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Abstract Human organogenesis is when severe developmental abnormalities commonly

originate. However, understanding this critical embryonic phase has relied upon inference from

patient phenotypes and assumptions from in vitro stem cell models and non-human vertebrates.

We report an integrated transcriptomic atlas of human organogenesis. By lineage-guided principal

components analysis, we uncover novel relatedness of particular developmental genes across

different organs and tissues and identified unique transcriptional codes which correctly predicted

the cause of many congenital disorders. By inference, our model pinpoints co-enriched genes as

new causes of developmental disorders such as cleft palate and congenital heart disease. The data

revealed more than 6000 novel transcripts, over 90% of which fulfil criteria as long non-coding

RNAs correlated with the protein-coding genome over megabase distances. Taken together, we

have uncovered cryptic transcriptional programs used by the human embryo and established a new

resource for the molecular understanding of human organogenesis and its associated disorders.

DOI: 10.7554/eLife.15657.001

Introduction
Embryogenesis encompasses the progression from fertilized zygote to blastocyst and through gas-

trulation to establish the three germ layers of ectoderm, mesoderm and endoderm, from which all

organs and tissues subsequently arise during organogenesis. Remarkably little is known about this

latter phase of assembling organs and tissues in human due to the restricted availability of human

embryonic tissue and its tiny size. Previous transcriptomics post-implantation have sampled either

the whole embryo by expression microarray (Fang et al., 2010), thus lacking organ-specific resolu-

tion and the vast majority of long non-coding (lnc) transcription; or included lnc expression by mas-

sively parallel short-read RNA sequencing (RNA-seq) but focussed on single sites such as limb bud

(Cotney et al., 2013) or pancreas (Cebola et al., 2015). RNA-seq from NIH Roadmap and other

studies during or after the end of the first trimester of pregnancy falls after the embryonic period

(which ends at 56–58 days post-conception (Carnegie Stage 23)) and commonly reflects near termi-

nal differentiation within heterogeneous fetal organs and tissues (Jaffe et al., 2015;

Roadmap Epigenomics Consortium, 2015; Roost et al., 2015). As a consequence of these com-

bined deficiencies, we set about compiling global transcriptomic data during the critical phase of

human organogenesis, sampling each germ layer and including sites of mixed origin that are subject

to major developmental disorders such as cleft palate and limb abnormalities (Figure 1a).
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Organs and tissues from fifteen human embryonic sites were sequenced in two sets of biological

replicates (except pancreas and tongue) to generate 28 strand-specific RNA-seq datasets with 44–

90 million uniquely mapped reads per replicate (Figure 1a; Supplementary file 1A, which contains

information on embryonic stages). Global transcription rates across all organs and tissues were com-

parable over a high dynamic range; approximately 70% of protein-coding genes contained 100–

10,000 mapped reads (Figure 1b; Supplementary file 2). We assessed whether our human embryo

datasets identified earlier developmental processes than currently available fetal data

(Roadmap Epigenomics Consortium, 2015). There were three-fold the number of differentially

expressed genes in the fetal datasets but equivalent enrichment of gene ontology (GO) terms in the

embryo, including many early developmental processes such as morphogenesis of an epithelial bud,

anterior/posterior pattern specification and embryonic morphogenesis. These were in contrast to

homeostatic processes enriched in the fetal dataset (Figure 1c; Supplementary file 1B–C).

Sampling gene expression across multiple sites allowed us to set about deciphering the precise

transcriptomic codes responsible for the development of the different human embryonic organs and

tissues. While ZNF and ZSCAN family members were broadly expressed discrete site-specific expres-

sion was more apparent for individual members of other transcription factor families (Figure 1—fig-

ure supplement 1) exemplified by the HOX gene clusters (Figure 1d). User-defined sets of up to

five developmental transcription factors characteristic for a particular organ or tissue displayed very

high levels of tissue specificity (Figure 1—figure supplement 2). However, while principal compo-

nents (PC) analysis (PCA) or clustering grouped biological replicates, relationships between different

organs and tissues other than the distinctiveness of brain and liver were not resolved (Figure 1—fig-

ure supplements 3–4). Non-negative matrix factorisation (NMF) also allows unbiased clustering of

gene expression (Gaujoux and Seoighe, 2010). By setting the parameters such that representative

genes were only extracted once, we identified eleven non-overlapping ‘metagenes’ from the com-

plete expression dataset with clear tissue-specific signals for thyroid, liver, RPE, brain, heart and

adrenal gland (Figure 1—figure supplement 5; Supplementary file 1D). We hypothesized that

eLife digest Individual organs and tissues form in human embryos during the first two months

of pregnancy. Any errors during this crucial stage of human development can result in miscarriage or

serious birth defects. Yet remarkably little is known about how this process works. What is known

has been inferred from studies of how other animals develop, human stem cells grown in a

laboratory, and babies born with genetic conditions that cause developmental problems.

Genes control the way that organs and tissues form, and are switched on or off in complex

patterns during development to ensure that particular cells develop into one type of organ and not

another. When genes are switched on, their DNA is copied into molecules called RNA. Many RNA

molecules are used as templates to make proteins, which then perform critical roles in cell

processes. One way to find out which genes are activated during development is to identify which

RNAs are made by cells in the embryo.

