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Abstract
We introduce Downfall attacks, new transient execution at-
tacks that undermine the security of computers running every-
where across the internet. We exploit the gather instruction on
high-performance x86 CPUs to leak data across boundaries of
user-kernel, processes, virtual machines, and trusted execution
environments. We also develop practical and end-to-end at-
tacks to steal cryptographic keys, program’s runtime data, and
even data at rest (arbitrary data). Our findings, exploitation
techniques, and demonstrated attacks defeat all previous de-
fenses, calling for critical hardware fixes and security updates
for widely-used client and server computers.

1 Introduction

Over the past few years, computer manufacturers and cloud
providers have deployed several software and microcode
updates to defend against transient execution attacks [9,
19, 23, 45]. Transient execution attacks exploit software-
accessible side channels to reveal vulnerabilities in the hard-
ware that enable attackers to steal data across security bound-
aries [2, 5, 31, 32, 34, 48, 49, 52, 55, 57, 58, 60].

For most critical attacks including Meltdown [34], Fore-
shadow [57, 62], MDS [5, 52, 60], and LVI [58], users
have to upgrade to new hardware that have fixes in the sili-
con. Without hardware fixes, users have to rely on software
workarounds such as KPTI [15, 33], flushing core-private
resources across context switching, disabling performance
features such as simultaneous multithreading [19, 23], and
compiler-based code transformations [25]. Unfortunately,
these workarounds are either tremendously expensive [46, 47]
or ineffective in completely eradicating data leakage [24, 56].

The common belief is that CPU manufacturers have elimi-
nated several classes of attacks and know how to build pro-
cessors resistant to data leaks due to the transient side effect
of invalid memory accesses. For example, Intel, the promi-
nent CPU manufacturer, has developed hardware fixes for
Meltdown and Foreshadow in their 9th-generation CPUs
and MDS and LVI in their 10th-generation Cascade Lake
CPUs. Although it took several iterations to address all vari-
ants [1, 21, 24, 38, 49], new CPUs are secure against all

previously-disclosed transient execution attacks due to in-
valid memory access speculation, e.g., Meltdown, MDS and
LVI. Consequently, computers no longer require expensive
software workarounds or microcode patches on these new
CPUs. We challenge this status quo:

1. Gather Data Sampling (§3) We introduce Gather Data
Sampling (GDS) that exploits the gather instruction to steal
stale data from previously-undisclosed CPU components;
SIMD register buffers. Since various memory operations share
these buffers, GDS enables attackers to steal data from other
security domains (e.g., across user-kernel, process, and VM
boundaries). As a result, the latest Intel Ice Lake and Tiger
Lake CPUs that claim to be resistant to data leaks expose
users’ data. Also, mitigations for earlier CPUs that rely on
flushing microarchitectural buffers are ineffective since they
do not flush the SIMD register buffers.

2. Cross-Process Covert Channel (§4) We develop cross-
process covert-channel attacks and evaluate their performance
across recent CPU generations. We extend previous multi-
byte data sampling techniques to leak up to 22 bytes simul-
taneously per each execution of the attack on the latest Intel
CPUs, enabling a high-speed data bandwidth across processes.
Our results show attackers can construct a cross-process chan-
nel with up to 5.7 kB/s speed.

3. Stealing Cryptographic Keys (§5) We demonstrate end-
to-end cross-VM attacks against widely-used modern cryp-
tographic software that uses SIMD instructions for efficient
and secure (constant-time) execution. We steal AES-128 and
AES-256 keys from the off-the-shelf OpenSSL command line
tool for encrypting data. Unlike previous such attacks, our
attack is simple and reliable; In less than 10 seconds, we steal
AES round keys, 8 bytes at a time, and combine them to break
AES without any cryptanalysis, source code analysis, or any
data analysis tricks required by previous attacks [52, 60].

4. Stealing Arbitrary Data (§6) We discover that GDS
can steal data from no-op operations that do not do anything
architecturally. Masked memory operations, when the masked
bit is unset, and the streaming data copy instructions, when the
data copy size is zero, should not execute architecturally. But,
we found that Intel CPUs transiently prefetch data into the
leaky SIMD register buffers when such no-op operations are



executed. As a result, GDS leaks data that is not accessed by
the program. Based on this discovery, we develop attacks to
steal arbitrary data from the Linux kernel. Since the Meltdown
finding, this is the first hardware attack that enables a user to
steal arbitrary data from the OS Kernel without relying on
software vulnerabilities or Spectre gadgets [31].

5. Gather Value Injection (§7) We introduce the gather
value injection (GVI) attack by combining GDS with the
LVI [58] technique. Like LVI, we can turn the gather data
leaks into microarchitectural data injections. Unlike LVI
based on MDS data leak, GVI based on GDS does not rely on
faults or other architectural behavior to inject stale microar-
chitectural states to the gather instruction. To exploit GVI, an
attacker finds a gather instruction in the victim code followed
by data-dependent operations, similar to a Spectre gadget. We
introduce several GVI gadgets and exploit them to steal data
from a victim process.

6. Breaking Intel SGX (§8) We show that Intel SGX is
additionally vulnerable to GDS (therefore, GVI) attacks. We
leak data from the secure enclave even on earlier CPUs that
implicitly flushes microarchitectural buffers across SGX con-
text switching. Ultimately, we develop an end-to-end attack
to steal the SGX sealing key at its highest security configu-
ration. Exposing the sealing key would allow an attacker to
compromise SGX protections; while microcode mitigation
could potentially address the issue, the mitigation can only be
attested with key revocation and a TCB recovery.

7. Mitigation (§9) We discuss defense and testing techniques
to mitigate Downfall attacks (GDS and GVI). First, we discuss
potential software workarounds and hardware fixes and their
implications. Then, we extend the Transynther tool [40] to
test CPUs against GDS. We hope our results inspire CPU
manufacturers to deploy automated testing approaches, e.g.,
fuzzing, to mitigate future instances of such vulnerabilities.

