MySQL Performance Schema

Abstract
This is the MySQL Performance Schema extract from the MySQL 8.0 Reference Manual.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Document generated on: 2024-06-10 (revision: 78811)

http://forums.mysql.com

Table of Contents

Preface and Legal NOUICESccouuuiiiiiiie ettt e e et ettt e e e e e e e eebanaaeees vii
1 MySQL Performance SCREMAccoouiiiiiiii e 1
2 Performance Schema QUICK STANco.uiiiiiii e e e e e e 3
3 Performance Schema Build Configurationveieueioiiiiceei e 9
4 Performance Schema Startup CONfIQUIALIONiiiiiiiiiiiii e 11
5 Performance Schema Runtime Configurationocoouiiioiiiiiieii e 15
5.1 Performance Schema Event TiMiNgoiioiiiiii e 15

5.2 Performance Schema Event Filteringco.iiiiiiiiiiii e 18

5.3 EVENE Pre-FilteriNgou ittt 19

5.4 Pre-Filtering DY INSIIUMENT ... oot et e en e 20

5.5 Pre-Filtering DY ODJECLo e 21

5.6 Pre-Filtering DY TRIEaccooiiiiii e 23

5.7 Pre-Filtering DY CONSUMET ...ttt ettt et e e et e eeeaa e eens 25

5.8 Example Consumer ConfIQUIAtiONScoeuuuiieiiiiii et ea e 28

5.9 Naming Instruments or Consumers for Filtering Operationscceeviiieiiiiiieeeiiineeeenns 33

5.10 Determining What IS INSIrUMENTEAcooiiiiiiiiiiiie e 33

6 Performance SChema QUETIESt et e et e e e et e e et e eeaaaaeaes 35
7 Performance Schema Instrument Naming CONVENLIONSovviiiiiiiiiiiiieeiii e 37
8 Performance Schema Status MONITOMINGviiiuiniiiiii e 41
9 Performance Schema General Table CharacteriStiCSsvvveuiiiiiiiiiie e 45
10 Performance Schema Table DESCHPLIONSc.uuiiiiiiiiieiiit et a7
10.1 Performance Schema Table Reference ... 49

10.2 Performance Schema Setup TabIEsuiiiiiiiiiiii e 54
10.2.1 The setup_actors Table ... 54

10.2.2 The setup_consumers Table 55

10.2.3 The setup_instruments Table 56

10.2.4 The setup_obJects Tableoi e 59

10.2.5 The setup_threads Table ... e 61

10.3 Performance Schema Instance Tables ..o e 62
10.3.1 The cond_inStances Table e 63

10.3.2 The file_inStances TabIe ..o 63

10.3.3 The mutex_instances Table ... e 64

10.3.4 The rwlock_instances Tablecou i 65

10.3.5 The socket_INStances Table ... e 66

10.4 Performance Schema Wait Event Tables ... 68
10.4.1 The events_waits_current Table ... 69

10.4.2 The events_waits_history Table ... 72

10.4.3 The events_waits_history _long Table ... 72

10.5 Performance Schema Stage Event Tables ..o 73
10.5.1 The events_stages_current Tableo 76

10.5.2 The events_stages_history Table ... 77

10.5.3 The events_stages_history_long Table ..o 78

10.6 Performance Schema Statement Event Tables ..., 78
10.6.1 The events_statements_current Table ..., 82

10.6.2 The events_statements_history Table ..., 86

10.6.3 The events_statements_history _long Table ... 86

10.6.4 The prepared_statements_instances Tablecccooviiiiiiiiiiiic e 87

10.7 Performance Schema Transaction Tablesoooiuiiiiiiiiii e 89
10.7.1 The events_transactions_current Table ..., 93

10.7.2 The events_transactions_history Table ..o, 96

10.7.3 The events_transactions_history_long Table ..o, 96

10.8 Performance Schema Connection TabIesooouuiiiiiiii e 96
10.8.1 The accounts TabIe ... e e 98

10.8.2 The hOStS TabBI ... e 99

10.8.3 The USEIS TabIe ... ettt e e e e ean s 100

MySQL Performance Schema

10.9 Performance Schema Connection Attribute Tablescccoooviiiiiiiii e, 100
10.9.1 The session_account_connect_attrs Tableccociiiiiiiiii i 103
10.9.2 The session_connect_attrs Tablec.cooiiiiiiiiii e 104

10.10 Performance Schema User-Defined Variable Tablesccccoooviviiiiiiiiiiinec, 105

10.11 Performance Schema Replication Tablesccccoiiiiiiiiiiiiii e 105
10.11.1 The replication_connection_configuration Tablecccoveviiiiiiiii e, 108
10.11.2 The replication_connection_status Tablecccoiiiiiiii i, 112
10.11.3 The replication_asynchronous_connection_failover Tablec..ccoeeeeins 114
10.11.4 The replication_asynchronous_connection_failover_managed Table 115
10.11.5 The replication_applier_configuration Tableccooeeiiii i, 116
10.11.6 The replication_applier_status Tablecccoeiiiiiiiiiiii e 117
10.11.7 The replication_applier_status_by coordinator Tableccccoeeiiiiiiiinnnns 118
10.11.8 The replication_applier_status_by worker Tablecccccoeviiiiiiiiiiiiiiecee, 119
10.11.9 The replication_applier_global_filters Tablecccooiiiiiiiiiiiiee, 122
10.11.10 The replication_applier_filters Tableccoeiiiiiiiiii e 122
10.11.11 The replication_group_members Tablecccoiiviiiiiiiiiii e 123
10.11.12 The replication_group_member_stats Tableccooeviiiiiiiniiiiin e, 124
10.11.13 The replication_group_member_actions Tablecccooeviiiiiiiiiiiiiii s 125
10.11.14 The replication_group_configuration_version Tableccooooiiiiiiins 126
10.11.15 The replication_group_communication_information Tablec.c....o.... 126
10.11.16 The binary_log_transaction_compression_stats Tablec...cccoeveiiieinnnnns 127

10.12 Performance Schema NDB Cluster Tablescoouuiiiiiiiiiiieiiiien e 128
10.12.1 The ndb_sync_pending_objects Tablec.ccoiiiiiiiiii e, 129
10.12.2 The ndb_sync_excluded_objects Tablecccooeviiiiiiiiiii e, 129

10.13 Performance Schema LOCK TabIeSooiviuiiiiiiiii e 131
10.13.1 The data _I0CKS Tableiiiiiiii e 131
10.13.2 The data_lock_waits Tableccuiiiiiiiiiii e 134
10.13.3 The metadata_|ocks Tableccoeiiiiiiiiiii e 137
10.13.4 The table_handles Table ... 139

10.14 Performance Schema System Variable Tablescccooiviiiiii i 140
10.14.1 Performance Schema persisted variables Tableccoooviiiiiiiiiinenn, 141
10.14.2 Performance Schema variables_info Tableccoooeiiiiiiiin i, 142

10.15 Performance Schema Status Variable Tablesccoooiiiiiiiiiiii e 145

10.16 Performance Schema Thread Pool Tablesccoiiiiiiiiiiiiii e 146
10.16.1 The tp_thread_group_state Tableccooviiiiiiiiiiii e, 147
10.16.2 The tp_thread_group_stats Tablecccoeiiiiiiiii e 148
10.16.3 The tp_thread_state Tableccooiiiiiiiiiii e 150

10.17 Performance Schema Firewall Tablescooiiiiiiiiiiiiii e 151
10.17.1 The firewall_groups Tableccouiiiiiiii e 152
10.17.2 The firewall_group_allowlist Tableccoviiiiiiiiii e, 152
10.17.3 The firewall_membership Tableccoooiiiiii e, 153

10.18 Performance Schema Keyring Tablescoiiiiiiiiiiiiiii e 153
10.18.1 The keyring_component_status Tablecccciiiiiiiiiiiiiii e 153
10.18.2 The keyring_Keys tablecoouiiiiiiiiii e 154

10.19 Performance Schema Clone TabIesc..uiiiiiiiiiiiii e 154
10.19.1 The clone_sStatus Tableccouiiiiiiiii e 154
10.19.2 The clone_progress TabIeccouuiiiiii i e 156

10.20 Performance Schema Summary Tablescooooiiiiiiiiiii e 157
10.20.1 Wait Event Summary Tablesoooviiiiii e 159
10.20.2 Stage SUMMaAry TabIeSoiiiiiiii e 161
10.20.3 Statement SUMMaAry TabIEScc.uiiiiiii e 162
10.20.4 Statement Histogram Summary Tablesc.cociiiiiiiiiii i 167
10.20.5 Transaction SUMMAry TabIESiiiiiiiiiiiii e e 169
10.20.6 Object Waiit Summary Tablec..oiiiiiiiiii e 171
10.20.7 File 1/O Summary Tablescooiiiiiiii e 171
10.20.8 Table 1/0O and Lock Wait Summary Tablesccooveviiiiiiiiiii e, 173
10.20.9 Socket SUMMArY TabBIEScovniiiiiiee e e 176
10.20.10 Memory Summary Tablesc..ciiiiiiiiiiii e 177

MySQL Performance Schema

10.20.11 Error SUMMArY TabIESiviiii i e s 181

10.20.12 Status Variable Summary Tablesccccooiiiiiiiiii e 183

10.21 Performance Schema Miscellaneous Tablesccoooiiiiiiiiiiii e, 184
10.21.1 The component_scheduler_tasks Tableccocoiiiiiiiiiiiii e, 185

10.21.2 The error_10g Tableccouuiii e 185

10.21.3 The host_cache Table ..o e 188

10.21.4 The innodb_redo_log files Tablec.oeviiiiiii e 191

10.21.5 The 10g_Status Tableccouniiiii e e e e 192

10.21.6 The performance_timers Tablecoooiiiiiii e 193

10.21.7 The processlist TabIEcoouiiiiiiii e 194

10.21.8 The threads Tablecooouuiiiiiiiiii s 196

10.21.9 The tls_channel_status Tablecccoiiiiiiiiii e 201

10.21.10 The user_defined_functions Tableccccoiiiiiiiiii e, 203

11 Performance Schema and PIUGINS ..o e e e 205
12 Performance Schema System Variablescccoiiiiiiiiii i 207
13 Performance Schema Status Variablescoooviiiiiiiiiii 227
14 Using the Performance Schema to Diagnose Problemscooovviviiiiiiiiivie e, 231
14.1 Query Profiling Using Performance Schemaccoooiiiiiiiiii e 232

14.2 Obtaining Parent Event INfOrmationcoooiiiiiiiiiiii e e 234

Vi

Preface and Legal Notices

This is the MySQL Performance Schema extract from the MySQL 8.0 Reference Manual.

Licensing information—MySQL 8.0. This product may include third-party software, used under
license. If you are using a Commercial release of MySQL 8.0, see the MySQL 8.0 Commercial Release
License Information User Manual for licensing information, including licensing information relating to
third-party software that may be included in this Commercial release. If you are using a Community
release of MySQL 8.0, see the MySQL 8.0 Community Release License Information User Manual

for licensing information, including licensing information relating to third-party software that may be
included in this Community release.

Legal Notices

Copyright © 1997, 2024, Oracle and/or its affiliates.
License Restrictions

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs
(including any operating system, integrated software, any programs embedded, installed, or activated
on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/
or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in

the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services

are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

Vii

https://downloads.mysql.com/docs/licenses/mysqld-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-8.0-gpl-en.pdf

Documentation Accessibility

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible

for and expressly disclaim all warranties of any kind with respect to third-party content, products,

and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion

to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

http://lwww.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit ht t p: / / waww. or acl e. cont pl s/

t opi ¢/ | ookup?ct x=accé& d=tr s if you are hearing impaired.

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 MySQL Performance Schema

The MySQL Performance Schema is a feature for monitoring MySQL Server execution at a low level.
The Performance Schema has these characteristics:

The Performance Schema provides a way to inspect internal execution of the server at runtime. It
is implemented using the PERFORMANCE _SCHENA storage engine and the per f or nance_schenma
database. The Performance Schema focuses primarily on performance data. This differs from

I NFORIVATI ON_SCHENMA, which serves for inspection of metadata.

The Performance Schema monitors server events. An “event” is anything the server does that takes
time and has been instrumented so that timing information can be collected. In general, an event
could be a function call, a wait for the operating system, a stage of an SQL statement execution such
as parsing or sorting, or an entire statement or group of statements. Event collection provides access
to information about synchronization calls (such as for mutexes) file and table 1/O, table locks, and so
forth for the server and for several storage engines.

Performance Schema events are distinct from events written to the server's binary log (which
describe data modifications) and Event Scheduler events (which are a type of stored program).

Performance Schema events are specific to a given instance of the MySQL Server. Performance
Schema tables are considered local to the server, and changes to them are not replicated or written
to the binary log.

Current events are available, as well as event histories and summaries. This enables you to
determine how many times instrumented activities were performed and how much time they took.
Event information is available to show the activities of specific threads, or activity associated with
particular objects such as a mutex or file.

The PERFORMANCE SCHENA storage engine collects event data using “instrumentation points” in
server source code.

Collected events are stored in tables in the per f or mance_schena database. These tables can be
queried using SELECT statements like other tables.

Performance Schema configuration can be modified dynamically by updating tables in the
per f or mance_schena database through SQL statements. Configuration changes affect data
collection immediately.

Tables in the Performance Schema are in-memory tables that use no persistent on-disk storage. The
contents are repopulated beginning at server startup and discarded at server shutdown.

Monitoring is available on all platforms supported by MySQL.

Some limitations might apply: The types of timers might vary per platform. Instruments that apply
to storage engines might not be implemented for all storage engines. Instrumentation of each third-
party engine is the responsibility of the engine maintainer. See also Restrictions on Performance
Schema.

Data collection is implemented by modifying the server source code to add instrumentation. There
are no separate threads associated with the Performance Schema, unlike other features such as
replication or the Event Scheduler.

The Performance Schema is intended to provide access to useful information about server execution
while having minimal impact on server performance. The implementation follows these design goals:

Activating the Performance Schema causes no changes in server behavior. For example, it does
not cause thread scheduling to change, and it does not cause query execution plans (as shown by
EXPLAI N) to change.

Server monitoring occurs continuously and unobtrusively with very little overhead. Activating the
Performance Schema does not make the server unusable.

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-restrictions.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-restrictions.html
https://dev.mysql.com/doc/refman/8.0/en/explain.html

The parser is unchanged. There are no new keywords or statements.
Execution of server code proceeds normally even if the Performance Schema fails internally.

When there is a choice between performing processing during event collection initially or during
event retrieval later, priority is given to making collection faster. This is because collection is ongoing
whereas retrieval is on demand and might never happen at all.

Most Performance Schema tables have indexes, which gives the optimizer access to execution plans
other than full table scans. For more information, see Optimizing Performance Schema Queries.

It is easy to add new instrumentation points.

Instrumentation is versioned. If the instrumentation implementation changes, previously instrumented
code continues to work. This benefits developers of third-party plugins because it is not necessary to
upgrade each plugin to stay synchronized with the latest Performance Schema changes.

Note

The MySQL sys schema is a set of objects that provides convenient access
to data collected by the Performance Schema. The sys schema is installed by
default. For usage instructions, see MySQL sys Schema.

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-optimization.html
https://dev.mysql.com/doc/refman/8.0/en/sys-schema.html

Chapter 2 Performance Schema Quick Start

This section briefly introduces the Performance Schema with examples that show how to use it. For
additional examples, see Chapter 14, Using the Performance Schema to Diagnose Problems.

The Performance Schema is enabled by default. To enable or disable it explicitly, start the server with
the per f or mance_schenm variable set to an appropriate value. For example, use these lines in the
server ny. cnf file:

[nysgl d]
per f or mance_schema=0N

When the server starts, it sees per f or mance_schenma and attempts to initialize the Performance
Schema. To verify successful initialization, use this statement:

nmysqgl > SHOW VARI ABLES LI KE ' perfor mance_schema';

R e mmo oo +
| Vari abl e_nane | Val ue |
R e mmo oo +
| performance_schema | ON |
R e mmo oo +

A value of ON means that the Performance Schema initialized successfully and is ready for use. A
value of OFF means that some error occurred. Check the server error log for information about what
went wrong.

The Performance Schema is implemented as a storage engine, so you can see it listed in the output
from the Information Schema ENG NES table or the SHOW ENG NES statement:

nysqgl > SELECT * FROM | NFORVATI ON_SCHEMA. ENG NES
WHERE ENG NE=' PERFORVANCE_SCHEMA' \ G
khkkkkhkhkkhkkhkhkhkhkhkkhkhkhhkhkhkhkkhhkkhkkkx*x l I’OW khkkkkhkhkkhkkhkhkhkhkhkkhkhkhhkhkhkhkhhkkhkhkx*x
ENG NE: PERFORMANCE SCHENA
SUPPORT: YES
COWMENT: Per f or mance Schema
TRANSACTI ONS: NO
XA: NO
SAVEPO NTS: NO
nysql > SHOW ENG NES\ G

Engi ne: PERFORVANCE_SCHEMVA
Support: YES
Comment : Per formance Schema
Transacti ons: NO
XA: NO
Savepoi nts: NO

The PERFORMANCE SCHENA storage engine operates on tables in the per f or mance_schenma
database. You can make per f or mance_schena the default database so that references to its tables
need not be qualified with the database name:

nmysql > USE performance_schemns;

Performance Schema tables are stored in the per f or nance_schena database. Information about the
structure of this database and its tables can be obtained, as for any other database, by selecting from
the | NFORMATI ON_SCHENA database or by using SHOWstatements. For example, use either of these
statements to see what Performance Schema tables exist:

nysql > SELECT TABLE NAME FROM | NFORMATI ON_SCHEMA. TABLES
WHERE TABLE_SCHEMA = ' perfor mance_schena';

| accounts |

https://dev.mysql.com/doc/refman/8.0/en/information-schema-engines-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-engines.html
https://dev.mysql.com/doc/refman/8.0/en/show.html

| cond_i nstances |

event s_stages_current

event s_st ages_hi story

event s_st ages_hi story_I| ong

event s_st ages_sunmary_by_account _by_event _nane
event s_st ages_sunmary_by_host _by_event _nane
event s_st ages_sunmary_by_t hread_by_event _nane
event s_st ages_sunmary_by_user_by_event _nane
event s_st ages_sunmary_gl obal _by_event _nane
event s_st at enment s_current

event s_statenments_history

event s_statements_hi story_| ong

file_instances
file_summary_by_event _nane
file_summary_by_instance

host _cache

host s
menory_summary_by_account _by_event _nane
menory_sumary_by_host _by_event _nane
menory_sumrary_by_t hread_by_event _nane
menory_sumrary_by_user _by_event _nane
menory_sumary_gl obal _by_event _nane
met adat a_| ocks

mut ex_i nst ances

obj ect s_sunmary_gl obal _by_t ype
performance_ti mers

replicati on_connection_configuration
replicati on_connecti on_st at us
replication_applier_configuration
replication_applier_status
replication_applier_status_by_coordi nat or
replication_applier_status_by_ worker
rw ock_i nst ances

sessi on_account _connect _attrs

sessi on_connect _attrs

setup_actors

set up_consuner s

setup_i nstrument s

set up_obj ect s

socket _i nst ances

socket _sunmary_by_event _nane

socket _sunmary_by_i nst ance

t abl e_handl es
table_io_waits_sumrary_by_i ndex_usage
table_io_waits_sumrary_by_table

tabl e_| ock_waits_summary_by_tabl e

t hr eads
users
e e e e e e e emmeeeeeeeeecceeeee-mememeesseeccccaa——- +
nmysql > SHOW TABLES FROM per f or mance_schena
e e e e e e e emmeeeeeeeeecceeeee-mememeesseeccccaa——- +
| Tabl es_i n_perfornmance_schenma
e e e e e e e emmeeeeeeeeecceeeee-mememeesseeccccaa——- +
account s

I
| cond_i nstances

| events_stages_current

| events_stages_history

| events_stages_history_| ong

The number of Performance Schema tables increases over time as implementation of additional
instrumentation proceeds.

The name of the per f or nance_schena database is lowercase, as are the names of tables within it.
Queries should specify the names in lowercase.

To see the structure of individual tables, use SHOW CREATE TABLE:

nmysql > SHOW CREATE TABLE perf or mance_schena. set up_consuner s\ G

https://dev.mysql.com/doc/refman/8.0/en/show-create-table.html

LEEEEEEEEEEEEEEEEEEEEEEEEEE FOW *XX*hdkhhkkkhhhhkkxkhhkkkxkkk

Tabl e: setup_consuners
Create Tabl e: CREATE TABLE " setup_consuners (
"NAMVE varchar (64) NOT NULL,
"ENABLED enun(' YES',' NO) NOT NULL,
PRI MARY KEY (" NAME)
) ENG NE=PERFORVANCE_SCHEMA DEFAULT CHARSET=ut f 8nb4 COLLATE=ut f 8mb4_0900_ai _ci

Table structure is also available by selecting from tables such as | NFORVATI ON_SCHEMA. COLUWNS or
by using statements such as SHOW COLUWNS.

Tables in the per f or mance_schena database can be grouped according to the type of information
in them: Current events, event histories and summaries, object instances, and setup (configuration)
information. The following examples illustrate a few uses for these tables. For detailed information
about the tables in each group, see Chapter 10, Performance Schema Table Descriptions.

Initially, not all instruments and consumers are enabled, so the performance schema does not collect
all events. To turn all of these on and enable event timing, execute two statements (the row counts may
differ depending on MySQL version):

nysql > UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = 'YES', TIMED = 'YES';

Query OK, 560 rows affected (0.04 sec)

nysql > UPDATE per f or mance_schena. set up_consuner s
SET ENABLED = ' YES';

Query OK, 10 rows affected (0.00 sec)

To see what the server is doing at the moment, examine the events_wai t s_current table. It
contains one row per thread showing each thread's most recent monitored event:

nysql > SELECT *
FROM per f ormance_schema. events_wai ts_current\ G
kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkhkkkkkkkkk*x l r ow kkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x
THREAD_ID: 0O
EVENT_| D: 5523
END_EVENT_| D: 5523
EVENT_NAME: wai t/ synch/ mut ex/ mysys/ THR_LOCK: : nut ex
SOURCE: thr_| ock. c: 525
TI MER_START: 201660494489586
TI MER_END: 201660494576112
TI MER_WAI T: 86526
SPINS: NULL
OBJECT_SCHEMA: NULL
OBJECT_NAME: NULL
| NDEX_NAME: NULL
OBJECT_TYPE: NULL
OBJECT_| NSTANCE_BEG N: 142270668
NESTI NG_EVENT_| D: NULL
NESTI NG_EVENT_TYPE: NULL
OPERATI ON: | ock
NUMBER_OF_BYTES: NULL
FLAGS: 0

This event indicates that thread 0 was waiting for 86,526 picoseconds to acquire a lock on
THR_LOCK: : mut ex, a mutex in the nysys subsystem. The first few columns provide the following
information:

* The ID columns indicate which thread the event comes from and the event number.

» EVENT_NANME indicates what was instrumented and SOURCE indicates which source file contains the
instrumented code.

» The timer columns show when the event started and stopped and how long it took. If an event is still
in progress, the TI MER_END and TI MER_WAI T values are NULL. Timer values are approximate and
expressed in picoseconds. For information about timers and event time collection, see Section 5.1,
“Performance Schema Event Timing”.

https://dev.mysql.com/doc/refman/8.0/en/information-schema-columns-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html

The history tables contain the same kind of rows as the current-events table but have more rows and
show what the server has been doing “recently” rather than “currently.” The events_waits_hi story
and events _wai ts_hi story_ | ong tables contain the most recent 10 events per thread and most
recent 10,000 events, respectively. For example, to see information for recent events produced by
thread 13, do this:

nysql > SELECT EVENT_| D, EVENT_NAVE, TI MER WAI T
FROM per f or mance_schema. event s_wai t s_hi story
WHERE THREAD | D = 13
ORDER BY EVENT_I D;

foooccoooooo T Sy S g Sy moccoooccoooo +

| EVENT_ID | EVENT_NAME | TIMER WAIT |

foooccoooooo T Sy S g Sy moccoooccoooo +
86 wai t / synch/ mut ex/ mysys/ THR_LOCK: : nut ex 686322
87 wai t / synch/ mut ex/ mysys/ THR_LOCK nal | oc 320535
88 wai t / synch/ mut ex/ mysys/ THR_LOCK nal | oc 339390
89 wai t / synch/ mut ex/ mysys/ THR_LOCK nal | oc 377100
90 wai t / synch/ mut ex/ sql / LOCK_pl ugi n 614673

91	wait/synch/ mutex/sqgl/LOCK open	659925
[[[[

92 wai t / synch/ mut ex/ sql / THD: : LOCK t hd_dat a 494001
93 wai t / synch/ mut ex/ mysys/ THR_LOCK nal | oc 222489
94 | wait/synch/ mut ex/ nysys/ THR_LOCK nal | oc 214947
95 wai t / synch/ mut ex/ mysys/ LOCK_al ar m 312993
foooccoooooo T Sy S g Sy moccoooccoooo +

As new events are added to a history table, older events are discarded if the table is full.

Summary tables provide aggregated information for all events over time. The tables in this group
summarize event data in different ways. To see which instruments have been executed the most times
or have taken the most wait time, sort the events_wai ts_summary_gl obal by event nane
table on the COUNT_STAR or SUM Tl MER_WAI T column, which correspond to a COUNT(*) or

SUM TI MER_WAI T) value, respectively, calculated over all events:

mysql > SELECT EVENT_NAME, COUNT_STAR
FROM per f or mance_schenma. events_wai ts_sunmary_gl obal by event nane
ORDER BY COUNT_STAR DESC LIM T 10;

+
| EVENT_NAME | COUNT_STAR |
rocomoo=—o==o +
wait/synch/ nut ex/ nysys/ THR_LOCK_nal	oc	
wait/iolfilelsql/FRM		
wait/synch/ nut ex/ sql / LOCK_pl ugi n		
wait/synch/ nut ex/ nysys/ THR_LOCK_open		
wait/synch/ nut ex/ nysys/ LOCK_al arm		
wait/synch/ nut ex/sql/THD: : LOCK t hd_dat a	115	
wait/iolfilelnyisamkfile		
wait/synch/ nut ex/sql / LOCK_ gl obal _system vari abl es		
wait/synch/ nut ex/ nysys/ THR_LOCK: : nut ex		
wait/synch/ nut ex/ sql / LOCK_open		
fmoceooc--cco-c--ccoo---ccooc--ccoo---ccoo---cco-c=-=o rocomoo=—o==o +
mysql > SELECT EVENT _NAME, SUM TI MER WAI T
FROM per f or mance_schema. events_wai ts_summary_gl obal by event nane
ORDER BY SUM TI MER WAIT DESC LIM T 10;

fmoceooc--cceooc---cooc--—c-coco---coco-—o=-=o focooc--cco—c=-=o +

| EVENT NAME | SUM TIMER WAI T |

fmoceooc--cceooc---cooc--—c-coco---coco-—o=-=o focooc--cco—c=-=o +
wai t/iol/filelsql/MSQ_LOG 1599816582
wai t/ synch/ nut ex/ nysys/ THR_LOCK_nal | oc 1530083250
wai t/iol/filelsql/binlog_index 1385291934
wai t/iolfilelsql/FRM 1292823243
wait/iol/filelnyisam kfile 411193611

I I I
I I I
I I I
I I I
I I I
| wait/io/file/nyisandfile | 322401645 |
I I I
I I I
I I I
I I I

wai t/ synch/ nut ex/ nysys/ LOCK_al ar m 145126935
wai t/iol/filelsql/casetest 104324715
wai t/ synch/ nut ex/ sql / LOCK_pl ugi n 86027823
wait/iol/filelsql/pid 72591750
fmoceooc--cceooc---cooc--—c-coco---coco-—o=-=o focooc--cco—c=-=o +

These results show that the THR_LOCK nal | oc mutex is “hot,” both in terms of how often it is used
and amount of time that threads wait attempting to acquire it.

Note

The THR_LOCK mal | oc mutex is used only in debug builds. In production
builds it is not hot because it is nonexistent.

Instance tables document what types of objects are instrumented. An instrumented object, when
used by the server, produces an event. These tables provide event names and explanatory notes or
status information. For example, the fi | e_i nst ances table lists instances of instruments for file 1/0O
operations and their associated files:

nysql > SELECT *

FROM per f or mance_schema. fil e_i nstances\ G
kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkhkkkkkkkkk*x l r ow kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*
FI LE_NAME: /opt/nysql -1 og/ 60500/ bi nl og. 000007
EVENT_NAME: wait/io/file/sql/binlog
OPEN_COUNT: 0
kkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkkkk* 2 r ow kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkk*%x
FI LE_NAME: /opt/ mysql/ 60500/ dat a/ nysql /tabl es_priv. Wl
EVENT_NAME: wait/io/filelnyisamkfile
OPEN_COUNT: 1
kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkk* 3 r ow kkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkk*
FI LE_NAME: /opt/ mysql / 60500/ dat a/ nysql / col utms_pri v. Wl
EVENT_NAME: wait/io/filelnyisamkfile
OPEN_COUNT: 1

Setup tables are used to configure and display monitoring characteristics. For example,
set up_i nstrunent s lists the set of instruments for which events can be collected and shows which
of them are enabled:

nysql > SELECT NAME, ENABLED, TI MED
FROM per f or mance_schema. set up_i nst runment s;

foocccoococococooccoo-SocoSoSocooocoocoSoSoccoocSoosooosoo fmoococooao dhmooc=os +
| NAME | ENABLED | TIMED |
foocccoococococooccoo-SocoSoSocooocoocoSoSoccoocSoosooosoo fmoococooao dhmooc=os +
stage/sql/end	NO	NO	
stage/sql/executing	NO	NO	
stage/sql/init	NO	NO	
stage/sql/insert	NO	NO	
statenent/sql/l oad	YES	YES	
statenent/sql/grant	YES	YES	
statenent/sql/check	YES	YES	
statenent/sql/flush	YES	YES	
wait/synch/ nut ex/sql/LOCK gl obal _read_I	ock	YES	YES
wait/synch/ nut ex/sql/LOCK gl obal _system variables	YES	YES	
wait/synch/ mut ex/sql/LOCK	ock_db	YES	YES
wait/synch/ nut ex/sql/LOCK nmanager	YES	YES	
wait/synch/rw ock/sql/LOCK grant	YES	YES	
wait/synch/rw ock/sql / LOGGER: : LOCK_	ogger	YES	YES
wait/synch/rw ock/sqgl/LOCK sys_init_connect	YES	YES	
wait/synch/rw ock/sql/LOCK sys_init_slave	YES	YES	
wait/iolfilelsql/binlog	YES	YES	
wait/iolfilelsql/binlog_index	YES	YES	
wait/iolfilelsql/casetest	YES	YES	
[| YES | YES |

wait/iol/filelsql/dbopt
To understand how to interpret instrument names, see Chapter 7, Performance Schema Instrument
Naming Conventions.

To control whether events are collected for an instrument, set its ENABLED value to YES or NO. For
example:

nysql > UPDATE per f or mance_schena. set up_i nstrunents

SET ENABLED = ' NO
WHERE NAME = 'wai t/synch/ nut ex/ sql / LOCK _nysql _create_db';

The Performance Schema uses collected events to update tables in the per f or rance_schena
database, which act as “consumers” of event information. The set up_consuner s table lists the
available consumers and which are enabled:

nmysqgl > SELECT * FROM per f or mance_schema. set up_consuners;

dimccoccooocccoocccosSccoosccoosooooo dhmocoocoas +
| NAME | ENABLED |
dimccoccooocccoocccosSccoosccoosooooo dhmocoocoas +
events_stages_current	NO	
events_stages_history	NO	
events_stages_history_I ong	NO	
events_statenments_cpu	NO	
events_statenents_current	YES	
events_statenents_history	YES	
events_statenents_history_	ong	NO
events_transacti ons_current	YES	
events_transactions_history	YES	
events_transactions_history_long	NO	
events_waits_current	NO	
events waits_history	NO	
events_waits_history_	ong	NO
gl obal _i nstrunentation	YES	
thread_instrunmentation	YES	
statenents_digest	YES	
dimccoccooocccoocccosSccoosccoosooooo dhmocoocoas +

To control whether the Performance Schema maintains a consumer as a destination for event
information, set its ENABLED value.

For more information about the setup tables and how to use them to control event collection, see
Section 5.2, “Performance Schema Event Filtering”.

There are some miscellaneous tables that do not fall into any of the previous groups. For example,
per formance_t i nmer s lists the available event timers and their characteristics. For information about
timers, see Section 5.1, “Performance Schema Event Timing”.

Chapter 3 Performance Schema Build Configuration

The Performance Schema is mandatory and always compiled in. It is possible to exclude certain
parts of the Performance Schema instrumentation. For example, to exclude stage and statement
instrumentation, do this:

$> cmake . \
- DDI SABLE_PSI _STAGE=1 \
- DDI SABLE_PSI _STATEMENT=1

For more information, see the descriptions of the DI SABLE_PSI _ XXX CVake options in MySQL
Source-Configuration Options.

If you install MySQL over a previous installation that was configured without the Performance Schema
(or with an older version of the Performance Schema that has missing or out-of-date tables). One
indication of this issue is the presence of messages such as the following in the error log:

[ERROR] Native table 'performance_schema'.'events_waits_history'

has the wong structure

[ERROR] Native table 'performance_schema'.'events_waits_history_|long'
has the wong structure

To correct that problem, perform the MySQL upgrade procedure. See Upgrading MySQL.

Because the Performance Schema is configured into the server at build time, a row for
PERFORMANCE_SCHENA appears in the output from SHOW ENG NES. This means that the Performance
Schema is available, not that it is enabled. To enable it, you must do so at server startup, as described
in the next section.

https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/8.0/en/upgrading.html
https://dev.mysql.com/doc/refman/8.0/en/show-engines.html

10

Chapter 4 Performance Schema Startup Configuration

To use the MySQL Performance Schema, it must be enabled at server startup to enable event
collection to occur.

The Performance Schema is enabled by default. To enable or disable it explicitly, start the server with
the per f or mance_schenm variable set to an appropriate value. For example, use these lines in the
server ny. cnf file:

[nysgl d]
per f or mance_schema=0N

If the server is unable to allocate any internal buffer during Performance Schema initialization, the
Performance Schema disables itself and sets per f or rance_schena to OFF, and the server runs
without instrumentation.

The Performance Schema also permits instrument and consumer configuration at server startup.

To control an instrument at server startup, use an option of this form:

- - performance- schema-i nstrunment =' i nst runment _nane=val ue'

Here, i nst r unent _nane is an instrument name such as wai t / synch/ nut ex/ sql / LOCK_open,
and val ue is one of these values:

e OFF, FALSE, or 0: Disable the instrument
e ON, TRUE, or 1: Enable and time the instrument
* COUNTED: Enable and count (rather than time) the instrument

Each - - per f or mance- schema- i nst runment option can specify only one instrument name, but
multiple instances of the option can be given to configure multiple instruments. In addition, patterns
are permitted in instrument names to configure instruments that match the pattern. To configure all
condition synchronization instruments as enabled and counted, use this option:

--performance- schema-i nstrunment =" wai t/ synch/ cond/ %COUNTED

To disable all instruments, use this option:

- - per f or mance- schena- i nst runent =" %=0OFF'

Exception: The nenor y/ per f or nance_schenma/ %instruments are built in and cannot be disabled at
startup.

Longer instrument name strings take precedence over shorter pattern names, regardless of order. For
information about specifying patterns to select instruments, see Section 5.9, “Naming Instruments or
Consumers for Filtering Operations”.

An unrecognized instrument name is ignored. It is possible that a plugin installed later may create the
instrument, at which time the name is recognized and configured.

To control a consumer at server startup, use an option of this form:

- - perf ormance- schema- consumner - consuner _nanme=val ue

Here, consuner _narme is a consumer name such as events_wai ts_hi st ory, and val ue is one of
these values:

* OFF, FALSE, or 0: Do not collect events for the consumer
* ON, TRUE, or 1: Collect events for the consumer

For example, to enable the event s_wai t s_hi st or y consumer, use this option:

11

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-options.html#option_mysqld_performance-schema-instrument

- - per f or mance- schema- consuner - event s- wai t s- hi st or y=0ON

The permitted consumer names can be found by examining the set up_consuner s table. Patterns
are not permitted. Consumer names in the set up_consuner s table use underscores, but for
consumers set at startup, dashes and underscores within the name are equivalent.

The Performance Schema includes several system variables that provide configuration information:

nysql > SHOW VARI ABLES LI KE ' perf % ;

e e e e e e e e e e eeeeemeeememeeeese-aeaoaaa- o eees +
| Variabl e_nane | Val ue
e E - +
| perfornmance_schena | ON

| perfornmance_schena_accounts_si ze | 100

| perfornmance_schena_di gests_si ze | 200

| perfornmance_schena_events_stages_hi story_l ong_si ze | 10000

| perfornmance_schena_events_stages_hi story_si ze | 10

| perfornmance_schena_events_statenents_history_|ong_size | 10000

| perfornmance_schena_events_stat enents_hi story_si ze | 10

| perfornmance_schena_events_waits_history_|l ong_size | 10000

| perfornance_schena_events_waits_history_size | 10

| perfornmance_schena_hosts_size | 100

| perfornmance_schena_nax_cond_cl asses | 80

| perfornmance_schena_nax_cond_i nst ances | 1000

The per f or mance_schena variable is ON or OFF to indicate whether the Performance Schema is
enabled or disabled. The other variables indicate table sizes (number of rows) or memory allocation
values.

Note

With the Performance Schema enabled, the number of Performance Schema
instances affects the server memory footprint, perhaps to a large extent. The
Performance Schema autoscales many parameters to use memory only as
required; see The Performance Schema Memory-Allocation Model.

To change the value of Performance Schema system variables, set them at server startup. For
example, put the following lines in a my. cnf file to change the sizes of the history tables for wait
events:

[nysgql d]

per f or mance_schena

per f or mance_schema_events_wai ts_hi story_si ze=20

per f ormance_schenma_events_wai ts_hi story_| ong_si ze=15000

The Performance Schema automatically sizes the values of several of its parameters at server
startup if they are not set explicitly. For example, it sizes the parameters that control the sizes of the
events waits tables this way. The Performance Schema allocates memory incrementally, scaling

its memory use to actual server load, instead of allocating all the memory it needs during server
startup. Consequently, many sizing parameters need not be set at all. To see which parameters are
autosized or autoscaled, use nysql d --verbose --hel p and examine the option descriptions, or
see Chapter 12, Performance Schema System Variables.

For each autosized parameter that is not set at server startup, the Performance Schema determines
how to set its value based on the value of the following system values, which are considered as “hints”
about how you have configured your MySQL server:

max_connect i ons
open_files_limt

tabl e_definition_cache
t abl e_open_cache

To override autosizing or autoscaling for a given parameter, set it to a value other than —1 at startup. In
this case, the Performance Schema assigns it the specified value.

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-memory-model.html

At runtime, SHOW VARI ABLES displays the actual values that autosized parameters were set to.
Autoscaled parameters display with a value of —1.

If the Performance Schema is disabled, its autosized and autoscaled parameters remain set to -1 and
SHOW VARI ABLES displays -1.

13

https://dev.mysql.com/doc/refman/8.0/en/show-variables.html
https://dev.mysql.com/doc/refman/8.0/en/show-variables.html

14

Chapter 5 Performance Schema Runtime Configuration

Table of Contents

5.1 Performance Schema EVENt TiMINGcouiiiiiiiiiii e e e e e e e e e aeeans 15
5.2 Performance Schema Event FilteriNg ..o 18
LR T =T o |l o (=R 11T T 19
5.4 Pre-Filtering by INSITUMENTou i e e e e e e e aae e 20
5.5 Pre-Filtering DY ODJECTovn e 21
5.6 Pre-Filtering DY TRI Acouiiii e e e 23
5.7 Pre-Filtering DY CONSUMIETt e e e e e e e e e e e et e e e e e e e eaeeaees 25
5.8 Example Consumer CoNnfIQUIAtiONSc.uiiiiiiii e e e e e e e e e 28
5.9 Naming Instruments or Consumers for Filtering Operationscccooeviveiiiiiiiii i, 33
5.10 Determining What IS INStrUMENIEAiirniiiiii e e e e e 33

Specific Performance Schema features can be enabled at runtime to control which types of event
collection occur.

Performance Schema setup tables contain information about monitoring configuration:

nysql > SELECT TABLE _NAME FROM | NFORVATI ON_SCHENMA. TABLES
WHERE TABLE_SCHENMA = ' performance_schema’
AND TABLE_NAME LI KE ' set up% ;

| setup_actors |
| setup_consuners |
| setup_instrunents |
| setup_objects |
| setup_threads |

You can examine the contents of these tables to obtain information about Performance Schema
monitoring characteristics. If you have the UPDATE privilege, you can change Performance Schema
operation by modifying setup tables to affect how monitoring occurs. For additional details about these
tables, see Section 10.2, “Performance Schema Setup Tables".

The set up_i nstrunent s and set up_consuner s tables list the instruments for which events

can be collected and the types of consumers for which event information actually is collected,
respectively. Other setup tables enable further modification of the monitoring configuration. Section 5.2,
“Performance Schema Event Filtering”, discusses how you can modify these tables to affect event
collection.

If there are Performance Schema configuration changes that must be made at runtime using SQL
statements and you would like these changes to take effect each time the server starts, put the
statements in a file and start the server with the i ni t _fi | e system variable set to name the file. This
strategy can also be useful if you have multiple monitoring configurations, each tailored to produce a
different kind of monitoring, such as casual server health monitoring, incident investigation, application
behavior troubleshooting, and so forth. Put the statements for each monitoring configuration into their
own file and specify the appropriate file as the i nit _fi | e value when you start the server.

5.1 Performance Schema Event Timing

Events are collected by means of instrumentation added to the server source code. Instruments time
events, which is how the Performance Schema provides an idea of how long events take. It is also
possible to configure instruments not to collect timing information. This section discusses the available
timers and their characteristics, and how timing values are represented in events.

15

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_update
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_init_file
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_init_file

Performance Schema Timers

Performance Schema Timers

Performance Schema timers vary in precision and amount of overhead. To see what timers are
available and their characteristics, check the per f or rance_ti ner s table:

mysql > SELECT * FROM per f or mance_schena. per f or mance_ti mers;

e oono00000000 s ooocoocoooo0n0n000 s nooooocoocoo000000 e ooooooo0o000000 +
| TIMER NAME | TIMER FREQUENCY | TI MER RESOLUTI ON | TI MER OVERHEAD |
e oono00000000 s ooocoocoooo0n0n000 s nooooocoocoo000000 e ooooooo0o000000 +
CYCLE [2389029850	1	72	
NANOSECOND	1000000000	1	112
M CROSECOND	1000000	1	136
M LLI SECOND	1036	1	168
THREAD CPU	339101694	1	798
e oono00000000 s ooocoocoooo0n0n000 s nooooocoocoo000000 e ooooooo0o000000 +

If the values associated with a given timer name are NULL, that timer is not supported on your platform.

The columns have these meanings:

e The TI MER_NAME column shows the names of the available timers. CYCLE refers to the timer that is

based on the CPU (processor) cycle counter.

» TI MER_FREQUENCY indicates the number of timer units per second. For a cycle timer, the frequency
is generally related to the CPU speed. The value shown was obtained on a system with a 2.4GHz
processor. The other timers are based on fixed fractions of seconds.

e TI MER_RESCOLUTI ONindicates the number of timer units by which timer values increase at a time. If
a timer has a resolution of 10, its value increases by 10 each time.

» TI MER_OVERHEAD is the minimal number of cycles of overhead to obtain one timing with the given
timer. The overhead per event is twice the value displayed because the timer is invoked at the

beginning and end of the event.

The Performance Schema assigns timers as follows:

» The wait timer uses CYCLE.

* The idle, stage, statement, and transaction timers use NANOSECOND on platforms where the
NANOSECOND timer is available, M CROSECOND otherwise.

At server startup, the Performance Schema verifies that assumptions made at build time about timer
assignments are correct, and displays a warning if a timer is not available.

To time wait events, the most important criterion is to reduce overhead, at the possible expense of the

timer accuracy, so using the CYCLE timer is the best.

The time a statement (or stage) takes to execute is in general orders of magnitude larger than the time
it takes to execute a single wait. To time statements, the most important criterion is to have an accurate
measure, which is not affected by changes in processor frequency, so using a timer which is not based
on cycles is the best. The default timer for statements is NANOSECOND. The extra “overhead” compared
to the CYCLE timer is not significant, because the overhead caused by calling a timer twice (once when
the statement starts, once when it ends) is orders of magnitude less compared to the CPU time used to
execute the statement itself. Using the CYCLE timer has no benefit here, only drawbacks.

The precision offered by the cycle counter depends on processor speed. If the processor runs at 1
GHz (one billion cycles/second) or higher, the cycle counter delivers sub-nanosecond precision. Using
the cycle counter is much cheaper than getting the actual time of day. For example, the standard

get ti meof day() function can take hundreds of cycles, which is an unacceptable overhead for data
gathering that may occur thousands or millions of times per second.

Cycle counters also have disadvantages:

16

Performance Schema Timer Representation in Events

» End users expect to see timings in wall-clock units, such as fractions of a second. Converting from
cycles to fractions of seconds can be expensive. For this reason, the conversion is a quick and fairly
rough multiplication operation.

» Processor cycle rate might change, such as when a laptop goes into power-saving mode or when a
CPU slows down to reduce heat generation. If a processor's cycle rate fluctuates, conversion from
cycles to real-time units is subject to error.

» Cycle counters might be unreliable or unavailable depending on the processor or the operating
system. For example, on Pentiums, the instruction is RDTSC (an assembly-language rather than a C
instruction) and it is theoretically possible for the operating system to prevent user-mode programs
from using it.

» Some processor details related to out-of-order execution or multiprocessor synchronization might
cause the counter to seem fast or slow by up to 1000 cycles.

MySQL works with cycle counters on x386 (Windows, macOS, Linux, Solaris, and other Unix flavors),
PowerPC, and IA-64.

Performance Schema Timer Representation in Events

Rows in Performance Schema tables that store current events and historical events have three
columns to represent timing information: TI MER_START and Tl MER_END indicate when an event
started and finished, and TI MER_WAI T indicates event duration.

The set up_i nst runment s table has an ENABLED column to indicate the instruments for which

to collect events. The table also has a TI MED column to indicate which instruments are timed. If

an instrument is not enabled, it produces no events. If an enabled instrument is not timed, events
produced by the instrument have NULL for the TI MER_START, TI MER_END, and TI MER_WAI T timer
values. This in turn causes those values to be ignored when calculating aggregate time values in
summary tables (sum, minimum, maximum, and average).

Internally, times within events are stored in units given by the timer in effect when event timing
begins. For display when events are retrieved from Performance Schema tables, times are shown in
picoseconds (trillionths of a second) to normalize them to a standard unit, regardless of which timer is
selected.

The timer baseline (“time zero”) occurs at Performance Schema initialization during server startup.
TI MER_START and TI MER_END values in events represent picoseconds since the baseline.
TI MER_WAI T values are durations in picoseconds.

Picosecond values in events are approximate. Their accuracy is subject to the usual forms of error
associated with conversion from one unit to another. If the CYCLE timer is used and the processor
rate varies, there might be drift. For these reasons, it is not reasonable to look at the TI VER_START
value for an event as an accurate measure of time elapsed since server startup. On the other hand, it
is reasonable to use TI MER_START or TI MER_WAI T values in ORDER BY clauses to order events by
start time or duration.

The choice of picoseconds in events rather than a value such as microseconds has a performance
basis. One implementation goal was to show results in a uniform time unit, regardless of the timer.

In an ideal world this time unit would look like a wall-clock unit and be reasonably precise; in other
words, microseconds. But to convert cycles or nanoseconds to microseconds, it would be necessary
to perform a division for every instrumentation. Division is expensive on many platforms. Multiplication
is not expensive, so that is what is used. Therefore, the time unit is an integer multiple of the highest
possible TI MER_FREQUENCY value, using a multiplier large enough to ensure that there is no major
precision loss. The result is that the time unit is “picoseconds.” This precision is spurious, but the
decision enables overhead to be minimized.

While a wait, stage, statement, or transaction event is executing, the respective current-event tables
display current-event timing information:

17

Performance Schema Event Filtering

event s_wai ts_current

event s_st ages_current

event s_st at enent s_current
event s_transacti ons_current

To make it possible to determine how long a not-yet-completed event has been running, the timer
columns are set as follows:

* TI MER_START is populated.
* TI MER_END s populated with the current timer value.
* TI MER_WAI T is populated with the time elapsed so far (TI| MER_END - TI MER_START).

Events that have not yet completed have an END_EVENT _| Dvalue of NULL. To assess time elapsed
so far for an event, use the TI MER_WAI T column. Therefore, to identify events that have not yet
completed and have taken longer than N picoseconds thus far, monitoring applications can use this
expression in queries:

WHERE END EVENT_ID I'S NULL AND TIMER WVAIT > N

Event identification as just described assumes that the corresponding instruments have ENABLED and
TI MED set to YES and that the relevant consumers are enabled.

5.2 Performance Schema Event Filtering

Events are processed in a producer/consumer fashion:

 Instrumented code is the source for events and produces events to be collected. The
set up_i nst runent s table lists the instruments for which events can be collected, whether they
are enabled, and (for enabled instruments) whether to collect timing information:

nysql > SELECT NAME, ENABLED, TI MED
FROM per f or mance_schema. set up_i nstrunent s;

Fm e i e e ee e e meeececcceemmaen- Hoemmee e +--eem-- +
| NAVE | ENABLED | TI MED |
Fm e i e e ee e e meeececcceemmaen- Hoemmee e +--eem-- +
| wait/synch/ nutex/sql/LOCK gl obal _read_I ock | YES | YES [
| wait/synch/ nutex/sql/LOCK gl obal _systemvariables | YES | YES [
| wait/synch/ nutex/sql/LOCK | ock_db | YES | YES [
| | YES |

wai t / synch/ mut ex/ sql / LOCK_manager | YES

The set up_i nst runent s table provides the most basic form of control over event production. To
further refine event production based on the type of object or thread being monitored, other tables
may be used as described in Section 5.3, “Event Pre-Filtering”.

» Performance Schema tables are the destinations for events and consume events. The
set up_consuner s table lists the types of consumers to which event information can be sent and
whether they are enabled:

nmysql > SELECT * FROM perf or mance_schena. set up_consuners;

|
+
| events_stages_current |
| events_stages_history |
| events_stages_history_I| ong |
| events_statenments_cpu |
| events_statenments_current |
| events_statenents_history |
| events_statenents_history_| ong |
| events_transacti ons_current |
| events_transactions_history |
| events_transactions_history_long |

18

Event Pre-Filtering

events_wai ts_current NO
event s_wai ts_hi story NO
events_waits_history_| ong NO

thread_i nstrunent ati on

| |
| |
| |
gl obal _i nstrunent ati on | YES |
| |
st at ement s_di gest | |

Filtering can be done at different stages of performance monitoring:

» Pre-filtering. This is done by modifying Performance Schema configuration so that only certain
types of events are collected from producers, and collected events update only certain consumers.
To do this, enable or disable instruments or consumers. Pre-filtering is done by the Performance
Schema and has a global effect that applies to all users.

Reasons to use pre-filtering:

« To reduce overhead. Performance Schema overhead should be minimal even with all instruments
enabled, but perhaps you want to reduce it further. Or you do not care about timing events and
want to disable the timing code to eliminate timing overhead.

« To avoid filling the current-events or history tables with events in which you have no interest. Pre-
filtering leaves more “room” in these tables for instances of rows for enabled instrument types. If
you enable only file instruments with pre-filtering, no rows are collected for nonfile instruments.
With post-filtering, nonfile events are collected, leaving fewer rows for file events.

< To avoid maintaining some kinds of event tables. If you disable a consumer, the server does not
spend time maintaining destinations for that consumer. For example, if you do not care about
event histories, you can disable the history table consumers to improve performance.

» Post-filtering. This involves the use of WHERE clauses in queries that select information from
Performance Schema tables, to specify which of the available events you want to see. Post-filtering
is performed on a per-user basis because individual users select which of the available events are of
interest.

Reasons to use post-filtering:
« To avoid making decisions for individual users about which event information is of interest.

« To use the Performance Schema to investigate a performance issue when the restrictions to
impose using pre-filtering are not known in advance.

The following sections provide more detail about pre-filtering and provide guidelines for naming
instruments or consumers in filtering operations. For information about writing queries to retrieve
information (post-filtering), see Chapter 6, Performance Schema Queries.

5.3 Event Pre-Filtering

Pre-filtering is done by the Performance Schema and has a global effect that applies to all users. Pre-
filtering can be applied to either the producer or consumer stage of event processing:

» To configure pre-filtering at the producer stage, several tables can be used:

e setup_i nstrunent s indicates which instruments are available. An instrument disabled in this
table produces no events regardless of the contents of the other production-related setup tables.
An instrument enabled in this table is permitted to produce events, subject to the contents of the
other tables.

e set up_obj ect s controls whether the Performance Schema monitors particular table and stored
program objects.

« t hr eads indicates whether monitoring is enabled for each server thread.

19

Pre-Filtering by Instrument

e setup_act or s determines the initial monitoring state for new foreground threads.

» To configure pre-filtering at the consumer stage, modify the set up_consuner s table. This
determines the destinations to which events are sent. set up_consuner s also implicitly affects
event production. If a given event is not sent to any destination (that is, it is never consumed), the
Performance Schema does not produce it.

Modifications to any of these tables affect monitoring immediately, with the exception that modifications
to the set up_act or s table affect only foreground threads created subsequent to the modification, not
existing threads.

When you change the monitoring configuration, the Performance Schema does not flush the history
tables. Events already collected remain in the current-events and history tables until displaced by
newer events. If you disable instruments, you might need to wait a while before events for them are
displaced by newer events of interest. Alternatively, use TRUNCATE TABLE to empty the history tables.

After making instrumentation changes, you might want to truncate the summary tables. Generally, the
effect is to reset the summary columns to 0 or NULL, not to remove rows. This enables you to clear
collected values and restart aggregation. That might be useful, for example, after you have made a
runtime configuration change. Exceptions to this truncation behavior are noted in individual summary
table sections.

The following sections describe how to use specific tables to control Performance Schema pre-filtering.

5.4 Pre-Filtering by Instrument

The set up_i nstrunent s table lists the available instruments:

nysql > SELECT NAME, ENABLED, TI MED
FROM per f or mance_schema. set up_i nst runent s;

fmoceooc--cco-c--ccoo---ccooc--ccoo---ccoo---cco-c=-=o fmocoooo=o oocoooc +
| NAMVE | ENABLED | TIMED |
fmoceooc--cco-c--ccoo---ccooc--ccoo---ccoo---cco-c=-=o fmocoooo=o oocoooc +
stage/sql/end	NO	NO	
stagel/sql/executing	NO	NO	
stage/sql/init	NO	NO	
stage/sql/insert	NO	NO	
statenent/sql/l oad	YES	YES	
statenent/sql/grant	YES	YES	
statenent/sql/check	YES	YES	
statenent/sql/flush	YES	YES	
wait/synch/ nut ex/sql / LOCK_ gl obal _read_I ock	YES	YES	
wait/synch/ nutex/sql/LOCK gl obal _system variables	YES	YES	
wait/synch/ nut ex/sql /LOCK	ock_db	YES	YES
wait/synch/ nut ex/sql / LOCK_nmanager	YES	YES	
wait/synch/rw ock/sql/LOCK grant	YES	YES	
wait/synch/rw ock/sql / LOGGER: : LOCK_	ogger	YES	YES
wait/synch/rw ock/sql/LOCK sys_init_connect	YES	YES	
wait/synch/rw ock/sql/LOCK sys_init_slave	YES	YES	
wait/iolfilelsql/binlog	YES	YES	
wait/iolfilelsql/binlog_index	YES	YES	
wait/iolfilelsql/casetest	YES	YES	
	YES	YES	

wait/iol/filelsql/dbopt

To control whether an instrument is enabled, set its ENABLED column to YES or NO. To configure
whether to collect timing information for an enabled instrument, set its Tl MED value to YES or NO.
Setting the Tl MVED column affects Performance Schema table contents as described in Section 5.1,
“Performance Schema Event Timing”.

20

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

Pre-Filtering by Object

Modifications to most set up_i nst runent s rows affect monitoring immediately. For some
instruments, modifications are effective only at server startup; changing them at runtime has no effect.
This affects primarily mutexes, conditions, and rwlocks in the server, although there may be other
instruments for which this is true.

The set up_i nst runent s table provides the most basic form of control over event production. To
further refine event production based on the type of object or thread being monitored, other tables may
be used as described in Section 5.3, “Event Pre-Filtering”.

The following examples demonstrate possible operations on the set up_i nstrunent s table. These
changes, like other pre-filtering operations, affect all users. Some of these queries use the LI KE
operator and a pattern match instrument names. For additional information about specifying patterns to
select instruments, see Section 5.9, “Naming Instruments or Consumers for Filtering Operations”.

« Disable all instruments:

UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = ' NO ;

Now no events are collected.

» Disable all file instruments, adding them to the current set of disabled instruments:
UPDATE per f or mance_schena. set up_i nstrunent s

SET ENABLED = ' NO
VWHERE NAME LIKE 'wait/io/file/ % ;

 Disable only file instruments, enable all other instruments:

UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = | F(NAME LIKE 'wait/io/file/%, 'NO, 'YES);

» Enable all but those instruments in the nmysys library:

UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = CASE WHEN NAME LI KE ' % nysys/ % THEN ' YES' ELSE ' NO END;

» Disable a specific instrument:
UPDATE per f or mance_schena. set up_i nstrunent s

SET ENABLED = ' NO
VWHERE NAME = 'wai t/synch/ mut ex/ mysys/ TMPDI R_rut ex' ;

» To toggle the state of an instrument, “flip” its ENABLED value:
UPDATE per f or mance_schena. set up_i nstrunents

SET ENABLED = | F(ENABLED = ' YES', 'NO, 'YES')
WHERE NAME = ' wai t/synch/ nut ex/ nysys/ TMPDI R_nut ex' ;

 Disable timing for all events:

UPDATE per f or mance_schema. set up_i nstrunent s
SET TIMED = ' NO ;

5.5 Pre-Filtering by Object

The set up_obj ect s table controls whether the Performance Schema monitors particular table and
stored program objects. The initial set up_obj ect s contents look like this:

nysql > SELECT * FROM per formance_schena. set up_obj ect s;

o memeaaa o Fom e emee e emaaao o memea oo Fommm e s +o-emma +
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | ENABLED | TIMED |
o memeaaa o Fom e emee e emaaao o memea oo Fommm e s +o-emma +
EVENT	nysql	%	NO	NO
EVENT	perfornmance_schema	%	NO	NO
EVENT	infornmation_schema	%	NO	NO

21

https://dev.mysql.com/doc/refman/8.0/en/string-comparison-functions.html#operator_like

Pre-Filtering by Object

EVENT	%	%	YES	YES
FUNCTI ON	mysql	%	NO	NO
FUNCTI ON	performance_schema	%	NO	NO
FUNCTI ON	informati on_schema	%	NO	NO
FUNCTI ON	%	%	YES	YES
PROCEDURE	nysql	%	NO	NO
PROCEDURE	performance_schema	%	NO	NO
PROCEDURE	information_schema	%	NO	NO
PROCEDURE	%	%	YES	YES
TABLE	mysql	%	NO	NO
TABLE	performance_schema	%	NO	NO
TABLE	informati on_schema	%	NO	NO
TABLE	%	%	YES	YES
TRI GGER	mysql	%	NO	NO
TRI GGER	performance_schema	%	NO	NO
TRI GGER	informati on_schema	%	NO	NO
TRI GGER	%	%	YES	YES
S S e S S S T S holoioioio +

Modifications to the set up_obj ect s table affect object monitoring immediately.

The OBJECT _TYPE column indicates the type of object to which a row applies. TABLE filtering affects
table I/O events (wai t /1 o/ t abl e/ sqgl / handl er instrument) and table lock events (wai t / | ock/
t abl e/ sqgl / handl er instrument).

The OBJECT_SCHEMA and OBJECT _NANME columns should contain a literal schema or object name, or
' % to match any name.

The ENABLED column indicates whether matching objects are monitored, and TI MED indicates whether
to collect timing information. Setting the Tl MED column affects Performance Schema table contents as
described in Section 5.1, “Performance Schema Event Timing”.

The effect of the default object configuration is to instrument all objects except those in

the mysql , | NFORVATI ON_SCHEMA, and per f or nance_schena databases. (Tables in
the | NFORMATI ON_SCHENMA database are not instrumented regardless of the contents of
set up_obj ect s; the row for i nf or mat i on_schena. %simply makes this default explicit.)

When the Performance Schema checks for a match in set up_obj ect s, it tries to find more specific
matches first. For rows that match a given OBJECT_TYPE, the Performance Schema checks rows in
this order:

* Rows with OBJECT_SCHEMA='literal' and OBJECT NAME='literal"'.
* Rows with OBJECT_SCHEMA=" | i teral ' and OBJECT_NANME=" % .
¢ Rows with OBJECT _SCHEMA=' % and OBJECT NANME=' % .

For example, with a table db1. t 1, the Performance Schema looks in TABLE rows for a match for
"db1" and't1',thenfor' dbl" and' % ,thenfor' % and' % . The order in which matching occurs
matters because different matching set up_obj ect s rows can have different ENABLED and TI MED
values.

For table-related events, the Performance Schema combines the contents of set up_obj ect s with
set up_i nstrunent s to determine whether to enable instruments and whether to time enabled
instruments:

» For tables that match a row in set up_obj ect s, table instruments produce events only if ENABLED
is YES in both set up_i nstrunent s and set up_obj ect s.

» The Tl MED values in the two tables are combined, so that timing information is collected only when
both values are YES.

For stored program objects, the Performance Schema takes the ENABLED and TI MED columns directly
from the set up_obj ect s row. There is no combining of values with set up_i nst runent s.

22

Pre-Filtering by Thread

Suppose that set up_obj ect s contains the following TABLE rows that apply to db1, db2, and db3:

] S] S | N frmz======= fmzc==== +
| OBJECT_TYPE | OBJECT SCHEMA | OBJECT_NANE | ENABLED | TIMED |
] S] S | N frmz======= fmzc==== +
TABLE	dbl	t1	YES	YES
TABLE	dbl	t2	NO	NO
TABLE	db2	%	YES	YES
TABLE	db3	%	NO	NO
TABLE	%	%	YES	YES
] S] S | N frmz======= fmzc==== +

If an object-related instrument in set up_i nst runent s has an ENABLED value of NO, events for
the object are not monitored. If the ENABLED value is YES, event monitoring occurs according to the
ENABLED value in the relevant set up_obj ect s row:

e dbl.t 1 events are monitored

e dbl.t 2 events are not monitored

db2. t 3 events are monitored

e db3. t 4 events are not monitored

db4. t 5 events are monitored

Similar logic applies for combining the Tl MED columns from the set up_i nstrunent s and
set up_obj ect s tables to determine whether to collect event timing information.

If a persistent table and a temporary table have the same name, matching against set up_obj ect s
rows occurs the same way for both. It is not possible to enable monitoring for one table but not the
other. However, each table is instrumented separately.

5.6 Pre-Filtering by Thread

The t hr eads table contains a row for each server thread. Each row contains information about a
thread and indicates whether monitoring is enabled for it. For the Performance Schema to monitor a
thread, these things must be true:

 Thethread_ instrunentation consumerinthe set up_consuner s table must be YES.
* Thet hreads. | NSTRUVENTED column must be YES.

» Monitoring occurs only for those thread events produced from instruments that are enabled in the
setup_instrunents table.

The t hr eads table also indicates for each server thread whether to perform historical event logging.
This includes wait, stage, statement, and transaction events and affects logging to these tables:

events_wai ts_history

events_wai ts_history_| ong
events_stages_history
events_stages_hi story_| ong
events_statements_history
events_statements_hi story_| ong
events_transacti ons_history
events_transacti ons_hi story_| ong

For historical event logging to occur, these things must be true:

» The appropriate history-related consumers in the set up_consuner s table must be enabled. For
example, wait event logging in the events_waits_history andevents waits history |ong
tables requires the corresponding events_waits_history andevents waits _history | ong
consumers to be YES.

23

Pre-Filtering by Thread

e Thet hreads. H STORY column must be YES.

» Logging occurs only for those thread events produced from instruments that are enabled in the
setup_instrunents table.

For foreground threads (resulting from client connections), the initial values of the | NSTRUVENTED and
HI STORY columns int hr eads table rows are determined by whether the user account associated
with a thread matches any row in the set up_act or s table. The values come from the ENABLED and
HI STORY columns of the matching set up_act or s table row.

For background threads, there is no associated user. | NSTRUVENTED and HI STORY are YES by default
and set up_act or s is not consulted.

The initial set up_act or s contents look like this:

nmysql > SELECT * FROM per f or mance_schena. set up_act or s;

Fom o Fom o Fom o oo oo +
| HOST | USER | ROLE | ENABLED | HI STCORY |
Fom o Fom o Fom o oo oo +
| % | % | % | YES | YES [
Fom o Fom o Fom o oo oo +

The HOST and USER columns should contain a literal host or user name, or ' % to match any name.

The ENABLED and HI STORY columns indicate whether to enable instrumentation and historical event
logging for matching threads, subject to the other conditions described previously.

When the Performance Schema checks for a match for each new foreground thread in
set up_act ors, it tries to find more specific matches first, using the USER and HOST columns (ROLE is
unused):

* Rowswith USER="literal' and HOST="literal '.
* Rows with USER=" | i t eral ' and HOST=" % .

* Rows with USER=" % and HOST="literal '.

* Rows with USER=" % and HOST=" % .

The order in which matching occurs matters because different matching set up_act or s rows can
have different USER and HOST values. This enables instrumenting and historical event logging to be
applied selectively per host, user, or account (user and host combination), based on the ENABLED and
HI STORY column values:

* When the best match is a row with ENABLED=YES, the | NSTRUVENTED value for the thread
becomes YES. When the best match is a row with H STORY=YES, the HI STORY value for the thread
becomes YES.

* When the best match is a row with ENABLED=NG, the | NSTRUVENTED value for the thread becomes
NO. When the best match is a row with H STORY=NQO, the H STORY value for the thread becomes NO.

* When no match is found, the | NSTRUVENTED and HI STORY values for the thread become NO.

The ENABLED and HI STORY columns in set up_act or s rows can be set to YES or NOindependent of
one another. This means you can enable instrumentation separately from whether you collect historical
events.

By default, monitoring and historical event collection are enabled for all new foreground threads
because the set up_act or s table initially contains a row with * % for both HOST and USER. To
perform more limited matching such as to enable monitoring only for some foreground threads, you
must change this row because it matches any connection, and add rows for more specific HOST/USER
combinations.

24

Pre-Filtering by Consumer

Suppose that you modify set up_act or s as follows:

UPDATE per f or mance_schena. set up_actors

SET ENABLED = 'NO, HI STORY = 'NO

WHERE HOST = '% AND USER = ' % ;

I NSERT | NTO per f or mance_schena. set up_actors
(HOST, USER, ROLE, ENABLED, HI STORY)

VALUES(' | ocal host',"'joe',"%,' YES','YES');

I NSERT | NTO per f or mance_schena. set up_act ors
(HOST, USER, ROLE, ENABLED, HI STORY)

VALUES(' host a. exanpl e.com ,"'joe',"%,"' YES' ,' NO);
I NSERT | NTO per f or mance_schena. set up_actors
(HOST, USER, ROLE, ENABLED, HI STORY)

VALUES(' % ,"'sam ,'%,'NO,'YES);

The UPDATE statement changes the default match to disable instrumentation and historical event
collection. The | NSERT statements add rows for more specific matches.

Now the Performance Schema determines how to set the | NSTRUVENTED and HI STORY values for
new connection threads as follows:

If | oe connects from the local host, the connection matches the first inserted row. The
| NSTRUVENTED and HI STORY values for the thread become YES.

If j oe connects from host a. exanpl e. com the connection matches the second inserted row. The
| NSTRUVENTED value for the thread becomes YES and the HI STCORY value becomes NO.

If | oe connects from any other host, there is no match. The | NSTRUVENTED and HI STORY values
for the thread become NO.

If samconnects from any host, the connection matches the third inserted row. The | NSTRUVENTED
value for the thread becomes NOand the HI STORY value becomes YES.

For any other connection, the row with HOST and USER setto ' % matches. This row now has
ENABLED and HI STORY set to NO, so the | NSTRUVENTED and HI STORY values for the thread
become NO.

Modifications to the set up_act or s table affect only foreground threads created subsequent to the
modification, not existing threads. To affect existing threads, modify the | NSTRUVENTED and HI STORY
columns of t hr eads table rows.