Here, Gerrard, Berry et al. used a technique called RNA-sequencing to identify the RNAs that

human embryos make while their organs and tissues form. The RNA came from many different

tissues including the heart, limbs and the roof of the mouth. Gerrard, Berry et al. developed a new

computational model that used the identity of the RNAs to decode the precise patterns of gene

activity in the tissues. The model correctly identified many genes that were already known to cause

developmental problems when faulty, and identified numerous others that are now predicted to

cause developmental defects in humans.

Gerrard, Berry et al. also discovered over 6,000 RNAs in the human embryos that are unlikely to

code for proteins. These “non-coding” RNAs may have other roles in cells, such as switching off

genes, and many of them appear to be specific to human embryos. Together, these findings have

uncovered new patterns of gene activity that drive development in human embryos and provide a

resource for studying how organs and tissues form. Future challenges are to understand what

controls these patterns of gene activity, and how the patterns change over time.

DOI: 10.7554/eLife.15657.002
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Figure 1. Profiling the transcriptomes underlying organogenesis in human embryos. (a) Human embryo showing

the 15 tissues and organs subjected to RNA-seq. (b) High dynamic range of human embryonic RNA-seq. The

combined dataset (black) included expression of >90% of annotated protein-coding genes (GENCODE18

[Harrow et al., 2012]). (c) Human embryogenesis possesses a distinctive transcriptome. Human embryonic read

counts were compared with equivalent fetal datasets from NIH Roadmap (Roadmap Epigenomics Consortium,

2015) using edgeR (Robinson et al., 2010) and a false discovery rate (FDR) of 0.05 (see Materials and methods,

Supplementary file 1B). Negative log10 p-values are shown for selected biological process Gene Ontology (GO)

terms with significant enrichment in either the embryonic or fetal gene sets following Fisher’s exact test applied

using the elimination algorithm (Alexa and Rahnenfuhrer, 2010) (Supplementary file 1C contains the full list of

enriched terms). (d) Selected sites illustrate the highly specific expression of HOX genes within the human embryo.

DOI: 10.7554/eLife.15657.003

Figure 1 continued on next page

Gerrard et al. eLife 2016;5:e15657. DOI: 10.7554/eLife.15657 3 of 16

Tools and resources Developmental Biology and Stem Cells Human Biology and Medicine

http://dx.doi.org/10.7554/eLife.15657.003
http://dx.doi.org/10.7554/eLife.15657


these new signals might allow benchmarking to assess the fidelity of in vitro differentiated stem cells,

similar to a previous report (Roost et al., 2015). As an exemplar, we chose hepatocyte differentia-

tion for which RNA-seq data are available including positive (primary adult hepatocytes) and nega-

tive (human embryonic fibroblasts) control data (Du et al., 2014). Clear enrichment for the stem cell-

derived hepatocytes and the primary hepatocytes (but not the fibroblasts) was apparent in meta-

gene 2, the cluster of 39 genes indicative of human embryonic liver. From this starting point, we

wanted to move beyond the unique organ-specific signatures to study how patterns of gene expres-

sion co-varied across tissues. While relaxing NMF parameters would allow non-exclusive gene selec-

tion across metagenes, we also wanted to capture differences in gene expression between organs

(e.g. aspects of what is not expressed as a contributing factor to an organ’s identity). Moreover, dif-

ferent embryonic organs are related according to developmental lineage. We reasoned that being

able to apply a lineage structure would create natural assemblies of co-regulated genes (Figure 2a).

Accordingly, we adapted a method from spatial ecology and phylogenetics (Jombart et al., 2010a,

2010b) to constrain PCA by imposing a hierarchical developmental lineage and termed this

approach LgPCA. We also included RNA-seq from undifferentiated human embryonic stem cells

(Roadmap Epigenomics Consortium, 2015) to represent pre-gastrulation human biology. Of the

total thirty-one principal components (PCs) arising from LgPCA the first fifteen now identified pat-

terns of gene expression across groups of related tissues in addition to unique organ-specific signa-

tures (Figure 2b) while PCs 16–31 sampled heterogeneity within individual organs and tissues

(Figure 2—figure supplement 1). In keeping with this transition PCs 1–4 ordered samples reminis-

cent of very early developmental events: pluripotency (extreme positive loadings in PC1; ‘PC1 high’),

early brain formation (extreme negative loadings in PC2; ‘PC2 low’), foregut endoderm (PC4 low)

and intermediate mesoderm (PC4 high). PCs 5–15 resolved the individual organs and tissues; for

instance low PC5 loadings discriminated liver from the other foregut endoderm derivatives. Heat-

maps illustrated the composite or tissue-specific signals emanating from the genes with the most

extreme PC loadings which also underlay appropriate developmental gene ontology (GO) terms

(Figure 2c–d and Supplementary file 1E–F).

Identifying the master regulators that differentially orchestrate organogenesis across the body

has not previously been possible directly in human embryos. We undertook this in two different

ways, both based on studying the 1000 genes with the most extreme loadings in PCs 1–15 that iden-

tified gene co-expression patterns across tissues and within individual organs (Figure 2b;

Supplementary file 1E). We interrogated these gene sets for regulatory networks based on the

enrichment of transcription factor motifs (Janky et al., 2014). Numerous well known master regula-

tors were recovered alongside previously unappreciated factors for either broad tissue groups (e.g.

foregut endoderm derivatives) or individual organs (Figure 3a). As proof-of-principle, this also

included proven regulators of human pluripotency, NANOG, OCT4 and MYC, at an extreme of PC1.

