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Abstract Across diverse microbiotas, species abundances vary in time with distinctive statistical 
behaviors that appear to generalize across hosts, but the origins and implications of these patterns 
remain unclear. Here, we show that many of these macroecological patterns can be quantitatively 
recapitulated by a simple class of consumer-resource models, in which the metabolic capabili-
ties of different species are randomly drawn from a common statistical distribution. Our model 
parametrizes the consumer-resource properties of a community using only a small number of global 
parameters, including the total number of resources, typical resource fluctuations over time, and 
the average overlap in resource-consumption profiles across species. We show that variation in 
these macroscopic parameters strongly affects the time series statistics generated by the model, 
and we identify specific sets of global parameters that can recapitulate macroecological patterns 
across wide-ranging microbiotas, including the human gut, saliva, and vagina, as well as mouse gut 
and rice, without needing to specify microscopic details of resource consumption. These findings 
suggest that resource competition may be a dominant driver of community dynamics. Our work 
unifies numerous time series patterns under a simple model, and provides an accessible framework 
to infer macroscopic parameters of effective resource competition from longitudinal studies of 
microbial communities.

Editor's evaluation
This paper introduces an elegant mathematical and ecological framework to model the fluctua-
tions of microbial abundances in microbiomes along time series. The modeling approach considers 
consumer-resource properties and is regulated by few parameters. Applied to time-series micro-
biome data the model suggests the existence of recurrent patterns of microbial dynamics that are 
quite dependent on resource competition.

Introduction
Microbial communities are ubiquitous across our planet, and strongly affect host and environmental 
health (Sekirov et  al., 2010; Tkacz and Poole, 2015). Predictive models of microbial community 
dynamics would accelerate efforts to engineer microbial communities for societal benefits. A prom-
ising class of models is consumer-resource (CR) models, wherein species growth is determined by 
the consumption of environmental resources (Chesson, 1990). CR models capture a core set of 
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interactions among members of a community based on their competition for nutrients, and have 
demonstrated the capacity to recapitulate important properties of microbial communities such as 
diversity and stability (Niehaus et al., 2019; Posfai et al., 2017; Tikhonov and Monasson, 2017). 
However, while model parameters such as resource consumption rates are beginning to be uncovered 
in the context of in vitro experiments (Goldford et al., 2018; Hart et al., 2019; Liao et al., 2020), 
it remains challenging to determine all parameters for a community of native complexity from the 
bottom-up. A more accessible approach to parametrize CR models and to understand the features 
that drive community-level properties is needed.

To interrogate the dynamics of in vivo microbiotas, a common, top-down strategy is longitu-
dinal sampling followed by 16S amplicon or metagenomic sequencing, thereby generating a relative 
abundance time series. Analyses of longitudinal data have shown that species abundances fluctuate 
around stable, host-specific values in healthy humans (Caporaso et al., 2011; David et al., 2014; 
Faith et al., 2013). Recently, it was discovered that such time series exhibit distinctive statistical 
signatures, sometimes referred to as macroecological dynamics, that can reflect the properties of 
the community and its environment (Descheemaeker and de Buyl, 2020; Grilli, 2020; Ji et  al., 
2020; Shoemaker et al., 2017). For example, in human and mouse gut microbiotas, the temporal 
variance of different species scales as a power of their mean abundance (‘Taylor’s law’, Taylor, 1961) 
and deviations from this trend can highlight species that are transient invaders (Ji et al., 2020). Time 
series modeling can also provide insights into the underlying ecological processes. For example, the 
relative contributions of intrinsic versus environmental processes can be distinguished using autore-
gressive models whose output values depend linearly on values at previous times and external noise 
(Gibbons et al., 2017). Time series can also be correlated to environmental metadata such as diet to 
generate hypotheses about how environmental perturbations affect community composition (David 
et al., 2014), and to identify environmental drivers of transitions between distinct ecological states 
(Levy et al., 2020).

A growing body of work has shown that time series generated by simple mathematical models can 
exhibit statistics similar to experimental data sets, reinforcing the utility of such models for providing 
information about community dynamics even when many microscopic details are unknown. Some 
statistics can be recapitulated by phenomenological models, such as a non-interacting, constrained 
random walk in abundances (Grilli, 2020), while others can be described by a generalized Lotka-
Volterra (gLV) model with colored noise (Descheemaeker and de Buyl, 2020) or by ecological models 
describing the birth, immigration, and death of species (Azaele et al., 2006). However, the origins of 
and relationships among time series statistics have yet to be explained. Here, we sought to address 
this question using CR models, and simultaneously to use time series statistics as an accessible 
approach for parametrizing CR models.

Since the network of resource consumption in a community will typically depend on thousands of 
underlying parameters, directly measuring all parameters is intrinsically challenging. We sought to 
overcome this combinatorial complexity by adopting an indirect, coarse-grained approach, in which 
resources describe effective groupings of metabolites or niches, and model parameters are randomly 
drawn from a common statistical ensemble. We show that this simple formulation generates statistics 
that quantitatively match those observed in experimental time series across wide-ranging microbiotas 
without needing to specify the exact parameters of resource competition, allowing us to infer the 
global properties of resource competition that can recapitulate experimentally observed time series 
statistics. We further show that our effective CR model captures the behavior of a broader class of 
ecological interactions, and can guide the development and analysis of other models and their time 
series statistics. Our work thus provides an accessible connection between complex microbiotas and 
the effective resource competition that could underlie their dynamics, with broad applications for 
engineering communities relevant to human health and to agriculture.

Results
A coarse-grained CR model under fluctuating environments
To determine the nature of time series statistics generated by resource competition, we considered a 
minimal CR model in which ‍N ‍ consumers compete for ‍M ‍ resources via growth dynamics described by

https://doi.org/10.7554/eLife.75168
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dt = −Yj

N∑
i=1

RijXi.
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(1)

Here, ‍Xi‍ denotes the abundance of consumer i, ‍Yj‍ the amount of resource ‍j‍, and ‍Rij‍ the consump-
tion rate of resource ‍j‍ by consumer i. The resources in this model are defined at a coarse-grained 
level, such that individual resources represent effective groups of metabolites or niches. We assumed 
that the resource consumption rates ‍Rij‍ were independent of the external environment and constant 
over time, thereby specifying the intrinsic ecological properties of the community with a collection of 
‍N × M ‍ microscopic parameters. To simplify this vast parameter space, we conjectured that the macro-
ecological features of our experimental time series might be captured by typical profiles of resource 
consumption drawn from a statistical ensemble. This is a crucial simplification: while these randomly 
drawn values will never match the specific resource consumption rates of a given microbiota, previous 
work suggests that they can often recapitulate the large-scale behavior of sufficiently diverse commu-
nities (Cui et al., 2021). This simplification allows us to test whether particular ensembles of resource 
consumption rates can reproduce the time series statistics we observe. Specifically, we considered an 
ensemble in which each ‍Rij‍ was randomly selected from a uniform distribution between 0 and ‍Rmax‍. 
To model the sparsity of resource competition within the community, each ‍Rij‍ was set to zero with 
probability ‍S‍ (Figure 1A). This ensemble approach allows us to represent arbitrarily large communities 
with just two global parameters, ‍S‍ and ‍Rmax‍.