Experimental setup The experiments in this paper run on
computers with the CPUs listed in table 1 and the Ubuntu
20.04.5 LTS running Linux kernel 5.15.0-48-generic.

CPU Generation Stepping Mirocode

Core i7-1165G7 Tiger Lake 1 0xa4
Xeon Silver 4314 Ice Lake Server 6 0xd000363
Xeon(R) Gold 6230 Cascade Lake 7 0x5002f01
Core i7-8650U CPU Kaby Lake 10 0xf0

Table 1: Tested CPUs.

Threat model We assume two scenarios of attacker and
victim running on the same CPU core: (1) Concurrently run-
ning on sibling threads of the same core (Sections 4 to 7),
(2) Context switching on the same CPU thread (Sections 4
and 8). We demonstrate these two scenarios using CPU core
pinning following previous work [52, 60]. In section 8, the

attacker also controls the OS following the well-understood
OS adversary model that SGX expects [37, 59].
Responsible disclosure We reported our findings to Intel
on August 24, 2022. They acknowledged our findings (CVE-
2022-40982) and confirmed that previous hardware fixes and
software mitigation do not mitigate Downfall attacks. Intel
asked for our findings to be under embargo until August 2023.
In ongoing discussions with Intel, they confirmed that they
will mitigate Downfall with a microcode update, which will
be deployed concurrently with the public release of our results.
This microcode update presumably blocks transient results of
gather instructions to prevent attacker code from observing
speculative results of gather loads. We have not been provided
further technical details about these updates at this time.
Artifact We will publish analysis tools, proof-of-concept
attacks, and data sets and provide further guidelines on the
impact of our findings at downfall.page.

2 Data Exposure in Superscalar Computers

This section covers background information on superscalar
computing and relevant data leak vulnerabilities.

2.1 Superscalar Computing
High-performance CPUs that we use every day, like the Intel
Core and Xeon, have multiple execution cores and high-speed
memory units and support several features to execute parallel
processes while enforcing isolation and security efficiently:
Virtual address space The CPU isolates the memory of
each process using an isolated per-process virtual address
space. The virtual address the software uses to access the
memory will be translated to a page table entry (PTE). The
CPU uses the PTE, which has the physical location of the
data, access control, and status bits, to access the memory
location and enforce access control. Segregated mapping of
virtual-to-physical addresses blocks separate processes from
accessing each other’s memory, and the access control blocks
user processes from accessing the OS kernel memory.
Context switching In preemptive multitasking, the OS in-
structs the CPU to switch to another process (context switch-
ing) after executing the current process for a limited time.
The CPU also switches context when it receives an interrupt
(e.g., local timer interrupt) or when a process collaboratively
switches to another execution domain (e.g., switching to/from
the OS kernel). Upon context switching, the virtual address
space and register context have to be switched, so the new
process will not have access to the memory and registers of
previous processes.
Simultaneous multithreading Simultaneous multithreading
(SMT) allows multiple threads to execute on the same core
simultaneously while sharing the same hardware resources.
The software perceives these CPU threads as separate virtual
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CPU cores; each thread is architecturally isolated from others
and only accesses its allocated virtual address space and reg-
isters. Intel CPUs support two simultaneous threads (virtual
CPU cores) per physical core.
Speculative execution Speculative execution allows the
CPU core to execute instructions from a single execution
thread in parallel. When an instruction depends on prior unre-
solved operations, the CPU speculatively executes it based on
some prediction. When, hopefully rarely, the prediction is in-
correct, the CPU flushes incorrect executions and re-executes
them to get correct results. Speculative execution is architec-
turally invisible to the software, but its side effects can be
observed [31, 34].
Single instruction multiple data (SIMD) SIMD enables
data-level parallelism; a SIMD instruction computes the same
function multiple times with different data. The maximum
number of parallel computations depends on the register size
and data type. AVX2 and AVX-512 (introduced in Cascade
Lake) are the key SIMD extensions for x86, in which AVX-
512 supports 512-bit vector registers and can compute up to
16 × double-word (dword) values or 8 × quad-word (qword)
values.
Cache The CPU has a last-level cache (LLC) shared across
execution cores and an interconnect bus that connects the
LLC, cores, and DRAM. Each core also has core-private
caches; Intel CPUs have an L1 and L2 cache, and each layer
of cache can store several cache lines, 64 bytes each. When
the software accesses a memory location, the CPU uses its
address to find it within the closest cache. If the data is not
present in a cache level (cache miss), the corresponding cache
line is fetched from the next level of cache or the DRAM.
Temporal buffers The CPU core uses various temporal
buffers to optimize micro-operations [3, 29, 49, 60]. For ex-
ample, when the CPU accesses a memory location missing in
the L1 cache, it can use a fill buffer to fetch cache line data bits
and forward them to the dependent operations before bringing
the entire cache line into the L1 [52, 60]. Similarly, the store
buffer holds the data for memory writes before committing
them to the cache [5, 29].
Memory types The CPU supports various memory types,
configurable by the OS, to enforce caching policies: write-
back (WB), write-through (WT), write-protect (WP), write-
combining (WC), and uncacheable (UC). As relevant exam-
ples to our work, both UC and WC are uncacheable.

2.2 Microarchitectural Data Leak
We now discuss previous transient execution and data-leak
vulnerabilities affecting mainstream CPUs:
Spectre Spectre attacks [31] exploit misprediction of instruc-
tions (control-flow [32, 35] or data-flow prediction [8, 16, 61])
inside the victim code. Speculative execution of mispredicted
instructions may result in out-of-bounds data access within the

victim address space, which should be restricted to an attacker.
If the out-of-bound access is followed by encoding the data to
an architecturally-visible state like the cache [63], an attacker
can leak the data by observing the cache. Current CPUs sup-
port the software with knobs, so the software can mitigate
Spectre by selectively disabling speculative execution [9, 20],
or partitioning predictors [18, 45]. But mitigating some at-
tack variants requires extensive software modifications [9].
Developing more efficient hardware-software defense against
Spectre is an open area of research [8, 10, 64].

