615 
Supplementary File 4: Linear regression of INT(Outcome) on INT(Age), Sex, INT(eyeAgeAccel). 616 
Supplementary File 5: Linear regression of visual acuity-related outcomes on age 617 
measurements. Supplementary File 6. Filtered gene association results  618 
Supplementary File 7. Fine mapping gene association results 619 
Supplementary File 8. List of genes associated with eyeAgeAccel and function 620 
Supplementary File 9. Gene association results with annotated hits 621 

Source Data Files 622 

Source Data- “Figure2 Source data 1”. MAE and positive prediction ratio for time-matched and 623 
random individuals based on age at visit 1 624 
Source Data- “Figure2 Source data 2”. MAE and positive prediction ratio for time-matched and 625 
random individuals based on months between visits 626 
Source Data- “Figure2 Source data 3”. Age gap for random and time-matched individuals at visit 627 
1 and 2 628 
Source Data- “Figure2 Source data 4”. Chronological and predicted age for left and right eye  629 
Source Data- “Figure2 Source data 5”. Age gap for random and time-matched individuals for left 630 
and right eyes 631 
Source Data- “Figure2 Source data 6”. Scatter plot of eyeAge with chronological age  632 
Source Data- “Figure3 Source data 1”. Age, eyeAge, phenoAge, eyeAge Acceleration and 633 
phenoAge Acceleration values for each individual  634 
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