We simulated the dynamics in Equation 1 using a serial dilution scheme (Erez et al., 2020) to 
mimic the punctuated turnover of gut microbiotas due to multiple feedings and defecations between 
sampling times. During a sampling interval ‍T ‍, each dilution cycle was seeded with an initial amount 
of each resource, ‍Yj,0

(
T
)
‍, and Equation 1 was simulated until all resources were depleted (‍dYj/dt = 0‍ 

for all ‍j‍). The community was then diluted by a factor ‍D‍ and resources were replenished to their 
initial amounts ‍Yj,0

(
T
)
‍ (Figure 1B). To mimic the effects of a reservoir of species that could potentially 

compete for the resources (Ng et al., 2019), we initialized the first dilution cycle of each sampling 
interval by assuming that ‍N ‍ consumers were present at equal abundance. Additional dilution cycles 
were then performed until an approximate ecological steady state was reached (Figure 1B, Mate-
rials and methods). Consumer abundances at sampling time ‍T ‍ were defined by this approximate 
ecological steady state. For the relevant parameter regimes we considered, this approximate steady 
state was reached within a reasonable number of generations (5–6 dilutions or ~40 generations for 
‍D = 200‍). Although the precise details of microbiota turnover are largely unknown in humans, our 
modeling results were robust to the precise value of ‍D‍ and threshold for ecological steady state 
(Figure 1—figure supplement 1). Similarly, our results did not depend on the precise composition of 
the reservoir (Figure 1—figure supplement 2), although they did depend on its existence and relative 
size (Figure 1—figure supplement 2).

Under the assumptions of this model, any temporal variation in consumer abundances must arise 
through external fluctuations in the initial resource levels ‍Yj,0

(
T
)
‍, which might come, for example, from 

dietary fluctuations. To model these fluctuations, we assumed that the initial resource levels undergo 
a biased random walk around their average values ‍

−
Yj‍:

	﻿‍
Yj,0

(
T
)

=
����Yj,0

(
T − 1

)
− k

(
Yj,0

(
T − 1

)
−

−
Yj

)
+ σ

−
Yjξj

(
T
)���� ,

‍�
(2)

where ‍ξj
(
T
)
‍ is a normally distributed random variable with zero mean and unit variance, ‍σ‍ deter-

mines the magnitude of resource fluctuations, and ‍k‍ is the strength of a restoring force that ensures 
the same resource environment on average over time (Figure 1A). The absolute value enforces ‍Yj,0‍ to 
be positive. If ‍k = 0‍, there is no restoring force and hence ‍Yj,0

(
T
)
‍ performs an unbiased random walk; 

if ‍k = 1‍, ‍Yj,0
(
T
)
‍ fluctuates about its set point ‍Ȳj‍ independent of its value at the previous sampling time. 

For all ‍k > 0‍, the model exhibits long-term stability without drift. As above, we used an ensemble 
approach to model the set points ‍Ȳj‍, assuming that each ‍Ȳj‍ was independently drawn from a uniform 
distribution between ‍0‍ and ‍Ymax‍. These assumptions yield a Markov chain of fluctuating resource 
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Figure 1. A coarse-grained consumer-resource model with fluctuating resource amounts. (A) In the consumer-resource model, ‍Xi‍ denotes the 
abundance (abu) of consumer i and ‍Yj‍ denotes the amount of coarse-grained resource ‍j‍. The dynamics of the model are specified by consumption 
rates ‍Rij‍ for ‍N ‍ consumers and ‍M ‍ resources. ‍Rij‍ is drawn from a uniform distribution, and each ‍Rij‍ is set to zero with probability ‍S‍, the sparsity of 
resource competition. The initial resource amount ‍Yj,0

(
T
)
‍ at each sampling time ‍T ‍ fluctuates with noise strength ‍σ‍ and restoring force ‍k‍. ‍N ‍ is 

estimated from each data set, and the four free ensemble level parameters are highlighted in red. (B) Shown are the dynamics of the model within one 
sampling time (‍T = 100‍, dashed gray box) for a subset of consumers and resources in a typical simulation. At each sampling time ‍T ‍, the model was 
simulated under a serial dilution scheme in which consumers (solid blue lines) grew until all resources (dotted green lines) were depleted, after which 
all consumer abundances were diluted by a fixed factor ‍D = 200‍ and resource amounts were replenished to ‍Y0

(
T
)
‍. Each sampling time was initiated 

from an external reservoir of consumers, with all consumers present at equal abundance. Dilutions were repeated until an approximate ecological 
steady state was reached in which the ratios of final to initial abundances of all consumers changed by less than 5% of ‍D‍ between subsequent dilutions 
(Materials and methods). The relative abundances at sampling time ‍T ‍ were obtained from the final species abundances at steady state. (C) The model 
maps a set of fluctuating resource amounts ‍Yj,0

(
T
)
‍ to a time series of consumer relative abundances ‍xi

(
T
)
‍ that can be compared to experimental 

measurements. (D) The simulated time series in (C) exhibits statistical behaviors that reproduce those found in experiments, including a power law 
scaling between the abundance variance and mean over time of each species (left) and an approximately exponential distribution of abundance 
changes (right). Black lines denote the best linear fit (left) and the best fit exponential distribution (right). The simulation shown in (A–D) was generated 
with ‍

(
N, M, S, σ, k

)
=
(
50, 30, 0.1, 0.2, 0.8

)
‍.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure 1 continued on next page
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amounts ‍Yj,0
(
T
)
‍ and their corresponding consumer relative abundances ‍xi

(
T
)

= Xi
(
T
)

/
∑

n Xn
(
T
)
‍ 

(Figure 1C).
The statistical properties of these time series are primarily determined by five global parameters: 

the total number of consumers in the reservoir ‍N ‍, the number of resources in the environment ‍M ‍, the 
sparsity ‍S‍ of the resource consumption matrix, and the resource fluctuation parameters ‍σ‍ and ‍k‍. The 
absolute magnitudes of ‍Rmax‍ and ‍Ymax‍ are not important for our purposes since they do not affect 
the predictions of consumer relative abundances at ecological steady state. We extracted ‍N ‍ from 
experimental data as the number of consumers that were present for at least one sampling time point, 
leaving only four free global parameters.