Meltdown Meltdown [34] bypasses the access control within
the CPU, thus enabling an attacker inside a user process to
leak data from the OS kernel. Unlike Spectre, Meltdown does
not rely on instructions in another address space. In its address
space, an attacker accesses the kernel memory and encodes
the data to the cache. Although the CPU enforces access
control by blocking the attacker from directly reading the
memory, a vulnerable CPU would forward the kernel data to
succeeding instructions, transiently exposing the data to the
attacker. Meltdown-like attacks can also bypass access control
for other execution environments including Intel SGX [57],
VM hypervisors [62], and memory protection keys (MPK) [6].
Intel has deployed hardware fixes for Meltdown in their 9th
generation and later CPUs [17].

Microarchitectural data sampling (MDS) RIDL [60],
ZombieLoad [52], and Fallout [5], broadly called MDS,
demonstrate that transient execution after invalid memory
accesses can unintentionally expose the contents of inter-
nal temporal buffers. They discovered that when the CPU
executes a memory read that faces an exception (e.g., page
fault, invalid permission) or a microcode assist (e.g., TSX
abort [21]), it may forward stale data from temporal CPU
buffers to succeeding instructions. As a result, an attacker
can leak data from another process running on the same CPU
core sharing these buffers (e.g., fill buffer, store buffer). The
OS has to give up on SMT or enforce restrictive scheduling
policies and flush microarchitectural buffers across context
switching using the verw instruction to defend against MDS
on earlier CPUs [23]. Researchers have extensively evaluated
these mitigations discovering new variants [21, 24, 38], but
most recent Intel CPUs (10th generation and later) defend
against all these attacks [17].

Load value injection (LVI) LVI [58] exploits the same root
cause as MDS, but the attacker induces a transient fault into
the victim’s code instead of crafting arbitrary gadgets in the
attacker’s code. Spectre-style exploitation techniques can be
used to transiently hijack control flow and leak data through
code gadgets available in the victim code. Like Meltdown
and MDS, LVI does not need software-based mitigation on
recent Intel CPUs [25].

MMIO/ÆPIC leak Data leak vulnerabilities can also plague
temporal buffers inside the CPU through the architecturally-
accessible system configuration address space. ÆPIC



1 vpgatherdd %xmm1, 0(%rsi, %xmm2, 2), %xmm3
2 vpgatherdd 0(%rsi, %zmm2, 1), %zmm3{%k1} // AVX-512

Listing 1: Examples of gather in x86: Line 1 calculates ad-
dresses of 4 dwords at (%rsi+%xmm2[i]*2) and merges their
values into the 128-bit %xmm3 register, depending on the cor-
responding mask bits (per dword) in %xmm3. Line 2 calculates
addresses of 16 dwords at (%rsi+%zmm2[i]) and merges
them into 512-bit %zmm3 register depending on the %k1 mask.

Leak [3] discovered that reading from legacy APIC addresses
can leak stale data from the super queue, a buffer between
the L2 cache and LLC. Intel recently published about vul-
nerabilities that enable attackers with access to the MMIO
address space to steal stale data from various microarchitec-
tural buffers [26]. These vulnerabilities mostly affect execu-
tion environments like Intel SGX, where accessing system
configuration address space is part of the threat model. For
other environments, the OS can use the verw instruction when
context switching, which was updated to flush these CPU
buffers [26].

3 Gather Data Sampling

We propose and analyze Gather Data Sampling (GDS) attack.

3.1 Gather Instruction
The gather instruction (hereafter referred to simply as gather)
enables the software to collect non-contiguous data from
memory into a vector register efficiently. Figure 1 illustrates
the gather operation, which reads non-contiguous double-
word (dd) values from different memory locations. The ad-
dresses of the non-contiguous (dword or qword) values are
calculated based on a base register and a wide index regis-
ter that holds several indices. The values which do not have
their corresponding mask bit (in the mask register) set are
discarded, and finally, the results are merged into the resulting
wide register.

Listing 1 provides examples of gather in x86. In line 1,
the gather (v)(vp)gather* collects 4 dword values using
%xmm2 as memory index and merges them into %xmm3 reg-
ister, accessing memory locations at (%rsi+%xmm2[i]*2),
depending on the mask bits in %xmm1. Alternatively, Line 2
shows that, with AVX-512, which supports wider registers
and dedicated 16-bit mask registers (%k0-%k7), gather col-
lects 16 dword values, merges them depending on the set bits
of %k1, and discards values corresponding to unset bits.

Microarchitectural optimizations The straightforward way
to implement gather on a CISC architecture like x86 is to
translate it to legacy read micro-ops. However, this will be
similar to a software implementation that is not very fast. The

Memorydd dd

dd dd

dd dd

dd

# # # # # # # # 1 1 0 1 1 1 0 1

dd dd # dd dd dd # dd

Index

Result

Mask

Base 0 8 16 24 32 40 48 56

64

128

196

256

0 144 96 168 32 256 112 112

Byte Indexes

16-bit

256-bit

256-bit

Figure 1: The gather instruction calculates dword addresses
based on the indices (base+index[i]), then discards elements
using the least significant 8 bits of the mask, and finally
merges dword values for the set masked bits.

CPU can speed up gather by implementing several microar-
chitectural optimizations [27, 28]. It can

• eliminate unnecessary memory reads for unset mask bits,
which must be discarded anyway.

• reuse the data from the same cache line when indexing the
same cache line multiple times.

• execute multiple reads in parallel and speculatively, and
discard results when at least one of the reads has failed.

• preserve the state of partial execution of gather to avoid
re-executing already-executed reads when there is an inter-
ruption in the middle of multiple reads.

While the CPU can quickly eliminate some of the reads
early on for unset mask bits and duplicate indices, it can use a
temporal buffer to implement the other optimizations. When
multiple reads target the same cache line but different offsets,
a temporal buffer can retain the cache line and forward differ-
ent word values to the succeeding instructions independently.
A temporal buffer also facilitates out-of-order and speculative
memory reads from different cache lines. According to one of
Intel’s patent [27], the CPU may preserve the data gathered
from cache or DRAM when the gather instruction (e.g., read-
ing up to 16 dword values) is interrupted or terminated before
completion. When gather is terminated due to a fault (e.g.,
invalid permission), the CPU can discard the preserved values.
Otherwise, during non-failing interrupts or microcode assist
(e.g., setting PTE status bits), it can restart in the middle of
the multiple reads to gather the remaining missing elements.

