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Objective. To evaluate diabetic retinopathy (DR) screening via deep learning (DL) and trained human graders (HG) in a
longitudinal cohort, as case spectrum shifts based on treatment referral and new-onset DR. Methods. We randomly selected
patients with diabetes screened twice, two years apart within a nationwide screening program. The reference standard was
established via adjudication by retina specialists. Each patient’s color fundus photographs were graded, and a patient was
considered as having sight-threatening DR (STDR) if the worse eye had severe nonproliferative DR, proliferative DR, or diabetic
macular edema. We compared DR screening via two modalities: DL and HG. For each modality, we simulated treatment
referral by excluding patients with detected STDR from the second screening using that modality. Results. There were 5,738
patients (12.3% STDR) in the first screening. DL and HG captured different numbers of STDR cases, and after simulated
referral and excluding ungradable cases, 4,148 and 4,263 patients remained in the second screening, respectively. The STDR
prevalence at the second screening was 5.1% and 6.8% for DL- and HG-based screening, respectively. Along with the prevalence
decrease, the sensitivity for both modalities decreased from the first to the second screening (DL: from 95% to 90%, p = 0:008;
HG: from 74% to 57%, p < 0:001). At both the first and second screenings, the rate of false negatives for the DL was a fifth that
of HG (0.5-0.6% vs. 2.9-3.2%). Conclusion. On 2-year longitudinal follow-up of a DR screening cohort, STDR prevalence
decreased for both DL- and HG-based screening. Follow-up screenings in longitudinal DR screening can be more difficult and
induce lower sensitivity for both DL and HG, though the false negative rate was substantially lower for DL. Our data may be
useful for health-economics analyses of longitudinal screening settings.
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1. Introduction

Blindness from diabetes is expected to rise dramatically in
this new decade [1]. To reduce diabetes-associated blindness,
nationwide systematic screening for diabetic retinopathy
(DR) has been implemented [2]. Many countries have stud-
ied the development of systematic screening programs [3–
6], resulting in several lessons learnt. First, though a large
proportion of patients with well-controlled diabetes showed
no retinopathy with low risk of visual loss over the years
[7], nonattendance in screening programs increased risk of
visual loss from sight-threatening DR (STDR) [8]. While
annual DR screening is generally recommended [9, 10], stud-
ies in some resource-rich countries have found a ceiling
uptake of patients [11] which was compromised by an abun-
dance of resource investment [12]. Extending the screening
interval from annual to once every 2-3 years was found to
be cost-effective in several studies in Europe [13, 14].

Automated retinal disease assessment tools have been
studied for DR screening since before the commercial avail-
ability of digital retinal photography [15]. Using conven-
tional methods of machine learning, this tool reached a
plateau for detecting referable DR with high sensitivity
(90%) but less-stellar specificity (45%) [16] in the early
2010s. Deep learning (DL), a subfield of machine learning,
has recently demonstrated robust performance with very
high sensitivity (95%) and specificity (95%) [17]. Most
cross-sectional studies on DL for DR screening have demon-
strated this level of performance [17–21]. As a result, DR
screening trends have shifted towards the use of DL in assist-
ing or replacing trained human graders (HG) for detecting
referrals in DR screening programs [18].

To assess the roles of DL in longitudinal screening for
DR, a study on longitudinal performance of DL is impor-
tant, particularly if the screening was to be repeated in sub-
sequent visits. The continual screening for DR in subsequent
years would encounter a shift in the case spectrum since
patients correctly detected to have referable DR or STDR
would be referred for treatment and exit the screening pro-
gram. The cohort of patients rescreened in the following
years should contain mainly cases that did not display find-
ings of STDR in the previous screenings but might have
developed new subtle changes of early STDR in the follow-
ing screenings. These subtle changes may be more difficult
to detect than the more obvious findings associated with
well-established STDR.

In this study, we used a real-world, nationwide, longitu-
dinal screening program for DR as a model to assess biennial
screening for DR using DL and HG to grade color retinal
photographs. The objective was to analyze possible changes
in various screening outcomes for detecting STDR deter-
mined by DL over two years and compare them with those
determined by HG.

2. Methods

This study utilized demographic information, laboratory
data, and retinal fundus photographs from patients with
diabetes in 13 health regions in the Thai national DR screen-

ing program. All data were deidentified. This study was
conducted according to the Declaration of Helsinki with
approvals from the Institutional Review Board of hospitals
where the patients were recruited.