5.7 Pre-Filtering by Consumer

The set up_consuner s table lists the available consumer types and which are enabled:

nysql > SELECT * FROM perfor mance_schena. set up_consuners;

T [T - +

| NAME | ENABLED |

T [T - +
event s_st ages_current NO
events_stages_history NO
events_stages_history_| ong NO
event s_stat ements_cpu NO
events_statenments_current YES
events_statements_history YES
events_statements_hi story_| ong NO
events_transactions_current YES

I I
I I
I I
I I
I I
I I
I I
I I
events_transacti ons_hi story | YES |
I I
I I
I I
I I
I I
I I
I I

events_transacti ons_hi story_| ong NO
events_waits_current NO
events_wai ts_history NO
events_wai ts_history_| ong NO
gl obal _i nstrunent ati on YES
thread_i nstrunentati on YES
st at ement s_di gest YES
T [T - +

25

https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html

Global and Thread Consumers

Modify the set up_consuner s table to affect pre-filtering at the consumer stage and determine the
destinations to which events are sent. To enable or disable a consumer, set its ENABLED value to YES
or NO.

Modifications to the set up_consuner s table affect monitoring immediately.

If you disable a consumer, the server does not spend time maintaining destinations for that consumer.
For example, if you do not care about historical event information, disable the history consumers:

UPDATE per f or mance_schema. set up_consuner s
SET ENABLED = ' NO
WHERE NAME LI KE ' %i story% ;

The consumer settings in the set up_consuner s table form a hierarchy from higher levels to lower.
The following principles apply:

» Destinations associated with a consumer receive no events unless the Performance Schema checks
the consumer and the consumer is enabled.

» A consumer is checked only if all consumers it depends on (if any) are enabled.

« If a consumer is not checked, or is checked but is disabled, other consumers that depend on it are
not checked.

» Dependent consumers may have their own dependent consumers.
« If an event would not be sent to any destination, the Performance Schema does not produce it.

The following lists describe the available consumer values. For discussion of several representative
consumer configurations and their effect on instrumentation, see Section 5.8, “Example Consumer
Configurations”.

» Global and Thread Consumers
* Wait Event Consumers

» Stage Event Consumers

» Statement Event Consumers

» Transaction Event Consumers

» Statement Digest Consumer

Global and Thread Consumers

* gl obal _i nstrunentati on is the highest level consumer. If gl obal _i nst runment at i on is NG,
it disables global instrumentation. All other settings are lower level and are not checked; it does
not matter what they are set to. No global or per thread information is maintained and no individual
events are collected in the current-events or event-history tables. If gl obal _i nstrunment ati on
is YES, the Performance Schema maintains information for global states and also checks the
thread_i nstrunent ati on consumer.

e thread i nstrunentationischecked onlyif gl obal i nstrunentati onis YES. Otherwise,
if t hread_i nstrunent ati on is NQ, it disables thread-specific instrumentation and all lower-
level settings are ignored. No information is maintained per thread and no individual events
are collected in the current-events or event-history tables. If t hr ead i nst runent ati on
is YES, the Performance Schema maintains thread-specific information and also checks
event s_Xxx_current consumers.

Wait Event Consumers

These consumers require both gl obal i nstrunentati onandthread instrunentationtobe
YES or they are not checked. If checked, they act as follows:

26

Stage Event Consumers

events waits_current, if NO, disables collection of individual wait events in the
events waits_current table. If YES, it enables wait event collection and the Performance
Schema checks the events waits _history andevents waits_history | ong consumers.

events_waits_history isnotcheckedif event waits_current is NO Otherwise, an
events waits_history value of NOor YES disables or enables collection of wait events in the
events_waits_history table.

events waits_history | ongisnotcheckedifevent waits_ current is NO Otherwise, an
events waits_history_ | ong value of NOor YES disables or enables collection of wait events in
the events_waits_history | ong table.

Stage Event Consumers

These consumers require both gl obal i nstrunentati onandthread instrunentationtobe
YES or they are not checked. If checked, they act as follows:

event s_stages_current, if NO, disables collection of individual stage events in the
events_stages_current table. If YES, it enables stage event collection and the Performance
Schema checks the event s_st ages_hi st ory and events_st ages_hi story_I| ong
consumers.

events_stages history is not checked if event st ages_current is NO. Otherwise, an
events_stages_hi story value of NOor YES disables or enables collection of stage events in the
events_stages_hi story table.

events_stages_history_ | ongis notchecked if event st ages_current is NO. Otherwise, an
events_stages_history_| ong value of NOor YES disables or enables collection of stage events
inthe event s_stages_hi story_I ong table.

Statement Event Consumers

These consumers require both gl obal _i nstrunentati onandthread_i nstrunentati on to be
YES or they are not checked. If checked, they act as follows:

event s_stat enent s_cpu, if NO, disables measurement of CPU_TI ME. If YES, and the
instrumentation is enabled and timed, CPU_TI ME is measured.

events_stat enents_current, if NO, disables collection of individual statement

events in the event s_st at ement s_current table. If YES, it enables statement event
collection and the Performance Schema checks the event s_st at enent s_hi st ory and
events_statenents_history_ | ong consumers.

events_statenents_history is notcheckedifevents_statenents_current is NO
Otherwise, an event s_st at enent s_hi st ory value of NOor YES disables or enables collection of
statement events in the event s_st at enent s_hi st ory table.

events_statenents_history | ongisnotcheckedif events statenments_current is NO.
Otherwise, an event s_st at ement s_hi st ory_| ong value of NOor YES disables or enables
collection of statement events in the event s_st at ement s_hi st ory_| ong table.

Transaction Event Consumers

These consumers require both gl obal _i nstrunentati onandthread_i nstrunent ati on to be
YES or they are not checked. If checked, they act as follows:

events transactions_current, if NO disables collection of individual transaction
events inthe events_transacti ons_current table. If YES, it enables transaction event
collection and the Performance Schema checks the events_transacti ons_hi story and
events _transactions_history | ong consumers.

27

Statement Digest Consumer

e events_transactions_history is not checked if events_transacti ons_current is NO.
Otherwise, an events_transacti ons_hi st ory value of NOor YES disables or enables collection
of transaction events in the event s_transacti ons_hi st ory table.

e events_transactions_history_ | ongis notchecked if events transactions_current
is NO. Otherwise, an event s_transacti ons_hi story_| ong value of NOor YES disables or
enables collection of transaction events in the event s_transacti ons_hi story_| ong table.

Statement Digest Consumer

The st at ement s_di gest consumer requires gl obal _i nstrunent ati on to be YES or it is not
checked. There is no dependency on the statement event consumers, So you can obtain statistics per
digest without having to collect statistics in event s_st at enent s_cur r ent , which is advantageous
in terms of overhead. Conversely, you can get detailed statements in event s_st at enent s_current
without digests (the DI GEST and DI GEST_TEXT columns are NULL in this case).

For more information about statement digesting, see Performance Schema Statement Digests and
Sampling.

5.8 Example Consumer Configurations

The consumer settings in the set up_consuner s table form a hierarchy from higher levels to lower.
The following discussion describes how consumers work, showing specific configurations and their
effects as consumer settings are enabled progressively from high to low. The consumer values shown
are representative. The general principles described here apply to other consumer values that may be
available.

The configuration descriptions occur in order of increasing functionality and overhead. If you do not
need the information provided by enabling lower-level settings, disable them so that the Performance
Schema executes less code on your behalf and there is less information to sift through.

The set up_consuner s table contains the following hierarchy of values:

gl obal _i nstrument ati on
thread_i nstrunentati on
events_waits_current
events_wai ts_history
events_wai ts_history_| ong
event s_stages_current
events_stages_history
events_stages_history_| ong
event s_stat ements_current
events_statements_history
events_statements_hi story_| ong
events_transactions_current
events_transacti ons_history
events_transacti ons_hi story_| ong
st at enment s_di gest

Note

In the consumer hierarchy, the consumers for waits, stages, statements,
and transactions are all at the same level. This differs from the event nesting
hierarchy, for which wait events nest within stage events, which nest within
statement events, which nest within transaction events.

If a given consumer setting is NO, the Performance Schema disables the instrumentation associated
with the consumer and ignores all lower-level settings. If a given setting is YES, the Performance
Schema enables the instrumentation associated with it and checks the settings at the next lowest level.
For a description of the rules for each consumer, see Section 5.7, “Pre-Filtering by Consumer”.

For example, if gl obal _i nstrunent ati onis enabled, t hread i nstrunentati onis
checked. If t hread_i nstrunent ati on is enabled, the event s_xxx_current consumers

28

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-statement-digests.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-statement-digests.html

No Instrumentation

are checked. If of these events_wai ts_current is enabled, events waits_history and
events waits_history_ | ong are checked.

Each of the following configuration descriptions indicates which setup elements the Performance
Schema checks and which output tables it maintains (that is, for which tables it collects information).

* No Instrumentation

» Global Instrumentation Only

» Global and Thread Instrumentation Only

* Global, Thread, and Current-Event Instrumentation

» Global, Thread, Current-Event, and Event-History instrumentation

No Instrumentation

Global

Server configuration state:

nysqgl > SELECT * FROM perfor mance_schena. set up_consuners;

e T T LT +
| NAMVE | ENABLED |
e T T LT +
| gl obal _i nstrunentation | NO |
e T T LT +

In this configuration, nothing is instrumented.

Setup elements checked:

e Table set up_consuners, consumer gl obal i nstrunentati on
Output tables maintained:

¢ None

Instrumentation Only

Server configuration state:

nysqgl > SELECT * FROM perfor mance_schena. set up_consuners;

Fom e emeeaeaaaaa F T - +
| NAMVE | ENABLED |
Fom e emeeaeaaaaa F T - +
| gl obal _instrunentation | YES |
| thread_instrunentation | NO |
Fom e emeeaeaaaaa F T - +

In this configuration, instrumentation is maintained only for global states. Per-thread instrumentation is
disabled.

Additional setup elements checked, relative to the preceding configuration:
» Table set up_consuners, consumert hread i nstrunentation

e Tablesetup_instrunments

» Table set up_obj ects

Additional output tables maintained, relative to the preceding configuration:

e nut ex_i nstances

29

Global and Thread Instrumentation Only

Global

« rw ock_i nstances

e cond_i nstances

« file_instances

e users

* hosts

e accounts

e socket _summary_ by event nane

e file_sunmary_by instance

e file_sunmary_ by event nane

* obj ects_summary_gl obal by type
 nenory_sumary_gl obal by event nane

e table | ock waits _summary by table

e table_ io waits _sumary_ by index_usage

e table_ io waits_summary_by table

e events waits_summary_by instance
 events_waits_summary_gl obal by event nane
* events_stages_sunmmary_gl obal by event name
* events_statenents_summary_ gl obal by event nane

 events_transactions_sumary_gl obal by event nane

and Thread Instrumentation Only

Server configuration state:

nmysqgl > SELECT * FROM per f or mance_schema. set up_consuner s;

dimccoccoocccoocccosooccocosccoosooooo dhmococcoas +
| NAME | ENABLED |
dimccoccoocccoocccosooccocosccoosooooo dhmococcoas +
gl obal _i nstrunentation	YES
thread_instrunmentation	YES
events_waits_current	NO
events_stages_current	NO
events_statenents_current	NO
events_transacti ons_current	NO
dimccoccoocccoocccosooccocosccoosooooo dhmococcoas +

In this configuration, instrumentation is maintained globally and per thread. No individual events are
collected in the current-events or event-history tables.

Additional setup elements checked, relative to the preceding configuration:

e Table set up_consuner s, consumers event s_xxx_current, where xxx iswai t s, st ages,
statenents,transacti ons

30

Global, Thread, and Current-Event Instrumentation

e Table setup_actors
e Columnt hreads.instrunented
Additional output tables maintained, relative to the preceding configuration:

* events_xxx_sunmary_by_yyy by _event _nane, where xxx iswai t s, st ages, statenments
transactions; and yyy ist hread, user, host, account

Global, Thread, and Current-Event Instrumentation

Server configuration state:

nysqgl > SELECT * FROM perfor mance_schena. set up_consuners;

e sccomecoscomococooooooooooooooooo LT +
| NAMVE | ENABLED |
e sccomecoscomococooooooooooooooooo LT +
gl obal _instrunentation	YES	
thread_instrunentation	YES	
events_waits_current	YES	
events_waits_history	NO	
events_waits_history_	ong	NO
events_stages_current	YES	
events_stages_history	NO	
events_stages_history_I	ong	NO
events_statenents_current	YES	
events_statenents_history	NO	
events_statenents_history_I	ong	NO
events_transactions_current	YES	
events_transactions_history	NO	
events_transactions_history_long	NO	
e sccomecoscomococooooooooooooooooo LT +

In this configuration, instrumentation is maintained globally and per thread. Individual events are
collected in the current-events table, but not in the event-history tables.

Additional setup elements checked, relative to the preceding configuration:
e Consumers event s_xxx_hi st ory, where xxx iswai t s, st ages, st at enent s, transacti on

» Consumers event s_xxx_hi story_| ong, where xxx iswai t s, st ages, st at enent s,
transacti ons

Additional output tables maintained, relative to the preceding configuration:

e events_xxx_current,where xxx iswai ts, st ages, statenents,transactions

Global, Thread, Current-Event, and Event-History instrumentation

The preceding configuration collects no event history because the event s _xxx_hi st ory and
event s_xxx_hi st ory_I ong consumers are disabled. Those consumers can be enabled separatel
or together to collect event history per thread, globally, or both.

This configuration collects event history per thread, but not globally:

nysqgl > SELECT * FROM perfor mance_schena. set up_consuners;

e eeeeeeaeeeaaas teceeeee +

| NAME | ENABLED |

e eeeeeeaeeeaaas teceeeee +
gl obal _i nstrument ati on YES
thread_i nstrunent ati on YES
events_wai ts_current YES

events_wai ts_history_| ong

I I
I I
I I
events_wai ts_history | YES |
I I
event s_st ages_current | |

S

Yy

31

Global, Thread, Current-Event, and Event-History instrumentation

event s_st ages_hi story YES
event s_st ages_hi story_I| ong NO

event s_statenments_current YES
event s_statenments_history YES

|
|
|
|
event s_st atement s_hi story_| ong | NO
|
|
|

event s_transactions_current YES

event s_transacti ons_hi story YES

event s_transactions_hi story_| ong NO
e S S holoioioim e +

Event-history tables maintained for this configuration:
» events_xxx_history, where xxx iswai ts, st ages, statenents,transacti ons

This configuration collects event history globally, but not per thread:

nmysql > SELECT * FROM per f or mance_schena. set up_consuners;

e e teeeeeeees +
| NAME | ENABLED |
e e teeeeeeees +
gl obal _i nstrument ati on YES
thread_i nstrunent ati on YES
events_wai ts_current YES
event s_wai ts_hi story NO
events_waits_history_| ong YES
event s_st ages_current YES
event s_st ages_hi story NO

| |
| |
| |
| |
| |
| |
| |
event s_st ages_hi story_I| ong | YES |
| |
| |
| |
| |
| |
[[

event s_statenments_current YES
event s_statenments_hi story NO
event s_statement s_hi story_| ong YES
event s_transactions_current YES
event s_transacti ons_hi story NO
event s_transactions_history_| ong YES
e e teeeeeeees +

Event-history tables maintained for this configuration:
» events_xxx_history_ | ong, where xxx iswai t s, st ages, st atenents,transacti ons

This configuration collects event history per thread and globally:

nmysql > SELECT * FROM per f or mance_schena. set up_consuners;

e e teeeeeeees +
| NAME | ENABLED |
e e teeeeeeees +
gl obal _i nstrument ati on YES
thread_i nstrunent ati on YES
event s_wai ts_current YES
event s_wai ts_hi story YES
events_waits_history_| ong YES
event s_st ages_current YES
event s_st ages_hi story YES

| |
| |
| |
| |
| |
| |
| |
event s_st ages_hi story_I| ong | YES |
| |
| |
| |
| |
| |
[[

event s_st atenments_current YES
event s_statenments_history YES
event s_statements_hi story_| ong YES
event s_transactions_current YES
event s_transacti ons_hi story YES
event s_transactions_history_I| ong YES
e e teeeeeeees +

Event-history tables maintained for this configuration:
» events_xxx_history, where xxx iswai t s, st ages, statenents,transacti ons

e events_xxx_history_ | ong, where xxx iswai ts, st ages, st atenents,transacti ons

Naming Instruments or Consumers for Filtering Operations

5.9 Naming Instruments or Consumers for Filtering Operations

Names given for filtering operations can be as specific or general as required. To indicate a single
instrument or consumer, specify its name in full:

UPDATE per f or mance_schema. set up_i nstrunent s

SET ENABLED = ' NO

VWHERE NAME = ' wai t/ synch/ nut ex/ nyi sammr g/ MYRG_|I NFO. : nut ex' ;
UPDATE per f or mance_schenma. set up_consuner s

SET ENABLED = ' NO

WHERE NAME = 'events_waits_current';

To specify a group of instruments or consumers, use a pattern that matches the group members:

UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = ' NO

WHERE NAME LI KE ' wai t/synch/ mut ex/ % ;
UPDATE per f or mance_schena. set up_consuner s
SET ENABLED = ' NO

WHERE NAME LI KE ' %i story% ;

If you use a pattern, it should be chosen so that it matches all the items of interest and no others. For
example, to select all file I/O instruments, it is better to use a pattern that includes the entire instrument
name prefix:

VWHERE NAME LIKE 'wait/io/filel%;

A patternof * % f i | e/ % matches other instruments that have an elementof ' /fi |l e/’ anywhere in
the name. Even less suitable is the pattern* % i | e% because it matches instruments with ' fi | e’
anywhere in the name, such as wai t / synch/ nut ex/ i nnodb/ fi |l e_open_nut ex.

To check which instrument or consumer names a pattern matches, perform a simple test:

SELECT NAME FROM per f or mance_schema. set up_i nst rument s
WHERE NAME LI KE 'pattern';

SELECT NAME FROM per f or mance_schema. set up_consuner s
WHERE NAME LI KE 'pattern';

For information about the types of names that are supported, see Chapter 7, Performance Schema
Instrument Naming Conventions.

5.10 Determining What Is Instrumented

It is always possible to determine what instruments the Performance Schema includes by checking
the set up_i nstrunent s table. For example, to see what file-related events are instrumented for the
| nnoDB storage engine, use this query:

nysql > SELECT NAME, ENABLED, TI MED
FROM per f or mance_schema. set up_i nstrument s
VWHERE NAME LIKE 'wait/io/filelinnodb/% ;

ffoccccocccooooooocococcsocooooooooooocoocSooooooooooooo ffoccoooooo froocoooo +
| NAMVE | ENABLED | TIMED |
ffoccccocccooooooocococcsocooooooooooocoocSooooooooooooo ffoccoooooo froocoooo +
wait/iol/filelinnodb/innodb_tabl espace_open_file	YES	YES	
wait/iol/filelinnodb/innodb_data_file	YES	YES	
wait/io/filelinnodb/innodb	og file	YES	YES
wait/iol/filelinnodb/innodb_tenp_file	YES	YES	
wait/iol/filelinnodb/innodb_arch_file	YES	YES	
wait/iol/filelinnodb/innodb_clone_file	YES	YES	
ffoccccocccooooooocococcsocooooooooooocoocSooooooooooooo ffoccoooooo froocoooo +

An exhaustive description of precisely what is instrumented is not given in this documentation, for
several reasons:

» What is instrumented is the server code. Changes to this code occur often, which also affects the set
of instruments.

33

Determining What Is Instrumented

« Itis not practical to list all the instruments because there are hundreds of them.

» As described earlier, it is possible to find out by querying the set up_i nst r unent s table. This
information is always up to date for your version of MySQL, also includes instrumentation for
instrumented plugins you might have installed that are not part of the core server, and can be used
by automated tools.

34

Chapter 6 Performance Schema Queries

Pre-filtering limits which event information is collected and is independent of any particular user. By
contrast, post-filtering is performed by individual users through the use of queries with appropriate
VWHERE clauses that restrict what event information to select from the events available after pre-filtering
has been applied.

In Section 5.3, “Event Pre-Filtering”, an example showed how to pre-filter for file instruments. If the
event tables contain both file and nonfile information, post-filtering is another way to see information
only for file events. Add a WHERE clause to queries to restrict event selection appropriately:

nysqgl > SELECT THREAD | D, NUMBER OF BYTES
FROM per f or mance_schema. event s_wai t s_hi story
VWHERE EVENT_NAME LIKE 'wait/io/filel%
AND NUMBER _OF BYTES IS NOT NULL;

foooccoosooso e +
| THREAD | D | NUMBER OF BYTES |
foooccoosooso e +
[11 | 66 |
| 11 | 47 |
| 11 | 139 |
I 5 | 24 |
| 5 | 834 |
foooccoosooso e +

Most Performance Schema tables have indexes, which gives the optimizer access to execution plans
other than full table scans. These indexes also improve performance for related objects, such as sys
schema views that use those tables. For more information, see Optimizing Performance Schema
Queries.

35

https://dev.mysql.com/doc/refman/8.0/en/sys-schema.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-optimization.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-optimization.html

36

Chapter 7 Performance Schema Instrument Naming
Conventions

An instrument name consists of a sequence of elements separated by ' /' characters. Example
names:

wait/iol/filelnyisamlog

wai t/iolfilelnysys/charset

wai t /| ock/t abl e/ sql / handl er

wai t/ synch/ cond/ mysys/ COND_al ar m

wai t/ synch/ cond/ sql / BI NLOG : updat e_cond
wai t / synch/ mut ex/ mysys/ Bl TMAP_rut ex

wai t / synch/ mut ex/ sql / LOCK_del et e

wai t/ synch/ rw ock/ sql / Query_cache_query: : | ock
stage/ sql / cl osing tabl es

stage/ sql / Sorting result

st at ement / comf Execut e

st at ement / com Query
statenment/sqgl/create_table

statement/sql /| ock_t abl es

errors

The instrument name space has a tree-like structure. The elements of an instrument name from left to
right provide a progression from more general to more specific. The number of elements a name has
depends on the type of instrument.

The interpretation of a given element in a name depends on the elements to the left of it. For example,
nmyi samappears in both of the following names, but nyi samin the first name is related to file 1/O,
whereas in the second it is related to a synchronization instrument:

wai t/iol/filelnyisamlog
wai t/ synch/ cond/ nyi sami M _SORT_I NFQ: : cond

Instrument names consist of a prefix with a structure defined by the Performance Schema
implementation and a suffix defined by the developer implementing the instrument code. The top-
level element of an instrument prefix indicates the type of instrument. This element also determines
which event timer in the per f or mance_t i mer s table applies to the instrument. For the prefix part of
instrument names, the top level indicates the type of instrument.

The suffix part of instrument names comes from the code for the instruments themselves. Suffixes may
include levels such as these:

» A name for the major element (a server module such as nyi sam i nnodb, nysys, orsql) ora
plugin name.

» The name of a variable in the code, in the form XXX (a global variable) or CCC: : MVM(a member MVM
in class CCC). Examples: COND t hread_cache, THR LOCK nyi sam Bl NLOG: : LOCK i ndex.

* Top-Level Instrument Elements
* Idle Instrument Elements
 Error Instrument Elements

* Memory Instrument Elements

» Stage Instrument Elements

» Statement Instrument Elements
» Thread Instrument Elements

* Wait Instrument Elements

37

Top-Level Instrument Elements

Top-Level Instrument Elements

i dl e: Aninstrumented idle event. This instrument has no further elements.

» error: Aninstrumented error event. This instrument has no further elements.

e nmenory: An instrumented memory event.

» st age: An instrumented stage event.

» st at enent : An instrumented statement event.

e transacti on: An instrumented transaction event. This instrument has no further elements.

e wai t : An instrumented wait event.

Idle Instrument Elements

The i dl e instrument is used for idle events, which The Performance Schema generates as discussed
in the description of the socket _i nst ances. STATE column in Section 10.3.5, “The socket_instances
Table”.

Error Instrument Elements

The er r or instrument indicates whether to collect information for server errors and warnings. This
instrument is enabled by default. The TI MED column for the er r or row in the set up_i nst rument s
table is inapplicable because timing information is not collected.

Memory Instrument Elements

Memory instrumentation is enabled by default. Memory instrumentation can be enabled or

disabled at startup, or dynamically at runtime by updating the ENABLED column of the relevant
instruments in the set up_i nst runent s table. Memory instruments have names of the form

nmenory/ code_areal i nstrunent _nane where code_ar ea is a value such as sql or nyi sam and
i nstrument _nane is the instrument detail.

Instruments named with the prefix menor y/ per f or mance_schena/ expose how much memory is
allocated for internal buffers in the Performance Schema. The nenor y/ per f or mance_schena/
instruments are built in, always enabled, and cannot be disabled at startup or runtime. Built-in memory
instruments are displayed only in the nenory_summary_gl obal _by_event _nane table. For more
information, see The Performance Schema Memory-Allocation Model.

Stage Instrument Elements

Stage instruments have names of the form st age/ code_ar ea/ st age_nane, where code_ar ea is
a value such as sql or nyi sam and st age_nane indicates the stage of statement processing, such
as Sorting result or Sendi ng dat a. Stages correspond to the thread states displayed by SHOW
PROCESSLI ST or that are visible in the Information Schema PROCESSLI ST table.

Statement Instrument Elements

e statenent/abstract/*: An abstract instrument for statement operations. Abstract instruments
are used during the early stages of statement classification before the exact statement type is
known, then changed to a more specific statement instrument when the type is known. For a
description of this process, see Section 10.6, “Performance Schema Statement Event Tables”.

e st at enent/ com An instrumented command operation. These have names corresponding to
COM xxx operations (see the nysql _com h header file and sql / sql _par se. cc. For example,

38

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-memory-model.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-processlist-table.html

Thread Instrument Elements

the st at enent / coni Connect and st at enent/ com | ni t DB instruments correspond to the
COM _CONNECT and COM | NI T_DB commands.

» statenent/schedul er/ event : A single instrument to track all events executed by the Event
Scheduler. This instrument comes into play when a scheduled event begins executing.

» st at enent/ sp: An instrumented internal instruction executed by a stored program. For example,
the st at ement / sp/ cf et ch and st at ement / sp/ f r et ur n instruments are used cursor fetch and
function return instructions.

e statenent/sql : Aninstrumented SQL statement operation. For example, the st at enent / sql /
create_db andstatenent/sql/sel ect instruments are used for CREATE DATABASE and
SELECT statements.

Thread Instrument Elements

Instrumented threads are displayed in the set up_t hr eads table, which exposes thread class names
and attributes.

Thread instruments begin with t hr ead (for example, t hr ead/ sql / par ser _servi ce ort hr ead/
per f or mance_schena/ set up).

The names of thread instruments for ndbcl ust er plugin threads begin with t hr ead/ ndbcl ust er/;
for more information about these, see ndbcluster Plugin Threads.

Wait Instrument Elements
s wait/io
An instrumented 1/O operation.
s wait/io/lfile

An instrumented file I/O operation. For files, the wait is the time waiting for the file operation to
complete (for example, a callto f wri t e()). Due to caching, the physical file I/O on the disk might
not happen within this call.

e wait/iol socket

An instrumented socket operation. Socket instruments have names of the form wai t /i o/
socket/sql / socket _type. The server has a listening socket for each network protocol that

it supports. The instruments associated with listening sockets for TCP/IP or Unix socket file
connections have a socket type value of server tcpi p_socket orserver _uni x_socket,
respectively. When a listening socket detects a connection, the server transfers the connection to
a new socket managed by a separate thread. The instrument for the new connection thread has a
socket type value of cl i ent _connecti on.

e vait/io/table

An instrumented table I/O operation. These include row-level accesses to persistent base tables
or temporary tables. Operations that affect rows are fetch, insert, update, and delete. For a view,
waits are associated with base tables referenced by the view.

Unlike most waits, a table I/O wait can include other waits. For example, table 1/0 might include file
I/0O or memory operations. Thus, events_wai ts_current for a table I/O wait usually has two
rows. For more information, see Performance Schema Atom and Molecule Events.

Some row operations might cause multiple table I/O waits. For example, an insert might activate a
trigger that causes an update.

e wait/l ock

39

https://dev.mysql.com/doc/refman/8.0/en/create-database.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-ps-tables.html#mysql-cluster-plugin-threads
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-atom-molecule-events.html

Wait Instrument Elements

An instrumented lock operation.
 wait/lock/table

An instrumented table lock operation.
e« wai t/ | ock/ nmet adat a/ sql / ndl

An instrumented metadata lock operation.
wai t/ synch

An instrumented synchronization object. For synchronization objects, the TI MER_WAI T time includes
the amount of time blocked while attempting to acquire a lock on the object, if any.

e wai t/synch/ cond

A condition is used by one thread to signal to other threads that something they were waiting for

has happened. If a single thread was waiting for a condition, it can wake up and proceed with its

execution. If several threads were waiting, they can all wake up and compete for the resource for
which they were waiting.

e wai t/ synch/ mut ex

A mutual exclusion object used to permit access to a resource (such as a section of executable
code) while preventing other threads from accessing the resource.

e wai t/synch/ prl ock
A priority rwlock lock object.
e wai t/synch/rw ock

A plain read/write lock object used to lock a specific variable for access while preventing its use
by other threads. A shared read lock can be acquired simultaneously by multiple threads. An
exclusive write lock can be acquired by only one thread at a time.

e wai t/synch/ sxl ock

A shared-exclusive (SX) lock is a type of rwlock lock object that provides write access to a
common resource while permitting inconsistent reads by other threads. sx| ocks optimize
concurrency and improve scalability for read-write workloads.

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_rw_lock
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_rw_lock
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_rw_lock

Chapter 8 Performance Schema Status Monitoring

There are several status variables associated with the Performance Schema:

nysql > SHOW STATUS LI KE ' perf %:;

Per f or mance_schenma_account s_| ost

Per f or mance_schenma_cond_cl asses_| ost

Per f or mance_schenma_cond_i nst ances_| ost
Per f or mance_schena_di gest _| ost

Per f ormance_schema_fil e_cl asses_|I ost

Per f ormance_schenma_fil e_handl es_|I ost

Per f ormance_schenma_fil e_i nstances_| ost
Per f or mance_schenma_host s_| ost

Per f or mance_schena_| ocker _| ost

Per f or mance_schema_nenory_cl asses_| ost
Per f or mance_schenma_net adat a_| ock_| ost
Per f or mance_schenma_nut ex_cl asses_| ost
Per f or mance_schema_nut ex_i nst ances_| ost
Per f or mance_schenma_nest ed_st at enent _| ost
Per f or mance_schema_pr ogr am | ost

Per f or mance_schema_rw ock_cl asses_| ost
Per f or mance_schema_rw ock_i nst ances_| ost
Per f or mance_schena_sessi on_connect _attrs_| ost
Per f or mance_schenma_socket _cl asses_| ost
Per f or mance_schenma_socket _i nst ances_| ost
Per f or mance_schena_st age_cl asses_| ost
Per f or mance_schena_st at enent _cl asses_| ost
Per f or mance_schena_t abl e_handl es_| ost
Per f or mance_schena_t abl e_i nst ances_|I ost
Per f or mance_schenma_t hread_cl asses_| ost
Per f or mance_schena_t hread_i nst ances_| ost
Per f or mance_schenma_user s_| ost

The Performance Schema status variables provide information about instrumentation that could not be
loaded or created due to memory constraints. Names for these variables have several forms:

» Performance_schenma_xxx_cl asses_| ost indicates how many instruments of type xxx could
not be loaded.

» Performance_schema_xxx_i nstances_| ost indicates how many instances of object type xxx
could not be created.

e Performance_schenma_xxx_handl es_| ost indicates how many instances of object type xxx
could not be opened.

e Performance_schema_| ocker | ost indicates how many events are “lost” or not recorded.

For example, if a mutex is instrumented in the server source but the server cannot allocate memory

for the instrumentation at runtime, it increments Per f or mance_schena_nut ex_cl asses_| ost .
The mutex still functions as a synchronization object (that is, the server continues to function normally),
but performance data for it is not collected. If the instrument can be allocated, it can be used for
initializing instrumented mutex instances. For a singleton mutex such as a global mutex, there is only
one instance. Other mutexes have an instance per connection, or per page in various caches and data
buffers, so the number of instances varies over time. Increasing the maximum number of connections
or the maximum size of some buffers increases the maximum number of instances that might be
allocated at once. If the server cannot create a given instrumented mutex instance, it increments

Per f or mance_schenma_nut ex_i nstances_| ost.

Suppose that the following conditions hold:

e The server was started with the - - per f or mance_schema_nmax_nut ex_cl asses=200 option and
thus has room for 200 mutex instruments.

41

» 150 mutex instruments have been loaded already.
* The plugin named pl ugi n_a contains 40 mutex instruments.
» The plugin named pl ugi n_b contains 20 mutex instruments.

The server allocates mutex instruments for the plugins depending on how many they need and how
many are available, as illustrated by the following sequence of statements:

I NSTALL PLUG N pl ugin_a

The server now has 150+40 = 190 mutex instruments.

UNI NSTALL PLUG N pl ugi n_a;

The server still has 190 instruments. All the historical data generated by the plugin code is still
available, but new events for the instruments are not collected.

I NSTALL PLUG N pl ugi n_a;

The server detects that the 40 instruments are already defined, so no new instruments are created, and
previously assigned internal memory buffers are reused. The server still has 190 instruments.

I NSTALL PLUG N pl ugi n_b;

The server has room for 200-190 = 10 instruments (in this case, mutex classes), and sees that the
plugin contains 20 new instruments. 10 instruments are loaded, and 10 are discarded or “lost.” The

Per f ormance_schena_nut ex_cl asses_| ost indicates the number of instruments (mutex classes)
lost:

nmysql > SHOW STATUS LI KE " perf %t ex_cl asses_| ost";

Fo e e e e eemeeeeeemaeaaaaaa Hommem - +
| Vari abl e_nane | Val ue |
Fo e e e e eemeeeeeemaeaaaaaa Hommem - +
| Perfornmance_schena_nut ex_cl asses_l ost | 10 |
Fo e e e e eemeeeeeemaeaaaaaa Hommem - +

1 rowin set (0.10 sec)

The instrumentation still works and collects (partial) data for pl ugi n_b.
When the server cannot create a mutex instrument, these results occur:

» No row for the instrument is inserted into the set up_i nst runent s table.
e Performance_schema_nut ex cl asses_| ost increases by 1.

» Performance_schenma_mnut ex instances_| ost does not change. (When the mutex instrument
is not created, it cannot be used to create instrumented mutex instances later.)

The pattern just described applies to all types of instruments, not just mutexes.
A value of Per f or mance_schema_nut ex_cl asses_| ost greater than 0 can happen in two cases:

» To save a few bytes of memory, you start the server with - -
performance_schema_nax_nut ex_cl asses=N, where Nis less than the default value. The
default value is chosen to be sufficient to load all the plugins provided in the MySQL distribution, but
this can be reduced if some plugins are never loaded. For example, you might choose not to load
some of the storage engines in the distribution.

» You load a third-party plugin that is instrumented for the Performance Schema but do not allow for
the plugin's instrumentation memory requirements when you start the server. Because it comes from
a third party, the instrument memory consumption of this engine is not accounted for in the default
value chosen for per f or nance_schena_nax_nut ex_cl asses.

42

If the server has insufficient resources for the plugin's instruments and you do not explicitly allocate
more using - - per f ormance_schenma_max_nut ex_cl asses=N, loading the plugin leads to
starvation of instruments.

If the value chosen for per f or mance_schema_nmax_nut ex_cl asses is too small,

no error is reported in the error log and there is no failure at runtime. However, the

content of the tables in the per f or rance_schena database misses events. The

Per f ormance_schena_nut ex cl asses_| ost status variable is the only visible sign to indicate that
some events were dropped internally due to failure to create instruments.

If an instrument is not lost, it is known to the Performance Schema, and is used when instrumenting
instances. For example, wai t / synch/ mut ex/ sql / LOCK _del et e is the name of a mutex instrument
in the set up_i nstrunent s table. This single instrument is used when creating a mutex in the

code (in THD: : LOCK _del et e) however many instances of the mutex are needed as the server

runs. In this case, LOCK del et e is a mutex that is per connection (THD), so if a server has 1000
connections, there are 1000 threads, and 1000 instrumented LOCK_del et e mutex instances

(THD: : LOCK_del et e).

If the server does not have room for all these 1000 instrumented mutexes (instances), some mutexes
are created with instrumentation, and some are created without instrumentation. If the server can
create only 800 instances, 200 instances are lost. The server continues to run, but increments

Per f ormance_schena_nut ex_i nstances_| ost by 200 to indicate that instances could not be
created.

A value of Per f or mance_schema_nut ex_i nst ances_| ost greater than 0 can
happen when the code initializes more mutexes at runtime than were allocated for - -
per formance_schema_max_nut ex_i nst ances=N.

The bottom line is that if SHOW STATUS LI KE ' perf % says that nothing was lost (all values are
zero), the Performance Schema data is accurate and can be relied upon. If something was lost, the
data is incomplete, and the Performance Schema could not record everything given the insufficient
amount of memory it was given to use. In this case, the specific Per f or mance_schenma_xxx_| ost
variable indicates the problem area.

It might be appropriate in some cases to cause deliberate instrument starvation. For example, if you
do not care about performance data for file 1/0, you can start the server with all Performance Schema
parameters related to file I/O set to 0. No memory is allocated for file-related classes, instances, or
handles, and all file events are lost.

Use SHOW ENG NE PERFORVANCE_SCHENMA STATUS to inspect the internal operation of the
Performance Schema code:

nmysqgl > SHOW ENG NE PERFORMANCE _SCHEMA STATUS\ G

LEEREEEEEEEEE SRR L] FOW FXX*Fhk Rk khhhk kX khhkkkx*k*

Type: performance_schema
Name: events_waits_history.size

Status: 76

khkkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkhkhkkhkkhkkkx*x 4 I’OW khkkkkhkkkhkkkhkkhkhkkhkhkkhkhkhhkhkkhkhkkhhkkhkkkx*x
Type: performance_schema
Name: events_waits_hi story. count

Status: 10000

khkkkkhkkkhkkkhkkhkhkkhkhkkhkhkhhkhkhkhkkhkkhkkkx*x 5 I’OW khkkkkhkkkhkkkhkkhkhkkhkhkkhkhkhhkhkkhkkhkkhkkkx*x
Type: performance_schema
Name: events_waits_hi story. nenory

Status: 760000

AXKKKKKKKRK KK KKK KKK AKX XK * k% §7 FOW FXX*Fhk Rk khhkkkxkhhkkkxxkk

Type: performance_schema
Name: perfornmance_schema. nenory
Status: 26459600

43

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-engine.html

This statement is intended to help the DBA understand the effects that different Performance Schema
options have on memory requirements. For a description of the field meanings, see SHOW ENGINE
Statement.

44

https://dev.mysql.com/doc/refman/8.0/en/show-engine.html
https://dev.mysql.com/doc/refman/8.0/en/show-engine.html

Chapter 9 Performance Schema General Table Characteristics

The name of the per f or mance_schena database is lowercase, as are the names of tables within it.
Queries should specify the names in lowercase.

Many tables in the per f or mance_schena database are read only and cannot be modified:

nmysqgl > TRUNCATE TABLE perfor mance_schena. set up_i nstrunent s;
ERROR 1683 (HY000): Invalid perfornmance_schena usage.

Some of the setup tables have columns that can be modified to affect Performance Schema operation;
some also permit rows to be inserted or deleted. Truncation is permitted to clear collected events, so
TRUNCATE TABLE can be used on tables containing those kinds of information, such as tables named
with a prefix of event s _waits .

Summary tables can be truncated with TRUNCATE TABLE. Generally, the effect is to reset the
summary columns to 0 or NULL, not to remove rows. This enables you to clear collected values and
restart aggregation. That might be useful, for example, after you have made a runtime configuration
change. Exceptions to this truncation behavior are noted in individual summary table sections.

Privileges are as for other databases and tables:

* To retrieve from per f or mance_schema tables, you must have the SELECT privilege.
» To change those columns that can be modified, you must have the UPDATE privilege.
« To truncate tables that can be truncated, you must have the DROP privilege.

Because only a limited set of privileges apply to Performance Schema tables, attempts to use GRANT
ALL as shorthand for granting privileges at the database or table level fail with an error:

nmysqgl > GRANT ALL ON performance_schenma. *

TO "ul' @I ocal host ' ;
ERROR 1044 (42000): Access denied for user 'root' @l ocal host'
to dat abase ' perfornmance_schema'
mysqgl > GRANT ALL ON performance_schema. set up_i nstrunents

TO '"u2' @I ocal host "' ;
ERROR 1044 (42000): Access denied for user 'root' @l ocal host'
to dat abase ' perfornmance_schema'

Instead, grant exactly the desired privileges:

nmysql > GRANT SELECT ON perfornmance_schema. *
TO 'ul' @I ocal host "' ;

Query OK, 0 rows affected (0.03 sec)

nmysql > GRANT SELECT, UPDATE ON performance_schena. set up_i nstrunents
TO 'u2' @I ocal host "' ;

Query OK, 0 rows affected (0.02 sec)

45

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_select
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_update
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_drop

46

Chapter 10 Performance Schema Table Descriptions

Table of Contents

10.1 Performance Schema Table REfErenCecooouuiiiiiiiiiii e 49
10.2 Performance Schema Setup Tablescc.iiiiiiiii e e 54
10.2.1 The setup_actors Tableccoouiiiiii e e e eaes 54
10.2.2 The setup_CoNSUMEIS Tablecc.uiiiiiiii e e e e e e e 55
10.2.3 The setup_inStruments Tablecooiiiiiii e 56
10.2.4 The setup_ObJECES TaBIEivue e e e e 59
10.2.5 The setup_threads Tableiiiiiiii e e e e eans 61
10.3 Performance Schema INStanCe TabIEScouuiiiiiiii e 62
10.3.1 The cond_iNStances Tablecccuviiiiiiii e 63
10.3.2 The file_INStances Tablecc..iiiiiiii e e e 63
10.3.3 The mutex_INStances Tableoviiiiiii e e e 64
10.3.4 The rwlock_instances Tablec..iiiiiiiiii e 65
10.3.5 The socket INStaNCeS TabIEcvvuiiiiiii e 66
10.4 Performance Schema Wait Event Tablesoiiiiiiiiii e 68
10.4.1 The events_waits_Current TabIeco.iiiiiiiii i e e e 69
10.4.2 The events_waits_hisStory Tablecc.oiviiiiiiii e 72
10.4.3 The events_waits_history 10ng Tableccoiiiiiiiii e 72
10.5 Performance Schema Stage EVENnt TabIESccuuiiiiiiiiii e 73
10.5.1 The events_stages _current Tablec..oiviiiiiiii e 76
10.5.2 The events_stages _history Tablecoiiiiiiiii e 77
10.5.3 The events_stages_history 1ong Tableccooviiiiiiii e 78
10.6 Performance Schema Statement Event Tablescoooviiiiiiiiiiniii e 78
10.6.1 The events_statements_current Tableccouiiiiiiiiiii e 82
10.6.2 The events_statements_history Tableccooviiiiiiiii e, 86
10.6.3 The events_statements_history _long Tablec..oovvviiiiiiiiin e 86
10.6.4 The prepared_statements_instances Tablecocovviiiiiiii i 87
10.7 Performance Schema Transaction Tablescoviiiiiiiiiiiiiii e 89
10.7.1 The events_transactions_current Tableccooviiiii i 93
10.7.2 The events_transactions_history Tableccooviiiiiii i 96
10.7.3 The events_transactions_history long Tableccoooviiiiiiiii i, 96
10.8 Performance Schema Connection TabIESviiiiiiiiiiiii e 96
10.8.1 The @CCOUNS TaADIE ...t e et e e e eeaa e eees 98
10.8.2 The hOSES TADIE . ..ooviiiiiii e et e et e e e et eees 99
10.8.3 The USEIS TaDIE .uuuiiiiiiiie e et e et e eeeaens 100
10.9 Performance Schema Connection Attribute Tablescovviiiiiiiiiiii e, 100
10.9.1 The session_account_connect_attrs Tablec..covveiiiiiiii i 103
10.9.2 The session_connect_attrs Tablec.viiiiiiii e 104
10.10 Performance Schema User-Defined Variable Tablescccooviiiiiiiiiiiii e, 105
10.11 Performance Schema Replication Tablesc..oiviiiiiiiiiiiii e 105
10.11.1 The replication_connection_configuration Tablecccovviiiiiiiii i, 108
10.11.2 The replication_connection_status Tablecccccoiiiiii i 112
10.11.3 The replication_asynchronous_connection_failover Tablecccooeviviiiiiiiinnennnnn. 114
10.11.4 The replication_asynchronous_connection_failover_managed Table 115
10.11.5 The replication_applier_configuration Tablecccoiiiiiiiiii e 116
10.11.6 The replication_applier_status Tablec.ccooviiiiiiiiii e 117
10.11.7 The replication_applier_status_by coordinator Tableccooveviiiviiiiiiiiiiceeeis 118
10.11.8 The replication_applier_status by worker Tableccoovviiiiiiiiiiiiii e 119
10.11.9 The replication_applier_global_filters Tablecooooiiiiiiii e, 122
10.11.10 The replication_applier_filters Tablecc.oviviiiiiiiii e 122
10.11.11 The replication_group_members Tableccooeeiiiiiii i 123
10.11.12 The replication_group_member_stats Tablecccoviiiiiiii e 124
10.11.13 The replication_group_member_actions Tablec.ccoiviiiiiiiii i, 125

47

10.11.14 The replication_group_configuration_version Tableccoooviiiiiiiiiiieeeeenn, 126

10.11.15 The replication_group_communication_information Tableccoooeviiiinennnnn. 126
10.11.16 The binary_log_transaction_compression_stats Tablecccoocviiiiiiiinenenn.. 127
10.12 Performance Schema NDB Cluster Tablesooviiiiiiiiiiiii e 128
10.12.1 The ndb_sync_pending_objects Tableccoooiiiiiiiiiiii e, 129
10.12.2 The ndb_sync_excluded_objects Tableccooviiiiiiiiii e 129
10.13 Performance Schema LOCK TabIEScooiiiiiiiiiii e 131
10.13.1 The data _1oCks Tableccoiiiiii e 131
10.13.2 The data_10Ck_WaitS Tablecovviiiiie e e 134
10.13.3 The metadata_[0CKS Tablecovuniiii e e e e 137
10.13.4 The table_handles Tablec.cooiiiiiii e 139
10.14 Performance Schema System Variable TabIesccccoiiiiiiiiiiii e 140
10.14.1 Performance Schema persisted_variables Tablec.coooiiiiiiiiii i 141
10.14.2 Performance Schema variables_info Tablecc.ccooiiiiiii i 142
10.15 Performance Schema Status Variable Tables ..., 145
10.16 Performance Schema Thread Pool TabIesoiviiiiiiiiiiii e 146
10.16.1 The tp_thread_group_state Tablecc.oiiiiiiiiiii e 147
10.16.2 The tp_thread_group_stats Tablecccoeiiiiiiii e 148
10.16.3 The tp_thread_state Tablecoiiiiiiiii e 150
10.17 Performance Schema Firewall Tablesoooiiiiiiiiiiiii e 151
10.17.1 The firewall_groups Tableccooiiiiiiii e e 152
10.17.2 The firewall_group_allowlist Tablecoiiiiiiiiiii e 152
10.17.3 The firewall_membership Table ..o, 153
10.18 Performance Schema Keyring Tablesc.oviiiiiiiii e 153
10.18.1 The keyring_component_status Tableccooviiiiiiiiiiii e 153
10.18.2 The keyring_KeYs tableccouiiiiiiiiiiic e e 154
10.19 Performance Schema Clone TabIesoiiiiiiiiiiiii e 154
10.19.1 The clone_Status Tablecoouiiiiiii e e 154
10.19.2 The clone_progress TabIeccouniiiiiiiii e e 156
10.20 Performance Schema Summary Tablesoiiiiiiiiiiii e 157
10.20.1 Wait Event SUMmMary TabIESc..oiiiiiiiii e 159
10.20.2 Stage Summary TabIlescccouiiiiiiii e 161
10.20.3 Statement SUMMArY TabIEScoovniiii e e e 162
10.20.4 Statement Histogram Summary Tablescocoii i 167
10.20.5 Transaction SUMMArY TabIEScouiiiiiiiii e 169
10.20.6 Object Wait SUMMaAry Tableccouiiiiiiii e 171
10.20.7 File 1/O SUMMArY TabIEScouuiiii e e 171
10.20.8 Table 1/0O and Lock Wait Summary Tablescccccoiviiiiiiii e, 173
10.20.9 Socket SUMMAIY TaAbBIESciveiii e e e e e e e e 176
10.20.10 Memory SUMMArY TabIEScoouiiiiiici e e e e e 177
10.20.11 Error SUMMArY TabIEScieiiiiiiic e e e e eaas 181
10.20.12 Status Variable Summary TabIESc..oiiiiiiiiiii e 183
10.21 Performance Schema Miscellaneous Tablesccooviiiiiiiiiiiiiii e 184
10.21.1 The component_scheduler_tasks Tableccccieiiiiiiiiii i, 185
10.21.2 The €rror_10g Tablecouiiiii e e e ea e 185
10.21.3 The host_Cache Tableccooiniii e 188
10.21.4 The innodb_redo_log files Tablec..iiiiiiii e 191
10.21.5 The 10g_Status Tablecoouiiiiiii e e aa s 192
10.21.6 The performance _timers Tablec.oiiiiiiii i 193
10.21.7 The processlist TabBIEcciuuiiiiii e e 194
10.21.8 The threads TabIecooeuuiiiiii e e e 196
10.21.9 The tls_channel_status Tableccoiiiiiiiiiii e 201
10.21.10 The user_defined_functions Tablecccoiiiiiiiiii e, 203

Tables in the per f or mance_schena database can be grouped as follows:

» Setup tables. These tables are used to configure and display monitoring characteristics.

48

Performance Schema Table Reference

e Current events tables. The events_wai t s_current table contains the most recent event for
each thread. Other similar tables contain current events at different levels of the event hierarchy:
event s_stages_current for stage events, event s_st at enments_curr ent for statement
events, and event s_transacti ons_current for transaction events.

* History tables. These tables have the same structure as the current events tables, but contain more
rows. For example, for wait events, event s_wai t s_hi st or y table contains the most recent 10
events per thread. events_wai ts_hi st ory_| ong contains the most recent 10,000 events. Other
similar tables exist for stage, statement, and transaction histories.

To change the sizes of the history tables, set the appropriate system variables
at server startup. For example, to set the sizes of the wait event history
tables, set per f or mance_schenma_events _waits_hi story_ size and
performance_schenma_events waits_history | ong_size.

* Summary tables. These tables contain information aggregated over groups of events, including those
that have been discarded from the history tables.

« Instance tables. These tables document what types of objects are instrumented. An instrumented
object, when used by the server, produces an event. These tables provide event names and
explanatory notes or status information.

» Miscellaneous tables. These do not fall into any of the other table groups.

10.1 Performance Schema Table Reference

The following table summarizes all available Performance Schema tables. For greater detail, see the
individual table descriptions.

Table 10.1 Performance Schema Tables

Table Name Description Introduced
accounts Connection statistics per client
account
bi nary_| og_transacti on_coBinaydogtrasisaction 8.0.20
compression
cl one_progress Clone operation progress 8.0.17
cl one_status Clone operation status 8.0.17
conmponent _schedul er _t asks|Status of scheduled tasks 8.0.34
cond_i nst ances Synchronization object instances
data_ | ock_waits Data lock wait relationships
dat a_| ocks Data locks held and requested
error_|l og Server error log recent entries 8.0.22

events_errors_sumary_by @drcarsigerlagceumtaand error
code

events_errors_sunmary_ by |Eredrsiperdiosband error code

events_errors_sumary_ by tHrraagenyhreadand error code

events_errors_sumuary_ by |[Eesrsipereisepand error code

events_errors_sumary_gl ofirors\petiermr code

events_stages_current Current stage events
events_stages_history Most recent stage events per
thread

events_stages_hi story_| ondMost recent stage events overall

49

Performance Schema Table Reference

Table Name

Description

Introduced

events_stages_sumary_by |

Btage evehts mereacconanand
event name

events_stages_sumary_by |

I8tage leyeptsqper hostaame and
event name

events_stages_sumary_by |

tStagedvdits perdmteadaara event
name

events_stages_sunmary_by |

(Btage leyeptsqper usemaame and
event name

events_stages_sumary_gl o

[Bthgb waitsquer eventname

events_statenents_current

Current statement events

events_statenents_hi stogr

Statemehtdestograms per
schema and digest value

event s_st at enent s_hi st ogr

Statgnodratl histogram
summarized globally

events_statenents_history

Most recent statement events
per thread

events_statenents_history

| Mostgecent statement events
overall

events_statenents_summuary

| Sigtemcertievients/pevactountne
and event name

events_statenents_sumary

| Siatemner@sdvents per schema
and digest value

events_statenents_sunmmary

| Stgtemoerit dwents/pert hostmame
and event name

events_statenents_summary

| Siatemnergrevents per stored
program

events_statenents_summuary

| Sigtenherdavebys percthreathard
event name

events_statenents_sumuary

| Sigtemsent dvenes/pert useamame
and event name

events_statenents_sunmmary

| Siatemaentleveatseper exent
name

events_transactions_curre

rG@urrent transaction events

events_transactions_histo

Myost recent transaction events
per thread

events_transactions_histo

Mostargent transaction events
overall

events_transacti ons_sunmma

and event name

Irabsacioneventdperacsdunhane

event s_transacti ons_sunmafTyrabsadiiontevantepenhostane

name and event name

event s_transacti ons_sunmafTrabgadtioneanits penthineadhant

and event name

event s_transacti ons_sunmafTrabyadioarevantepentserane

name and event name

events_transacti ons_sunma[Transadion évents/ pert everte

name

50

Performance Schema Table Reference

Table Name Description Introduced
events_waits_current Current wait events
events waits_history Most recent wait events per
thread
events_waits_history | ong/Mostrecent wait events overall
events_waits_summary_by adWailevebts gareacconanand
event name
events_wai ts_summary_ by hd¥ait eyeptsger hostraame and
event name
events waits _summary_ by | \Waievents per instance
events waits _sunmmary_ by tWakheventseperrihreaanand event
name
events_waits_summary_ by ud¥aitleyeetseuer usempame and
event name
events_waits_sunmmary_gl ob@Naibeventsrperrevent name
file_instances File instances
file_ summary by event nang-ile events per event name
file_summary by instance |File events per file instance
firewal | _group_allowist [Firewall in-memory data for 8.0.23
group profile allowlists
firewal | _groups Firewall in-memory data for 8.0.23
group profiles
firewal | _nmenbership Firewall in-memory data for 8.0.23
group profile members
gl obal _status Global status variables
gl obal _vari abl es Global system variables
host cache Information from internal host
cache
host s Connection statistics per client
host name
keyring_conponent _stat us |Status information for installed 8.0.24
keyring component
keyring_keys Metadata for keyring keys 8.0.16

| og_status

Information about server logs for
backup purposes

menory_summary_by_account

| \dgmemeopenatiors per account
and event name

menory_sumary_by host by

| Memoty operations per host and
event name

menory_sunmary_by thread |

Memognoperatiens per thread
and event name

menory_sumary_by user by

| Memoty openations per user and
event name

menory_sumary_gl obal by @dtemoryneperations globally per

event name

nmet adat a_| ocks

Metadata locks and lock
requests

51

Performance Schema Table Reference

Table Name Description Introduced
mut ex_i nst ances Mutex synchronization object

instances
ndb_sync_excl uded_obj ect s|NDB objects which cannot be 8.0.21

synchronized
ndb_sync_pendi ng_obj ect s |NDB objects waiting for 8.0.21

synchronization
obj ect s_sunmary_gl obal _by Q@hjpet summaries
performance_tiners Which event timers are available
persi sted vari abl es Contents of mysqgld-auto.cnf file
prepar ed_st at ement s_i nst aRrepared statement instances

and statistics
processli st Process list information 8.0.22
replication_applier_confi|Cordigucation parameters for

replication applier on replica
replication_applier_filteGhannel-specific replication

filters on current replica
replication_applier_gl obalGlbbéakrepfication filters on

current replica
replication_applier_statugurrent status of replication

applier on replica
replication_applier_statusSQ®ly occoortlimetopthread

applier status
replication_applier_stat udVoskentiniead applier status
replication_asynchronous_(Soureelistsrfof asyrnoheonous 8.0.22

connection failover mechanism
replication_asynchronous_damegdd sourteilistsvier _nmanag¢8.0.23

asynchronous connection

failover mechanism
replication_connecti on_corGonfigusatiaimparameters for

connecting to source
replication_connection_st@ursent status of connection to

source
replication_group_communi (Replicatiomgoouppcordiguration 8.0.27

options

replication_group_nenber

Reglication group member
statistics

replication_group_nenbers

Replication group member
network and status

rw ock_i nst ances

Lock synchronization object
instances

sessi on_account _connect _a

tCormection attributes per for
current session

sessi on_connect _attrs

Connection attributes for all
sessions

sessi on_stat us

Status variables for current
session

52

Performance Schema Table Reference

Table Name Description Introduced
sessi on_vari abl es System variables for current
session
setup_actors How to initialize monitoring for
new foreground threads
set up_consumners Consumers for which event
information can be stored
setup_i nstrunents Classes of instrumented objects
for which events can be collected
setup_objects Which objects should be
monitored
setup_t hr eads Instrumented thread names and
attributes
socket i nstances Active connection instances
socket _summary_by event niBaeket waits and I/O per event
name
socket _sunmmary_by i nst ancgsocket waits and 1/0O per
instance
status_by account Session status variables per
account
status_by host Session status variables per host
name
status_by thread Session status variables per
session
status_by_user Session status variables per user
name
t abl e_handl es Table locks and lock requests
table io waits summary_by|TiablekOwmaiteper index
table_io waits_sunmary_by|Tadde #O waits per table
tabl e | ock waits_sunmary_ [fahieldck waits per table
t hr eads Information about server threads
tls_channel status TLS status for each connection [8.0.21
interface
tp_thread_group_state Thread pool thread group states |8.0.14
tp_thread _group_stats Thread pool thread group 8.0.14
statistics
tp_thread _state Thread pool thread information {8.0.14

user _defined_functions

Registered loadable functions

user _vari abl es_by thread

User-defined variables per
thread

users

Connection statistics per client
user name

vari abl es_by thread

Session system variables per
session

vari ables _info

How system variables were most

recently set

53

Performance Schema Setup Tables

10.2 Performance Schema Setup Tables

The setup tables provide information about the current instrumentation and enable the monitoring
configuration to be changed. For this reason, some columns in these tables can be changed if you
have the UPDATE privilege.

The use of tables rather than individual variables for setup information provides a high degree
of flexibility in modifying Performance Schema configuration. For example, you can use a single
statement with standard SQL syntax to make multiple simultaneous configuration changes.

These setup tables are available:

» setup_act ors: How to initialize monitoring for new foreground threads

e setup_consuner s: The destinations to which event information can be sent and stored

» setup_instrunents: The classes of instrumented objects for which events can be collected
» set up_obj ect s: Which objects should be monitored

* setup_t hreads: Instrumented thread names and attributes

10.2.1 The setup_actors Table

The set up_act or s table contains information that determines whether to enable monitoring

and historical event logging for new foreground server threads (threads associated with client
connections). This table has a maximum size of 100 rows by default. To change the table size, modify
the perf ormance_schena_set up_act ors_si ze system variable at server startup.

For each new foreground thread, the Performance Schema matches the user and host for the thread
against the rows of the set up_act or s table. If a row from that table matches, its ENABLED and

HI STORY column values are used to set the | NSTRUVENTED and HI STORY columns, respectively, of
the t hr eads table row for the thread. This enables instrumenting and historical event logging to be
applied selectively per host, user, or account (user and host combination). If there is no match, the

| NSTRUMENTED and HI STORY columns for the thread are set to NO.

For background threads, there is no associated user. | NSTRUVENTED and HI STORY are YES by default
and set up_act or s is not consulted.

The initial contents of the set up_act or s table match any user and host combination, so monitoring
and historical event collection are enabled by default for all foreground threads:

nmysqgl > SELECT * FROM per f or mance_schema. set up_act ors

o o e - o e - o o +
| HOST | USER | ROLE | ENABLED | HI STORY |
o o e - o e - o o +
| % | % | % | YES | YES [
o o e - o e - o o +

For information about how to use the set up_act or s table to affect event monitoring, see Section 5.6,
“Pre-Filtering by Thread”.

Modifications to the set up_act or s table affect only foreground threads created subsequent to the
modification, not existing threads. To affect existing threads, modify the | NSTRUVENTED and HI STORY
columns of t hr eads table rows.

The set up_act or s table has these columns:
« HOST
The host name. This should be a literal name, or ' % to mean “any host.”

* USER

54

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_update

The setup_consumers Table

The user name. This should be a literal name, or ' % to mean “any user.”
« ROLE

Unused.
* ENABLED

Whether to enable instrumentation for foreground threads matched by the row. The value is YES or
NO.

* H STORY

Whether to log historical events for foreground threads matched by the row. The value is YES or NO.
The set up_act or s table has these indexes:
* Primary key on (HOST, USER, ROLE)

TRUNCATE TABLE is permitted for the set up_act or s table. It removes the rows.

10.2.2 The setup_consumers Table

The set up_consuner s table lists the types of consumers for which event information can be stored
and which are enabled:

nysqgl > SELECT * FROM perfor mance_schena. set up_consuners;

I

+
| events_stages_current |
| events_stages_history |
| events_stages_history_| ong |
| events_statenents_current |
| events_statenents_history |
| events_statenents_history_I| ong | NO
I I
| events_transactions_history |
I I
I I
I I
I I
I I
I I
I I

I
I
I
I
I
I
I
YES |
I
I
I
I
I
I
I

events_transactions_current YES
events_transacti ons_hi story_| ong NO
events_waits_current NO
events_wai ts_history NO
events_wai ts_history_| ong NO
gl obal _i nstrument ati on YES
thread_i nstrunentati on YES
st at enment s_di gest YES
Fom e e e e e e emmeeaeaaaaaa [T - +

The consumer settings in the set up_consumer s table form a hierarchy from higher levels to lower.
For detailed information about the effect of enabling different consumers, see Section 5.7, “Pre-Filtering
by Consumer”.

Modifications to the set up_consuner s table affect monitoring immediately.
The set up_consuner s table has these columns:
* NAME
The consumer name.
e ENABLED

Whether the consumer is enabled. The value is YES or NO. This column can be modified. If you
disable a consumer, the server does not spend time adding event information to it.

The set up_consuner s table has these indexes:

* Primary key on (NAVE)

55

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

The setup_instruments Table

TRUNCATE TABLE is not permitted for the set up_consuner s table.

10.2.3 The setup_instruments Table

The set up_i nstrunent s table lists classes of instrumented objects for which events can be
collected:

mysql > SELECT * FROM per f or mance_schenma. set up_i nstrunment s\ G
kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x l r ow kkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkk*x
NAVE: wai t/ synch/ mut ex/ pf s/ LOCK_pfs_share_li st
ENABLED: NO
TI MED: NO
PROPERTI ES: si ngl et on
FLAGS: NULL
VOLATILITY: 1
DOCUMENTATI ON: Conmponent's can provi de their own performance_schena tabl es.
This lock protects the Iist of such tables definitions.

kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkk*x 410 r ow kkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x

NAMVE: st age/ sql / executi ng
ENABLED: NO
TI MED: NO
PROPERTI ES:
FLAGS: NULL
VOLATILITY: O
DOCUMENTATI ON: NULL

kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkk*x 733 r ow kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkk*x

NAMVE: st at enment / abstract/ Query
ENABLED: YES
TI MED: YES
PROPERTI ES: nut abl e
FLAGS: NULL
VOLATILITY: O
DOCUMENTATI ON: SQL query just received fromthe network.
At this point, the real statenment type is unknown, the type
will be refined after SQL parsing.

kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkk*x 737 r ow kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkk*x

NAVE: nenory/ perf or mance_schema/ nut ex_i nst ances
ENABLED: YES
TI MED: NULL
PROPERTI ES: gl obal _statistics
FLAGS:
VOLATILITY: 1
DOCUMENTATI ON: Menory used for tabl e performance_schema. mut ex_i nst ances

kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x 823 r ow kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x

NAVE: nenory/sql / Prepared_statenment::infrastructure
ENABLED: YES
TI MED: NULL
PROPERTI ES: control | ed_by_def aul t
FLAGS: control |l ed
VOLATILITY: O
DOCUMENTATI ON: Map infrastructure for prepared statenents per session.

Each instrument added to the source code provides a row for the set up_i nstrunent s table,
even when the instrumented code is not executed. When an instrument is enabled and executed,
instrumented instances are created, which are visible in the xxx_i nst ances tables, such as
file_instances orrw ock_i nstances.

Modifications to most set up_i nst r unent s rows affect monitoring immediately. For some
instruments, modifications are effective only at server startup; changing them at runtime has no effect.
This affects primarily mutexes, conditions, and rwlocks in the server, although there may be other
instruments for which this is true.

For more information about the role of the set up_i nstr unent s table in event filtering, see
Section 5.3, “Event Pre-Filtering”.

56

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

The setup_instruments Table

The set up_i nstrunent s table has these columns:
« NAME

The instrument name. Instrument names may have multiple parts and form a hierarchy, as discussed
in Chapter 7, Performance Schema Instrument Naming Conventions. Events produced from
execution of an instrument have an EVENT _NANME value that is taken from the instrument NANME value.
(Events do not really have a “name,” but this provides a way to associate events with instruments.)

* ENABLED

Whether the instrument is enabled. The value is YES or NO. A disabled instrument produces no
events. This column can be modified, although setting ENABLED has no effect for instruments that
have already been created.

* TI MED

Whether the instrument is timed. The value is YES, NO, or NULL. This column can be modified,
although setting Tl MED has no effect for instruments that have already been created.

A Tl MED value of NULL indicates that the instrument does not support timing. For example, memory
operations are not timed, so their TI MED column is NULL.

Setting TI MED to NULL for an instrument that supports timing has no effect, as does setting TI MED to
non-NULL for an instrument that does not support timing.

If an enabled instrument is not timed, the instrument code is enabled, but the timer is not. Events
produced by the instrument have NULL for the TI MER_START, TI MER_END, and TI MER_VWAI T
timer values. This in turn causes those values to be ignored when calculating the sum, minimum,
maximum, and average time values in summary tables.

* PROPERTI ES

The instrument properties. This column uses the SET data type, so multiple flags from the following
list can be set per instrument:

e« controll ed_by defaul t: memory is collected by default for this instrument.

e gl obal statistics: The instrument produces only global summaries. Summaries for finer
levels are unavailable, such as per thread, account, user, or host. For example, most memory
instruments produce only global summaries.

e nut abl e: The instrument can “mutate” into a more specific one. This property applies only to
statement instruments.

e progress: The instrument is capable of reporting progress data. This property applies only to
stage instruments.

« singl et on: The instrument has a single instance. For example, most global mutex locks in the
server are singletons, so the corresponding instruments are as well.

e user: The instrument is directly related to user workload (as opposed to system workload). One
such instrumentis wai t /i o/ socket/sql /client_connecti on.

* FLAGS
Whether the instrument's memory is controlled.

This flag is supported for non-global memory instruments, only, and can be set or unset. For
example:

57

https://dev.mysql.com/doc/refman/8.0/en/set.html

The setup_instruments Table

SQ.> UPDATE PERFORMANCE SCHEMA. SETUP_| NTRUMENTS SET FLAGS="control | ed" WHERE NAME=' menory/

Note

Attempting to set FLAGS = contr ol | ed on non-memory instruments, or on
global memory instruments, fails silently.

* VOLATILITY

The instrument volatility. Volatility values range from low to high. The values correspond to the
PSI _VOLATI LI TY_ xxx constants defined in the mysql / psi / psi _base. h header file:

#def i ne PS|I _VOLATI LI TY_UNKNOWN 0
#def i ne PSI _VOLATI LI TY_PERVANENT 1
#def i ne PSI _VOLATI LI TY_PROVI SI ONI NG 2
#def i ne PSI _VOLATI LI TY_DDL 3

#def i ne PSI _VOLATI LI TY_CACHE 4

#def i ne PSI _VOLATI LI TY_SESSI ON 5
#def i ne PSI _VOLATI LI TY_TRANSACTI ON 6
#def i ne PSI _VOLATI LI TY_QUERY 7

#def i ne PSI _VOLATI LI TY_| NTRA_QUERY 8

The VOLATI LI TY column is purely informational, to provide users (and the Performance Schema
code) some hint about the instrument runtime behavior.