Temporal buffers shared across independent security do-
mains could have adverse side effects [5, 26, 52, 60]. If opti-
mization choices mentioned here use a temporal buffer, they
raise security-critical questions that we answer in this paper:

• Can gather access stale data from such a temporal buffer?



// Step (i): Increase the transient window
lea addresses_normal, %rdi
clflush (%rdi)
mov (%rdi), %rax
// Step (ii): Gather uncacheable memory
lea addresses_uncacheable, %rsi
mov $0b1, %rdi
kmovq %rdi, %k1
vpxord %zmm1, %zmm1, %zmm1
vpgatherdd 0(%rsi, %zmm1, 1), %zmm5{%k1}
// Step (iii): Encode (transient) data to cache
movq %xmm5, %rax
encode_eax
// Step (iv): Scan the cache
scan_flush_reload

Listing 2: Testing Gather Data Sampling.

• Can it forward stale data to the following instructions?
• What instructions are affected if there is a stale data leak?

3.2 Exploiting Gather Data Sampling
The code in listing 2 introduces Gather Data Sampling (GDS):
An attacker (i) executes a cache miss to increase the spec-
ulative execution window, which increases the chance of
transiently-forwarded data becoming architecturally visible
through the cache, (ii) executes the gather instruction that
accesses a single cache line but faces a cache miss due to
target memory being uncacheable (UC), (iii) encodes a dword
from the 512-bit vector register into 4×256 cache lines so it
can reveal up to 4 bytes of transient data, (iv) scans the cache
using the Flush+Reload technique [63] to infer forwarded
data bytes.

The victim executes gather on the sibling virtual CPU core,
similar to step (ii), but accesses a standard cacheable memory.
Testing We executed listing 2 on the Tiger Lake CPU (from
table 1) and leaked 809 dword values from the other gather ex-
ecution in the sibling CPU thread in one second. Alternatively,
we can run the first three steps several times to increase the
chance of encoding the full dword before scanning the cache.
Next, we executed steps (i-iii) 32 times before scanning the
cache, which leaked 903 dword values in one second.
Discovered vulnerability The observed data leak confirms
a critical vulnerability that is exploitable from user space. The
gather instruction appears to use a temporal buffer shared
across sibling CPU threads, and it transiently forwards data to
later dependent instructions, and the data belongs to a different
process and gather execution running on the same core.
Fault/assist After establishing the data leak vulnerability
by executing the gather on UC memory, we use the PTEd-
itor [36] tool to test other conditions (faults and microcode
assists). Here is a summary of our observations: GDS leaks
data by accessing UC and WC memories, which are both
uncacheable. GDS can also leak data by all faulty memory

accesses, which can occur during the execution of gather:
permission faults due to accessing kernel or protection keys,
page faults due to accessing unmapped memory, and address
generation faults due to accessing non-canonical addresses.
Inspired by previous works [52], we could see slow data leak
by accessing a page which its access (A) bit in the PTE is
unset, but we can not confirm if the data leak is explicitly due
to a microcode assist caused by the A bit.

Systematization Previous work [6] categorizes Meltdown-
type attacks based on their fault/trigger mechanism. Fol-
lowing their terminology, GDS can leak data by applying
Meltdown-US, Meltdown-MPK, Meltdown-NC, Meltdown-
P, and Meltdown-UC, and potentially Meltdown-A1. Next,
we will show that unlike previous Meltdown and MDS at-
tacks, GDS does not require any architectural behavior such
as changing accessed bits or accessing weird page tables,
types, or exotic and faulty addresses, but rather it can only
rely on events that can occur during normal execution.

Playing with the transient window In the previous exper-
iments, we used a cache miss independent from the target
of the gather, but we can use other techniques to increase
the transient window. We have empirically confirmed that in
addition to cache misses, we can use other critical memory ac-
cesses such as page faults or atomic load-modify-store (LMS)
instructions (e.g., xchg, lock inc) to prepare the transient
window for gather to leak.

Through trial and error, we observed that an attacker could
prepare the transient window in a way that it does not re-
quire accessing an exotic address to leak data. Listing 3 is
one example of a code snippet that prepares the speculative-
execution window using a combination of cache misses and
LMS executions. In this case, GDS leaks data only via access-
ing regular memory addresses with cacheable data without
any explicit fault or microcode assist. This finding suggests
that unlike MDS attacks exploiting memory accesses that ex-
perience faults or assists, gather can forward stale data upon
normal speculative execution, similar to Spectre. This finding
is critical for execution environments like the Javascript that
sanitize addresses since the attacker does not have access to
exotic addresses.

Mask-bit Next, we test if a data leak is possible for a memory
index with an unset mask bit. We modify the index register so
that gather accesses 16 different pages and set up one of these
pages as uncacheable or with the wrong protection key. We
observed data leaks only when the mask bit was set for the
troubling memory index. We also tested mask bits for the case
where the target memory index is not exotic (no faults and
cachable) and observed data leaks when at least one of the
mask bits was set, and in this case, the data leak corresponds to
the dword with the set mask bit. These observations confirm
that gather avoids accessing the leaky temporal buffer for
unset mask bits even during speculative execution, which

1Meltdown-TAA does not apply since Intel has disabled TSX.



// Step 1: Increase the transient window a lot
lea addresses_normal_helper, %rdi
.set i,0
.rept 8
clflush 64*i(%rdi)
mov 64*i(%rdi), %rax
.set i,i+1
.endr
xchg %rax, 0(%rdi)
// Step 2: Gather cachable memory (no fault)
lea addresses_normal, %rsi
...

Listing 3: Delaying the speculative-execution window, thus
increasing the chance of data leak without exotic addresses.

could be a sign that the access for unset mask bits is discarded
at an early stage of the pipeline.