Remarkably, in several instances approaching half of the 1000 genes with the most extreme PC load-

ings imputed co-regulation by a single transcription factor, such as HNF4A in the liver or SRF in the

heart. Alongside NR5A1, the data predicted RUNX and BAD as novel regulators of human adrenal

and gonadal development (Figure 3a). As a second approach to study gene regulation, we

extracted the transcription factors (typically <5%) from amongst the 1000 most extreme genes in

Figure 1 continued

The following figure supplements are available for figure 1:

Figure supplement 1. Transcription factor atlas of human organogenesis.

DOI: 10.7554/eLife.15657.004

Figure supplement 2. Heatmap of user-defined transcription factors indicates organ and tissue specificity during

human organogenesis.

DOI: 10.7554/eLife.15657.005

Figure supplement 3. Principal components analysis of the human embryonic transcriptomes.

DOI: 10.7554/eLife.15657.006

Figure supplement 4. Heatmap of RNA-seq samples.

DOI: 10.7554/eLife.15657.007

Figure supplement 5. NMF Metagene analysis.

DOI: 10.7554/eLife.15657.008
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Figure 2. Lineage-guided PCA discovers unique transcriptional signatures regulating human organogenesis. (a) Interpreting gene expression profiles is

dependent upon the underlying developmental lineage. Similar expression profiles in closely related tissues imply fewer regulatory events. (b) Lineage-

guided principal components analysis (LgPCA) constrains PCA by imposing a developmental lineage on the different organs and tissues. The first 15

PCs are shown including biological replicates for the human embryonic organs and tissues integrated with human embryonic stem cell data

Figure 2 continued on next page
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PCs 1–15 (Supplementary file 1G). We searched the Mouse Genome Informatics database (MGI)

and in 309/594 instances there was a relevant mouse mutation phenotype supporting the notion

that the transcription factors identified by LgPCA are key regulators of human organogenesis. At the

Figure 2 continued

(Roadmap Epigenomics Consortium, 2015). PC scores for the 15 different dimensions are shown in black (positive/high) or white (negative/low) with

scale (extremeness) indicated by circle size (sign/direction is arbitrary). Unique transcriptional signatures were resolved for broad organ groupings (e.g.

foregut endoderm derivatives, low scores in PC4), single organs or tissues (e.g. palate, high scores in PC13) or across tissues unrelated by germ layer

but connected by multisystem congenital disorders (e.g. heart and limb, low scores in PC13). (c) Heatmaps of quantile normalised expression values of

the most extreme 50 genes for selected PCs from the LgPCA. (d) Gene Ontology (GO) terms and their underlying genes illustrate the specific

signatures from the LgPCA (further examples in Supplementary file 1F).

DOI: 10.7554/eLife.15657.009

The following figure supplement is available for figure 2:

Figure supplement 1. Lineage-guided principal components analysis (LgPCA) for all 31 PCs.

DOI: 10.7554/eLife.15657.010

Figure 3. LgPCA points to master regulators of human organogenesis and the causes of human congenital disorders. (a) Predicted regulation by

iRegulon (Janky et al., 2014) of the most extreme 1000 genes for different PCs identifies known and unexpected transcription factors regulating

human organogenesis. In several examples, individual transcription factors (e.g. REST, NR5A1, HNF4A, FOXA1 and SRF) were predicted to regulate

nearly half of the most extreme 1000 genes. (b) Transcription factors at the extremes of individual PCs in the LgPCA are responsible for a diverse range

of congenital disorders (red names in the ovals for heart and testis; full details in Supplementary file 1G). To validate the utility of these data, we

conservatively selected some of the earliest critical regions for these disorders (two ‘Proven’ examples on the left; all 53 listed in Supplementary file

1H). LgPCA frequently isolated the correct transcription factor from an average of 111 genes across >10 Mb, shown for NKX2-5 in congenital heart

disease and SOX9 in campomelic dysplasia. Beyond this validation LgPCA similarly predicts causative transcription factors (blue) for many unresolved

congenital disorders such as developmental heart abnormalities in Chr1p36 deletion syndrome and sex reversal / disorders of sex differentiation (DSD)

(all 13 examples in Supplementary file 1H).

DOI: 10.7554/eLife.15657.011
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lowest extreme of PC5 (liver) the twenty-two transcription factors contained all three of those

required for reprogramming fibroblasts directly to hepatocytes (Huang et al., 2014). This suggests

novel fate programming roles for transcription factors at the extremes of other PCs (including new

potential regulators of pluripotency amongst the sixteen factors containing zinc fingers in PC1). In

keeping with these regulatory roles, the extreme PC loadings in the LgPCA data also prioritized

those transcription factors responsible for major congenital disorders (Supplementary file 1G).

Because LgPCA is not limited to individual organs this included a novel ability to predict multisystem

abnormalities such as the combined heart and limb defects of Holt-Oram syndrome (OMIM 142900,

TBX5, PC13 low) or the palate and limb abnormalities associated with mutations in TP63 (OMIM

603543, PC3 high).