Instruments with a low volatility index (PERMANENT = 1) are created once at server startup, and
never destroyed or re-created during normal server operation. They are destroyed only during server
shutdown.

For example, the wai t / synch/ nut ex/ pf s/ LOCK _pfs_share_|i st mutex is defined with a
volatility of 1, which means it is created once. Possible overhead from the instrumentation itself
(namely, mutex initialization) has no effect for this instrument then. Runtime overhead occurs only
when locking or unlocking the mutex.

Instruments with a higher volatility index (for example, SESSION = 5) are created and destroyed for
every user session. For example, the wai t / synch/ nut ex/ sql / THD: : LOCK_query_pl an mutex
is created each time a session connects, and destroyed when the session disconnects.

This mutex is more sensitive to Performance Schema overhead, because overhead comes not only
from the lock and unlock instrumentation, but also from mutex create and destroy instrumentation,
which is executed more often.

Another aspect of volatility concerns whether and when an update to the ENABLED column actually
has some effect:

< An update to ENABLED affects instrumented objects created subsequently, but has no effect on
instruments already created.

* Instruments that are more “volatile” use new settings from the set up_i nst r unent s table sooner.

For example, this statement does not affect the LOCK _quer y_pl an mutex for existing sessions, but
does have an effect on new sessions created subsequent to the update:

UPDATE per f or mance_schena. set up_i nstrunents
SET ENABLED=val ue
WHERE NAME = 'wai t/synch/ nutex/sql / THD: : LOCK_query_pl an';

This statement actually has no effect at all:

UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED=val ue

The setup_objects Table

VWHERE NAME = ' wai t/synch/ mut ex/ pf s/ LOCK_pfs_share_list"’

This mutex is permanent, and was created already before the update is executed. The mutex is
never created again, so the ENABLED value in set up_i nst r unent s is never used. To enable or
disable this mutex, use the nut ex_i nst ances table instead.

» DOCUMENTATI ON
A string describing the instrument purpose. The value is NULL if no description is available.
The set up_i nst runent s table has these indexes:
» Primary key on (NANVE)
TRUNCATE TABLE is not permitted for the set up_i nst runent s table.

As of MySQL 8.0.27, to assist monitoring and troubleshooting, the Performance Schema
instrumentation is used to export names of instrumented threads to the operating system. This enables
utilities that display thread names, such as debuggers and the Unix ps command, to display distinct
nysql d thread names rather than “mysqld”. This feature is supported only on Linux, macOS, and
Windows.

Suppose that nysql d is running on a system that has a version of ps that supports this invocation
syntax:

ps -Cnysqld H-o0 "pid tid cnmd commt

Without export of thread names to the operating system, the command displays output like this, where
most COVMAND values are nysql d:

PID TID CVMD COMVAND
1377 1377 /usr/sbhin/nysqgld nysql d
1377 1528 /usr/shin/nysqgld nysql d
1377 1529 /usr/sbin/nysqgld nysql d
1377 1530 /usr/shin/nysqgld nysql d
1377 1531 /usr/sbhin/nysqld nysql d
1377 1534 /usr/sbhin/nysqgld nysql d
1377 1535 /usr/shin/nysqgld nysql d
1377 1588 /usr/shin/nysqgld xpl _wor ker 1
1377 1589 /usr/sbhin/nysqgld xpl _wor ker 0
1377 1590 /usr/sbhin/nysqgld nysql d
1377 1594 /usr/sbin/nysqgld nysql d
1377 1595 /usr/sbhin/nysqld nysql d

With export of thread names to the operating system, the output looks like this, with threads having a
name similar to their instrument name:

PI D TI D CMD COVIVAND
27668 27668 /usr/sbin/ nmysqld nmysql d
27668 27671 /usr/sbin/ nysqld i b_io_ibuf
27668 27672 /usr/sbin/ nysqld ib_io_log
27668 27673 /usr/sbin/ nysqld ib_io_rd-1
27668 27674 /usr/sbin/ nysqld ib_io_rd-2
27668 27677 /usr/sbin/nysqgld ibio w-1
27668 27678 /usr/sbin/ nysqld ib_io w-2
27668 27699 /usr/sbin/ nysqld xpl _wor ker -2
27668 27700 /usr/sbin/ nysqld xpl _accept-1
27668 27710 /usr/sbin/ nysqld evt _sched
27668 27711 /usr/sbin/ nysqld si g_handl er
27668 27933 /usr/sbin/ nysql d connecti on

Different thread instances within the same class are numbered to provide distinct names where that is
feasible. Due to constraints on name lengths with respect to potentially large numbers of connections,
connections are named simply connect i on.

10.2.4 The setup_objects Table

59

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

The setup_objects Table

The set up_obj ect s table controls whether the Performance Schema monitors particular objects.
This table has a maximum size of 100 rows by default. To change the table size, modify the
performance_schenma_set up_obj ects_si ze system variable at server startup.

The initial set up_obj ect s contents look like this:

nysqgl > SELECT * FROM perfor mance_schena. set up_obj ect s;

L E T fhemccomoo—ccooooooooo L EEE LT L +
| OBJECT TYPE | OBJECT SCHEMA | OBJECT NAME | ENABLED | TIMED |
L E T fhemccomoo—ccooooooooo L EEE LT L +
EVENT	nmysql	%	NO	NO
EVENT	performance_schema	%	NO	NO
EVENT	information_schema	%	NO	NO
EVENT	%	%	YES	YES
FUNCTI ON	nysql	%	NO	NO
FUNCTI ON	performance_schema	%	NO	NO
FUNCTI ON	information_schema	%	NO	NO
FUNCTI ON	%	%	YES	YES
PROCEDURE	nysql	%	NO	NO
PROCEDURE	perfornmance_schema	%	NO	NO
PROCEDURE	information_schema	%	NO	NO
PROCEDURE	%	%	YES	YES
TABLE	nysql	%	NO	NO
TABLE	performance_schema	%	NO	NO
TABLE	information_schema	%	NO	NO
TABLE	%	%	YES	YES
TRI GGER	nysql	%	NO	NO
TRI GGER	performance_schema	%	NO	NO
TRI GGER	information_schema	%	NO	NO
TRIGGER	%	%	YES	YES
L E T fhemccomoo—ccooooooooo L EEE LT L +

Modifications to the set up_obj ect s table affect object monitoring immediately.

For object types listed in set up_obj ect s, the Performance Schema uses the table to how to monitor
them. Object matching is based on the OBJECT SCHEMA and OBJECT _NAME columns. Objects for
which there is no match are not monitored.

The effect of the default object configuration is to instrument all tables except those in

the mysql , | NFORVATI ON_SCHEMA, and per f or nance_schena databases. (Tables in
the | NFORMATI ON_SCHENA database are not instrumented regardless of the contents of
set up_obj ect s; the row for i nf or mat i on_schena. %simply makes this default explicit.)

When the Performance Schema checks for a match in set up_obj ect s, it tries to find more specific
matches first. For example, with a table db1. t 1, it looks for a match for ' db1' and 't 1', then for
"db1' and' % ,thenfor' % and' % . The order in which matching occurs matters because different
matching set up_obj ect s rows can have different ENABLED and TI MED values.

Rows can be inserted into or deleted from set up_obj ect s by users with the | NSERT or DELETE
privilege on the table. For existing rows, only the ENABLED and TI MED columns can be modified, by
users with the UPDATE privilege on the table.

For more information about the role of the set up_obj ect s table in event filtering, see Section 5.3,
“Event Pre-Filtering”.

The set up_obj ect s table has these columns:
e OBJECT_TYPE

The type of object to instrument. The value is one of ' EVENT' (Event Scheduler event),
" FUNCTI ON' (stored function), ' PROCEDURE' (stored procedure), ' TABLE' (base table), or
" TRI GGER' (trigger).

TABLE filtering affects table 1/0O events (wai t /i o/ t abl e/ sql / handl er instrument) and table lock
events (wai t /| ock/ t abl e/ sql / handl er instrument).

60

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_insert
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_delete
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_update

The setup_threads Table

* OBJECT_SCHENA

The schema that contains the object. This should be a literal name, or' % to mean “any schema.”
« OBJECT_NAME

The name of the instrumented object. This should be a literal name, or ' % to mean “any object.”
 ENABLED

Whether events for the object are instrumented. The value is YES or NO. This column can be
modified.

e TI MED

Whether events for the object are timed. This column can be modified.
The set up_obj ect s table has these indexes:
« Index on (OBJECT _TYPE, OBJECT _SCHEMA, OBJECT NAVE)

TRUNCATE TABLE is permitted for the set up_obj ect s table. It removes the rows.

10.2.5 The setup_threads Table

The set up_t hr eads table lists instrumented thread classes. It exposes thread class nhames and
attributes:

nysqgl > SELECT * FROM perf or mance_schena. set up_t hreads\ G
kkkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkhkhkhkhkkhkkx*x 1. I’OW khkkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkhkhkkhhkkhkkx*x
NAME: t hread/ per f or mance_schena/ set up
ENABLED: YES
HI STORY: YES
PROPERTI ES: si ngl et on
VOLATILITY: O
DOCUMENTATI ON: - NULL

LEEREE R EEEEEEEEEE L] FOW FXX*hkdkkkkkhkkkkxkhhkkkxkkk

NAME: t hread/sql/main
ENABLED: YES
HI STORY: YES
PROPERTI ES: si ngl et on
VOLATILITY: O
DOCUMENTATI ON: NULL
kkkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkhkhkhkhkkhkkx*x 5. I’OW khkkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkhkhkkhhkkhkkx*x
NAME: t hread/sql /one_connecti on
ENABLED: YES
HI STORY: YES
PROPERTI ES: user
VOLATILITY: O
DOCUMENTATI ON: - NULL

LEER R EEEEEEEEEEE R Lo} FOW XX *hkdkkkkkhhkkkxkkhkkkxxkk

NAME: t hread/sql /event _schedul er
ENABLED: YES
HI STORY: YES
PROPERTI ES: si ngl et on
VOLATILITY: O
DOCUMENTATI ON: - NULL

The set up_t hr eads table has these columns:
¢ NAME

The instrument name. Thread instruments begin with t hr ead (for example, t hr ead/ sql /
par ser _servi ce ort hread/ performance_schena/ set up).

* ENABLED

61

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

Performance Schema Instance Tables

Whether the instrument is enabled. The value is YES or NO. This column can be modified, although
setting ENABLED has no effect for threads that are already running.

For background threads, setting the ENABLED value controls whether | NSTRUVENTED is set to YES
or NOfor threads that are subsequently created for this instrument and listed in the t hr eads table.
For foreground threads, this column has no effect; the set up_act or s table takes precedence.

* H STORY

Whether to log historical events for the instrument. The value is YES or NO. This column can be
modified, although setting HI STORY has no effect for threads that are already running.

For background threads, setting the HI STORY value controls whether H STORY is set to YES or NO
for threads that are subsequently created for this instrument and listed in the t hr eads table. For
foreground threads, this column has no effect; the set up_act or s table takes precedence.

* PROPERTI ES

The instrument properties. This column uses the SET data type, so multiple flags from the following
list can be set per instrument:

« singl et on: The instrument has a single instance. For example, there is only one thread for the
t hread/ sql / mai n instrument.

e user: The instrument is directly related to user workload (as opposed to system workload). For
example, threads such as t hr ead/ sql / one_connect i on executing a user session have the
user property to differentiate them from system threads.

* VOLATI LITY

The instrument volatility. This column has the same meaning as in the set up_i nstrunent s table.
See Section 10.2.3, “The setup_instruments Table”.

» DOCUMENTATI ON

A string describing the instrument purpose. The value is NULL if no description is available.
The set up_t hr eads table has these indexes:
* Primary key on (NAVE)

TRUNCATE TABLE is not permitted for the set up_t hr eads table.

10.3 Performance Schema Instance Tables

Instance tables document what types of objects are instrumented. They provide event names and
explanatory notes or status information:

» cond_i nst ances: Condition synchronization object instances
o file_instances: File instances

e nut ex_i nst ances: Mutex synchronization object instances

e rwl ock_i nstances: Lock synchronization object instances

» socket i nstances: Active connection instances

These tables list instrumented synchronization objects, files, and connections. There are three types
of synchronization objects: cond, mut ex, and r vl ock. Each instance table has an EVENT_NAME or
NANME column to indicate the instrument associated with each row. Instrument names may have multiple

62

https://dev.mysql.com/doc/refman/8.0/en/set.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

The cond_instances Table

parts and form a hierarchy, as discussed in Chapter 7, Performance Schema Instrument Naming
Conventions.

The nut ex_i nst ances. LOCKED BY_ THREAD | Dand

rwl ock_instances. WRI TE_LOCKED BY THREAD | Dcolumns are extremely important for
investigating performance bottlenecks or deadlocks. For examples of how to use them for this purpose,
see Chapter 14, Using the Performance Schema to Diagnose Problems

10.3.1 The cond_instances Table

The cond_i nst ances table lists all the conditions seen by the Performance Schema while the server
executes. A condition is a synchronization mechanism used in the code to signal that a specific event
has happened, so that a thread waiting for this condition can resume work.

When a thread is waiting for something to happen, the condition name is an indication of what the
thread is waiting for, but there is no immediate way to tell which other thread, or threads, causes the
condition to happen.

The cond_i nst ances table has these columns:
* NAME
The instrument name associated with the condition.
« OBJECT | NSTANCE_BEG N
The address in memory of the instrumented condition.
The cond_i nst ances table has these indexes:
» Primary key on (OBJECT_| NSTANCE_BEG N)
* Index on (NANME)

TRUNCATE TABLE is not permitted for the cond_i nst ances table.

10.3.2 The file_instances Table

The fil e_i nst ances table lists all the files seen by the Performance Schema when executing file /10
instrumentation. If a file on disk has never been opened, it is not showninfil e_i nst ances. When a
file is deleted from the disk, it is also removed fromthe f i | e_i nst ances table.

Thefil e_i nstances table has these columns:
 FI LE_NAME

The file name.
« EVENT_NAME

The instrument name associated with the file.
« OPEN_COUNT

The count of open handles on the file. If a file was opened and then closed, it was opened 1 time, but
OPEN_CQOUNT is 0. To list all the files currently opened by the server, use WHERE OPEN_COUNT > 0.

The fil e_i nst ances table has these indexes:
* Primary key on (FI LE_NANE)

* Index on (EVENT _NAME)

63

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

The mutex_instances Table

TRUNCATE TABLE is not permitted forthe fi | e_i nst ances table.

10.3.3 The mutex_instances Table

The nut ex_i nst ances table lists all the mutexes seen by the Performance Schema while the server
executes. A mutex is a synchronization mechanism used in the code to enforce that only one thread at
a given time can have access to some common resource. The resource is said to be “protected” by the
mutex.

When two threads executing in the server (for example, two user sessions executing a query
simultaneously) do need to access the same resource (a file, a buffer, or some piece of data), these
two threads compete against each other, so that the first query to obtain a lock on the mutex causes
the other query to wait until the first is done and unlocks the mutex.

The work performed while holding a mutex is said to be in a “critical section,” and multiple queries do
execute this critical section in a serialized way (one at a time), which is a potential bottleneck.

The nut ex_i nst ances table has these columns:
 NAME

The instrument name associated with the mutex.
* OBJECT_I NSTANCE_BEG N

The address in memory of the instrumented mutex.
« LOCKED BY THREAD | D

When a thread currently has a mutex locked, LOCKED BY THREAD | Dis the THREAD | D of the
locking thread, otherwise it is NULL.

The nut ex_i nst ances table has these indexes:

* Primary key on (OBJECT | NSTANCE_BEG N)

* Index on (NANME)

* Index on (LOCKED_BY_THREAD_I D)

TRUNCATE TABLE is not permitted for the nut ex_i nst ances table.

For every mutex instrumented in the code, the Performance Schema provides the following
information.

» The set up_i nstrunent s table lists the name of the instrumentation point, with the prefix wai t /
synch/ mut ex/ .

* When some code creates a mutex, a row is added to the mut ex_i nst ances table. The
OBJECT _| NSTANCE_BEG N column is a property that uniquely identifies the mutex.

» When a thread attempts to lock a mutex, the events_wai ts_current table shows a row for that
thread, indicating that it is waiting on a mutex (in the EVENT_NAME column), and indicating which
mutex is waited on (in the OBJECT_| NSTANCE_BEG N column).

* When a thread succeeds in locking a mutex:

e events_waits_current shows that the wait on the mutex is completed (in the TI MER_END and
TI MER_WAI T columns)

* The completed wait event is added to the event s_wai t s_hi st ory and
events _waits_history_ | ong tables

64

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

The rwlock_instances Table

e nmut ex_i nst ances shows that the mutex is now owned by the thread (in the THREAD | D
column).

* When a thread unlocks a mutex, mut ex_i nst ances shows that the mutex now has no owner (the
THREAD_| D column is NULL).

* When a mutex object is destroyed, the corresponding row is removed from nut ex_i nst ances.

By performing queries on both of the following tables, a monitoring application or a DBA can detect
bottlenecks or deadlocks between threads that involve mutexes:

 events _waits_current,to see what mutex a thread is waiting for

* mut ex_i nst ances, to see which other thread currently owns a mutex

10.3.4 The rwlock_instances Table

The rwl ock i nst ances table lists all the rwlock (read write lock) instances seen by the Performance
Schema while the server executes. An rwl ock is a synchronization mechanism used in the code to
enforce that threads at a given time can have access to some common resource following certain rules.
The resource is said to be “protected” by the r wl ock. The access is either shared (many threads can
have a read lock at the same time), exclusive (only one thread can have a write lock at a given time), or
shared-exclusive (a thread can have a write lock while permitting inconsistent reads by other threads).
Shared-exclusive access is otherwise known as an sx| ock and optimizes concurrency and improves
scalability for read-write workloads.

Depending on how many threads are requesting a lock, and the nature of the locks requested, access
can be either granted in shared mode, exclusive mode, shared-exclusive mode or not granted at alll,
waiting for other threads to finish first.

The rwl ock i nst ances table has these columns:
 NAME

The instrument name associated with the lock.
* OBJECT_I NSTANCE_BEG N

The address in memory of the instrumented lock.
« WRI TE_LOCKED BY_THREAD | D

When a thread currently has an r wl ock locked in exclusive (write) mode,
WRI TE_LOCKED BY THREAD | Dis the THREAD | D of the locking thread, otherwise it is NULL.

« READ LOCKED_BY_COUNT

When a thread currently has an r wl ock locked in shared (read) mode, READ LOCKED BY_COUNT

is incremented by 1. This is a counter only, so it cannot be used directly to find which thread holds a
read lock, but it can be used to see whether there is a read contention on an r W ock, and see how

many readers are currently active.

The rwl ock i nst ances table has these indexes:
* Primary key on (OBJECT | NSTANCE_BEG N)

* Index on (NANME)

« Index on (WRI TE_LOCKED BY_THREAD_| D)

TRUNCATE TABLE is not permitted for the r wl ock_i nst ances table.

65

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_rw_lock
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

The socket_instances Table

By performing queries on both of the following tables, a monitoring application or a DBA may detect
some bottlenecks or deadlocks between threads that involve locks:

e events_waits_current,toseewhatrw ock a thread is waiting for
* rwl ock_i nst ances, to see which other thread currently owns an rwl ock

There is a limitation: The r W ock_i nst ances can be used only to identify the thread holding a write
lock, but not the threads holding a read lock.

10.3.5 The socket_instances Table

The socket i nst ances table provides a real-time snapshot of the active connections to the MySQL
server. The table contains one row per TCP/IP or Unix socket file connection. Information available in
this table provides a real-time snapshot of the active connections to the server. (Additional information
is available in socket summary tables, including network activity such as socket operations and number
of bytes transmitted and received; see Section 10.20.9, “Socket Summary Tables”).

nmysqgl > SELECT * FROM per f or mance_schema. socket _i nst ances\ G
kkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x l I’OW kkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkkkk*x
EVENT_NAME: wai t/i o/ socket/sql/server_uni x_socket
OBJECT_| NSTANCE_BEG N: 4316619408
THREAD I D: 1
SOCKET_I D: 16
| P:
PORT: 0O
STATE: ACTI VE
kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk* 2 I’OW kkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*%x
EVENT_NAME: wai t/i o/ socket/sql/client_connection
OBJECT_| NSTANCE_BEGI N: 4316644608
THREAD_ | D: 21
SOCKET_I D: 39
IP: 127.0.0.1
PORT: 55233
STATE: ACTI VE
kkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkk*x 3 I’OW kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkk*
EVENT_NAME: wai t/i o/ socket/sql/server_tcpi p_socket
OBJECT_| NSTANCE_BEG N: 4316699040
THREAD I D: 1
SOCKET_I D: 14
IP: 0.0.0.0
PORT: 50603
STATE: ACTI VE

Socket instruments have names of the form wai t /i o/ socket/ sql / socket _t ype and are used like
this:

1. The server has a listening socket for each network protocol that it supports. The instruments
associated with listening sockets for TCP/IP or Unix socket file connections have a socket _type
value of server tcpi p_socket orserver_uni x_socket , respectively.

2. When a listening socket detects a connection, the server transfers the connection to a new socket
managed by a separate thread. The instrument for the new connection thread has a socket _t ype
value of cl i ent _connecti on.

3. When a connection terminates, the row in socket i nst ances corresponding to it is deleted.
The socket i nstances table has these columns:
e EVENT_NAME

The name of the wai t /i o/ socket /* instrument that produced the event. This is a NANME value
from the set up_i nst r ument s table. Instrument names may have multiple parts and form a
hierarchy, as discussed in Chapter 7, Performance Schema Instrument Naming Conventions.

« OBJECT_| NSTANCE_BEG N

66

The socket_instances Table

This column uniquely identifies the socket. The value is the address of an object in memory.

* THREAD I D

The internal thread identifier assigned by the server. Each socket is managed by a single thread, so
each socket can be mapped to a thread which can be mapped to a server process.

e SOCKET_I D
The internal file handle assigned to the socket.
< IP

The client IP address. The value may be either an IPv4 or IPv6 address, or blank to indicate a Unix
socket file connection.

« PORT
The TCP/IP port number, in the range from 0 to 65535.
« STATE

The socket status, either | DLE or ACTI VE. Wait times for active sockets are tracked using the
corresponding socket instrument. Wait times for idle sockets are tracked using the i dl e instrument.

A socket is idle if it is waiting for a request from the client. When a socket becomes idle, the event
row in socket _i nst ances that is tracking the socket switches from a status of ACTI VE to | DLE.
The EVENT _NANME value remains wai t / i o/ socket / *, but timing for the instrument is suspended.
Instead, an event is generated in the event s_wai t s_current table with an EVENT _NAME value of
idle.

When the next request is received, the i dl e event terminates, the socket instance switches from
| DLE to ACTI VE, and timing of the socket instrument resumes.

The socket i nst ances table has these indexes:

« Primary key on (OBJECT | NSTANCE_BEG N)

 Index on (THREAD | D)

* Index on (SOCKET_I D)

* Index on (I P, PORT)

TRUNCATE TABLE is not permitted for the socket _i nst ances table.

The | P: PORT column combination value identifies the connection. This combination value is used in
the OBJECT _NANME column of the event s_wai t s_xxx tables, to identify the connection from which
socket events come:

» For the Unix domain listener socket (ser ver _uni x_socket), the portis 0, and the IPis"' " .

» For client connections via the Unix domain listener (cl i ent _connect i on), the port is 0, and the IP
is''

» For the TCP/IP server listener socket (ser ver tcpi p_socket), the port is always the master port
(for example, 3306), and the IP is always 0. 0. 0. 0.

* For client connections via the TCP/IP listener (cl i ent _connect i on), the port is whatever the
server assigns, but never 0. The IP is the IP of the originating host (127. 0. 0. 1 or : : 1 for the local
host)

67

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

Performance Schema Wait Event Tables

10.4 Performance Schema Wait Event Tables

The Performance Schema instruments waits, which are events that take time. Within the event
hierarchy, wait events nest within stage events, which nest within statement events, which nest within
transaction events.

These tables store wait events:
e events_waits_current: The current wait event for each thread.
* events_wai ts_hi st ory: The most recent wait events that have ended per thread.

 events_wai ts_history_| ong: The most recent wait events that have ended globally (across all
threads).

The following sections describe the wait event tables. There are also summary tables that aggregate
information about wait events; see Section 10.20.1, “Wait Event Summary Tables”.

For more information about the relationship between the three wait event tables, see Performance
Schema Tables for Current and Historical Events.

Configuring Wait Event Collection

To control whether to collect wait events, set the state of the relevant instruments and consumers:

» The set up_i nstrunent s table contains instruments with names that begin with wai t . Use these
instruments to enable or disable collection of individual wait event classes.

» The set up_consuner s table contains consumer values with names corresponding to the current
and historical wait event table names. Use these consumers to filter collection of wait events.

Some wait instruments are enabled by default; others are disabled. For example:

nysql > SELECT NAME, ENABLED, TI MED
FROM per f or mance_schema. set up_i nstrument s
VWHERE NAME LIKE 'wait/io/filel/innodb% ;

S docm - - o 4o - +
| NAVE | ENABLED | TIMED |
S docm - - o 4o - +
wait/io/filelinnodb/innodb_tabl espace_open_file	YES	YES	
wait/io/filelinnodb/innodb_data_file	YES	YES	
wait/io/filelinnodb/innodb_	og file	YES	YES
wait/io/filelinnodb/innodb_tenmp file	YES	YES	
wait/io/filelinnodb/innodb_arch_file	YES	YES	
wait/io/filelinnodb/innodb_clone file	YES	YES	
S docm - - o 4o - +

nysql > SELECT NAME, ENABLED, TI MED
FROM per f or mance_schema. set up_i nstrument s
WHERE NAME LI KE 'wait/io/ socket/% ;

oo e m oo e e oo mm e e e e mmcemocamoo—aoo-oo- T, 4o - +
| NAVE | ENABLED | TIMED |
oo e m oo e e oo mm e e e e mmcemocamoo—aoo-oo- T, 4o - +
wait/iolsocket/sql/server_tcpip_socket	NO	NO
wait/iolsocket/sql/server_unix_socket	NO	NO
wait/iolsocket/sql/client_connection	NO	NO
oo e m oo e e oo mm e e e e mmcemocamoo—aoo-oo- T, 4o - +

The wait consumers are disabled by default:

nysql > SELECT *
FROM per f or mance_schema. set up_consumner s
WHERE NAME LI KE 'events waits% ;

| events_waits_current
| events_waits_history

68

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-event-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-event-tables.html

The events_waits_current Table

| events_waits_history_long | NO

To control wait event collection at server startup, use lines like these in your my. cnf file:
* Enable:

[nysql d]

per f or mance- schena- i nst runent =' wai t / %=0ON

per f or mance- schena- consuner - event s- wai t s- cur r ent =ON

per f or mance- schena- consuner - event s- wai t s- hi st or y=0ON

per f or mance- schema- consuner - event s- wai t s- hi st ory-1 ong=0ON

» Disable:

[nysal d]

per f or mance- schema- i nstrunent =" wai t / %=OFF'

per f or mance- schema- consuner - event s- wai t s- curr ent =OFF

per f or mance- schema- consuner - event s- wai t s- hi st or y=0OFF

per f or mance- schema- consuner - event s- wai t s- hi st ory-| ong=0OFF

To control wait event collection at runtime, update the set up_i nstrunent s and set up_consuner s
tables:

* Enable:

UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = 'YES', TIMED = ' YES

VWHERE NAME LIKE 'wait/ % ;

UPDATE per f or mance_schena. set up_consuner s
SET ENABLED = ' YES'

WHERE NAME LI KE 'events waits% ;

» Disable:

UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = 'NO, TIMED = ' NO

WHERE NAME LIKE 'wait/ % ;

UPDATE per f or mance_schena. set up_consuner s
SET ENABLED = ' NO

VWHERE NAME LI KE 'events_waits% ;

To collect only specific wait events, enable only the corresponding wait instruments. To collect wait
events only for specific wait event tables, enable the wait instruments but only the wait consumers
corresponding to the desired tables.

For additional information about configuring event collection, see Chapter 4, Performance Schema
Startup Configuration, and Chapter 5, Performance Schema Runtime Configuration.

10.4.1 The events_waits_current Table

The events_wai ts_current table contains current wait events. The table stores one row per thread
showing the current status of the thread's most recent monitored wait event, so there is no system
variable for configuring the table size.

Of the tables that contain wait event rows, event s _wai t s_current is the most fundamental. Other
tables that contain wait event rows are logically derived from the current events. For example, the
events waits historyandevents waits history | ong tables are collections of the most
recent wait events that have ended, up to a maximum number of rows per thread and globally across
all threads, respectively.

For more information about the relationship between the three wait event tables, see Performance
Schema Tables for Current and Historical Events.

For information about configuring whether to collect wait events, see Section 10.4, “Performance
Schema Wait Event Tables”.

69

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-event-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-event-tables.html

The events_waits_current Table

The events wai ts_current table has these columns:

THREAD_| D, EVENT_| D

The thread associated with the event and the thread current event number when the event starts.
The THREAD | Dand EVENT_| D values taken together uniquely identify the row. No two rows have
the same pair of values.

END_EVENT_I D

This column is set to NULL when the event starts and updated to the thread current event number
when the event ends.

EVENT_NANME

The name of the instrument that produced the event. This is a NAVE value from the
set up_i nstrunent s table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Chapter 7, Performance Schema Instrument Naming Conventions.

SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved. For example, if a mutex or lock is being blocked, you can
check the context in which this occurs.

TI MER_START, TI MER_END, TI MER_WAI T

Timing information for the event. The unit for these values is picoseconds (trillionths of a second).
The TI MER_START and TI MER_END values indicate when event timing started and ended.
TI MER_WAI T is the event elapsed time (duration).

If an event has not finished, TI MER_END is the current timer value and TI VER_WAI T is the time
elapsed so far (TI MER_END - TI MER_START).

If an event is produced from an instrument that has TI MED = NO, timing information is not collected,
and TI MER_START, TI MER_END, and TI MER_WAI T are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 5.1, “Performance Schema Event Timing”.

SPI NS

For a mutex, the number of spin rounds. If the value is NULL, the code does not use spin rounds or
spinning is not instrumented.

OBJECT_SCHEMA, OBJECT_NANE, OBJECT_TYPE, OBJECT | NSTANCE_BEG N

These columns identify the object “being acted on.” What that means depends on the object type.
For a synchronization object (cond, nut ex, r w ock):

« OBJECT_SCHEMA, OBJECT_NANE, and OBJECT_TYPE are NULL.

e OBJECT | NSTANCE BEG Nis the address of the synchronization object in memory.

For afile 1/0O object:

¢ OBJECT_SCHEMA is NULL.

e OBJECT_NAME is the file name.

e OBJECT _TYPEis FI LE.

70

The events_waits_current Table

e OBJECT | NSTANCE BEG Nis an address in memory.

For a socket object:

e OBJECT_NAME is the | P: PORT value for the socket.

e« OBJECT | NSTANCE BEG Nis an address in memory.

For a table I/O object:

* OBJECT_SCHEMA is the name of the schema that contains the table.

e OBJECT_NAME is the table name.

e OBJECT_TYPE is TABLE for a persistent base table or TEMPORARY TABLE for a temporary table.
e OBJECT | NSTANCE BEG Nis an address in memory.

An OBJECT_| NSTANCE _BEQ N value itself has no meaning, except that different values indicate
different objects. OBJECT | NSTANCE_BEG N can be used for debugging. For example, it can be
used with GROUP BY OBJECT_| NSTANCE BEG Nto see whether the load on 1,000 mutexes (that
protect, say, 1,000 pages or blocks of data) is spread evenly or just hitting a few bottlenecks. This
can help you correlate with other sources of information if you see the same object address in a log
file or another debugging or performance tool.

| NDEX_NANE

The name of the index used. PRI MARY indicates the table primary index. NULL means that no index
was used.

NESTI NG_EVENT_| D

The EVENT _| Dvalue of the event within which this event is nested.

NESTI NG_EVENT_TYPE

The nesting event type. The value is TRANSACTI ON, STATEMENT, STAGE, or WAI T.
OPERATI ON

The type of operation performed, such as | ock, read, orwite.
NUVMBER OF BYTES

The number of bytes read or written by the operation. For table 1/0 waits (events for the wai t /

i o/t abl e/ sql / handl er instrument), NUVBER _OF BYTES indicates the number of rows. If the
value is greater than 1, the event is for a batch 1/O operation. The following discussion describes the
difference between exclusively single-row reporting and reporting that reflects batch 1/O.

MySQL executes joins using a nested-loop implementation. The job of the Performance Schema
instrumentation is to provide row count and accumulated execution time per table in the join. Assume
a join query of the following form that is executed using a table join order of t 1,t 2, t 3:

SELECT ... FROMt1 JONt2 ON... JONt3 ON ...

Table “fanout” is the increase or decrease in number of rows from adding a table during join
processing. If the fanout for table t 3 is greater than 1, the majority of row-fetch operations are for
that table. Suppose that the join accesses 10 rows from t 1, 20 rows from t 2 per row fromt 1, and
30 rows from t 3 per row of table t 2. With single-row reporting, the total number of instrumented
operations is:

10 + (10 * 20) + (10 * 20 * 30) = 6210

71

The events_waits_history Table

A significant reduction in the number of instrumented operations is achievable by aggregating them
per scan (that is, per unique combination of rows from t 1 and t 2). With batch I/O reporting, the
Performance Schema produces an event for each scan of the innermost table t 3 rather than for
each row, and the number of instrumented row operations reduces to:

10 + (10 * 20) + (10 * 20) = 410

That is a reduction of 93%, illustrating how the batch-reporting strategy significantly reduces
Performance Schema overhead for table I/O by reducing the number of reporting calls. The tradeoff
is lesser accuracy for event timing. Rather than time for an individual row operation as in per-row
reporting, timing for batch I/O includes time spent for operations such as join buffering, aggregation,
and returning rows to the client.

For batch I/O reporting to occur, these conditions must be true:

« Query execution accesses the innermost table of a query block (for a single-table query, that table
counts as innermost)

« Query execution does not request a single row from the table (so, for example, eq_r ef access
prevents use of batch reporting)

« Query execution does not evaluate a subquery containing table access for the table
« FLAGS

Reserved for future use.
The events_wai ts_current table has these indexes:
* Primary key on (THREAD | D, EVENT _| D)

TRUNCATE TABLE is permitted for the event s_wai t s_current table. It removes the rows.

10.4.2 The events_waits_history Table

The event s_wai t s_hi st ory table contains the N most recent wait events that have ended per
thread. Wait events are not added to the table until they have ended. When the table contains the
maximum number of rows for a given thread, the oldest thread row is discarded when a new row for
that thread is added. When a thread ends, all its rows are discarded.

The Performance Schema autosizes the value of N during server startup. To set the number of rows
per thread explicitly, set the per f or mance_schema_events_wai ts_hi story_si ze system
variable at server startup.

The event s_wai t s_hi st ory table has the same columns and indexing as
events waits_current. See Section 10.4.1, “The events_waits_current Table”.

TRUNCATE TABLE is permitted for the event s_wai t s_hi st ory table. It removes the rows.

For more information about the relationship between the three wait event tables, see Performance
Schema Tables for Current and Historical Events.

For information about configuring whether to collect wait events, see Section 10.4, “Performance
Schema Wait Event Tables”.

10.4.3 The events_waits_history_long Table

The events_wai ts_hi story | ong table contains N the most recent wait events that have ended
globally, across all threads. Wait events are not added to the table until they have ended. When the
table becomes full, the oldest row is discarded when a new row is added, regardless of which thread
generated either row.

72

https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#jointype_eq_ref
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-event-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-event-tables.html

Performance Schema Stage Event Tables

The Performance Schema autosizes the value of N during server startup. To set the table size
explicitly, set the per f or mance_schena_events_waits_history | ong_si ze system variable at
server startup.

The events _waits_hi story | ong table has the same columns as events waits current.
See Section 10.4.1, “The events_waits_current Table”. Unlike event s_wai ts_current,
events waits_history_ | ong has noindexing.

TRUNCATE TABLE is permitted for the event s_wai t s_hi st ory_| ong table. It removes the rows.

For more information about the relationship between the three wait event tables, see Performance
Schema Tables for Current and Historical Events.

For information about configuring whether to collect wait events, see Section 10.4, “Performance
Schema Wait Event Tables”.

10.5 Performance Schema Stage Event Tables

The Performance Schema instruments stages, which are steps during the statement-execution
process, such as parsing a statement, opening a table, or performing afi | esort operation. Stages
correspond to the thread states displayed by SHOW PROCESSLI ST or that are visible in the Information
Schema PROCESSLI ST table. Stages begin and end when state values change.

Within the event hierarchy, wait events nest within stage events, which nest within statement events,
which nest within transaction events.

These tables store stage events:
* events_stages_current: The current stage event for each thread.
* events_stages_hi story: The most recent stage events that have ended per thread.

e events_stages_history | ong: The most recent stage events that have ended globally (across
all threads).

The following sections describe the stage event tables. There are also summary tables that aggregate
information about stage events; see Section 10.20.2, “Stage Summary Tables”.

For more information about the relationship between the three stage event tables, see Performance
Schema Tables for Current and Historical Events.

» Configuring Stage Event Collection

» Stage Event Progress Information

Configuring Stage Event Collection

To control whether to collect stage events, set the state of the relevant instruments and consumers:

e The set up_i nstrunent s table contains instruments with names that begin with st age. Use these
instruments to enable or disable collection of individual stage event classes.

* The set up_consuner s table contains consumer values with names corresponding to the current
and historical stage event table names. Use these consumers to filter collection of stage events.

Other than those instruments that provide statement progress information, the stage instruments are
disabled by default. For example:

nysql > SELECT NAME, ENABLED, TI MED

FROM per f or mance_schema. set up_i nstrument s

WHERE NAME RLI KE ' stage/sql/[a-c]";
e mm e e e e e e oo eeeeeeeecieeoaoa-aao-- C eeeaaan +
| NAMVE | ENABLED | TIMED |
e mm e e e e e e oo eeeeeeeecieeoaoa-aao-- C eeeaaan +

73

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-event-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-event-tables.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-processlist-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-event-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-event-tables.html

Configuring Stage Event Collection

stage/sql / After create

stage/ sql /al | ocating | ocal table
stage/sql/altering table
stage/sql/committing alter table to storage engine
st age/ sql / Changi ng mast er

st age/ sql / Checki ng master version

st age/ sql / checki ng perm ssi ons

st age/ sql / cl eani ng up

stage/ sql /cl osi ng tabl es

st age/ sql / Connecti ng to master
stage/ sql / converti ng HEAP to Myl SAM
stage/ sql / Copying to group table
stage/ sql / Copying to tnp table
stage/sql /copy to tnp table

stage/ sql / Creating sort index

stage/ sql /creating table
stage/sql/Creating tnp table

666666666666566666
666666666666566666

Stage event instruments that provide statement progress information are enabled and timed by default:

nysql > SELECT NAME, ENABLED, TI MED
FROM per f or mance_schema. set up_i nstrument s
WHERE ENABLED=' YES' AND NAME LI KE "st age/ % ;

0 CC OO 0CoO0CoOOCOONOCOOC0ONOCO0OCO0C000C0000000000C00000 fooccooooo ooocooo +

| NAVE | ENABLED | TIMED |

0 CC OO 0CoO0CoOOCOONOCOOC0ONOCO0OCO0C000C0000000000C00000 fooccooooo ooocooo +
stage/sql /copy to tnp table YES YES
stage/ sql / Appl yi ng batch of row changes (wite) YES YES
stage/ sql / Appl yi ng batch of row changes (update) YES YES
stage/ sql / Appl yi ng batch of row changes (del ete) YES YES
stage/ i nnodb/ al ter table (end) YES YES
stage/ i nnodb/al ter table (flush) YES YES
stage/i nnodb/alter table (insert) YES YES

stage/innodb/alter table (log apply index)	YES
[[[

stage/innodb/alter table (log apply table) YES YES
stage/ i nnodb/alter table (merge sort) YES YES
stage/innodb/alter table (read PK and internal sort) YES YES
st age/ i nnodb/ buf fer pool | oad YES YES
stage/ i nnodb/ cl one (file copy) YES YES
st age/ i nnodb/ cl one (redo copy) YES YES
st age/ i nnodb/ cl one (page copy) YES YES
0 CC OO 0CoO0CoOOCOONOCOOC0ONOCO0OCO0C000C0000000000C00000 fooccooooo ooocooo +

The stage consumers are disabled by default:

nysql > SELECT *
FROM per f or mance_schenma. set up_consuner s
VWHERE NAME LI KE ' events_stages% ;

mocccoocccosoccoosccoosooooo fooccocooao +
| NAME | ENABLED |
mocccoocccosoccoosccoosooooo fooccocooao +
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
mocccoocccosoccoosccoosooooo fooccocooao +

To control stage event collection at server startup, use lines like these in your ny. cnf file:
* Enable:

[nysql d]

per f or mance- schena- i nst runent =' st age/ %=ON

per f or mance- schema- consuner - event s- st ages- cur r ent =ON

per f or mance- schena- consuner - event s- st ages- hi st or y=0ON

per f or mance- schena- consuner - event s- st ages- hi st or y- | ong=0ON

» Disable:

[nysaql d]
per f or mance- schema- i nstrunent =' st age/ %=OFF'
per f or mance- schema- consuner - event s- st ages- curr ent =OFF

Stage Event Progress Information

per f or mance- schema- consuner - event s- st ages- hi st or y=0OFF
per f or mance- schema- consuner - event s- st ages- hi st ory- | ong=0OFF

To control stage event collection at runtime, update the set up_i nst runent s and
set up_consuner s tables:

* Enable:

UPDATE per f or mance_schena. set up_i nstrunents
SET ENABLED = ' YES', TIMED = ' YES

WHERE NAME LI KE ' stage/ % ;

UPDATE per f or meance_schena. set up_consuner s
SET ENABLED = ' YES'

WHERE NAME LI KE ' events_stages% ;

» Disable:

UPDATE per f or mance_schenma. set up_i nstrunent s
SET ENABLED = 'NO, TIMED = 'NO

VWHERE NAME LI KE ' stage/ % ;

UPDATE per f or mance_schema. set up_consumner s
SET ENABLED = ' NO

WHERE NAME LI KE 'events_stages% ;

To collect only specific stage events, enable only the corresponding stage instruments. To collect stage
events only for specific stage event tables, enable the stage instruments but only the stage consumers
corresponding to the desired tables.

For additional information about configuring event collection, see Chapter 4, Performance Schema
Startup Configuration, and Chapter 5, Performance Schema Runtime Configuration.

Stage Event Progress Information

The Performance Schema stage event tables contain two columns that, taken together, provide a stage
progress indicator for each row:

e WORK_COVPLETED: The number of work units completed for the stage
» WORK_ESTI MATED: The number of work units expected for the stage

Each column is NULL if no progress information is provided for an instrument. Interpretation of the
information, if it is available, depends entirely on the instrument implementation. The Performance
Schema tables provide a container to store progress data, but make no assumptions about the
semantics of the metric itself:

« A *“work unit” is an integer metric that increases over time during execution, such as the number of
bytes, rows, files, or tables processed. The definition of “work unit” for a particular instrument is left to
the instrumentation code providing the data.

e The WORK_COVPLETED value can increase one or many units at a time, depending on the
instrumented code.

e The WORK_ESTI MATED value can change during the stage, depending on the instrumented code.
Instrumentation for a stage event progress indicator can implement any of the following behaviors:
» No progress instrumentation

This is the most typical case, where no progress data is provided. The WORK COMPLETED and
WORK_ESTI MATED columns are both NULL.

» Unbounded progress instrumentation

Only the WORK_COVPLETED column is meaningful. No data is provided for the WORK_EST| MATED
column, which displays O.

75

The events_stages_current Table

By querying the event s_st ages_current table for the monitored session, a monitoring
application can report how much work has been performed so far, but cannot report whether the
stage is near completion. Currently, no stages are instrumented like this.

» Bounded progress instrumentation
The WORK _COVPLETED and WORK_ESTI MATED columns are both meaningful.

This type of progress indicator is appropriate for an operation with a defined completion criterion,
such as the table-copy instrument described later. By querying the event s_st ages_current
table for the monitored session, a monitoring application can report how much work has been
performed so far, and can report the overall completion percentage for the stage, by computing the
WORK_ COVPLETED/WORK _ESTI MATED ratio.

The st age/ sql / copy to tnp tabl e instrumentillustrates how progress indicators work. During
execution of an ALTER TABLE statement, the st age/ sql / copy to tnp tabl e stage is used, and
this stage can execute potentially for a long time, depending on the size of the data to copy.

The table-copy task has a defined termination (all rows copied), and the st age/ sql / copy to

tnp tabl e stage is instrumented to provided bounded progress information: The work unit used is
number of rows copied, WORK _COVPLETED and WORK_ESTI MATED are both meaningful, and their ratio
indicates task percentage complete.

To enable the instrument and the relevant consumers, execute these statements:

UPDATE per f or mance_schema. set up_i nstrunent s
SET ENABLED=' YES'

WHERE NAME=' st age/ sql /copy to tnp table';
UPDATE per f or mance_schema. set up_consuner s
SET ENABLED=' YES'

WHERE NAME LI KE 'events_stages_% ;

To see the progress of an ongoing ALTER TABLE statement, select from the
events_stages_current table.

10.5.1 The events_stages_current Table

The event s_st ages_current table contains current stage events. The table stores one row per
thread showing the current status of the thread's most recent monitored stage event, so there is no
system variable for configuring the table size.

Of the tables that contain stage event rows, event s_st ages_cur r ent is the most fundamental.
Other tables that contain stage event rows are logically derived from the current events. For example,
the event s_stages_hi story and events_stages_hi story_| ong tables are collections of the
most recent stage events that have ended, up to a maximum number of rows per thread and globally
across all threads, respectively.

For more information about the relationship between the three stage event tables, see Performance
Schema Tables for Current and Historical Events.

For information about configuring whether to collect stage events, see Section 10.5, “Performance
Schema Stage Event Tables”.

The event s_stages_current table has these columns:
 THREAD | D, EVENT_I D

The thread associated with the event and the thread current event number when the event starts.
The THREAD | Dand EVENT _| D values taken together uniquely identify the row. No two rows have
the same pair of values.

« END_EVENT_I D

76

https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-event-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-event-tables.html

The events_stages_history Table

This column is set to NULL when the event starts and updated to the thread current event number
when the event ends.

o EVENT_NAMVE

The name of the instrument that produced the event. This is a NAME value from the
set up_i nstrunent s table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Chapter 7, Performance Schema Instrument Naming Conventions.

» SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

* TI MER_START, TI MER_END, TI MER_WAI T

Timing information for the event. The unit for these values is picoseconds (trillionths of a second).
The TI MER_START and TI MER_END values indicate when event timing started and ended.
TI MER _WAI T is the event elapsed time (duration).

If an event has not finished, TI MER_END is the current timer value and TI MER_WAI T is the time
elapsed so far (TI MER_END - TI MER_START).

If an event is produced from an instrument that has TI MED = NGO, timing information is not collected,
and Tl MER_START, TI MER_END, and TI MER_WAI T are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 5.1, “Performance Schema Event Timing”.

* WORK_COVPLETED, WORK_ESTI MATED

These columns provide stage progress information, for instruments that have been implemented to
produce such information. WORK_COMPLETED indicates how many work units have been completed
for the stage, and WORK_ESTI MATED indicates how many work units are expected for the stage. For
more information, see Stage Event Progress Information.

« NESTI NG_EVENT_| D

The EVENT _| D value of the event within which this event is nested. The nesting event for a stage
event is usually a statement event.

* NESTI NG_EVENT_TYPE

The nesting event type. The value is TRANSACTI ON, STATEMENT, STAGE, or WAI T.
The event s_st ages_current table has these indexes:
* Primary key on (THREAD_| D, EVENT_| D)

TRUNCATE TABLE is permitted for the event s_st ages_cur r ent table. It removes the rows.

10.5.2 The events_stages_history Table

The event s_st ages_hi st ory table contains the N most recent stage events that have ended per
thread. Stage events are not added to the table until they have ended. When the table contains the
maximum number of rows for a given thread, the oldest thread row is discarded when a new row for
that thread is added. When a thread ends, all its rows are discarded.

The Performance Schema autosizes the value of N during server startup. To set the number of rows
per thread explicitly, set the per f or mance_schema_events _stages_hi story_si ze system
variable at server startup.

77

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

The events_stages_history long Table

The events_st ages_hi st ory table has the same columns and indexing as
events_stages_current. See Section 10.5.1, “The events_stages_current Table”.

TRUNCATE TABLE is permitted for the event s_st ages_hi st ory table. It removes the rows.

For more information about the relationship between the three stage event tables, see Performance
Schema Tables for Current and Historical Events.

For information about configuring whether to collect stage events, see Section 10.5, “Performance
Schema Stage Event Tables”.

10.5.3 The events_stages_history long Table

The event s_st ages_hi st ory_I| ong table contains the N most recent stage events that have ended
globally, across all threads. Stage events are not added to the table until they have ended. When the
table becomes full, the oldest row is discarded when a new row is added, regardless of which thread
generated either row.

The Performance Schema autosizes the value of N during server startup. To set the table size
explicitly, set the per f or mance_schenma_event s_stages_hi story_| ong_si ze system variable
at server startup.

The events_stages_hi story_| ong table has the same columns as event s_stages_current.
See Section 10.5.1, “The events_stages_current Table”. Unlike event s_st ages_current,
events_stages history_ | ong has no indexing.

TRUNCATE TABLE is permitted for the event s_st ages_hi st ory_| ong table. It removes the rows.

For more information about the relationship between the three stage event tables, see Performance
Schema Tables for Current and Historical Events.

For information about configuring whether to collect stage events, see Section 10.5, “Performance
Schema Stage Event Tables”.

10.6 Performance Schema Statement Event Tables

The Performance Schema instruments statement execution. Statement events occur at a high level of
the event hierarchy. Within the event hierarchy, wait events nest within stage events, which nest within
statement events, which nest within transaction events.

These tables store statement events:
 events_statenents_current: The current statement event for each thread.
* events_statenents_history: The most recent statement events that have ended per thread.

e events_statenents_history | ong: The most recent statement events that have ended
globally (across all threads).

» prepared_statenents_instances: Prepared statement instances and statistics

The following sections describe the statement event tables. There are also summary tables that
aggregate information about statement events; see Section 10.20.3, “Statement Summary Tables”.

For more information about the relationship between the three event s_st at enent s_xxx event
tables, see Performance Schema Tables for Current and Historical Events.

» Configuring Statement Event Collection

» Statement Monitoring

78

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-event-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-event-tables.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-event-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-event-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-event-tables.html

Configuring Statement Event Collection

Configuring Statement Event Collection

To control whether to collect statement events, set the state of the relevant instruments and

consumers:

» The set up_i nstrunent s table contains instruments with names that begin with st at enent . Use

these instruments to enable or disable collection of individual statement event classes.

e The set up_consuner s table contains consumer values with names corresponding to the current
and historical statement event table names, and the statement digest consumer. Use these
consumers to filter collection of statement events and statement digesting.

The statement instruments are enabled by default, and the event s_st at enents_current,
events_statenents_history,andstatenments_di gest statement consumers are enabled by

default:

mysql > SELECT NAME, ENABLED, TI MED
FROM per f or mance_schema. set up_i nstrunent s
VWHERE NAME LI KE 'statenent/ % ;

e F - S
| NAME | ENABLED | TI MED
e F - S
| statenent/sql/select | YES | YES
| statenent/sql/create_table | YES | YES
| statenent/sqgl/create_index | YES | YES
st at ement/ sp/ st nt YES YES
st at enment / sp/ set YES YES
statenment/sp/set _trigger field YES YES

[[[
[[[
[[[
| statenent/schedul er/event | YES | YES
[[[
[[[
[[[

st at ement/ coni S| eep YES YES
stat ement / com Qui t YES YES
statenment/con Init DB YES YES

| statenent/abstract/Query | YES | YES

| statenent/abstract/new packet | YES | YES

| statenent/abstract/relay_| og | YES | YES

e F - S

nysql > SELECT *
FROM per f or mance_schenma. set up_consuner s
WHERE NAME LI KE ' %st at ement s% ;

fmoceooc--cceooc---cooc--—--cooo--=o fmocoooo=o +
| NAMVE | ENABLED |
fmoceooc--cceooc---cooc--—--cooo--=o fmocoooo=o +
events_statenents_current	YES
events_statenents_history	YES
events_statenents_history_long	NO
statenents_digest	YES
fmoceooc--cceooc---cooc--—--cooo--=o fmocoooo=o +

To control statement event collection at server startup, use lines like these in your ny. cnf file:

e Enable:

[nysal d]

per f or mance- schema- i nstrunent =' st at enent / %=ON

per f or mance- schema- consuner - event s- st at enment s- cur r ent =ON

per f or mance- schema- consuner - event s- st at ement s- hi st or y=0N

per f or mance- schema- consuner - event s- st at ement s- hi st ory-1 ong=0ON
per f or mance- schema- consuner - st at enment s- di gest =ON

» Disable:

[nysaql d]

per f or mance- schema- i nst runent =' st at ement / %OFF'

per f or mance- schema- consumner - event s- st at enent s- cur r ent =OFF

per f or mance- schema- consuner - event s- st at ement s- hi st or y=0FF

per f or mance- schema- consuner - event s- st at ement s- hi st ory- | ong=0OFF

79

Statement Monitoring

per f or mance- schema- consuner - st at ement s- di gest =OFF

To control statement event collection at runtime, update the set up_i nstrunent s and
set up_consuner s tables:

» Enable:

UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = 'YES', TIMED = ' YES

WHERE NAME LI KE 'statenent/ % ;

UPDATE per f or mance_schena. set up_consuner s
SET ENABLED = ' YES'

WHERE NAME LI KE ' %st at ement s% ;

» Disable:

UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = 'NO, TIMED = 'NO

WHERE NAME LI KE 'statenent/ % ;

UPDATE per f or mance_schena. set up_consuner s
SET ENABLED = ' NO

WHERE NAME LI KE ' %st at ement s% ;

To collect only specific statement events, enable only the corresponding statement instruments. To
collect statement events only for specific statement event tables, enable the statement instruments but
only the statement consumers corresponding to the desired tables.

For additional information about configuring event collection, see Chapter 4, Performance Schema
Startup Configuration, and Chapter 5, Performance Schema Runtime Configuration.

Statement Monitoring

Statement monitoring begins from the moment the server sees that activity is requested on a thread,
to the moment when all activity has ceased. Typically, this means from the time the server gets the
first packet from the client to the time the server has finished sending the response. Statements within
stored programs are monitored like other statements.

When the Performance Schema instruments a request (server command or SQL statement), it uses
instrument names that proceed in stages from more general (or “abstract”) to more specific until it
arrives at a final instrument name.

Final instrument names correspond to server commands and SQL statements:

» Server commands correspond to the COM xxx codes defined in the mysqgl _com h header file
and processed in sql / sql _par se. cc. Examples are COM_PlI NGand COM_QUI T. Instruments for
commands have names that begin with st at enent / com such as st at enent / coni Pi ng and
statenment/com Quit.

» SQL statements are expressed as text, such as DELETE FROM t 1 or SELECT * FROM
t 2. Instruments for SQL statements have names that begin with st at enent / sql , such as
stat enment/ sql / del et e and st at enent / sql / sel ect.

Some final instrument names are specific to error handling:

» statenent/com Error accounts for messages received by the server that are out of band. It
can be used to detect commands sent by clients that the server does not understand. This may be
helpful for purposes such as identifying clients that are misconfigured or using a version of MySQL
more recent than that of the server, or clients that are attempting to attack the server.

» statenent/sql/error accounts for SQL statements that fail to parse. It can be used to detect
malformed queries sent by clients. A query that fails to parse differs from a query that parses
but fails due to an error during execution. For example, SELECT * FROMis malformed, and the
statement/sql / error instrumentis used. By contrast, SELECT * parses but fails with a No

80

Statement Monitoring

t abl es used error. In this case, st at enent / sqgl / sel ect is used and the statement event
contains information to indicate the nature of the error.

A request can be obtained from any of these sources:

» As a command or statement request from a client, which sends the request as packets
» As a statement string read from the relay log on a replica

» As an event from the Event Scheduler

The details for a request are not initially known and the Performance Schema proceeds from abstract
to specific instrument names in a sequence that depends on the source of the request.

For a request received from a client:

1. When the server detects a new packet at the socket level, a new statement is started with an
abstract instrument name of st at enent / abst ract/ new_packet .

2. When the server reads the packet number, it knows more about the type of request received, and
the Performance Schema refines the instrument name. For example, if the request is a COV_PI NG
packet, the instrument name becomes st at enent / com Pi ng and that is the final name. If
the request is a COM_QUERY packet, it is known to correspond to an SQL statement but not the
particular type of statement. In this case, the instrument changes from one abstract name to a more
specific but still abstract name, st at enment / abst r act / Query, and the request requires further
classification.

3. If the request is a statement, the statement text is read and given to the parser. After parsing,
the exact statement type is known. If the request is, for example, an | NSERT statement, the
Performance Schema refines the instrument name from st at enent / abstract/ Query to
st at ement/sql /i nsert, which is the final name.

For a request read as a statement from the relay log on a replica:

1. Statements in the relay log are stored as text and are read as such. There is no network protocol,
so the st at ement / abstract/ new _packet instrument is not used. Instead, the initial instrument
isstatenent/abstract/rel ay_| og.

2. When the statement is parsed, the exact statement type is known. If the request is, for example,
an | NSERT statement, the Performance Schema refines the instrument name from st at enent /
abstract/ Query tostatenent/sql/insert, which is the final name.

The preceding description applies only for statement-based replication. For row-based replication, table
I/O done on the replica as it processes row changes can be instrumented, but row events in the relay
log do not appear as discrete statements.

For a request received from the Event Scheduler:

The event execution is instrumented using the name st at enent / schedul er/ event . This is the final
name.

Statements executed within the event body are instrumented using st at enent / sgl / * names,
without use of any preceding abstract instrument. An event is a stored program, and stored programs
are precompiled in memory before execution. Consequently, there is no parsing at runtime and the
type of each statement is known by the time it executes.

Statements executed within the event body are child statements. For example, if an event executes
an | NSERT statement, execution of the event itself is the parent, instrumented using st at enent /
schedul er/ event, and the | NSERT is the child, instrumented using st at enent / sql /i nsert.
The parent/child relationship holds between separate instrumented operations. This differs from the
sequence of refinement that occurs within a single instrumented operation, from abstract to final
instrument names.

81

https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html

The events_statements_current Table

For statistics to be collected for statements, it is not sufficient to enable only the final st at enent /
sql / * instruments used for individual statement types. The abstract st at enent / abstract/*
instruments must be enabled as well. This should not normally be an issue because all statement
instruments are enabled by default. However, an application that enables or disables statement
instruments selectively must take into account that disabling abstract instruments also disables
statistics collection for the individual statement instruments. For example, to collect statistics for

| NSERT statements, st at enent / sql /i nsert must be enabled, but also st at enent / abstract/
new packet and st at enent / abstract/ Query. Similarly, for replicated statements to be
instrumented, st at enent / abstract/rel ay_| og must be enabled.

No statistics are aggregated for abstract instruments such as st at enent / abst ract / Query because
no statement is ever classified with an abstract instrument as the final statement name.

10.6.1 The events_statements_current Table

The event s_statenents_current table contains current statement events. The table stores one
row per thread showing the current status of the thread's most recent monitored statement event, so
there is no system variable for configuring the table size.

Of the tables that contain statement event rows, event s_st at enents_current

is the most fundamental. Other tables that contain statement event rows are logically

derived from the current events. For example, the event s_st at enent s_hi st ory and
events_statenments_hi story | ong tables are collections of the most recent statement events
that have ended, up to a maximum number of rows per thread and globally across all threads,
respectively.

For more information about the relationship between the three event s_st at enent s_xxx event
tables, see Performance Schema Tables for Current and Historical Events.

For information about configuring whether to collect statement events, see Section 10.6, “Performance
Schema Statement Event Tables”.

The events_statenents_current table has these columns:
e THREAD | D, EVENT_I D

The thread associated with the event and the thread current event number when the event starts.
The THREAD | Dand EVENT_| D values taken together uniquely identify the row. No two rows have
the same pair of values.

« END_EVENT_I D

This column is set to NULL when the event starts and updated to the thread current event number
when the event ends.

« EVENT_NAME

The name of the instrument from which the event was collected. This is a NAVE value from the
set up_i nst runent s table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Chapter 7, Performance Schema Instrument Naming Conventions.

For SQL statements, the EVENT _NANME value initially is st at enent / com Quer y until the statement
is parsed, then changes to a more appropriate value, as described in Section 10.6, “Performance
Schema Statement Event Tables”.

* SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

« TI MER_START, TI MER_END, TI MER WAI T

82

https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-event-tables.html

The events_statements_current Table

Timing information for the event. The unit for these values is picoseconds (trillionths of a second).
The TI MER_START and TI MER_END values indicate when event timing started and ended.
TI MER _WAI T is the event elapsed time (duration).

If an event has not finished, TI MER_END is the current timer value and TI MER_WAI T is the time
elapsed so far (TI MER_END - TI MER_START).

If an event is produced from an instrument that has TI MED = NO, timing information is not collected,
and TI MER_START, TI MER_END, and TI MER_WAI T are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 5.1, “Performance Schema Event Timing".

LOCK_TI ME

The time spent waiting for table locks. This value is computed in microseconds but normalized to
picoseconds for easier comparison with other Performance Schema timers.

SQL_TEXT

The text of the SQL statement. For a command not associated with an SQL statement, the value is
NULL.

The maximum space available for statement display is 1024 bytes by default. To change this value,
set the per f or mance_schenma_max_sql _text | engt h system variable at server startup.
(Changing this value affects columns in other Performance Schema tables as well. See Performance
Schema Statement Digests and Sampling.)

DI GEST

The statement digest SHA-256 value as a string of 64 hexadecimal characters, or NULL if the
stat enent s_di gest consumer is no. For more information about statement digesting, see
Performance Schema Statement Digests and Sampling.

DI GEST_TEXT

The normalized statement digest text, or NULL if the st at enent s_di gest consumer is no. For
more information about statement digesting, see Performance Schema Statement Digests and
Sampling.

The per f ormance_schena_nax_di gest | engt h system variable determines the
maximum number of bytes available per session for digest value storage. However, the display
length of statement digests may be longer than the available buffer size due to encoding of
statement elements such as keywords and literal values in digest buffer. Consequently, values
selected from the DI GEST_TEXT column of statement event tables may appear to exceed the
per formance_schena_max_di gest | engt h value.

CURRENT _ SCHEMA
The default database for the statement, NULL if there is none.
OBJECT_SCHEMA, OBJECT_NAME, OBJECT _TYPE

For nested statements (stored programs), these columns contain information about the parent
statement. Otherwise they are NULL.

OBJECT_I NSTANCE_BEG N
This column identifies the statement. The value is the address of an object in memory.

MYSQL_ERRNO

83

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-statement-digests.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-statement-digests.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-statement-digests.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-statement-digests.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-statement-digests.html

The events_statements_current Table

The statement error number, from the statement diagnostics area.
RETURNED_SQLSTATE

The statement SQLSTATE value, from the statement diagnostics area.
MESSAGE _TEXT

The statement error message, from the statement diagnostics area.
ERRORS

Whether an error occurred for the statement. The value is O if the SQLSTATE value begins with 00
(completion) or 01 (warning). The value is 1 is the SQLSTATE value is anything else.

WARNI NGS
The number of warnings, from the statement diagnostics area.
ROAS_AFFECTED

The number of rows affected by the statement. For a description of the meaning of “affected,” see
mysql_affected_rows().

ROWS_SENT
The number of rows returned by the statement.
ROWS_EXAM NED

The number of rows examined by the server layer (not counting any processing internal to storage
engines).

CREATED TMP_DI SK_TABLES

Like the Creat ed_t np_di sk_t abl es status variable, but specific to the statement.
CREATED _TMP_TABLES

Like the Creat ed_t np_t abl es status variable, but specific to the statement.
SELECT_FULL_JO N

Like the Sel ect _f ul | _j oi n status variable, but specific to the statement.
SELECT FULL_RANGE JO N

Like the Sel ect _ful | _range_j oi n status variable, but specific to the statement.
SELECT_RANGE

Like the Sel ect _r ange status variable, but specific to the statement.
SELECT_RANGE_CHECK

Like the Sel ect _range_check status variable, but specific to the statement.
SELECT_SCAN

Like the Sel ect _scan status variable, but specific to the statement.

SORT _MERGE_PASSES

Like the Sort _ner ge_passes status variable, but specific to the statement.

84

https://dev.mysql.com/doc/c-api/8.0/en/mysql-affected-rows.html
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Created_tmp_disk_tables
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Created_tmp_tables
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Select_full_join
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Select_full_range_join
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Select_range
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Select_range_check
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Select_scan
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Sort_merge_passes

The events_statements_current Table

SORT_RANGE
Like the Sort _r ange status variable, but specific to the statement.

SORT RO\

Like the Sort _r ows status variable, but specific to the statement.
SORT_SCAN

Like the Sort _scan status variable, but specific to the statement.

NO_| NDEX_USED

1 if the statement performed a table scan without using an index, O otherwise.
NO_GOOD_| NDEX_USED

1 if the server found no good index to use for the statement, 0 otherwise. For additional information,
see the description of the Ext r a column from EXPLAI N output for the Range checked for each
recor d value in EXPLAIN Output Format.

NESTI NG_EVENT_I D, NESTI NG_EVENT_TYPE, NESTI NG_EVENT_LEVEL

These three columns are used with other columns to provide information as follows for top-level
(unnested) statements and nested statements (executed within a stored program).

For top level statements:

OBJECT_TYPE = NULL

OBJECT_SCHEMA = NULL

OBJECT_NAME = NULL

NESTI NG_EVENT_I D = the parent transaction EVENT_| D
NESTI NG_EVENT_TYPE = ' TRANSACTI ON

NESTI NG LEVEL = 0

For nested statements:

OBJECT_TYPE = the parent statenent object type
OBJECT_SCHEMA = the parent statenent object schemm
OBJECT_NAME = the parent statenent object name

NESTI NG EVENT_I D = the parent statenent EVENT_|D

NESTI NG_EVENT_TYPE = ' STATEMENT'

NESTI NG_LEVEL = the parent statenent NESTING LEVEL plus one

STATEMENT_I D

The query ID maintained by the server at the SQL level. The value is unique for the server instance
because these IDs are generated using a global counter that is incremented atomically. This column
was added in MySQL 8.0.14.

CPU_TI ME

The time spent on CPU for the current thread, expressed in picoseconds. This column was added in
MySQL 8.0.28.

MAX_CONTRCOLLED_ MEMORY

Reports the maximum amount of controlled memory used by a statement during execution.
This column was added in MySQL 8.0.31.

MAX_TOTAL_MEMORY

Reports the maximum amount of memory used by a statement during execution.

85

https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Sort_range
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Sort_rows
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Sort_scan
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html

The events_statements_history Table

This column was added in MySQL 8.0.31.
e EXECUTI ON_ENG NE

The query execution engine. The value is either PRI MARY or SECONDARY. For use with MySQL

HeatWave Service and HeatWave, where the PRI MARY engine is | nnoDB and the SECONDARY

engine is HeatWave (RAPI D). For MySQL Community Edition Server, MySQL Enterprise Edition
Server (on-premise), and MySQL HeatWave Service without HeatWave, the value is always

PRI MARY. This column was added in MySQL 8.0.29.

The events_statenents_current table has these indexes:
* Primary key on (THREAD | D, EVENT _| D)

TRUNCATE TABLE is permitted for the event s_st at enent s_curr ent table. It removes the rows.

10.6.2 The events_statements_history Table

The event s_st at enent s_hi st ory table contains the N most recent statement events that have
ended per thread. Statement events are not added to the table until they have ended. When the table
contains the maximum number of rows for a given thread, the oldest thread row is discarded when a
new row for that thread is added. When a thread ends, all its rows are discarded.

The Performance Schema autosizes the value of N during server startup. To set the number of rows
per thread explicitly, set the per f or nance_schema_events_statenents_hi story_si ze system
variable at server startup.

The event s_st at enent s_hi st ory table has the same columns and indexing as
events_statenents_current. See Section 10.6.1, “The events_statements_current Table”.

TRUNCATE TABLE is permitted for the event s_st at ement s_hi st ory table. It removes the rows.

For more information about the relationship between the three event s_st at enent s_xxx event
tables, see Performance Schema Tables for Current and Historical Events.

For information about configuring whether to collect statement events, see Section 10.6, “Performance
Schema Statement Event Tables”.