3.3 Affected Instructions
We showed that GDS leaks data from another gather instruc-
tion, but now, we automatically test all x86 instructions that
accept memory operands to see which instructions leak to
GDS. We develop a tool that first scrapes all instruction that
accepts a memory operand from the x86 assembly test cases
as part of the LLVM compiler tool chain2 and stores them
in a standard form (e.g., vblendps CONST,(R64),YMM,YMM).
Then it generates code snippets that access memory based
on these instructions, which include all supported memory
instructions and their operands. Finally, it sets ups the mem-
ory layout and registers with known values before the tested
memory access, so we can detect the leaking of known values
on the sibling thread when the victim is accessing them, a
similar approach used by Transynther [40].

Evaluation After excluding test files for ISA extensions that
our CPU does not support, we ended up with 16304 test cases,
of which 16232 were successfully compiled. We executed
each compiled test case for 2 seconds on the Tiger Lake CPU
while running GDS on the sibling thread. Roughly 95 percent
of test cases (15523 samples from 1604 instructions) were ex-
ecuted without exception, of which 47 percent (7380 samples
from 850 instructions) leaked data to the sibling thread.

We also manually tested instructions for which our tool
cannot generate proper operands, and thus they did not com-
pile. Table 2 provides a compressed list of affected/leaky
instructions, which we discuss some of them further:
• SIMD read All SIMD operations that reads wide data

(128/256/512 bits) from memory are affected regardless
of their function: e.g., vmov* only read, vpxor** read and
compute the xor. These generate-purpose instructions are
used everywhere, e.g., compilers spread wide data reads to
optimize memory access routines. Various optimized and

2https://github.com/llvm/llvm-project/tree/main/llvm/test/MC/X86

Instruction buckets: (v)(vp)(p)blend*{19} (v)(vp)(p)cmp*{217}
(v)(vu)(u)comi*{8} (v)insert*{12} (v)(vp)(p)align*{4}
(v)(vp)maskmov*{4} (v)(vp)(p)mov*{47} (v)perm*{22}
(v)(vp)compress*{4} (v)(vp)gather*{8} (v)(vp)max*{12}
(v)scale*{4} (v)(vp)(p)shuf*{17 (v)rsqrt*{7}
(v)sqrt*{6} (v)fixup*{4} (v)fpclass*{10}
(v)getmant*{4} (v)(vp)xor*{5} (v)(vp)or*{5}
(vp)rol*{4} (v)pack*{4} (vp)(p)srl*{10}
(v)(vp)andn*{5} (v)(vp)and*{5} (v)getexp*{4}
(vp)lzcnt*{2} (v)lddqu{1} (vp)dpwssd*{2}
(v)dbpsadbw{1} (vp)sadbw{1} (v)rndscale*{4}
sha*{6} (vp)madd*{4} (vp)ror*{4}
(v)cvt*{74} (v)dpp*{4} (v)gf2p8*{6}
(v)(vp)(p)hadd*{10} (vp)(p)abs*{7} (vp)(p)clmul*{7}
(v)phmin*{2} (v)(vp)min*{12} (v)popcnt*{4}
(v)div*{4} (v)(vp)broadcast*{17} (v)fm*{36}
(v)(vp)(p)test*{12} (vp)multishift{1} (v)(vp)(p)mul*{13}
(v)rcp*{7} (v)round*{8} (v)reduce*{4}
(v)range*{4} (v)(vp)expand*{6} (vp)ternlog*{2}
(v)addsub*{2} (v)(vp)add*{12} (v)(vp)sub*{12}
(vp)conflict*{2} (vp)(p)sll*{9} (vp)(p)sra*{8}
(vp)dpbus*{2} rep(ne) mov*{8} xsave/xrstor*{2}
fxsave/fxrstor*{3} (v)(vp)(p)hsub*{10} (vp)sign*{3}
(v)(vp)unpck*{12} (v)fnm*{24} (vp)(p)ins*{6}
(vp)shl*{6} (vp)2intersect*{2} (v)mpsad*{2}
(vp)shr*{6} (vp)avg*{2} (v)aes*{12}

Table 2: Affected instructions: {n} is the number of instruc-
tions from an affected category. (v)(vp)(p) are vector in-
struction prefixes. * indicates various data types or functions
within the same bucket.

secure implementations of cryptographic codes rely upon
SIMD instructions, including wide data reads.

• SIMD write The only SIMD write operations that are af-
fected are the compress ((v)(vp)compress*) instructions.

• Cryptographic extensions Cryptographic extensions, in-
cluding AES-NI and SHA-NI (SHA1 and SHA256), when
accepting a memory operand, are affected. Data leaks from
these instructions expose plaintext data and the secret key,
e.g., AES or HMAC-SHA.

• Fast memory copy Fast memory copies of various data
types: byte, word, dword, qword using rep movs* instruc-
tions are affected. These are widely used to speed up com-
mon memory operations such as memcpy and memove.

• Register context restore Special instructions to
more efficiently store/restore the register context (e.g.,
xsave/xrstor) are affected. GDS leaks the register
context of both standard registers due to xsave/xrstor
and wide registers due to fxsave/fxrstor.

• Direct store The direct store is affected. Intel has recently
added support for a direct store instruction that can copy a
64 bytes cache line from a source to a destination address.
MOVDIR64B (%rsi), %rdi copies data from the address
in %rsi to the address in %rdi. Our code generator failed
to produce the correct address operand for %rdi, but we
could manually verify the data leak.



Figure 2: Normal data leak compared with leak after flushing
microarchitectural buffers across different CPU generations.

False positives We observed a slow data leak from standard
memory reads (e.g., mov), but we confirmed that this is due to
the rxstor instruction, which is executed periodically upon
a periodic timer interrupt initiated by the OS, resulting in the
register that holds the read value from memory being saved
and restored. Although this shows that GDS does not leak
from standard memory reads and writes, it highlights that an
attacker who can interrupt the execution frequently can steal
data from CPU registers. We exploit this behavior to leak the
data from SGX enclave registers in section 8.