Instituted in 2013 by the Ministry of Public Health, the
Thai DR screening program has been implemented in every
province and conducted by the Noncommunicable Disease
Unit in each Provincial Health Office. All patients with
diabetes can access this program without cost thanks to the
Universal Coverage insurance scheme provided by the
National Health Security Office. Consistent with level 1 evi-
dence suggesting its adequacy, this program employs non-
mydriatic, single-field (45-degree, macular-centered) color
fundus photography [22] as a screening tool with gradings
by trained HG in each region to determine referral to
ophthalmologists.

Our study included randomly selected patients in the DR
screening program who underwent DR screening twice, two
years apart (years 2014 and 2016 or 2015 and 2017). All
patients had color retinal photographs of the both eyes taken
at each screening. The color retinal photographs were cap-
tured by various fundus cameras: Topcon TRC-NW8, Nidek
(AFC-210 and AFC-230), and KOWA (Nonmyd α-DIII
8300, Nonmyd 7, VX-10α, Nonmyd α-DIII, Nonmyd WX,
VX-20). The diagnosis of DR was based on grading of the ret-
inal photographs. Each photograph was graded for its DR
severity level and the presence or absence of diabetic macular
edema (DME) according to the International Clinical Classi-
fication of DR. The reference standard grades were provided
via adjudication by three international retina specialists
(from USA, India, and Thailand). As part of the study, we
compared gradings from a DL system and HG to this refer-
ence standard. The HG were selected from regional DR
graders within the national DR screening program. Details
of gradings by the retinal specialists, DL, and HG were
described previously [19].

Patients were excluded from this study if they had retinal
diseases other than DR which precluded diagnosis of DR in
either eye, did not have gradings from all three modalities,
or if the reference standard, DL, or HG found the images
ungradable. Patients were labelled as ungradable if the both
eyes were ungradable, or if either eye was ungradable or the
fellow eye did not have severe non-proliferative DR (NPDR),
proliferative DR (PDR), or DME.

In this study, we studied a simulated setting where each
patient was assigned a DR severity level based on the severity
of the worse eye. Patients were labelled as STDR if either eye
had either DME, severe NPDR or PDR. Those with STDR in
the first screening were “referred out” for treatment and
excluded from the second screening.

2.1. Statistical Analysis.We estimated the sample size for the
first screening of no less than 5,530 patients, considering a
margin of error of 10%, type 1 error at 0.05 and type 2 error
at 0.2, and an STDR prevalence in Thailand of approximately
6.5% of all patients with diabetes screened for DR [23]. The
number of patients included from each of the 13 health
regions in the sample was proportional to the number of
patients with diabetes in each region [19].
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We then computed the prevalence, incidence rate, sen-
sitivity, specificity, positive predictive value, negative pre-
dictive value, and accuracy, as well as the number and
proportion of true positives, false positives, true negatives,
and false negatives. The chi-squared test was used to evalu-
ate statistical significance, with α = 0:05.

3. Results

In this retrospective study, we examined 5,738 patients who
were screened for DR on two separate occasions, approxi-
mately two years apart and simulated scenarios where either
the DL or HG screened for STDR. To mimic a realistic sce-
nario, all cases who were indicated for referral by either DL
or HG were verified by retina specialists (our reference stan-
dard), and only patients with verified STDR were “referred”
out of the screening program (Figure 1, additional details
below). Patient demographics, including prevalence of DR
of different severities and DME at each screening, are shown
in Table 1.

3.1. Comparison between DL and HG at the First Screening.
At the first screening, prevalence of STDR in both the DL
and HG cohorts was 12.3% (704 out of 5,738; the cohorts
have yet to diverge based on the screening outcome). The
DL arm indicated a greater number of cases than HG as pos-
itive for STDR (771 vs. 590, corresponding to 13% and 10%
of the cohort), resulting in a substantially higher sensitivity
(95% vs. 74%). Specificities of both arms was high at 98-
99%. Detailed results for positive predictive value, negative
predictive value, and accuracy are presented in Table 2, and
the full 2 × 2 contingency table (also termed “confusion
matrix”) is presented in Table 3.