10.6.3 The events_statements_history long Table

The events_statenents_hi st ory_| ong table contains the N most recent statement events that
have ended globally, across all threads. Statement events are not added to the table until they have
ended. When the table becomes full, the oldest row is discarded when a new row is added, regardless
of which thread generated either row.

The value of Nis autosized at server startup. To set the table size explicitly, set the
performance_schema_events_statenents_hi story | ong_si ze system variable at server
startup.

The events_statenents_hi story_| ong table has the same columns as
events_statenents_current. See Section 10.6.1, “The events_statements_current Table”. Unlike
events_statenents _current,events_statenents history | ong has no indexing.

TRUNCATE TABLE is permitted for the event s_st at ement s_hi st ory_| ong table. It removes the
rows.

For more information about the relationship between the three event s_st at enent s_xxx event
tables, see Performance Schema Tables for Current and Historical Events.

For information about configuring whether to collect statement events, see Section 10.6, “Performance
Schema Statement Event Tables”.

86

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-event-tables.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-event-tables.html

The prepared_statements_instances Table

10.6.4 The prepared_statements_instances Table

The Performance Schema provides instrumentation for prepared statements, for which there are two
protocols:

» The binary protocol. This is accessed through the MySQL C APl and maps onto underlying server
commands as shown in the following table.

C API Function Corresponding Server Command
mysql _stmt _prepare() COM_STMT_PREPARE

nysqgl _stnt_execute() COM _STMT_ EXECUTE

nmysqgl _stnt_cl ose() COM _STMI_CLCSE

e The text protocol. This is accessed using SQL statements and maps onto underlying server
commands as shown in the following table.

SQL Statement Corresponding Server Command
PREPARE SQLCOM_PREPARE

EXECUTE SQLCOM EXECUTE

DEALLOCATE PREPARE, DROP PREPARE SQ.COM DEALLCCATE PREPARE

Performance Schema prepared statement instrumentation covers both protocols. The following
discussion refers to the server commands rather than the C API functions or SQL statements.

Information about prepared statements is available in the pr epar ed_st at enent s_i nst ances
table. This table enables inspection of prepared statements used in the server and

provides aggregated statistics about them. To control the size of this table, set the
perfornmance_schema_neax_prepared_statenents_ i nstances system variable at server
startup.

Collection of prepared statement information depends on the statement instruments shown
in the following table. These instruments are enabled by default. To modify them, update the
set up_i nst runent s table.

Instrument Server Command
st at ement / coni Prepar e COM_STMT_PREPARE
st at ement / conl Execut e COM _STMT_EXECUTE
statenment/sql / prepare_sql SQLCOM_PREPARE
st at ement/ sqgl / execut e_sql SQLCOM _EXECUTE

The Performance Schema manages the contents of the pr epar ed_st at enment s_i nst ances table
as follows:

« Statement preparation

A COMl_STMTI_ PREPARE or SQLCOM PREPARE command creates a prepared statement

in the server. If the statement is successfully instrumented, a new row is added to the
prepar ed_st at enment s_i nst ances table. If the statement cannot be instrumented,
Per f ormance_schema_prepar ed_st at enents_| ost status variable is incremented.

» Prepared statement execution

Execution of a COM_STMI_ EXECUTE or SQLCOM PREPARE command for an instrumented prepared
statement instance updates the corresponding pr epar ed_st at enment s_i nst ances table row.

* Prepared statement deallocation

87

https://dev.mysql.com/doc/c-api/8.0/en/mysql-stmt-prepare.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-stmt-execute.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-stmt-close.html
https://dev.mysql.com/doc/refman/8.0/en/prepare.html
https://dev.mysql.com/doc/refman/8.0/en/execute.html
https://dev.mysql.com/doc/refman/8.0/en/deallocate-prepare.html
https://dev.mysql.com/doc/refman/8.0/en/deallocate-prepare.html

The prepared_statements_instances Table

Execution of a COM STMT _CLOSE or SQLCOM DEALLOCATE PREPARE command

for an instrumented prepared statement instance removes the corresponding
prepared_statenents_instances table row. To avoid resource leaks, removal occurs even if
the prepared statement instruments described previously are disabled.

The prepar ed_st at enent s_i nst ances table has these columns:
« OBJECT | NSTANCE BEG N

The address in memory of the instrumented prepared statement.
e STATEMENT_I D

The internal statement ID assigned by the server. The text and binary protocols both use statement
IDs.

» STATEMENT_NANME

For the binary protocol, this column is NULL. For the text protocol, this column is the external
statement name assigned by the user. For example, for the following SQL statement, the name of
the prepared statement is st nt :

PREPARE stnt FROM ' SELECT 1';
¢ SQL_TEXT
The prepared statement text, with ? placeholder markers.
« OWNER THREAD | D, OANER _EVENT | D
These columns indicate the event that created the prepared statement.
« OWNER_OBJECT_TYPE, O\NER_OBJECT _SCHEMA, OWNER_OBJECT _NAME

For a prepared statement created by a client session, these columns are NULL. For a prepared
statement created by a stored program, these columns point to the stored program. A typical user
error is forgetting to deallocate prepared statements. These columns can be used to find stored
programs that leak prepared statements:

SELECT
OMER_OBJECT_TYPE, OANER _OBJECT_SCHEVA, OWNER_OBJECT_NAME,
STATEMENT_NAME, SQL_TEXT

FROM per f or mance_schema. pr epar ed_st at enent s_i nst ances

WHERE ONNER _OBJECT_TYPE |'S NOT NULL;

* The query execution engine. The value is either PRI MARY or SECONDARY. For use with MySQL
HeatWave Service and HeatWave, where the PRI MARY engine is | nnoDB and the SECONDARY
engine is HeatWave (RAPI D). For MySQL Community Edition Server, MySQL Enterprise Edition
Server (on-premise), and MySQL HeatWave Service without HeatWave, the value is always
PRI MARY. This column was added in MySQL 8.0.29.

* Tl MER_PREPARE
The time spent executing the statement preparation itself.
e COUNT_REPREPARE

The number of times the statement was reprepared internally (see Caching of Prepared Statements
and Stored Programs). Timing statistics for repreparation are not available because it is counted as
part of statement execution, not as a separate operation.

« COUNT_EXECUTE, SUM TI MER_EXECUTE, M N_TI MER_EXECUTE, AVG TI MER EXECUTE,
MAX_TI MER_EXECUTE

88

https://dev.mysql.com/doc/refman/8.0/en/statement-caching.html
https://dev.mysql.com/doc/refman/8.0/en/statement-caching.html

Performance Schema Transaction Tables

Aggregated statistics for executions of the prepared statement.
SUM XXX

The remaining SUM xxx columns are the same as for the statement summary tables (see
Section 10.20.3, “Statement Summary Tables”).

MAX_CONTROLLED MEMORY

Reports the maximum amount of controlled memory used by a prepared statement during execution.
This column was added in MySQL 8.0.31.

MAX_TOTAL_MEMORY

Reports the maximum amount of memory used by a prepared statement during execution.

This column was added in MySQL 8.0.31.

The prepar ed_st at enent s_i nst ances table has these indexes:

Primary key on (OBJECT_| NSTANCE_BEG N)
Index on (STATEMENT _| D)

Index on (STATEMENT _NANE)

Index on (OANER_THREAD | D, OANER_EVENT _| D)

Index on (OANER_OBJECT _TYPE, OANER_OBJECT SCHEMA, OANER_OBJECT _NAME)

TRUNCATE TABLE resets the statistics columns of the pr epar ed_st at enent s_i nst ances table.

10.7 Performance Schema Transaction Tables

The Performance Schema instruments transactions. Within the event hierarchy, wait events nest within
stage events, which nest within statement events, which nest within transaction events.

These tables store transaction events:

events_transactions_current: The current transaction event for each thread.

events_transactions_hi st ory: The most recent transaction events that have ended per
thread.

events_transactions_history | ong: The most recent transaction events that have ended
globally (across all threads).

The following sections describe the transaction event tables. There are also summary tables that
aggregate information about transaction events; see Section 10.20.5, “Transaction Summary Tables”.

For more information about the relationship between the three transaction event tables, see
Performance Schema Tables for Current and Historical Events.

Configuring Transaction Event Collection
Transaction Boundaries

Transaction Instrumentation
Transactions and Nested Events

Transactions and Stored Programs

89

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-event-tables.html

Configuring Transaction Event Collection

» Transactions and Savepoints

* Transactions and Errors

Configuring Transaction Event Collection

To control whether to collect transaction events, set the state of the relevant instruments and
consumers:

* The set up_i nstrunent s table contains an instrument named t r ansact i on. Use this instrument
to enable or disable collection of individual transaction event classes.

» The set up_consuner s table contains consumer values with names corresponding to the current
and historical transaction event table names. Use these consumers to filter collection of transaction
events.

The t ransact i on instrument and the event s_transacti ons_current and
event s_transactions_hi st ory transaction consumers are enabled by default:

nysql > SELECT NAME, ENABLED, TI MED
FROM per f or mance_schema. set up_i nstrunent s
VWHERE NAME = 'transaction';

mocccoococc==o ooccooco=o oo c=o= +
| NAME | ENABLED | TIMED |
mocccoococc==o ooccooco=o oo c=o= +
| transaction | YES | YES |
mocccoococc==o ooccooco=o oo c=o= +

nysql > SELECT *
FROM per f or mance_schenma. set up_consuner s
WHERE NAME LI KE 'events_transacti ons% ;

bmocccoocccocooccoocoocosoocooocooos ooccooco=o +
| NAME | ENABLED |
bmocccoocccocooccoocoocosoocooocooos ooccooco=o +
events_transacti ons_current	YES
events_transactions_history	YES
events_transactions_history_long	NO
bmocccoocccocooccoocoocosoocooocooos ooccooco=o +

To control transaction event collection at server startup, use lines like these in your ny. cnf file:
* Enable:

[nysql d]

per f or mance- schema- i nstrunent =' t ransact i on=0ON

per f or mance- schema- consuner - event s-t ransact i ons- curr ent =ON

per f or mance- schema- consuner - event s-t r ansact i ons- hi st or y=0N

per f or mance- schema- consuner - event s-transact i ons- hi st ory-1 ong=0ON

» Disable:

[nysal d]

per f or mance- schema-i nstrunent =' transact i on=0FF'

per f or mance- schema- consuner - event s-t ransact i ons- cur r ent =OFF

per f or mance- schema- consuner - event s-t r ansact i ons- hi st or y=0OFF

per f or mance- schema- consuner - event s-t ransact i ons- hi st ory-| ong=0OFF

To control transaction event collection at runtime, update the set up_i nst runent s and
set up_consuner s tables:

* Enable:

UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = 'YES', TIMED = ' YES

WHERE NAME = 'transaction';

UPDATE per f or nance_schena. set up_consuner s
SET ENABLED = ' YES'

WHERE NAME LI KE ' events_transactions% ;

90

Transaction Boundaries

» Disable:

UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = 'NO, TIMED = 'NO

VWHERE NAME = 'transaction';

UPDATE per f or mance_schena. set up_consuner s
SET ENABLED = ' NO

VWHERE NAME LI KE 'events_transacti ons% ;

To collect transaction events only for specific transaction event tables, enable the t r ansact i on
instrument but only the transaction consumers corresponding to the desired tables.

For additional information about configuring event collection, see Chapter 4, Performance Schema
Startup Configuration, and Chapter 5, Performance Schema Runtime Configuration.

Transaction Boundaries

In MySQL Server, transactions start explicitly with these statements:

START TRANSACTI ON | BEGIN | XA START | XA BEG N

Transactions also start implicitly. For example, when the aut oconmi t system variable is enabled, the
start of each statement starts a new transaction.

When aut oconmi t is disabled, the first statement following a committed transaction marks the start of
a new transaction. Subsequent statements are part of the transaction until it is committed.

Transactions explicitly end with these statements:

COWM T | ROLLBACK | XA COWM T | XA ROLLBACK

Transactions also end implicitly, by execution of DDL statements, locking statements, and server
administration statements.

In the following discussion, references to START TRANSACTI ON also apply to BEG N, XA START, and
XA BEG N. Similarly, references to COMM T and ROLLBACK apply to XA COVM T and XA ROLLBACK,
respectively.

The Performance Schema defines transaction boundaries similarly to that of the server. The start and
end of a transaction event closely match the corresponding state transitions in the server:

» For an explicitly started transaction, the transaction event starts during processing of the START
TRANSACTI ON statement.

» For an implicitly started transaction, the transaction event starts on the first statement that uses a
transactional engine after the previous transaction has ended.

» For any transaction, whether explicitly or implicitly ended, the transaction event ends when the server
transitions out of the active transaction state during the processing of COYM T or ROLLBACK.

There are subtle implications to this approach:

» Transaction events in the Performance Schema do not fully include the statement events associated
with the corresponding START TRANSACTI ON, COVWM T, or ROLLBACK statements. There is a trivial
amount of timing overlap between the transaction event and these statements.

» Statements that work with nontransactional engines have no effect on the transaction state of the
connection. For implicit transactions, the transaction event begins with the first statement that uses
a transactional engine. This means that statements operating exclusively on nontransactional tables
are ignored, even following START TRANSACTI ON.

To illustrate, consider the following scenario:

1. SET autoconmmt = OFF;
2. CREATE TABLE t1 (a INT) ENG NE = | nnoDB;

91

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_autocommit
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_autocommit
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/xa-statements.html
https://dev.mysql.com/doc/refman/8.0/en/xa-statements.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/xa-statements.html
https://dev.mysql.com/doc/refman/8.0/en/xa-statements.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html

Transaction Instrumentation

3. START TRANSACTI ON; -- Transaction 1 START
4. INSERT INTOt1 VALUES (1), (2), (3);
5. CREATE TABLE t2 (a INT) ENG NE = Myl SAM -- Transaction 1 COW T
-- (inmplicit; DDL forces comit)
6. INSERT INTO t2 VALUES (1), (2), (3); -- Update nontransactional table
7. UPDATE t2 SET a = a + 1; -- ... and again
8. INSERT INTO t1 VALUES (4), (5), (6); -- Wite to transactional table
-- Transaction 2 START (inplicit)
9. COWM T; -- Transaction 2 COWM T

From the perspective of the server, Transaction 1 ends when table t 2 is created. Transaction 2 does
not start until a transactional table is accessed, despite the intervening updates to nontransactional
tables.

From the perspective of the Performance Schema, Transaction 2 starts when the server transitions into
an active transaction state. Statements 6 and 7 are not included within the boundaries of Transaction 2,
which is consistent with how the server writes transactions to the binary log.

Transaction Instrumentation

Three attributes define transactions:

» Access mode (read only, read write)

* Isolation level (SERI ALI ZABLE, REPEATABLE READ, and so forth)
» Implicit (aut ocommi t enabled) or explicit (aut oconmi t disabled)

To reduce complexity of the transaction instrumentation and to ensure that the collected transaction
data provides complete, meaningful results, all transactions are instrumented independently of access
mode, isolation level, or autocommit mode.

To selectively examine transaction history, use the attribute columns in the transaction event tables:
ACCESS_MODE, | SOLATI ON_LEVEL, and AUTOCOWM T.

The cost of transaction instrumentation can be reduced various ways, such as enabling or disabling
transaction instrumentation according to user, account, host, or thread (client connection).

Transactions and Nested Events

The parent of a transaction event is the event that initiated the transaction. For an explicitly started
transaction, this includes the START TRANSACTI ONand COVM T AND CHAI N statements. For an
implicitly started transaction, it is the first statement that uses a transactional engine after the previous
transaction ends.

In general, a transaction is the top-level parent to all events initiated during the transaction, including
statements that explicitly end the transaction such as COMM T and ROLLBACK. Exceptions are
statements that implicitly end a transaction, such as DDL statements, in which case the current
transaction must be committed before the new statement is executed.

Transactions and Stored Programs

Transactions and stored program events are related as follows:
» Stored Procedures

Stored procedures operate independently of transactions. A stored procedure can be started within a
transaction, and a transaction can be started or ended from within a stored procedure. If called from
within a transaction, a stored procedure can execute statements that force a commit of the parent
transaction and then start a new transaction.

If a stored procedure is started within a transaction, that transaction is the parent of the stored
procedure event.

92

https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_serializable
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_repeatable-read
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_autocommit
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_autocommit
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html

Transactions and Savepoints

If a transaction is started by a stored procedure, the stored procedure is the parent of the transaction

event.

» Stored Functions

Stored functions are restricted from causing an explicit or implicit commit or rollback. Stored function
events can reside within a parent transaction event.

» Triggers

Triggers activate as part of a statement that accesses the table with which it is associated, so the

parent of a trigger event is always the statement that activates it.

Triggers cannot issue statements that cause an explicit or implicit commit or rollback of a transaction.

* Scheduled Events

The execution of the statements in the body of a scheduled event takes place in a new connection.

Nesting of a scheduled event within a parent transaction is not applicable.

Transactions and Savepoints

Savepoint statements are recorded as separate statement events. Transaction events include separate
counters for SAVEPO NT, ROLLBACK TO SAVEPO NT, and RELEASE SAVEPQO NT statements issued

during the transaction.

Transactions and Errors

Errors and warnings that occur within a transaction are recorded in statement events, but not in the
corresponding transaction event. This includes transaction-specific errors and warnings, such as a

rollback on a nontransactional table or GTID consistency errors.

10.7.1 The events_transactions_current Table

The events_transacti ons_current table contains current transaction events. The table stores

one row per thread showing the current status of the thread's most recent monitored transaction event,
so there is no system variable for configuring the table size. For example:

nysql > SELECT *

FROM per f or mance_schena. events_transactions_current LIMT 1\G

khkkkkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkkkkkkkkkk*x*%x 1 r ow khkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkkkkkkkk*x*%x

THREAD | D:

EVENT_| D:

END_EVENT | D:
EVENT_NAME:

STATE:

TRX_I D:

GTI D

Xl D

XA STATE:

SOURCE!

TI MER_START

TI MER_END:

TI MER_WAI T
ACCESS_MODE

| SOLATI ON_LEVEL:
AUTOCOWM T:
NUMBER_OF_SAVEPO NTS:
NUMBER_OF ROLLBACK_TO_SAVEPO NT:
NUMBER_OF RELEASE SAVEPO NT:
OBJECT_I NSTANCE_BEG N
NESTI NG EVENT | D:

NESTI NG_EVENT_TYPE:

26

7

NULL
transaction

ACTI VE

NULL

3E11FA47- 71CA- 11E1- 9E33- CB0AA9429562: 56
NULL

NULL
transaction. cc: 150
420833537900000
NULL

NULL

READ WRI TE
REPEATABLE READ
NO

0

0

0

NULL

6

STATEMENT

93

https://dev.mysql.com/doc/refman/8.0/en/savepoint.html
https://dev.mysql.com/doc/refman/8.0/en/savepoint.html
https://dev.mysql.com/doc/refman/8.0/en/savepoint.html

The events_transactions_current Table

Of the tables that contain transaction event rows, event s_transacti ons_current

is the most fundamental. Other tables that contain transaction event rows are logically

derived from the current events. For example, the event s_transacti ons_hi st ory and
events_transactions_history | ong tables are collections of the most recent transaction
events that have ended, up to a maximum number of rows per thread and globally across all threads,
respectively.

For more information about the relationship between the three transaction event tables, see
Performance Schema Tables for Current and Historical Events.

For information about configuring whether to collect transaction events, see Section 10.7,
“Performance Schema Transaction Tables”.

The events_transactions_current table has these columns:
 THREAD | D, EVENT_I D

The thread associated with the event and the thread current event number when the event starts.
The THREAD | Dand EVENT _| D values taken together uniquely identify the row. No two rows have
the same pair of values.

« END_EVENT I D

This column is set to NULL when the event starts and updated to the thread current event number
when the event ends.

« EVENT_NAME

The name of the instrument from which the event was collected. This is a NAVE value from the
set up_i nst runent s table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Chapter 7, Performance Schema Instrument Naming Conventions.

» STATE

The current transaction state. The value is ACTI VE (after START TRANSACTI ON or BEG N),
COWM TTED (after COVM T), or ROLLED BACK (after ROLLBACK).

« TRX_ID
Unused.
e GIID

The GTID column contains the value of gt i d_next , which can be one of ANONYMOUS, AUTOVATI C,
or a GTID using the format UUI D: NUVBER. For transactions that use gt i d_next =AUTOVATI C,
which is all normal client transactions, the GTID column changes when the transaction commits

and the actual GTID is assigned. If gt i d_node is either ON or ON_PERM SSI VE, the GTID column
changes to the transaction's GTID. If gt i d_node is either OFF or OFF_PERM SSI VE, the GTID
column changes to ANONYMOUS.

« X D_FORMAT | D, XI D_GTRI D, and XI D_BQUAL

The elements of the XA transaction identifier. They have the format described in XA Transaction
SQL Statements.

« XA _STATE

The state of the XA transaction. The value is ACTI VE (after XA START), | DLE (after XA END),
PREPARED (after XA PREPARE), ROLLED BACK (after XA ROLLBACK), or COVM TTED (after XA
COW T).

On a replica, the same XA transaction can appear in the event s_t ransacti ons_current table
with different states on different threads. This is because immediately after the XA transaction is

94

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-event-tables.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_next
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_next
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_mode
https://dev.mysql.com/doc/refman/8.0/en/xa-statements.html
https://dev.mysql.com/doc/refman/8.0/en/xa-statements.html
https://dev.mysql.com/doc/refman/8.0/en/xa-statements.html
https://dev.mysql.com/doc/refman/8.0/en/xa-statements.html
https://dev.mysql.com/doc/refman/8.0/en/xa-statements.html
https://dev.mysql.com/doc/refman/8.0/en/xa-statements.html
https://dev.mysql.com/doc/refman/8.0/en/xa-statements.html
https://dev.mysql.com/doc/refman/8.0/en/xa-statements.html

The events_transactions_current Table

prepared, it is detached from the replica's applier thread, and can be committed or rolled back by any
thread on the replica. The events_transacti ons_current table displays the current status of
the most recent monitored transaction event on the thread, and does not update this status when

the thread is idle. So the XA transaction can still be displayed in the PREPARED state for the original
applier thread, after it has been processed by another thread. To positively identify XA transactions
that are still in the PREPARED state and need to be recovered, use the XA RECOVER statement rather
than the Performance Schema transaction tables.

SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

TI MER_START, TI MER_END, TI MER_WAI T

Timing information for the event. The unit for these values is picoseconds (trillionths of a second).
The TI MER_START and TI MER_END values indicate when event timing started and ended.
TI MER _WAI T is the event elapsed time (duration).

If an event has not finished, TI MER_END is the current timer value and TI MER_WAI T is the time
elapsed so far (TI MER_END - TI MER_START).

If an event is produced from an instrument that has TI MED = NGO, timing information is not collected,
and Tl MER_START, TI MER_END, and TI MER_WAI T are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 5.1, “Performance Schema Event Timing”.

ACCESS MODE
The transaction access mode. The value is READ WRI TE or READ ONLY.
| SOLATI ON_LEVEL

The transaction isolation level. The value is REPEATABLE READ, READ COVM TTED, READ
UNCOWM TTED, or SERI ALI ZABLE.

AUTOCOW T
Whether autocommit mode was enabled when the transaction started.

NUVBER_OF_SAVEPO NTS, NUVBER OF ROLLBACK_TO SAVEPO NT,
NUVBER_OF RELEASE_SAVEPO NT

The number of SAVEPO NT, ROLLBACK TO SAVEPO NT, and RELEASE SAVEPO NT statements
issued during the transaction.

OBJECT_I NSTANCE_BEG N

Unused.

NESTI NG_EVENT | D

The EVENT _| Dvalue of the event within which this event is nested.
NESTI NG_EVENT_TYPE

The nesting event type. The value is TRANSACTI ON, STATEMENT, STAGE, or WAI T. (TRANSACTI ON
does not appear because transactions cannot be nested.)

The event s_t ransacti ons_current table has these indexes:

95

https://dev.mysql.com/doc/refman/8.0/en/xa-statements.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_repeatable-read
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-uncommitted
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-uncommitted
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_serializable
https://dev.mysql.com/doc/refman/8.0/en/savepoint.html
https://dev.mysql.com/doc/refman/8.0/en/savepoint.html
https://dev.mysql.com/doc/refman/8.0/en/savepoint.html

The events_transactions_history Table

e Primary key on (THREAD | D, EVENT | D)

TRUNCATE TABLE is permitted for the event s _transacti ons_current table. It removes the rows.

10.7.2 The events_transactions_history Table

The events_transacti ons_hi st ory table contains the N most recent transaction events that have
ended per thread. Transaction events are not added to the table until they have ended. When the table
contains the maximum number of rows for a given thread, the oldest thread row is discarded when a
new row for that thread is added. When a thread ends, all its rows are discarded.

The Performance Schema autosizes the value of N during server startup. To set the number of rows
per thread explicitly, set the per f or mance_schema_events_transacti ons_hi story_si ze
system variable at server startup.

The event s_transacti ons_hi st ory table has the same columns and indexing as
events_transactions_current. See Section 10.7.1, “The events_transactions_current Table”.

TRUNCATE TABLE is permitted for the event s_transacti ons_hi st ory table. It removes the rows.

For more information about the relationship between the three transaction event tables, see
Performance Schema Tables for Current and Historical Events.

For information about configuring whether to collect transaction events, see Section 10.7,
“Performance Schema Transaction Tables”.

10.7.3 The events_transactions_history long Table

The events_transacti ons_hi story_| ong table contains the N most recent transaction events
that have ended globally, across all threads. Transaction events are not added to the table until they
have ended. When the table becomes full, the oldest row is discarded when a new row is added,
regardless of which thread generated either row.

The Performance Schema autosizes the value of Nis autosized at server startup. To set the table size
explicitly, set the per f or mance_schena_events_transacti ons_hi story_| ong_si ze system
variable at server startup.

The events_transacti ons_hi story_| ong table has the same columns as
events_transactions_current. See Section 10.7.1, “The events_transactions_current Table”.
Unlike event s_transacti ons_current,events_transactions_history | ong hasno
indexing.

TRUNCATE TABLE is permitted for the event s_transacti ons_hi story_| ong table. It removes
the rows.

For more information about the relationship between the three transaction event tables, see
Performance Schema Tables for Current and Historical Events.

For information about configuring whether to collect transaction events, see Section 10.7,
“Performance Schema Transaction Tables”.

10.8 Performance Schema Connection Tables

When a client connects to the MySQL server, it does so under a particular user name and from a
particular host. The Performance Schema provides statistics about these connections, tracking them
per account (user and host combination) as well as separately per user name and host name, using
these tables:

e account s: Connection statistics per client account

» host s: Connection statistics per client host name

96

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-event-tables.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-event-tables.html

Performance Schema Connection Tables

« user s: Connection statistics per client user name

The meaning of “account” in the connection tables is similar to its meaning in the MySQL grant tables
in the mysql system database, in the sense that the term refers to a combination of user and host
values. They differ in that, for grant tables, the host part of an account can be a pattern, whereas for
Performance Schema tables, the host value is always a specific nonpattern host name.

Each connection table has CURRENT _CONNECTI ONS and TOTAL_CONNECTI ONS columns to track

the current and total number of connections per “tracking value” on which its statistics are based. The
tables differ in what they use for the tracking value. The account s table has USER and HOST columns
to track connections per user and host combination. The user s and host s tables have a USER and
HOST column, respectively, to track connections per user name and host name.

The Performance Schema also counts internal threads and threads for user sessions that failed to
authenticate, using rows with USER and HOST column values of NULL.

Suppose that clients named user 1 and user 2 each connect one time from host a and host b. The
Performance Schema tracks the connections as follows:

* The account s table has four rows, for the user 1/host a, user 1/host b, user 2/host a, and
user 2/host b account values, each row counting one connection per account.

» The host s table has two rows, for host a and host b, each row counting two connections per host
name.

» The user s table has two rows, for user 1 and user 2, each row counting two connections per user
name.

When a client connects, the Performance Schema determines which row in each connection table
applies, using the tracking value appropriate to each table. If there is no such row, one is added. Then
the Performance Schema increments by one the CURRENT _CONNECTI ONS and TOTAL_CONNECTI ONS
columns in that row.

When a client disconnects, the Performance Schema decrements by one the CURRENT_CONNECTI ONS
column in the row and leaves the TOTAL_CONNECTI ONS column unchanged.

TRUNCATE TABLE is permitted for connection tables. It has these effects:

* Rows are removed for accounts, hosts, or users that have no current connections (rows with
CURRENT_CONNECTI ONS = 0).

» Nonremoved rows are reset to count only current connections: For rows with
CURRENT_CONNECTI ONS > 0, TOTAL_CONNECTI ONS is reset to CURRENT_CONNECTI ONS.

» Summary tables that depend on the connection table are implicitly truncated, as described later in
this section.

The Performance Schema maintains summary tables that aggregate connection statistics for
various event types by account, host, or user. These tables have _sunmary by account,
_summary_by host, or _summary_by user inthe name. To identify them, use this query:

nysql > SELECT TABLE_NAME FROM | NFORVATI ON_SCHENMA. TABLES
WHERE TABLE_SCHEMA = ' perfor mance_schena
AND TABLE _NAME REGEXP ' _summary_by_(account| host | user)
ORDER BY TABLE_NAME

events_errors_summary_by_account _by_error
events_errors_summary_by_host_by_error
events_errors_summary_by_user_by_error

event s_stages_summary_by_account _by_event _name
event s_stages_summary_by_host _by_event _nane
events_stages_summary_by_user_by_event _nanme
events_stat ements_summary_by_account _by_event _nanme

97

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

The accounts Table

event s_st at ement s_sumary_by_host _by_event _nane
event s_st at ement s_summary_by_user _by_event _nane
event s_transacti ons_sunmary_by_account _by_event _nane
event s_transacti ons_sunmary_by_host _by_event _nane
event s_transacti ons_sunmary_by_user _by_event _nane
event s_wai ts_summary_by_account _by_event _nane
event s_wai ts_summary_by_host _by_event _nane

event s_wai ts_sunmary_by_user _by_event _nane
menory_summary_by_account _by_event _nane
menory_sumary_by_host _by_event _nane
menory_sumrary_by_user_by_event _nane

For details about individual connection summary tables, consult the section that describes tables for
the summarized event type:

» Wait event summaries: Section 10.20.1, “Wait Event Summary Tables”

» Stage event summaries: Section 10.20.2, “Stage Summary Tables”

« Statement event summaries: Section 10.20.3, “Statement Summary Tables”

» Transaction event summaries: Section 10.20.5, “Transaction Summary Tables”
* Memory event summaries: Section 10.20.10, “Memory Summary Tables”

» Error event summaries: Section 10.20.11, “Error Summary Tables”

TRUNCATE TABLE is permitted for connection summary tables. It removes rows for accounts, hosts,

or users with no connections, and resets the summary columns to zero for the remaining rows. In
addition, each summary table that is aggregated by account, host, user, or thread is implicitly truncated
by truncation of the connection table on which it depends. The following table describes the relationship
between connection table truncation and implicitly truncated tables.

Table 10.2 Implicit Effects of Connection Table Truncation

Truncated Connection Table Implicitly Truncated Summary Tables

accounts Tables with names containing
_summary_by_ account,
_summary_by thread

host s Tables with names containing
_sunmary_by account, sunmary_by host,
_sunmary_by thread

users Tables with names containing
_sunmary_by account, summary_ by user,
_sunmary_by thread

Truncating a _sunmmary_gl obal summary table also implicitly truncates its

corresponding connection and thread summary tables. For example, truncating
events_waits_sunmary_gl obal _by event name implicitly truncates the wait event summary
tables that are aggregated by account, host, user, or thread.

10.8.1 The accounts Table

The account s table contains a row for each account that has connected to the MySQL server. For
each account, the table counts the current and total number of connections. The table size is autosized
at server startup. To set the table size explicitly, set the per f or mance_schena_accounts_si ze
system variable at server startup. To disable account statistics, set this variable to 0.

The account s table has the following columns. For a description of how the Performance Schema
maintains rows in this table, including the effect of TRUNCATE TABLE, see Section 10.8, “Performance
Schema Connection Tables”.

98

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

The hosts Table

USER

The client user name for the connection. This is NULL for an internal thread, or for a user session
that failed to authenticate.

HOST

The host from which the client connected. This is NULL for an internal thread, or for a user session
that failed to authenticate.

CURRENT _CONNECTI ONS

The current number of connections for the account.

TOTAL_CONNECTI ONS

The total number of connections for the account.

MAX_SESSI ON_CONTROLLED MEMORY

Reports the maximum amount of controlled memory used by a session belonging to the account.
This column was added in MySQL 8.0.31.

MAX_SESSI ON_TOTAL_ MEMORY

Reports the maximum amount of memory used by a session belonging to the account.

This column was added in MySQL 8.0.31.

The account s table has these indexes:

Primary key on (USER, HOST)

10.8.2 The hosts Table

The host s table contains a row for each host from which clients have connected to the

MySQL server. For each host name, the table counts the current and total number of

connections. The table size is autosized at server startup. To set the table size explicitly, set the
performance_schema_hosts_si ze system variable at server startup. To disable host statistics, set
this variable to O.

The host s table has the following columns. For a description of how the Performance Schema
maintains rows in this table, including the effect of TRUNCATE TABLE, see Section 10.8, “Performance
Schema Connection Tables”.

HOST

The host from which the client connected. This is NULL for an internal thread, or for a user session
that failed to authenticate.

CURRENT_CONNECTI ONS

The current number of connections for the host.

TOTAL_CONNECTI ONS

The total number of connections for the host.

MAX_SESSI ON_CONTROLLED MEMORY

Reports the maximum amount of controlled memory used by a session belonging to the host.

This column was added in MySQL 8.0.31.

99

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

The users Table

« MAX_SESSI ON_TOTAL_MEMORY
Reports the maximum amount of memory used by a session belonging to the host.
This column was added in MySQL 8.0.31.

The host s table has these indexes:

» Primary key on (HOST)

10.8.3 The users Table

The user s table contains a row for each user who has connected to the MySQL server. For each user
name, the table counts the current and total number of connections. The table size is autosized at
server startup. To set the table size explicitly, set the per f or rance_schena_users_si ze system
variable at server startup. To disable user statistics, set this variable to 0.

The user s table has the following columns. For a description of how the Performance Schema
maintains rows in this table, including the effect of TRUNCATE TABLE, see Section 10.8, “Performance
Schema Connection Tables”.

* USER

The client user name for the connection. This is NULL for an internal thread, or for a user session
that failed to authenticate.

e CURRENT_CONNECTI ONS
The current number of connections for the user.

« TOTAL_CONNECTI ONS
The total number of connections for the user.

« MAX_SESSI ON_CONTROLLED MEMORY
Reports the maximum amount of controlled memory used by a session belonging to the user.
This column was added in MySQL 8.0.31.

« MAX_SESSI ON_TOTAL_MEMORY
Reports the maximum amount of memory used by a session belonging to the user.
This column was added in MySQL 8.0.31.

The user s table has these indexes:

» Primary key on (USER)

10.9 Performance Schema Connection Attribute Tables

Connection attributes are key-value pairs that application programs can pass to the server at connect
time. For applications based on the C API implemented by the | i bnysqgl cl i ent client library, the
nmysqgl _options() and nysql _opti ons4() functions define the connection attribute set. Other
MySQL Connectors may provide their own attribute-definition methods.

These Performance Schema tables expose attribute information:

» session_account _connect attrs: Connection attributes for the current session, and other
sessions associated with the session account

e session_connect _attrs: Connection attributes for all sessions

100

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options4.html

Available Connection Attributes

In addition, connect events written to the audit log may include connection attributes. See Audit Log
File Formats.

Attribute names that begin with an underscore (_) are reserved for internal use and should not be
created by application programs. This convention permits new attributes to be introduced by MySQL
without colliding with application attributes, and enables application programs to define their own
attributes that do not collide with internal attributes.

» Available Connection Attributes

» Connection Attribute Limits

Available Connection Attributes

The set of connection attributes visible within a given connection varies depending on factors such as
your platform, MySQL Connector used to establish the connection, or client program.

The | i bnysqgl cl i ent client library sets these attributes:

* _client_nane: The client name (I i bnysql for the client library).
e client _version: The client library version.

» _0s: The operating system (for example, Li nux, W n64).

» _pi d: The client process ID.

* _pl at f or m The machine platform (for example, x86_64).

» _thread: The client thread ID (Windows only).

Other MySQL Connectors may define their own connection attributes.

MySQL Connector/C++ 8.0.16 and higher defines these attributes for applications that use X DevAPI or
X DevAPI for C:

* _client_license: The connector license (for example GPL- 2. 0).
e _client_nane: The connector name (mysql - connect or - cpp).

e client_version: The connector version.

» _0s: The operating system (for example, Li nux, W n64).

e _pi d: The client process ID.

* _pl at f or m The machine platform (for example, x86_64).

e source_host: The host name of the machine on which the client is running.
» _thread: The client thread ID (Windows only).

MySQL Connector/J defines these attributes:

e _client_nane: The client name

e client _version: The client library version

» _0s: The operating system (for example, Li nux, W n64)

e client _I|icense: The connector license type

» _pl at f or m The machine platform (for example, x86_64)

e runtinme_vendor: The Java runtime environment (JRE) vendor

101

https://dev.mysql.com/doc/refman/8.0/en/audit-log-file-formats.html
https://dev.mysql.com/doc/refman/8.0/en/audit-log-file-formats.html

Available Connection Attributes

e runtinme_version: The Java runtime environment (JRE) version
MySQL Connector/NET defines these attributes:

» client_version: The client library version.

e _0s: The operating system (for example, Li nux, W n64).

* _pi d: The client process ID.

* _pl at f or m The machine platform (for example, x86_64).

e _program nane: The client name.

* _thread: The client thread ID (Windows only).

The Connector/Python 8.0.17 and higher implementation defines these attributes; some values and
attributes depend on the Connector/Python implementation (pure python or c-ext):

« client_I|icense: The license type of the connector; GPL- 2. 0 or Conmmrer ci al . (pure python
only)

e client_nane: Settomysql - connect or - pyt hon (pure python) or | i brmysql (c-ext)

» _client_version: The connector version (pure python) or mysqlclient library version (c-ext).

e _0s: The operating system with the connector (for example, Li nux, W n64).

* _pi d: The process identifier on the source machine (for example, 26955)

e _pl at f or m The machine platform (for example, x86_64).

e source_host: The host name of the machine on which the connector is connecting from.

» _connect or _ver si on: The connector version (for example, 8. 0. 37) (c-ext only).

e connector_|icense: The license type of the connector; GPL- 2. 0 or Conmrer ci al (c-ext only).
» _connect or _nane: Always setto mysqgl - connect or - pyt hon (c-ext only).

PHP defines attributes that depend on how it was compiled:

e Compiled using | i bnysql cl i ent: The standard | i brmysql cl i ent attributes, described
previously.

» Compiled using mysqgl nd: Only the cl i ent nane attribute, with a value of mysql nd.

Many MySQL client programs set a pr ogr am _nane attribute with a value equal to the client name.
For example, nysqgl adm n and nysql dunp set pr ogr am nane to nmysql adm n and nysql dunp,
respectively. MySQL Shell sets pr ogr am nane to nysql sh.

Some MySQL client programs define additional attributes:
* nysql (as of MySQL 8.0.17):

e 0s_user: The name of the operating system user running the program. Available on Unix and
Unix-like systems and Windows.

e 0s_sudouser : The value of the SUDO_USER environment variable. Available on Unix and Unix-
like systems.

nysql connection attributes for which the value is empty are not sent.
« mysql bi nl og:

e client_role:binary_log_listener

102

Connection Attribute Limits

» Replica connections:

e program nane: nysql d

e client_role:binary_|log_listener

e client_replication_channel nane: The channel name.
» FEDERATED storage engine connections:

e program nane: nysql d

e client _role:federated_storage

Connection Attribute Limits

There are limits on the amount of connection attribute data transmitted from client to server:
A fixed limit imposed by the client prior to connect time.

» A fixed limit imposed by the server at connect time.

» A configurable limit imposed by the Performance Schema at connect time.

For connections initiated using the C API, the | i brysqgl cl i ent library imposes a limit of 64KB on the
aggregate size of connection attribute data on the client side: Calls to nysql _opti ons() that cause
this limit to be exceeded produce a CR_| NVALI D_PARANMETER_NOerror. Other MySQL Connectors
may impose their own client-side limits on how much connection attribute data can be transmitted to
the server.

On the server side, these size checks on connection attribute data occur:

» The server imposes a limit of 64KB on the aggregate size of connection attribute data it accepts.
If a client attempts to send more than 64KB of attribute data, the server rejects the connection.
Otherwise, the server considers the attribute buffer valid and tracks the size of the longest such
buffer in the Per f or mance_schenma_sessi on_connect _attrs_| ongest seen status variable.

» For accepted connections, the Performance Schema checks aggregate attribute size against the
value of the per f ormance_schena_sessi on_connect _attrs_si ze system variable. If attribute
size exceeds this value, these actions take place:

* The Performance Schema truncates the attribute data and increments the
Per f ormance_schena_sessi on_connect _attrs_| ost status variable, which indicates the
number of connections for which attribute truncation occurred.

« The Performance Schema writes a message to the error log if the | og_error_verbosity
system variable is greater than 1:

Connection attributes of |Iength N were truncated
(N bytes | ost)

for connection N, user user_name@ost_nanme

(as user_nane), auth: {yes|no}

The information in the warning message is intended to help DBAs identify clients for which
attribute truncation occurred.

* A _truncat ed attribute is added to the session attributes with a value indicating how many bytes
were lost, if the attribute buffer has sufficient space. This enables the Performance Schema to
expose per-connection truncation information in the connection attribute tables. This information
can be examined without having to check the error log.

10.9.1 The session_account_connect_attrs Table

103

https://dev.mysql.com/doc/refman/8.0/en/federated-storage-engine.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_invalid_parameter_no
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_log_error_verbosity

The session_connect_attrs Table

Application programs can provide key-value connection attributes to be passed to the server at connect
time. For descriptions of common attributes, see Section 10.9, “Performance Schema Connection
Attribute Tables”.

The sessi on_account _connect _at t r s table contains connection attributes only for the current
session, and other sessions associated with the session account. To see connection attributes for all
sessions, use the sessi on_connect _attrs table.

The sessi on_account _connect _attr s table has these columns:
« PROCESSLI ST_I D

The connection identifier for the session.
« ATTR_NAME

The attribute name.
« ATTR _VALUE

The attribute value.
* ORDI NAL_PGsI TI ON

The order in which the attribute was added to the set of connection attributes.
The sessi on_account _connect _at tr s table has these indexes:
* Primary key on (PROCESSLI ST_| D, ATTR_NANE)

TRUNCATE TABLE is not permitted for the sessi on_account _connect attrs table.

10.9.2 The session_connect_attrs Table

Application programs can provide key-value connection attributes to be passed to the server at connect
time. For descriptions of common attributes, see Section 10.9, “Performance Schema Connection
Attribute Tables”.

The sessi on_connect _attr s table contains connection attributes for all sessions. To see
connection attributes only for the current session, and other sessions associated with the session
account, use the sessi on_account connect _attrs table.

The sessi on_connect _attr s table has these columns:
* PROCESSLI ST_I D

The connection identifier for the session.
o ATTR NAME

The attribute name.
» ATTR_VALUE

The attribute value.
* ORDI NAL_PGCsI TI ON

The order in which the attribute was added to the set of connection attributes.
The sessi on_connect _at tr s table has these indexes:
* Primary key on (PROCESSLI ST_| D, ATTR_NANE)

TRUNCATE TABLE is not permitted for the sessi on_connect _attrs table.

104

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

Performance Schema User-Defined Variable Tables

10.10 Performance Schema User-Defined Variable Tables

The Performance Schema provides a user vari abl es_by t hr ead table that exposes user-defined
variables. These are variables defined within a specific session and include a @character preceding
the name; see User-Defined Variables.

The user vari abl es_by_t hr ead table has these columns:

THREAD | D

The thread identifier of the session in which the variable is defined.
VARI ABLE_NAME

The variable name, without the leading @character.

VARI ABLE_VALUE

The variable value.

The user vari abl es_by _t hr ead table has these indexes:

Primary key on (THREAD _| D, VARI ABLE_NANE)

TRUNCATE TABLE is not permitted for the user vari abl es_by t hr ead table.

10.11 Performance Schema Replication Tables

The Performance Schema provides tables that expose replication information. This is similar to the
information available from the SHOW REPLI CA STATUS statement, but representation in table form is
more accessible and has usability benefits:

SHOW REPLI CA STATUS output is useful for visual inspection, but not so much for programmatic
use. By contrast, using the Performance Schema tables, information about replica status can be
searched using general SELECT queries, including complex VWVHERE conditions, joins, and so forth.

Query results can be saved in tables for further analysis, or assigned to variables and thus used in
stored procedures.

The replication tables provide better diagnostic information. For multithreaded replica

operation, SHOW REPLI CA STATUS reports all coordinator and worker thread errors using the
Last SQ. ErrnoandLast SQ. Error fields, so only the most recent of those errors is visible
and information can be lost. The replication tables store errors on a per-thread basis without loss of
information.

The last seen transaction is visible in the replication tables on a per-worker basis. This is information
not available from SHOWN REPLI CA STATUS.

Developers familiar with the Performance Schema interface can extend the replication tables to
provide additional information by adding rows to the tables.

Replication Table Descriptions

The Performance Schema provides the following replication-related tables:

Tables that contain information about the connection of the replica to the source:

e replication_connection_configurati on: Configuration parameters for connecting to the
source

e replication_connection_status: Current status of the connection to the source

105

https://dev.mysql.com/doc/refman/8.0/en/user-variables.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html

Replication Table Descriptions

e replication_asynchronous_connection_fail over: Source lists for the asynchronous
connection failover mechanism

» Tables that contain general (not thread-specific) information about the transaction applier:

e replication_applier_configuration: Configuration parameters for the transaction applier
on the replica.

e replication_applier_status: Current status of the transaction applier on the replica.

» Tables that contain information about specific threads responsible for applying transactions received
from the source:

e replication_applier_status_by coordi nat or: Status of the coordinator thread (empty
unless the replica is multithreaded).

e replication_applier_status by worker: Status of the applier thread or worker threads if
the replica is multithreaded.

» Tables that contain information about channel based replication filters:

e« replication_applier_filters:Provides information about the replication filters configured
on specific replication channels.

e replication_applier_global filters:Providesinformation about global replication filters,
which apply to all replication channels.

» Tables that contain information about Group Replication members:
e replication_group_nenbers: Provides network and status information for group members.

e replication_group _nenber st ats: Provides statistical information about group members
and transactions in which they participate.

For more information see Monitoring Group Replication.

The following Performance Schema replication tables continue to be populated when the Performance
Schema is disabled:

e replication_connection_configuration
 replication_connection_status

e replication_asynchronous_connection_fail over
e replication_applier_configuration

e replication_applier_status

e replication_applier_status_by coordinator

e replication_applier_status_by worker

The exception is local timing information (start and end timestamps for

transactions) in the replication tables r epl i cat i on_connecti on_st at us,
replication_applier_status_by_coordinator, and
replication_applier_status_by_worker. This information is not collected when the
Performance Schema is disabled.

The following sections describe each replication table in more detail, including the correspondence
between the columns produced by SHOW REPLI CA STATUS and the replication table columns in which
the same information appears.

106

https://dev.mysql.com/doc/refman/8.0/en/group-replication-monitoring.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html

Replication Table Life Cycle

The remainder of this introduction to the replication tables describes how the Performance Schema
populates them and which fields from SHOW REPLI CA STATUS are not represented in the tables.

Replication Table Life Cycle

The Performance Schema populates the replication tables as follows:

Prior to execution of CHANGE REPLI CATI ON SOCURCE TO| CHANGE NMASTER TO, the tables are
empty.

After CHANCE REPLI CATI ON SOURCE TO| CHANGE MASTER TO, the configuration parameters
can be seen in the tables. At this time, there are no active replication threads, so the THREAD | D
columns are NULL and the SERVI CE_STATE columns have a value of OFF.

After START REPLI CA (or before MySQL 8.0.22, START SLAVE), non-NULL THREAD | D values
can be seen. Threads that are idle or active have a SERVI CE_STATE value of ON. The thread that
connects to the source has a value of CONNECTI NG while it establishes the connection, and ON
thereafter as long as the connection lasts.

After STOP REPLI CA, the THREAD | D columns become NULL and the SERVI CE_STATE columns
for threads that no longer exist have a value of OFF.

The tables are preserved after STOP REPLI CA or threads stopping due to an error.

Thereplication applier_status_ by worker table is nonempty only when the

replica is operating in multithreaded mode. That is, if the repl i ca_paral | el _wor kers or

sl ave_paral | el _wor ker s system variable is greater than 0, this table is populated when START
REPLI CA is executed, and the number of rows shows the number of workers.

Replica Status Information Not In the Replication Tables

The information in the Performance Schema replication tables differs somewhat from the information
available from SHOW REPLI CA STATUS because the tables are oriented toward use of global
transaction identifiers (GTIDs), not file names and positions, and they represent server UUID values,
not server ID values. Due to these differences, several SHON REPLI CA STATUS columns are not
preserved in the Performance Schema replication tables, or are represented a different way:

The following fields refer to file names and positions and are not preserved:

Master _Log_File
Read_Mast er _Log_Pos
Relay Log File

Rel ay_Log_Pos

Rel ay_Master_Log File
Exec_Mast er _Log_Pos
Until _Condition

Until _Log File

Until _Log_Pos

The Mast er _| nfo_Fi | e field is not preserved. It refers to the mast er . i nf o file used for the
replica’'s source metadata repository, which has been superseded by the use of crash-safe tables for
the repository.

The following fields are based on server i d, not server _uui d, and are not preserved:

Mast er _Server_ld
Repl i cate_l gnore_Server_|ds

The Ski p_Count er field is based on event counts, not GTIDs, and is not preserved.

These error fields are aliases for Last _SQ._Errno and Last _SQ._Err or, so they are not
preserved:

Last _Errno
Last _Error

107

https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-slave.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_replica_parallel_workers
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_slave_parallel_workers
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_uuid

Replication Channels

In the Performance Schema, this error information is available in the LAST ERROR NUVBER and
LAST ERROR _MESSAGE columns of therepl i cati on_applier_status_by worker table
(andreplication_applier_status by coordinator if the replica is multithreaded). Those
tables provide more specific per-thread error information than is available from Last _Err no and
Last _Error.

 Fields that provide information about command-line filtering options is not preserved:

Repl i cat e_Do_DB

Repl i cate_I| gnore_DB

Repl i cate_Do_Tabl e

Repl i cate_I| gnore_Tabl e
Replicate_WId_Do_Tabl e
Replicate_WId_I gnore_Tabl e

e TheReplica | O State and Repl i ca SQ. Runni ng_St at e fields are not preserved. If
needed, these values can be obtained from the process list by using the THREAD | D column of
the appropriate replication table and joining it with the | D column in the | NFORVATI ON_SCHENA
PROCESSLI ST table to select the STATE column of the latter table.

* The Executed_QG i d_Set field can show a large set with a great deal of text. Instead, the
Performance Schema tables show GTIDs of transactions that are currently being applied by
the replica. Alternatively, the set of executed GTIDs can be obtained from the value of the
gti d_execut ed system variable.

» The Seconds_Behi nd_Mast er and Rel ay_Log_Space fields are in to-be-decided status and are
not preserved.

Replication Channels

The first column of the replication Performance Schema tables is CHANNEL NANE. This enables the
tables to be viewed per replication channel. In a non-multisource replication setup there is a single
default replication channel. When you are using multiple replication channels on a replica, you can filter
the tables per replication channel to monitor a specific replication channel. See Replication Channels
and Monitoring Multi-Source Replication for more information.

10.11.1 The replication_connection_configuration Table

This table shows the configuration parameters used by the replica for connecting to the source.
Parameters stored in the table can be changed at runtime with the CHANGE REPLI CATI ON SOURCE
TOstatement (from MySQL 8.0.23) or CHANGE MASTER TOstatement (before MySQL 8.0.23).

Comparedto therepl i cati on_connecti on_st at us table,
replication_connection_configuration changes less frequently. It contains values that
define how the replica connects to the source and that remain constant during the connection, whereas
replication_connection_stat us contains values that change during the connection.

Thereplication_connection_configuration table has the following columns. The column
descriptions indicate the corresponding CHANGE REPLI CATI ON SOURCE TO| CHANGE MASTER
TOoptions from which the column values are taken, and the table given later in this section shows
the correspondence betweenrepl i cati on_connecti on_confi gurati on columns and SHOWV
REPLI CA STATUS columns.

* CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Replication Channels for more information.
(CHANGE REPLI CATI ON SOURCE TOoption: FOR CHANNEL, CHANGE MASTER TOoption: FOR
CHANNEL)

* HOST

108

https://dev.mysql.com/doc/refman/8.0/en/information-schema-processlist-table.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/8.0/en/replication-channels.html
https://dev.mysql.com/doc/refman/8.0/en/replication-multi-source-monitoring.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/replication-channels.html

The replication_connection_configuration Table

The host name of the source that the replica is connected to. (CHANGE REPLI CATI ON SOURCE TO
option: SOURCE_HOST, CHANGE MASTER TOoption: MVASTER_HOST)

PORT

The port used to connect to the source. (CHANGE REPLI CATI ON SOURCE TOoption:
SOURCE_PORT, CHANGE MASTER TOoption: MASTER _PORT)

USER

The user name of the replication user account used to connect to the source. (CHANGE
REPL| CATI ON SOURCE TOoption: SOURCE_USER, CHANGE MASTER TOoption: MASTER _USER)

NETWORK_| NTERFACE

The network interface that the replica is bound to, if any. (CHANGE REPLI CATI ON SOURCE TO
option: SOURCE_BI ND, CHANGE MASTER TO option: MASTER_BI ND)

AUTO_PGCsI TI ON

1 if GTID auto-positioning is in use; otherwise 0. (CHANGE REPLI CATI ON SOURCE TOoption:
SOURCE_AUTO_POSI Tl ON, CHANGE MASTER TOoption: MASTER_AUTO_PGCsSI TI ON)

SSL_ALLOWED, SSL_CA FI LE, SSL_CA PATH, SSL_CERTI FI CATE, SSL_Cl PHER, SSL_KEY,
SSL_VERI FY_SERVER CERTI FI CATE, SSL_CRL_FI LE, SSL_CRL_PATH

These columns show the SSL parameters used by the replica to connect to the source, if any.
SSL_ALLOVED has these values:

« Yes if an SSL connection to the source is permitted

< No if an SSL connection to the source is not permitted

e | gnor ed if an SSL connection is permitted but the replica does not have SSL support enabled

(CHANGE REPLI CATI ON SOURCE TO options for the other SSL columns: SOURCE _SSL_CA,
SOURCE_SSL__ CAPATH, SOURCE_SSL_CERT, SOURCE_SSL_Cl PHER, SOURCE_SSL_CRL,
SOURCE_SSL_ CRLPATH, SOURCE_SSL_KEY, SOURCE_SSL_VERI FY_SERVER CERT.

CHANGE MASTER TOoptions for the other SSL columns: MASTER SSL_CA, MASTER SSL_CAPATH,
MASTER SSL_CERT, MASTER SSL_Cl PHER, MASTER SSL_CRL, MASTER_SSL_ CRLPATH,
MASTER SSL_KEY, MASTER_SSL_VERI FY_SERVER _CERT.

CONNECTI ON_RETRY_I NTERVAL

The number of seconds between connect retries. (CHANGE REPLI CATI ON SOURCE TOoption:
SOURCE_CONNECT_RETRY, CHANGE MASTER TOoption: MASTER _CONNECT_RETRY)

CONNECTI ON_RETRY_COUNT

The number of times the replica can attempt to reconnect to the source in the event of a lost
connection. (CHANGE REPLI CATI ON SOURCE TOoption: SOURCE_RETRY_COUNT, CHANGE
MASTER TOoption: MASTER_RETRY_COUNT)

HEARTBEAT_| NTERVAL

The replication heartbeat interval on a replica, measured in seconds. (CHANGE REPL| CATI ON
SOURCE TOoption: SOURCE_HEARTBEAT_PERI OD, CHANGE MASTER TO option:
MASTER HEARTBEAT PERI QD)

TLS_VERSI ON

109

The replication_connection_configuration Table

The list of TLS protocol versions that are permitted by the replica for the replication connection.
For TLS version information, see Encrypted Connection TLS Protocols and Ciphers. (CHANGE
REPL| CATI ON SOURCE TOoption: SOURCE_TLS VERSI ON, CHANGE MASTER TOoption:
MASTER_TLS_VERSI ON)

TLS_Cl PHERSUI TES

The list of ciphersuites that are permitted by the replica for the replication connection. For

TLS ciphersuite information, see Encrypted Connection TLS Protocols and Ciphers. (CHANGE
REPL| CATI ON SOURCE TOoption: SOURCE_TLS Cl PHERSUI TES, CHANGE MASTER TOoption:
MASTER_TLS_Cl PHERSUI TES)

PUBLI C_KEY_PATH

The path name to a file containing a replica-side copy of the public key required by the source for
RSA key pair-based password exchange. The file must be in PEM format. This column applies to
replicas that authenticate with the sha256_passwor d or cachi ng_sha2_passwor d authentication
plugin. (CHANGE REPLI CATI ON SOURCE TOoption: SOURCE_PUBLI C_KEY_PATH, CHANGE
MASTER TOoption: MASTER_PUBLI C_KEY_PATH)

If PUBLI C_KEY_PATH s given and specifies a valid public key file, it takes precedence over
GET_PUBLI C_KEY.

GET_PUBLI C_KEY

Whether to request from the source the public key required for RSA key pair-based password
exchange. This column applies to replicas that authenticate with the cachi ng_sha2_password
authentication plugin. For that plugin, the source does not send the public key unless requested.
(CHANGE REPLI CATI ON SOURCE TOoption: GET_SOURCE_PUBLI C_KEY, CHANGE MASTER TO
option: GET_MASTER _PUBLI C_KEY)

If PUBLI C_KEY_PATH s given and specifies a valid public key file, it takes precedence over
GET_PUBLI C_KEY.

NETWORK_NAMESPACE

The network namespace name; empty if the connection uses the default (global) namespace. For
information about network namespaces, see Network Namespace Support. This column was added
in MySQL 8.0.22.

COVPRESS|I ON_ALGORI THM

The permitted compression algorithms for connections to the source. (CHANGE REPLI CATI ON
SOURCE TOoption: SOURCE_COVPRESSI ON_ALGORI THVS, CHANGE MASTER TO option:
MASTER_COVPRESSI ON_ALGORI THVS)

For more information, see Connection Compression Control.
This column was added in MySQL 8.0.18.
ZSTD_COVPRESSI ON_LEVEL

The compression level to use for connections to the source that use the zst d compression
algorithm. (CHANGE REPLI CATI ON SOURCE TOoption: SOURCE ZSTD COVPRESSI ON_LEVEL,
CHANGE MASTER TOoption: MASTER ZSTD COVPRESSI ON_LEVEL)

For more information, see Connection Compression Control.

This column was added in MySQL 8.0.18.

» SOURCE_CONNECTI ON_AUTO_FAI LOVER

110

https://dev.mysql.com/doc/refman/8.0/en/encrypted-connection-protocols-ciphers.html
https://dev.mysql.com/doc/refman/8.0/en/encrypted-connection-protocols-ciphers.html
https://dev.mysql.com/doc/refman/8.0/en/network-namespace-support.html
https://dev.mysql.com/doc/refman/8.0/en/connection-compression-control.html
https://dev.mysql.com/doc/refman/8.0/en/connection-compression-control.html

The replication_connection_configuration Table

Whether the asynchronous connection failover mechanism is activated for this replication channel.
(CHANGE REPLI CATI ON SOURCE TOoption: SOURCE_CONNECTI ON_AUTO_FAI LOVER, CHANGE
MASTER TOoption: SOURCE_CONNECTI ON_AUTO_FAI LOVER)

For more information, see Switching Sources and Replicas with Asynchronous Connection Failover.

This column was added in MySQL 8.0.22.

« GTID_ONLY

Indicates if this channel only uses GTIDs for the transaction queueing and application process
and for recovery, and does not persist binary log and relay log file names and file positions in the
replication metadata repositories. (CHANGE REPLI CATI ON SOURCE TOoption: GTI D_ONLY,

CHANGE NMASTER TOoption: GTl D_ONLY)

For more information, see GTIDs and Group Replication.

This column was added in MySQL 8.0.27.

Thereplication_connection_configuration table has these indexes:

* Primary key on (CHANNEL_NANE)

TRUNCATE TABLE is not permitted for the r epl i cati on_connecti on_confi gurati on table.

The following table shows the correspondence between

replication_connection_configuration columns and SHOV REPLI CA STATUS columns.

replication_connection_configuration
Column

SHOW REPLI CA STATUS Column

CHANNEL _NAVE

Channel _nane

HOST Sour ce_Host
PORT Sour ce_Port
USER Sour ce_User

NETWORK_| NTERFACE

Sour ce_Bi nd

AUTO_POSI TI ON

Aut 0_Posi tion

SSL_ALLOWED Source_SSL_Al | owed
SSL_CA FI LE Source_SSL_CA File
SSL_CA PATH Source_SSL_CA Path
SSL_CERTI FI CATE Source_SSL_Cert
SSL_Cl PHER Sour ce_SSL_Ci pher
SSL_KEY Sour ce_SSL_Key

SSL_VERI FY_SERVER CERTI FI CATE

Source_SSL_Verify_Server_Cert

SSL_CRL_FI LE

Source_SSL_Crl

SSL_CRL_PATH

Source_SSL_Crl path

CONNECTI ON_RETRY_I NTERVAL

Sour ce_Connect _Retry

CONNECTI ON_RETRY_ COUNT

Sour ce_Retry_Count

HEARTBEAT_| NTERVAL

None

TLS_VERSI ON

Source_TLS Versi on

PUBLI C_KEY_PATH

Sour ce_public_key path

GET_PUBLI C_KEY

Cet _source_public_key

111

https://dev.mysql.com/doc/refman/8.0/en/replication-asynchronous-connection-failover.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-gtids.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html

The replication_connection_status Table

replication_connection_configuration |SHOW REPLI CA STATUS Column
Column

NETWORK _NANMESPACE Net wor k_Nanespace
COVPRESS| ON_ALGORI THM [None]

ZSTD _COMPRESSI ON_LEVEL [None]

GIl D_ONLY [None]

10.11.2 The replication_connection_status Table

This table shows the current status of the 1/O thread that handles the replica's connection to the source,
information on the last transaction queued in the relay log, and information on the transaction currently
being queued in the relay log.

Compared to therepl i cati on_connecti on_confi gurati on table,
replication_connection_stat us changes more frequently. It contains values that change during
the connection, whereas r epl i cati on_connecti on_confi gur ati on contains values which define
how the replica connects to the source and that remain constant during the connection.

Thereplication_connection_st at us table has these columns:

CHANNEL _NANME

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Replication Channels for more information.

GROUP_NANME

If this server is a member of a group, shows the name of the group the server belongs to.
SOURCE_UUI D

The server _uui d value from the source.

THREAD_| D

The I/O thread ID.

SERVI CE_STATE

ON (thread exists and is active or idle), OFF (thread no longer exists), or CONNECTI NG (thread exists
and is connecting to the source).

RECEI VED_TRANSACTI ON_SET

The set of global transaction IDs (GTIDs) corresponding to all transactions received by this replica.
Empty if GTIDs are not in use. See GTID Sets for more information.

LAST_ERROR_NUMBER, LAST_ERRCR_MESSAGE

The error number and error message of the most recent error that caused the I/O thread to stop. An
error number of 0 and message of the empty string mean “no error.” If the LAST_ERROR_MESSAGE
value is not empty, the error values also appear in the replica's error log.

Issuing RESET MASTER or RESET REPLI CA resets the values shown in these columns.
LAST_ERROR _TI MESTAMWP

A timestamp in ' YYYY- Mt DD hh: nm ss[.fracti on]' format that shows when the most recent
1/O error took place.

112

https://dev.mysql.com/doc/refman/8.0/en/replication-channels.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_uuid
https://dev.mysql.com/doc/refman/8.0/en/replication-gtids-concepts.html#replication-gtids-concepts-gtid-sets
https://dev.mysql.com/doc/refman/8.0/en/reset-master.html
https://dev.mysql.com/doc/refman/8.0/en/reset-replica.html

The replication_connection_status Table

* LAST_HEARTBEAT_TI MESTAMP

A timestamp in ' YYYY- MM DD hh: mm ss[. fraction]' format that shows when the most recent
heartbeat signal was received by a replica.

* COUNT_RECEI VED_HEARTBEATS

The total number of heartbeat signals that a replica received since the last time it was restarted or
reset, or a CHANGE REPLI CATI ON SOURCE TO| CHANGE MASTER TOstatement was issued.

o LAST_QUEUED_TRANSACTI ON
The global transaction ID (GTID) of the last transaction that was queued to the relay log.
* LAST_QUEUED_TRANSACTI ON_ORI G NAL_COWM T_TI MESTAMP

A timestamp in ' YYYY- MM DD hh: mm ss[. fraction]" format that shows when the last
transaction queued in the relay log was committed on the original source.

o LAST_QUEUED TRANSACTI ON_| MVEDI ATE_COMM T_TI MESTAMP

A timestamp in ' YYYY- MM DD hh: mm ss[. fraction]" format that shows when the last
transaction queued in the relay log was committed on the immediate source.

o LAST_QUEUED TRANSACTI ON_START_QUEUE_TI MESTAWP

A timestamp in ' YYYY- Mt DD hh: nm ss[.fraction]"' format that shows when the last
transaction was placed in the relay log queue by this I/O thread.

« LAST_QUEUED TRANSACTI ON_END QUEUE_TI MESTAMP

A timestamp in ' YYYY- M DD hh: nm ss[.fraction]' format that shows when the last
transaction was queued to the relay log files.

* QUEUEI NG_TRANSACTI ON
The global transaction ID (GTID) of the currently queueing transaction in the relay log.
¢ QUEUEI NG_TRANSACTI ON_ORI G NAL_COW T_TI MESTAMP

A timestamp in ' YYYY- Mt DD hh: nm ss[.fraction]' format that shows when the currently
gqueueing transaction was committed on the original source.

« QUEUEI NG_TRANSACTI ON_| MVEDI ATE_COMM T_TI MESTAMP

Atimestamp in' YYYY- MM DD hh: mm ss[. fraction]"' format that shows when the currently
gqueueing transaction was committed on the immediate source.

* QUEUEI NG_TRANSACTI ON_START_QUEUE_TI MESTAMP

A timestamp in ' YYYY- Mt DD hh: nm ss[.fraction]"' format that shows when the first event of
the currently queueing transaction was written to the relay log by this I/O thread.

When the Performance Schema is disabled, local timing information is not collected, so the fields
showing the start and end timestamps for queued transactions are zero.

Thereplication_connection_stat us table has these indexes:
* Primary key on (CHANNEL _NAMNE)
 Index on (THREAD | D)

The following table shows the correspondence between r epl i cati on_connecti on_st at us
columns and SHOW REPLI CA STATUS columns.

113

https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html

The replication_asynchronous_connection_failover Table

replication_connection_status Column |SHOW REPLI CA STATUS Column
SOURCE_UUI D Mast er _UUI D

THREAD_| D None

SERVI CE_STATE Replica_l O Runni ng

RECEI VED_TRANSACTI ON_SET Retrieved Gid_Set
LAST_ERROR_NUVBER Last _1 O Errno
LAST_ERROR_MESSAGE Last _1 O Error

LAST_ERROR Tl MESTAMP Last | O Error_Tinestanp

10.11.3 The replication_asynchronous_connection_failover Table

This table holds the replica's source lists for each replication channel for the asynchronous connection
failover mechanism. The asynchronous connection failover mechanism automatically establishes an
asynchronous (source to replica) replication connection to a new source from the appropriate list after
the existing connection from the replica to its source fails. When asynchronous connection failover is
enabled for a group of replicas managed by Group Replication, the source lists are broadcast to all
group members when they join, and also when the lists change.

You set and manage source lists using the asynchr onous_connecti on_fai |l over _add_source
and asynchronous_connection_fail over del et e_sour ce functions to add and remove
replication source servers from the source list for a replication channel. To add and remove

managed groups of servers, use the asynchr onous_connection_fai |l over_add_nanaged and
asynchronous_connection_fail over del et e_managed functions instead.

For more information, see Switching Sources and Replicas with Asynchronous Connection Failover.
Thereplication_asynchronous_connection_fail over table has these columns:
» CHANNEL_NAME

The replication channel for which this replication source server is part of the source list. If this
channel's connection to its current source fails, this replication source server is one of its potential
new sources.