3.4 Temporal Buffer Analysis

We analyze the size of the leaky buffer entries and the effect
of flushing microarchitectural buffers.

Entry size We test data leaks from different portions of the
wide memory read by permuting and shuffling the leaked data
values. We observed that we could leak any part of the 512-
bit loaded data (%zmm) on the Tiger Lake CPU that supports
AVX-512, which means each buffer entry has to be 64 bytes,
the size of a cache line. On older CPUs that do not support
AVX-512, we can only leak 32 bytes, the maximum size for
vector registers (%ymm).

Flushing buffers Next, we test if flushing microarchitec-
tural buffers would mitigate the data leak within the same
CPU thread. Before executing GDS, we flush microarchitec-
tural buffers using the verw (as suggested by md_clear [23]
and fb_clear [26] hardware mitigations), and with the help
of a kernel module, we flush the L1 data cache using the
MSR_IA32_FLUSH_CMD MSR. We tested this across differ-
ent CPU generations, and as we can see in figure 2, we can
efficiently leak data on all tested CPUs even after flushing
everything that we can. In fact, in some cases, we see more
data leaks, likely due to changing the speculative-execution
window, but it confirms that previous hardware mitigations
do not flush our newly discovered buffers.

CPU Generation GDS MDS VERW
SMT Switch SMT Switch >TAA >MMIO Cycles

Tiger Lake ϑ ϑ θ θ θ θ 80
Ice Lake ϑ ϑ θ θ θ ∆ 592
Cascade Lake ϑ ϑ θ θ κ ∆ 324
Kaby Lake ϑ ϑ ϑ ∆ κ ∆ 696

ϑ Vulnerable θ Not affected κ TSX disabled ∆ Buffer flush

Table 3: Comparison of GDS with MDS and MMIO leak
vulnerabilities: The verw cycle counts show that it flushes
buffers when at least one previous vulnerability applies. GDS
leaks regardless of verw behavior. The leaky SIMD register
buffers has more entries on recent CPUs.

3.5 Summary
Table 3 summarizes our findings: it shows that current CPUs,
regardless of previous MDS and MMIO data leak vulnerabil-
ities, are all affected by GDS in both context-switching and
SMT scenarios. We also see the cycle count for executing the
verw instruction on these CPUs. These cycle counts suggest
that verw does not do anything on the recent Tiger Lake CPU
not affected by any previous data leaks. But on other CPUs,
verw flushes some microarchitectural buffers. Specifically,
on Kaby Lake, which is affected by all previous attacks, the
verw flushes every known buffer (store buffer, fill buffer, load
buffer) [23]. However, GDS still leaks regardless of the behav-
ior of verw. The ineffectiveness of previous mitigations and
only SIMD memory accesses are being affected confirms that
the data leak is from a different temporal buffer than previous
works, SIMD register buffers, which Intel confirms. Other
instructions like rep mov that benefit from special microcode
optimizations3 can also share these buffers.

4 Cross-Process Covert Channel

We demonstrate how GDS leaks more data simultaneously
compared to previous attacks. We implement multiword data
sampling and characterize cross-process data leaks by demon-
strating covert channels and measuring their bandwidth.

4.1 Multiword data sampling
Following previous work, we can encode the leaked data
into many cache lines to leak several data bytes at the same
time [53]. For example, the Meltdown attack used 256 cache
lines to leak 1 byte, and ZombieLoad used 3×256 cache lines
to leak 3 bytes. Here, we try to leak up to 32 bytes simulta-
neously using 32×256 cache lines and extracting different
portion of a wide register (512/256 bits) with the help of
vextract*, pextr*, vperm* instructions.

Maximum simultaneous leaks We execute GDS with
the multiword encoding to leak up to 32 bytes. On

3The newly introduced FSRM extension optimizes rep mov with size
less than 128 bytes (2 cache lines) differently [22].



Figure 3: The frequency of different leaked words is between
2-22 bytes (maximum observed) on the Tiger Lake CPU.

the sibling thread, we execute the vmov instruction that
loads a cache line holding a continuous data pattern:
size_of(A..Za..z0..9#!)=64. Figure 3 shows the fre-
quency of leaking different continuous words in an optimized
execution of the attack on the Tiger Lake CPU. As we can
see, the maximum number of simultaneous leaks is 22 bytes,
and most leaks are between 16-21 bytes long, which is much
higher than any previous attacks reported.

Data leak pattern Next, we change the victim thread to
execute three vmov to three different cache lines, each holding
a different data pattern. In the attacker thread, we alternatively
use gather{dd} for dword and gather{qd} for qword leaks.
Listing 4 shows data leak patterns from each of these instruc-
tions. We have two observations: (1) The gather instructions
leak data from multiple entries of the SIMD register buffers
filled by different vmov executions; therefore, simultaneous
data leaks are not necessarily continuous. (2) The choice of
dword or qword for gather leaks two different data patterns.

As we will see in later sections, the data leak pattern is
essential for developing various attacks. In a covert-channel
attack, the attacker can choose how to simultaneously send
and receive data to leak up to 22 bytes of continuous data.
But for attacks on other applications, we can only guarantee
to leak one continuous dword or qword simultaneously since
other operations holding uninteresting data may fill up some
of the SIMD register buffer entries. However, an attacker can
access another dword/qword by permuting the leaked wide
register.

4.2 Covert Channel

We execute cross-process covert-channel attacks based on
multiword data sampling and evaluate their bandwidth. In
these attacks, we execute three variants of GDS with fault,
uncacheable memory, and normal cacheable memory without
any fault and also use three different affected instructions to
send data: vmov, rep mov, and aes.

dword:
ABCDEFGHIJKLMNOPQRST
ABCDXXXXIJKLXXXXQRST
ABCDYYYYIJKLYYYYQRST
XXXXEFGHXXXXMNOPXXXX
XXXXXXXXXXXXXXXXXXXX
XXXXYYYYXXXXYYYYXXXX
YYYYEFGHYYYYMNOPYYYY
YYYYXXXXYYYYXXXXYYYY
YYYYYYYYYYYYYYYYYYYY

qword:
ABCDEFGHIJKLMNOPQRST
ABCDEFGHXXXXXXXXQRST
ABCDEFGHYYYYYYYYQRST
XXXXXXXXIJKLMNOPXXXX
XXXXXXXXXXXXXXXXXXXX
XXXXXXXXYYYYYYYYXXXX
YYYYYYYYIJKLMNOPYYYY
YYYYYYYYXXXXXXXXYYYY
YYYYYYYYYYYYYYYYYYYY

Listing 4: Leaked data pattern from multiple memory reads.