Mutations in genes encoding transcription factors are over-represented causes of congenital dis-

orders, most likely due to their critical function during organogenesis and inadequacy when haploin-

sufficient. The enrichment of transcription factors with specific disease-associations at the extremes

of the LgPCA implicates the co-enriched genes as leading candidates for unanswered clinical syn-

dromes. To test this model we identified some of the earliest chromosomal mapping or patient dele-

tion data for the known disease-associated transcription factors from Supplementary file 1G. 53

disorders were suitable for assessment with an average critical region of 13.7 Mb each containing an

average of 111 protein-coding genes (Supplementary file 1H). Strikingly, in 37 instances (73%)

LgPCA uniquely selected the correct transcription factor and in 48 instances (91%) narrowed the

field down to three or fewer transcription factors. When applied to 13 syndromes (mostly deletion

disorders) where the causative gene remains unresolved clear predictions of causality emerge, for

instance in cleft palate (DLX5, DLX6, LHX8 and FOXF2) or cerebellar disorders (ZIC1 and ZIC4)

(Supplementary file 1H). Frequently, there is an appropriate mutant mouse phenotype such as

CASZ1 in cardiac malformations, part of Chr1p36 deletion syndrome, or SOX10 in the 46,XX disor-

der of sex differentiation (DSD) linked to duplication on Chr22 (Figure 3b and Supplementary file

1H).

Non-coding transcription has emerged as a critical regulator of cell and developmental biology

(Goff and Rinn, 2015). A dedicated programme operating during human organogenesis seemed

likely as 81 out of the 1571 genes enriched in embryogenesis compared to the fetal datasets were

annotated long intergenic non-coding (LINC) transcripts (Supplementary file 1B). To look beyond

this we assembled strand-specific transcripts not recognized by current genome annotation [GEN-

CODE 18 (Harrow et al., 2012)] and systematically named them individually according to recom-

mended criteria (Mattick and Rinn, 2015). 6251 unique loci accounted for in excess of 9 Mb of

novel polyadenylated transcription from the human genome (Figure 4a and Supplementary file 1I).

The vast majority of transcripts fulfilled criteria as lnc RNAs by assessment of coding potential (CPAT

score <0.2) (Figure 4b), length over 200 base pairs (bp) and an absence of reads spanning splice

junctions to currently annotated genes (Mattick and Rinn, 2015). These lncRNAs were classified as

either bidirectional, antisense or overlapping, or by exclusion intergenic, according to orientation

and position in relation to the annotated genome (Mattick and Rinn, 2015). Transcripts were most

commonly 500–1,500 bp but could extend to over 600 Kb (Figure 4c) and showed high tissue-speci-

ficity with the median Tau value (Yanai et al., 2005) of 0.86, much higher than for protein-coding

genes (0.63) but consistent with previously annotated non-coding genes (0.89). We investigated the

association between this novel human embryonic transcriptome and the annotated genome.

Reduced physical distance to expressed annotated genes markedly increased the likelihood of novel

transcript co-expression (Figure 4e), although the best correlations were by no means always with

the closest gene (Figure 4f–g). The median distance to the closest annotated gene was 7.7 Kb (Fig-

ure 4—figure supplement 1) while on average the best correlation was at 188 Kb (random predic-

tion was 476 Kb). Over half (3634) of the lnc transcripts were classified positionally as LINC RNAs.

While LINC RNAs can harbour important regulatory function, how to forecast their relationship(s)

with the protein-coding genome and prioritize the investigation of thousands of new transcripts is

immensely challenging (Goff and Rinn, 2015). As a first step, the multi-tissue nature of our

dataset allowed intricate correlative patterns to be deciphered implying putative relationships; for

instance over a 2 Mb window and across numerous genes on chromosome 7 between HE-LINC-

C7T121 and TBX20, which encodes a developmental cardiac transcription factor mutated in a wide

range of congenital heart disease (Figure 4h).
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Figure 4. 6251 novel transcripts identified during human organogenesis show low coding probability and high tissue-specificity. (a) Novel transcript

models were merged across tissues (n = 9180; Supplementary file 4), assessed for coding potential using CPAT and classified (Mattick and Rinn,

2015) as overlapping (OT), antisense (AS), bidirectional (BI), intergenic noncoding (LINC) and/or transcripts of uncertain coding potential (TUCP, if

CPAT >0.2). LINC or TUCP transcripts were numbered sequentially (T number) along each chromosome (C, either X, Y or 1–22) whereas BI, AS and OT

transcripts were named by association with the annotated gene (‘Z’). A small proportion of transcripts fulfilled dual criteria as BI/AS/OT and TUCP. 6251

unique, non-overlapping, filtered transcript models were identified (the longest from each locus, >200 bp; Supplementary file 1I). (b) Histogram of

coding probability determined using CPAT (Wang et al., 2013). 9% of transcripts were classed as TUCP. The small proportion with clear open reading

frames (CPAT score = 1.0) were predominantly OT transcripts. (c) Distribution by size of transcript. 114 transcripts were >10 Kb. (d) Tissue specificity was

calculated using Tau (Yanai et al., 2005) based on the mean normalized read counts for each tissue or organ site. 80% of transcripts showed Tau

values >0.7 indicating high tissue specificity. Details on exon and read counts, and proximity to surrounding genes are shown in Figure 4—figure

supplement 1. (e) Box and whisker plots show the correlation between expression of the novel transcripts and surrounding annotated genes within set

chromosomal distances of the novel transcriptional start site. Mean correlation was near zero beyond 1 Mb. (f) Histogram showing the correlation (r)

between expression of each novel transcript and its closest annotated gene. One quarter of novel transcripts show a correlation (r > 0.71) with the

nearest gene; another quarter shows minimal correlation (r = ±0.14). There was no strong anticorrelation. g-h, Expression of the novel transcript is not

always correlated with the immediately adjacent gene, illustrated by heatmaps across the 15 organs and tissues. (g) Expression of the novel transcript,

HE-LINC-C6T24, located just over 2 Kb from FOXQ1, correlates strongly with FOXF2, approximately 65 Kb distant. (h) Heatmap demonstrates the poor

correlation of expression between HE-LINC-C7T121 and most of the nine genes within 1 Mb on Chr7 but near perfect correlation with TBX20 located

~0.7 Mb away beyond two intervening genes.