« HOST

The host name for this replication source server.
« PORT

The port number for this replication source server.
* NETWORK _NAMESPACE

The network namespace for this replication source server. If this value is empty, connections use the
default (global) namespace.

* V\EI GHT

The priority of this replication source server in the replication channel's source list. The weight is from
1 to 100, with 100 being the highest, and 50 being the default. When the asynchronous connection
failover mechanism activates, the source with the highest weight setting among the alternative
sources listed in the source list for the channel is chosen for the first connection attempt. If this
attempt does not work, the replica tries with all the listed sources in descending order of weight, then
starts again from the highest weighted source. If multiple sources have the same weight, the replica
orders them randomly.

« MANAGED_NAMVE

114

https://dev.mysql.com/doc/refman/8.0/en/replication-functions-async-failover.html#function_asynchronous-connection-failover-add-source
https://dev.mysql.com/doc/refman/8.0/en/replication-functions-async-failover.html#function_asynchronous-connection-failover-delete-source
https://dev.mysql.com/doc/refman/8.0/en/replication-functions-async-failover.html#function_asynchronous-connection-failover-add-managed
https://dev.mysql.com/doc/refman/8.0/en/replication-functions-async-failover.html#function_asynchronous-connection-failover-delete-managed
https://dev.mysql.com/doc/refman/8.0/en/replication-asynchronous-connection-failover.html

The replication_asynchronous_connection_failover_managed Table

The identifier for the managed group that the server is a part of. For the G- oupRepl i cati on
managed service, the identifier is the value of the gr oup_repli cati on_group_nane system
variable.

Thereplication_asynchronous_connection_fail over table has these indexes:
* Primary key on (CHANNEL_NANME, HOST, PORT, NETWORK_NAMESPACE, NMANAGED NAME)

TRUNCATE TABLE is not permitted for the r epl i cati on_asynchronous_connecti on_fail over
table.

10.11.4 The replication_asynchronous_connection_failover_managed Table

This table holds configuration information used by the replica's asynchronous connection failover
mechanism to handle managed groups, including Group Replication topologies.

When you add a group member to the source list and define it as part of a managed group,

the asynchronous connection failover mechanism updates the source list to keep it in line with
membership changes, adding and removing group members automatically as they join or leave. When
asynchronous connection failover is enabled for a group of replicas managed by Group Replication, the
source lists are broadcast to all group members when they join, and also when the lists change.

The asynchronous connection failover mechanism fails over the connection if another available server
on the source list has a higher priority (weight) setting. For a managed group, a source’s weight is
assigned depending on whether it is a primary or a secondary server. So assuming that you set up
the managed group to give a higher weight to a primary and a lower weight to a secondary, when the
primary changes, the higher weight is assigned to the new primary, so the replica changes over the
connection to it. The asynchronous connection failover mechanism additionally changes connection

if the currently connected managed source server leaves the managed group, or is no longer in the
majority in the managed group. For more information, see Switching Sources and Replicas with
Asynchronous Connection Failover.

Thereplication_asynchronous_connection_fail over _nanaged table has these columns:
* CHANNEL_NAME

The replication channel where the servers for this managed group operate.
« MANAGED NAME

The identifier for the managed group. For the G- oupRepl i cat i on managed service, the identifier is
the value of the gr oup_replicati on_group_nane system variable.

* MANAGED TYPE

The type of managed service that the asynchronous connection failover mechanism provides for this
group. The only value currently available is G- oupRepl i cati on.

» CONFI GURATI ON

The configuration information for this managed group. For the Gr oupRepl i cat i on managed
service, the configuration shows the weights assigned to the group's primary server and to the
group's secondary servers. For example: {"Primary_wei ght": 80, "Secondary_ wei ght":
60}

e Primary_wei ght: Integer between 0 and 100. Default value is 80.
e Secondary_wei ght : Integer between 0 and 100. Default value is 60.

Thereplication_asynchronous_connection_fail over _nanaged table has these indexes:

115

https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_group_name
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/replication-asynchronous-connection-failover.html
https://dev.mysql.com/doc/refman/8.0/en/replication-asynchronous-connection-failover.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_group_name

The replication_applier_configuration Table

e Primary key on (CHANNEL NAME, NMANAGED NANE)

TRUNCATE TABLE is not permitted for the
replication_asynchronous_connection_fail over _managed table.

10.11.5 The replication_applier_configuration Table

This table shows the configuration parameters that affect transactions applied by the replica.
Parameters stored in the table can be changed at runtime with the CHANGE REPLI CATI ON SOURCE
TOstatement (from MySQL 8.0.23) or CHANGE MASTER TOstatement (before MySQL 8.0.23).

Thereplication_applier_configuration table has these columns:
» CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Replication Channels for more information.

» DESI RED_DELAY

The number of seconds that the replica must lag the source. (CHANGE REPLI CATI ON SOURCE TO
option: SOURCE_DELAY, CHANGE MASTER TOoption: MVASTER DELAY) See Delayed Replication for
more information.

* PRI VI LEGE_CHECKS_USER

The user account that provides the security context for the channel (CHANGE REPLI CATI ON
SOURCE TOoption: PRI VI LEGE_CHECKS USER, CHANGE MASTER TOoption:

PRI VI LEGE CHECKS USER). This is escaped so that it can be copied into an SQL statement to
execute individual transactions. See Replication Privilege Checks for more information.

« REQUI RE_ROW FORMAT

Whether the channel accepts only row-based events (CHANGE REPLI CATI ON SOURCE TOoption:
REQUI RE_ROW FORVAT, CHANGE MASTER TOoption: REQUI RE_ROW FORNVAT). See Replication
Privilege Checks for more information.

« REQUI RE_TABLE_PRI MARY_KEY_CHECK

Whether the channel requires primary keys always, never, or according to the source's setting

(CHANGE REPLI CATI ON SOURCE TOoption: REQUI RE_TABLE_PRI MARY_KEY_CHECK, CHANGE
MASTER TOoption: REQUI RE_TABLE PRI MARY_KEY_ CHECK). See Replication Privilege Checks for
more information.

o ASSI GN_GTI DS_TO_ANONYMOUS_TRANSACTI ONS_TYPE

Whether the channel assigns a GTID to replicated transactions that do not already have one
(CHANGE REPLI CATI ON SOURCE TOoption: ASSI GN_GTI DS_TO_ANONYMOUS_TRANSACTI ONS,
CHANGE MASTER TOoption: ASSI GN_GTI DS TO ANONYMOUS TRANSACTI ONS). OFF means no
GTIDs are assigned. LOCAL means a GTID is assigned that includes the replica's own UUID (the
server _uui d setting). UUl Dmeans a GTID is assigned that includes a manually set UUID. See
Replication From a Source Without GTIDs to a Replica With GTIDs for more information.

* ASSI GN_GT1 DS_TO_ANONYMOUS_TRANSACTI ONS_VALUE

The UUID that is used as part of the GTIDs assigned to anonymous transactions (CHANGE

REPL| CATI ON SOURCE TOoption: ASSI GN_GTI DS_TO_ANONYMOUS_TRANSACTI ONS, CHANGE
MASTER TOoption: ASSI GN_GTI DS_TO_ANONYMOUS_TRANSACTI ONS). See Replication From a
Source Without GTIDs to a Replica With GTIDs for more information.

Thereplication_applier_configuration table has these indexes:

116

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/replication-channels.html
https://dev.mysql.com/doc/refman/8.0/en/replication-delayed.html
https://dev.mysql.com/doc/refman/8.0/en/replication-privilege-checks.html
https://dev.mysql.com/doc/refman/8.0/en/replication-privilege-checks.html
https://dev.mysql.com/doc/refman/8.0/en/replication-privilege-checks.html
https://dev.mysql.com/doc/refman/8.0/en/replication-privilege-checks.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_uuid
https://dev.mysql.com/doc/refman/8.0/en/replication-gtids-assign-anon.html
https://dev.mysql.com/doc/refman/8.0/en/replication-gtids-assign-anon.html
https://dev.mysql.com/doc/refman/8.0/en/replication-gtids-assign-anon.html

The replication_applier_status Table

* Primary key on (CHANNEL _NAMNE)
TRUNCATE TABLE is not permitted for the r epl i cati on_appl i er _confi gurati on table.

The following table shows the correspondence between repl i cati on_applier_configuration
columns and SHOW REPLI CA STATUS columns.

replication_applier_configuration SHOW REPLI CA STATUS Column

Column
DESI RED _DELAY

SQL_Del ay

10.11.6 The replication_applier_status Table

This table shows the current general transaction execution status on the replica.
The table provides information about general aspects of transaction applier status
that are not specific to any thread involved. Thread-specific status information is
available inthe repl i cati on_applier_status_by coordi nator table (and
replication_applier_status_by worker if the replica is multithreaded).

Thereplication_applier_status table has these columns:
» CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Replication Channels for more information.

» SERVI CE_STATE

Shows ON when the replication channel's applier threads are active or idle, OFF means that the
applier threads are not active.

* REMAI NI NG_DELAY

If the replica is waiting for DESI RED DELAY seconds to pass since the source applied a transaction,
this field contains the number of delay seconds remaining. At other times, this field is NULL. (The
DESI RED DELAY value is stored inthe repl i cati on_applier_confi gurati on table.) See
Delayed Replication for more information.

* COUNT_TRANSACTI ONS_RETRI ES

Shows the number of retries that were made because the replication SQL thread failed to apply
a transaction. The maximum number of retries for a given transaction is set by the system
variable repl i ca_transaction _retries andsl ave transaction_retries. The
replication_applier_status_by worker table shows detailed information on transaction
retries for a single-threaded or multithreaded replica.

Thereplication_applier_status table has these indexes:
» Primary key on (CHANNEL NAMNE)
TRUNCATE TABLE is not permitted for the r epl i cati on_appl i er _st at us table.

The following table shows the correspondence between repl i cati on_appl i er _st at us columns
and SHOW REPLI CA STATUS columns.

replication_applier_status Column

SHOW REPLI CA STATUS Column

SERVI CE_STATE

None

REMAI NI NG_DELAY

SQL_Remai ni ng_Del ay

117

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/replication-channels.html
https://dev.mysql.com/doc/refman/8.0/en/replication-delayed.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_replica_transaction_retries
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_slave_transaction_retries
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html

The replication_applier_status_by coordinator Table

10.11.7 The replication_applier_status_by coordinator Table

For a multithreaded replica, the replica uses multiple worker threads and a coordinator thread to
manage them, and this table shows the status of the coordinator thread. For a single-threaded replica,
this table is empty. For a multithreaded replica, the repl i cati on_appl i er _status_by worker
table shows the status of the worker threads. This table provides information about the last transaction
which was buffered by the coordinator thread to a worker’s queue, as well as the transaction it is
currently buffering. The start timestamp refers to when this thread read the first event of the transaction
from the relay log to buffer it to a worker’s queue, while the end timestamp refers to when the last event
finished buffering to the worker’s queue.

Thereplication applier_status_by coordi nator table has these columns:
e CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Replication Channels for more information.

« THREAD_I D

The SQL/coordinator thread ID.
* SERVI CE_STATE

ON (thread exists and is active or idle) or OFF (thread no longer exists).
« LAST _ERROR NUMBER, LAST ERROR MESSAGE

The error number and error message of the most recent error that caused the SQL/coordinator
thread to stop. An error number of 0 and message which is an empty string means “no error”. If the
LAST ERROR MESSAGE value is not empty, the error values also appear in the replica's error log.

Issuing RESET MASTER or RESET REPLI CA resets the values shown in these columns.

All error codes and messages displayed in the LAST _ERROR _NUMBER and LAST ERROR NMESSACGE
columns correspond to error values listed in Server Error Message Reference.

« LAST_ERROR Tl MESTAMP

A timestamp in ' YYYY- MM DD hh: mm ss[. fraction]' format that shows when the most recent
SQL/coordinator error occurred.

e LAST_PROCESSED TRANSACTI ON
The global transaction ID (GTID) of the last transaction processed by this coordinator.
¢ LAST_PROCESSED TRANSACTI ON_ORI G NAL_COWM T_TI MESTAMP

A timestamp in ' YYYY- Mt DD hh: nm ss[.fraction]' format that shows when the last
transaction processed by this coordinator was committed on the original source.

* LAST_PROCESSED TRANSACTI ON_I MVEDI ATE_COW T_TI MESTAMP

A timestamp in ' YYYY- Mt DD hh: nm ss[.fraction]' format that shows when the last
transaction processed by this coordinator was committed on the immediate source.

* LAST_PROCESSED TRANSACTI ON_START_BUFFER_TI MESTAVP

A timestamp in ' YYYY- Mt DD hh: nm ss[.fraction]"' format that shows when this coordinator
thread started writing the last transaction to the buffer of a worker thread.

* LAST_PROCESSED TRANSACTI ON_END_BUFFER_TI MESTAMP

118

https://dev.mysql.com/doc/refman/8.0/en/replication-channels.html
https://dev.mysql.com/doc/refman/8.0/en/reset-master.html
https://dev.mysql.com/doc/refman/8.0/en/reset-replica.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html

The replication_applier_status_by worker Table

A timestamp in ' YYYY- Mt DD hh: nm ss[.fraction]"' format that shows when the last
transaction was written to the buffer of a worker thread by this coordinator thread.

» PROCESSI NG_TRANSACTI ON

The global transaction ID (GTID) of the transaction that this coordinator thread is currently
processing.

* PROCESSI NG_TRANSACTI ON_ORI G NAL_COW T_TI MESTAMP

A timestamp in ' YYYY- MVt DD hh: nm ss[.fraction]"' formatthat shows when the currently
processing transaction was committed on the original source.

* PROCESSI NG_TRANSACTI ON_I MVEDI ATE_COW T_TI MESTAVP

A timestamp in ' YYYY- Mt DD hh: nm ss[.fraction]' formatthat shows when the currently
processing transaction was committed on the immediate source.

« PROCESSI NG_TRANSACTI ON_START_BUFFER_TI MESTAMP

A timestamp in ' YYYY- MM DD hh: mm ss[. fraction]' format that shows when this coordinator
thread started writing the currently processing transaction to the buffer of a worker thread.

When the Performance Schema is disabled, local timing information is not collected, so the fields
showing the start and end timestamps for buffered transactions are zero.

Thereplication_applier_status_by_coordinator table has these indexes:
* Primary key on (CHANNEL _NAME)
* Index on (THREAD _| D)

The following table shows the correspondence between
replication_applier_status_by coordi nator columns and SHON REPLI CA STATUS

columns.

replication_applier_status_by coordi ngSeiOW REPLI CA STATUS Column
Column

THREAD | D None

SERVI CE_STATE Repl i ca_SQ._Runni ng

LAST ERROR _NUMBER Last _SQ. Errno
LAST_ERROR_MESSACE Last _SQ._Error
LAST_ERROR_TI MESTAMP Last _SQ._Error_Ti nestanp

10.11.8 The replication_applier_status_by worker Table

This table provides details of the transactions handled by applier threads on a replica or Group
Replication group member. For a single-threaded replica, data is shown for the replica's single applier
thread. For a multithreaded replica, data is shown individually for each applier thread. The applier
threads on a multithreaded replica are sometimes called workers. The number of applier threads

on a replica or Group Replication group member is set by the repl i ca_paral | el _wor ker s or

sl ave_paral | el _wor ker s system variable, which is set to zero for a single-threaded replica. A
multithreaded replica also has a coordinator thread to manage the applier threads, and the status of
this thread is shown inthe repl i cati on_appl i er _status_by_coordi nat or table.

All error codes and messages displayed in the columns relating to errors correspond to error values
listed in Server Error Message Reference.

119

https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_replica_parallel_workers
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_slave_parallel_workers
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html

The replication_applier_status_by worker Table

When the Performance Schema is disabled, local timing information is not collected, so the fields
showing the start and end timestamps for applied transactions are zero. The start timestamps in this
table refer to when the worker started applying the first event, and the end timestamps refer to when
the last event of the transaction was applied.

When a replica is restarted by a START REPLI CA statement, the columns beginning
APPLYI NG_TRANSACTI ON are reset. Before MySQL 8.0.13, these columns were not reset on a replica
that was operating in single-threaded mode, only on a multithreaded replica.

Thereplication_applier_status_by worker table has these columns:

CHANNEL _NANME

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Replication Channels for more information.

WORKER | D

The worker identifier (same value as the i d column in the nysql . sl ave_wor ker _i nf o table).
After STOP REPLI CA, the THREAD | D column becomes NULL, but the WORKER | D value is
preserved.

THREAD | D

The worker thread ID.

SERVI CE_STATE

ON (thread exists and is active or idle) or OFF (thread no longer exists).
LAST_ERROR_NUMBER, LAST_ERROR_MESSAGE

The error number and error message of the most recent error that caused the worker thread
to stop. An error number of 0 and message of the empty string mean “no error”. If the
LAST_ERROR_MESSAGE value is not empty, the error values also appear in the replica’s error log.

Issuing RESET MASTER or RESET REPLI CA resets the values shown in these columns.
LAST_ERROR_TI MESTAWP

A timestamp in ' YYYY- MM DD hh: mm ss[. fraction]' format that shows when the most recent
worker error occurred.

LAST_APPLI ED_TRANSACTI ON
The global transaction ID (GTID) of the last transaction applied by this worker.
LAST_APPLI ED_TRANSACT!I ON_ORI G NAL_COWM T_TI MESTAMP

A timestamp in ' YYYY- M DD hh: nm ss[.fraction]"' format that shows when the last
transaction applied by this worker was committed on the original source.

LAST_APPLI ED_TRANSACTI ON_I| MMVEDI ATE_COW T_TI MESTAMP

A timestamp in ' YYYY- Mt DD hh: nm ss[.fraction]"' format that shows when the last
transaction applied by this worker was committed on the immediate source.

LAST_APPLI ED_TRANSACTI ON_START_APPLY_TI MESTAVP

A timestamp in ' YYYY- Mt DD hh: nm ss[.fraction]' format that shows when this worker
started applying the last applied transaction.

LAST_APPLI ED_TRANSACTI ON_END_APPLY_TI MESTAVP

120

https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/replication-channels.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/reset-master.html
https://dev.mysql.com/doc/refman/8.0/en/reset-replica.html

The replication_applier_status_by worker Table

A timestamp in ' YYYY- Mt DD hh: nm ss[.fracti on]"' format that shows when this worker
finished applying the last applied transaction.

e APPLYI NG_TRANSACTI ON
The global transaction ID (GTID) of the transaction this worker is currently applying.
e APPLYI NG_TRANSACTI ON_ORI G NAL_COWM T_TI MESTAMP

A timestamp in ' YYYY- MM DD hh: mm ss[. fraction]"' format that shows when the transaction
this worker is currently applying was committed on the original source.

* APPLYI NG_TRANSACTI ON_| MVEDI ATE_COW T_TI MESTAMP

A timestamp in ' YYYY- Mt DD hh: nm ss[.fraction]' format that shows when the transaction
this worker is currently applying was committed on the immediate source.

* APPLYI NG_TRANSACTI ON_START_APPLY_TI MESTAMP

A timestamp in ' YYYY- Mt DD hh: nm ss[.fracti on]' format that shows when this worker
started its first attempt to apply the transaction that is currently being applied. Before MySQL 8.0.13,
this timestamp was refreshed when a transaction was retried due to a transient error, so it showed
the timestamp for the most recent attempt to apply the transaction.

 LAST_APPLI ED_TRANSACTI ON_RETRI ES_COUNT

The number of times the last applied transaction was retried by the worker after the first attempt. If
the transaction was applied at the first attempt, this number is zero.

« LAST_APPLI ED_TRANSACTI ON_LAST TRANSI ENT_ERROR_NUMBER

The error number of the last transient error that caused the transaction to be retried.
e LAST_APPLI ED TRANSACTI ON_LAST_TRANSI ENT_ERROR_MESSAGE

The message text for the last transient error that caused the transaction to be retried.
* LAST_APPLI ED TRANSACTI ON_LAST_TRANSI ENT_ERROR_TI MESTAMP

A timestamp in ' YYYY- Mt DD hh: nm ss[.fraction]"' format for the last transient error that
caused the transaction to be retried.

* APPLYI NG_TRANSACTI ON_RETRI ES_COUNT

The number of times the transaction that is currently being applied was retried until this moment. If
the transaction was applied at the first attempt, this number is zero.

« APPLYI NG TRANSACTI ON_LAST_TRANSI ENT_ERROR_NUMBER

The error number of the last transient error that caused the current transaction to be retried.
e APPLYI NG_TRANSACTI ON_LAST_TRANSI ENT_ERROR_MESSAGE

The message text for the last transient error that caused the current transaction to be retried.
* APPLYI NG_TRANSACTI ON_LAST_TRANSI ENT_ERRCR_TI MESTAMP

A timestamp in ' YYYY- Mt DD hh: nm ss[.fraction]"' format for the last transient error that
caused the current transaction to be retried.

Thereplication applier_status_by worker table has these indexes:

* Primary key on (CHANNEL_NAVE, WORKER_| D)

121

The replication_applier_global_filters Table

 Index on (THREAD | D)

The following table shows the correspondence between
replication_applier_status_ by worker columns and SHON REPLI CA STATUS columns.

replication_applier_status_by worker
Column

SHOW REPLI CA STATUS Column

WORKER_| D None
THREAD_I D None
SERVI CE_STATE None

LAST_ERROR_NUMBER

Last _SQ. Errno

LAST_ERROR_MESSAGE

Last _SQ._Error

LAST_ERROR_TI MESTAVP

Last _SQ._Error_Ti nestanp

10.11.9 The replication_applier_global filters Table

This table shows the global replication filters configured on this replica. The
replication_applier_global _filters table has these columns:

* FI LTER_NAME

The type of replication filter that has been configured.

* FILTER RULE

The rules configured for the replication filter type using either - - r epl i cat e-* command options or

CHANGE REPLI CATI ON FI LTER

» CONFI GURED_BY

The method used to configure the replication filter, can be one of:

e CHANGE_REPLI CATI ON_FI LTER configured by a global replication filter using a CHANGE

REPLI| CATI ON FI LTER statement.

« STARTUP_OPTI ONS configured by a global replication filter using a - - r epl i cat e- * option.

* ACTI VE_SI NCE

Timestamp of when the replication filter was configured.

10.11.10 The replication_applier_filters Table

This table shows the replication channel specific filters configured on this replica. Each row provides
information on a replication channel's configured type of filter. The repl i cati on_applier filters

table has these columns:

» CHANNEL_NAME

The name of replication channel with a replication filter configured.

* FI LTER_NAME

The type of replication filter that has been configured for this replication channel.

* FILTER RULE

The rules configured for the replication filter type using either - - r epl i cat e- * command options or

CHANGE REPLI CATI ON FI LTER.

122

https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html

The replication_group_members Table

» CONFI GURED_BY
The method used to configure the replication filter, can be one of:

e CHANGE_REPLI CATI ON_FI LTER configured by a global replication filter using a CHANGE
REPLI CATI ON FI LTER statement.

« STARTUP_OPTI ONS configured by a global replication filter using a - - r epl i cat e- * option.

e« CHANGE REPLI CATI ON_FI LTER_FOR_CHANNEL configured by a channel specific replication filter
using a CHANGE REPLI CATI ON FI LTER FOR CHANNEL statement.

e STARTUP_OPTI ONS_FOR_CHANNEL configured by a channel specific replication filter using a - -
replicate-* option.

« ACTI VE_SI NCE
Timestamp of when the replication filter was configured.
« COUNTER

The number of times the replication filter has been used since it was configured.

10.11.11 The replication_group_members Table

This table shows network and status information for replication group members. The network
addresses shown are the addresses used to connect clients to the group, and should

not be confused with the member's internal group communication address specified by
group_replication_| ocal _address.

Thereplication_group_nenber s table has these columns:
« CHANNEL_ NAME

Name of the Group Replication channel.
« MEMBER | D

The member server UUID. This has a different value for each member in the group. This also serves
as a key because it is unigue to each member.

* MEMBER_HOST

Network address of this member (host name or IP address). Retrieved from the member's host nane
variable. This is the address which clients connect to, unlike the group_replication_local_address
which is used for internal group communication.

« MEMBER PCORT

Port on which the server is listening. Retrieved from the member's por t variable.
« MEMBER_STATE

Current state of this member; can be any one of the following:

¢ ONLI NE: The member is in a fully functioning state.

« RECOVERI NG The server has joined a group from which it is retrieving data.

e OFFLI NE: The group replication plugin is installed but has not been started.

« ERROR: The member has encountered an error, either during applying transactions or during the
recovery phase, and is not participating in the group's transactions.

123

https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_local_address
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_hostname
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_port

The replication_group_member_stats Table

* UNREACHABLE: The failure detection process suspects that this member cannot be contacted,
because the group messages have timed out.

See Group Replication Server States.

MEVMBER ROLE

Role of the member in the group, either PRI MARY or SECONDARY.
MEMBER_VERSI ON

MySQL version of the member.

MEMBER COVMUNI CATI ON_STACK

The communication stack used for the group, either the XCOMcommunication stack or the MYSCQL
communication stack.

This column was added in MySQL 8.0.27.

Thereplication_group_nenber s table has no indexes.

TRUNCATE TABLE is not permitted for the r epl i cat i on_gr oup_nenber s table.

10.11.12 The replication_group_member_stats Table

This table shows statistical information for replication group members. It is populated only when Group
Replication is running.

Thereplication_group nenmber st ats table has these columns:

CHANNEL _NANVE

Name of the Group Replication channel
VI EW | D

Current view identifier for this group.
VEMBER | D

The member server UUID. This has a different value for each member in the group. This also serves
as a key because it is unigue to each member.

COUNT_TRANSACTI ONS_| N_QUEUE

The number of transactions in the queue pending conflict detection checks. Once the transactions
have been checked for conflicts, if they pass the check, they are queued to be applied as well.

COUNT_TRANSACTI ONS_ CHECKED
The number of transactions that have been checked for conflicts.
COUNT_CONFLI CTS_DETECTED

The number of transactions that have not passed the conflict detection check.
COUNT_TRANSACTI ONS_ROWS VALI DATI NG

Number of transaction rows which can be used for certification, but have not been garbage collected.
Can be thought of as the current size of the conflict detection database against which each
transaction is certified.

124

https://dev.mysql.com/doc/refman/8.0/en/group-replication-server-states.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

The replication_group_member_actions Table

TRANSACTI ONS_COWM TTED_ALL_MEMBERS

The transactions that have been successfully committed on all members of the replication group,
shown as GTID Sets. This is updated at a fixed time interval.

LAST _CONFLI CT_FREE_TRANSACTI ON
The transaction identifier of the last conflict free transaction which was checked.
COUNT_TRANSACTI ONS_REMOTE | N_APPLI ER_QUEUE

The number of transactions that this member has received from the replication group which are
waiting to be applied.

COUNT_TRANSACTI ONS_REMOTE_APPLI ED

Number of transactions this member has received from the group and applied.
COUNT_TRANSACTI ONS_LOCAL_PROPCSED

Number of transactions which originated on this member and were sent to the group.
COUNT_TRANSACTI ONS_LOCAL_ ROLLBACK

Number of transactions which originated on this member and were rolled back by the group.

Thereplication_group nenber st ats table has no indexes.

TRUNCATE TABLE is not permitted for the repl i cati on_group_nenber _st at s table.

10.11.13 The replication_group_member_actions Table

This table lists the member actions that are included in the member actions configuration for replication
group members. The table is available only when Group Replication is installed. You can reset the
member actions configuration using the gr oup_replication_reset nenber actions()
function. For more information, see Configuring Member Actions.

Thereplication_group _nenber acti ons table has these columns:

NAME

The name of the member action.

EVENT

The event that triggers the member action.
ENABLED

Whether the member action is currently enabled. Member actions can be enabled using
the group _replication_enabl e nenber action() function and disabled using the
group_replication_disable nmenber _action() function.

TYPE

The type of member action. | NTERNAL is an action that is provided by the Group Replication plugin.
PRI ORI TY

The priority of the member action. Actions with lower priority values are actioned first.

ERROR_HANDLI NG

125

https://dev.mysql.com/doc/refman/8.0/en/replication-gtids-concepts.html#replication-gtids-concepts-gtid-sets
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-functions-for-member-actions.html#function_group-replication-reset-member-actions
https://dev.mysql.com/doc/refman/8.0/en/group-replication-member-actions.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-functions-for-member-actions.html#function_group-replication-enable-member-action
https://dev.mysql.com/doc/refman/8.0/en/group-replication-functions-for-member-actions.html#function_group-replication-disable-member-action

The replication_group_configuration_version Table

The action that Group Replication takes if an error occurs when the member action is being carried
out. | GNORE means that an error message is logged to say that the member action failed, but no
further action is taken. CRI Tl CAL means that the member moves into ERROR state, and takes the
action specified by the group_replication_exit_state_acti on system variable.

Thereplication_group_nenber _acti ons table has no indexes.

TRUNCATE TABLE is not permitted for the repl i cati on_group_nenber _acti ons table.

10.11.14 The replication_group_configuration_version Table

This table displays the version of the member actions configuration for replication group
members. The table is available only when Group Replication is installed. Whenever a member
action is enabled or disabled using the gr oup_r epl i cati on_enabl e_nmenber _acti on()

and group_replication_di sabl e _nenber _acti on() functions, the version

number is incremented. You can reset the member actions configuration using the
group_replication_reset nmenber actions() function, which resets the member actions
configuration to the default settings, and resets its version number to 1. For more information, see
Configuring Member Actions.

Thereplication _group_configuration_version table has these columns:
» NAME
The name of the configuration.
e VERSI ON
The version number of the configuration.
Thereplication _group configuration_version table has no indexes.

TRUNCATE TABLE is not permitted for the repl i cati on_group_confi gurati on_versi on table.

10.11.15 The replication_group_communication_information Table

This table shows group configuration options for the whole replication group. The table is available only
when Group Replication is installed.

Thereplication_group_communi cation_i nformati on table has these columns:
* V\RI TE_CONCURRENCY

The maximum number of consensus instances that the group can execute in parallel. The default
value is 10. See Using Group Replication Group Write Consensus.

* PROTOCOL_VERSI ON

The Group Replication communication protocol version, which determines what messaging
capabilities are used. This is set to accommodate the oldest MySQL Server version that you want the
group to support. See Setting a Group's Communication Protocol Version.

* WRI TE_CONSENSUS_LEADERS_PREFERRED

The leader or leaders that Group Replication has instructed the group communication

engine to use to drive consensus. For a group in single-primary mode with the
group_replication_paxos_singl e | eader system variable set to ON and the communication
protocol version set to 8.0.27 or above, the single consensus leader is the group's primary.
Otherwise, all group members are used as leaders, so they are all shown here. See Single
Consensus Leader.

126

https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_exit_state_action
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-functions-for-member-actions.html#function_group-replication-enable-member-action
https://dev.mysql.com/doc/refman/8.0/en/group-replication-functions-for-member-actions.html#function_group-replication-disable-member-action
https://dev.mysql.com/doc/refman/8.0/en/group-replication-functions-for-member-actions.html#function_group-replication-reset-member-actions
https://dev.mysql.com/doc/refman/8.0/en/group-replication-member-actions.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-group-write-consensus.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-communication-protocol.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_paxos_single_leader
https://dev.mysql.com/doc/refman/8.0/en/group-replication-single-consensus-leader.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-single-consensus-leader.html

The binary_log_transaction_compression_stats Table

* WRI TE_CONSENSUS_LEADERS_ACTUAL

The actual leader or leader that the group communication engine is using to drive consensus. If a
single consensus leader is in use for the group, and the primary is currently unhealthy, the group
communication selects an alternative consensus leader. In this situation, the group member specified
here can differ from the preferred group member.

* WRI TE_CONSENSUS_SI| NGLE_LEADER _CAPABLE

Whether the replication group is capable of using a single consensus leader.

1 means that the group was started with the use of a single leader enabled
(group_replication_paxos_singl e_| eader = ON), and this is still shown if the

value of gr oup_r epl i cati on_paxos_si ngl e_| eader has since been changed on

this group member. 0 means that the group was started with single leader mode disabled
(group_replication_paxos_singl e_| eader = OFF), or has a Group Replication
communication protocol version that does not support the use of a single consensus leader (below
8.0.27). This information is only returned for group members in ONLI NE or RECOVERI NG state.

Thereplication_group_conmuni cati on_i nformati on table has no indexes.

TRUNCATE TABLE is not permitted for the repl i cati on_group_comuni cation_i nfornati on
table.

10.11.16 The binary_log_transaction_compression_stats Table

This table shows statistical information for transaction payloads written to the binary log and relay
log, and can be used to calculate the effects of enabling binary log transaction compression. For
information on binary log transaction compression, see Binary Log Transaction Compression.

The bi nary_| og_transacti on_conpressi on_st at s table is populated only when the server
instance has a binary log, and the system variable bi nl og_transacti on_conpressi on is setto
ON. The statistics cover all transactions written to the binary log and relay log from the time the server
was started or the table was truncated. Compressed transactions are grouped by the compression
algorithm used, and uncompressed transactions are grouped together with the compression algorithm
stated as NONE, so the compression ratio can be calculated.

The bi nary | og_transacti on_conpressi on_st at s table has these columns:
« LOG TYPE

Whether these transactions were written to the binary log or relay log.
 COVMPRESSI ON_TYPE

The compression algorithm used to compress the transaction payloads. NONE means the payloads
for these transactions were not compressed, which is correct in a number of situations (see Binary
Log Transaction Compression).

¢ TRANSACTI ON_COUNTER
The number of transactions written to this log type with this compression type.
« COVPRESSED BYTES

The total number of bytes that were compressed and then written to this log type with this
compression type, counted after compression.

* UNCOWPRESSED_BYTES
The total number of bytes before compression for this log type and this compression type.

» COVPRESSI ON_PERCENTAGE

127

https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_paxos_single_leader
https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_paxos_single_leader
https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_paxos_single_leader
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/binary-log-transaction-compression.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_transaction_compression
https://dev.mysql.com/doc/refman/8.0/en/binary-log-transaction-compression.html
https://dev.mysql.com/doc/refman/8.0/en/binary-log-transaction-compression.html

Performance Schema NDB Cluster Tables

The compression ratio for this log type and this compression type, expressed as a percentage.
* FI RST_TRANSACTI ON_I D

The ID of the first transaction that was written to this log type with this compression type.
* FI RST_TRANSACTI ON_COVWPRESSED_ BYTES

The total number of bytes that were compressed and then written to the log for the first transaction,
counted after compression.

e FI RST_TRANSACTI ON_UNCOVPRESSED BYTES
The total number of bytes before compression for the first transaction.
« FI RST_TRANSACTI ON_TI MESTAWP
The timestamp when the first transaction was written to the log.
« LAST_TRANSACTION_|I D
The ID of the most recent transaction that was written to this log type with this compression type.
« LAST_TRANSACTI ON_COVPRESSED BYTES

The total number of bytes that were compressed and then written to the log for the most recent
transaction, counted after compression.

« LAST_TRANSACTI ON_UNCOVPRESSED BYTES

The total number of bytes before compression for the most recent transaction.
e LAST_TRANSACTI ON_TI MESTAMP

The timestamp when the most recent transaction was written to the log.
The bi nary_| og_transacti on_conpr essi on_st at s table has no indexes.

TRUNCATE TABLE is permitted for the bi nary_| og_t ransacti on_conpr essi on_st at s table.

10.12 Performance Schema NDB Cluster Tables

The following table shows all Performance Schema tables relating to the NDBCLUSTER storage engine.

Table 10.3 Performance Schema NDB Tables

Table Name Description Introduced

ndb_sync_excl uded_obj ect s|NDB objects which cannot be 8.0.21
synchronized

ndb_sync_pendi ng_obj ect s |NDB objects waiting for 8.0.21
synchronization

Beginning with NDB 8.0.16, automatic synchronization in NDB attempts to detect and synchronize
automatically all mismatches in metadata between the NDB Cluster's internal dictionary and

the MySQL Server's datadictionary. This is done by default in the background at regular

intervals as determined by the ndb_net adat a_check_i nt erval system variable, unless
disabled using ndb_net adat a_check or overridden by setting ndb_net adat a_sync.

Prior to NDB 8.0.21, the only information readily accessible to users about this process was

in the form of logging messages and object counts available (beginning with NDB 8.0.18) as

the status variables Ndb_net adat a_det ect ed _count, Ndb_net adat a_synced_count,

128

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_check_interval
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_check
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_sync
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-options-variables.html#statvar_Ndb_metadata_detected_count
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-options-variables.html#statvar_Ndb_metadata_synced_count

The ndb_sync_pending_objects Table

and Ndb_net adat a_excl uded_count (prior to NDB 8.0.22, this variable was named

Ndb_net adat a_bl ackl i st _si ze). Beginning with NDB 8.0.21, more detailed information about the
current state of automatic synchronization is exposed by a MySQL server acting as an SQL node in an
NDB Cluster in these two Performance Schema tables:

 ndb_sync_pendi ng_obj ect s: Displays information about NDB database objects for which
mismatches have been detected between the NDB dictionary and the MySQL data dictionary.
When attempting to synchronize such objects, NDB removes the object from the queue awaiting
synchronization, and from this table, and tries to reconcile the mismatch. If synchronization of the
object fails due to a temporary error, it is picked up and added back to the queue (and to this table)
the next time NDB performs mismatch detection; if the attempts fails due a permanent error, the
object is added to the ndb_sync_excl uded_obj ect s table.

* ndb_sync_excl uded_obj ect s: Shows information about NDB database objects for which
automatic synchronization has failed due to permanent errors resulting from mismatches which
cannot be reconciled without manual intervention; these objects are blocklisted and not considered
again for mismatch detection until this has been done.

The ndb_sync_pendi ng_obj ect s and ndb_sync_excl uded_obj ect s tables are present only if
MySQL has support enabled for the NDBCLUSTER storage engine.

These tables are described in more detail in the following two sections.

10.12.1 The ndb_sync_pending_objects Table

This table provides information about NDB database objects for which mismatches have been detected
and which are waiting to be synchronized between the NDB dictionary and the MySQL data dictionary.

Example information about NDB database objects awaiting synchronization:

nysqgl > SELECT * FROM per f or mance_schenma. ndb_sync_pendi ng_obj ect s;

fr=ccoscoscosss Fommm o fr=cccscoscoscssss +
| SCHEMA_NAME | NAME | TYPE |
fr=ccoscoscosss Fommm o fr=cccscoscoscssss +
NULL	1gl	LOGFILE GROUP
NULL	tsl	TABLESPACE
dbl	NULL	SCHEMA
test	t1	TABLE
test	t2	TABLE
test	t3	TABLE
fr=ccoscoscosss Fommm o fr=cccscoscoscssss +

The ndb_sync_pendi ng_obj ect s table has these columns:

e SCHEMA NAME: The name of the schema (database) in which the object awaiting synchronization
resides; this is NULL for tablespaces and log file groups

» NAME: The name of the object awaiting synchronization; this is NULL if the object is a schema

* TYPE: The type of the object awaiting synchronization; this is one of LOGFI LE GROUP,
TABLESPACE, SCHENVA, or TABLE

The ndb_sync_pendi ng_obj ect s table was added in NDB 8.0.21.

10.12.2 The ndb_sync_excluded_objects Table

This table provides information about NDB database objects which cannot be automatically
synchronized between NDB Cluster's dictionary and the MySQL data dictionary.

Example information about NDB database objects which cannot be synchronized with the MySQL data
dictionary:

nmysqgl > SELECT * FROM perf or mance_schenma. ndb_sync_excl uded_obj ect s\ G

129

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-options-variables.html#statvar_Ndb_metadata_excluded_count
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

The ndb_sync_excluded_objects Table

LEEEEEEEEEEEEEEEEEEEEEEEEEE

SCHEMA_NAME: NULL
NAMVE: | gl
TYPE: LOGFI LE GROUP
REASON: | njected failure
khkkkkhkkkhkkkhkkhkhkkhkhkkhhkkhhkhkkhkkhkhkkhkkkx*x 2
SCHEMA_NAME: NULL
NAME: tsl
TYPE: TABLESPACE
REASON: | njected failure
khkkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkkhkkhkhkkhkkx*x 3
SCHEMA_NAME: dbl
NAME: NULL
TYPE: SCHEMA
REASON: | njected failure
khkkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkkhkkhhkkhkkkx*x 4
SCHEMA NAME: test
NAME: t1
TYPE: TABLE
REASON: | njected failure
khkkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkhkhkhhkkhkkkx*x 5
SCHEMA NAME: test
NAME: t 2
TYPE: TABLE
REASON: | njected failure
khkkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkhkhkhhkkhkkx*x 6
SCHEMA NAME: test
NAME: t3
TYPE: TABLE
REASON: | njected failure

row

row

row

row

row

row

khkkhkhkhkkkhhkhhhhhkhhhhhhhkhkhk*

khkkkkhkkkkhkhkhhhhhkhhhhhhhkhkhk*

khkkkhkkkhkkhhkhhhkhhkhhhhhhhkhkhk*

khkkkhkkkhkkhhkhhhkhhkhhhhhhhkhkhk*

khkkkhkhkkhkkkhhkhhhkhhkhhhhhhhkhkhk*

khkkkhkkkhkkhhkhhhhhkhhhhhhhkhkhk*

The ndb_sync_excl uded_obj ect s table has these columns:

» SCHEMA NAME: The name of the schema (database) in which the object which has failed to
synchronize resides; this is NULL for tablespaces and log file groups

» NANME: The name of the object which has failed to synchronize; this is NULL if the object is a schema

» TYPE: The type of the object has failed to synchronize; this is one of LOGFI LE GROUP,
TABLESPACE, SCHEMA, or TABLE

» REASON: The reason for exclusion (blocklisting) of the object; that is, the reason for the failure to

synchronize this object

Possible reasons include the following:

e Injected failure

e« Failed to determne if object existed in NDB

e Failed to determine if object existed in DD

 Failed to drop object

in

DD

e Failed to get undofiles assigned to logfile group

« Failed to get object

e Failed to install object

id and version

in DD

e Failed to get datafiles assigned to tabl espace

e Failed to create schemn

e« Failed to determne if object was a | ocal table

e Failed to invalidate table references

130

Performance Schema Lock Tables

e Failed to set database nane of NDB obj ect

e Failed to get extra netadata of table

e« Failed to mgrate table with extra netadata version 1

e Failed to get object from DD

« Definition of table has changed in NDB Dictionary

« Failed to setup binlogging for table

This list is not necessarily exhaustive, and is subject to change in future NDB releases.

The ndb_sync_excl uded_obj ect s table was added in NDB 8.0.21.

10.13 Performance Schema Lock Tables

The Performance Schema exposes lock information through these tables:
» dat a_| ocks: Data locks held and requested

e data_| ock_wai t s: Relationships between data lock owners and data lock requestors blocked by
those owners

» net adat a_| ocks: Metadata locks held and requested
e tabl e_handl es: Table locks held and requested

The following sections describe these tables in more detail.

10.13.1 The data_locks Table

The dat a_| ocks table shows data locks held and requested. For information about which lock
requests are blocked by which held locks, see Section 10.13.2, “The data_lock_waits Table”.

Example data lock information:

nmysql > SELECT * FROM per f or mance_schena. dat a_| ocks\ G
khkkkkhkkkhkkkhkkhkhkkhkhkkhhkkhhkhkkhkkhkhkkhkkkx*x 1 I’OW khkkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkhkhkkhhkkhkkkx*x
ENG NE: | NNODB
ENG NE_LOCK | D: 139664434886512: 1059: 139664350547912
ENG NE_TRANSACTI ON_| D: 2569
THREAD_| D: 46
EVENT_I D: 12
OBJECT_SCHEMA: t est
OBJECT_NAME: t1
PARTI TI ON_NAME: NULL
SUBPARTI TI ON_NAME: NULL
| NDEX_NAME: NULL
OBJECT_| NSTANCE_BEG N: 139664350547912
LOCK_TYPE: TABLE
LOCK_MODE: | X
LOCK_STATUS: GRANTED
LOCK_DATA: NULL
khkkkkhkkkhkkkhkkhkhkkhkhkkhhkkhhkhkkhkhkhhkkhkkkx*x 2 I’OW khkkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkhkhkhhkkhkkk*x
ENG NE: | NNODB
ENG NE_LOCK | D: 139664434886512: 2: 4: 1: 139664350544872
ENG NE_TRANSACTI ON_| D: 2569
THREAD_| D: 46
EVENT_I D: 12
OBJECT_SCHEMA: t est
OBJECT_NAME: t1
PARTI TI ON_NAME: NULL
SUBPARTI TI ON_NAME: NULL
| NDEX_NAME: GEN_CLUST_| NDEX

131

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

The data_locks Table

OBJECT_| NSTANCE_BEG N: 139664350544872
LOCK_TYPE: RECORD
LOCK_MODE: X
LOCK_STATUS: GRANTED
LOCK_DATA: suprenmum pseudo-record

Unlike most Performance Schema data collection, there are no instruments for controlling whether data
lock information is collected or system variables for controlling data lock table sizes. The Performance
Schema collects information that is already available in the server, so there is no memory or CPU
overhead to generate this information or need for parameters that control its collection.

Use the dat a_| ocks table to help diagnose performance problems that occur during times of heavy
concurrent load. For | nnoDB, see the discussion of this topic at InnoDB INFORMATION_SCHEMA
Transaction and Locking Information.

The dat a_| ocks table has these columns:
 ENG NE

The storage engine that holds or requested the lock.
« ENG NE_LOCK_I D

The ID of the lock held or requested by the storage engine. Tuples of (ENG NE_LOCK | D, ENG NE)
values are unique.

Lock ID formats are internal and subject to change at any time. Applications should not rely on lock
IDs having a particular format.

* ENG NE_TRANSACTI ON_I D

The storage engine internal ID of the transaction that requested the lock. This can be considered
the owner of the lock, although the lock might still be pending, not actually granted yet
(LOCK_STATUS=" WAI TI NG).

If the transaction has not yet performed any write operation (is still considered read only), the column
contains internal data that users should not try to interpret. Otherwise, the column is the transaction
ID.

For | nnoDB, to obtain details about the transaction, join this column with the TRX_| D column of the
| NFORMATI ON_SCHENA | NNODB_TRX table.

» THREAD_ I D

The thread ID of the session that created the lock. To obtain details about the thread, join this
column with the THREAD | D column of the Performance Schema't hr eads table.

THREAD | D can be used together with EVENT_| D to determine the event during which the lock data
structure was created in memory. (This event might have occurred before this particular lock request
occurred, if the data structure is used to store multiple locks.)

« EVENT_ID

The Performance Schema event that caused the lock. Tuples of (THREAD | D, EVENT | D) values
implicitly identify a parent event in other Performance Schema tables:

¢ The parent wait event in the event s_wai t s_xxx tables
* The parent stage event in the event s_st ages_xxx tables
« The parent statement event in the event s_st at enent s_xxx tables

* The parent transaction event in the event s_t ransacti ons_current table

132

https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-transactions.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-transactions.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-innodb-trx-table.html

The data_locks Table

To obtain details about the parent event, join the THREAD | D and EVENT | D columns with the
columns of like name in the appropriate parent event table. See Section 14.2, “Obtaining Parent
Event Information”.

OBJECT_SCHEMA

The schema that contains the locked table.

OBJECT_NAME

The name of the locked table.

PARTI TI ON_NAME

The name of the locked partition, if any; NULL otherwise.
SUBPARTI TI ON_NAME

The name of the locked subpartition, if any; NULL otherwise.
| NDEX_ NAVE

The name of the locked index, if any; NULL otherwise.

In practice, | nnoDB always creates an index (GEN_CLUST | NDEX), so | NDEX_NANE is non-NULL for
| nnoDB tables.

OBJECT_I NSTANCE_BEG N

The address in memory of the lock.
LOCK_TYPE

The type of lock.

The value is storage engine dependent. For | nnoDB, permitted values are RECORD for a row-level
lock, TABLE for a table-level lock.

LOCK_MODE
How the lock is requested.

The value is storage engine dependent. For | nnoDB, permitted values are S[, GAP] , X[, GAP] ,

I S[, GAP], | X[, GAP] , AUTO_I NC, and UNKNOWN. Lock modes other than AUTO_| NC and UNKNOVWN
indicate gap locks, if present. For information about S, X, | S, | X, and gap locks, refer to InnoDB
Locking.

LOCK_STATUS
The status of the lock request.

The value is storage engine dependent. For | nnoDB, permitted values are GRANTED (lock is held)
and WAI TI NG (lock is being waited for).

LOCK_DATA

The data associated with the lock, if any. The value is storage engine dependent. For | nnoDB, a
value is shown if the LOCK_TYPE is RECORD, otherwise the value is NULL. Primary key values of the
locked record are shown for a lock placed on the primary key index. Secondary index values of the
locked record are shown with primary key values appended for a lock placed on a secondary index.
If there is no primary key, LOCK _DATA shows either the key values of a selected unique index or the
unique | nnoDB internal row ID number, according to the rules governing | nnoDB clustered index

133

https://dev.mysql.com/doc/refman/8.0/en/innodb-locking.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-locking.html

The data_lock waits Table

use (see Clustered and Secondary Indexes). LOCK DATA reports “supremum pseudo-record” for
a lock taken on a supremum pseudo-record. If the page containing the locked record is not in the
buffer pool because it was written to disk while the lock was held, | nnoDB does not fetch the page
from disk. Instead, LOCK_DATA reports NULL.

The dat a_| ocks table has these indexes:
e Primary key on (ENG NE_LOCK | D, ENG NE)
* Index on (ENG NE_TRANSACTI ON_I| D, ENG NE)
* Index on (THREAD | D, EVENT | D)
« Index on (OBJECT_SCHEMA, OBJECT NAME, PARTI TI ON_NAME, SUBPARTI TI ON_NANE)
TRUNCATE TABLE is not permitted for the dat a_| ocks table.
Note

Prior to MySQL 8.0.1, information similar to that in the Performance Schema
dat a_| ocks table is available in the | NFORVATI ON_SCHEMA. | NNODB_LOCKS
table, which provides information about each lock that an | nnoDB transaction
has requested but not yet acquired, and each lock held by a transaction that

is blocking another transaction. | NFORVATI ON_SCHENA. | NNODB L OCKS is
deprecated and is removed as of MySQL 8.0.1. dat a_| ocks should be used
instead.

Differences between | NNODB LOCKS and dat a_| ocks:

« If a transaction holds a lock, | NNODB L OCKS displays the lock only if another transaction is waiting
forit. dat a_| ocks displays the lock regardless of whether any transaction is waiting for it.

» The dat a_| ocks table has no columns corresponding to LOCK SPACE, LOCK_PAGE, or LOCK_REC.

» The | NNCDB_LOCKS table requires the global PROCESS privilege. The dat a_| ocks table requires
the usual Performance Schema privilege of SELECT on the table to be selected from.

The following table shows the mapping from | NNODB_LOCKS columns to dat a_| ocks columns. Use
this information to migrate applications from one table to the other.

Table 10.4 Mapping from INNODB_LOCKS to data_locks Columns

INNODB_LOCKS Column data_locks Column

LOCK I D ENG NE_LOCK_| D
LOCK_TRX_I D ENG NE_TRANSACTI ON_| D
LOCK _MODE LOCK_MODE

LOCK_TYPE LOCK_TYPE

LOCK_TABLE (combined schema/table names) OBJECT _SCHENA (schema name), OBJECT _NAME
(table name)

LOCK_| NDEX | NDEX_NAME
LOCK_SPACE None

LOCK _PAGE None
LOCK_REC None
LOCK_DATA LOCK_DATA

10.13.2 The data_lock_waits Table

134

https://dev.mysql.com/doc/refman/8.0/en/innodb-index-types.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_select

The data_lock waits Table

The dat a_| ock_wai t s table implements a many-to-many relationship showing which data lock
requests in the dat a_| ocks table are blocked by which held data locks in the dat a_| ocks table.
Held locks in dat a_| ocks appear in dat a_| ock_wai t s only if they block some lock request.

This information enables you to understand data lock dependencies between sessions. The table
exposes not only which lock a session or transaction is waiting for, but which session or transaction
currently holds that lock.

Example data lock wait information:

nysqgl > SELECT * FROM performance_schena. data_| ock_wai ts\ G
IR R S SRS RS R RS EEEEEEEEEEEE SRS 1 I'OW IR R S SRS RS RS SRR EEEEEEEEEE SRS
ENG NE: | NNODB
REQUESTI NG ENG NE_LOCK_| D: 140211201964816: 2: 4: 2: 140211086465800
REQUESTI NG_ENG NE_TRANSACTI ON_| D: 1555
REQUESTI NG THREAD | D: 47
REQUESTI NG EVENT_ID: 5

REQUESTI NG_OBJECT_| NSTANCE_BEG N: 140211086465800
BLOCKI NG_ENG NE_LOCK | D: 140211201963888: 2: 4: 2: 140211086459880
BLOCKI NG_ENG NE_TRANSACTI ON_I D. 1554
BLOCKI NG_THREAD_| D: 46
BLOCKI NG_EVENT_I D:. 12
BLOCKI NG_OBJECT_| NSTANCE_BEG N: 140211086459880

Unlike most Performance Schema data collection, there are no instruments for controlling whether data
lock information is collected or system variables for controlling data lock table sizes. The Performance
Schema collects information that is already available in the server, so there is no memory or CPU
overhead to generate this information or need for parameters that control its collection.

Use the dat a_| ock_wai t s table to help diagnose performance problems that occur during
times of heavy concurrent load. For | nnoDB, see the discussion of this topic at InnoDB
INFORMATION_SCHEMA Transaction and Locking Information.

Because the columns in the dat a_| ock_wai t s table are similar to those in the dat a_| ocks
table, the column descriptions here are abbreviated. For more detailed column descriptions, see
Section 10.13.1, “The data_locks Table”.

The dat a_| ock_wai t s table has these columns:
 ENG NE

The storage engine that requested the lock.
« REQUESTI NG ENG NE_LOCK_| D

The ID of the lock requested by the storage engine. To obtain details about the lock, join this column
with the ENG NE_LOCK | D column of the dat a_| ocks table.

« REQUESTI NG_ENG NE_TRANSACTI ON | D
The storage engine internal ID of the transaction that requested the lock.
« REQUESTI NG _THREAD | D
The thread ID of the session that requested the lock.
 REQUESTI NG EVENT_I D
The Performance Schema event that caused the lock request in the session that requested the lock.
* REQUESTI NG_OBJECT_I| NSTANCE_BEG N

The address in memory of the requested lock.

135

https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-transactions.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-transactions.html

The data_lock waits Table

« BLOCKI NG_ENG NE_LOCK_| D

The ID of the blocking lock. To obtain details about the lock, join this column with the
ENG NE_LOCK | Dcolumn of the dat a_| ocks table.

e BLOCKI NG_ENG NE_TRANSACTI ON_I D
The storage engine internal ID of the transaction that holds the blocking lock.
« BLOCKI NG THREAD | D
The thread ID of the session that holds the blocking lock.
« BLOCKI NG _EVENT_| D
The Performance Schema event that caused the blocking lock in the session that holds it.
e BLOCKI NG_OBJECT_| NSTANCE_BEG N
The address in memory of the blocking lock.

The dat a_| ock_wai t s table has these indexes:

Index on (REQUESTI NG_ENG NE_LOCK_| D, ENG NE)

Index on (BLOCKI NG_ENGI NE_LOCK_| D, ENG NE)

Index on (REQUESTI NG_ENG NE_TRANSACTI ON_I D, ENG NE)

Index on (BLOCKI NG_ENG NE_TRANSACTI ON_| D, ENG NE)

Index on (REQUESTI NG_THREAD | D, REQUESTI NG_EVENT _| D)

« Index on (BLOCKI NG_THREAD | D, BLOCKI NG_EVENT _| D)
TRUNCATE TABLE is not permitted for the dat a_| ock_wai t s table.
Note

Prior to MySQL 8.0.1, information similar to that in the

Performance Schema dat a_| ock_wai t s table is available in the

| NFORVATI ON_SCHEMA. | NNODB_LOCK_WAI TS table, which provides
information about each blocked | nnoDB transaction, indicating the

lock it has requested and any locks that are blocking that request.

| NFORVATI ON_SCHEMA. | NNODB_LOCK WAl TS is deprecated and is removed
as of MySQL 8.0.1. dat a_I| ock_wai t s should be used instead.

The tables differ in the privileges required: The | NNODB_LOCK WAI TS table requires the global
PROCESS privilege. The dat a_| ock_wai t s table requires the usual Performance Schema privilege of
SELECT on the table to be selected from.

The following table shows the mapping from | NNODB_LOCK_WAI TS columns to dat a_| ock_wai t s
columns. Use this information to migrate applications from one table to the other.

Table 10.5 Mapping from INNODB_LOCK_WAITS to data lock_waits Columns

INNODB_LOCK_WAITS Column data_lock_waits Column

REQUESTI NG TRX_I D REQUESTI NG_ENGI NE_TRANSACTI ON_I D
REQUESTED_LCOCK_I D REQUESTI NG_ENGI NE_LCCK_I D

BLOCKI NG _TRX_I D BLOCKI NG_ENG NE_TRANSACTI ON_| D
BLOCKI NG LOCK_| D BLOCKI NG ENG NE_LOCK_| D

136

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_select

The metadata_locks Table

10.13.3 The metadata locks Table

MySQL uses metadata locking to manage concurrent access to database objects and to ensure data
consistency; see Metadata Locking. Metadata locking applies not just to tables, but also to schemas,
stored programs (procedures, functions, triggers, scheduled events), tablespaces, user locks acquired
with the GET_LOCK() function (see Locking Functions), and locks acquired with the locking service
described in The Locking Service.

The Performance Schema exposes metadata lock information through the net adat a_| ocks table:
» Locks that have been granted (shows which sessions own which current metadata locks).

» Locks that have been requested but not yet granted (shows which sessions are waiting for which
metadata locks).

» Lock requests that have been killed by the deadlock detector.

» Lock requests that have timed out and are waiting for the requesting session's lock request to be
discarded.

This information enables you to understand metadata lock dependencies between sessions. You can
see not only which lock a session is waiting for, but which session currently holds that lock.

The net adat a_| ocks table is read only and cannot be updated. It is autosized by default; to
configure the table size, set the per f or mance_schema_nmax_net adat a_| ocks system variable at
server startup.

Metadata lock instrumentation uses the wai t / | ock/ net adat a/ sql / ndl instrument, which is
enabled by default.

To control metadata lock instrumentation state at server startup, use lines like these in your ny. cnf
file:

* Enable:

[nysql d]
per f or mance- schema- i nst runent ="' wai t/| ock/ net adat a/ sql / ndl =ON

» Disable:

[nysql d]
per f or mance- schena- i nstrunent =' wai t/ | ock/ net adat a/ sql / ndl =OFF'

To control metadata lock instrumentation state at runtime, update the set up_i nst r unent s table:

* Enable:

UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = ' YES', TIMED = ' YES
WHERE NAME = 'wai t/| ock/ met adat a/ sql / mdl ' ;

» Disable:

UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = 'NO, TIMED = ' NO
WHERE NAME = 'wai t/ | ock/ net adat a/ sql / ndl * ;

The Performance Schema maintains net adat a_| ocks table content as follows, using the
LOCK_STATUS column to indicate the status of each lock:

» When a metadata lock is requested and obtained immediately, a row with a status of GRANTED is
inserted.

* When a metadata lock is requested and not obtained immediately, a row with a status of PENDI NGis
inserted.

137

https://dev.mysql.com/doc/refman/8.0/en/metadata-locking.html
https://dev.mysql.com/doc/refman/8.0/en/locking-functions.html#function_get-lock
https://dev.mysql.com/doc/refman/8.0/en/locking-functions.html
https://dev.mysql.com/doc/refman/8.0/en/locking-service.html

The metadata_locks Table

When a metadata lock previously requested is granted, its row status is updated to GRANTED.
When a metadata lock is released, its row is deleted.

When a pending lock request is canceled by the deadlock detector to break a deadlock
(ER_LOCK_DEADLQCK), its row status is updated from PENDI NGto VI CTI M

When a pending lock request times out (ER_LOCK_WAI T_TI MEQUT), its row status is updated from
PENDI NGto TI MEQUT.

When granted lock or pending lock request is killed, its row status is updated from GRANTED or
PENDI NGto KI LLED.

The VI CTI M Tl MECUT, and KI LLED status values are brief and signify that the lock row is about to
be deleted.

The PRE_ACQUI RE_NOTI FY and POST_RELEASE_NOTI FY status values are brief and signify
that the metadata locking subsubsystem is notifying interested storage engines while entering lock
acquisition operations or leaving lock release operations.

The net adat a_| ocks table has these columns:

OBJECT_TYPE

The type of lock used in the metadata lock subsystem. The value is one of GLOBAL, SCHENMA, TABLE,
FUNCTI ON, PROCEDURE, TRI GGER (currently unused), EVENT, COMM T, USER LEVEL LOCK,
TABLESPACE, BACKUP LOCK, or LOCKI NG SERVI CE.

A value of USER LEVEL LOCK indicates a lock acquired with GET_LOCK() . A value of LOCKI NG
SERVI CE indicates a lock acquired with the locking service described in The Locking Service.

OBJECT_SCHEMA
The schema that contains the object.
OBJECT_NAME

The name of the instrumented object.

OBJECT_I NSTANCE_BEG N

The address in memory of the instrumented object.
LOCK_TYPE

The lock type from the metadata lock subsystem. The value is one of | NTENTI ON_EXCLUSI VE,
SHARED, SHARED HI GH PRI O, SHARED READ, SHARED WRI TE, SHARED UPGRADABLE,
SHARED NO WRI TE, SHARED NO READ WRI TE, or EXCLUSI VE.

LOCK_DURATI ON

The lock duration from the metadata lock subsystem. The value is one of STATENMENT,

TRANSACTI ON, or EXPLI Cl T. The STATEMENT and TRANSACTI ON values signify locks that are
released implicitly at statement or transaction end, respectively. The EXPLI ClI T value signifies locks
that survive statement or transaction end and are released by explicit action, such as global locks
acquired with FLUSH TABLES W TH READ LOCK.

LOCK_STATUS

The lock status from the metadata lock subsystem. The value is one of PENDI NG, GRANTED,
VI CTI M Tl MEQUT, KI LLED, PRE_ACQUI RE_NOTI FY, or POST_RELEASE _NOTI FY. The
Performance Schema assigns these values as described previously.

138

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_lock_deadlock
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_lock_wait_timeout
https://dev.mysql.com/doc/refman/8.0/en/locking-functions.html#function_get-lock
https://dev.mysql.com/doc/refman/8.0/en/locking-service.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-tables-with-read-lock

The table_handles Table

» SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

« OWNER_THREAD | D
The thread requesting a metadata lock.

« OWNER_EVENT | D
The event requesting a metadata lock.

The net adat a_| ocks table has these indexes:

* Primary key on (OBJECT_| NSTANCE_BEG N)

* Index on (OBJECT_TYPE, OBJECT_SCHENA, OBJECT _NANE)

« Index on (OANER_THREAD | D, OWNER_EVENT _| D)

TRUNCATE TABLE is not permitted for the net adat a_| ocks table.

10.13.4 The table_handles Table

The Performance Schema exposes table lock information through the t abl e _handl| es table to show
the table locks currently in effect for each opened table handle. t abl e _handl| es reports what is
recorded by the table lock instrumentation. This information shows which table handles the server has
open, how they are locked, and by which sessions.

The t abl e_handl es table is read only and cannot be updated. It is autosized by default; to configure
the table size, set the per f or mance_schenma_mnex_t abl e_handl es system variable at server
startup.

Table lock instrumentation uses the wai t / | ock/ t abl e/ sqgl / handl er instrument, which is enabled
by default.

To control table lock instrumentation state at server startup, use lines like these in your ny. cnf file:
* Enable:

[nysql d]
per f or mance- schema- i nst runent =' wai t/ | ock/ t abl e/ sql / handl er =ON

» Disable:

[nysql d]
per f or mance- schema- i nstrunent =' wai t/ | ock/ t abl e/ sql / handl er =OFF'

To control table lock instrumentation state at runtime, update the set up_i nstrunent s table:

* Enable:

UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = ' YES', TIMED = ' YES
WHERE NAME = 'wai t/| ock/tabl e/ sql / handl er';

» Disable:

UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = 'NO, TIMED = ' NO
WHERE NAME = 'wai t/| ock/tabl e/sqgl /handl er';

139

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

Performance Schema System Variable Tables

The t abl e_handl es table has these columns:
« OBJECT_TYPE
The table opened by a table handle.
» OBJECT_SCHEMA
The schema that contains the object.
« OBJECT_NAME
The name of the instrumented object.
* OBJECT_I NSTANCE_BEG N
The table handle address in memory.
« OWNER THREAD | D
The thread owning the table handle.
« OMNER _EVENT | D
The event which caused the table handle to be opened.
e | NTERNAL_LOCK

The table lock used at the SQL level. The value is one of READ, READ W TH SHARED LOCKS, READ
H GH PRI ORI TY, READ NO | NSERT, WRI TE ALLOW WRI TE, WRI TE CONCURRENT | NSERT,

VWRI TE LOW PRI ORI TY, or \RI TE. For information about these lock types, see the i ncl ude/
thr _| ock. h source file.

« EXTERNAL_LOCK

The table lock used at the storage engine level. The value is one of READ EXTERNAL or WRI TE
EXTERNAL.

The t abl e_handl es table has these indexes:

* Primary key on (OBJECT_| NSTANCE_BEG N)

« Index on (OBJECT_TYPE, OBJECT SCHENMA, OBJECT NANE)
« Index on (OWNER_THREAD | D, OANER_EVENT _| D)

TRUNCATE TABLE is not permitted for the t abl e_handl es table.

10.14 Performance Schema System Variable Tables

The MySQL server maintains many system variables that indicate how it is configured (see Server
System Variables). System variable information is available in these Performance Schema tables:

e gl obal vari abl es: Global system variables. An application that wants only global values should
use this table.

» session_vari abl es: System variables for the current session. An application that wants all
system variable values for its own session should use this table. It includes the session variables for
its session, as well as the values of global variables that have no session counterpart.

» vari abl es_by_t hread: Session system variables for each active session. An application that
wants to know the session variable values for specific sessions should use this table. It includes
session variables only, identified by thread ID.

140

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html

Performance Schema persisted_variables Table

e persisted vari abl es: Provides a SQL interface to the nysql d- aut 0. cnf file that
stores persisted global system variable settings. See Section 10.14.1, “Performance Schema
persisted_variables Table”.

» vari abl es_i nf o: Shows, for each system variable, the source from which it was most recently set,
and its range of values. See Section 10.14.2, “Performance Schema variables_info Table”.

The SENSI Tl VE_VARI ABLES OBSERVER privilege is required to view the values of sensitive system
variables in these tables.

The session variable tables (sessi on_vari abl es, vari abl es_by_t hr ead) contain information
only for active sessions, not terminated sessions.

The gl obal _vari abl es and sessi on_vari abl es tables have these columns:
* VARI ABLE_NAME

The system variable name.
* VARI ABLE_VALUE

The system variable value. For gl obal _vari abl es, this column contains the global value. For
sessi on_vari abl es, this column contains the variable value in effect for the current session.

The gl obal _vari abl es and sessi on_var i abl es tables have these indexes:
e Primary key on (VARI ABLE NANE)
The vari abl es_by_t hr ead table has these columns:
* THREAD_|I D
The thread identifier of the session in which the system variable is defined.
* VARI ABLE NAME
The system variable name.
* VARI ABLE_VALUE
The session variable value for the session named by the THREAD | D column.
The vari abl es_by_t hr ead table has these indexes:
* Primary key on (THREAD_| D, VARI ABLE_NAME)

The vari abl es_by_t hr ead table contains system variable information only about foreground
threads. If not all threads are instrumented by the Performance Schema, this table misses some rows.
In this case, the Per f or mance_schena_t hread_i nst ances_| ost status variable is greater than
zero.

TRUNCATE TABLE is not supported for Performance Schema system variable tables.

10.14.1 Performance Schema persisted_variables Table

The per si st ed_vari abl es table provides an SQL interface to the nysql d- aut o. cnf file

that stores persisted global system variable settings, enabling the file contents to be inspected at
runtime using SELECT statements. Variables are persisted using SET PERSI ST or PERSI ST_ONLY
statements; see SET Syntax for Variable Assignment. The table contains a row for each persisted
system variable in the file. Variables not persisted do not appear in the table.

The SENSI Tl VE_VARI ABLES_OBSERVER privilege is required to view the values of sensitive system
variables in this table.

141

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_sensitive-variables-observer
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_sensitive-variables-observer

Performance Schema variables_info Table

For information about persisted system variables, see Persisted System Variables.