Evaluation We execute each covert channel for 60 seconds
across different CPUs from table 1. Table 4 shows bytes
leaked per second for each experiment. As we can see, in
the best-case scenario, we leaked 5870.3 bytes per second on
the Tiger Lake CPU. Since we have developed these covert-
channel attacks on the Tiger Lake CPU, we have optimized
the transient execution window for this machine, one of the
reasons the covert channel performs significantly better on
this machine. In theory, the covert channel should have a
higher bandwidth for CPUs with more SIMD register buffer
entries (more chances of picking up one copy of the data) and
ROB entries (higher likelihood of encoding all the quadwords
into the cache) We can observe this across Tiger lake, Cascade
lake, and Kaby lake. The only anomaly here is the Ice Lake
CPU. Although we could see a similar quadword leak on
both Ice Lake and Tiger Lake, we did not investigate why
the data rate is lower. But the results serve our purpose of
confirming that all tested CPUs are affected by cross-process
covert channel due to GDS.

5 Stealing Cryptographic Keys

In this section, we develop end-to-end attacks against AES
encryption executed by the OpenSSL command line tool. Our
attack does not rely on cryptanalysis, knowing the plaintext
or ciphertext, or analyzing the source code. We evaluate our
attack against AES-128 and AES-256 keys running on a sep-
arate VM, each VM on sibling thread of the same CPU core.

5.1 Blind Attack against AES

In this attack, our only assumption is that the attacker knows
that OpenSSL uses AES-NI for fast encryption; thus, the
encryption uses SIMD memory reads. The attacker sends
a request to another VM to encrypt random data (from
devurandom) with salt and discards the output 4.

Knowing that AES uses 10 round keys derived from a mas-
ter key to encrypt data, in a separate VM instance running

4openssl aes-256-cbc -salt -e -in /dev/urandom -out /dev/null -K $k -iv $i



CPU Generation vmov rep mov fxstor aes
• ∪ × • ∪ × • ∪ × • ∪ ×

Tiger Lake 4128.78 5584.57 5870.3 3318.15 1438.53 1414.55 92.35 1465.13 178.68 688.27 1763.57 1101.7
Ice Lake 0.73 2.48 6.25 11.67 58.13 30.97 0.0 0.57 3.05 0.1 6.68 7.42
Cascade Lake 133.27 72.47 2424.83 19.23 14.23 2569.78 76.2 3.98 1209.13 8.0 75.77 1395.7
Kaby Lake 0.03 26.45 11.12 0.2 3.87 70.2 0.03 0.1 0.07 0.0 0.13 2.03

• Cacheable no fault ∪ uncacheable × Page fault

Table 4: Covert channel data rates (Bytes/Second).

in the sibling CPU thread, we execute the following attack:
(i) We steal 8 bytes (qword) of random data and create a his-
togram for qwords with a high frequency. (ii) We repeat the
above for the second leaked qword since AES-NI uses 128-bit
(16 bytes) reads to load round keys. (iii) We combine the high-
-frequency qwords to construct AES-128 or AES-256 round
key candidates. (iv) We search through the key candidates,
and one of the round keys should be the master key.

The blind attack against AES works due to the following:
When AES encrypts data regardless of its mode, e.g., CBC, it
repeatedly calls a low-level function for encryption that loads
all round keys to encrypt a new block. These round keys,
128-bit or 256-bit, always use the same type of SIMD reads
since AES-NI only supports 128-bit registers. GDS naturally
ignores non-SIMD reads, and the only random data exposed
to SIMD reads, which are repeated, are AES round keys since
the victim encrypts random but ephemeral data.

Evaluation In 10 seconds, we steal AES-128 or AES-256
round keys. We execute the attack’s first and second qword
for 5 seconds each. We discard qwords that have occurred less
than 16 times to filter out random data leaks that are not from
round keys, i.e., are not repeated. To create round key can-
didates for AES-128, we combine first+second qwords. For
AES-256 with 32-byte keys, we combine (first+second)×2

Averaging over executing the attack 100 times, we observe
a 7.40-bit key space (roughly 128 candidates) for AES-128
and a 15.99-bit space for AES-256. We then search through
these key candidates by having access to a single plaintex-
t/ciphertext block and searching each candidate as a master
key to encrypt and check, which means the complexity of our
attack will be the size of the candidate key space.

Alternatively, we perform a blind search by just checking
the key candidates against each other, assuming each candi-
date is a master key, compute round keys, and then check
if one of the other leaked qwords appears in the computed
round keys. Our evaluation shows that this alternative blind
attack has a complexity of 10.29 bits for AES-128 and 17.99
bits for AES-256, which a single-core desktop CPU can triv-
ially compute them. It could be possible to develop a more
efficient blind search by looking closely at the round keys
relationships, but that is unnecessary.

For 100 different keys, the first run of the attack was 100%
successful for AES-128. The first run of the attack was 86%

successful for AES-256. On failed attempts, one of the master
key’s qwords did not appear with a high frequency in 10
seconds. For these rare cases, we just rerun the attack multiple
times to recover the entire key.

6 Stealing Arbitrary Data

In this section, we introduce other variants of GDS that can
steal arbitrary data at rest [61]. We introduce practical code
gadgets that enable data-at-rest leaks and demonstrate practi-
cal attacks against the Linux kernel based on them.