Previous studies have suggested that the family level is an appropriate coarse graining of metabolic 
capabilities (Goldford et al., 2018; Louca et al., 2016; Tian et al., 2020), thus we assumed, unless 
otherwise specified, that each consumer grouping i within our model represents a taxonomic family, 
and combined abundances of empirical operational taxonomic units (OTUs) or amplicon sequencing 
variants (ASVs; Callahan et al., 2016) at the family level for analyses (Materials and methods). Given 
the typical limits of detection of 16S amplicon sequencing data sets, we only examined time series 
statistics for taxa with relative abundance >10–4 at any given time point. Experimental and simulated 
data were processed equivalently to enable consistent comparisons of their time series statistics.

As expected, we found that random realizations of our model (i.e., different resource consump-
tion matrices drawn from the same ensemble) generated similar time series statistics, whose typical 
behavior strongly varied with the global parameters of the model. In particular, only small subsets 
of the parameters led to time series statistics that agreed with experiments, as we show below. An 
example simulation using the macroscopic parameters ‍

(
N, M, S,σ, k

)
=
(
50, 30, 0.1, 0.2, 0.8

)
‍ is shown 

in Figure 1. This set of parameters produced relative abundance time series with highly similar statis-
tical behaviors as in experiments involving daily sampling of human stool (Figure  1D). Given this 
agreement, we next systematically analyzed the time series statistics generated by our model across 
the macroscopic parameter space and compared against experimental behaviors to estimate model 
parameters for wide-ranging microbiotas.

Model reproduces the statistics of human gut microbiota time series
To test whether our model can recapitulate major features of experimental time series, we first focused 
on a data set of daily sampling of the gut microbiota from a human subject (Caporaso et al., 2011; 
Figure 2). These data were previously shown (Ji et al., 2020) to exhibit several distinctive statistical 
behaviors: (1) the variance ‍σ

2
xi‍ of family i over the sampling period scaled as a power law with its mean 

‍⟨xi⟩‍ (Figure 2B and F); (2) the log10(abundance change) ‍∆li
(
T
)

= log10
(
xi
(
T + 1

)
/xi

(
T
))

‍ , pooled over 
all families and across all sampling times, was well fit by an exponential distribution with standard devi-
ation ‍σ∆l‍ (Figure 2B and G); and (3) the distributions of residence times ‍tres‍ and return times ‍tret‍ (the 
durations of sustained presence and absence, respectively) pooled over all families were well fit by 
power laws with an exponential cutoff (Figure 2D and K). Through an exhaustive search of parameter 
space, we identified a specific combination of parameters that could reproduce all of these behaviors 
within our simple CR model (Figure 2F, G and K).

In addition, several other important statistics were reproduced without any additional fitting: (1) 
the distribution of richness ‍α

(
T
)
‍ , the number of consumers present at sampling time ‍T ‍ (Figure 2A 

and E); (2) the distribution of the restoring slopes ‍si‍ of the linear regression of ‍∆li
(
T
)
‍ against 

‍li
(
T
)
≡ log10

(
xi
(
T
))

‍ across all ‍T ‍ (Figure 2C and H); (3) the distribution of prevalences ‍pi‍ , the fraction 
of sampling times for which family i is present (Figure 2A1); (4) the relationship between ‍pi‍ and ‍⟨xi⟩‍ 
(Figure 2J); and (5) the rank distribution of mean abundances ‍⟨xi⟩‍ (Figure 2L).

Therefore, our model was able to simultaneously capture at least eight statistical behaviors in a 
microbiota time series with only four parameters, each of which may represent biologically relevant 
features of the community.

Figure supplement 1. The dilution factor and steady-state threshold do not substantially affect time series statistics.

Figure supplement 2. Reservoir composition does not substantially affect time series statistics.

Figure 1 continued

https://doi.org/10.7554/eLife.75168
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To determine whether our model can be used to analyze time series statistics at other taxonomic 
levels, we analyzed the same data set (Caporaso et al., 2011) at finer (genus) and coarser (class) 
taxonomic levels, both of which exhibited qualitatively similar statistical behaviors as the family level. 
Our modeling framework was able to quantitatively recapitulate almost all statistics at both levels 
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Figure 2. A coarse-grained consumer-resource model with fluctuating resource amounts reproduces experimentally observed statistics in an abundance 
time series from daily sampling of a human gut microbiota. In all panels, blue points and bars denote experimental data analyzed and aggregated at the 
family level (Caporaso et al., 2011). Red lines and shading denote best fit model predictions as the mean and standard deviation, respectively, across 
20 random instances of the best fit ensemble level parameters, ‍

(
N, M, S, σ, k

)
=
(
50, 30, 0.1, 0.2, 0.8

)
‍. (A–D) Illustrations of various time series 

statistics in (E–L). (A) The distribution of richness ‍α‍, the number of consumers present at a sampling time, and its mean ‍⟨α⟩‍ are well fit by the model. 
(B) The variance ‍σ

2
xi‍ and mean ‍⟨xi⟩‍ over time of each family’s abundance (abu) scale as a power law with exponent ‍β‍. Here, ‍β = 1.48‍ in experimental 

data and in simulations. (C) The distribution of log10(abundance change) ‍∆l‍ across all families is well fit by an exponential with standard deviation ‍σ∆l‍ . 
The gray line denotes the best fit exponential distribution, and is largely overlapping with the model prediction in red. (D) The distribution of restoring 
slopes ‍si‍ , defined based on the linear regression between the abundance change and the relative abundance for a species across time, is tightly 
distributed around a mean ‍⟨s⟩‍ that reflects the environmental restoring force. Best fit values of model parameters were determined by minimizing errors 
in ‍⟨α⟩‍ , ‍β‍, ‍σ∆l‍ , and ‍⟨s⟩‍ (E–H, respectively). Using these values, our model also reproduced the distribution of prevalences (fraction of sampling times in 
which a consumer is present, I), the relationship between prevalence and mean abundance (J), the distributions of residence and return times (durations 
of sustained presence or absence, respectively, as illustrated in D) (K), and the rank distribution of abundances (L).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Grouping at a coarser taxonomic level results in similar time series statistics.

Figure supplement 2. The consumer-resource (CR) model can reproduce time series statistics at the genus level of a human gut microbiota.

https://doi.org/10.7554/eLife.75168
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(Figure 2—figure supplements 1 and 2). A notable exception is that the Bacteroides genus domi-
nated the observed rank abundance distribution at the genus level, while our CR model predicted 
a more even distribution (Figure 2—figure supplement 2). Nevertheless, the relative abundances 
among the remaining genera were still well captured by the model predictions (Figure 2—figure 
supplement 2). These results demonstrate that our model and its applications can be generalized 
across taxonomic levels.