3.2. Cohort Changes at the Second Screening. After the first
screening, cases indicated as positive by the DL or HG were
reviewed by retina specialists, and cases confirmed to have
STDR were “referred out.” This resulted in different numbers
of patients and a different case spectrum presenting for the
second screening in the DL and HG arms of the study:
4,148 and 4,263 (72% and 74% of the original 5,738 patients),
respectively.

During the intervening period between screenings, 195
patients developed new STDR according to the reference
standard, with the majority of these cases arising from
patients with moderate NPDR during the first screening
(Table 4). Looking across the whole cohort, the rates of STDR
were substantially higher with increasing severity of DR at
the first screening: 2% for no DR, 9% for mild NPDR, and
25% for moderate NPDR. This trend of increasing 2-year
STDR incidence with DR severity was also preserved when
stratifying patients based on the DL and HG grades at the
first screening.

Despite the approximately 200 new STDR cases, because
many true positive STDR cases were referred out (669 for
DL and 519 for HG), the prevalence of STDR was substan-
tially lower in the second screening than the first screening
(DL arm: 5.1% vs. 12%, p < 0:001; HG arm: 6.8% vs.
12.3%, p < 0:001).

3.3. Comparison between First and Second Screening for DL
and HG. Consistent with the prevalence changes, the rates
of positive screens by the DL and HG were both significantly
lower in the second screen than in the first (DL: 6.6% vs. 13%,
p < 0:001; HG: 5.3% vs. 10%, p < 0:001). The sensitivity of the
DL and HG was also both lower than at their first screening,
at 90% (vs. 95%, p = 0:008) and 57% (vs. 74%, p < 0:001),
respectively. For both DL and HG, the specificity remained
high at 98-99% without significant changes (p = 0:742). The
positive predictive value decreased in both arms (DL: from
87% to 69%, p < 0:001; HG: from 88 to 74%, p < 0:001). Neg-
ative predictive value remained at 99% for DL and 96-97%
for HG, and accuracy remained at 97-98% for DL and 96%
for HG; neither of these trends were statistically significant
at the ɑ = 0:05 level. Confidence intervals are presented in
Table 2.

When examining the full contingency table (Table 3), the
fraction of true positives and true negatives differed signifi-
cantly between the first and second screenings; the fraction
of false positives and false negatives was not statistically sig-
nificantly different. This trend was consistent in both the
DL and HG arms.

3.4. Breakdown of STDR into DR and DME. Next, we exam-
ined the prevalence of severe NPDR and PDR vs. DME
among the STDR cases and among the false negatives (Sup-
plementary Table 1). Of all STDR cases, over 91% were due
to DME in the first screening as well as in both arms of the
second screening. When examining the false negatives
specifically, rates of DME were around 90% for HG. For
DL, there were only 35 and 11 false negatives in the first
and second screening, respectively; the rates of DME in the
two screenings were 94% and 64%, respectively.

A similar breakdown for the non-STDR cases is pre-
sented in Supplementary Table 2, showing that among all
non-STDR cases, fewer than 7% were moderate NPDR
without DME. For the false positive cases specifically, a
much greater proportion were moderate NPDR without
DME: 65% and 54% for DL and 18% and 20% for HG.

3.5. Performances of DL and HG at the Eye Level. Finally, we
explored the STDR detection performance of DL and HG at
the eye level (Supplementary Table 3). Similar trends were
observed for both DL and HG: sensitivity and positive
predictive value for STDR decreased on the second
screening compared to the first screening, while specificity,
negative predictive value, and accuracy remained similar.
The trends for considering DME and severe NPDR/PDR
separately were similar.

4. Discussion

Globally, it is estimated that Asia-Pacific accounts for the
majority of patients with poor DR-induced visual outcomes,
including both blindness (51%, n = 424,400) and visual
impairment (56%, n = 2:1million) [24]. To improve DR-
related visual outcomes, several countries have established
DR screening programs. In our study, we conducted a
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longitudinal analysis of data from the Thai national DR
screening program.