DOI: 10.7554/eLife.15657.012

The following figure supplement is available for figure 4:

Figure supplement 1. Exon and read counts and distance to the nearest annotated gene for the novel human embryonic transcripts.

DOI: 10.7554/eLife.15657.013
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Taken together, this study reports the first comprehensive transcriptomic atlas during human

organogenesis to complement parallel initiatives from later development and adulthood

(Jaffe et al., 2015; Roadmap Epigenomics Consortium, 2015; Roost et al., 2015). Subjecting tran-

scription from many sites to a method of analysis that incorporated developmental lineage deci-

phered novel genetic signatures, predicted causality in many human developmental disorders and

associated novel non-coding transcription with expression from the surrounding protein-coding

genome. At present, the data arise from a relatively narrow window of embryonic development but

set the stage for future longitudinal studies for individual organs over time. The tiny amounts and

scarcity of human embryonic tissue also necessitated aspects of pooling across different Carnegie

stages for some sites but it is striking that this had no impact on ascertaining organ and tissue-spe-

cific transcriptomic signatures by LgPCA. The integrated data are expected to be particularly valu-

able to stem cell researchers examining the fidelity of PSC differentiation in vitro or searching for

transcription factors for direct reprogramming of chosen cell lineages. Finally, the discovery of a

major new programme of non-coding transcription adds a fresh layer of detail on the spatiotemporal

regulation of the human genome.

Materials and methods

Human material
Human embryonic material was collected under ethical approval, informed consent and according to

the Codes of Practice of the Human Tissue Authority and staged by the Carnegie classification as

described previously (Jennings et al., 2013). This clinical material was collected on site overseen by

our research team with immediate transfer to the laboratory. Individually identified tissues and

organs (details in Supplementary file 1A) were immediately dissected. The adrenal gland, whole

brain, heart, kidney, liver, entire limb buds, lung, stomach, testis, thyroid and anterior two-thirds of

the tongue were readily identifiable as discrete organs and tissues. All visible adherent mesenchyme

was removed from organs and tissues under a dissecting microscope. For the adrenal gland, this

includes the capsule which allowed separation from the kidney. The ureter, emerging from the renal

pelvis, was removed separately from the kidney. For the heart, a window of tissue was removed

from the lateral wall of the left ventricle. A segment of the liver was dissected from each embryo

that avoided the developing gall bladder. The trachea was removed from the lung at its entry point

into the lung parenchyma. The stomach was identified between the gastro-oesophageal and pyloric

junctions. The testis was dissected free from the attached mesonephros. While the thyroid was read-

ily visualized as a discrete organ in the neck, it unavoidably contained the developing parathyroids

and thus this tissue type was referred to throughout as ‘thyroid/PTH’. The palatal shelves were dis-

sected on either side of the midline. The eye was dissected and the RPE peeled off mechanically

from its posterior surface with validation possible under the dissecting microscope because the RPE

is very darkly pigmented compared to the other ocular structures. All samples were collected into

Trizol (Thermofischer) or Tri reagent (Sigma-Aldrich) for total RNA isolation as individual tissue or

organ types followed by treatment with DNaseI (Sigma-Aldrich). Once the quality of each RNA sam-

ple had been confirmed, samples were pooled in order to obtain sufficient RNA for each biological

replicate (Supplementary file 1A). The pancreas dataset derived from the same tissue collection

was re-used from a previous study (Cebola et al., 2015).

RNA-seq and transcriptome
Quality and integrity of total RNA samples were assessed using a 2100 Bioanalyzer or a 2200 TapeS-

tation (Agilent Technologies) according to the manufacturer’s instructions. RNA sequencing (RNA-

seq) libraries were generated using the TruSeq Stranded mRNA assay (Illumina, Inc.) according to

the manufacturer’s protocol. Briefly, total RNA (0.1–4 mg) was used as input material from which pol-

yadenylated mRNA was purified using poly-T, oligo-attached, magnetic beads. The mRNA was then

fragmented using divalent cations under elevated temperature and then reverse transcribed into first

strand cDNA using random primers. Second strand cDNA was then synthesized using DNA Polymer-

ase I and RNase H. Following a single ’A’ base addition, adapters were ligated to the cDNA frag-

ments, and the products purified and enriched by PCR to create the final cDNA library. Adapter

indices were used to multiplex libraries, which were pooled prior to cluster generation using a cBot
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instrument. The loaded flow-cell was then sequenced (paired-end; 101 + 101 cycles, plus indices) on

an Illumina HiSeq2000 or HiSeq2500 instrument. Demultiplexing of the output data (allowing one

mismatch) and BCL-to-Fastq conversion was performed with CASAVA 1.8.3. The RNA-seq was con-

ducted in three batches at different times as a necessity of how human embryonic tissue was col-

lected over time (Supplementary file 1A). Where organs were sequenced across batches (palate,

RPE, kidney, testis, adrenal gland, heart / left ventricle and liver) biological replicates clustered

together (Figure 1—figure supplement 4).