Systematic characterization of the effects of CR dynamics on time 
series statistics
Since our model can reproduce the observed statistics in gut microbiota time series, we sought to 
determine how these statistics would respond to changes in model parameters, and thus how exper-
imental measurements constrain the ensemble parameters across various data sets. To do so, we 
simulated our model across all relevant regions of parameter space. ‍S‍ and ‍k‍ were varied across their 
entire ranges, and ‍M ‍ and ‍σ‍ were varied across relevant regions outside of which the model clearly 
disagreed with the observed data. For each set of parameters, each time series statistic was averaged 
across random instances of ‍Rij‍ and ‍Yj,0

(
T
)
‍ drawn from the same statistical ensemble. For each statistic 

‍z‍, its global susceptibility ‍C
(
z, w

)
‍ to parameter ‍w‍ was calculated as the change in ‍z‍ when ‍w‍ is varied, 

averaged over all other parameters and normalized by the standard deviation of ‍z‍ across the entire 
parameter space. Due to the normalization, ‍C

(
z, w

)
‍ varies approximately between –3 and 3, where a 

magnitude close to 3 indicates that almost all the variance of ‍z‍ is due to changing ‍w‍.
By clustering and ranking susceptibilities, we identified four statistics with ‍

��C (
z, w

)�� > 2‍ that were 
largely determined by one of each of the four model parameters (Figure 3, Figure 3—figure supple-
ment 1): mean richness ‍⟨α⟩‍, the power law exponent ‍β‍ of ‍σ

2
xi‍ versus ‍⟨xi⟩‍, the standard deviation in 

log10(abundance change) ‍σ∆l‍, and the mean restoring slope ‍⟨s⟩‍ were almost exclusively susceptible 
to variations in ‍M ‍, ‍S‍, ‍σ‍, and ‍k‍, respectively. Similar results were also obtained for local versions of the 
susceptibility, in which individual parameters were varied around the best fit values for the human gut 
microbiota in Figure 2 (Figure 3-figure supplement 2). These susceptibilities broadly illustrate how 
various time series statistics are affected by coarse-grained parameters of resource competition; we 
further investigate some specific examples in the next section.

The exclusive susceptibilities of these four statistics suggest that they can serve as informative 
metrics for estimating model parameters. Therefore, we estimated model parameters by minimizing 
the sum of errors between model predictions and experimental measurements of these four statistics, 
and obtained estimation bounds by determining parameter variations that would increase model 
error by 5% of the mean error across all parameter space. As we will show, the resulting bounds are 
small relative to the differences among distinct microbiotas, indicating that meaningful conclusions 
can be drawn from the best fit values of the ensemble level parameters of resource competition. In 
summary, the four model parameters were fit to four summary statistics: mean richness ‍⟨α⟩‍, variance-
mean scaling exponent ‍β‍, standard deviation of abundance change ‍σ∆l‍, and mean restoring slope ‍⟨s⟩‍ 
(Figure 2E–H, respectively). The shapes of their corresponding distributions and scalings, as well as at 
least four other statistics (Figure 2I–L), are all parameter-free predictions.

Origins of distinctive statistical behaviors in species abundance time 
series
To understand the mechanisms that underlie the susceptibilities of various time series statistics to 
model parameters, we investigated their origins within our model, focusing on how they constrain the 
parameters.

The average richness ‍⟨α⟩‍ is a fundamental descriptor of community diversity. Within our model, 

‍⟨α⟩‍ is largely determined by and increases with increasing resource number ‍M ‍ (‍C
(
α, N/M

)
= −2.6‍), as 

expected for CR dynamics. The sparsity of resource use ‍S‍ impacts the power law exponent ‍β‍ between 

‍σ
2
xi‍ and ‍⟨xi⟩‍ (‍C

(
β, S

)
= −2.0‍). Together, ‍α‍ and ‍β‍ constrain the parameters of resource competition ‍M ‍ 

and ‍S‍.
The effect of ‍S‍ on ‍β‍ can be partially understood by considering limiting behaviors as follows. When 

sparsity is high (‍S ≈ 1‍), there is little competition and each consumer consumes almost distinct sets of 
resources from other consumers. In the limit in which each consumer utilizes a single unique resource, 

‍σ
2
xi‍ is determined by the noise in resource level, which has a ‍β = 2‍ scaling according to Equation 2. 

https://doi.org/10.7554/eLife.75168
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Figure 3. Macroscopic parameters of resource competition affect time series statistics in distinct manners. Shown are the changes in time series 
statistics (y-axis) in response to changes in model parameters (x-axis) for a comprehensive search across relevant regions of parameter space. Lines and 
shading show the mean and standard deviation of a statistic at the given parameter value across variations in all other parameters. Data are plotted 
in red when the corresponding susceptibility ‍

��C (
z, w

)�� > 2‍, indicating that statistic ‍z‍ is strongly affected by parameter ‍w‍ regardless of the values of 
other parameters. Dashed lines highlight best fit parameter values to the experimental data in Figure 2. Simulations were carried out for ‍N = 50‍ 
across ‍M ∈

[
10, 20, 30, 40, 50, 100, 150, 200, 250

]
‍ , ‍S ∈

[
0.1, 0.9

]
‍ in 0.1 increments, ‍σ ∈

[
0.05, 0.5

]
‍ in 0.05 increments, and ‍k ∈

[
0.1, 1

]
‍ in 0.1 

increments.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Time series statistics are differentially susceptible to model parameters.

Figure supplement 2. Local susceptibilities behave similarly to their global counterparts.

Figure 3 continued on next page

https://doi.org/10.7554/eLife.75168
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In the limit of large ‍M ‍ and high sparsity, the variation in the number of resources consumed by each 
consumer can be large relative to the mean, and both ‍σ

2
xi‍ and ‍⟨xi⟩‍ scale with the number of resources 

consumed, hence ‍β = 1‍. Simulations of a no-competition model in which consumers consume distinct 
sets of resources confirmed the scalings in these limits (Figure 3—figure supplement 3). By contrast, 
when sparsity is low (‍S ≈ 0‍), each consumer utilizes almost all resources and hence variation in the 
number of resources consumed is small relative to the mean. Despite the obvious presence of compe-
tition in our CR model, we nevertheless attempted to understand the low sparsity limit by extrapo-
lating the no-competition model above to a case in which all consumers consume distinct sets of the 
same number of resources. For large number of resources, these simulations predicted that ‍β ≈ 1.5‍ 
(Figure 3—figure supplement 3), as did our CR model for ‍S = 0.1‍ (Figure 3—figure supplement 
3). These findings suggest that the effect of ‍S‍ on ‍β‍ can be partially attributed to differences in the 
number of resources consumed.