Our DR screening program’s endpoint of interest is
“STDR” (severe NPDR, PDR or DME [25]). However, we
note that other definitions exist (e.g., moderate NPDR or
worse [7]), which can hinder comparisons across studies. In
our study, the prevalence of STDR during the first screening
was 12.3%, which is comparable to the prevalence of STDR
estimated from a meta-analysis of 35 studies (10.2%) [26].
As part of a longitudinal analysis, we observed 2-year inci-
dent STDR rates of 1.7% and 8.6% among patients without
DR and mild DR, respectively, and 3.9% across all non-
STDR patients. For comparison, a meta-analysis of 17 studies
found that patients without DR and mild DR at baseline had
average STDR incidence rates of approximately 1% and 8%
per year, respectively [27]. Trends were similar in another
study in Asia, where the incidence rate was 1.5% per year in

patients without retinopathy at baseline and 13.6% at 4 years
[28]. Others have reported a 4-year incidence of 1.45% from
no DR at baseline and a rate of 5.02% from all cases (with or
without DR) [29].

Given prior work showing that DL can be used to help
detect STDR, our study focused on better understanding
the longitudinal implications of using DL, as compared to
HG. To do so, we followed a single nationwide cohort of
more than 5,000 patients across 13 regions. Our data showed
that consistent with intuition, referring true positives out of
the system decreases the prevalence of STDR in the cohort
over time. This decrease happens because the number of
true positives was detected with high sensitivity, and their
removal presumably leaves behind more difficult examples
(false negatives). As the cohort continued to develop STDR,
new-onset STDR (i.e., more subtle cases) developed, further
enriching the cohort with diagnostically challenging STDR
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Figure 1: Flow of patients from the first to the second screening. The number of patients in the cohorts of deep learning (DL) and trained
human graders (HG) is compared at each point of the screening. The reference standard for these cases was based on an overread by
retina specialists (Methods). Screen positive/negative indicates patients whom the DL or HG indicated as positive/negative. In this
simulated setting, only patients who were confirmed by retina specialists to have STDR (i.e., true positives) were referred for treatment.
The remaining patients were entered into the second screening. Dropout before the second screening included patients with missing data
in either DL or HG or determined as ungradable by the reference standard during the second screening.

Table 1: Demographic characteristics of patients with diabetes in the first and second screening, including the prevalence of each diabetic
retinopathy severity level and diabetic macular edema.

Characteristics
First screening, DL and HG

(n = 5,738)
Second screening, DL

(n = 4,148)
Second screening, HG

(n = 4,263)
Age, years, mean ± SD 57:27 ± 10:44 56:51 ± 10:52 56:53 ± 10:51
Female, n (%) 3,945 (68.8%) 2,874 (69.3%) 2,951 (69.2%)

Hypertension, n (%) 3,895 (67.9%) 2,855 (68.8%) 2,921 (68.5%)

FBS, mg/dL in mean ± SD 151:26 ± 52:83 150:48 ± 50:97 150:65 ± 51:23
No NPDR, n (%) 4,152 (72.36%) 3,239 (78.09%) 3,256 (76.38%)

Mild NPDR no DME, n (%) 589 (10.26%) 448 (10.80%) 449 (10.53%)

Moderate NPDR no DME, n (%) 293 (5.11%) 250 (6.03%) 269 (6.31%)

Severe NPDR no DME, n (%) 6 (0.10%) 7 (0.17%) 6 (0.14%)

PDR no DME, n (%) 47 (0.82%) 11 (0.27%) 17 (0.40%)

DME, n (%) 651 (11.35%) 193 (4.65%) 266 (6.24%)

DL: deep learning; HG: trained human graders; FBS: fasting blood sugar; NPDR: nonproliferative diabetic retinopathy; PDR: proliferative diabetic retinopathy;
DME: diabetic macular edema. The prevalence of each DR severity level and DME in each cohort was determined by the reference standard.
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cases. This enrichment for difficult cases may help explain
the decreased sensitivity and positive predictive value of
both DL and HG in the second screening.

The degree to which this enrichment happens is depen-
dent on the sensitivity of the screening modality. For exam-
ple, HG had a lower sensitivity in the first screening, which
led to a larger number of false negative cases (185 vs. 35) that
entered the second screening, and correspondingly a relative
33% higher STDR prevalence at the second screening (HG:
6.8% vs. DL: 5.1%). Thus, we expect that more accurate DL
methods or experienced HG will lead to fewer false negatives
but a more rapid increase in case difficulty at follow-up visits.