RNA-seq reads from the Illumina platform were mapped to the human genome (hg19) strand-

specifically using TopHat 2.0.9 (Trapnell et al., 2012) and the GENCODE 18 gene annotation set

(Harrow et al., 2012). We also remapped the published pancreas RNA-seq dataset (Cebola et al.,

2015) obtained from material isolated previously in our laboratory. Additionally, a dataset of hepa-

tocyte differentiation RNA-seq (Du et al., 2014 GEO: GSE54066) was downloaded, re-mapped and

quantified as per our own data. Commonly applied RNA-seq normalisation methods such as TMM

assume a small proportion of differentially expressed genes in any one dataset (Dillies et al., 2013).

Because the highly distinct tissues surveyed here differed strongly on the scale of thousands of

genes (for instance liver versus brain) we used quantile normalisation which gave a lower median

coefficient of variation than either no or TMM normalization. Read counts from the different datasets

were quantile normalized using the R package preprocessCore (Bolstad, 2007). Tissue-specificity

was scored per gene using Tau (Yanai et al., 2005) on normalized read counts across all samples.

Initial genome-wide relationships were assessed using PCA (Figure 1—figure supplement 3) and

hierarchical clustering (heatmap, Figure 1—figure supplement 4).

To compare our samples with RNA-seq from the NIH Roadmap project (Roadmap Epigenomics

Consortium, 2015) uniquely mapped strand-specific RNA-seq reads were counted into a set of non-

redundant exon annotations (custom made from GENCODE 18 annotations) using bedtools intersect

(Quinlan and Hall, 2010). Exon level counts were then summed into a single total per gene per sam-

ple. Counts were quantile normalized across samples. NIH roadmap samples

(Roadmap Epigenomics Consortium, 2015) used in this study are listed in Supplementary file 1J.

For the analysis of human embryonic RNA-seq with comparable Roadmap fetal data (adrenal gland,

heart, kidney, lung, limbs, stomach and testis) a single pairwise differential expression test was

undertaken using the R package edgeR (Robinson et al., 2010) and an FDR < 0.05.

NMF
Non-negative matrix factorisation (NMF) searches complex expression data, comprising thousands

of genes, for a small number of characteristic ‘metagenes’ (Gaujoux and Seoighe, 2010). NMF was

performed using the nmf R package (version NMF_0.20.5) (Gaujoux and Seoighe, 2010) to extract

tissue-specific metagenes. Non-normalised read counts were filtered to remove all Y-linked genes,

the X-inactivation gene XIST and genes with fewer than 100 reads across all samples. Initially 50 runs

each of ranks 11–18 and using the default ‘Brunet’ algorithm (Brunet et al., 2004) were performed

to find an optimal factorisation ‘rank’ (r). The maximal cophenetic distance was used to select the

value of r. Subsequently, 200 runs using the optimal rank were performed to assess consistency of

sample groupings between runs. Non-overlapping (i.e. tissue-specific) gene sets were extracted

from each metagene by filtering on basis contribution >0.8.

LgPCA
The LgPCA approach was adapted from established phylogenetic PCA methodology

(Jombart et al., 2010b) and performed using quantile-normalized, gene-level read counts, a high

memory (512 Gb) compute node and the ppca function from the adephylo R package

(Jombart et al., 2010a). A broad user-defined guide tree (Figure 2b) based on well-established

knowledge of mammalian gastrulation and downstream lineage relationships was imposed on the

different organ and tissue types following which the adephylo R package weighted the principal

components by the lineage auto-correlation between samples; increased if related samples were

similar and lessened if related samples were more different. As in the description from Jombart and

colleagues the resulting components represented ‘global’ structures (where similarity is high

between related samples) and ‘local’ structures (where related samples are dissimilar)

(Jombart et al., 2010b). We used the LgPCA to extract all the global patterns from the data (PCs
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1–15). These patterns were not apparent if lineage relationships were not included nor were they

altered if any one tissue, such as palate, was altered within the broad lineage structure (data not

shown). The global patterns in PCs 1–15 infer co-regulatory patterns of gene expression across

human organogenesis. The ‘local’ patterns thereafter captured heterogeneity between tissue repli-

cates (Figure 2—figure supplement 1) (while PC7 separated the two PSC populations these RNA-

seq datasets represent separate cell lines from NIH Roadmap). We used the Abouheif distance as

implemented in adephylo (Jombart et al., 2010a), which takes into account the topology of the

specified tree but does not use branch lengths.

Gene set enrichment
For the comparison of the embryonic versus fetal datasets Gene Ontology term enrichment was per-

formed on upregulated genes (FDR < 0.05) using Fisher’s exact test with the elimination algorithm

of the R package topGO (Alexa and Rahnenfuhrer, 2010). For the LgPCA, annotated ontology

nodes (>10 genes) were tested for each loadings vector for each PC against background using the

Wilcoxon test. Tests were performed sequentially moving up the separate GO ontologies (Biological

Process (BP), Molecular Function (MF) and Cellular Component (CC)), excluding significant scoring

genes from later tests (the topGO ‘elim’ method).

iRegulon analysis of regulation in the extremes of the LgPCA
iRegulon is a computational method which tests for enrichment amongst precomputed motif data-

sets to decipher transcriptional regulatory networks in a set of co-expressed genes. The 1000 genes

with the most extreme loadings at either end of each PC (‘high’ and ‘low’) from the LgPCA were

loaded into Cytoscape (version 3.2.1) (Shannon et al., 2003) and used as queries to the iRegulon

plug-in (version 1.3, build 1024) (Janky et al., 2014). 20 Kb was examined centred on the transcrip-

tional start site (TSS) under default settings.