The distribution of ‍∆l‍ describes the nature of abundance changes. As expected, the width of the 
distribution is largely determined by and increases with increasing ‍σ‍ (‍C

(
σ∆l,σ

)
= 2.6‍). For the gut 

microbiota data set in Figure 2, the shape of the distribution was well fit by an exponential. Within 
our model, the shape of the distribution aggregated across all consumers is determined by ‍N/M ‍ and 
the sparsity ‍S‍, emerging from the mixture of each consumer’s individual distribution (Figure 3—figure 
supplement 4). When ‍N/M < 1‍ and the sparsity ‍S‍ is low, individual distributions of ‍∆l‍ are well fit 
by normal distributions, and pool together to generate another normal distribution. When ‍N/M < 1‍ 
and sparsity ‍S‍ is high, individual distributions remain normal, but can pool together to generate a 
non-normal distribution that is well fit by an exponential (see also Allen et al., 2001). By contrast, 
when ‍N/M > 1‍, individual distributions can be well fit by an exponential and can pool together to 
approximate another exponential. Simulations of the no-competition model considered above led 
to individual and aggregate distributions that were normal in all cases, indicating that in our model 
resource competition is responsible for generating the non-normal distributions of ‍∆l‍ (Figure 3—
figure supplement 3). Although it is challenging to discern the shape of individual distributions in 
most experimental data sets given the limited numbers of samples, the shape of the aggregate distri-
bution of ‍∆l‍ informs the parameters of resource competition ‍M ‍ and ‍S‍. In particular, an exponential 
distribution of ‍∆l‍ suggests either strong resource competition in the form of ‍N > M ‍ or substantial 
niche differentiation in the form of high ‍S‍. Other statistics such as ‍β‍ can help to distinguish between 
these two regimes.

The distribution of restoring slopes ‍si‍ describes the tendency with which consumers revert to their 
mean abundances following fluctuations. As expected, the mean ‍⟨s⟩‍ is almost completely determined 
by ‍k‍, which describes the autocorrelation in resource levels (‍−⟨s⟩ ≈ k‍ and ‍C

(
⟨s⟩ , k

)
= −3.0‍). Together, 

the distributions of ‍∆l‍ and ‍si‍ constrain the parameters of external fluctuations ‍σ‍ and ‍k‍.
Within our model, resource fluctuations can lead to the temporary ‘extinction’ of certain species 

when they drop below the detectability threshold of 10–4. The distributions of residence and return 
times, ‍tres‍ and ‍tret‍, reflect the probabilities of extinction as well as correlations between sampling times. 
For all parameter sets explored, these distributions can be well fit by power laws, with an exponential 
cutoff to account for finite sampling (Ji et al., 2020). As expected, the power law slopes ‍νres‍ and ‍νret‍ 
decrease (become more negative) with increasing ‍σ‍ or ‍k‍ (Figure  3—figure supplement 1), since 
increasing external noise or decreasing correlations in time increases the probability of fluctuating 
between existence and extinction for each consumer. By contrast, ‍νres‍ and ‍νret‍ change in opposite 
directions in response to variation in ‍M ‍ (Figure 3—figure supplement 1). Increasing ‍M ‍ leads to a 
larger number of highly prevalent consumers, thereby increasing the mean and broadening the distri-
bution of ‍tres‍ and decreasing the mean and narrowing the distribution of ‍tret‍. Since the four ensemble 
level parameters are already fixed by other statistics, the distributions of ‍tres‍, ‍tret‍, and ‍pi‍ are parameter-
free predictions of our model. In other words, a macroscopic characterization of the effective resource 
competition and resource fluctuations is sufficient to predict the statistics of ‘extinction’ dynamics, as 

Figure supplement 3. A no-competition model provides a partial explanation for the scaling exponent ‍β‍ between ‍σ
2
xi‍ and ‍⟨xi⟩‍ .

Figure supplement 4. Sparsity and the number of metabolites determine the shape of the distribution of abundance changes ‍P
(
∆l

)
‍ .

Figure supplement 5. Our consumer-resource (CR) model is consistent with results obtained by shuffling time labels.

Figure 3 continued

https://doi.org/10.7554/eLife.75168
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well as the abundance rank distribution and the 
relationship between consumer abundance and 
prevalence.

Since the distributions of ‍∆l‍, ‍tres‍, and ‍tret‍ are 
dependent on correlations between sampling 
times, it was initially puzzling that their distribu-
tions in some data sets remained similar after shuf-
fling sampling times, raising questions as to what 
extent these statistics hold information about the 
underlying intrinsic dynamics (Tchourine et  al., 
2021; Wang and Liu, 2021a). Our results assist in 
reconciling the apparent conundrum, since within 
our model richness ‍⟨α⟩‍ and Taylor’s law expo-
nent ‍β‍ do not depend on correlations between 
sampling times and are also the statistics that 
are most informative about the intrinsic parame-
ters ‍M ‍ and ‍S‍ (Figure 3). As a result, the shuffled 
time series were also well fit by our model and 
yielded best fit values that were identical to those 
produced by the actual time series except with 
‍k = 1‍, as expected due to the absence of correla-
tion across sampling times (Figure  3—figure 
supplement 5). Thus, our results suggest that 
while external fluctuations in resource levels may 
be responsible for generating species abundance 
variations, the intrinsic properties of resource 
competition can determine the resulting scaling 
exponents of many statistical behaviors.

Taken together, our analyses demonstrate the 
complex relationships among time series statistics 
and highlight their unification within our model 
using only a small number of global parameters, 
whose values are strongly constrained by macro-
ecological patterns.

CR model guides the identification 
of other models that can 
reproduce time series statistics
We have shown that many time series statistics 
can be recapitulated by a simple model that does 
not require knowing many detailed features of 
real microbiota (Figure  2). The success of this 
approach implies that these macroecological fluc-
tuations must be independent of at least some 
model details, which suggests that there may be 
other ecological models that could also recapit-
ulate the same data (Figure 4, Figure 4—figure 
supplements 1–5). The relationships between 
ecological models are generally poorly charac-
terized. To explore these possibilities, we sought 
to compare our calibrated CR models against 
several common alternatives.

First, we aimed to determine the extent to 
which the simulated statistics depend on the assumptions of our CR model. Our parametrization of 
the consumption rates introduces a correlation between the maximum growth rate of a consumer and 

-1 -0.5 0 0.5 1
Pairwise correlation

0

0.5

1

1.5

2

PD
F

Non-interacting
model

CR model
Data

Figure 4. Correlations between abundances of 
consumer pairs were captured by the consumer-
resource model, but not by a null model without 
interspecies interactions. Shown in blue is the 
probability density function (PDF) of correlations 
between the abundances across sampling times 
of all consumer pairs for the experimental data in 
Figure 2. Red line represents parameter-free model 
predictions as in Figure 2, using the same best fit 
parameters; shading represents 1 standard deviation. 
Black dashed line shows predictions of a null model 
without interspecies interactions in which consumer 
abundances were drawn from independent normal 
distributions whose mean and variance were extracted 
from data.