False negative cases are also concerning because they rep-
resent cases missed for treatment referral and are thus at risk
of vision loss. While such misses are inevitable, this propor-
tion was relatively small when expressed as a fraction of the
entire screening population: 0.5-0.6% for DL and about 3%
for HG. In addition, most false negative cases were DME,
with generally less than 10% being severe NPDR or PDR in
both DL and HG cohorts. The increase in proportion of
severe NPDR or PDR in false negatives in the second screen-
ing might reflect the limitation of both modalities in being
able to detect subtle changes of new severe NPDR or PDR
compared to DME. Because “screen-negative” cases (i.e., true

Table 2: The number of patients with sight-threatening diabetic retinopathy including the screening outcomes in the first and second
screening determined by each modality.

Modality Metric First screening Second screening Difference (%) p value

DL

No. of patients 5,738 4,148 n/a

No. STDR (%) 704 (12.27%) 211 (5.09%) -7.18 <0.001∗

No. graded as STDR (%) 771 (13.44%) 274 (6.61%) -6.83 <0.001∗

Sensitivity (95% CI) 95.03 (93.42-96.63) 90.05 (86.01-94.09) -4.98 0.008∗

Specificity (95% CI) 97.97 (97.58-98.36) 97.87 (97.42-98.32) -0.10 0.742

PPV (95% CI) 86.77 (84.38-89.16) 69.34 (63.88-74.8) -17.43 <0.001∗

NPV (95% CI) 99.3 (99.06-99.53) 99.46 (99.23-99.69) +0.16 0.318

Accuracy (95% CI) 97.61 (97.22-98.01) 97.47 (96.99-97.95) -0.14 0.657

HG

No. of patients 5,738 4,263 n/a

No. STDR (%) 704 (12.27%) 289 (6.78%) -5.49 <0.001∗

No. graded as STDR (%) 590 (10.28%) 224 (5.25%) -5.03 <0.001∗

Sensitivity (95% CI) 73.72 (70.47-76.97) 57.09 (51.39-62.8) -16.63 <0.001∗

Specificity (95% CI) 98.59 (98.26-98.92) 98.52 (98.14-98.89) -0.07 0.753

PPV (95% CI) 87.97 (85.34-90.59) 73.66 (67.89-79.43) -14.31 <0.001∗

NPV (95% CI) 96.41 (95.9-96.91) 96.93 (96.4-97.46) +0.52 0.169

Accuracy (95% CI) 95.54 (95-96.07) 95.71 (95.1-96.32) +0.17 0.681

STDR: sight-threatening diabetic retinopathy; PPV: positive predictive value; NPV: negative predictive value; DL: deep learning; HG: trained human graders;
CI: confidence interval. p value was calculated from chi-squared test for the difference between the first and second screening. ∗p value < 0.05.

Table 3: The number of patients in the first and second screening in each cell of the contingency table (true positive, false positive, true
negative, and false negative) for detecting sight threatening diabetic retinopathy by each modality.

Modality Metric First screening Second screening Difference (%) p value

DL

No. of patients 5,738 4,148 n/a

True positives 669 (11.66%) 190 (4.58%) -7.08% <0.001∗

False positives 102 (1.78%) 84 (2.03%) +0.25% 0.3671

True negatives 4,932 (85.95%) 3,853 (92.89%) +6.94% 0.001∗

False negatives 35 (0.61%) 21 (0.51%) -0.1% 0.5139

HG

No. of patients 5,738 4,263 n/a

True positives 519 (9.04%) 165 (3.87%) -5.17% 0.001∗

False positives 71 (1.24%) 59 (1.38%) +0.14% 0.5410

True negatives 4,963 (86.49%) 3,915 (91.84%) +5.35% <0.001∗

False negatives 185 (3.22%) 124 (2.91%) -0.31% 0.3755

STDR: sight-threatening diabetic retinopathy; DL: deep learning; HG: human graders; p value was calculated from chi-squared test for the difference between
the first and second screening. ∗p value < 0.05.
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negatives and false negatives) comprise more than 85% of the
cohort, having retina specialists overread all such cases is
likely impractical. To help improve the ability to detect more
difficult or subtle STDR cases, better DL algorithms or con-
tinuing education, monitoring, and audits of HGmay be use-
ful. Nonetheless, the particularly low incidence of false
negatives by DL (and even then with DME representing the
majority) suggests DL-based biennial DR screening can be
clinically acceptable.