Suppose that nysql d- aut 0. cnf looks like this (slightly reformatted):

{
"Version": 1,

"nmysql _server": {
"max_connections": {
"Val ue": "1000",

"Met adata": {
"Ti mestanp”: 1.519921706e+15,
"User": "root",
"Host": "l ocal host"
}
b
"autocommit": {
"Val ue": "ON',
"Met adata": {
"Ti mestanp”: 1.519921707e+15,
"User": "root",
"Host": "l ocal host"
}
}
}
}

Then per si st ed_vari abl es has these contents:

nysql > SELECT * FROM per f or mance_schena. persi st ed_vari abl es;

drmccccosoccoooc=oo drmccocccoococcoos +
| VARI ABLE NAME | VARI ABLE VALUE |
drmccccosoccoooc=oo drmccocccoococcoos +
| aut ocomm t | ON |
| max_connections | 1000 |
drmccccosoccoooc=oo drmccocccoococcoos +

The per si st ed_vari abl es table has these columns:
* VARI ABLE_NAME
The variable name listed in nysql d- aut o. cnf.
* VARl ABLE_VALUE
The value listed for the variable in nysql d- aut 0. cnf.
persi sted_vari abl es has these indexes:
e Primary key on (VARI ABLE NANE)

TRUNCATE TABLE is not permitted for the per si st ed_vari abl es table.

10.14.2 Performance Schema variables_info Table

The vari abl es_i nf o table shows, for each system variable, the source from which it was most
recently set, and its range of values.

The vari abl es_i nf o table has these columns:
* VARI ABLE_NAME
The variable name.
* VARI ABLE_SOURCE
The source from which the variable was most recently set:

 COVNVAND_LI NE

142

https://dev.mysql.com/doc/refman/8.0/en/persisted-system-variables.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

Performance Schema variables_info Table

The variable was set on the command line.
 COVWPI LED

The variable has its compiled-in default value. COVPI LED is the value used for variables not set
any other way.

« DYNAM C

The variable was set at runtime. This includes variables set within files specified using the
init_file system variable.

« EXPLICT

The variable was set from an option file named with the - - def aul t s-fi | e option.
* EXTRA

The variable was set from an option file named with the - - def aul t s-extra-fi | e option.
e GLOBAL

The variable was set from a global option file. This includes option files not covered by EXPLI CI T,
EXTRA, LOG N, PERSI STED, SERVER, or USER.

« LOG N
The variable was set from a user-specific login path file (~/ . myl ogi n. cnf).
» PERSI STED

The variable was set from a server-specific mysql d- aut o. cnf option file. No row has this value
if the server was started with per si st ed_gl obal s_| oad disabled.

¢ SERVER

The variable was set from a server-specific $MYSQL_HOVE/ my. cnf option file. For details about
how MYSQL_HOME is set, see Using Option Files.

¢ USER
The variable was set from a user-specific ~/ . ny. cnf option file.
VARI ABLE_PATH

If the variable was set from an option file, VARl ABLE PATH is the path name of that file. Otherwise,
the value is the empty string.

M N_VALUE, MAX_VALUE

The minimum and maximum permitted values for the variable. Both are O for variables that have no
such values (that is, variables that are not numeric).

SET_TI ME

The time at which the variable was most recently set. The default is the time at which the server
initialized global system variables during startup.

SET_USER, SET_HOST

The user name and host name of the client user that most recently set the variable.
If a client connects as user 17 from host host 34. exanpl e. comusing the account

143

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_init_file
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_defaults-file
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_defaults-extra-file
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_persisted_globals_load
https://dev.mysql.com/doc/refman/8.0/en/option-files.html

Performance Schema variables_info Table

"user 17" @ % exanpl e. com SET_USER and SET_HOST are user 17 and

host 34. exanpl e. com respectively. For proxy user connections, these values correspond to the
external (proxy) user, not the proxied user against which privilege checking is performed. The default
for each column is the empty string, indicating that the variable has not been set since server startup.

The vari abl es_i nf o table has no indexes.
TRUNCATE TABLE is not permitted for the var i abl es_i nf o table.

If a variable with a VARI ABLE SOURCE value other than DYNAM Cis set at runtime,
VARI ABLE_SOURCE becomes DYNAM C and VARI ABLE_PATH becomes the empty string.

A system variable that has only a session value (such as debug_sync) cannot be set at startup or
persisted. For session-only system variables, VARl ABLE SOURCE can be only COVPI LED or DYNAM C.

If a system variable has an unexpected VARI ABLE SOURCE value, consider your server startup
method. For example, nysql d_saf e reads option files and passes certain options it finds there as part
of the command line that it uses to start nysql d. Consequently, some system variables that you set in
option files might display in var i abl es_i nf o as COWAND_ LI NE, rather than as G_OBAL or SERVER
as you might otherwise expect.

Some sample queries that use the var i abl es_i nf o table, with representative output:

 Display variables set on the command line:

nysql > SELECT VARI ABLE_NAME
FROM per f or neance_schema. vari abl es_i nf o
WHERE VARI ABLE_SOURCE = ' COMWAND_LI NE'
ORDER BY VARI ABLE NANE;

| basedir |
| datadir |
| log_error |
| pid_file |
| plugin_dir |
| port |

 Display variables set from persistent storage:

nysql > SELECT VARI ABLE_NAME
FROM per f or mance_schena. vari abl es_i nf o
WHERE VARI ABLE_SOURCE = ' PERSI STED
ORDER BY VARI ABLE NANE;

| event _schedul er |
| max_connecti ons |
| validate_password. policy |

» Joinvari abl es_i nf o with the gl obal _vari abl es table to display the current values of
persisted variables, together with their range of values:

nysql > SELECT
VI . VARI ABLE_NAME, GV. VARI ABLE_VALUE,
VI .M N_VALUE, VI . MAX_VALUE
FROM per f or mance_schena. vari abl es_info AS VI
I NNER JO N per f ormance_schena. gl obal _vari abl es AS GV
USI NG(VARI ABLE_NANE)
WHERE VI . VARI ABLE_SOURCE = ' PERSI STED
ORDER BY VARI ABLE_NANE;
dm—cccccc-cccccocc-cocooc== dm—cccoc--—ccooc== fhm=cccooco=c- fhm=cccooco=c- +
| VARI ABLE_NAMVE | VARI ABLE_VALUE | M N_VALUE | MAX VALUE |

144

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_debug_sync

Performance Schema Status Variable Tables

+
| event _schedul er |
| max_connecti ons |
| validate_password. policy |

+

10.15 Performance Schema Status Variable Tables

The MySQL server maintains many status variables that provide information about its operation (see
Server Status Variables). Status variable information is available in these Performance Schema tables:

» gl obal st at us: Global status variables. An application that wants only global values should use
this table.

e session_st at us: Status variables for the current session. An application that wants all status
variable values for its own session should use this table. It includes the session variables for its
session, as well as the values of global variables that have no session counterpart.

e status_by_thread: Session status variables for each active session. An application that wants
to know the session variable values for specific sessions should use this table. It includes session
variables only, identified by thread ID.

There are also summary tables that provide status variable information aggregated by account, host
name, and user name. See Section 10.20.12, “Status Variable Summary Tables”.

The session variable tables (sessi on_st at us, st at us_by_t hr ead) contain information only for
active sessions, not terminated sessions.

The Performance Schema collects statistics for global status variables only for threads for which the
| NSTRUVENTED value is YES in the t hr eads table. Statistics for session status variables are always
collected, regardless of the | NSTRUVENTED value.

The Performance Schema does not collect statistics for Com xxx status variables

in the status variable tables. To obtain global and per-session statement execution

counts, use the event s_st at enent s_sunmary_gl obal _by_event nane and
events_statenents_sunmary_by thread_by event name tables, respectively. For example:

SELECT EVENT_NAME, COUNT_STAR
FROM per f or mance_schena. event s_st at enent s_sunmar y_gl obal _by_event _nane
VWHERE EVENT_NAME LI KE ' statenment/sql/% ;

The gl obal _st at us and sessi on_st at us tables have these columns:
* VARI ABLE_NAME

The status variable name.
* VARl ABLE_VALUE

The status variable value. For gl obal _st at us, this column contains the global value. For
sessi on_st at us, this column contains the variable value for the current session.

The gl obal _st at us and sessi on_st at us tables have these indexes:
* Primary key on (VAR ABLE_NAME)
The st at us_by _t hr ead table contains the status of each active thread. It has these columns:
e THREAD I D
The thread identifier of the session in which the status variable is defined.

* VARI ABLE_NAME

145

https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html

Performance Schema Thread Pool Tables

The status variable name.
* VARI ABLE_VALUE

The session variable value for the session named by the THREAD | D column.
The st at us_by_t hr ead table has these indexes:
* Primary key on (THREAD _| D, VARI ABLE_NANE)

The st at us_by_t hr ead table contains status variable information only about foreground threads. If
the per f or mance_schema_nmax_t hread_i nst ances system variable is not autoscaled (signified by
a value of -1) and the maximum permitted number of instrumented thread objects is not greater than
the number of background threads, the table is empty.

The Performance Schema supports TRUNCATE TABLE for status variable tables as follows:

» gl obal _st at us: Resets thread, account, host, and user status. Resets global status variables
except those that the server never resets.

e session_st at us: Not supported.

* status_by_t hread: Aggregates status for all threads to the global status and account status, then
resets thread status. If account statistics are not collected, the session status is added to host and
user status, if host and user status are collected.

Account, host, and user statistics are not collected if the per f or mance_schenma_account s_si ze,
per formance_schenma_hosts_si ze, and per f or mance_schena_users_si ze system
variables, respectively, are set to 0.

FLUSH STATUS adds the session status from all active sessions to the global status variables, resets
the status of all active sessions, and resets account, host, and user status values aggregated from
disconnected sessions.

10.16 Performance Schema Thread Pool Tables

Note

The Performance Schema tables described here are available as of MySQL
8.0.14. Prior to MySQL 8.0.14, use the corresponding | NFORVATI ON_SCHENA
tables instead; see INFORMATION_SCHEMA Thread Pool Tables.

The following sections describe the Performance Schema tables associated with the thread pool plugin
(see MySQL Enterprise Thread Pool). They provide information about thread pool operation:

 tp_thread group_stat e: Information about thread pool thread group states.
e tp_thread_group_stats: Thread group statistics.
e tp_thread_st at e: Information about thread pool thread states.

Rows in these tables represent snapshots in time. In the case of t p_t hr ead_st at e, all rows for a
thread group comprise a snapshot in time. Thus, the MySQL server holds the mutex of the thread
group while producing the snapshot. But it does not hold mutexes on all thread groups at the same
time, to prevent a statement againstt p_t hr ead_st at e from blocking the entire MySQL server.

The Performance Schema thread pool tables are implemented by the thread pool plugin and are
loaded and unloaded when that plugin is loaded and unloaded (see Thread Pool Installation). No
special configuration step for the tables is needed. However, the tables depend on the thread pool
plugin being enabled. If the thread pool plugin is loaded but disabled, the tables are not created.

146

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-status
https://dev.mysql.com/doc/refman/8.0/en/thread-pool-information-schema-tables.html
https://dev.mysql.com/doc/refman/8.0/en/thread-pool.html
https://dev.mysql.com/doc/refman/8.0/en/thread-pool-installation.html

The tp_thread_group_state Table

10.16.1 The tp_thread _group_state Table
Note

The Performance Schema table described here is available as

of MySQL 8.0.14. Prior to MySQL 8.0.14, use the corresponding

| NFORVATI ON_SCHENMA table instead; see The INFORMATION_SCHEMA
TP_THREAD_GROUP_STATE Table.

The t p_t hread_group_st at e table has one row per thread group in the thread pool. Each row
provides information about the current state of a group.

The t p_t hread_group_st at e table has these columns:
« TP_GROUP_I D

The thread group ID. This is a unique key within the table.
« CONSUMER THREADS

The number of consumer threads. There is at most one thread ready to start executing if the active
threads become stalled or blocked.

* RESERVE_THREADS

The number of threads in the reserved state. This means that they are not started until there is a
need to wake a new thread and there is no consumer thread. This is where most threads end up
when the thread group has created more threads than needed for normal operation. Often a thread
group needs additional threads for a short while and then does not need them again for a while. In
this case, they go into the reserved state and remain until needed again. They take up some extra
memory resources, but no extra computing resources.

* CONNECT_THREAD_COUNT

The number of threads that are processing or waiting to process connection initialization and
authentication. There can be a maximum of four connection threads per thread group; these threads
expire after a period of inactivity.

* CONNECTI ON_COUNT

The number of connections using this thread group.
« QUEUED QUERI ES

The number of statements waiting in the high-priority queue.
« QUEUED TRANSACTI ONS

The number of statements waiting in the low-priority queue. These are the initial statements for
transactions that have not started, so they also represent queued transactions.

o STALL_LIMT

The value of the t hr ead_pool stal | _|imt system variable for the thread group. This is the
same value for all thread groups.

* PRI O_KI CKUP_TI MER

The value of the t hread_pool _pri o_ki ckup_ti mer system variable for the thread group. This is
the same value for all thread groups.

* ALGORI THM

147

https://dev.mysql.com/doc/refman/8.0/en/information-schema-tp-thread-group-state-table.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-tp-thread-group-state-table.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_thread_pool_stall_limit
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_thread_pool_prio_kickup_timer

The tp_thread_group_stats Table

The value of the t hr ead_pool _al gori t hmsystem variable for the thread group. This is the same
value for all thread groups.

THREAD_COUNT

The number of threads started in the thread pool as part of this thread group.
ACTI VE_THREAD_COUNT

The number of threads active in executing statements.

STALLED THREAD_COUNT

The number of stalled statements in the thread group. A stalled statement could be executing, but
from a thread pool perspective it is stalled and making no progress. A long-running statement quickly
ends up in this category.

WAI TI NG_THREAD_NUMBER

If there is a thread handling the polling of statements in the thread group, this specifies the thread
number within this thread group. It is possible that this thread could be executing a statement.

OLDEST_QUEUED
How long in milliseconds the oldest queued statement has been waiting for execution.
MAX_THREAD | DS | N_GROUP

The maximum thread ID of the threads in the group. This is the same as MAX(TP_THREAD_NUVBER)
for the threads when selected from the t p_t hr ead_st at e table. That is, these two queries are
equivalent:

SELECT TP_GROUP_I D, MAX THREAD | DS_| N GROUP
FROM t p_t hread_gr oup_st at e;

SELECT TP_GROUP_I D, NMAX(TP_THREAD_ NUVBER)
FROM t p_t hread_state GROUP BY TP_GROUP_I D;

The t p_t hread_group_st at e table has these indexes:
* Unique index on (TP_GROUP_I D)

TRUNCATE TABLE is not permitted for the t p_t hr ead_gr oup_st at e table.

10.16.2 The tp_thread _group_stats Table

Note

The Performance Schema table described here is available as

of MySQL 8.0.14. Prior to MySQL 8.0.14, use the corresponding

| NFORVATI ON_SCHENMA table instead; see The INFORMATION_SCHEMA
TP_THREAD_GROUP_STATS Table.

The tp_t hread_group_st at s table reports statistics per thread group. There is one row per group.
Thetp_thread_group_st ats table has these columns:

« TP_GROUP_I D

The thread group ID. This is a unique key within the table.

* CONNECTI ONS_STARTED

The number of connections started.

148

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_thread_pool_algorithm
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_max
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-tp-thread-group-stats-table.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-tp-thread-group-stats-table.html

The tp_thread_group_stats Table

CONNECTI ONS_CLOSED
The number of connections closed.
QUERI ES_EXECUTED

The number of statements executed. This number is incremented when a statement starts executing,
not when it finishes.

QUERI ES_QUEUED

The number of statements received that were queued for execution. This does not count statements
that the thread group was able to begin executing immediately without queuing, which can happen
under the conditions described in Thread Pool Operation.

THREADS STARTED
The number of threads started.
PRI O_KI CKUPS

The number of statements that have been moved from low-priority queue to high-priority queue
based on the value of the t hr ead_pool _pri o_ki ckup_ti mer system variable. If this number
increases quickly, consider increasing the value of that variable. A quickly increasing counter means
that the priority system is not keeping transactions from starting too early. For | nnoDB, this most
likely means deteriorating performance due to too many concurrent transactions..

STALLED_QUERI ES_EXECUTED

The number of statements that have become defined as stalled due to executing for longer than the
value of the t hread_pool _stal |l |imt system variable.

BECOVE_CONSUVMER _THREAD

The number of times thread have been assigned the consumer thread role.
BECOME_RESERVE_THREAD

The number of times threads have been assigned the reserve thread role.
BECOVE._WAI TI NG_THREAD

The number of times threads have been assigned the waiter thread role. When statements are
queued, this happens very often, even in normal operation, so rapid increases in this value are
normal in the case of a highly loaded system where statements are queued up.

WAKE_THREAD_STALL_CHECKER

The number of times the stall check thread decided to wake or create a thread to possibly handle
some statements or take care of the waiter thread role.

SLEEP_WAI TS

The number of THD_WAI T_SLEEP waits. These occur when threads go to sleep (for example, by
calling the SLEEP() function).

DI SK_| O WAI TS

The number of THD_WAI T_DI SKI Owaits. These occur when threads perform disk 1/O that is likely
to not hit the file system cache. Such waits occur when the buffer pool reads and writes data to disk,
not for normal reads from and writes to files.

ROW LOCK_\AI TS

149

https://dev.mysql.com/doc/refman/8.0/en/thread-pool-operation.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_thread_pool_prio_kickup_timer
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_thread_pool_stall_limit
https://dev.mysql.com/doc/refman/8.0/en/miscellaneous-functions.html#function_sleep

The tp_thread_state Table

The number of THD_WAI T_ROW LOCK waits for release of a row lock by another transaction.
« GLOBAL_LOCK WAI TS

The number of THD_WAI T_GLOBAL_LOCK waits for a global lock to be released.
« META DATA LOCK WAI TS

The number of THD_WAI T_META DATA_LOCK waits for a metadata lock to be released.
« TABLE_LOCK WAI TS

The number of THD_WAI T_TABLE L OCK waits for a table to be unlocked that the statement needs to
access.

« USER LOCK WAI TS
The number of THD_WAI T_USER L OCK waits for a special lock constructed by the user thread.
 BINLOG WAI TS
The number of THD_WAI T_BI NLOG_WAI TS waits for the binary log to become free.
« GROUP_COW T_WAI TS

The number of THD_WAI T_GROUP_COVM T waits. These occur when a group commit must wait for
the other parties to complete their part of a transaction.

« FSYNC WAI TS

The number of THD_WAI T_SYNC waits for a file sync operation.
Thetp thread group_stats table has these indexes:
* Unique index on (TP_GROUP_I D)

TRUNCATE TABLE is not permitted for the t p_t hr ead_gr oup_st at s table.

10.16.3 The tp_thread_state Table

Note

The Performance Schema table described here is available as of MySQL
8.0.14. Prior to MySQL 8.0.14, use the corresponding | NFORVATI ON_SCHENA
table instead; see The INFORMATION_SCHEMA TP_THREAD_STATE Table.

The t p_t hread_st at e table has one row per thread created by the thread pool to handle
connections.

Thetp_t hread_st at e table has these columns:
« TP_GROUP_I D

The thread group ID.
« TP_THREAD NUMBER

The ID of the thread within its thread group. TP_GROUP_| Dand TP_THREAD NUVBER together
provide a unique key within the table.

« PROCESS COUNT

150

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-tp-thread-state-table.html

Performance Schema Firewall Tables

The 10ms interval in which the statement that uses this thread is currently executing. 0 means no
statement is executing, 1 means it is in the first 10ms, and so forth.

« WAl T_TYPE

The type of wait for the thread. NULL means the thread is not blocked. Otherwise, the thread is
blocked by acalltot hd_wait begi n() and the value specifies the type of wait. The xxx_WAI T
columns of thet p_t hread_group_st at s table accumulate counts for each wait type.

The WAI T_TYPE value is a string that describes the type of wait, as shown in the following table.

Table 10.6 tp_thread_state Table WAIT_TYPE Values

Wait Type Meaning

THD_WAI T_SLEEP Waiting for sleep

THD _WAI T_DI SKI O Waiting for Disk 10
THD_WAI T_ROW LOCK Waiting for row lock

THD WAI T_GLOBAL_LOCK Waiting for global lock
THD WAI T_META DATA LOCK Waiting for metadata lock
THD WAI T_TABLE LOCK Waiting for table lock
THD_WAI T_USER LOCK Waiting for user lock
THD_WAI T_BI NLOG Waiting for binlog
THD_WAI T_GROUP_COWMM T Waiting for group commit
THD_WAI T_SYNC Waiting for fsync

 TP_THREAD TYPE

The type of thread. The value shown in this column is one of
CONNECTI ON_HANDLER _WORKER THREAD, LI STENER_WORKER THREAD,
QUERY_WORKER_THREAD, or TI MER_WORKER _THREAD.

This column was added in MySQL 8.0.32.
 THREAD | D

This thread's unique identifier. The value is the same as that used in the THREAD | D column of the
Performance Schemat hr eads table.

This column was added in MySQL 8.0.32.
The t p_t hread_st at e table has these indexes:
» Unique index on (TP_GROUP_I D, TP_THREAD NUNMBER)

TRUNCATE TABLE is not permitted for the t p_t hread_st at e table.

10.17 Performance Schema Firewall Tables

Note

The Performance Schema tables described here are available as of MySQL
8.0.23. Prior to MySQL 8.0.23, use the corresponding | NFORVATI ON_SCHENA
tables instead; see MySQL Enterprise Firewall Tables.

The following sections describe the Performance Schema tables associated with MySQL Enterprise
Firewall (see MySQL Enterprise Firewall). They provide information about firewall operation:

151

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/firewall-reference.html#firewall-tables
https://dev.mysql.com/doc/refman/8.0/en/firewall.html

The firewall_groups Table

e firewal | _groups: Information about firewall group profiles.
« firewal | _group_all ow i st: Allowlist rules of registered firewall group profiles.

 firewal | nmenber shi p: Members (accounts) of registered firewall group profiles.

10.17.1 The firewall _groups Table

The firewal | _groups table provides a view into the in-memory data cache for MySQL Enterprise
Firewall. It lists names and operational modes of registered firewall group profiles. It is used in
conjunction with the nysql . firewal | _gr oups system table that provides persistent storage of
firewall data; see MySQL Enterprise Firewall Tables.

Thefirewal | _groups table has these columns:
* NAME

The group profile name.
» MODE

The current operational mode for the profile. Permitted mode values are OFF, DETECTI NG,
PROTECTI NG, and RECORDI NG. For details about their meanings, see Firewall Concepts.

» USERHOST

The training account for the group profile, to be used when the profile is in RECORDI NG mode. The
value is NULL, or a non-NULL account that has the format user _nane@.ost nane:

« If the value is NULL, the firewall records allowlist rules for statements received from any account
that is a member of the group.

« If the value is non-NULL, the firewall records allowlist rules only for statements received from the
named account (which should be a member of the group).

The firewal | _groups table has no indexes.
TRUNCATE TABLE is not permitted for the f i rewal | _gr oups table.

Thefirewal | _groups table was added in MySQL 8.0.23.

10.17.2 The firewall _group_allowlist Table

Thefirewal | _group_allow i st table provides a view into the in-memory data cache for MySQL
Enterprise Firewall. It lists allowlist rules of registered firewall group profiles. It is used in conjunction
with the mysql . firewal | _group_al | owl i st system table that provides persistent storage of
firewall data; see MySQL Enterprise Firewall Tables.

Thefirewal | _group_all ow i st table has these columns:
* NAME

The group profile name.
* RULE

A normalized statement indicating an acceptable statement pattern for the profile. A profile allowlist is
the union of its rules.

Thefirewal | _group_all ow i st table has no indexes.

TRUNCATE TABLE is not permitted forthe fi rewal | _group_al | owl i st table.

152

https://dev.mysql.com/doc/refman/8.0/en/firewall-reference.html#firewall-tables
https://dev.mysql.com/doc/refman/8.0/en/firewall-usage.html#firewall-concepts
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/firewall-reference.html#firewall-tables
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

The firewall_membership Table

Thefirewal | _group_all ow i st table was added in MySQL 8.0.23.

10.17.3 The firewall _membership Table

The firewal | _nmenber shi p table provides a view into the in-memory data cache for MySQL
Enterprise Firewall. It lists the members (accounts) of registered firewall group profiles. It is used in
conjunction with the nysql . firewal | _nmenber shi p system table that provides persistent storage of
firewall data; see MySQL Enterprise Firewall Tables.

The firewal | _nmenber shi p table has these columns:
« GROUP_ID
The group profile name.
« MEMBER | D
The name of an account that is a member of the profile.
Thefirewal | _nenbershi p table has no indexes.
TRUNCATE TABLE is not permitted for the fi rewal | _nenber shi p table.

The firewal | _nmenber shi p table was added in MySQL 8.0.23.

10.18 Performance Schema Keyring Tables

The following sections describe the Performance Schema tables associated with the MySQL keyring
(see The MySQL Keyring). They provide information about keyring operation:

» keyring_conponent _st at us: Information about the keyring component in use.

» keyring_keys: Metadata for keys in the MySQL keyring.

10.18.1 The keyring_component_status Table

The keyri ng_conponent _st at us table (available as of MySQL 8.0.24) provides status information
about the properties of the keyring component in use, if one is installed. The table is empty if no keyring
component is installed (for example, if the keyring is not being used, or is configured to manage the
keystore using a keyring plugin rather than a keyring component).

There is no fixed set of properties. Each keyring component is free to define its own set.

Example keyri ng_conponent _st at us contents:
nmysql > SELECT * FROM per f or mance_schena. keyri ng_conponent _st at us;
| STATUS_KEY STATUS_VALUE |

|
B B e +
Conponent _nane conmponent _keyring_file

Aut hor	Oracle Corporation
License	GPL
I'nplenentation_nane	conponent _keyring_file
Version	1.0
Conponent _st at us	Active
Data_file	/usr/local/nysql/keyring/conponent _keyring_file
Read_only	No
e e +

The keyri ng_conponent _st at us table has these columns:

» STATUS_KEY

153

https://dev.mysql.com/doc/refman/8.0/en/firewall-reference.html#firewall-tables
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/keyring.html

The keyring_keys table

The status item name.
* STATUS VALUE
The status item value.
The keyri ng_conponent _st at us table has no indexes.

TRUNCATE TABLE is not permitted for the keyr i ng_conponent _st at us table.

10.18.2 The keyring_keys table

MySQL Server supports a keyring that enables internal server components and plugins to securely
store sensitive information for later retrieval. See The MySQL Keyring.

As of MySQL 8.0.16, the keyri ng_keys table exposes metadata for keys in the keyring. Key
metadata includes key IDs, key owners, and backend key IDs. The keyri ng_keys table does not
expose any sensitive keyring data such as key contents.

The keyri ng_keys table has these columns:
« KEY_ID
The key identifier.
« KEY_OWNER
The owner of the key.
« BACKEND KEY | D
The ID used for the key by the keyring backend.
The keyri ng_keys table has no indexes.

TRUNCATE TABLE is not permitted for the keyri ng_keys table.

10.19 Performance Schema Clone Tables

Note

The Performance Schema tables described here are available as of MySQL
8.0.17.

The following sections describe the Performance Schema tables associated with the clone plugin (see
The Clone Plugin). The tables provide information about cloning operations.

» cl one_st at us: status information about the current or last executed cloning operation.
» cl one_progr ess: progress information about the current or last executed cloning operation.

The Performance Schema clone tables are implemented by the clone plugin and are loaded and
unloaded when that plugin is loaded and unloaded (see Installing the Clone Plugin). No special
configuration step for the tables is needed. However, the tables depend on the clone plugin being
enabled. If the clone plugin is loaded but disabled, the tables are not created.

The Performance Schema clone plugin tables are used only on the recipient MySQL server instance.
The data is persisted across server shutdown and restart.

10.19.1 The clone_status Table

154

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/keyring.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/clone-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/clone-plugin-installation.html

The clone_status Table

Note

The Performance Schema table described here is available as of MySQL
8.0.17.

The cl one_st at us table shows the status of the current or last executed cloning operation only. The
table only ever contains one row of data, or is empty.

The cl one_st at us table has these columns:
«ID
A unique cloning operation identifier in the current MySQL server instance.
« PID
Process list ID of the session executing the cloning operation.
* STATE

Current state of the cloning operation. Values include Not Started, | n Progress, Conpl et ed,
and Fai | ed.

« BEG N_TI ME

A timestamp in ' YYYY- Mt DD hh: nm ss[.fraction]"' format that shows when the cloning
operation started.

« END_TI ME

A timestamp in' YYYY- Mt DD hh: nm ss[.fraction]' format that shows when the cloning
operation finished. Reports NULL if the operation has not ended.

» SOURCE

The donor MySQL server address in 'HOST: PORT' format. The column displays 'LOCAL | NSTANCE'
for a local cloning operation.

« DESTI NATI ON

The directory being cloned to.
« ERROR_NO

The error number reported for a failed cloning operation.
¢ ERROR_MESSAGE

The error message string for a failed cloning operation.
* BINLOG FI LE

The name of the binary log file up to which data is cloned.
* BI NLOG_POCSI Tl ON

The binary log file offset up to which data is cloned.
* GI'l D_EXECUTED

The GTID value for the last cloned transaction.

The cl one_st at us table is read-only. DDL, including TRUNCATE TABLE, is not permitted.

155

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

The clone_progress Table

10.19.2 The clone_progress Table

Note

The Performance Schema table described here is available as of MySQL
8.0.17.

The cl one_pr ogr ess table shows progress information for the current or last executed cloning
operation only.

The stages of a cloning operation include DROP DATA, FI LE COPY, PAGE_CCPY, REDO_COPY,
FI LE_SYNC, RESTART, and RECOVERY. A cloning operation produces a record for each stage. The
table therefore only ever contains seven rows of data, or is empty.

The cl one_pr ogr ess table has these columns:
* |ID

A unigue cloning operation identifier in the current MySQL server instance.
* STACGE

The name of the current cloning stage. Stages include DROP DATA, FI LE COPY, PAGE _COPY,
REDO_COPY, FI LE_SYNC, RESTART, and RECOVERY.

» STATE

The current state of the cloning stage. States include Not St arted, | n Progress, and
Conpl et ed.

* BEG N_TI ME

A timestamp in ' YYYY- Mt DD hh: nm ss[.fraction]' format that shows when the cloning
stage started. Reports NULL if the stage has not started.

« END_TI ME

A timestamp in ' YYYY- Mt DD hh: nm ss[.fraction]"' format that shows when the cloning
stage finished. Reports NULL if the stage has not ended.

* THREADS
The number of concurrent threads used in the stage.
« ESTI MATE
The estimated amount of data for the current stage, in bytes.
* DATA
The amount of data transferred in current state, in bytes.
« NETWORK
The amount of network data transferred in the current state, in bytes.
« DATA SPEED

The current actual speed of data transfer, in bytes per second. This value may differ from the
requested maximum data transfer rate defined by cl one_nax_dat a_bandwi dt h.

* NETWORK_SPEED

156

https://dev.mysql.com/doc/refman/8.0/en/clone-plugin-options-variables.html#sysvar_clone_max_data_bandwidth

Performance Schema Summary Tables

The current speed of network transfer in bytes pe

r second.

The cl one_pr ogr ess table is read-only. DDL, including TRUNCATE TABLE, is not permitted.

10.20 Performance Schema Summar

Summary tables provide aggregated information for
group summarize event data in different ways.

Each summary table has grouping columns that det

y Tables

terminated events over time. The tables in this

ermine how to group the data to be aggregated,

and summary columns that contain the aggregated values. Tables that summarize events in similar
ways often have similar sets of summary columns and differ only in the grouping columns used to

determine how events are aggregated.

Summary tables can be truncated with TRUNCATE TABLE. Generally, the effect is to reset the
summary columns to 0 or NULL, not to remove rows. This enables you to clear collected values and
restart aggregation. That might be useful, for example, after you have made a runtime configuration
change. Exceptions to this truncation behavior are noted in individual summary table sections.

Wait Event Summaries

Table 10.7 Performance Schema Wait Event Summary Tables

Table Name

Description

events_waits_sumary_by account by eve

WVaihewvents per account and event name

events_wai ts_summary_by host by event |

Wéaitevents per host name and event name

events waits _summary_by instance

Wait events per instance

events_waits_sunmmary_by thread_by ever

Waitewents per thread and event name

events_waits_sumary_by user by event |

Méaitevents per user name and event name

events_waits_summary_gl obal _by event n

Sviat events per event name

Stage Summaries

Table 10.8 Performance Schema Stage Event Su

mmary Tables

Table Name

Description

events_stages_sunmary_by_account _by_ eV

Stagenevents per account and event name

events_stages_sunmary_by host by event

Stageeevents per host name and event name

events_stages _sumuary_by thread by eved

Stageawaits per thread and event name

events_stages_sunmmary_by user by event

Stagesevents per user name and event name

events_stages_sunmary_gl obal by event |

Stage waits per event name

Statement Summaries

Table 10.9 Performance Schema Statement Event Summary Tables

Table Name

Description

event s_st at ement s_hi st ogram by_di gest

Statement histograms per schema and digest
value

event s_stat enent s_hi st ogram gl obal

Statement histogram summarized globally

events_statenents_sunmary_by account _h

Btatement ewents per account and event name

events_statenents_summary_by di gest

Statement events per schema and digest value

157

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

Transaction Summaries

Table Name

Description

events_statenents_sunmary_by host by e

Gtatenestrevents per host name and event name

event s_st at ement s_sunmmary_by_progr am

Statement events per stored program

events_statenents_sunmary_by thread_by

Statertent awents per thread and event name

events_statenents_sunmary_by user_ by €

Gtate memtrevents per user name and event name

events_statenents_sunmary_gl obal _by ey

Statenwent events per event name

prepared_statements_i nstances

Prepared statement instances and statistics

Transaction Summaries

Table 10.10 Performance Schema Transaction Event Summary Tables

Table Name

Description

events_transacti ons_sunmary_by_account

Trgnsactioh events per account and event name

events_transactions_sumrmary_by host by

Teartsactioa®wents per host name and event
name

events_transactions_sumrary by thread |

Byarsaetion eyents per thread and event name

events_transacti ons_sumrary_by user by

Tearesactioa®wents per user name and event
name

events_transactions_sunmary_gl obal by |

dvandactianevents per event name

Object Wait Summaries

Table 10.11 Performance Schema Object Event Summary Tables

Table Name

Description

obj ects_summary_gl obal by type

Object summaries

File I/O Summaries

Table 10.12 Performance Schema File I/O Event Summary Tables

Table Name

Description

file_summary_ by event nane

File events per event name

file_ summary by instance

File events per file instance

Table I/O and Lock Wait Summaries

Table 10.13 Performance Schema Table I/O and Lock Wait Event Summary Tables

Table Name

Description

table io waits _sunmmary_by i ndex_usage

Table 1/0 waits per index

table io waits summary by table

Table 1/0 waits per table

table | ock waits_sunmary by table

Table lock waits per table

Socket Summaries

Table 10.14 Performance Schema Socket Event Summary Tables

Table Name

Description

socket _summary_by event nane

Socket waits and I/O per event name

socket _summary_by i nstance

Socket waits and /O per instance

158

Memory Summaries

Memory Summaries

Table 10.15 Performance Schema Memory Oper

ation Summary Tables

Table Name

Description

menory_sunmary_by account _by_event _nan

Mlemory operations per account and event name

menory_sumary_ by host by event nanme

Memory operations per host and event name

menory_sumary_ by thread by event nane

Memory operations per thread and event name

menory_summary_by user_by_event name

Memory operations per user and event name

menory_sunmary_gl obal _by_event nane

Memory operations globally per event name

Error Summaries

Table 10.16 Performance Schema Error Summary Tables

Table Name

Description

events_errors_sumary_by_account by _er

Eorors per account and error code

events_errors_sumuary_by host by error

Errors per host and error code

events_errors_sunmary_by thread by err

&rrors per thread and error code

events_errors_sumuary_by user_by error

Errors per user and error code

events_errors_summary_gl obal _by_error

Errors per error code

Status Variable Summaries

Table 10.17 Performance Schema Error Status Variable Summary Tables

Table Name

Description

status_by_account

Session status variables per account

stat us_by_ host

Session status variables per host name

status_by user

Session status variables per user name

10.20.1 Wait Event Summary Tables

The Performance Schema maintains tables for collecting current and recent wait events, and
aggregates that information in summary tables. Section 10.4, “Performance Schema Wait Event
Tables” describes the events on which wait summaries are based. See that discussion for information
about the content of wait events, the current and recent wait event tables, and how to control wait event

collection, which is disabled by default.

Example wait event summary information:

nysql > SELECT *

FROM per f or mance_schema. event s_wai t s_sunmary_gl obal _by_event _nane\ G

AXKKKKKKXK KKK KAXX KKK KA XX KN, G [OW * %% %k kkk ok ok k kK

EVENT_NAME: wai t/ synch/ mut ex/ sql / Bl NARY_LOG
COUNT_STAR: 8

SUM TI MER WAI T: 2119302

M N_TI MER WAI T: 196092

AVG TI MER WAI T: 264912

MAX_TI MER WAI T: 569421

AXKKKKKKXK KKK KAXX KKK kK XX ** % Q [OW * X% %k kk ok ok k ok koK

EVENT_NAME: wai t/ synch/ mut ex/ sql / hash_fil o::
COUNT_STAR: 69

SUM TI MER WAl T: 16848828

MNTIMER VAIT: O

khkkkkhkkkkhkkhkkk*

: LOCK_i ndex

kkhkkkkhkkkkhkkkkk*

| ock

159

Wait Event Summary Tables

AVG Tl MER WAI T: 244185
MAX_TI MER_ WAI T: 735345

Each wait event summary table has one or more grouping columns to indicate how the table
aggregates events. Event names refer to names of event instruments in the set up_i nstrunent s
table:

events_waits_sunmary_by account by event nanme has EVENT NAME, USER, and HOST
columns. Each row summarizes events for a given account (user and host combination) and event
name.

events waits _sunmary_by host by event nane has EVENT NAME and HOST columns.
Each row summarizes events for a given host and event name.

events_waits_sunmary_by instance has EVENT NAME and OBJECT | NSTANCE BEG N
columns. Each row summarizes events for a given event name and object. If an instrument is used
to create multiple instances, each instance has a unique OBJECT | NSTANCE BEG Nvalue and is
summarized separately in this table.

events waits_sunmmary_ by thread_by event nane has THREAD | Dand EVENT _NANE
columns. Each row summarizes events for a given thread and event name.

events waits _sunmary by user by event nane has EVENT NAME and USER columns.
Each row summarizes events for a given user and event hame.

events waits_sunmary_gl obal by event nane has an EVENT_ NANME column. Each

row summarizes events for a given event name. An instrument might be used to create multiple
instances of the instrumented object. For example, if there is an instrument for a mutex that is
created for each connection, there are as many instances as there are connections. The summary
row for the instrument summarizes over all these instances.

Each wait event summary table has these summary columns containing aggregated values:

COUNT_STAR
The number of summarized events. This value includes all events, whether timed or nontimed.
SUM TI MER WAI T

The total wait time of the summarized timed events. This value is calculated only for timed
events because nontimed events have a wait time of NULL. The same is true for the other
xxxX_TI MER_WAI T values.

M N_TI MER WAI T

The minimum wait time of the summarized timed events.
AVG TI MER WAI T

The average wait time of the summarized timed events.
MAX_TI MER WAI T

The maximum wait time of the summarized timed events.

The wait event summary tables have these indexes:

events_waits_sunmary_by account by event nane:
e Primary key on (USER, HOST, EVENT _NANE)

events waits_sunmary_ by host by event nane:

160

Stage Summary Tables

« Primary key on (HOST, EVENT _NAME)
e events waits _summary_ by instance:
e Primary key on (OBJECT_| NSTANCE_BEG N)
¢ Index on (EVENT _NANE)
e events waits _summary by thread by event nane:
e Primary key on (THREAD _| D, EVENT_NANME)
e events waits_summary_by user_ by event nane:
e Primary key on (USER, EVENT_NANE)
* events_waits_summary_gl obal by event nane:
¢ Primary key on (EVENT _NANE)
TRUNCATE TABLE is permitted for wait summary tables. It has these effects:

» For summary tables not aggregated by account, host, or user, truncation resets the summary
columns to zero rather than removing rows.

» For summary tables aggregated by account, host, or user, truncation removes rows for accounts,
hosts, or users with no connections, and resets the summary columns to zero for the remaining rows.

In addition, each wait summary table that is aggregated by account, host, user, or thread is

implicitly truncated by truncation of the connection table on which it depends, or truncation of

events waits_sunmary_ gl obal by event nane. For details, see Section 10.8, “Performance
Schema Connection Tables”.

10.20.2 Stage Summary Tables

The Performance Schema maintains tables for collecting current and recent stage events, and
aggregates that information in summary tables. Section 10.5, “Performance Schema Stage Event
Tables” describes the events on which stage summaries are based. See that discussion for information
about the content of stage events, the current and historical stage event tables, and how to control
stage event collection, which is disabled by default.

Example stage event summary information:

nysql > SELECT *
FROM per f or mance_schema. event s_st ages_sunmary_gl obal by _event _nane\ G

khkkkkhkkhkkhkkhkkhkkhkhkhkhkhkhkkkhkhkkkkkkkk*%x 5 r ow khkkkkhkkhkkhkkhkkhkkhkhkhkhkkhkkhkhkhkhkhkkkkkkk**x

EVENT_NAME: st age/ sql / checki ng perni ssi ons
COUNT_STAR: 57

SUM TI MER_WAI T: 26501888880

M N_TI MER WAI T: 7317456

AVG TI MER_WAI T: 464945295

MAX_TI MER_ WAI T: 12858936792

khkkkkhkkhkkhkkhkkhkkhkhkhkkhkkhkkhkhkhkkhkkkkkkk*k*x 9 r ow khkkhkkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkkkkkkkkkkk*k*%x

EVENT_NAME: st age/sql/cl osing tabl es
COUNT_STAR: 37

SUM TI MER_WAI T: 662606568

M N_TI MER_ WAI T: 1593864

AVG TI MER_ WAI T: 17907891

MAX_TI MER_ WAI T: 437977248

Each stage summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the set up_i nst runent s table:

161

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

Statement Summary Tables

e events_stages_summary_by account by event nane has EVENT_NAME, USER, and HOST
columns. Each row summarizes events for a given account (user and host combination) and event
name.

 events_stages _sumrary by host by event nane has EVENT NAME and HOST columns.
Each row summarizes events for a given host and event name.

* events_stages_summary_by thread_by event name has THREAD | Dand EVENT NAME
columns. Each row summarizes events for a given thread and event name.

e events_stages_sumrary_by user by event nane has EVENT NAME and USER columns.
Each row summarizes events for a given user and event name.

 events _stages _sumrary gl obal by event name has an EVENT NANE column. Each row
summarizes events for a given event name.

Each stage summary table has these summary columns containing aggregated values: COUNT _STAR,
SUM TI MER WAI T, M N_TI MER_WAI T, AVG_TI MER_WAI T, and MAX_TI MER_WAI T. These

columns are analogous to the columns of the same names in the wait event summary tables (see
Section 10.20.1, “Wait Event Summary Tables”), except that the stage summary tables aggregate
events from event s_st ages_current ratherthanevents waits current.

The stage summary tables have these indexes:

» events_stages_summary_by_account _by_event _nane:
e Primary key on (USER, HOST, EVENT_NAME)

* events_stages_summary_by host by event nane:
e Primary key on (HOST, EVENT_NANE)

* events_stages_summary_by thread_by event nane:
e Primary key on (THREAD | D, EVENT _NANE)

» events_stages_summary_by_user _by_event _nane:
e Primary key on (USER, EVENT_NANE)

e events_stages_summary_gl obal by event narme:
e Primary key on (EVENT _NANE)

TRUNCATE TABLE is permitted for stage summary tables. It has these effects:

» For summary tables not aggregated by account, host, or user, truncation resets the summary
columns to zero rather than removing rows.

» For summary tables aggregated by account, host, or user, truncation removes rows for accounts,
hosts, or users with no connections, and resets the summary columns to zero for the remaining rows.

In addition, each stage summary table that is aggregated by account, host, user, or thread is

implicitly truncated by truncation of the connection table on which it depends, or truncation of
events_stages_summary_gl obal by event nane. For details, see Section 10.8, “Performance
Schema Connection Tables”.

10.20.3 Statement Summary Tables

The Performance Schema maintains tables for collecting current and recent statement events, and
aggregates that information in summary tables. Section 10.6, “Performance Schema Statement Event

162

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

Statement Summary Tables

Tables” describes the events on which statement summaries are based. See that discussion for
information about the content of statement events, the current and historical statement event tables,
and how to control statement event collection, which is partially disabled by default.

Example statement event summary information:

nysql > SELECT *
FROM per f or mance_schema. event s_st at ements_sumuary_gl obal _by event nane\ G
khkkkkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkhkkkkkkkkkkk*%x 1 I’OW khkkkkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkhkkkhkkkkkkkk*%x
EVENT_NAME: st at enent/sql /sel ect
COUNT_STAR: 54
SUM TI MER_WAI T: 38860400000
M N_TI MER_ WAI T: 52400000
AVG TI MER_WAI T: 719600000
MAX_TI MER_ WAI T: 12631800000
SUM LOCK_TI ME: 88000000
SUM ERRORS: 0
SUM WARNI NGS: 0
SUM ROWS_AFFECTED: 0
SUM ROAS_SENT: 60
SUM ROWS_EXAM NED: 120
SUM CREATED TMP_DI SK_TABLES: 0
SUM CREATED TMP_TABLES: 21
SUM SELECT FULL _JO N:
SUM SELECT_FULL_RANGE_JO N:
SUM _SELECT_RANGE:
SUM_SELECT_RANGE_CHECK:
SUM _SELECT_SCAN:
SUM _SORT_MERGE_PASSES:
SUM_SORT_RANGE:
SUM_SORT_RONE:
SUM_SORT_SCAN:
SUM NO_| NDEX_USED:
SUM_NO_GOCD_| NDEX_USED:
SUM CPU_TI ME:
MAX_CONTROLLED MEMORY: 2028360
MAX_TOTAL_MEMORY: 2853429
COUNT_SECONDARY: 0

[y
o

i

OOBOOOO#OOO

Each statement summary table has one or more grouping columns to indicate how the table
aggregates events. Event names refer to names of event instruments in the set up_i nstrunent s
table:

* events_statenments_summary_ by account by event name has EVENT NAME, USER, and
HOST columns. Each row summarizes events for a given account (user and host combination) and
event name.

e« events statenents_summary_ by di gest has SCHEMA NANE and DI GEST columns. Each
row summarizes events per schema and digest value. (The DI GEST_TEXT column contains the
corresponding normalized statement digest text, but is neither a grouping nor a summary column.
The QUERY_SAMPLE_TEXT, QUERY_SAMPLE_SEEN, and QUERY_SAMPLE _TI MER_WAI T columns
also are neither grouping nor summary columns; they support statement sampling.)

The maximum number of rows in the table is autosized at server startup. To set this maximum
explicitly, set the per f or mance_schemna_di gest s_si ze system variable at server startup.

e« events_statenents_sumrary_by host by event nane has EVENT_NAME and HOST
columns. Each row summarizes events for a given host and event name.

 events_statenents_sumary_by programhas OBJECT TYPE, OBJECT SCHEMA, and
OBJECT_NAME columns. Each row summarizes events for a given stored program (stored procedure
or function, trigger, or event).

 events_statenments_summary_by thread by event nane has THREAD | Dand
EVENT _NANME columns. Each row summarizes events for a given thread and event name.

163

Statement Summary Tables

events_statenents_summary_by user by event nane has EVENT NAME and USER
columns. Each row summarizes events for a given user and event name.

events _statenents_summary_ gl obal by event nane has an EVENT NANME column. Each
row summarizes events for a given event name.

prepared_statenents instances hasan OBJECT | NSTANCE BEGQ N column. Each row
summarizes events for a given prepared statement.

Each statement summary table has these summary columns containing aggregated values (with
exceptions as noted):

COUNT_STAR, SUM TI MER_ WAI T, M N_TI MER_WAI T, AVG_TI MER_WAI T, MAX_TI MER_VWAI T

These columns are analogous to the columns of the same names in the wait event summary tables
(see Section 10.20.1, “Wait Event Summary Tables”), except that the statement summary tables
aggregate events from event s_st at enent s_current rather than events_wai ts_current.

The pr epar ed_st at enent s_i nst ances table does not have these columns.
SUM_xxX

The aggregate of the corresponding xxx column in the event s_st at ement s_current table. For
example, the SUM LOCK Tl ME and SUM ERRORS columns in statement summary tables are the
aggregates of the LOCK_TI ME and ERRCRS columns in event s_st at enent s_current table.

MAX_CONTROLLED MEMORY

Reports the maximum amount of controlled memory used by a statement during execution.
This column was added in MySQL 8.0.31.

MAX_TOTAL_MEMORY

Reports the maximum amount of memory used by a statement during execution.

This column was added in MySQL 8.0.31.

COUNT_SECONDARY

The number of times a query was processed on the SECONDARY engine. For use with MySQL
HeatWave Service and HeatWave, where the PRI MARY engine is | nnoDB and the SECONDARY
engine is HeatWave (RAPI D). For MySQL Community Edition Server, MySQL Enterprise Edition
Server (on-premise), and MySQL HeatWave Service without HeatWave, queries are always
processed on the PRI MARY engine, which means the value is always 0 on these MySQL Servers.
The COUNT_SECONDARY column was added in MySQL 8.0.29.

The events_statenents_sumary_ by di gest table has these additional summary columns:

FI RST_SEEN, LAST_SEEN

Timestamps indicating when statements with the given digest value were first seen and most
recently seen.

QUANTI LE_95: The 95th percentile of the statement latency, in picoseconds. This percentile is a
high estimate, computed from the histogram data collected. In other words, for a given digest, 95% of
the statements measured have a latency lower than QUANTI LE_95.

For access to the histogram data, use the tables described in Section 10.20.4, “Statement Histogram
Summary Tables”.

QUANTI LE_99: Similar to QUANTI LE_95, but for the 99th percentile.

164

Statement Summary Tables

e QUANTI LE_999: Similar to QUANTI LE_95, but for the 99.9th percentile.

The events_statenents_summary_by_di gest table contains the following columns. These are

neither grouping nor summary columns; they support statement sampling:

« QUERY_SAMPLE_TEXT

A sample SQL statement that produces the digest value in the row. This column enables applications
to access, for a given digest value, a statement actually seen by the server that produces that digest.

One use for this might be to run EXPLAI N on the statement to examine the execution plan for a
representative statement associated with a frequently occurring digest.

When the QUERY_SAMPLE_TEXT column is assigned a value, the QUERY_ _SAMPLE_SEEN and
QUERY_SAMPLE_TI MER_WAI T columns are assigned values as well.

The maximum space available for statement display is 1024 bytes by default. To change this value,

set the per f or mance_schenma_max_sql _t ext _| engt h system variable at server startup.

(Changing this value affects columns in other Performance Schema tables as well. See Performance

Schema Statement Digests and Sampling.)

For information about statement sampling, see Performance Schema Statement Digests and
Sampling.

* QUERY_SAMPLE_SEEN
A timestamp indicating when the statement in the QUERY_SAMPLE_TEXT column was seen.
* QUERY_SAMPLE TI MER VWAI'T

The wait time for the sample statement in the QUERY_SAMPLE_TEXT column.

The events_statenents_sunmmary_ by progr amtable has these additional summary columns:

* COUNT_STATEMENTS, SUM _STATEMENTS _WAI T, M N_STATEMENTS_WAI T,
AVG_STATEMENTS_WAI T, MAX_STATEMENTS_WAI T

Statistics about nested statements invoked during stored program execution.
The pr epar ed_st at enment s_i nst ances table has these additional summary columns:

« COUNT_EXECUTE, SUM_TI MER_EXECUTE, M N_TI MER_EXECUTE, AVG Tl MER_EXECUTE,
MAX_TI MER_EXECUTE

Aggregated statistics for executions of the prepared statement.
The statement summary tables have these indexes:
e events_transactions_sumrary_by account by event narme:
* Primary key on (USER, HOST, EVENT _NANE)
* events_statenents_summary_ by di gest:
« Primary key on (SCHEMA NANE, DI GEST)
e« events_transactions_sunmary_by host by event nane:
e Primary key on (HOST, EVENT_NAME)
» events_statenments_summary_by_program
« Primary key on (OBJECT TYPE, OBJECT SCHEMA, OBJECT NANE)

e events_statenents_summary_ by thread by event nane:

165

https://dev.mysql.com/doc/refman/8.0/en/explain.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-statement-digests.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-statement-digests.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-statement-digests.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-statement-digests.html

Statement Summary Tables

e Primary key on (THREAD | D, EVENT _NANE)
e events_transactions_sunmmary_ by user by event nane:
e Primary key on (USER, EVENT _NAME)
 events_statenents_sumary_gl obal by event nane:
e Primary key on (EVENT _NANE)
TRUNCATE TABLE is permitted for statement summary tables. It has these effects:
 Forevents_statenents summary by di gest, it removes the rows.

» For other summary tables not aggregated by account, host, or user, truncation resets the summary
columns to zero rather than removing rows.

» For other summary tables aggregated by account, host, or user, truncation removes rows for
accounts, hosts, or users with no connections, and resets the summary columns to zero for the
remaining rows.

In addition, each statement summary table that is aggregated by account, host, user, or thread
is implicitly truncated by truncation of the connection table on which it depends, or truncation of
events_statenents_sunmary_gl obal _by event nane. For details, see Section 10.8,
“Performance Schema Connection Tables”.

In addition, truncating event s_st at enent s_summary_by_di gest implicitly
truncates event s_st at enent s_hi st ogram by_di gest, and truncating
events_statenents_sunmary_gl obal _by event name implicitly truncates
event s_st at enent s_hi st ogram gl obal .

Statement Digest Aggregation Rules

If the st at ement s_di gest consumer is enabled, aggregation into
events_statenents_sunmary_by di gest occurs as follows when a statement completes.
Aggregation is based on the DI GEST value computed for the statement.

« Ifaevents_statenents_sunmary_ by di gest row already exists with the digest value for
the statement that just completed, statistics for the statement are aggregated to that row. The
LAST_SEEN column is updated to the current time.

« If no row has the digest value for the statement that just completed, and the table is not full, a new
row is created for the statement. The FI RST_SEEN and LAST _SEEN columns are initialized with the
current time.

 If no row has the statement digest value for the statement that just completed, and the table is full,
the statistics for the statement that just completed are added to a special “catch-all” row with DI GEST
= NULL, which is created if necessary. If the row is created, the FI RST_SEEN and LAST _SEEN
columns are initialized with the current time. Otherwise, the LAST _SEEN column is updated with the
current time.

The row with DI GEST = NULL is maintained because Performance Schema tables have a maximum
size due to memory constraints. The DI GEST = NULL row permits digests that do not match other rows
to be counted even if the summary table is full, using a common “other” bucket. This row helps you
estimate whether the digest summary is representative:

e A DI GEST = NULL row that has a COUNT _STAR value that represents 5% of all digests shows that
the digest summary table is very representative; the other rows cover 95% of the statements seen.

e A DI GEST = NULL row that has a COUNT _STAR value that represents 50% of all digests shows that
the digest summary table is not very representative; the other rows cover only half the statements

166

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

Statement Histogram Summary Tables

seen. Most likely the DBA should increase the maximum table size so that more of the rows counted
in the DI GEST = NULL row would be counted using more specific rows instead. By default, the table
is autosized, but if this size is too small, set the per f or nance_schena_di gests_si ze system
variable to a larger value at server startup.

Stored Program Instrumentation Behavior

For stored program types for which instrumentation is enabled in the set up_obj ect s table,
events_stat enents_sunmary_by programmaintains statistics for stored programs as follows:

« Arow is added for an object when it is first used in the server.
» The row for an object is removed when the object is dropped.
 Statistics are aggregated in the row for an object as it executes.

See also Section 5.3, “Event Pre-Filtering”.

10.20.4 Statement Histogram Summary Tables

The Performance Schema maintains statement event summary tables that contain information about
minimum, maximum, and average statement latency (see Section 10.20.3, “Statement Summary
Tables”). Those tables permit high-level assessment of system performance. To permit assessment
at a more fine-grained level, the Performance Schema also collects histogram data for statement
latencies. These histograms provide additional insight into latency distributions.

Section 10.6, “Performance Schema Statement Event Tables” describes the events on which
statement summaries are based. See that discussion for information about the content of statement
events, the current and historical statement event tables, and how to control statement event collection,
which is partially disabled by default.

Example statement histogram information:

nysql > SELECT *
FROM per f or mance_schema. event s_st at ement s_hi st ogr am by_di gest
VWHERE SCHEMA NAME = ' nydb' AND DI GEST = ' bb3f 69453119b2d7b3ae40673a9d4c7c’
AND COUNT_BUCKET > 0 ORDER BY BUCKET_NUMBER\ G
khkkkhkkhkkhkkhkkhkhkhkhkhhhkhkhkkhkkhkhkhkhkhxxdxkk 1 I'OW khkkkhkkhkkhkkhkhkhkhkhkhrhhkhkhkkhkkhkhkhkhkhrxhkkk
SCHEMA_NAME: nydb
DI GEST: bb3f 69453119b2d7b3ae40673a9d4c7c
BUCKET_NUMBER: 42
BUCKET_TI MER_ LOWN 66069344
BUCKET_TI MER_HI GH: 69183097
COUNT_BUCKET: 1
COUNT_BUCKET_AND_LONER: 1
BUCKET_QUANTI LE: 0.058824
khkkkhkkhkkhkkhkkhkhkhkhkhrhhkhkhkkhkkhkhkhkhkhrhxhxkk 2 I'OW khkkkhkkhkkhkkhkkhkhkhkhkhhhkhkhkkhkkhkhkhkhkhrhxhxkk
SCHEMA_NAME: nydb
DI GEST: bb3f 69453119b2d7b3ae40673a9d4c7c
BUCKET_NUMBER: 43
BUCKET_TI MER_LOW 69183097
BUCKET_TI MER HI GH: 72443596
COUNT_BUCKET: 1
COUNT_BUCKET_AND_LONER: 2
BUCKET_QUANTI LE: 0.117647
khkkkhkkhkkhkkhkkhkhkhkhkhhhkhkhkkhkkhkhkhkhkhrxdxkk 3 I'OW khkkkhkkhkkhkkhkkhkhkhkhkhrhhkhkhkkhkkhkhkhkhkhrxhkkk
SCHEMA_NAME: nydb
DI GEST: bb3f 69453119b2d7b3ae40673a9d4c7c
BUCKET_NUMBER: 44
BUCKET_TI MER_LOWN 72443596
BUCKET_TI MER HI GH: 75857757
COUNT_BUCKET: 2
COUNT_BUCKET_AND_LOVER: 4
BUCKET_QUANTI LE: 0.235294

LEE R R EEEEEEEEEEEE L] FOW FXX*hdkkkkkkhokkkkxkhkkkkxxkhk

SCHEMA_NAME: nydb

167

Statement Histogram Summary Tables

DI GEST: bb3f 69453119b2d7b3ae40673a9d4c7c
BUCKET _NUMBER: 45
BUCKET_TI MER LOW 75857757
BUCKET Tl MER HI GH: 79432823
COUNT_BUCKET: 6
COUNT_BUCKET_AND LOVWER 10
BUCKET _QUANTI LE: 0. 625000

For example, in row 3, these values indicate that 23.52% of queries run in under 75.86 microseconds:

BUCKET_TI MER HI GH: 75857757
BUCKET_QUANTI LE: 0. 235294

In row 4, these values indicate that 62.50% of queries run in under 79.44 microseconds:

BUCKET_TI MER HI G+ 79432823
BUCKET_QUANTI LE: 0. 625000

Each statement histogram summary table has one or more grouping columns to indicate how the table
aggregates events:

* events_statenents_hi stogram by di gest has SCHEMA NAMNE, DI GEST, and
BUCKET _NUVBER columns:

e The SCHEMA NANME and DI GEST columns identify a statement digest row in the
events_statenents_sunmary_ by di gest table.

« Theevents_statenents_hi stogram by di gest rows with the same SCHEMA NANE and
DI GEST values comprise the histogram for that schema/digest combination.

< Within a given histogram, the BUCKET _NUVBER column indicates the bucket number.

* events_statenents_histogram gl obal hasa BUCKET NUMBER column. This table
summarizes latencies globally across schema name and digest values, using a single histogram.
The BUCKET _NUMBER column indicates the bucket number within this global histogram.

A histogram consists of N buckets, where each row represents one bucket, with the bucket number
indicated by the BUCKET _NUNMBER column. Bucket numbers begin with 0.

Each statement histogram summary table has these summary columns containing aggregated values:
* BUCKET_TI MER_LOW BUCKET_TI MER_HI GH

A bucket counts statements that have a latency, in picoseconds, measured between
BUCKET _TI MER_LOWand BUCKET _TI MER HI GH:

e The value of BUCKET _TI MER_LOWfor the first bucket (BUCKET NUMBER = 0) is 0.

e The value of BUCKET _TI MER LOWfor a bucket (BUCKET NUMBER = k) is the same as
BUCKET _TI MER _HI GH for the previous bucket (BUCKET NUNMBER = k—1)

e The last bucket is a catchall for statements that have a latency exceeding previous buckets in the
histogram.

» COUNT_BUCKET

The number of statements measured with a latency in the interval from BUCKET_TI MER_LOWup to
but not including BUCKET _TI MER _HI CGH.

« COUNT_BUCKET _AND_LOWER

The number of statements measured with a latency in the interval from 0 up to but not including
BUCKET _TI MER HI GH.

168

Transaction Summary Tables

* BUCKET_QUANTI LE

The proportion of statements that fall into this or a lower bucket. This proportion corresponds
by definition to COUNT_BUCKET_AND_LOVWER / SUM COUNT_BUCKET) and is displayed as a
convenience column.

The statement histogram summary tables have these indexes:
 events_statenents_histogram by digest:

« Unique index on (SCHEVA NANE, DI GEST, BUCKET NUVBER)
* events_statenents_hi stogram gl obal :

¢ Primary key on (BUCKET _NUVMBER)

TRUNCATE TABLE is permitted for statement histogram summary tables. Truncation sets the
COUNT_BUCKET and COUNT_BUCKET_AND_LOVER columns to 0.

In addition, truncating event s_st at enent s_sunmmary_by_di gest implicitly
truncates event s_st at enent s_hi st ogr am by_di gest, and truncating
events_statenents_sunmary_gl obal _by_ event name implicitly truncates
events_statenents_hi stogram gl obal .

10.20.5 Transaction Summary Tables

The Performance Schema maintains tables for collecting current and recent transaction events, and
aggregates that information in summary tables. Section 10.7, “Performance Schema Transaction
Tables” describes the events on which transaction summaries are based. See that discussion for
information about the content of transaction events, the current and historical transaction event tables,
and how to control transaction event collection, which is disabled by default.

Example transaction event summary information:

nysql > SELECT *
FROM per f or mance_schenma. event s_transacti ons_sunmary_gl obal by event nane
LIMT 1\G
LR R R R R R R EEEEEEEEEEEEEEEE R SR 1 I'OW ERE R R R R R R R R R R R R R EEEEEEEEEEE R
EVENT_NAME: transaction
COUNT_STAR: 5
SUM TI MER_WAI T: 19550092000
M N_TI MER_ WAI T: 2954148000
AVG TI MER_ WAI T: 3910018000
MAX_TI MER_ WAI T: 5486275000
COUNT_READ WRI TE: 5
SUM TI MER_READ WRI TE: 19550092000
M N_TI MER_READ WRI TE: 2954148000
AVG Tl MER_READ WRI TE: 3910018000
MAX_TI MER_READ WRI TE: 5486275000
COUNT_READ_ONLY:
SUM TI MER_READ ONLY:
M N_TI MER_READ _ONLY:
AVG Tl MER_READ ONLY:
MAX_TI MER_READ _ONLY:

[eNeNeoNoNe]

Each transaction summary table has one or more grouping columns to indicate how the table
aggregates events. Event names refer to names of event instruments in the set up_i nstrunent s
table:

e events_transactions_summary_ by account by event nane has USER, HOST, and
EVENT _NAME columns. Each row summarizes events for a given account (user and host
combination) and event name.

* events_transacti ons_summary_by host by event nane has HOST and EVENT_NANVE
columns. Each row summarizes events for a given host and event name.

169

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

Transaction Summary Tables

e events_transactions_sunmary_ by thread by event nane has THREAD | Dand
EVENT _NANME columns. Each row summarizes events for a given thread and event name.

e events_transactions_summary_ by user by event nane has USER and EVENT _NAVE
columns. Each row summarizes events for a given user and event name.

e events transactions _sumary_ gl obal by event nane has an EVENT NAME column. Each
row summarizes events for a given event name.

Each transaction summary table has these summary columns containing aggregated values:
« COUNT_STAR, SUM TI MER_ WAI T, M N_TI MER_WAI T, AVG _TI MER_ WAI T, MAX_TI MER WAI T

These columns are analogous to the columns of the same names in the wait event summary tables
(see Section 10.20.1, “Wait Event Summary Tables”), except that the transaction summary tables
aggregate events from event s_transacti ons_current ratherthanevents waits _current.
These columns summarize read-write and read-only transactions.

« COUNT_READ WRI TE, SUM TI MER_READ WRI TE, M N_TI MER_READ Rl TE,
AVG_TI MER_READ WRI TE, MAX_TI MER_READ WRI TE

These are similar to the COUNT_STAR and xxx_ Tl MER_WAI T columns, but summarize read-write
transactions only. The transaction access mode specifies whether transactions operate in read/write
or read-only mode.

« COUNT_READ ONLY, SUM TI MER_READ ONLY, M N_TI MER_READ ONLY,
AVG_TI MER_READ ONLY, MAX_TI MER_READ ONLY

These are similar to the COUNT_STAR and xxx_TI MER_WAI T columns, but summarize read-only
transactions only. The transaction access mode specifies whether transactions operate in read/write
or read-only mode.

The transaction summary tables have these indexes:
e events_transactions_sumrary_by account by event narme:
e Primary key on (USER, HOST, EVENT _NANE)
e events_transactions_summary_ by host by event nane:
e Primary key on (HOST, EVENT_NANE)
 events_transactions_sunmmary_ by thread by event nane:
e Primary key on (THREAD _| D, EVENT_NANE)
* events_transacti ons_sumary_by user by event nane:
e Primary key on (USER, EVENT_NANE)
* events_transacti ons_sumary_gl obal _by event nane:
e Primary key on (EVENT_NANE)
TRUNCATE TABLE is permitted for transaction summary tables. It has these effects:

» For summary tables not aggregated by account, host, or user, truncation resets the summary
columns to zero rather than removing rows.

» For summary tables aggregated by account, host, or user, truncation removes rows for accounts,
hosts, or users with no connections, and resets the summary columns to zero for the remaining rows.

In addition, each transaction summary table that is aggregated by account, host, user, or thread
is implicitly truncated by truncation of the connection table on which it depends, or truncation of

170

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

Object Wait Summary Table

events_transactions_summary_ gl obal by event nane. For details, see Section 10.8,
“Performance Schema Connection Tables”.

Transaction Aggregation Rules

Transaction event collection occurs without regard to isolation level, access mode, or autocommit
mode.

Transaction event collection occurs for all non-aborted transactions initiated by the server, including
empty transactions.

Read-write transactions are generally more resource intensive than read-only transactions, therefore
transaction summary tables include separate aggregate columns for read-write and read-only
transactions.

Resource requirements may also vary with transaction isolation level. However, presuming that only
one isolation level would be used per server, aggregation by isolation level is not provided.

10.20.6 Object Wait Summary Table

The Performance Schema maintains the obj ect s_summary_gl obal by _t ype table for aggregating
object wait events.

Example object wait event summary information:

nysql > SELECT * FROM per for mance_schena. obj ect s_sunmary_gl obal _by type\ G

;(;(;(************************ 3 r ow khkkkkkhkkhkkhkkhkkhkkhkkkhkkhkkhkkkkkkkkkkkk*
OBJECT_TYPE: TABLE
OBJECT_SCHEMA: test
OBJECT_NAME: t
COUNT_STAR: 3
SUM TI MER WAI T: 263126976
M N_TI MER WAI T: 1522272
AVG Tl MER_ WAI T: 87708678
MAX_TI MER_WAI T: 258428280

khkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x 10 r ow khkkhkkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkkkkkkkkkkk*x

OBJECT_TYPE: TABLE
OBJECT_SCHEMA: nysql
OBJECT_NAME: user
COUNT_STAR: 14
SUM TI MER_ WAI T: 365567592
M N TI MER WAI T: 1141704
AVG TI MER WAI T: 26111769
MAX_TI MER_ WAI T: 334783032

The obj ects_summary_gl obal by type table has these grouping columns to indicate how the
table aggregates events: OBJECT TYPE, OBJECT SCHEMA, and OBJECT _NAME. Each row summarizes
events for the given object.

obj ects_summary_ gl obal by type has the same summary columns as the
events waits sunmary_ by xxx tables. See Section 10.20.1, “Wait Event Summary Tables”.