The online version of this article includes the following 
figure supplement(s) for figure 4:

Figure supplement 1. The consumer-resource (CR) 
model with metabolic trade-offs produces similar 
statistics as the original model and can also recapitulate 
experimental data.

Figure supplement 2. Consumer-resource (CR) model 
with saturation kinetics exhibits dampened fluctuations 
but can still reproduce experimentally observed 
statistics.

Figure supplement 3. A non-interacting null model 
reproduced some, but not all, time series statistics.

Figure supplement 4. Generalized Lotka-Volterra 
(gLV) model with consumer-resource (CR)-converted 
interaction coefficients generates time series statistics 
similar to the original CR model and also recapitulates 
experimental data.

Figure supplement 5. Generalized Lotka-Volterra (gLV) 
model with normally distributed interaction coefficients 
cannot reproduce experimental data.

https://doi.org/10.7554/eLife.75168
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the number of resources it consumes. To remove this correlation, we normalized the sum of consump-

tion rates ‍
∑

j Rij‍ for consumer i to a fixed capacity ‍
∼
Ri‍ that was randomly drawn from the original 

growth rates ‍
∑

j RijYj,0‍ (Good et al., 2018; Posfai et al., 2017; Tikhonov and Monasson, 2017). This 
modification preserves the variation in consumer fitness while implementing a metabolic trade-off. 
The resulting time series statistics were essentially unaffected, also recapitulating experimental data 
(Figure 4—figure supplement 1).

Moreover, the CR dynamics in Equation 1 do not consider other biologically plausible scenarios 
such as saturation kinetics (Momeni et al., 2017; Niehaus et al., 2019). To probe the robustness of 
the results of our model to the dynamical assumptions, we implemented saturation kinetics with all 
other details kept the same (Materials and methods). When this model was simulated with the best 
fit parameters of the original model, the resulting dynamics were less variable across sampling times 
than without saturation kinetics, since the saturated regime is unaffected by small changes in resource 
levels (Figure 4—figure supplement 2). Nonetheless, experimental statistics were again reproduced 
once the strength of environmental fluctuations ‍σ‍ was increased appropriately (Figure  4—figure 
supplement 2). This suggests that our results are robust to assumptions regarding metabolic trade-
offs and saturation kinetics.

We next considered a non-interacting null model in which consumer abundances were drawn from 
independent normal distributions whose means and variances were fitted directly from the data. Even 
with a large number of free parameters, this null model was unable to capture some of the time series 
statistics reproduced by our CR model, including Taylor’s law as well as the distributions of richness 
and restoring slopes (Figure 4—figure supplement 3). We reasoned that the discrepancies between 
experimental data and the null model could be due to the lack of interspecies interactions. To test 
this hypothesis, we examined the pairwise correlations between the consumer abundances across 
sampling times. The measured distribution of pairwise correlations is much broader than the predic-
tion of the non-interacting model, which is sharply peaked about zero as expected (Figure 4). By 
contrast, the distribution of correlations predicted by our CR model without any additional fitting was 
in much closer agreement with the experimental data (Figure 4). These findings imply that interspe-
cies interactions are required to capture important details of community dynamics.

While our CR model assumes pairwise interactions between consumers and resources, the effective 
interactions between consumers are not necessarily pairwise. To explore whether these higher-order 
contributions are necessary for recapitulating the data, we considered models explicitly based on pair-
wise interspecies interactions, which despite differences compared with CR models (Momeni et al., 
2017) can also reproduce some properties of experimental time series (Descheemaeker and de Buyl, 
2020; Wang and Liu, 2021b). To further explore the properties of models focused on pairwise inter-
actions, we investigated gLV models in which ‍N ‍ taxa grow and interact via

	﻿‍

dXi
dt = Xi

(
ri +

N∑
j=1

AijXj − Γ
(
t
))

,
‍�

(3)

where ‍Xi‍ denotes the relative abundance of taxon i, ‍ri‍ its growth rate, and ‍Aij‍ its interaction coef-
ficient with taxon ‍j‍. ‍Γ

(
t
)

=
∑

i riXi +
∑

i,j AijXiXj‍ is a normalizing term that ensures that the relative 
abundances always sum to one (Joseph et al., 2020). Since this classical model is generally unstable 
for randomly drawn interaction coefficients (May, 1972), we sought to focus on particular instances 
of the gLV model that were closest to our original CR model. This conversion between models 
was achieved by converting the consumption rates ‍Rij‍ and resource levels ‍Yj,0‍ at each sampling 
time ‍T ‍ to the growth rates ‍ri‍ and interaction coefficients ‍Aij‍ that characterize the dynamics when 
consumption rates are similar to the mean value (Materials and methods). This conversion results 
in negative, symmetric ‍Aij‍ whose magnitudes depend on the niche overlap between the inter-
acting taxa (Good et al., 2018). Moreover, fluctuations in ‍Yj,0‍ result in corresponding fluctuations 
in both ‍ri‍ and ‍Aij‍ across ‍T ‍. These CR-converted gLV models generated time series statistics that 
reproduced the experimental data to a similar extent as the original CR model (Figure 4—figure 
supplement 4). In light of this correspondence, we asked whether more general ensembles of 
pairwise interaction could also reproduce the experimental data. We randomly selected ‍ri‍ and ‍Aij‍ 
values from normal distributions with means and variances equal to those in the CR-converted gLV 
models while enforcing symmetric and negative interactions. The resulting gLV models yielded a 

https://doi.org/10.7554/eLife.75168
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poor fit to the data (Figure 4—figure supplement 5). Together, these results suggest that while 
pairwise interactions between taxa are likely sufficient to recapitulate the experimental data, their 
parameters must be drawn from particular ensembles that can be more simply described in the CR 
framework.

These examples reinforce that only a particular subset of models can recapitulate the data, and 
therefore, that the underlying community properties are highly constrained by macroecological 
dynamics. Moreover, our calibrated CR model can guide the parametrization of other models that can 
satisfy those constraints, while also identifying model features that are necessary for recapitulating 
data.

Time series statistics distinguish wide-ranging microbiotas
Having developed a simple method to estimate parameters of our CR model that recapitulate time 
series statistics, we applied this method to data sets involving wide-ranging microbial communities. 
Although the various communities considered are drastically different in many aspects, we hypothe-
sized that our CR model framework could still be applied to identify the statistical ensembles that can 
describe their macroecological dynamics. In addition to microbiotas from the human and mouse gut 
(Caporaso et al., 2011; Carmody et al., 2015; David et al., 2014), we examined communities from 
the human vagina (Song et al., 2020), human saliva (David et al., 2014), and in and around rice roots 
(Edwards et al., 2018). The time series statistics of these microbiotas varied broadly (Figure 5A). 
Nevertheless, our model successfully reproduced the experimental statistics across all communities 
(Figure 5—figure supplements 1–6), suggesting that simple CR models can capture many of the 
macroscopic features of these microbiotas.