Novel transcripts
Sample-specific transcriptomes were assembled with Cufflinks (version 2.2.0) (Trapnell et al., 2010).

Transcriptomes were combined (‘cuffmerge’; -min-isoform-fraction = 0.1) and compared with the

original GENCODE 18 reference (‘cuffcompare’). We filtered out known transcripts using the ‘Trans-

frag class codes’ (http://cole-trapnell-lab.github.io/cufflinks/cuffcompare/#transfrag-class-codes) to

retain only wholly intronic (‘i’, of which there were none), unknown (‘u’), antisense (x) and overlap-

ping (‘o’) transcripts. We discarded all other classes including pre-mRNA (class ‘e’), novel-isoforms

spliced to known exons (class ‘j’), and 3’ run-ons within 2 kb of the end of the transcript annotation

(class ‘p’). In addition, some remaining non-spliced transcripts may theoretically represent first or

last exon (UTR) extensions; to delimit these, we calculated the distance on the same strand to the

closest downstream transcription start site (to consider potential 5’ UTR extension) and upstream

transcription termination site (to consider potential 3’ UTR extension). Names were assigned to

these novel transcripts following suggested criteria (Mattick and Rinn, 2015) (Figure 4a) with the

sole adaptation that bidirectional (BI) transcripts were defined as having their TSS within 1 Kb of the

TSS of the associated annotated gene. No transcripts mapped to the same strand within the introns

of any annotated gene excluding the possibility of unspliced transcripts from annotated genes being

erroneously defined as novel transcripts. All transcript sequences (annotated and unannotated) were

scored for protein-coding potential using CPAT (based on human training data included with CPAT)

(Wang et al., 2013). A threshold of >0.2 was used to define ‘Transcripts of Uncertain Coding Poten-

tial’ (TUCP). Where there were multiple transcripts from a single locus, the longest transcript was

retained in assembling the final dataset of 6251 novel transcripts. Transcript level read counts for the

embryonic samples and NIH Roadmap samples (Supplementary file 1J) were generated for the

merged transcriptome using bedtools multicov (vers 2.21.0) (Quinlan and Hall, 2010). The correla-

tions between each of the 6251 transcripts and all annotated genes within 1 Mb were calculated

using only the human embryonic data from this study.

Data availability
Mapping coordinates against multiple genome versions using a range of common pipelines and

summary count data are hosted at www.manchester.ac.uk/human-developmental-biology. To view
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data in the UCSC genome browser, a trackhub is available: http://www.humandevelopmentalbiol-

ogy.manchester.ac.uk/data/hub_manchester_hdb/hub.txt.
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Additional files
Supplementary files
. Supplementary file 1. Supplementary tables. (A) Samples used in this study. Details on the material

derived from individual human embryos (each listed according to the Carnegie Stage (CS)) used in

the biological replicates and the sequencing statistics for each sample. A conversion of Carnegie

Stage to an approximate days post-conception is available in Jennings et al. (2015) (open access).

Gene level read counts are available for download as a TSV file in Supplementary file 2.

(B) Differential gene expression between paired embryonic and fetal RNA-seq data. The R package

edgeR (Robinson et al., 2010) was used to test for differential gene expression between embryonic

and fetal (Roadmap Epigenomics Consortium, 2015) datasets. Shared tissues were adrenal gland,

heart, lung, stomach, kidney, upper limb, lower limb and testis. The table is sorted by FDR (column

H) and can be filtered by log fold change (column E) to give embryo-enriched genes (negative val-

ues) or fetal-enriched genes (positive values). (C) Gene Ontology (GO) terms and the genes underly-

ing them for embryonic vs.fetal (Roadmap) up-regulated genes. Genes up-regulated in embryonic

tissues versus fetal tissues (edgeR, FDR < 0.05, see Supplementary file 1B) were tested for GO

term enrichment using Fisher’s exact test and the elimination algorithm implemented in the R pack-

age topGO (Alexa and Rahnenfuhrer, 2010). Separate tests were run for embryo up-regulated and

fetal up-regulated genes. The table is sorted by enrichment in embryonic genes. (D) Tissue-specific

genes contributing to metagenes. All genes with relative basis contribution (across metagenes)

greater than 0.8 are listed. (E) The most extreme 1000 genes (high and low) for all principal compo-

nents (PC1-31) of the LgPCA. The dataset is derived from genes annotated in GENCODE18. Raw

gene-level loadings for each principal component are available for download as a TSV file in

Supplementary file 3. (F) Gene Ontology (GO) terms and the genes underlying them for organ and

tissue-specific transcriptomic signatures from the extremes of the LgPCA. GO terms were identified

as enriched in extreme scoring genes (annotated in GENCODE 18) in the principal components

(PCs) of the LgPCA. Due to the very large number of terms returned at p<0.0001 by Wilcoxon test

(the topGO ’elim’ method, see Materials and methods) an illustrative selection are listed with raw

gene-level loadings available for download in Supplementary file 3. (G) Transcription factors in the

extremes of the LgPCA and their links to developmental morbidity. The most extreme 1000 anno-

tated genes (GENCODE 18) of the LgPCA dataset were filtered for transcription factors based on