The obj ects_summary_gl obal by type table has these indexes:
* Primary key on (OBJECT_TYPE, OBJECT_SCHENMA, OBJECT_NANE)

TRUNCATE TABLE is permitted for the object summary table. It resets the summary columns to zero
rather than removing rows.

10.20.7 File I/O Summary Tables

The Performance Schema maintains file I/O summary tables that aggregate information about I/O
operations.

171

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

File /O Summary Tables

Example file /0 event summary information:

nysqgl > SELECT * FROM performance_schenma. fil e_summary_by_event _nane\ G

kkhkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkk* 2 r ow kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x

EVENT_NAME: wait/io/file/sql/binlog
COUNT_STAR: 31

SUM TI MER_ WAI T: 8243784888

M N TIMER WAIT: O

AVG Tl MER_WAI T: 265928484

MAX_TI MER_ WAI T: 6490658832

nysqgl > SELECT * FROM performance_schenma. fil e_sunmary_by_i nstance\ G

kkhkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkk* 2 r ow kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x

FI LE_NAME: /var/nysql/share/english/errnsg.sys
EVENT_NAME: wait/io/filel/sql/ERRMSG
EVENT_NAME: wait/io/filel/sql/ERRMSG
OBJECT_| NSTANCE_BEG N: 4686193384
COUNT_STAR: 5
SUM TI MER_WAI T: 13990154448
M N_TI MER_ WAI T: 26349624
AVG TI MER_WAI T: 2798030607
MAX_TI MER_WAI T: 8150662536

Each file I/O summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the set up_i nst r unent s table:

« file summary_ by event nane has an EVENT NANME column. Each row summarizes events for a
given event name.

 file_summary_ by instance has FI LE _NAVE, EVENT NANME, and OBJECT | NSTANCE BEG N
columns. Each row summarizes events for a given file and event name.

Each file I/O summary table has the following summary columns containing aggregated values. Some
columns are more general and have values that are the same as the sum of the values of more fine-
grained columns. In this way, aggregations at higher levels are available directly without the need for
user-defined views that sum lower-level columns.

« COUNT_STAR, SUM TI MER WAI T, M N_TI MER_ WAI T, AVG_TI MER_ WAI T, MAX_TI MER WAI T
These columns aggregate all I/O operations.

« COUNT_READ, SUM Tl MER_READ, M N_TI MER_READ, AVG _TI MER_READ, MAX_TI MER_READ,
SUM NUVBER_OF BYTES_READ

These columns aggregate all read operations, including FGETS, FGETC, FREAD, and READ.

« COUNT_WRI TE, SUM_TI MER WRI TE, M N_TI MER R TE, AVG_TI MER Rl TE,
MAX_TI MER_WRI TE, SUM_ NUMBER_OF BYTES WRI TE

These columns aggregate all write operations, including FPUTS, FPUTC, FPRI NTF, VFPRI NTF,
FVWRI TE, and PWRI TE.

« COUNT_M SC, SUM TI MER_M SC, M N_TI MER_M SC, AVG_TI MER_M SC, MAX_TI MER_M SC

These columns aggregate all other 1/0O operations, including CREATE, DELETE, OPEN, CLOSE,
STREAM OPEN, STREAM CLOCSE, SEEK, TELL, FLUSH, STAT, FSTAT, CHSI ZE, RENAME, and SYNC.,
There are no byte counts for these operations.

The file I/O summary tables have these indexes:
« file_summary_ by event name:

e Primary key on (EVENT_NANME)

172

Table 1/0 and Lock Wait Summary Tables

e file_sunmary_by instance:
« Primary key on (OBJECT _| NSTANCE_BEG N)
¢ Index on (FI LE_NANE)
¢ Index on (EVENT_NANE)

TRUNCATE TABLE is permitted for file /O summary tables. It resets the summary columns to zero
rather than removing rows.

The MySQL server uses several techniques to avoid I/O operations by caching information read from
files, so it is possible that statements you might expect to result in I/O events do not do so. You may be
able to ensure that I1/0O does occur by flushing caches or restarting the server to reset its state.

10.20.8 Table I/0O and Lock Wait Summary Tables

The following sections describe the table 1/0 and lock wait summary tables:

e table io waits summary by index_ usage: Table I/O waits per index

e table io waits sumary by tabl e: Table I/O waits per table

e« table | ock _waits sunmmary by tabl e: Table lock waits per table
10.20.8.1 The table_io_waits_summary_by table Table

Thetable io waits sunmary by tabl e table aggregates all table I/O wait events, as generated
by the wai t /i o/ t abl e/ sql / handl er instrument. The grouping is by table.

Thetable io waits _sunmary by tabl e table has these grouping columns to indicate how the
table aggregates events: OBJECT _TYPE, OBJECT _SCHEMA, and OBJECT _NAME. These columns have
the same meaning as in the events_wai t s_curr ent table. They identify the table to which the row
applies.

table_io waits_sunmary_ by tabl e has the following summary columns containing aggregated
values. As indicated in the column descriptions, some columns are more general and have values
that are the same as the sum of the values of more fine-grained columns. For example, columns that
aggregate all writes hold the sum of the corresponding columns that aggregate inserts, updates, and
deletes. In this way, aggregations at higher levels are available directly without the need for user-
defined views that sum lower-level columns.

« COUNT_STAR, SUM TI MER WAI T, M N_TI MER_WAI T, AVG_TI MER_WAI T, MAX_TI MER_WAI T

These columns aggregate all /0O operations. They are the same as the sum of the corresponding
xXX__READ and xxx_WRI TE columns.

« COUNT_READ, SUM Tl MER_READ, M N_TI MER_READ, AVG_TI MER_READ, MAX_TI MER_READ

These columns aggregate all read operations. They are the same as the sum of the corresponding
xxX__FETCH columns.

« COUNT_WRI TE, SUM_TI MER WRI TE, M N_TI MER Rl TE, AVG_TI MER Rl TE,
MAX_TI MER WRI TE

These columns aggregate all write operations. They are the same as the sum of the corresponding
xxX_| NSERT, xxx_UPDATE, and xxx_DELETE columns.

« COUNT_FETCH, SUM TI MER_FETCH, M N_TI MER_FETCH, AVG_TI MER_FETCH,
MAX_TI MER_FETCH

These columns aggregate all fetch operations.

173

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

Table 1/0 and Lock Wait Summary Tables

« COUNT_I NSERT, SUM TI MER | NSERT, M N_TI MER | NSERT, AVG_TI MER_| NSERT,
MAX_TI MER_| NSERT

These columns aggregate all insert operations.

« COUNT_UPDATE, SUM Tl MER_UPDATE, M N_TI MER_UPDATE, AVG_TI MER_UPDATE,
MAX_TI MER_UPDATE

These columns aggregate all update operations.

« COUNT_DELETE, SUM Tl MER_DELETE, M N_TI MER_DELETE, AVG_TI MER_DELETE,
MAX_TI MER_DELETE

These columns aggregate all delete operations.
Thetable io waits_sunmmary_ by tabl e table has these indexes:
* Unique index on (OBJECT_TYPE, OBJECT_SCHENMA, OBJECT_NANE)

TRUNCATE TABLE is permitted for table /O summary tables. It resets the summary
columns to zero rather than removing rows. Truncating this table also truncates the
tabl e io waits_sumary_ by i ndex_usage table.

10.20.8.2 The table_io_waits_summary_by _index_usage Table

Thetable_ i o _waits_summary_ by index_usage table aggregates all table index 1/0 wait events,
as generated by the wai t /i o/ t abl e/ sql / handl er instrument. The grouping is by table index.

The columns oftabl e i 0 waits summary by i ndex usage are nearly identical to

table io waits sunmary by tabl e. The only difference is the additional group column,

| NDEX_NANME, which corresponds to the name of the index that was used when the table 1/0 wait event
was recorded:

» A value of PRI MARY indicates that table I/O used the primary index.

» Avalue of NULL means that table I/O used no index.

* Inserts are counted against | NDEX_NAME = NULL.

Thetable io waits sunmary by index_usage table has these indexes:

« Unique index on (OBJECT TYPE, OBJECT SCHEMA, OBJECT NANE, | NDEX_NANE)

TRUNCATE TABLE is permitted for table 1/0O summary tables. It resets the summary

columns to zero rather than removing rows. This table is also truncated by truncation of the

table io waits sunmary by tabl e table. A DDL operation that changes the index structure of a
table may cause the per-index statistics to be reset.

10.20.8.3 The table_lock_waits_summary_by table Table

Thetabl e | ock waits _sunmmary_ by tabl e table aggregates all table lock wait events, as
generated by the wai t / | ock/ t abl e/ sql / handl er instrument. The grouping is by table.

This table contains information about internal and external locks:

« Aninternal lock corresponds to a lock in the SQL layer. This is currently implemented by a call to
thr | ock().Inevent rows, these locks are distinguished by the OPERATI ON column, which has
one of these values:

read nor nal

read with shared | ocks
read high priority
read no insert

wite allow wite

174

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

Table 1/0 and Lock Wait Summary Tables

write concurrent insert
wite del ayed

wite |low priority
write nornal

An external lock corresponds to a lock in the storage engine layer. This is currently implemented
by a call to handl er: : ext ernal _| ock() . In event rows, these locks are distinguished by the
OPERATI ON column, which has one of these values:

read external
wite external

Thetabl e | ock_waits summary by tabl e table has these grouping columns to indicate how the
table aggregates events: OBJECT TYPE, OBJECT SCHEMA, and OBJECT NAME. These columns have
the same meaning as in the events_wai t s_current table. They identify the table to which the row
applies.

table | ock waits sunmary_ by tabl e has the following summary columns containing
aggregated values. As indicated in the column descriptions, some columns are more general and have
values that are the same as the sum of the values of more fine-grained columns. For example, columns
that aggregate all locks hold the sum of the corresponding columns that aggregate read and write
locks. In this way, aggregations at higher levels are available directly without the need for user-defined
views that sum lower-level columns.

COUNT_STAR, SUM_TI MER_ WAI T, M N_TI MER_WAI T, AVG_TI MER_WAI T, MAX_TI MER WAl T

These columns aggregate all lock operations. They are the same as the sum of the corresponding
xXX__READ and xxx_WRI TE columns.

COUNT_READ, SUM TI MER_READ, M N_TI MER_READ, AVG_TI MER_READ, MAX_TI MER_READ

These columns aggregate all read-lock operations. They are the same as the sum
of the corresponding xxx_READ NORMAL, xxx_READ W TH_SHARED LOCKS,
xxX_READ_HI GH_PRI ORI TY, and xxx_READ_NO_| NSERT columns.

COUNT_WRI TE, SUM_TI MER WRI TE, M N_TI MER_WRI TE, AVG_TI MER_W\RI TE,
MAX_TI MER WRI TE

These columns aggregate all write-lock operations. They are the same as the sum of
the corresponding xxx_WRI TE_ALLOW VRl TE, xxx_WRI TE_CONCURRENT _| NSERT,
XXX_WRI TE_LOW PRI ORI TY, and xxx_\WRI TE_NORVAL columns.

COUNT_READ_NORMAL, SUM TI MER_READ _NORMAL, M N_TI MER_READ NORMAL,
AVG TI MER_READ NORMAL, MAX_TI MER_READ_ NORMAL

These columns aggregate internal read locks.

COUNT_READ W TH_SHARED LOCKS, SUM TI MER_READ W TH_SHARED LOCKS,
M N_TI MER_READ W TH_SHARED LOCKS, AVG Tl MER_ READ W TH_SHARED LOCKS,
MAX_TI MER_READ W TH_SHARED_LOCKS

These columns aggregate internal read locks.

COUNT_READ _HI GH_PRI ORI TY, SUM_TI MER_READ HI GH_PRI ORI TY,
M N_TI MER_READ HI GH_PRI ORI TY, AVG_TI MER_READ H GH_PRI ORI TY,
MAX_TI MER_READ HI GH_PRI ORI TY

These columns aggregate internal read locks.

COUNT_READ_NO_| NSERT, SUM TI MER_READ_NO | NSERT, M N_TI MER_READ_NO | NSERT,
AVG_TI MER_READ_NO | NSERT, MAX_TI MER_READ NO | NSERT

These columns aggregate internal read locks.

175

Socket Summary Tables

« COUNT_READ EXTERNAL, SUM TI MER_READ EXTERNAL, M N_TI MER_READ_EXTERNAL,
AVG TI MER_READ EXTERNAL, MAX_TI MER_READ_EXTERNAL

These columns aggregate external read locks.

« COUNT_VRI TE_ALLOW R TE, SUM_TI MER Rl TE_ALLOW WRI TE,
M N_TI MER WRl TE_ALLOW WRI TE, AVG_TI MER WRl TE_ALLOW WRI TE,
MAX_TI MER_WRI TE_ALLOW WRI TE

These columns aggregate internal write locks.

« COUNT_WRI TE_CONCURRENT_| NSERT, SUM TI MER_WRI TE_CONCURRENT _| NSERT,
M N_TI MER_WRI TE_CONCURRENT _| NSERT, AVG_TI MER_WRI TE_CONCURRENT _| NSERT,
MAX_TI MER_WRI TE_CONCURRENT _| NSERT

These columns aggregate internal write locks.

« COUNT_VRI TE_LOW PRI ORI TY, SUM_TI MER Rl TE_LOW PRI ORI TY,
M N_TI MER WRI TE_LOW PRI ORI TY, AVG_TI MER WRl TE_LOW PRI ORI TY,
MAX_TI MER_WRI TE_LOW PRI ORI TY

These columns aggregate internal write locks.

« COUNT_WRI TE_NORMAL, SUM TI MER_WRI TE_NORVAL, M N_TI MER_WRI TE_NORMAL,
AVG TI MER_WRI TE_NORVAL, MAX_TI MER_W\RI TE_NORVAL

These columns aggregate internal write locks.

« COUNT_WRI TE_EXTERNAL, SUM TI MER WRI TE_EXTERNAL, M N_TI MER_WRI TE_EXTERNAL,
AVG_TI MER WRI TE_EXTERNAL, MAX_TI MER_WRI TE_EXTERNAL

These columns aggregate external write locks.
Thetabl e | ock waits summary by tabl e table has these indexes:
» Unique index on (OBJECT _TYPE, OBJECT _SCHENA, OBJECT NANE)

TRUNCATE TABLE is permitted for table lock summary tables. It resets the summary columns to zero
rather than removing rows.

10.20.9 Socket Summary Tables

These socket summary tables aggregate timer and byte count information for socket operations:

» socket summary by event nane: Aggregate timer and byte count statistics generated by the
wai t /i o/ socket/* instruments for all socket I/O operations, per socket instrument.

» socket _summary_by i nst ance: Aggregate timer and byte count statistics generated by the
wai t /i o/ socket/* instruments for all socket I/O operations, per socket instance. When a
connection terminates, the row in socket _sunmary_by i nst ance corresponding to it is deleted.

The socket summary tables do not aggregate waits generated by i dl e events while sockets are
waiting for the next request from the client. For i dl e event aggregations, use the wait-event summary
tables; see Section 10.20.1, “Wait Event Summary Tables”.

Each socket summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the set up_i nstrunent s table:

» socket summary by event nane has an EVENT NANME column. Each row summarizes events
for a given event name.

» socket _summary_ by instance has an OBJECT | NSTANCE BEGQ N column. Each row
summarizes events for a given object.

176

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

Memory Summary Tables

Each socket summary table has these summary columns containing aggregated values:
« COUNT_STAR, SUM TI MER WAI T, M N_TI MER WAI T, AVG TI MER_ WAI T, MAX_TI MER WAI T
These columns aggregate all operations.

« COUNT_READ, SUM Tl MER_READ, M N_TI MER_READ, AVG_TI MER_READ, MAX_TI MER_READ,
SUM NUVBER_OF BYTES_READ

These columns aggregate all receive operations (RECV, RECVFROV| and RECVNSG).

« COUNT_WRI TE, SUM_TI MER Rl TE, M N_TI MER R TE, AVG_TI MER Rl TE,
MAX_TI MER_WRI TE, SUM_ NUMBER_OF BYTES WRI TE

These columns aggregate all send operations (SEND, SENDTO, and SENDVSG).
e COUNT_M SC, SUM TI MER_M SC, M N_TI MER_M SC, AVG _TI MER_M SC, MAX_TI MER_M SC

These columns aggregate all other socket operations, such as CONNECT, LI STEN, ACCEPT, CLCSE,
and SHUTDOVN. There are no byte counts for these operations.

The socket _sunmary_ by i nst ance table also has an EVENT _NAME column that indicates the class
of the socket: cl i ent _connecti on, server tcpi p_socket, server _uni x_socket . This column
can be grouped on to isolate, for example, client activity from that of the server listening sockets.

The socket summary tables have these indexes:

» socket _summary_ by event nane:
e Primary key on (EVENT_NANME)

e socket _summary_by instance:
e Primary key on (OBJECT_| NSTANCE_BEG N)
e Index on (EVENT_NAME)

TRUNCATE TABLE is permitted for socket summary tables. Except for
events_statenents_sunmary by di gest, it resets the summary columns to zero rather than
removing rows.

10.20.10 Memory Summary Tables

The Performance Schema instruments memory usage and aggregates memory usage statistics,
detailed by these factors:

» Type of memory used (various caches, internal buffers, and so forth)

» Thread, account, user, host indirectly performing the memory operation

The Performance Schema instruments the following aspects of memory use

* Memory sizes used

e Operation counts

* Low and high water marks

Memory sizes help to understand or tune the memory consumption of the server.

Operation counts help to understand or tune the overall pressure the server is putting on the memory
allocator, which has an impact on performance. Allocating a single byte one million times is not the

177

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

Memory Summary Tables

same as allocating one million bytes a single time; tracking both sizes and counts can expose the

difference.

Low and high water marks are critical to detect workload spikes, overall workload stability, and possible

memory leaks.

Memory summary tables do not contain timing information because memory events are not timed.

For information about collecting memory usage data, see Memory Instrumentation Behavior.

Example memory event summary information:

nysql > SELECT *

FROM per f or mance_schema. menory_sunmary_gl obal _by_event _nane
WHERE EVENT_NAME = ' nenory/sql / TABLE \ G

kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkhkkhkkkkkkkk*%x 1

EVENT_NAME:
COUNT_ALLCC:

COUNT_FREE:

SUM NUVBER OF BYTES ALLOC:
SUM NUVBER OF BYTES FREE:
LOW COUNT_USED:

CURRENT _COUNT_USED:

H GH_COUNT_USED:

LOW NUMBER_OF BYTES USED:

r ow kkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkk*x

menory/ sql / TABLE
1381

924

2059873

1407432

0

457

461

0

CURRENT_NUMBER_OF BYTES USED: 652441
HI GH_NUVBER OF BYTES_USED: 669269

Each memory summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the set up_i nst runent s table:

e nmenory_summary_by account by event name has USER, HOST, and EVENT _NANME columns.
Each row summarizes events for a given account (user and host combination) and event name.

e menory_summary_by host by event nane has HOST and EVENT_NANME columns. Each row
summarizes events for a given host and event name.

e nmenory_summary_by thread by event nane has THREAD | Dand EVENT_NANME columns.
Each row summarizes events for a given thread and event name.

e nmenory_summary_by user by event nane has USER and EVENT_NANME columns. Each row
summarizes events for a given user and event name.

e« menory_sunmary_gl obal by event name has an EVENT NAME column. Each row summarizes
events for a given event name.

Each memory summary table has these summary columns containing aggregated values:
« COUNT_ALLOC, COUNT_FREE
The aggregated numbers of calls to memory-allocation and memory-free functions.
« SUM NUMBER OF BYTES_ ALLOC, SUM NUVBER OF BYTES FREE
The aggregated sizes of allocated and freed memory blocks.
« CURRENT_COUNT_USED

The aggregated number of currently allocated blocks that have not been freed yet. This is a
convenience column, equal to COUNT_ALLCOC - COUNT_FREE.

« CURRENT_NUVBER OF BYTES USED

The aggregated size of currently allocated memory blocks that have not been freed yet. This is a
convenience column, equal to SUM NUVBER_OF BYTES ALLOC- SUM NUVMBER OF_ BYTES FREE.

178

Memory Summary Tables

« LOW COUNT_USED, Hl GH_COUNT_USED
The low and high water marks corresponding to the CURRENT _COUNT _USED column.
« LOW NUMBER OF BYTES_USED, Hl GH NUVBER OF BYTES USED
The low and high water marks corresponding to the CURRENT_NUVBER_OF_BYTES_USED column.
The memory summary tables have these indexes:
e nenory_summary_by account by event nane:
e Primary key on (USER, HOST, EVENT_NANE)
e menory_summary_by host by event nane:
e Primary key on (HOST, EVENT _NAME)
e nenory_sumary_by thread by event nane:
¢ Primary key on (THREAD | D, EVENT_NANE)
e nenory_summary_by user by event nane:
e Primary key on (USER, EVENT_NANE)
 nmenory_sumary_gl obal _by event nane:
e Primary key on (EVENT _NANE)
TRUNCATE TABLE is permitted for memory summary tables. It has these effects:

» In general, truncation resets the baseline for statistics, but does not change the server state. That is,
truncating a memory table does not free memory.

e COUNT_ALLOCand COUNT_FREE are reset to a new baseline, by reducing each counter by the same
value.

» Likewise, SUM NUVMBER OF BYTES ALLOCand SUM NUVBER OF BYTES FREE are resetto a new
baseline.

o LOW COUNT_USED and H GH_COUNT_USED are reset to CURRENT _COUNT_USED.

* LOW NUMBER_OF_BYTES USED and H GH_NUVBER_OF BYTES_USED are reset to
CURRENT_NUMBER_OF_BYTES_USED.

In addition, each memory summary table that is aggregated by account, host, user, or thread

is implicitly truncated by truncation of the connection table on which it depends, or truncation of
menory_summary_gl obal by event nane. For details, see Section 10.8, “Performance Schema
Connection Tables”.

Memory Instrumentation Behavior

Memory instruments are listed in the set up_i nst r unent s table and have names of the form
nmenory/ code_ar eal/ i nstrunent _name. Memory instrumentation is enabled by default.

Instruments named with the prefix nenor y/ per f or mance_schena/ expose how much memory is
allocated for internal buffers in the Performance Schema itself. The nenor y/ per f or mance_schena/
instruments are built in, always enabled, and cannot be disabled at startup or runtime. Built-in memory
instruments are displayed only in the nenory_sunmary_gl obal by event nane table.

To control memory instrumentation state at server startup, use lines like these in your ny. cnf file:

179

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

Memory Summary Tables

* Enable:

[mysql d]
per f or mance- schena- i nst r unent =' nenor y/ %=ON

» Disable:

[nysal d]
per f or mance- schema- i nst runent =' nenory/ %=OFF

To control memory instrumentation state at runtime, update the ENABLED column of the relevant
instruments in the set up_i nstrunent s table:

* Enable:

UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = ' YES
WHERE NAME LI KE ' nenory/ % ;

» Disable:

UPDATE per f or mance_schena. set up_i nstrunent s
SET ENABLED = ' NO
VWHERE NAME LI KE ' menory/ % ;

For memory instruments, the Tl MED column in set up_i nstrunent s is ignored because memory
operations are not timed.

When a thread in the server executes a memory allocation that has been instrumented, these rules
apply:

« If the thread is not instrumented or the memory instrument is not enabled, the memory block
allocated is not instrumented.

» Otherwise (that is, both the thread and the instrument are enabled), the memory block allocated is
instrumented.

For deallocation, these rules apply:

 If a memory allocation operation was instrumented, the corresponding free operation is instrumented,
regardless of the current instrument or thread enabled status.

 If a memory allocation operation was not instrumented, the corresponding free operation is not
instrumented, regardless of the current instrument or thread enabled status.

For the per-thread statistics, the following rules apply.

When an instrumented memory block of size Nis allocated, the Performance Schema makes these
updates to memory summary table columns:

* COUNT_ALLQC: Increased by 1

* CURRENT_COUNT_USED: Increased by 1

* HI GH_COUNT_USED: Increased if CURRENT _COUNT_USED is a new maximum
e SUM NUMBER _OF BYTES ALLQC: Increased by N

« CURRENT NUVBER OF BYTES USED: Increased by N

* H GH NUVBER OF BYTES USED: Increased if CURRENT NUMBER OF BYTES USEDis a new
maximum

When an instrumented memory block is deallocated, the Performance Schema makes these updates
to memory summary table columns:

180

Error Summary Tables

e COUNT_FREE: Increased by 1

* CURRENT_COUNT_USED: Decreased by 1

* LOW COUNT_USED: Decreased if CURRENT COUNT _USED is a new minimum
« SUM NUVBER OF BYTES FREE: Increased by N

* CURRENT_NUMBER_OF_BYTES_USED: Decreased by N

e LOW NUMBER OF BYTES USED: Decreased if CURRENT NUVBER OF BYTES USEDis a new
minimum

For higher-level aggregates (global, by account, by user, by host), the same rules apply as expected
for low and high water marks.

e LOW COUNT_USED and LOW NUMBER_OF BYTES USED are lower estimates. The value reported
by the Performance Schema is guaranteed to be less than or equal to the lowest count or size of
memory effectively used at runtime.

e H GH COUNT_USED and HI GH_NUMBER_OF BYTES_USED are higher estimates. The value reported
by the Performance Schema is guaranteed to be greater than or equal to the highest count or size of
memory effectively used at runtime.

For lower estimates in summary tables other than nenory_sunmary gl obal by event nane, itis
possible for values to go negative if memory ownership is transferred between threads.

Here is an example of estimate computation; but note that estimate implementation is subject to
change:

Thread 1 uses memory in the range from 1MB to 2MB during execution, as reported by
the LOW NUVBER_OF BYTES_USED and HI GH_NUVBER_OF_BYTES_USED columns of the
nmenory_sumary_ by thread by event nane table.

Thread 2 uses memory in the range from 10MB to 12MB during execution, as reported likewise.

When these two threads belong to the same user account, the per-account summary
estimates that this account used memory in the range from 11MB to 14MB. That

is, the LOW NUVBER _OF BYTES_USED for the higher level aggregate is the sum

of each LOW NUVBER_OF BYTES USED (assuming the worst case). Likewise, the

H GH_NUVBER_OF BYTES USED for the higher level aggregate is the sum of each
HI GH_NUVBER_OF BYTES USED (assuming the worst case).

11MB is a lower estimate that can occur only if both threads hit the low usage mark at the same time.
14MB is a higher estimate that can occur only if both threads hit the high usage mark at the same time.
The real memory usage for this account could have been in the range from 11.5MB to 13.5MB.

For capacity planning, reporting the worst case is actually the desired behavior, as it shows what can
potentially happen when sessions are uncorrelated, which is typically the case.

10.20.11 Error Summary Tables

The Performance Schema maintains summary tables for aggregating statistical information about
server errors (and warnings). For a list of server errors, see Server Error Message Reference.

Collection of error information is controlled by the er r or instrument, which is enabled by default.
Timing information is not collected.

Each error summary table has three columns that identify the error:

181

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html

Error Summary Tables

e ERROR_NUMBER is the numeric error value. The value is unique.

» ERROR_NAME is the symbolic error name corresponding to the ERROR_NUVBER value. The value is
unigue.

* SQLSTATE is the SQLSTATE value corresponding to the ERROR_NUMBER value. The value is not
necessarily unique.

For example, if ERROR_NUVBER is 1050, ERROR_NAVE is ER_TABLE_EXI STS_ERROR and SQLSTATE
is 42S01.

Example error event summary information:

nysql > SELECT *
FROM per f or mance_schema. event s_errors_sunmary_gl obal _by_error
VWHERE SUM ERROR RAI SED <> 0\ G
EE I I I I l I'OW EE I I R I I
ERROR_NUMBER: 1064
ERROR_NAME: ER _PARSE_ERROR
SQ._STATE: 42000
SUM ERROR _RAI SED: 1
SUM _ERROR _HANDLED: 0
FI RST_SEEN: 2016-06-28 07: 34: 02
LAST_SEEN: 2016-06-28 07: 34: 02
EE I I R I 2 I'OW EE I I
ERROR_NUMBER: 1146
ERROR_NAME: ER_NO _SUCH TABLE
SQ._STATE: 42S02
SUM ERROR _RAI SED: 2
SUM _ERROR_HANDLED: 0
FI RST_SEEN: 2016-06-28 07: 34: 05
LAST_SEEN: 2016-06-28 07: 36: 18
EE I I I I 3 I'OW EE I I R I I
ERROR_NUMBER: 1317
ERROR_NAME: ER _QUERY_| NTERRUPTED
SQ._STATE: 70100
SUM ERROR _RAI SED: 1
SUM _ERROR _HANDLED: 0
FI RST_SEEN: 2016-06-28 11:01: 49
LAST_SEEN: 2016-06-28 11:01:49

Each error summary table has one or more grouping columns to indicate how the table aggregates
errors:

e events_errors_sunmary_by account by error has USER, HOST, and ERROR_NUMBER
columns. Each row summarizes events for a given account (user and host combination) and error.

e events_errors_summary_ by host by error has HOST and ERROR_NUMBER columns. Each
row summarizes events for a given host and error.

e events_errors_summary_by thread by error has THREAD | Dand ERROR_NUVBER
columns. Each row summarizes events for a given thread and error.

e events_errors_sumary_ by user by error has USERand ERROR _NUMBER columns. Each
row summarizes events for a given user and error.

 events_errors_sunmmary_gl obal by error has an ERROR_NUVBER column. Each row
summarizes events for a given error.

Each error summary table has these summary columns containing aggregated values:
« SUM ERROR_RAI SED
This column aggregates the number of times the error occurred.

« SUM ERROR_HANDLED

182

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_table_exists_error

Status Variable Summary Tables

This column aggregates the number of times the error was handled by an SQL exception handler.
e FI RST_SEEN, LAST_SEEN
Timestamp indicating when the error was first seen and most recently seen.

A NULL row in each error summary table is used to aggregate statistics for all errors that lie out of
range of the instrumented errors. For example, if MySQL Server errors lie in the range from Mto N and
an error is raised with number Qnot in that range, the error is aggregated in the NULL row. The NULL
row is the row with ERROR_NUVBER=0, ERROR_NAVME=NULL, and SQLSTATE=NULL.

The error summary tables have these indexes:

e« events_errors_summary_by _account by error:
* Primary key on (USER, HOST, ERROR_NUVBER)

e events_errors_summary_by host by error:
* Primary key on (HOST, ERROR_NUVBER)

e events_errors_summary_by thread by error:
¢ Primary key on (THREAD | D, ERROR_NUVBER)

e events_errors_summary_by user by error:
¢ Primary key on (USER, ERROR_NUVBER)

e events_errors_summary_gl obal by error:
¢ Primary key on (ERROR_NUVBER)

TRUNCATE TABLE is permitted for error summary tables. It has these effects:

» For summary tables not aggregated by account, host, or user, truncation resets the summary
columns to zero or NULL rather than removing rows.

» For summary tables aggregated by account, host, or user, truncation removes rows for accounts,
hosts, or users with no connections, and resets the summary columns to zero or NULL for the
remaining rows.

In addition, each error summary table that is aggregated by account, host, user, or thread is
implicitly truncated by truncation of the connection table on which it depends, or truncation of
events_errors_sumrary_gl obal by error. For details, see Section 10.8, “Performance
Schema Connection Tables”.

10.20.12 Status Variable Summary Tables

The Performance Schema makes status variable information available in the tables described in
Section 10.15, “Performance Schema Status Variable Tables”. It also makes aggregated status
variable information available in summary tables, described here. Each status variable summary table
has one or more grouping columns to indicate how the table aggregates status values:

e status_by account has USER, HOST, and VARI ABLE_NANE columns to summarize status
variables by account.

e status_by_ host has HOST and VARI ABLE _NANE columns to summarize status variables by the
host from which clients connected.

e status_by user has USER and VARl ABLE NANE columns to summarize status variables by client
user name.

183

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

Performance Schema Miscellaneous Tables

Each status variable summary table has this summary column containing aggregated values:
* VARI ABLE_VALUE
The aggregated status variable value for active and terminated sessions.
The status variable summary tables have these indexes:
e status_by_account:
« Primary key on (USER, HOST, VARI ABLE_NANE)
e status_by host:
e Primary key on (HOST, VARl ABLE_NAME)
e status_by_ user:
e Primary key on (USER, VARl ABLE_NAME)

The meaning of “account” in these tables is similar to its meaning in the MySQL grant tables in

the mysql system database, in the sense that the term refers to a combination of user and host
values. They differ in that, for grant tables, the host part of an account can be a pattern, whereas for
Performance Schema tables, the host value is always a specific nonpattern host name.

Account status is collected when sessions terminate. The session status counters are added to the
global status counters and the corresponding account status counters. If account statistics are not
collected, the session status is added to host and user status, if host and user status are collected.

Account, host, and user statistics are not collected if the per f or mance_schema_account s_si ze,
performance_schema_hosts_si ze, and per f ormance_schena_users_si ze system variables,
respectively, are set to 0.

The Performance Schema supports TRUNCATE TABLE for status variable summary tables as follows;
in all cases, status for active sessions is unaffected:

e status_by account: Aggregates account status from terminated sessions to user and host status,
then resets account status.

* status_by_host : Resets aggregated host status from terminated sessions.
e status_by user: Resets aggregated user status from terminated sessions.

FLUSH STATUS adds the session status from all active sessions to the global status variables, resets
the status of all active sessions, and resets account, host, and user status values aggregated from
disconnected sessions.

10.21 Performance Schema Miscellaneous Tables

The following sections describe tables that do not fall into the table categories discussed in the
preceding sections:

» conponent schedul er t asks: The current status of each scheduled task.
» error_| og: The most recent events written to the error log.

» host cache: Information from the internal host cache.

e innodb_redo_| og_fil es: Information about InnoDB redo log files.

e | og_st at us: Information about server logs for backup purposes.

» performance_ti nmers: Which event timers are available.

184

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-status

The component_scheduler_tasks Table

e processli st: Information about server processes.
» t hr eads: Information about server threads.
* t1s_channel _status: TLS context properties for connection interfaces.

e user _defined functions: Loadable functions registered by a component, plugin, or CREATE
FUNCTI ON statement.

10.21.1 The component_scheduler_tasks Table

The conponent schedul er _t asks table contains a row for each scheduled task. Each row
contains information about the ongoing progress of a task that applications, components, and plugins
can implement, optionally, using the schedul er component (see Scheduler Component). For
example, the audi t _| og server plugin utilizes the schedul er component to run a regular, recurring
flush of its memory cache:

nysqgl > sel ect * from perfornmance_schena. conponent _schedul er _t asks\ G
IR R SR RS EEEEEEEEEEEEEEEEESEES] 1 I’OW IR R SR RS EEEEEEEEEEEEEEESEESEES]

NAME: pl ugi n_audit_| og_fl ush_schedul er
STATUS: WAI TI NG
COMMVENT: Regi stered by the audit |og plugin. Does a periodic refresh of the audit |og
in-nmenory rul es cache by calling audit_|og_flush
| NTERVAL_SECONDS: 100
TI MES_RUN: 5
TI MES_FAI LED: 0
1 rowin set (0.02 sec)

The conponent _schedul er _t asks table has the following columns:
 NAME

The name supplied during the registration.
* STATUS

The values are:

« RUNNI NGif the task is active and being executed.

« WAI Tl NGif the task is idle and waiting for the background thread to pick it up or waiting for the
next time it needs to be run to arrive.

» COMVENT

A compile-time comment provided by an application, component, or plugin. In the previous example,
MySQL Enterprise Audit provides the comment using a server plugin named audi t _| og.

* | NTERVAL_SECONDS

The time in seconds to run a task, which an application, component, or plugin
provides. MySQL Enterprise Audit enables you to specify this value using the
audit _log_flush_interval seconds system variable.

* TI MES_RUN
A counter that increments by one every time the task runs successfully. It wraps around.
e« TI MES_FAI LED

A counter that increments by one every time the execution of the task fails. It wraps around.

10.21.2 The error_log Table

185

https://dev.mysql.com/doc/refman/8.0/en/create-function-loadable.html
https://dev.mysql.com/doc/refman/8.0/en/create-function-loadable.html
https://dev.mysql.com/doc/refman/8.0/en/scheduler-component.html
https://dev.mysql.com/doc/refman/8.0/en/audit-log-reference.html#sysvar_audit_log_flush_interval_seconds

The error_log Table

Of the logs the MySQL server maintains, one is the error log to which it writes diagnostic messages
(see The Error Log). Typically, the server writes diagnostics to a file on the server host or to a system
log service. As of MySQL 8.0.22, depending on error log configuration, the server can also write the
most recent error events to the Performance Schema er r or _| og table. Granting the SELECT privilege
for the er r or _| og table thus gives clients and applications access to error log contents using SQL
gueries, enabling DBAs to provide access to the log without the need to permit direct file system
access on the server host.

The err or _| og table supports focused queries based on its more structured columns. It also includes
the full text of error messages to support more free-form analysis.

The table implementation uses a fixed-size, in-memory ring buffer, with old events automatically
discarded as necessary to make room for new ones.

Example err or _| og contents:

nysqgl > SELECT * FROM per f or mance_schena. error_| og\ G
khkkhkkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkkkkkkkkkk*%x 1 r ow kkkkkkhkkhkkhkkhkkhkhkhkhkkhkkhkkhkkkkkkkkkk*x*%x
LOGGED: 2020-08-06 09: 25: 00. 338624
THREAD ID: O
PRI O System
ERROR_CODE: MY-010116
SUBSYSTEM Ser ver
DATA: nysqld (nysqld 8.0.23) starting as process 96344
khkkhkkkhkkhkkhkkhkkhkkhkhkhkkhkkhkkhkkhkhkkhkkkkkkkk*%x 2 r ow khkkkkhkkhkkhkkhkkhkkhkhkhkkhkhkkkkkkkkkkkk**%
LOGGED: 2020-08-06 09: 25: 00. 363521
THREAD ID: 1
PRI O System
ERROR_CODE: MY-013576
SUBSYSTEM | nnoDB
DATA: InnoDB initialization has started.

khkkhkkhkkhkkkhkkhkkhkkhkhkhkhkhkkhkhkkhkhkkkkkkk*k*%x 65 r ow khkkkkhkkhkkhkkhkkhkkhkhkhkkhkkhkkkkkkkkkkkk*xk*%x

LOGGED: 2020-08-06 09: 25: 02. 936146
THREAD ID: O
PRI O Warni ng
ERROR_CODE: MY-010068
SUBSYSTEM Ser ver
DATA: CA certificate /var/nysql/sslinfol/cacert.pemis self signed.

khkkhkkkhkkhkkhkkhkkhkkhkhkhkkhkkhkkhkkhkhkkhkkkkkkkk*%x 89 r ow kkkkkkhkkhkkhkkhkkhkkhkhkhkhkkhkhkkkkkkkkkk*k*%x

LOGGED: 2020- 08- 06 09: 25: 03. 112801
THREAD ID: O
PRI O System
ERROR_CODE: MY- 013292
SUBSYSTEM Ser ver
DATA: Admin interface ready for connections, address: '127.0.0.1" port: 33062

The error _| og table has the following columns. As indicated in the descriptions, all but the DATA
column correspond to fields of the underlying error event structure, which is described in Error Event
Fields.

» LOGGED

The event timestamp, with microsecond precision. LOGGED corresponds to the t i ne field of error
events, although with certain potential differences:

< tine values in the error log are displayed according to the | og_t i nest anps system variable
setting; see Early-Startup Logging Output Format.

e The LOGGED column stores values using the TI MESTAMP data type, for which values are stored in
UTC but displayed when retrieved in the current session time zone; see The DATE, DATETIME,
and TIMESTAMP Types.

To display LOGGED values in the same time zone as displayed in the error log file, first set the
session time zone as follows:

186

https://dev.mysql.com/doc/refman/8.0/en/error-log.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_select
https://dev.mysql.com/doc/refman/8.0/en/error-log-event-fields.html
https://dev.mysql.com/doc/refman/8.0/en/error-log-event-fields.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_log_timestamps
https://dev.mysql.com/doc/refman/8.0/en/error-log-format.html#error-log-format-output-format-for-early-logging
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html

The error_log Table

SET @®ession.tine_zone = @@l obal .| og_ti nest anps;

If the | og_ti nest anps value is UTC and your system does not have named time zone support
installed (see MySQL Server Time Zone Support), set the time zone like this:

SET @®ession.tinme_zone = '+00: 00';
e THREAD | D
The MySQL thread ID. THREAD | D corresponds to the t hr ead field of error events.

Within the Performance Schema, the THREAD | D column in the err or _| og table is most similar to
the PROCESSLI ST_| Dcolumn of the t hr eads table:

¢ For foreground threads, THREAD | D and PROCESSLI ST_| D represent a connection identifier.
This is the same value displayed in the | D column of the | NFORVATI ON_SCHEMA PROCESSLI ST
table, displayed in the | d column of SHOW PROCESSLI ST output, and returned by the
CONNECTI ON_I () function within the thread.

¢ For background threads, THREAD | Dis 0 and PROCESSLI ST | Dis NULL.

Many Performance Schema tables other than er r or _| og has a column named THREAD | D, but in
those tables, the THREAD | D column is a value assigned internally by the Performance Schema.

* PRIO

The event priority. Permitted values are Syst em Err or, V\ar ni ng, Not e. The PRI Ocolumn is
based on the | abel field of error events, which itself is based on the underlying numeric pri o field
value.

¢ ERROR_CODE
The numeric event error code. ERROR_CODE corresponds to the er r or _code field of error events.
¢ SUBSYSTEM

The subsystem in which the event occurred. SUBSYSTEMcorresponds to the subsyst emfield of
error events.

* DATA

The text representation of the error event. The format of this value depends on the format produced
by the log sink component that generates the er r or _| og row. For example, if the log sink is

| og_sink _internal orlog_sink_ json, DATA values represent error events in traditional or
JSON format, respectively. (See Error Log Output Format.)

Because the error log can be reconfigured to change the log sink component that supplies rows to
the err or _| og table, and because different sinks produce different output formats, it is possible for
rows written to the er r or _| og table at different times to have different DATA formats.

The error _| og table has these indexes:
* Primary key on (LOGGED)

* Index on (THREAD _| D)

* Index on (PRI O

* Index on (ERROR_CODE)

* Index on (SUBSYSTEM

TRUNCATE TABLE is not permitted for the er r or _| og table.

187

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_log_timestamps
https://dev.mysql.com/doc/refman/8.0/en/time-zone-support.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-processlist-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_connection-id
https://dev.mysql.com/doc/refman/8.0/en/error-log-format.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

The host_cache Table

Implementation and Configuration of the error_log Table

The Performance Schema er r or _| og table is populated by error log sink components that write to the
table in addition to writing formatted error events to the error log. Performance Schema support by log
sinks has two parts:

* Alog sink can write new error events to the err or _| og table as they occur.

» Alog sink can provide a parser for extraction of previously written error messages. This enables a
server instance to read messages written to an error log file by the previous instance and store them
inthe error _| og table. Messages written during shutdown by the previous instance may be useful
for diagnosing why shutdown occurred.

Currently, the traditional-format | og_si nk_i nt er nal and JSON-format | og_si nk_j son sinks
support writing new events to the er r or _| og table and provide a parser for reading previously written
error log files.

The | og_error _servi ces system variable controls which log components to enable for error
logging. Its value is a pipeline of log filter and log sink components to be executed in left-to-right order
when error events occur. The | og_error _servi ces value pertains to populating the error _| og
table as follows:

» At startup, the server examines the | og_error _servi ces value and chooses from it the leftmost
log sink that satisfies these conditions:

« A sink that supports the err or _| og table and provides a parser.
« If none, a sink that supports the er r or _| og table but provides no parser.

If no log sink satisfies those conditions, the er r or _| og table remains empty. Otherwise, if the sink
provides a parser and log configuration enables a previously written error log file to be found, the
server uses the sink parser to read the last part of the file and writes the old events it contains to the
table. The sink then writes new error events to the table as they occur.

« Atruntime, if the value of | og_error _servi ces changes, the server again examines it, this time
looking for the leftmost enabled log sink that supports the er r or _| og table, regardless of whether it
provides a parser.

If no such log sink exists, no additional error events are written to the er r or _| og table. Otherwise,
the newly configured sink writes new error events to the table as they occur.

Any configuration that affects output written to the error log affects er r or _| og table contents. This
includes settings such as those for verbosity, message suppression, and message filtering. It also
applies to information read at startup from a previous log file. For example, messages not written
during a previous server instance configured with low verbosity do not become available if the file is
read by a current instance configured with higher verbosity.

The error _| og table is a view on a fixed-size, in-memory ring buffer, with old events automatically
discarded as necessary to make room for new ones. As shown in the following table, several status
variables provide information about ongoing er r or _| og operation.

Status Variable Meaning

Error _| og buffered_bytes Bytes used in table

Error | og buffered events Events present in table
Error _| og_expired_events Events discarded from table
Error log latest wite Time of last write to table

10.21.3 The host_cache Table

188

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_log_error_services
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_log_error_services
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_log_error_services
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_log_error_services
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Error_log_buffered_bytes
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Error_log_buffered_events
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Error_log_expired_events
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Error_log_latest_write

The host_cache Table

The MySQL server maintains an in-memory host cache that contains client host name and IP address
information and is used to avoid Domain Name System (DNS) lookups. The host _cache table
exposes the contents of this cache. The host _cache_si ze system variable controls the size of the
host cache, as well as the size of the host _cache table. For operational and configuration information
about the host cache, see DNS Lookups and the Host Cache.

Because the host _cache table exposes the contents of the host cache, it can be examined using
SELECT statements. This may help you diagnose the causes of connection problems.

The host _cache table has these columns:

< IP

The IP address of the client that connected to the server, expressed as a string.

« HOST
The resolved DNS host name for that client IP, or NULL if the name is unknown.

» HOST_VALI DATED

Whether the IP-to-host name-to-IP DNS resolution was performed successfully for the client IP.

If HOST_VALI DATED s YES, the HOST column is used as the host name corresponding to the IP
so that additional calls to DNS can be avoided. While HOST_VALI DATED is NO, DNS resolution is
attempted for each connection attempt, until it eventually completes with either a valid result or a
permanent error. This information enables the server to avoid caching bad or missing host names
during temporary DNS failures, which would negatively affect clients forever.

* SUM_CONNECT_ERRCRS

The number of connection errors that are deemed “blocking” (assessed against the
max_connect _errors system variable). Only protocol handshake errors are counted, and only for
hosts that passed validation (HOST_VALI DATED = YES).

Once SUM_CONNECT_ERROCRS for a given host reaches the value of nax_connect _errors,

new connections from that host are blocked. The SUM_CONNECT _ERRORS value can exceed

the max_connect _err or s value because multiple connection attempts from a host can occur
simultaneously while the host is not blocked. Any or all of them can fail, independently incrementing
SUM_CONNECT _ERRORS, possibly beyond the value of max_connect _errors.

Suppose that nax_connect _error s is 200 and SUM_CONNECT _ERRCRS for a given host

is 199. If 10 clients attempt to connect from that host simultaneously, none of them are

blocked because SUM CONNECT _ERRORS has not reached 200. If blocking errors occur for

five of the clients, SUM_CONNECT ERRORS is increased by one for each client, for a resulting
SUM_CONNECT _ERRORS value of 204. The other five clients succeed and are not blocked because
the value of SUM_CONNECT_ERRORS when their connection attempts began had not reached 200.
New connections from the host that begin after SUM_CONNECT _ERRORS reaches 200 are blocked.

« COUNT_HOST_BLOCKED_ERRORS

The number of connections that were blocked because SUM CONNECT ERRORS exceeded the value
of the max_connect _errors system variable.

« COUNT_NAMEI NFO _TRANSI ENT_ERRORS
The number of transient errors during IP-to-host name DNS resolution.
e COUNT_NAMNEI NFO_PERVANENT _ERRORS

The number of permanent errors during IP-to-host name DNS resolution.

189

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_host_cache_size
https://dev.mysql.com/doc/refman/8.0/en/host-cache.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connect_errors
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connect_errors
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connect_errors
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connect_errors
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connect_errors
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connect_errors

The host_cache Table

COUNT_FORVAT_ERRORS

The number of host name format errors. MySQL does not perform matching of Host column values
in the mysqgl . user system table against host names for which one or more of the initial components
of the name are entirely numeric, such as 1. 2. exanpl e. com The client IP address is used
instead. For the rationale why this type of matching does not occur, see Specifying Account Names.

COUNT_ADDRI NFO_TRANSI ENT_ERRORS

The number of transient errors during host name-to-IP reverse DNS resolution.
COUNT_ADDRI NFO_PERVANENT _ERRORS

The number of permanent errors during host name-to-IP reverse DNS resolution.
COUNT_FCRDNS_ERRORS

The number of forward-confirmed reverse DNS errors. These errors occur when IP-to-host name-to-
IP DNS resolution produces an IP address that does not match the client originating IP address.

COUNT_HOST_ACL_ERRORS

The number of errors that occur because no users are permitted to connect from the client host. In
such cases, the server returns ER_HOST NOT PRI VI LEGED and does not even ask for a user name
or password.

COUNT_NO_AUTH_PLUG N_ERRORS

The number of errors due to requests for an unavailable authentication plugin. A plugin can be
unavailable if, for example, it was never loaded or a load attempt failed.

COUNT_AUTH_PLUG N_ERRCRS
The number of errors reported by authentication plugins.

An authentication plugin can report different error codes to indicate the root

cause of a failure. Depending on the type of error, one of these columns is

incremented: COUNT_AUTHENTI CATI ON_ERRORS, COUNT_AUTH_PLUG N_ERRORS,

COUNT _HANDSHAKE ERRORS. New return codes are an optional extension to the existing plugin API.
Unknown or unexpected plugin errors are counted in the COUNT_AUTH PLUG N_ERRORS column.

COUNT_HANDSHAKE ERRORS

The number of errors detected at the wire protocol level.

COUNT_PROXY_USER ERRORS

The number of errors detected when proxy user A is proxied to another user B who does not exist.
COUNT_PROXY_USER ACL_ERRORS

The number of errors detected when proxy user A is proxied to another user B who does exist but for
whom A does not have the PROXY privilege.

COUNT_AUTHENTI CATI ON_ERRORS

The number of errors caused by failed authentication.
COUNT_SSL_ERRORS

The number of errors due to SSL problems.

COUNT_MAX_USER_CONNECTI ONS_ERRORS

190

https://dev.mysql.com/doc/refman/8.0/en/account-names.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_host_not_privileged
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_proxy

The innodb_redo_log_files Table

The number of errors caused by exceeding per-user connection quotas. See Setting Account
Resource Limits.

« COUNT_MAX_USER_CONNECTI ONS_PER _HOUR_ERRORS

The number of errors caused by exceeding per-user connections-per-hour quotas. See Setting
Account Resource Limits.

« COUNT_DEFAULT_DATABASE_ERRORS

The number of errors related to the default database. For example, the database does not exist or
the user has no privileges to access it.

« COUNT_I NI T_CONNECT_ERRORS

The number of errors caused by execution failures of statements in the i ni t _connect system
variable value.

« COUNT_LOCAL_ERRCRS

The number of errors local to the server implementation and not related to the network,
authentication, or authorization. For example, out-of-memory conditions fall into this category.

* COUNT_UNKNOWN_ERRCRS

The number of other, unknown errors not accounted for by other columns in this table. This column
is reserved for future use, in case new error conditions must be reported, and if preserving the
backward compatibility and structure of the host _cache table is required.

* FI RST_SEEN
The timestamp of the first connection attempt seen from the client in the | P column.
 LAST_SEEN
The timestamp of the most recent connection attempt seen from the client in the | P column.
 FI RST_ERROR_SEEN
The timestamp of the first error seen from the client in the | P column.
« LAST ERROR_SEEN
The timestamp of the most recent error seen from the client in the | P column.
The host _cache table has these indexes:
* Primary key on (I P)
* Index on (HOST)

TRUNCATE TABLE is permitted for the host _cache table. It requires the DROP privilege for the table.
Truncating the table flushes the host cache, which has the effects described in Flushing the Host
Cache.

10.21.4 The innodb_redo_log_files Table

The i nnodb_redo_| og fil es table contains a row for each active | nnoDB redo log file. This table
was introduced in MySQL 8.0.30.

The i nnodb_redo_| og _fil es table has the following columns:

« FILE_ID

191

https://dev.mysql.com/doc/refman/8.0/en/user-resources.html
https://dev.mysql.com/doc/refman/8.0/en/user-resources.html
https://dev.mysql.com/doc/refman/8.0/en/user-resources.html
https://dev.mysql.com/doc/refman/8.0/en/user-resources.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_init_connect
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_drop
https://dev.mysql.com/doc/refman/8.0/en/host-cache.html#host-cache-flushing
https://dev.mysql.com/doc/refman/8.0/en/host-cache.html#host-cache-flushing

The log_status Table

The ID of the redo log file. The value corresponds to the redo log file number.
« FI LE_NAME
The path and file name of the redo log file.
« START_LSN
The log sequence number of the first block in the redo log file.
« END LSN
The log sequence number after the last block in the redo log file.
« SI ZE I N _BYTES

The size of the redo log data in the file, in bytes. Data size is measured from the END LSNto the
start >START_LSN. The redo log file size on disk is slightly larger due to the file header (2048 bytes),
which is not included in the value reported by this column.

e I'S_FULL

Whether the redo log file is full. A value of 0 indicates that free space in the file. A value of 1
indicates that the file is full.

* CONSUMER_LEVEL

Reserved for future use.

10.21.5 The log_status Table

The | og_st at us table provides information that enables an online backup tool to copy the required
log files without locking those resources for the duration of the copy process.

When the | og_st at us table is queried, the server blocks logging and related administrative changes
for just long enough to populate the table, then releases the resources. The | og_st at us table informs
the online backup which point it should copy up to in the source's binary log and gt i d_execut ed
record, and the relay log for each replication channel. It also provides relevant information for individual
storage engines, such as the last log sequence number (LSN) and the LSN of the last checkpoint taken
for the | nnoDB storage engine.

The | og_st at us table has these columns:
e SERVER UUI D

The server UUID for this server instance. This is the generated unique value of the read-only system
variable ser ver _uui d.

» LOCAL

The log position state information from the source, provided as a single JSON object with the
following keys:

binary log_file The name of the current binary log file.

bi nary_l og_posi tion The current binary log position at the time the | og_st at us table
was accessed.

gtid_executed The current value of the global server variable gt i d_execut ed
at the time the | og_st at us table was accessed. This
information is consistent with the bi nary | og _fil e and
bi nary_| og_posi ti on keys.

192

https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_uuid
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed

The performance_timers Table

* REPLI CATI ON
A JSON array of channels, each with the following information:

channel _nane The name of the replication channel. The default replication
channel's name is the empty string ().

relay log file The name of the current relay log file for the replication channel.

relay_| og_pos The current relay log position at the time the | og_st at us table
was accessed.

* STORAGE_ENG NES

Relevant information from individual storage engines, provided as a JSON object with one key for
each applicable storage engine.

The | og_st at us table has no indexes.

The BACKUP_ADM N privilege, as well as the SELECT privilege, is required for access to the
| og_st at us table.

TRUNCATE TABLE is not permitted for the | og_st at us table.
10.21.6 The performance_timers Table

The per f or mance_ti nmer s table shows which event timers are available:

nmysql > SELECT * FROM per f or mance_schenma. per f or mance_ti nmers;

i ooooobonanan i coooonoananono00 s coononcnononoaoao e cononoonooononooo +
| TIMER NAME | TINMER FREQUENCY | TIMER RESOLUTION | TI MER OVERHEAD |
i ooooobonanan i coooonoananono00 s coononcnononoaoao e cononoonooononooo +
CYCLE	2389029850	1] 72
NANCSECOND	1000000000	1] 112
M CROSECOND	1000000	1] 136
M LLI SECOND	1036	1] 168
THREAD CPU	339101694	1] 798
i ooooobonanan i coooonoananono00 s coononcnononoaoao e cononoonooononooo +

If the values associated with a given timer name are NULL, that timer is not supported on your platform.
For an explanation of how event timing occurs, see Section 5.1, “Performance Schema Event Timing”.

The per f or mance_ti ner s table has these columns:
« TI MER_NANVE

The timer name.
e TI MER_FREQUENCY

The number of timer units per second. For a cycle timer, the frequency is generally related to
the CPU speed. For example, on a system with a 2.4GHz processor, the CYCLE may be close to
2400000000.

« TI MER_RESOLUTI ON

Indicates the number of timer units by which timer values increase. If a timer has a resolution of 10,
its value increases by 10 each time.

* Tl MER_OVERHEAD

The minimal number of cycles of overhead to obtain one timing with the given timer. The
Performance Schema determines this value by invoking the timer 20 times during initialization

193

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

The processlist Table

and picking the smallest value. The total overhead really is twice this amount because the
instrumentation invokes the timer at the start and end of each event. The timer code is called only for
timed events, so this overhead does not apply for nontimed events.

The per f ormance_ti ner s table has no indexes.

TRUNCATE TABLE is not permitted for the per f or mance_t i ner s table.

10.21.7 The processlist Table

The MySQL process list indicates the operations currently being performed by the set of threads
executing within the server. The pr ocessl i st table is one source of process information. For a
comparison of this table with other sources, see Sources of Process Information.

The processl i st table can be queried directly. If you have the PROCESS privilege, you can

see all threads, even those belonging to other users. Otherwise (without the PROCESS privilege),
nonanonymous users have access to information about their own threads but not threads for other
users, and anonymous users have no access to thread information.

Note

If the per f or mance_schenma_show processl i st system variable is
enabled, the pr ocessl i st table also serves as the basis for an alternative
implementation underlying the SHOW PROCESSLI ST statement. For details, see
later in this section.

The processl i st table contains a row for each server process:

nysqgl > SELECT * FROM perfor mance_schena. processlist\G
kkkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkkkkkkkkkkx*x 1 I'OW khkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkkkkkkkkkkx*
ID: 5
USER: event _schedul er
HOST: | ocal host
DB: NULL
COMVAND: Daenon
TI ME: 137
STATE: WAiting on enpty queue
I NFO. NULL
kkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkhkkkkkkkkx* 2 I'OW kkkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkkkkkkkkx*
ID: 9
USER ne
HOST: | ocal host : 58812
DB: NULL
COWWAND: Sl eep
TI ME: 95
STATE:
I NFO. NULL
khkkhkkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkkkkkkkkkkkkx* 3 I'OW kkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkx*
ID: 10
USER ne
HOST: | ocal host : 58834
DB: test
COMVAND: Query
TIME: O
STATE: executing
I NFO. SELECT * FROM per f or mance_schena. pr ocessl i st

The processl i st table has these columns:
« ID

The connection identifier. This is the same value displayed in the | d column of the SHOW
PROCESSLI ST statement, displayed in the PROCESSLI ST_| D column of the Performance Schema
t hr eads table, and returned by the CONNECTI ON_| D() function within the thread.

194

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/processlist-access.html#processlist-sources
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_connection-id

The processlist Table

* USER

The MySQL user who issued the statement. A value of syst em user refers to a nonclient thread
spawned by the server to handle tasks internally, for example, a delayed-row handler thread or an
I/0 or SQL thread used on replica hosts. For syst em user , there is no host specified in the Host
column. unaut hent i cat ed user refers to a thread that has become associated with a client
connection but for which authentication of the client user has not yet occurred. event _schedul er
refers to the thread that monitors scheduled events (see Using the Event Scheduler).

Note

A USER value of syst em user is distinct from the SYSTEM USER privilege.
The former designates internal threads. The latter distinguishes the system
user and regular user account categories (see Account Categories).

* HOST

The host name of the client issuing the statement (except for syst em user, for which there is no
host). The host name for TCP/IP connections is reported in host _nane: cl i ent _port format to
make it easier to determine which client is doing what.

- DB
The default database for the thread, or NULL if none has been selected.
 COMIVAND

The type of command the thread is executing on behalf of the client, or S| eep if the session is
idle. For descriptions of thread commands, see Examining Server Thread (Process) Information.
The value of this column corresponds to the COM xxx commands of the client/server protocol and
Com xxx status variables. See Server Status Variables

 TIME

The time in seconds that the thread has been in its current state. For a replica SQL thread, the value
is the number of seconds between the timestamp of the last replicated event and the real time of the
replica host. See Replication Threads.

» STATE

An action, event, or state that indicates what the thread is doing. For descriptions of STATE values,
see Examining Server Thread (Process) Information.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that needs to be investigated.

* | NFO

The statement the thread is executing, or NULL if it is executing no statement. The statement
might be the one sent to the server, or an innermost statement if the statement executes other
statements. For example, if a CALL statement executes a stored procedure that is executing a
SELECT statement, the | NFOvalue shows the SELECT statement.

» EXECUTI ON_ENG NE

The query execution engine. The value is either PRI MARY or SECONDARY. For use with MySQL

HeatWave Service and HeatWave, where the PRI MARY engine is | nnoDB and the SECONDARY

engine is HeatWave (RAPI D). For MySQL Community Edition Server, MySQL Enterprise Edition
Server (on-premise), and MySQL HeatWave Service without HeatWave, the value is always

PRI MARY. This column was added in MySQL 8.0.29.

The processl i st table has these indexes:

195

https://dev.mysql.com/doc/refman/8.0/en/event-scheduler.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_system-user
https://dev.mysql.com/doc/refman/8.0/en/account-categories.html
https://dev.mysql.com/doc/refman/8.0/en/thread-information.html
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html
https://dev.mysql.com/doc/refman/8.0/en/replication-threads.html
https://dev.mysql.com/doc/refman/8.0/en/thread-information.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

The threads Table

e Primary key on (I D)
TRUNCATE TABLE is not permitted for the pr ocessl i st table.

As mentioned previously, if the per f or nance_schena_show _processl i st system variable
is enabled, the pr ocessl i st table serves as the basis for an alternative implementation of other
process information sources:

* The SHOW PROCESSLI ST statement.
* The nysqgl adm n processli st command (which uses SHON PROCESSLI ST statement).

The default SHOW PROCESSLI ST implementation iterates across active threads from within the thread
manager while holding a global mutex. This has negative performance consequences, particularly on
busy systems. The alternative SHOW PROCESSLI ST implementation is based on the Performance
Schema processl i st table. This implementation queries active thread data from the Performance
Schema rather than the thread manager and does not require a mutex.

MySQL configuration affects pr ocessl i st table contents as follows:
* Minimum required configuration:

* The MySQL server must be configured and built with thread instrumentation enabled. This is true
by default; it is controlled using the DI SABLE_PSI _ THREAD CVake option.

e The Performance Schema must be enabled at server startup. This is true by default; it is controlled
using the per f or mance_schenma system variable.

With that configuration satisfied, per f or mance_schema_show_processl i st enables or disables
the alternative SHOW PROCESSLI ST implementation. If the minimum configuration is not satisfied,
the processl i st table (and thus SHOW PROCESSLI ST) may not return all data.

» Recommended configuration:
< To avoid having some threads ignored:

* Leave the performance_schena_nax_t hread_i nst ances system variable set to its default
or set it at least as great as the max_connect i ons system variable.

» Leave the perfornmance_schena_nax_t hread_cl asses system variable set to its default.

e To avoid having some STATE column values be empty, leave the
performance_schema_nmax_stage_ cl asses system variable set to its default.

The default for those configuration parameters is - 1, which causes the Performance Schema to
autosize them at server startup. With the parameters set as indicated, the pr ocessl i st table (and
thus SHOW PROCESSLI ST) produce complete process information.

The preceding configuration parameters affect the contents of the pr ocessl i st table.
For a given configuration, however, the pr ocessl i st contents are unaffected by the
per f or mance_schema_show_processl i st setting.

The alternative process list implementation does not apply to the | NFORVATI ON_SCHENA
PROCESSLI ST table or the COM PROCESS | NFOcommand of the MySQL client/server protocol.

10.21.8 The threads Table

The t hr eads table contains a row for each server thread. Each row contains information about a
thread and indicates whether monitoring and historical event logging are enabled for it:

nysqgl > SELECT * FROM per f or mance_schena. t hr eads\ G

LEE R R EEEE R EEEEEEEEEEE I FOW XX *Hhkkkkkkhokkk kX kkkkkkxxk*

196

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_disable_psi_thread
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connections
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-processlist-table.html

The threads Table

THREAD | D

NAME!

TYPE
PROCESSLI ST_I Dt
PROCESSLI| ST_USER
PROCESSLI| ST_HOST:
PROCESSLI| ST_DB:
PROCESSLI| ST_COMVAND:
PROCESSLI ST_TI ME
PROCESSLI| ST_STATE
PROCESSLI ST_I NFO
PARENT_THREAD | D
ROLE:

| NSTRUVENTED:

Hl STORY:!

CONNECTI ON_TYPE
THREAD_OS_| D
RESOURCE_GROUP:
EXECUTI ON_ENG NE
CONTROLLED_MEMORY:
MAX_CONTROLLED MEMORY:
TOTAL_MEMORY:
MAX_TOTAL_ MEMORY:
TELEMETRY_ACTI VE

1

t hread/ sqgl / mai n
BACKGROUND
NULL

NULL

NULL

nmysq

NULL
418094
NULL

NULL

NULL

NULL

YES

YES

NULL

5856
SYS_def aul t
PRI MARY
1456

67480
1270430
1307317

NO

When the Performance Schema initializes, it populates the t hr eads table based on the threads in
existence then. Thereafter, a new row is added each time the server creates a thread.

The | NSTRUVENTED and HI STORY column values for new threads are determined by the contents of
the set up_act or s table. For information about how to use the set up_act or s table to control these
columns, see Section 5.6, “Pre-Filtering by Thread”.

Removal of rows from the t hr eads table occurs when threads end. For a thread associated with a
client session, removal occurs when the session ends. If a client has auto-reconnect enabled and

the session reconnects after a disconnect, the session becomes associated with a new row in the

t hr eads table that has a different PROCESSLI ST | Dvalue. The initial | NSTRUVENTED and HI STORY
values for the new thread may be different from those of the original thread: The set up_act or s table
may have changed in the meantime, and if the | NSTRUVENTED or H STORY value for the original
thread was changed after the row was initialized, the change does not carry over to the new thread.

You can enable or disable thread monitoring (that is, whether events executed by the thread are
instrumented) and historical event logging. To control the initial | NSTRUVENTED and HI STORY values
for new foreground threads, use the set up_act or s table. To control these aspects of existing
threads, set the | NSTRUVENTED and HI STORY columns of t hr eads table rows. (For more information
about the conditions under which thread monitoring and historical event logging occur, see the
descriptions of the | NSTRUVENTED and HI STORY columns.)

For a comparison of the t hr eads table columns with names having a prefix of PROCESSLI ST_ to
other process information sources, see Sources of Process Information.

Important

For thread information sources other than the t hr eads table, information
about threads for other users is shown only if the current user has the PROCESS
privilege. That is not true of the t hr eads table; all rows are shown to any user
who has the SELECT privilege for the table. Users who should not be able to
see threads for other users by accessing the t hr eads table should not be
given the SELECT privilege for it.

The t hr eads table has these columns:
e THREAD | D

A unique thread identifier.

197

https://dev.mysql.com/doc/refman/8.0/en/processlist-access.html#processlist-sources
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_select
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_select

The threads Table

* NAMVE

The name associated with the thread instrumentation code in the server. For example, t hr ead/
sql / one_connect i on corresponds to the thread function in the code responsible for handling a
user connection, and t hr ead/ sql / mai n stands for the mai n() function of the server.

* TYPE

The thread type, either FOREGROUND or BACKGROUND. User connection threads are foreground
threads. Threads associated with internal server activity are background threads. Examples are
internal | nnoDB threads, “binlog dump” threads sending information to replicas, and replication 1/O
and SQL threads.

* PROCESSLI ST_I D

For a foreground thread (associated with a user connection), this is the connection identifier. This

is the same value displayed in the | D column of the | NFORVMATI ON_SCHENMA PROCESSLI ST table,
displayed in the | d column of SHOW PROCESSLI ST output, and returned by the CONNECTI ON_| D()
function within the thread.

For a background thread (not associated with a user connection), PROCESSLI ST | Dis NULL, so the
values are not unique.

* PROCESSLI ST_USER
The user associated with a foreground thread, NULL for a background thread.
* PROCESSLI ST_HOST
The host name of the client associated with a foreground thread, NULL for a background thread.