The best fit parameters suggest that the effective resource competition dynamics occur in distinct 
regimes across microbiotas (Figure  5B). Human gut microbiotas were best described by ‍N > M ‍, 
suggesting that there are more species in the reservoir than resources in the environment, by contrast 
to mouse gut microbiotas that were best described by ‍N < M ‍. In terms of resource niche overlaps, 
human gut microbiotas were best fit with sparsity ‍S < 0.3‍, while mouse gut microbiotas were best fit 
with ‍S > 0.3‍, suggesting that on average, pairs of bacterial families are more metabolically distinct in 
the mouse versus the human gut.

Unlike gut microbiotas, a human saliva microbiota yielded best fit parameters ‍N ≈ M ‍ and ‍S ≈ 0.8‍, 
suggesting that this community has access to abundant resources and that each effective resource is 
competed for by a small fraction of the extant bacterial families. All vaginal microbiotas were best fit 
with ‍S < 0.1‍, suggesting intense resource competition.

Like vaginal microbiotas, microbial communities residing in the bulk soil around rice roots and in 
the associated rhizoplane and rhizosphere were well described by ‍S < 0.1‍. By contrast, the community 
in the associated endosphere was best described by ‍S ≈ 0.6‍, suggesting that resource competition is 
less fierce within plant roots than around them.

In addition, inferences about the nature of environmental fluctuations can be made from the best 
fit values of ‍σ‍ and ‍k‍ (Figure 5B). Apart from the two vaginal microbiota data sets, the best fit values 
of ‍σ‍ ranged from 0.1 to 0.3, indicating that changes in resource levels smaller than this magnitude will 
generate abundance changes that look like typical fluctuations. The best fit values of ‍k‍ varied between 
0.5 and 1 across data sets, suggesting that the dynamics of microbial communities occur faster than 
or comparable to the typical sampling frequency of longitudinal studies. While it is unclear whether 
the internal time scales are faster than the sampling frequency for all of these communities, simula-
tion results were robust to the dilution factor and threshold change defining ecological steady state 
(Figure 1—figure supplement 1), two main factors that affect the relationship between the internal 
and sampling time scales.

Inferences about intrinsic parameters of resource competition and external parameters of environ-
mental fluctuations were also consistent with expectations for in vitro passaging of complex communi-
ties derived from humanized mice (Aranda-Díaz et al., 2022). The resulting time series statistics were 
best fit by the smallest value of ‍σ‍ among the data sets studied, indicating that the in vitro environment 
has relatively low noise across sampling times (as expected); the nonzero ‍σ‍ presumably arises from 
technical variations that result in effective noise in resource levels. The best fit value of ‍M ‍ was larger 
than the reservoir size ‍N ‍, suggesting that there are many distinct resources in the complex medium 
used for passaging and consistent with the ability of more diverse inocula to support more diverse in 

https://doi.org/10.7554/eLife.75168
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Figure 5. The statistics of wide-ranging microbiotas were captured by the coarse-grained consumer-resource model in different regimes of resource 
competition and environmental fluctuations. Shown are time series statistics (A) and corresponding best fit model parameters (B) for human microbiotas 
from stool (Caporaso et al., 2011; David et al., 2014) (blue circles), saliva (David et al., 2014) (red square), and the vagina (Song et al., 2020) (pink 
stars), gut microbiotas of mice under low fat (green downward triangles) and high fat (green upward triangles) diets (Carmody et al., 2015), and 
plant microbiotas from the rice endosphere, rhizosphere, rhizoplane, and bulk soil (Edwards et al., 2018) (diamonds). (A) Microbiota origin generally 
dictates the scaling exponent ‍β‍ and the ratio between the reservoir size N (number of observed families throughout the time series) and the richness 

‍⟨α⟩‍ (left), as well as the mean restoring slope ‍⟨s⟩‍ and standard deviation of log10(abundance change) (right). Error bars denote 95% confidence intervals. 
(B) Microbiota origin generally dictates the best fit parameters of resource competition, ‍N/M ‍ and ‍S‍ (left), and of environmental fluctuations, ‍σ‍ and ‍k‍ 
(right). Error bars denote variation in the parameter that would increase model error (as interpolated between parameter values scanned) by 5% of the 
mean error across all parameter values scanned.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Model reproduces experimentally observed time series statistics in human gut microbiotas.

Figure supplement 2. Model reproduces experimentally observed time series statistics in a human saliva microbiota.

Figure supplement 3. Model reproduces experimentally observed time series statistics in human vagina microbiotas.

Figure supplement 4. Model reproduces experimentally observed time series statistics in mice gut microbiotas.

Figure supplement 5. Model reproduces experimentally observed time series statistics in rice microbiotas.

Figure supplement 6. odel reproduces experimentally observed time series statistics in an in vitro-passaged complex community.

https://doi.org/10.7554/eLife.75168
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vitro communities (Aranda-Díaz et al., 2022). The consistency of these results further supports the 
utility of our model.

Taken together, our model infers ensemble-level parameters of resource competition and external 
parameters of environmental fluctuations for several widely studied microbial communities that can 
inform future mechanistic studies.

Discussion
Here, we presented a coarse-grained CR model that generates species abundance time series from 
fluctuating environmental resources. We demonstrated that this model reproduces several statistical 
behaviors (Figure 2) and elucidated how these observations constrain the parameters of resource 
competition within the model (Figure 3). Moreover, we successfully fitted the model to wide-ranging 
microbiotas, which allowed us to draw inferences about the parameters of their effective resource 
competition. In sum, our work provides an existence proof that a CR model can recapitulate experi-
mentally observed time series statistics in microbiotas from diverse environments.

An important feature of our model is that it does not need to specify the individual resource 
uptake rates of different taxa, which could be too numerous and complex to be tractable. Instead, our 
model reproduces many statistical behaviors with a small number of global parameters that describe 
the distributions of resource uptake rates. To what extent these macroscopic parameters can be 
interpreted mechanistically is an interesting open question that could be explored in future work. 
Although by no means exhaustive, our framework nevertheless addresses several pertinent questions 
regarding construction of useful models of microbiota dynamics. The success of our CR model in 
reproducing experimental time series statistics is consistent with bioinformatics-guided analyses of 
complex communities demonstrating that metabolic capability is a major determinant of community 
composition (Louca et al., 2016; Tian et al., 2020). Our results also suggest that the contributions of 
a reservoir of species or other forms of species re-introduction are important for the dynamics of wide-
ranging microbiotas. Within our model, the lack of species re-introduction renders poor consumers 
unable to recover to meaningful abundance within a sampling time even when resource fluctuations 
are in their favor, thereby distorting time series statistics. The existence of a reservoir is consistent 
with previous experimental work in mice (Ng et al., 2019), but further work is required to investigate 
how species re-introduction occurs in other systems. Similarly, further experimental work is required 
to ascertain the amount of growth and change that occurs during sampling time scales, and further 
theoretical work is required to infer such internal time scales from microbiota time series.