KEGG and PHANTOM5 annotations and for read counts >500. To identify disease associations each

gene was entered as a search term in OMIM (www.ncbi.nlm.nih.gov/omim) and in PubMed. Batch

queries were undertaken at Mouse Genome Informatics (MGI, www.informatics.jax.org) with ’Mam-

malian phenotype’ as the output. (H) LgPCA predictions of causal genes for critical regions in either

solved or unsolved developmental disorders. Fifty-three developmental disorders (Column A,

’solved’) with causally associated transcription factors identified in the appropriate transcriptomic

signature of Supplementary file 1G were originally defined by critical regions (Column C with hyper-

link). These critical regions were identified by searching OMIM and usually derived from mapping

data on affected families or chromosomal deletions in affected patients. Larger critical regions were

preferentially selected to test more meaningfully whether the LgPCA model could have pinpointed

the causal gene based solely on transcriptomic signatures that involved an affected organ(s) or tis-

sue(s) (Column B). The average critical region was 13.7 Mb (Column D) and contained an average of

111 protein-coding genes (Column E; identified from searching BIOMART on ENSEMBL). In 48/53

instances (91%), LgPCA narrowed the field down to three or fewer transcription factors and in 37

instances (73%) excluded all except the correct transcription factor. Therefore, the same approach

was applied to 13 unsolved developmental disorders (mostly deletion syndromes) with predictions

made in each case for any type of protein-coding gene (Column H) and transcription factor(s) (Col-

umn I). In many instances the transcription factor in Column I possesses an appropriate mutant

mouse phenotype. (I) 6251 unannotated transcripts identified during human organogenesis. These

are the 6251 novel and distinct transcripts underlying Figure 4 of the main text, which also describes

the transcript classification: Anti-sense (AS), Overlapping (OT), Bidirectional (BI), Long-intergenic

non-coding (LINC) and / or Transcripts of uncertain coding potential (TUCP) (based on Mattick and

Rinn, 2015). Intergenic transcripts are numbered sequentially within each chromosome. Exon

lengths and starts (blocks) are recorded here in UCSC BED12 format. Correlations in expression pro-

file were calculated for annotated genes with transcript transcriptional start sites situated within
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1 Mb of the novel transcript TSS; the total number of genes in this window is listed. Columns AF-AT

(organs and tissues) represent mean, quantile-normalised read counts across tissue replicates. Corre-

lations (and distance) are shown for the closest, best correlated or best anti-correlated genes and

were generated using only embryonic RNA-seq data. The pipeline to generate transcripts, distin-

guish them from previous annotations, name, characterise and filter is described in the Materials and

methods. (J) NIH roadmap samples (Kundaje et al., 2015) used in this study.

DOI: 10.7554/eLife.15657.014

. Supplementary file 2. Gene level non-normalised RNA-seq read counts by sample for 42,423 gene

annotations in GENCODE18. Gene details are given plus the minimum, maximum, median and stan-

dard deviation of read counts. Additionally, tissue-specificity is scored using Tau (Yanai et al., 2005)

where ‘0’ is equally expressed across all organs and tissues and ‘1’ indicates absolute specificity to

one site.

DOI: 10.7554/eLife.15657.015

. Supplementary file 3. LgPCA scores. Raw gene-level scores for each principal component of the

LgPCA.

DOI: 10.7554/eLife.15657.016

. Supplementary file 4. Unfiltered novel transcripts. Prior to filtering a total of 9180 transcripts were

detected during human organogenesis that are not annotated in GENCODE 18. The 6251 tran-

scripts summarised in Figure 4 of the main text and listed in Supplementary file 1I (Excel file) are

marked by column ‘filter_score’. The data include quantile normalized read counts for all embryonic

samples in this study and a mean for each organ or tissue type. In addition to the correlations in

Supplementary file 1I, the distances to, and correlations with, both the closest upstream transcrip-

tion termination site (TTS) and downstream transcription start sites (TSS) of adjacent, same-strand

genes are given to aid filtering for potential 5’ and 3’ run-ons. For comparison, the NIH Roadmap

sample (adult and fetal) with most reads for each novel transcript is listed separately.

DOI: 10.7554/eLife.15657.017

. Supplementary file 5. Transcription factor atlas of human organogenesis (high resolution). High res-

olution version of Figure 1—figure supplement 1 where each individual transcription factor is text

searchable. (Please note that this opens at 25 x 200 inches / 64 x 508 cm).

DOI: 10.7554/eLife.15657.018

Major datasets

The following dataset was generated:

Author(s) Year Dataset title Dataset URL

Database, license,
and accessibility
information

Dave T Gerrard,
Andrew A Berry,
Rachel E Jennings,
Karen Piper Hanley,
Nicoletta Bobola,
Neil A Hanley

2016 An integrative transcriptomic atlas
of organogenesis in human
embryos

http://www.ebi.ac.uk/ar-
rayexpress/experiments/
E-MTAB-3928/

Publicly available at
EBI ArrayExpress
(accession no:
E-MTAB-3928)

The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL

Database, license,
and accessibility
information

Santiago A Rodri-
guez-Segui , An-
drew A Berry,
Rachel E Jennings,
Neil A Hanley,
Jorge Ferrer

2015 TEAD and YAP regulate the
enhancer network of human
embryonic pancreatic progenitors

http://www.ebi.ac.uk/ar-
rayexpress/experiments/
E-MTAB-3061/

Publicly available at
EBI ArrayExpress
(accession no:
E-MTAB-3061)
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