Unlike the HOST column of the | NFORVATI ON_SCHEMA PROCESSLI ST table or the Host column of
SHOW PROCESSLI ST output, the PROCESSLI ST_HOST column does not include the port number for
TCP/IP connections. To obtain this information from the Performance Schema, enable the socket
instrumentation (which is not enabled by default) and examine the socket i nst ances table:

nysql > SELECT NAME, ENABLED, TI MED
FROM per f or mance_schena. set up_i nstrunent s
VWHERE NAME LI KE 'wait/i o/ socket % ;

dhmccccoccocccoocccocScccoocccococcooocoooe drmccccccos drmccccoe +
| NAMVE | ENABLED | TI MED |
dhmccccoccocccoocccocScccoocccococcooocoooe drmccccccos drmccccoe +
wait/iolsocket/sql/server_tcpip_socket	NO	NO
wait/iolsocket/sql/server_unix_socket	NO	NO
wait/iolsocket/sql/client_connection	NO	NO
dhmccccoccocccoocccocScccoocccococcooocoooe drmccccccos drmccccoe +

3 rows in set (0.01 sec)
nmysql > UPDATE perfor mance_schena. set up_i nstrunent s
SET ENABLED=' YES'
VWHERE NAME LI KE 'wait/i o/ socket % ;
Query OK, 3 rows affected (0.00 sec)
Rows matched: 3 Changed: 3 Warnings: 0O
nmysql > SELECT * FROM per f or mance_schena. socket _i nstances\ G
R R R R R EEEEEEEEEEEEEEESESESE] 1 r ow EE R R R R R R R R R R R R R EEEEEEE]
EVENT_NAME: wai t/i o/ socket/sql/client_connection
OBJECT_| NSTANCE_BEG N: 140612577298432
THREAD_| D: 31
SOCKET_I D: 53
IP: ::ffff:127.0.0.1
PORT: 55642
STATE: ACTI VE

* PROCESSLI ST_DB

The default database for the thread, or NULL if none has been selected.

198

https://dev.mysql.com/doc/refman/8.0/en/information-schema-processlist-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_connection-id
https://dev.mysql.com/doc/refman/8.0/en/information-schema-processlist-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html

The threads Table

* PROCESSLI ST_COMVAND

For foreground threads, the type of command the thread is executing on behalf of the client, or
Sl eep if the session is idle. For descriptions of thread commands, see Examining Server Thread
(Process) Information. The value of this column corresponds to the COV xxx commands of the
client/server protocol and Com xxx status variables. See Server Status Variables

Background threads do not execute commands on behalf of clients, so this column may be NULL.
e PROCESSLI ST_TI ME

The time in seconds that the thread has been in its current state. For a replica SQL thread, the value
is the number of seconds between the timestamp of the last replicated event and the real time of the
replica host. See Replication Threads.

* PROCESSLI ST_STATE

An action, event, or state that indicates what the thread is doing. For descriptions of

PROCESSLI ST_STATE values, see Examining Server Thread (Process) Information. If the value if
NULL, the thread may correspond to an idle client session or the work it is doing is not instrumented
with stages.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that bears investigation.

* PROCESSLI ST_I NFO

The statement the thread is executing, or NULL if it is executing no statement. The statement
might be the one sent to the server, or an innermost statement if the statement executes other
statements. For example, if a CALL statement executes a stored procedure that is executing a
SELECT statement, the PROCESSLI ST_| NFOvalue shows the SELECT statement.

e PARENT_THREAD | D

If this thread is a subthread (spawned by another thread), this is the THREAD | D value of the
spawning thread.

* ROLE
Unused.
e | NSTRUVENTED
Whether events executed by the thread are instrumented. The value is YES or NO.

« For foreground threads, the initial | NSTRUVENTED value is determined by whether the user
account associated with the thread matches any row in the set up_act or s table. Matching is
based on the values of the PROCESSLI ST _USER and PROCESSLI ST_HOST columns.

If the thread spawns a subthread, matching occurs again for the t hr eads table row created for
the subthread.

» For background threads, | NSTRUVENTED is YES by default. set up_act or s is not consulted
because there is no associated user for background threads.

e For any thread, its | NSTRUVENTED value can be changed during the lifetime of the thread.
For monitoring of events executed by the thread to occur, these things must be true:
e Thethread_instrunentati on consumer inthe set up_consuner s table must be YES.

e The t hr eads. | NSTRUMENTED column must be YES.

199

https://dev.mysql.com/doc/refman/8.0/en/thread-information.html
https://dev.mysql.com/doc/refman/8.0/en/thread-information.html
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html
https://dev.mysql.com/doc/refman/8.0/en/replication-threads.html
https://dev.mysql.com/doc/refman/8.0/en/thread-information.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

The threads Table

« Monitoring occurs only for those thread events produced from instruments that have the ENABLED
column set to YES in the set up_i nst runent s table.

* H STORY

Whether to log historical events for the thread. The value is YES or NO.

« For foreground threads, the initial H STORY value is determined by whether the user account
associated with the thread matches any row in the set up_act or s table. Matching is based on
the values of the PROCESSLI ST_USER and PROCESSLI ST _HOST columns.

If the thread spawns a subthread, matching occurs again for the t hr eads table row created for
the subthread.

« For background threads, Hl STORY is YES by default. set up_act or s is not consulted because
there is no associated user for background threads.

« For any thread, its H STORY value can be changed during the lifetime of the thread.
For historical event logging for the thread to occur, these things must be true:

» The appropriate history-related consumers in the set up_consuner s table must
be enabled. For example, wait event logging in the events_wai ts_hi st ory and
events_waits_history_ | ong tables requires the corresponding events_wai ts_hi story
and events_wai ts_hi story_ | ong consumers to be YES.

e Thet hr eads. H STORY column must be YES.

< Logging occurs only for those thread events produced from instruments that have the ENABLED
column set to YESin the set up_i nst runent s table.

CONNECTI ON_TYPE

The protocol used to establish the connection, or NULL for background threads. Permitted values
are TCP/ | P (TCP/IP connection established without encryption), SSL/ TLS (TCP/IP connection
established with encryption), Socket (Unix socket file connection), Naned Pi pe (Windows named
pipe connection), and Shar ed Menory (Windows shared memory connection).

THREAD OS I D
The thread or task identifier as defined by the underlying operating system, if there is one:

« When a MySQL thread is associated with the same operating system thread for its lifetime,
THREAD OGS | D contains the operating system thread ID.

* When a MySQL thread is not associated with the same operating system thread for its lifetime,
THREAD_OS | Dcontains NULL. This is typical for user sessions when the thread pool plugin is
used (see MySQL Enterprise Thread Pool).

For Windows, THREAD OS | D corresponds to the thread ID visible in Process Explorer (https://
technet.microsoft.com/en-us/sysinternals/bb896653.aspx).

For Linux, THREAD OS | D corresponds to the value of the get t i d() function. This value

is exposed, for example, using the per f or ps - L commands, or in the pr oc file system (/

proc/ [pid]/task/[tid]).Formoreinformation, see the perf-stat (1), ps(1), andproc(5)
man pages.

RESOURCE_GROUP

The resource group label. This value is NULL if resource groups are not supported on the current
platform or server configuration (see Resource Group Restrictions).

200

https://dev.mysql.com/doc/refman/8.0/en/thread-pool.html
https://technet.microsoft.com/en-us/sysinternals/bb896653.aspx
https://technet.microsoft.com/en-us/sysinternals/bb896653.aspx
https://dev.mysql.com/doc/refman/8.0/en/resource-groups.html#resource-group-restrictions

The tls_channel_status Table

EXECUTI ON_ENG NE

The query execution engine. The value is either PRI MARY or SECONDARY. For use with MySQL

HeatWave Service and HeatWave, where the PRI MARY engine is | nnoDB and the SECONDARY

engine is HeatWave (RAPI D). For MySQL Community Edition Server, MySQL Enterprise Edition
Server (on-premise), and MySQL HeatWave Service without HeatWave, the value is always

PRI MARY. This column was added in MySQL 8.0.29.

CONTROLLED MEMORY

Amount of controlled memory used by the thread.

This column was added in MySQL 8.0.31.

MAX_CONTROLLED MEMORY

Maximum value of CONTROLLED MEMORY seen during the thread execution.
This column was added in MySQL 8.0.31.

TOTAL_MEMORY

The current amount of memory, controlled or not, used by the thread.

This column was added in MySQL 8.0.31.

MAX_TOTAL_MEMORY

The maximum value of TOTAL_MEMORY seen during the thread execution.
This column was added in MySQL 8.0.31.

TELEMETRY_ACTI VE

Whether the thread has an active telemetry seesion attached. The value is YES or NO.

This column was added in MySQL 8.0.33.

The t hr eads table has these indexes:

Primary key on (THREAD _| D)

Index on (NANE)

Index on (PROCESSLI ST | D)

Index on (PROCESSLI ST _USER, PROCESSLI ST_HOST)
Index on (PROCESSLI ST_HOST)

Index on (THREAD_GCS_| D)

Index on (RESOURCE_GROUP)

TRUNCATE TABLE is not permitted for the t hr eads table.

10.21.9 The tls_channel_status Table

Connection interface TLS properties are set at server startup, and can be updated at runtime using the
ALTER | NSTANCE RELQAD TLS statement. See Server-Side Runtime Configuration and Monitoring
for Encrypted Connections.

The t| s_channel _st at us table (available as of MySQL 8.0.21) provides information about
connection interface TLS properties:

201

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html#alter-instance-reload-tls
https://dev.mysql.com/doc/refman/8.0/en/using-encrypted-connections.html#using-encrypted-connections-server-side-runtime-configuration
https://dev.mysql.com/doc/refman/8.0/en/using-encrypted-connections.html#using-encrypted-connections-server-side-runtime-configuration

The tls_channel_status Table

nmysqgl > SELECT * FROM per formance_schema. t| s_channel _status\ G

kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*%x l r ow kkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x

CHANNEL: nysql _mai n
PROPERTY: Enabl ed
VALUE: Yes

kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x 2 r ow kkkkkhkkhkkhkkhkkhkkhkkhkkkhkkhkkhkkkkhkkkkkkkkk*x

CHANNEL: nysql _mai n
PROPERTY: ssl| _accept _renegoti at es
VALUE: O

kkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkk*x 3 r ow kkkkkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkhkkkkkkkkk*x

CHANNEL: nysql _mai n
PROPERTY: Ssl _accepts
VALUE: 2

kkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkk*x 29 r ow kkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x

CHANNEL: nysql _admnin
PROPERTY: Enabl ed
VALUE: No

kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x 30 r ow kkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x

CHANNEL: nysql _admnin
PROPERTY: ssl| _accept _renegoti at es
VALUE: O

kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x 31 r ow kkkkkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkkkkkkk*x

CHANNEL: nysql _admnin
PROPERTY: Ssl _accepts
VALUE: 0O

Thetl| s _channel _st at us table has these columns:

» CHANNEL

The name of the connection interface to which the TLS property row applies. nysql _mai n and
nysql _adni n are the channel names for the main and administrative connection interfaces,
respectively. For information about the different interfaces, see Connection Interfaces.

* PROPERTY

The TLS property name. The row for the Enabl ed property indicates overall interface status, where
the interface and its status are named in the CHANNEL and VALUE columns, respectively. Other
property names indicate particular TLS properties. These often correspond to the names of TLS-
related status variables.

* VALUE
The TLS property value.

The properties exposed by this table are not fixed and depend on the instrumentation implemented by
each channel.

For each channel, the row with a PROPERTY value of Enabl ed indicates whether the channel supports
encrypted connections, and other channel rows indicate TLS context properties:

e Fornysql _mai n, the Enabl ed property is yes or no to indicate whether the main interface
supports encrypted connections. Other channel rows display TLS context properties for the main
interface.

For the main interface, similar status information can be obtained using these statements:

SHOW GLOBAL STATUS LIKE 'current_tls%;
SHOW GLOBAL STATUS LIKE 'ssl % ;

e Fornysql _adm n, the Enabl ed property is no if the administrative interface is not enabled or it is
enabled but does not support encrypted connections. Enabl ed is yes if the interface is enabled and
supports encrypted connections.

202

https://dev.mysql.com/doc/refman/8.0/en/connection-interfaces.html

The user_defined_functions Table

When Enabl ed is yes, the other nysql _adm n rows indicate channel properties for the
administrative interface TLS context only if some nondefault TLS parameter value is configured for
that interface. (This is the case if any admi n_tls_xxx oradni n_ssl _xxx system variable is set to
a value different from its default.) Otherwise, the administrative interface uses the same TLS context
as the main interface.

The t| s_channel _st at us table has no indexes.

TRUNCATE TABLE is not permitted for the t | s_channel _st at us table.

10.21.10 The user_defined_functions Table

The user defined functi ons table contains a row for each loadable function registered
automatically by a component or plugin, or manually by a CREATE FUNCTI ON statement. For
information about operations that add or remove table rows, see Installing and Uninstalling Loadable
Functions.

Note

The name of the user _defi ned _functi ons table stems from the
terminology used at its inception for the type of function now known as a
loadable function (that is, user-defined function, or UDF).

The user defined _functi ons table has these columns:
« UDF_NAME

The function name as referred to in SQL statements. The value is NULL if the function was registered
by a CREATE FUNCTI ON statement and is in the process of unloading.

« UDF_RETURN TYPE
The function return value type. The value is one of i nt , deci mal , real , char, orrow.
« UDF_TYPE
The function type. The value is one of f unct i on (scalar) or aggr egat e.
* UDF_LI BRARY

The name of the library file containing the executable function code. The file is located in the
directory named by the pl ugi n_di r system variable. The value is NULL if the function was
registered by a component or plugin rather than by a CREATE FUNCTI ON statement.

- UDF_USAGE_COUNT

The current function usage count. This is used to tell whether statements currently are accessing the
function.

The user _defined_functi ons table has these indexes:
» Primary key on (UDF_NANE)
TRUNCATE TABLE is not permitted for the user _defi ned_functi ons table.

The nysql . f unc system table also lists installed loadable functions, but only those installed using

CREATE FUNCTI ON. The user _defi ned_functi ons table lists loadable functions installed using
CREATE FUNCTI ON as well as loadable functions installed automatically by components or plugins.
This difference makes user _defi ned_functi ons preferable to nysql . f unc for checking which
loadable functions are installed.

203

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-function-loadable.html
https://dev.mysql.com/doc/refman/8.0/en/function-loading.html
https://dev.mysql.com/doc/refman/8.0/en/function-loading.html
https://dev.mysql.com/doc/refman/8.0/en/create-function.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/create-function.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-function-loadable.html
https://dev.mysql.com/doc/refman/8.0/en/create-function-loadable.html

204

Chapter 11 Performance Schema and Plugins

Removing a plugin with UNI NSTALL PLUG N does not affect information already collected for code
in that plugin. Time spent executing the code while the plugin was loaded was still spent even if the
plugin is unloaded later. The associated event information, including aggregate information, remains
readable in per f or mance_schena database tables. For additional information about the effect of
plugin installation and removal, see Chapter 8, Performance Schema Status Monitoring.

A plugin implementor who instruments plugin code should document its instrumentation characteristics
to enable those who load the plugin to account for its requirements. For example, a third-party storage
engine should include in its documentation how much memory the engine needs for mutex and other
instruments.

205

https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html

206

Chapter 12 Performance Schema System Variables

The Performance Schema implements several system variables that provide configuration information:

nmysqgl > SHOW VARI ABLES LI KE ' perf % ;

per f or mance_schena

per f or mance_schena_account s_si ze

per f or mance_schena_di gest s_si ze

per f or mance_schena_event s_stages_hi story_|l ong_si ze
per f or mance_schena_event s_stages_hi story_si ze

per for mance_schena_event s_statenents_hi story_|l ong_si ze

performance_schema_events_statenents_hi story_si ze

per f or mance_schena_events_transacti ons_hi story_| ong_si ze

performance_schenma_events_transacti ons_hi story_si ze
performance_schema_events_wai ts_hi story_l ong_si ze
performance_schena_events_wai ts_history_size
per f or mance_schenma_hosts_si ze

per f or mance_schenma_max_cond_cl asses

per f or mance_schenma_max_cond_i nst ances

per f or mance_schema_nax_di gest _| engt h
performance_schema_max_fil e_cl asses
performance_schenma_max_fil e_handl es

per formance_schenma_max_fil e_i nst ances

per f or mance_schena_max_i ndex_st at

per f or mance_schenma_max_nenory_cl asses

per f or mance_schenma_max_net adat a_| ocks

per f or mance_schema_nmax_nut ex_cl asses

per f or mance_schema_nmax_nut ex_i nst ances

per f or mance_schenma_max_pr epar ed_st at enent s_i nst ances
per f or mance_schema_max_program i nst ances

per f or mance_schenma_max_rw ock_cl asses

per f or mance_schenma_max_rw ock_i nst ances

per f or mance_schenma_max_socket _cl asses

per f or mance_schenma_max_socket _i nst ances

per formance_schema_max_sql _text | ength

per f or mance_schema_nax_st age_cl asses

per f or mance_schenma_nmax_st at ement _cl asses

per f or mance_schema_nax_st at ement _st ack

per f or mance_schema_nax_t abl e_handl es

per f or mance_schema_nmax_t abl e_i nst ances

per f or mance_schenma_max_t abl e_| ock_st at

per f or mance_schenma_max_t hr ead_cl asses

per f or mance_schenma_max_t hr ead_i nst ances

per f or mance_schena_sessi on_connect _attrs_si ze
per f or mance_schenma_set up_actors_si ze

per f or mance_schena_set up_obj ect s_si ze

per f or mance_schenma_users_si ze

320

350
-1
-1
-1
40
-1
10
-1
1024
150
192

Performance Schema system variables can be set at server startup on the command line or in option

files, and many can be set at runtime. See Performance Schema Option and Variable Reference.

The Performance Schema automatically sizes the values of several of its parameters at server startup

if they are not set explicitly. For more information, see Chapter 4, Performance Schema Startup

Configuration.

Performance Schema system variables have the following meanings:

e performance_schema

Command-Line Format

- - performance- schema| ={ OFF| ON}]

System Variable

performance_schena

Scope Global

Dynamic No

207

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-option-variable-reference.html

SET_VAR Hint Applies No

Type Boolean

Default Value ON

The value of this variable is ON or OFF to indicate whether the Performance Schema is enabled. By
default, the value is ON. At server startup, you can specify this variable with no value or a value of ON
or 1 to enable it, or with a value of OFF or O to disable it.

Even when the Performance Schema is disabled, it continues to populate the gl obal _vari abl es,
session_vari abl es, gl obal _st at us, and sessi on_st at us tables. This occurs as necessary
to permit the results for the SHOW VARl ABLES and SHOW STATUS statements to be drawn from

those tables. The Performance Schema also populates some of the replication tables when disabled.

performance_schenma_accounts_si ze

Command-Line Format - - per f or mance- schenma- account s- si ze=#

System Variable per formance_schema_accounts_si ze

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value - 1 (signifies autoscaling; do not assign this literal
value)

Minimum Value - 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the account s table. If this variable is 0, the Performance Schema does
not maintain connection statistics in the account s table or status variable information in the
status_by account table.

per formance_schena_di gests_si ze

Command-Line Format - - per f or mance- schema- di gest s-si ze=#

System Variable performance_schena_di gests_si ze

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value - 1 (signifies autosizing; do not assign this literal
value)

Minimum Value - 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of rows in the event s_st at enents_sunmmary_by di gest table. If
this maximum is exceeded such that a digest cannot be instrumented, the Performance Schema
increments the Per f or mance_schena_di gest | ost status variable.

For more information about statement digesting, see Performance Schema Statement Digests and
Sampling.

208

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/show-variables.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-statement-digests.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-statement-digests.html

e performance_schema_error_size

Command-Line Format

- - performance- schema-error-si ze=#

System Variable

performance_schema_error_size

Scope Global

Dynamic No

SET_VARHint Applies No

Type Integer

Default Value nunber of server error codes
Minimum Value 0

Maximum Value 1048576

The number of instrumented server error codes. The default value is the actual number of server
error codes. Although the value can be set anywhere from 0 to its maximum, the intended use is to
set it to either its default (to instrument all errors) or O (to instrument no errors).

Error information is aggregated in summary tables; see Section 10.20.11, “Error Summary Tables”.
If an error occurs that is not instrumented, information for the occurrence is aggregated to the NULL
row in each summary table; that is, to the row with ERROR_NUVBER=0, ERROR _NANME=NULL, and

SQLSTATE=NULL.

» performance_schena_events stages history |ong size

Command-Line Format

- - per f or mance- schema- event s- st ages-
hi story-1ong-si ze=#

System Variable

per formance_schema_event s_st ages_hi st

Scope Global
Dynamic No
SET_VARHint Applies No
Type Integer

Default Value

- 1 (signifies autosizing; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1048576

The number of rows in the event s_st ages_hi st ory_| ong table.

» performance_schena_events_stages_history_size

Command-Line Format

--performance- schema- event s- st ages-
hi story-si ze=#

System Variable

perfornmance_schenma_events_stages_hi st

Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer

Default Value

- 1 (signifies autosizing; do not assign this literal
value)

209

ory lo

ory_si

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1024

The number of rows per thread in the event s_st

ages_hi st ory table.

e performance_schema_events_statenents_history_ | ong_si ze

Command-Line Format

- - performance- schema- event s-
st at ement s- hi story-1ong-si ze=#

System Variable

performance_schenma_events_statenents_|history |

Scope Global

Dynamic No

SET VAR Hint Applies No

Type Integer

Default Value - 1 (signifies autosizing; do not assign this literal

value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1048576

The number of rows in the event s_st at enent s

per f or mance_schena_events_statements_

history| ong table.

hi story_size

Command-Line Format

- - per f or mance- schema- event s-
stat enent s- hi story-si ze=#

System Variable

performance_schenma_events_statenents_history_s

Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer

Default Value

- 1 (signifies autosizing; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1024

The number of rows per thread in the event s_st at enent s_hi st ory table.

» performance_schenma_events_transactions_history | ong_size

Command-Line Format

- - per f or mance- schema- event s-
transacti ons-hi story-1ong-size=#

s_history

System Variable performance_schenma_events_transacti on
Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

210

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Default Value

- 1 (signifies autosizing; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1048576

The number of rows in the event s_transacti ons_hi story_| ong table.

» performance_schenma_events_transactions_history_size

Command-Line Format

- - per f or mance- schena- event s-
transacti ons- hi story-si ze=#

System Variable

performance_schema_events_transacti on

Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer

Default Value

- 1 (signifies autosizing; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1024

s_hi st

The number of rows per thread in the event s_t ransacti ons_hi st ory table.

» performance_schema_events_waits_history_| ong_size

Command-Line Format

- - performance- schema-event s-wai t s-
hi story-1ong-si ze=#

System Variable

Scope Global
Dynamic No
SET_VARHint Applies No
Type Integer

Default Value

- 1 (signifies autosizing; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1048576

The number of rows in the events_wai ts_hi story_| ong table.

e performance_schema_events waits_history_size

Command-Line Format

- - performance- schema-event s-wai t s-
hi story-si ze=#

System Variable

performance_schema_events waits_histar
Scope Global
Dynamic No
SET_VAR Hint Applies No

211

performance_schema_events_waits_histaory | on

y siz

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Type

Integer

Default Value

- 1 (signifies autosizing; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1024

The number of rows per thread in the event s_wai t s_hi st ory table.

e performance_schenma_hosts_si ze

Command-Line Format

- - per f or mance- schema- host s- si ze=#

System Variable

performance_schema_hosts_si ze

Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer

Default Value

- 1 (signifies autoscaling; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1048576

The number of rows in the host s table. If this variable is 0, the Performance Schema does
not maintain connection statistics in the host s table or status variable information in the

status_by host table.

» performance_schena_max_cond_cl asses

Command-Line Format - - per f or mance- schema- max- cond-
cl asses=#

System Variable performance_schenma_max_cond_cl asses

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value (= 8.0.27) 150

Default Value (= 8.0.13, < 8.0.26) 100

Default Value (< 8.0.12) 80

Minimum Value 0

Maximum Value (= 8.0.12) 1024

Maximum Value (8.0.11) 256

The maximum number of condition instruments. For information about how to set and use this
variable, see Chapter 8, Performance Schema Status Monitoring.

» performance_schenma_max_cond_i nst ances

Command-Line Format

- - per f or mance- schema- max- cond-

i nst ances=#

212

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

System Variable

per f or mance_schema_max_cond_i nst ances

Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer

Default Value

- 1 (signifies autoscaling; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1048576

The maximum number of instrumented condition objects. For information about how to set and use
this variable, see Chapter 8, Performance Schema Status Monitoring.

» performance_schenma_max_di gest | ength

Command-Line Format

- - per f or mance- schenma- max- di gest -
| engt h=#

System Variable

performance_schema_nax_di gest | ength

Scope Global
Dynamic No
SET_VAR Hint Applies No

Type Integer
Default Value 1024
Minimum Value 0
Maximum Value 1048576
Unit bytes

The maximum number of bytes of memory reserved per statement for computation of
normalized statement digest values in the Performance Schema. This variable is related to
max_di gest _| engt h; see the description of that variable in Server System Variables.

For more information about statement digesting, including considerations regarding memory use, see
Performance Schema Statement Digests and Sampling.

e performance_schema_nmax_di gest _sanpl e_age

Command-Line Format

- - per f or mance- schena- max- di gest -
sanpl e- age=#

System Variable

performance_schenma_max_di gest _sanpl e_|

Scope Global
Dynamic Yes

SET VAR Hint Applies No

Type Integer
Default Value 60
Minimum Value 0
Maximum Value 1048576

213

age

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_digest_length
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-statement-digests.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Unit seconds

This variable affects statement sampling for the event s_st at enents_sunmary_ by di gest
table. When a new table row is inserted, the statement that produced the row digest value is stored
as the current sample statement associated with the digest. Thereafter, when the server sees other
statements with the same digest value, it determines whether to use the new statement to replace
the current sample statement (that is, whether to resample). Resampling policy is based on the
comparative wait times of the current sample statement and new statement and, optionally, the age
of the current sample statement:

* Resampling based on wait times: If the new statement wait time has a wait time greater than that
of the current sample statement, it becomes the current sample statement.

« Resampling based on age: If the per f or mance_schenma_nax_di gest _sanpl e_age system
variable has a value greater than zero and the current sample statement is more than that many
seconds old, the current statement is considered “too old” and the new statement replaces it. This
occurs even if the new statement wait time is less than that of the current sample statement.

For information about statement sampling, see Performance Schema Statement Digests and
Sampling.

» performance_schena_max _file_ cl asses

Command-Line Format - - performance- schema- max-fil e-
cl asses=#

System Variable performance_schema_max_fil e_cl asses

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 80

Minimum Value 0

Maximum Value (= 8.0.12) 1024

Maximum Value (8.0.11) 256

The maximum number of file instruments. For information about how to set and use this variable, see
Chapter 8, Performance Schema Status Monitoring.

» performance_schena_max_fil e _handl es

Command-Line Format - - performance-schema- max-fil e-
handl es=#
System Variable performance_schema_max_fil e_handl es
Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer
Default Value 32768
Minimum Value 0

214

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-statement-digests.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-statement-digests.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Maximum Value

1048576

The maximum number of opened file objects. For information about how to set and use this variable,
see Chapter 8, Performance Schema Status Monitoring.

The value of per f or mance_schema_max_file_

handl es should be greater than the value of

open files limt:open files |imt affectsthe maximum number of open file handles the
server can support and per f or mance_schenma_max_fil e_handl es affects how many of these

file handles can be instrumented.

performance_schema_max_fil e_i nstances

Command-Line Format

--performance-schema- max-fil e-
i nst ances=#

System Variable

performance_schema_nmax_fil e_i nst ances

Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer

Default Value

- 1 (signifies autoscaling; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1048576

The maximum number of instrumented file objects.

For information about how to set and use this

variable, see Chapter 8, Performance Schema Status Monitoring.

performance_schema_nmax_i ndex_st at

Command-Line Format

- - per f or mance- schenma- max- i ndex-
st at =#

System Variable

performance_schema_max_i ndex_st at

Scope Global
Dynamic No
SET VAR Hint Applies No
Type Integer

Default Value

- 1 (signifies autosizing; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1048576

The maximum number of indexes for which the Performance Schema maintains statistics. If this
maximum is exceeded such that index statistics are lost, the Performance Schema increments the
Per f ormance_schema_i ndex_st at | ost status variable. The default value is autosized using

the value of per f ormance_schema_nax_t abl e

e performance_schema_nmax_nenory_ cl asses

i nst ances.

Command-Line Format

- - per f or mance- schena- max- nenory-

cl asses=#

215

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_open_files_limit
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_open_files_limit
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

System Variable

per formance_schema_max_nenory_cl asses

Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer
Default Value 450
Minimum Value 0
Maximum Value 1024

The maximum number of memory instruments. For information about how to set and use this
variable, see Chapter 8, Performance Schema Status Monitoring.

» performance_schenma_max_net adat a_| ocks

Command-Line Format

- - per f or mance- schema- max- net adat a-
| ocks=#

System Variable

performance_schenma_nmax_net adat a_| ocks

Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer

Default Value

- 1 (signifies autoscaling; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

10485760

The maximum number of metadata lock instruments. This value controls the
size of the net adat a_| ocks table. If this maximum is exceeded such that a
metadata lock cannot be instrumented, the Performance Schema increments the
Per f ormance_schenma_net adat a_| ock | ost status variable.

e performance_schema_max_nut ex_cl asses

Command-Line Format

- - per f or mance- schema- max- mut ex-
cl asses=#

System Variable

performance_schema_nmax_nut ex_cl asses

Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer
Default Value (= 8.0.27) 350
Default Value (= 8.0.12, < 8.0.26) 300
Default Value (8.0.11) 250
Minimum Value 0
Maximum Value (= 8.0.12) 1024

216

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Maximum Value (8.0.11) 256

The maximum number of mutex instruments. For information about how to set and use this variable,
see Chapter 8, Performance Schema Status Monitoring.

e performance_schema_max_nut ex_i nst ances

Command-Line Format - - per f or mance- schema- max- nut ex-
i nst ances=#

System Variable performance_schema_nmax_nut ex_i nst ances

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value - 1 (signifies autoscaling; do not assign this literal
value)

Minimum Value - 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 104857600

The maximum number of instrumented mutex objects. For information about how to set and use this
variable, see Chapter 8, Performance Schema Status Monitoring.

» performance_schema_max_prepared_statenents_i nstances

Command-Line Format - - per f or mance- schenma- max- pr epar ed-
st at ement s-i nst ances=#

System Variable performance_schema_nax_prepared_statenments_

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value - 1 (signifies autoscaling; do not assign this literal
value)

Minimum Value - 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 4194304

The maximum number of rows in the pr epar ed_st at enent s_i nst ances table. If this maximum
is exceeded such that a prepared statement cannot be instrumented, the Performance Schema
increments the Per f or mance_schema_prepar ed_st at enent s_| ost status variable. For

information about how to set and use this variable, see Chapter 8, Performance Schema Status
Monitoring.

The default value of this variable is autosized based on the value of the
max_prepared_stnt _count system variable.

e performance_schema_max_rw ock_cl asses

Command-Line Format - - per f or mance- schenma- max-rw ock-
cl asses=#
System Variable performance_schema_max_rw ock cl asses

217

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_prepared_stmt_count

Scope Global
Dynamic No
SET VAR Hint Applies No
Type Integer
Default Value (= 8.0.12) 100
Default Value (8.0.11) 60
Minimum Value 0
Maximum Value (= 8.0.12) 1024
Maximum Value (8.0.11) 256

The maximum number of rwlock instruments. For information about how to set and use this variable,
see Chapter 8, Performance Schema Status Monitoring.

e performance_schenma_max_program i nst ances

Command-Line Format

- - per f or mance- schema- max- pr ogr am
i nst ances=#

System Variable

performance_schema_nmax_program i nst ances

Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer

Default Value

- 1 (signifies autoscaling; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1048576

The maximum number of stored programs for which the Performance Schema maintains

statistics. If this maximum is exceeded, the Performance Schema increments the

Per f or mance_schema_program | ost status variable. For information about how to set and use
this variable, see Chapter 8, Performance Schema Status Monitoring.

e performance_schema_max_rw ock_i nstances

Command-Line Format

- - per f or mance- schenma- max-rw ock-
i nst ances=#

System Variable

performance_schema_max_rw ock_i nst anc

Scope Global
Dynamic No
SET VAR Hint Applies No
Type Integer

Default Value

- 1 (signifies autosizing; do not assign this literal
value)

Minimum Value

- 1 (signifies autosizing; do not assign this literal

value)

218

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Maximum Value

104857600

The maximum number of instrumented rwlock objects. For information about how to set and use this
variable, see Chapter 8, Performance Schema Status Monitoring.

e performance_schema_max_socket cl asses

Command-Line Format

- - per f or mance- schema- max- socket -
cl asses=#

System Variable

performance_schema_nmax_socket cl asses

Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer
Default Value 10
Minimum Value 0
Maximum Value (= 8.0.12) 1024
Maximum Value (8.0.11) 256

The maximum number of socket instruments. For information about how to set and use this variable,
see Chapter 8, Performance Schema Status Monitoring.

» performance_schema_max_socket i nstances

Command-Line Format

- - per f or mance- schena- max- socket -
i nstances=#

System Variable

per f or mance_schema_max_socket _i nst ancles

Scope Global
Dynamic No
SET_VARHint Applies No
Type Integer

Default Value

- 1 (signifies autoscaling; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1048576

The maximum number of instrumented socket objects. For information about how to set and use this
variable, see Chapter 8, Performance Schema Status Monitoring.

e performance_schema_nmax_sql text | ength

Command-Line Format

- - per f or mance- schema- max- sql -t ext -
| engt h=#

System Variable

per f or mance_schema_max_sql _text _| engt

=

Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer
Default Value 1024

219

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Minimum Value 0

Maximum Value 1048576

Unit bytes

The maximum number of bytes used to store SQL statements. The value applies to storage required
for these columns:

e The SQL_TEXT column of the event s_st at enents_current,

events_statenents_history,andevents_statenents history | ong statement event
tables.

¢ The QUERY_SANMPLE_ TEXT column of the event s_statenments_summary_ by di gest
summary table.

Any bytes in excess of per f or mance_schenma_nax_sql text | engt h are discarded and do not
appear in the column. Statements differing only after that many initial bytes are indistinguishable in
the column.

Decreasing the per f or mance_scherma_nmax_sql _text | engt h value reduces memory use but
causes more statements to become indistinguishable if they differ only at the end. Increasing the
value increases memory use but permits longer statements to be distinguished.

per formance_schema_nax_st age_cl asses

Command-Line Format - - per f or mance- schema- nax- st age-
cl asses=#

System Variable performance_schema_nmax_stage_ cl asses

Scope Global

Dynamic No

SET VAR Hint Applies No

Type Integer

Default Value (= 8.0.13) 175

Default Value (< 8.0.12) 150

Minimum Value 0

Maximum Value (= 8.0.12) 1024

Maximum Value (8.0.11) 256

The maximum number of stage instruments. For information about how to set and use this variable,
see Chapter 8, Performance Schema Status Monitoring.

» performance_schema_nax_st at enent _cl asses

Command-Line Format - - per f or mance- schenma- max- st at enent -
cl asses=#
System Variable per formance_schema_max_st at enent _cl as
Scope Global
Dynamic No
SET_VARHint Applies No
Type Integer
Minimum Value 0

220

SesS

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Maximum Value

256

The maximum number of statement instruments. For information about how to set and use this
variable, see Chapter 8, Performance Schema Status Monitoring.

The default value is calculated at server build time based on the number of commands in the client/
server protocol and the number of SQL statement types supported by the server.

This variable should not be changed, unless to set it to O to disable all statement instrumentation and
save all memory associated with it. Setting the variable to nonzero values other than the default has
no benefit; in particular, values larger than the default cause more memory to be allocated then is

needed.

» performance_schenma_max_st at enent _st ack

Command-Line Format

- - per f or mance- schema- nax- st at enent -
st ack=#

System Variable performance_schema_max_st at enent _st ac
Scope Global

Dynamic No

SET VAR Hint Applies No

Type Integer

Default Value 10

Minimum Value 1

Maximum Value 256

The maximum depth of nested stored program calls for which the Performance Schema
maintains statistics. When this maximum is exceeded, the Performance Schema increments the
Per f ormance_schena_nest ed st at enent | ost status variable for each stored program

statement executed.

» performance_schema_max_t abl e_handl es

Command-Line Format

--performance- schema- max-t abl e-
handl es=#

System Variable

performance_schema_nex_t abl e_handl es

Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer

Default Value

- 1 (signifies autoscaling; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1048576

The maximum number of opened table objects. This value controls the size of the t abl e_handl es
table. If this maximum is exceeded such that a table handle cannot be instrumented, the
Performance Schema increments the Per f or mance_schema_t abl e_handl es_| ost status
variable. For information about how to set and use this variable, see Chapter 8, Performance

Schema Status Monitoring.

e performance_schenma_max_tabl e i nstances

221

=~

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Command-Line Format

- - per f or mance- schema- max-t abl e-
i nstances=#

System Variable

performance_schema_max_t abl e_i nst ance

Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer

Default Value

- 1 (signifies autoscaling; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1048576

The maximum number of instrumented table objects. For information about how to set and use this
variable, see Chapter 8, Performance Schema Status Monitoring.

e performance_schema_nax_tabl e | ock stat

Command-Line Format

--performance- schema- max-t abl e-1 ock-
st at =#

System Variable

perfornmance_schema_nex_t abl e | ock_st at

Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer

Default Value

- 1 (signifies autosizing; do not assign this literal
value)

Minimum Value

- 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value

1048576

The maximum number of tables for which the Performance Schema maintains lock statistics. If this
maximum is exceeded such that table lock statistics are lost, the Performance Schema increments
the Per f ormance_schenma_tabl e | ock stat | ost status variable.

» performance_schema_max_t hread cl asses

Command-Line Format

- - performance- schema- max-t hread-
cl asses=#

System Variable

performance_schema_nax_t hread_cl asses

Scope Global
Dynamic No
SET_VAR Hint Applies No
Type Integer
Default Value 100
Minimum Value 0
Maximum Value (= 8.0.12) 1024
Maximum Value (8.0.11) 256

222

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

The maximum number of thread instruments. For information about how to set and use this variable,
see Chapter 8, Performance Schema Status Monitoring.

» performance_schenma_max_t hread i nstances

Command-Line Format - - per f or mance- schenma- max- t hr ead-
i nst ances=#

System Variable per formance_schema_nax_t hread_i nst ancles

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value - 1 (signifies autosizing; do not assign this literal
value)

Minimum Value - 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of instrumented thread objects. The value controls the size of the t hr eads
table. If this maximum is exceeded such that a thread cannot be instrumented, the Performance
Schema increments the Per f or mance_schena_t hread i nst ances_| ost status variable. For
information about how to set and use this variable, see Chapter 8, Performance Schema Status
Monitoring.

The max_connect i ons system variable affects how many threads can run in the server.
performance_schena_mnax_t hread i nstances affects how many of these running threads can
be instrumented.

The vari abl es_by threadandstatus by thread tables contain system

and status variable information only about foreground threads. If not all threads are
instrumented by the Performance Schema, this table misses some rows. In this case, the
Per f ormance_schema_t hread i nst ances | ost status variable is greater than zero.

» performance_schenma_sessi on_connect _attrs_si ze

Command-Line Format - - performance- schema- sessi on-
connect-attrs-size=#

System Variable performance_schenma_sessi on_connect _atjtrs_si

Scope Global

Dynamic No

SET_VARHint Applies No

Type Integer

Default Value - 1 (signifies autosizing; do not assign this literal
value)

Minimum Value - 1 (signifies autosizing; do not assign this literal
value)

Maximum Value 1048576

Unit bytes

The amount of preallocated memory per thread reserved to hold connection attribute key-
value pairs. If the aggregate size of connection attribute data sent by a client is larger

223

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connections
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

than this amount, the Performance Schema truncates the attribute data, increments the

Per f ormance_schenma_sessi on_connect _attrs_| ost status variable, and writes a message
to the error log indicating that truncation occurred if the | og_error _ver bosi t y system variable is
greater than 1. A _t runcat ed attribute is also added to the session attributes with a value indicating
how many bytes were lost, if the attribute buffer has sufficient space. This enables the Performance
Schema to expose per-connection truncation information in the connection attribute tables. This
information can be examined without having to check the error log.

The default value of per f or mance_schena_sessi on_connect _attrs_si ze

is autosized at server startup. This value may be small, so if truncation occurs
(Performance_schena_sessi on_connect _attrs_| ost becomes nonzero), you may wish to
set per f ormance_schenma_sessi on_connect _attrs_si ze explicitly to a larger value.

Although the maximum permitted per f or mance_schena_sessi on_connect _attrs_si ze value
is 1MB, the effective maximum is 64KB because the server imposes a limit of 64KB on the aggregate
size of connection attribute data it accepts. If a client attempts to send more than 64KB of attribute
data, the server rejects the connection. For more information, see Section 10.9, “Performance
Schema Connection Attribute Tables”.

» performance_schenma_setup_actors_size

Command-Line Format - - per f or mance- schema- set up- act or s-
Si ze=#

System Variable performance_schenma_set up_actors_si ze

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value - 1 (signifies autoscaling; do not assign this literal
value)

Minimum Value - 1 (signifies autosizing; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the set up_act or s table.

» performance_schenma_set up_obj ects_size

Command-Line Format - - performance- schema- set up- obj ect s-
Si ze=#

System Variable perfornmance_schena_set up_obj ects_si z¢

Scope Global

Dynamic No

SET_VARHint Applies No

Type Integer

Default Value - 1 (signifies autoscaling; do not assign this literal
value)

Minimum Value - 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the set up_obj ect s table.

224

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_log_error_verbosity
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

e performance_schema_show _processli st

Command-Line Format - - per f or mance- schema- show
processli st ={ OFF| ON\}]
Introduced 8.0.22
Deprecated 8.0.35
System Variable per f or mance_schenma_show _processl i st
Scope Global
Dynamic Yes
SET_VAR Hint Applies No
Type Boolean
Default Value OFF

The SHOW PROCESSLI ST statement provides process information by collecting thread data from all
active threads. The per f or mance_schena_show processl i st variable determines which SHOWV
PROCESSLI ST implementation to use:

* The default implementation iterates across active threads from within the thread manager while
holding a global mutex. This has negative performance consequences, particularly on busy
systems.

e The alternative SHOW PROCESSLI ST implementation is based on the Performance Schema
processli st table. This implementation queries active thread data from the Performance
Schema rather than the thread manager and does not require a mutex.

To enable the alternative implementation, enable the per f or mance_schena_show processl i st
system variable. To ensure that the default and alternative implementations yield the same

information, certain configuration requirements must be met; see Section 10.21.7, “The processlist
Table”.

» performance_schenma_users_si ze

Command-Line Format - - performance- schema- user s-si ze=#

System Variable per f or mance_schenma_users_si ze

Scope Global

Dynamic No

SET_VARHint Applies No

Type Integer

Default Value - 1 (signifies autoscaling; do not assign this literal
value)

Minimum Value - 1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the user s table. If this variable is 0, the Performance Schema does
not maintain connection statistics in the user s table or status variable information in the
status_by user table.

225

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

226

Chapter 13 Performance Schema Status Variables

The Performance Schema implements several status variables that provide information about
instrumentation that could not be loaded or created due to memory constraints:

nysql > SHOW STATUS LI KE ' perf % ;

Per f or mance_schenma_account s_| ost

Per f or mance_schenma_cond_cl asses_| ost

Per f or mance_schena_cond_i nst ances_| ost
Per f ormance_schena_fil e_cl asses_| ost

Per f ormance_schena_fil e_handl es_| ost

Per f ormance_schena_fil e_i nst ances_| ost
Per f or mance_schenma_host s_| ost

Per f or mance_schena_| ocker _| ost

Per f or mance_schema_nut ex_cl asses_| ost
Per f or mance_schenma_mut ex_i nst ances_| ost
Per f ormance_schenma_rw ock_cl asses_| ost
Per f or mance_schenma_rw ock_i nst ances_| ost
Per f ormance_schena_socket _cl asses_| ost
Per f or mance_schena_socket _i nst ances_| ost
Per f or mance_schena_st age_cl asses_| ost
Per f or mance_schena_st at ement _cl asses_| ost
Per f or mance_schena_t abl e_handl es_| ost
Per f ormance_schena_t abl e_i nst ances_| ost
Per f ormance_schena_t hread_cl asses_| ost
Per f or mance_schena_t hread_i nst ances_| ost
Per f or mance_schena_users_| ost

[eNeoNeoNoNoNoNoNolNoNoNoloNolNoNoloNoNoNoNoNe]

For information on using these variables to check Performance Schema status, see Chapter 8,
Performance Schema Status Monitoring.

Performance Schema status variables have the following meanings:
e Performance_schenma_accounts | ost
The number of times a row could not be added to the account s table because it was full.
» Performance _schema_cond cl asses | ost
How many condition instruments could not be loaded.
e Performance_schema_cond_i nstances_| ost
How many condition instrument instances could not be created.
e Performance_schena_di gest | ost

The number of digest instances that could not be instrumented in the
events_statenents summary by di gest table. This can be nonzero if the value of
performance_schena_di gests_si ze is too small.

» Performance _schema file classes | ost

How many file instruments could not be loaded.
» Performance _schema fil e _handl es | ost

How many file instrument instances could not be opened.
e Performance_schema_file_instances_| ost

How many file instrument instances could not be created.

227

Per f ormance_schema_hosts_| ost
The number of times a row could not be added to the host s table because it was full.
Per f ormance_schena_i ndex_stat | ost

The number of indexes for which statistics were lost. This can be nonzero if the value of
performance_schema_max_i ndex_st at is too small.

Per f ormance_schemna_| ocker _| ost

How many events are “lost” or not recorded, due to the following conditions:

» Events are recursive (for example, waiting for A caused a wait on B, which caused a wait on C).

« The depth of the nested events stack is greater than the limit imposed by the implementation.
Events recorded by the Performance Schema are not recursive, so this variable should always be 0.
Per f ormance_schema_nenory_ cl asses_| ost

The number of times a memory instrument could not be loaded.

Per f ormance_schenma_net adat a_| ock | ost

The number of metadata locks that could not be instrumented in the net adat a_| ocks table. This
can be nonzero if the value of per f or mance_schema_nax_mnet adat a_| ocks is too small.

Per f ormance_schema_nut ex_cl asses_| ost

How many mutex instruments could not be loaded.

Per f ormance_schenma_nut ex_i nst ances_| ost

How many mutex instrument instances could not be created.
Per f ormance_schema_nest ed_st at ement _| ost

The number of stored program statements for which statistics were lost. This can be nonzero if the
value of per f or rance_schenma_nax_st at enent _st ack is too small.

Per f or mance_schema_prepar ed_st at enent s_| ost

The number of prepared statements that could not be instrumented in the
prepared_stat ements_i nst ances table. This can be nonzero if the value of
performance_schema_max_prepared_stat ements_i nst ances is too small.

Per f ormance_schema_program | ost

The number of stored programs for which statistics were lost. This can be nonzero if the value of
performance_schenma_nax_program i nst ances is too small.

Per f ormance_schema_rw ock cl asses_| ost

How many rwlock instruments could not be loaded.

Per f ormance_schema_rw ock_i nstances_| ost

How many rwlock instrument instances could not be created.

Per f ormance_schenma_sessi on_connect _attrs_| ongest seen

In addition to the connection attribute size-limit check performed by the Performance Schema
against the value of the per f or mance_schema_sessi on_connect _attrs_si ze

228

system variable, the server performs a preliminary check, imposing a limit of 64KB on

the aggregate size of connection attribute data it accepts. If a client attempts to send

more than 64KB of attribute data, the server rejects the connection. Otherwise, the server
considers the attribute buffer valid and tracks the size of the longest such buffer in the

Per f ormance_schenma_sessi on_connect _attrs_| ongest seen status variable. If this value
is larger than per f or nance_schena_sessi on_connect _attrs_si ze, DBAs may wish to
increase the latter value, or, alternatively, investigate which clients are sending large amounts of
attribute data.

For more information about connection attributes, see Section 10.9, “Performance Schema
Connection Attribute Tables”.

Per f ormance_schena_sessi on_connect _attrs_| ost

The number of connections for which connection attribute truncation has occurred.

For a given connection, if the client sends connection attribute key-value pairs

for which the aggregate size is larger than the reserved storage permitted by the

value of the per f or mance_schena_sessi on_connect _attrs_si ze system

variable, the Performance Schema truncates the attribute data and increments

Per f or mance_schena_sessi on_connect _attrs_| ost. If this value is nonzero, you may wish
to set per f ormance_schena_sessi on_connect _attrs_si ze to a larger value.

For more information about connection attributes, see Section 10.9, “Performance Schema
Connection Attribute Tables”.

Per f ormance_schenma_socket cl asses_| ost

How many socket instruments could not be loaded.

Per f ormance_schema_socket i nstances | ost

How many socket instrument instances could not be created.
Per f ormance_schena_st age_cl asses_| ost

How many stage instruments could not be loaded.

Per f ormance_schena_st at enent _cl asses_| ost

How many statement instruments could not be loaded.

Per f ormance_schemna_t abl e_handl es_| ost

How many table instrument instances could not be opened. This can be nonzero if the value of
performance_schema_nax_t abl e_handl es is too small.

Per f ormance_schenma_t abl e_i nst ances_| ost
How many table instrument instances could not be created.
Performance_schema_tabl e | ock_stat | ost

The number of tables for which lock statistics were lost. This can be nonzero if the value of
performance_schema_max_tabl e | ock st at istoo small.

Per f ormance_schenma_t hread _cl asses_| ost
How many thread instruments could not be loaded.
Per f ormance_schena_t hread_i nst ances_| ost

The number of thread instances that could not be instrumented in the t hr eads table. This can be
nonzero if the value of per f or mance_schenma_mnax_t hread_i nst ances is too small.

229

e Performance_schema_users_| ost

The number of times a row could not be added to the user s table because it was full.

230

Chapter 14 Using the Performance Schema to Diagnose
Problems

Table of Contents

14.1 Query Profiling Using Performance SChemMaoooiiuiiiiiiiiii e 232
14.2 Obtaining Parent Event INfOrmMationcoooiiiiiiiiiii e 234

The Performance Schema is a tool to help a DBA do performance tuning by taking real measurements
instead of “wild guesses.” This section demonstrates some ways to use the Performance Schema for
this purpose. The discussion here relies on the use of event filtering, which is described in Section 5.2,
“Performance Schema Event Filtering”.

The following example provides one methodology that you can use to analyze a repeatable problem,
such as investigating a performance bottleneck. To begin, you should have a repeatable use

case where performance is deemed “too slow” and needs optimization, and you should enable all
instrumentation (no pre-filtering at all).

1. Run the use case.

2. Using the Performance Schema tables, analyze the root cause of the performance problem. This
analysis relies heavily on post-filtering.

3. For problem areas that are ruled out, disable the corresponding instruments. For example, if
analysis shows that the issue is not related to file /O in a particular storage engine, disable the file
I/O instruments for that engine. Then truncate the history and summary tables to remove previously
collected events.

4. Repeat the process at step 1.

With each iteration, the Performance Schema output, particularly the

events waits_history | ong table, contains less and less “noise” caused by nonsignificant
instruments, and given that this table has a fixed size, contains more and more data relevant to the
analysis of the problem at hand.

With each iteration, investigation should lead closer and closer to the root cause of the problem, as
the “signal/noise” ratio improves, making analysis easier.

5. Once a root cause of performance bottleneck is identified, take the appropriate corrective action,
such as:

» Tune the server parameters (cache sizes, memory, and so forth).

e Tune a query by writing it differently,

Tune the database schema (tables, indexes, and so forth).
» Tune the code (this applies to storage engine or server developers only).
6. Start again at step 1, to see the effects of the changes on performance.

The nut ex_i nstances. LOCKED BY THREAD | Dand

rw ock i nstances. WRI TE_LOCKED BY THREAD | Dcolumns are extremely important for
investigating performance bottlenecks or deadlocks. This is made possible by Performance Schema
instrumentation as follows:

231

Query Profiling Using Performance Schema

1. Suppose that thread 1 is stuck waiting for a mutex.

2. You can determine what the thread is waiting for:

SELECT * FROM performance_schema. events_wai ts_current
WHERE THREAD ID = thread_1;

Say the query result identifies that the thread is waiting for mutex A, found in
events_waits_current. OBJECT_| NSTANCE_BEG N.

3. You can determine which thread is holding mutex A:

SELECT * FROM per f or mance_schena. mut ex_i nst ances
WHERE OBJECT_| NSTANCE_BEA N = nut ex_A;

Say the query result identifies that it is thread 2 holding mutex A, as found in
mut ex_i nst ances. LOCKED BY_THREAD | D.

4. You can see what thread 2 is doing:

SELECT * FROM per f or mance_schema. events_wai ts_current
WHERE THREAD I D = thread_2;

14.1 Query Profiling Using Performance Schema

The following example demonstrates how to use Performance Schema statement events and stage
events to retrieve data comparable to profiling information provided by SHOW PROFI LES and SHOW
PROFI LE statements.

The set up_act or s table can be used to limit the collection of historical events by host, user, or
account to reduce runtime overhead and the amount of data collected in history tables. The first step of
the example shows how to limit collection of historical events to a specific user.

Performance Schema displays event timer information in picoseconds (trillionths of a second) to
normalize timing data to a standard unit. In the following example, TI MER_WAI T values are divided
by 1000000000000 to show data in units of seconds. Values are also truncated to 6 decimal places to
display data in the same format as SHOW PROFI LES and SHOW PROFI LE statements.

1. Limit the collection of historical events to the user that runs the query. By default, set up_actors
is configured to allow monitoring and historical event collection for all foreground threads:

nysqgl > SELECT * FROM per f or nance_schena. set up_act ors;

+ +
| % | % % | YES
+ +

Update the default row in the set up_act or s table to disable historical event collection and
monitoring for all foreground threads, and insert a new row that enables monitoring and historical
event collection for the user that runs the query:

nmysql > UPDATE per f or mance_schena. set up_actors
SET ENABLED = 'NO, HI STORY = ' NO
WHERE HOST = '% AND USER = ' % ;
mysql > | NSERT | NTO per f or mance_schema. set up_act or s
(HOST, USER, ROLE, ENABLED, HI STORY)
VALUES(' | ocal host' ,'test_user','%,' YES ,' YES);

Data in the set up_act or s table should now appear similar to the following:

nmysql > SELECT * FROM per f or mance_schena. set up_act or s;
dimcccococcccoe dmcccococcccoo dhmcc=os dmcccccc=oo dmcccccc=oo +
| HOST | USER | ROLE | ENABLED | HI STORY |
dimcccococcccoe dmcccococcccoo dhmcc=os dmcccccc=oo dmcccccc=oo +

232

https://dev.mysql.com/doc/refman/8.0/en/show-profiles.html
https://dev.mysql.com/doc/refman/8.0/en/show-profile.html
https://dev.mysql.com/doc/refman/8.0/en/show-profile.html
https://dev.mysql.com/doc/refman/8.0/en/show-profiles.html
https://dev.mysql.com/doc/refman/8.0/en/show-profile.html

Query Profiling Using Performance Schema

| % | % | % | NO | NO |
| local host | test_user | % | YES | YES

Ensure that statement and stage instrumentation is enabled by updating the set up_i nst runent s
table. Some instruments may already be enabled by default.

nmysql > UPDATE perf or mance_schena. set up_i nstrunent s
SET ENABLED = 'YES', TIMED = ' YES
VWHERE NAME LI KE ' %t at enent/ % ;

nmysql > UPDATE perf or mance_schena. set up_i nstrunent s
SET ENABLED = 'YES', TIMED = ' YES
WHERE NAME LI KE ' %t age/ % ;

Ensure that event s_st at enent s_* and event s_st ages_* consumers are enabled. Some
consumers may already be enabled by default.

nmysql > UPDATE per f or mance_schena. set up_consuner s
SET ENABLED = ' YES
WHERE NAME LI KE ' %events_statenments_% ;
nmysql > UPDATE per f or mance_schena. set up_consuner s
SET ENABLED = ' YES
WHERE NAME LI KE ' %events_stages_%;

Under the user account you are monitoring, run the statement that you want to profile. For example:

nysql > SELECT * FROM enpl oyees. enpl oyees WHERE enp_no = 10001

doocooocoo doocococoocoo doocococoocoo doocoococoooo doocooocoo doocococoocoo +
| enmp_no | birth_date | first_name | last_nane | gender | hire_date
doocooocoo doocococoocoo doocococoocoo doocoococoooo doocooocoo doocococoocoo +
| 10001 | 1953-09-02 | Georgi | Facello | M | 1986-06- 26
doocooocoo doocococoocoo doocococoocoo doocoococoooo doocooocoo doocococoocoo +

Identify the EVENT _| D of the statement by querying the event s_st at enent s_hi story_I| ong
table. This step is similar to running SHOW PROFI LES to identify the Quer y_| D. The following
query produces output similar to SHOW PROFI LES:

nmysql > SELECT EVENT_| D, TRUNCATE(TI MER_WAI T/ 1000000000000, 6) as Duration, SQL_TEXT
FROM per f or mance_schema. event s_st at enent s_hi story_| ong WHERE SQL_TEXT i ke ' %40001%

dimccccccoos dimccccccooo dimccccoccocccoocCcoSScccoocCcoSScccoScCcocSccooccCoocoDcoooo +
| event_id | duration | sql_text

dimccccccoos dimccccccooo dimccccoccocccoocCcoSScccoocCcoSScccoScCcocSccooccCoocoDcoooo +
| 31 | 0.028310 | SELECT * FROM enpl oyees. enpl oyees WHERE enp_no = 10001
dimccccccoos dimccccccooo dimccccoccocccoocCcoSScccoocCcoSScccoScCcocSccooccCoocoDcoooo +

Query the event s_st ages_hi st ory_| ong table to retrieve the statement's stage events. Stages
are linked to statements using event nesting. Each stage event record has a NESTI NG_EVENT | D
column that contains the EVENT _| D of the parent statement.

nmysql > SELECT event_nanme AS Stage, TRUNCATE(TI MER_WAI T/ 1000000000000, 6) AS Durati on
FROM per f or mance_schema. event s_st ages_hi story_| ong WHERE NESTI NG_EVENT_| D=31

. 000080
. 000005
. 027759
. 000052
. 000009

| stagel/sql/starting | O

| stagel/sql/checking perm ssions | 0 |

| stagel/sql/Opening tables | O

| stage/sql/init | O

| stage/sql/System | ock | O

| stage/sql/optimzing | 0.000006

| stagel/sql/statistics | 0.000082

| stagel/sql/preparing | 0.000008

| stagel/sql/executing | 0.000000

| stagel/sql/Sending data | 0.000017

| stage/sql/end | 0.000001

| stagel/sql/query end | 0.000004

| stagel/sql/closing tables | 0.000006

| stage/sql/freeing itemnms | 0.000272

| stage/sql/cleaning up | 0.000001
+

233

https://dev.mysql.com/doc/refman/8.0/en/show-profiles.html
https://dev.mysql.com/doc/refman/8.0/en/show-profiles.html

Obtaining Parent Event Information

14.2 Obtaining Parent Event Information

The dat a_| ocks table shows data locks held and requested. Rows of this table have a THREAD | D
column indicating the thread ID of the session that owns the lock, and an EVENT _| D column indicating
the Performance Schema event that caused the lock. Tuples of (THREAD | D, EVENT I D) values
implicitly identify a parent event in other Performance Schema tables:

» The parent wait event in the event s_wai t s_xxx tables

e The parent stage event in the event s_st ages_xxx tables

» The parent statement event in the event s_st at enent s_xxx tables

» The parent transaction event in the event s_t ransacti ons_current table

To obtain details about the parent event, join the THREAD | D and EVENT _| D columns with the
columns of like name in the appropriate parent event table. The relation is based on a nested set data
model, so the join has several clauses. Given parent and child tables represented by par ent and

chi | d, respectively, the join looks like this:

VWHERE
parent. THREAD | D = chi |l d. THREAD_I| D [* 1 %/
AND parent. EVENT_I D < child. EVENT_I D [* 2 %/
AND (
child. EVENT_ID <= parent. END EVENT_ID /* 3a */
OR parent.END EVENT_ID IS NULL /* 3b */

)
The conditions for the join are:
1. The parent and child events are in the same thread.

2. The child event begins after the parent event, so its EVENT | D value is greater than that of the
parent.

3. The parent event has either completed or is still running.
To find lock information, dat a_| ocks is the table containing child events.

The dat a_| ocks table shows only existing locks, so these considerations apply regarding which table
contains the parent event:

» For transactions, the only choice is event s_t ransacti ons_cur r ent . If a transaction is
completed, it may be in the transaction history tables, but the locks are gone already.

» For statements, it all depends on whether the statement that took a lock is a statement in a
transaction that has already completed (use event s_st at enment s_hi st or y) or the statement is
still running (use event s_st at ement s_current).

» For stages, the logic is similar to that for statements; use event s _st ages_hi story or
events_stages_current.

» For waits, the logic is similar to that for statements; use events_wai ts_hi st ory or
events_waits_current.However, so many waits are recorded that the wait that caused a lock is
most likely gone from the history tables already.

Wait, stage, and statement events disappear quickly from the history. If a statement that executed a
long time ago took a lock but is in a still-open transaction, it might not be possible to find the statement,
but it is possible to find the transaction.

This is why the nested set data model works better for locating parent events. Following links in a
parent/child relationship (data lock -> parent wait -> parent stage -> parent transaction) does not work
well when intermediate nodes are already gone from the history tables.

234

Obtaining Parent Event Information

The following scenario illustrates how to find the parent transaction of a statement in which a lock was
taken:

Session A:

[1] START TRANSACTI ON;
[2] SELECT * FROM t1 WHERE pk = 1;
[3] SELECT ' Hello, world';

Session B:

SELECT ...
FROM per f or mance_schema. event s_transacti ons_current AS parent
I NNER JO N performance_schema. data_| ocks AS child
VWHERE
parent. THREAD | D = chil d. THREAD | D
AND parent. EVENT | D < child. EVENT_I D
AND (
child. EVENT_| D <= parent. END EVENT_|I D
OR parent. END EVENT_ID IS NULL
)

The query for session B should show statement [2] as owning a data lock on the record with pk=1.
If session A executes more statements, [2] fades out of the history table.

The query should show the transaction that started in [1], regardless of how many statements, stages,
or waits were executed.

To see more data, you can also use the event s_xxx_hi st ory_| ong tables, except for transactions,
assuming no other query runs in the server (so that history is preserved).

235

236

	MySQL Performance Schema
	Table of Contents
	Preface and Legal Notices
	Chapter 1 MySQL Performance Schema
	Chapter 2 Performance Schema Quick Start
	Chapter 3 Performance Schema Build Configuration
	Chapter 4 Performance Schema Startup Configuration
	Chapter 5 Performance Schema Runtime Configuration
	5.1 Performance Schema Event Timing
	5.2 Performance Schema Event Filtering
	5.3 Event Pre-Filtering
	5.4 Pre-Filtering by Instrument
	5.5 Pre-Filtering by Object
	5.6 Pre-Filtering by Thread
	5.7 Pre-Filtering by Consumer
	5.8 Example Consumer Configurations
	5.9 Naming Instruments or Consumers for Filtering Operations
	5.10 Determining What Is Instrumented

	Chapter 6 Performance Schema Queries
	Chapter 7 Performance Schema Instrument Naming Conventions
	Chapter 8 Performance Schema Status Monitoring
	Chapter 9 Performance Schema General Table Characteristics
	Chapter 10 Performance Schema Table Descriptions
	10.1 Performance Schema Table Reference
	10.2 Performance Schema Setup Tables
	10.2.1 The setup_actors Table
	10.2.2 The setup_consumers Table
	10.2.3 The setup_instruments Table
	10.2.4 The setup_objects Table
	10.2.5 The setup_threads Table

	10.3 Performance Schema Instance Tables
	10.3.1 The cond_instances Table
	10.3.2 The file_instances Table
	10.3.3 The mutex_instances Table
	10.3.4 The rwlock_instances Table
	10.3.5 The socket_instances Table

	10.4 Performance Schema Wait Event Tables
	10.4.1 The events_waits_current Table
	10.4.2 The events_waits_history Table
	10.4.3 The events_waits_history_long Table

	10.5 Performance Schema Stage Event Tables
	10.5.1 The events_stages_current Table
	10.5.2 The events_stages_history Table
	10.5.3 The events_stages_history_long Table

	10.6 Performance Schema Statement Event Tables
	10.6.1 The events_statements_current Table
	10.6.2 The events_statements_history Table
	10.6.3 The events_statements_history_long Table
	10.6.4 The prepared_statements_instances Table

	10.7 Performance Schema Transaction Tables
	10.7.1 The events_transactions_current Table
	10.7.2 The events_transactions_history Table
	10.7.3 The events_transactions_history_long Table

	10.8 Performance Schema Connection Tables
	10.8.1 The accounts Table
	10.8.2 The hosts Table
	10.8.3 The users Table

	10.9 Performance Schema Connection Attribute Tables
	10.9.1 The session_account_connect_attrs Table
	10.9.2 The session_connect_attrs Table

	10.10 Performance Schema User-Defined Variable Tables
	10.11 Performance Schema Replication Tables
	10.11.1 The replication_connection_configuration Table
	10.11.2 The replication_connection_status Table
	10.11.3 The replication_asynchronous_connection_failover Table
	10.11.4 The replication_asynchronous_connection_failover_managed Table
	10.11.5 The replication_applier_configuration Table
	10.11.6 The replication_applier_status Table
	10.11.7 The replication_applier_status_by_coordinator Table
	10.11.8 The replication_applier_status_by_worker Table
	10.11.9 The replication_applier_global_filters Table
	10.11.10 The replication_applier_filters Table
	10.11.11 The replication_group_members Table
	10.11.12 The replication_group_member_stats Table
	10.11.13 The replication_group_member_actions Table
	10.11.14 The replication_group_configuration_version Table
	10.11.15 The replication_group_communication_information Table
	10.11.16 The binary_log_transaction_compression_stats Table

	10.12 Performance Schema NDB Cluster Tables
	10.12.1 The ndb_sync_pending_objects Table
	10.12.2 The ndb_sync_excluded_objects Table

	10.13 Performance Schema Lock Tables
	10.13.1 The data_locks Table
	10.13.2 The data_lock_waits Table
	10.13.3 The metadata_locks Table
	10.13.4 The table_handles Table

	10.14 Performance Schema System Variable Tables
	10.14.1 Performance Schema persisted_variables Table
	10.14.2 Performance Schema variables_info Table

	10.15 Performance Schema Status Variable Tables
	10.16 Performance Schema Thread Pool Tables
	10.16.1 The tp_thread_group_state Table
	10.16.2 The tp_thread_group_stats Table
	10.16.3 The tp_thread_state Table

	10.17 Performance Schema Firewall Tables
	10.17.1 The firewall_groups Table
	10.17.2 The firewall_group_allowlist Table
	10.17.3 The firewall_membership Table

	10.18 Performance Schema Keyring Tables
	10.18.1 The keyring_component_status Table
	10.18.2 The keyring_keys table

	10.19 Performance Schema Clone Tables
	10.19.1 The clone_status Table
	10.19.2 The clone_progress Table

	10.20 Performance Schema Summary Tables
	10.20.1 Wait Event Summary Tables
	10.20.2 Stage Summary Tables
	10.20.3 Statement Summary Tables
	10.20.4 Statement Histogram Summary Tables
	10.20.5 Transaction Summary Tables
	10.20.6 Object Wait Summary Table
	10.20.7 File I/O Summary Tables
	10.20.8 Table I/O and Lock Wait Summary Tables
	10.20.8.1 The table_io_waits_summary_by_table Table
	10.20.8.2 The table_io_waits_summary_by_index_usage Table
	10.20.8.3 The table_lock_waits_summary_by_table Table

	10.20.9 Socket Summary Tables
	10.20.10 Memory Summary Tables
	10.20.11 Error Summary Tables
	10.20.12 Status Variable Summary Tables

	10.21 Performance Schema Miscellaneous Tables
	10.21.1 The component_scheduler_tasks Table
	10.21.2 The error_log Table
	10.21.3 The host_cache Table
	10.21.4 The innodb_redo_log_files Table
	10.21.5 The log_status Table
	10.21.6 The performance_timers Table
	10.21.7 The processlist Table
	10.21.8 The threads Table
	10.21.9 The tls_channel_status Table
	10.21.10 The user_defined_functions Table

	Chapter 11 Performance Schema and Plugins
	Chapter 12 Performance Schema System Variables
	Chapter 13 Performance Schema Status Variables
	Chapter 14 Using the Performance Schema to Diagnose Problems
	14.1 Query Profiling Using Performance Schema
	14.2 Obtaining Parent Event Information