In contrast to false negatives, decreasing the rate of false
positives might improve costs. In our setup, overreads were
performed for every “screen-positive” (i.e., true positives and
false positives). Reducing the rate of this “over-triggering”
can reduce the need for such overreads and help scale DR
screening. We anticipate that our detailed data can aid
future cost-effectiveness or cost-utility analyses into evaluat-
ing DL for DR screening and cost-benefit analysis of over-
reads vs. unnecessary referrals.

Our study contains some limitations. First, as a retrospec-
tive study, our inclusion criteria and desire to study longitu-
dinal outcomes required patients to have retinal photographs
in two screenings. Such a cohort may not fully reflect real-
world screening settings. Similarly, cohorts do not remain
static, but instead, newly diagnosed patients with diabetes
enter the screening program on an on-going basis. Though
we have not accounted for this, the proportion of new
patients with diabetes is expected to be small (estimated at
5% by the National Health Security Office in Thailand). Sec-
ond, though we expect the trends observed in increasing
diagnostic-difficulty and decreasing sensitivity to hold over
subsequent screenings (beyond the second), we have not con-
ducted that analysis in this study. Third, the performance of
HGmay be underestimated because they did not have images
from previous screenings available, whereas access to previ-
ous images is common practice in real-world settings.
Finally, patients with moderate NPDR without DME were
included in our biennial screening cohort. Although this
group accounted for only 5% of the patients in the first
screening, 25% of them progressed to STDR in the second
screening. It may be advisable to stratify DR screening
patients by their expected risk of developing STDR [27, 30,
31] and initiating biennial screening only for patients in the
low-risk group.

The DL used in our study was developed to categorize DR
severity and detect DME, and hence, the evaluation of the

algorithm’s capability to detect other retinal diseases was
not possible. The development of DL models that are capable
of detecting multiple retinal conditions is an important area
of active research. Similarly, the ungradable images in our
simulated cohort were “referred” based on our program’s
standard protocol, with the reason being that many contain
cataracts. In this regard, future development of an AI that
can more accurately detect DR in the eyes with cataracts
may be valuable to reduce the overall referral burden.

5. Conclusion

In a longitudinal follow-up of a biennial DR screening
cohort, DL performed well, with higher sensitivities and pos-
itive predictive values than HG in both the first and second
screening. This was despite a case spectrum shift as STDR
cases were referred for treatment, and the remaining false
negative cases were joined by new STDR cases, both of which
were presumably more subtle and difficult to detect. To
reduce unnecessary referrals, further studies on health eco-
nomics could provide guidance on whether expert overread-
ing is required for all “screen-positive” cases.

Data Availability

The deidentified data underlying this study may be avail-
able from DR screening programs of Rajavithi Hospital,
Lamphun Hospital, Somdejphrajaotaksin Maharaj Hospi-
tal, Sawanpracharak Hospital, Nakhon Nayok Hospital,
Photharam Hospital, Prapokklao Hospital, Mahasarakham
Hospital, Nongbualamphu Hospital, Pakchong-nana Hos-
pital, Mukdahan Hospital, Suratthani Hospital, Sungaikolok
Hospital, and Bangkok Metropolitan Administration Public
Health Center 7, but restrictions apply. Researchers inter-
ested in collaborating should contact the corresponding
author.

Additional Points

Code Availability. Machine learning models were developed
in prior work and deployed using standard software libraries
and scripts in TensorFlow. Custom deployment code was
specific to our computing infrastructure and mainly used
for data processing.

Table 4: The 2-year progression of patients from baseline retinopathy severity levels in the first screening into sight-threatening diabetic
retinopathy detected by each modality in the second screening.

Baseline retinopathy levels
at the first screening, n

Number of patients with STDR
in the second screening,

per reference standard (%)

DL, number of patients with STDR
in the second screening,

per reference standard (%)

HG, number of patients with STDR
in the second screening,

per reference standard (%)

No retinopathy, 4,136 71 (1.72%) 128 (3.09%) 73 (1.76%)

Mild NPDR, 584 50 (8.56%) 57 (9.76%) 41 (7.02%)

Moderate NPDR, 293 74 (25.26%) 97 (33.11%) 57 (19.45%)

Total of all non-STDR
severity levels, 5,013

195 (3.89%) 282 (5.63%) 171 (3.41%)

STDR: sight-threatening diabetic retinopathy; NPDR: nonproliferative diabetic retinopathy; DL: deep learning; HG: trained human graders. p < 0:001 for the
proportions of STDR of patients in the different baseline severity levels from the first screening in each modality.
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