In terms of intrinsic metabolic properties, our results provide a baseline expectation for the effec-
tive number of resources or available niches in the wide-ranging systems examined here, and to what 
extent they are competed for by extant consumers. In terms of environmental properties, our results 
provide a baseline expectation to help distinguish between typical fluctuations and large perturba-
tions in resources. These expectations may aid in the engineering of complex microbiotas.

In general, our work demonstrates that it is feasible to reproduce time series statistics using CR 
models of microbiota dynamics, thereby generating mechanistic hypotheses for further investigation. 
Our CR model and fitting procedure can also be used to aid the parametrization of other models such 
as Lotka-Volterra models (Figure 4—figure supplements 1–5), comparisons among which can reveal 
the model details that are required to recapitulate experimental data. In the future, more detailed 
hypotheses can be generated by investigating how time series statistics are affected by modifica-
tions to baseline CR dynamics, such as the incorporation of metabolic cross-feeding (Goldford et al., 
2018; Li et al., 2020) or physical interactions such as type VI killing (Verster et al., 2017), functional 
differentiation from genomic analysis (Arkin et al., 2018; Machado et al., 2021; Pollak et al., 2021), 
and physical variables such as pH (Aranda-Díaz et al., 2020; Ratzke and Gore, 2018), temperature 
(Lax et al., 2020), and osmolality (Cesar et al., 2020). In addition, recent studies have shown that 
evolution can substantially affect the dynamics of human gut microbiotas (Garud et al., 2019; Yaffe 
and Relman, 2020; Zhao et al., 2019). It will therefore be illuminating to incorporate evolutionary 
dynamics into CR models under fluctuating environments (Good et al., 2018). Such extended models 
can then be applied to probe the underlying mechanisms in microbiotas for which frequent sampling 
and deeper understanding could be translated to urgent applications, including those in marine envi-
ronments, wastewater treatment plants, and the guts of insect pests and livestock.

https://doi.org/10.7554/eLife.75168
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Materials and methods
Simulations of a CR model with fluctuating resource amounts
Under a serial dilution scheme, an ecological steady state is reached when the dynamics in subse-
quent passages are identical, which is the case when all consumers are either extinct or have a growth 
ratio (the ratio of a consumer’s final and initial abundances within one passage) equal to the dilution 
factor ‍D‍. Due to the slow path to extinction of some consumers, reaching an exact ecological steady 
state can require hundreds of passages, presumably more than realistically occurs between sampling 
times in the data sets examined here. Thus, we assumed instead that between sampling times the 
system only approximately reaches an ecological steady state, defined as the growth ratios of all 
species changing by less than a threshold between subsequent passages that was defined as a frac-
tion of ‍D‍. Throughout this study, ‍D‍ was set to 200 and the steady state threshold was 5%, under 
which a steady state was approximately reached in about 5 dilutions (Figure 1B). In this manner, our 
model assigns a well-defined state of consumer abundances to each resource environment while 
ensuring that only a reasonable amount of change occurs between sampling times. Note that in 
human gut microbiotas, abundances can change by more than 1000-fold between daily samplings 
(Figure 2B), indicating that at least 10 generations can occur between sampling times. The precise 
value of ‍D‍ did not affect time series statistics, and steady-state thresholds between 1% and 10% 
generated similar time series statistics (Figure 1—figure supplement 1). We therefore expect our 
results to be robust to the values of these two parameters. Simulations were carried out in Matlab, 
and all code is freely available online in Matlab and Python at https://bitbucket.org/kchuanglab/​
consumer-resource-model-for-microbiota-fluctuations/.

CR model with saturation kinetics
Saturation kinetics were implemented into the CR dynamics of Equation 1 as

	﻿‍

dXi
dt = Xi

(
M∑

j=1
Rij

Yj
Ys+Yj

)
,
‍�

	﻿‍

dYj
dt = − Yj

Ys+Yj

( N∑
i=1

RijXi

)
,
‍�

where ‍Ys‍ denotes the saturation constant. For simplicity, ‍Ys‍ was assumed to be equal for all resources, 
and set to an intermediate value of ‍Ys =

⟨
Yj,0

⟩
/3‍ such that both saturated and linear kinetics could 

affect community dynamics. Other model details are the same as the original CR model.

Lotka-Volterra models
The gLV model in Equation 3 was parametrized in two ways. The first parametrization, which we refer 
to as CR-converted gLV models, was motivated by the successful recapitulation of experimental time 
series statistics with our CR model. The CR model can be rewritten as a gLV model when resource 
consumption rates are similar to the mean value (Good et  al., 2018). Under this assumption, the 
mapping is ‍ri = 2

∑
j RijYj,0‍ and ‍Aij = 1

Rmax

∑
k RikRjkYk,0‍ . The converted interaction coefficients are 

negative and symmetric, and their magnitudes depend on the niche overlap between the interacting 
taxa. Since the resource levels ‍Yj,0‍ are involved in this parametrization, fluctuations in ‍Yj,0‍ across 
sampling times ‍T ‍ translate into fluctuations in ‍ri‍ and ‍Aij‍ .

In the second parametrization, ‍ri‍ and ‍Aij‍ were randomly drawn from normal distributions with 
means and variances equal to those in the CR-converted gLV model. ‍Aij‍ were forced to be negative 
and symmetric.

The gLV models were initialized with equal relative abundances for all taxa, and simulated for a 
fixed amount of time such that a similar range of relative abundances was generated as in the CR 
model at approximate ecological steady state.

Analysis of 16S amplicon sequencing data
Raw 16S sequencing data from David et al., 2014; Song et al., 2020, were downloaded from the 
European Nucleotide Archive and the Sequence Read Archive, respectively, and ASVs were extracted 
using DADA2 (Callahan et al., 2016) with default parameters. OTUs or ASVs from other studies were 

https://doi.org/10.7554/eLife.75168
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downloaded and analyzed in their available form. All code for data processing is available in the 
repository listed above.
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The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

David LA, Materna 
AC, Friedman J, 
Campos-Baptista 
MI, Blackburn MC, 
Perrotta A, Erdman 
SE, Alm EJ

2014 Host lifestyle affects 
human microbiota on daily 
timescales

https://www.​ebi.​ac.​
uk/​metagenomics/​
studies/​ERP006059

EBI, ERP006059

Song SD, Acharya 
KD, Zhu JE, Deveney 
CM, Walther-Antonio 
MRS, Tetel MJ, Chia 
N

2020 Daily Vaginal Microbiota 
Fluctuations Associated 
with Natural Hormonal 
Cycle, Contraceptives, Diet, 
and Exercise

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA637322

NCBI BioProject, 
PRJNA637322
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