6.1 Leaking Data without Accessing
We discovered two conditions where the CPU prefetches data
at rest5 into the SIMD register buffers, thus GDS can leak it,
despite the fact that the data is not read by the software:
• OOB prefetch: The software reads n bytes, but the CPU

leaks more than n bytes up to x cache lines.
• NOOP prefetch: The software reads 0 bytes, but the CPU

leaks up to x cache lines.
We discuss how masked move (maskmov) and repeated move
(rep mov) operations match the above conditions.

Masked move We observed that even if only a subset
of masks are set, e.g., only reads a single dword, maskmov
prefetches up to x = 1 cache line, which we can leak. Interest-
ingly, even if the mask bits are all zero, which is a no-op for
the software, GDS still leaks 64 bytes from the target address.

Constant-time cryptography can benefit from the SIMD
masked move operations [12, 50]. Although SIMD programs
are generally vulnerable to GDS, the masked move may ex-
pose more secrets due to NOOP and OOB prefetching.

Besides, a memory allocation unaligned to cache lines and
accessible to maskmov may enable an attacker to leak out-
of-bounds (OOB) data: Imagine that the software does not
intend to read a secret at a particular time window and en-
forces bounds-checks correctly. The software does not archi-
tecturally access those secrets since it does not read them,
but suppose the software uses a masked move instruction to
read public data that happens to be before the secret data in
the program’s memory layout. The attacker can coerce the

5Data that is mapped to the victim address space but not used.



software to load those secrets into the SIMD register buffers
and leak them by requesting the software to access the public
data. We leave further analysis of leaking data-at-rest from
the masked move for future work.
Repeated move The rep mov{t} instruction copies %rcx
× size_of(t) from address %rsi to address %rdi, where
t is the data granularity: byte, word, dword, qword. We
observed on the latest Tiger Lake CPU that we can leak OOB
data from rep mov up to x = 2 cache lines (128 bytes) even if
the copy size is less than that, disregarding the data granularity
and %rcx values. More surprisingly, we can leak if %rcx=0,
which is a no-op for the software. This data leak is potentially
due to the speculative behavior of the rep mov instruction, as
confirmed by concurrent work [43], which results in polluting
the SIMD register buffers with data that is not architectural
accessed.

Software compilers spread rep mov instructions every-
where for common operations: e.g. memcpy and memmove are
part of the c standard library, and compilers use rep mov to
execute them efficiently. This popularity has several conse-
quences for the application’s security. (i) The rep mov han-
dles a lot of confidential data, driving the standard data copy
functions used everywhere by the application. (ii) The rep
mov can leak up to 128 bytes of OOB data, resembling a tran-
sient buffer overflow. (iii) The rep mov can act as a confused
deputy gadget enabling an attacker to steal arbitrary data. In
the next section, we discuss common code gadgets based on
memcpy that enable attackers to steal arbitrary data from a
program’s address space.

6.2 Data Leak Gadgets
Here we discuss code sequences for copying memory content
that is not vulnerable to traditional buffer overflow attacks
or Spectre [31] but can be used to get interesting data into
the SIMD register buffers, hence leaking the target memory
content with GDS. An attacker can trigger these gadgets from
a different security domain (e.g., over the network or from
userspace to kernel) to leak secrets even if the target code
does not explicitly access those secrets. An everyday use case
of memcpy (or memmove) is to copy the user’s input from a
user-facing memory allocation to a local allocation in the pro-
gram’s address space for later processing. For the three code
gadgets in listing 5, we assume that the software copies user
data from the source to the local buffer, only accessible to
the program. The software should also sanity-checks the user-
inputs: copySize and the source index to avoid traditional
memory-corruption software bugs [44]:
Gadget 1: Safe check Line 1-5 shows a correct input
sanity-checking which avoids both OOB read and write
bugs; hence it is safe for the software. Although this is safe
for the software, an attacker can use GDS to leak past the
source buffer. This is especially easy since the attacker con-
trols the index, a reasonable assumption. For example, if

1 // Gadget 1: Safe check
2 if(copySize < sizeof(local) &&
3 copySize+index < sizeof(source)){
4 memcpy(local, source+index, copySize)
5 }
6 // Gadget 2: Safe no-op check
7 if(copySize >= sizeof(local) ||
8 copySize+index >= sizeof(source)){
9 copySize = 0

10 }
11 memcpy(local, source+index, copySize)
12 // Gadget 3: Buggy unexploitable
13 if(copySize < sizeof(local))
14 memcpy(local, source+index, copySize)

Listing 5: Sanitizing and copying user’s data.

size_of(source)=64, index=63 and copySize=1 fullfill
the sanity-checks, but the next two cache lines, 128 bytes will
be prefetched by the rep mov and leaks.

Gadget 2: Safe no-op check Line 6-10 shows an alterna-
tive sanity-checking supported by the C programming lan-
guage [51] that is correct and safe for the software. Here, the
if statement simply sets the copySize to zero when it detects
an OOB access. Since zero memcpy is officially supported by
the C language and rep mov, the CPU architecturally treats
this as a no-op. However, as mentioned before, GDS can
leak from rep mov even when the size register is zero, so
an attacker can use this to steal arbitrary data, even if this is
architecturally safe for the software.

Gadget 3: Buggy unexploitable Line 11-15 exemplifies a
typical case where the input sanity-checking is buggy, but it
does not necessarily result in an exploitable software vulnera-
bility. Here, the software checks to ensure copySize is less
than the size of the local buffer, so a malicious user cannot
perform an OOB write, overwriting the program’s memory
with malicious input and potentially executing arbitrary code.
Although there is no sanity check on the index, which results
in an OOB-read bug, a software exploit cannot read arbitrary
OOB data since local buffer is never exposed to the user.
However, an attacker can exploit GDS to steal arbitrary data
from the target application’s address space by relying on this
bug to prefetch arbitrary data into the SIMD register buffers.

6.3 Reading Kernel Memory from User-space
These simple gadgets are a nightmare for software’s security.
We especifically focus on the Linux Kernel, but other scenar-
ios like a web application that accept user’s input can also
be vulnerable to the demonstrated attack technique. We dis-
cussed the simplest form of memcpy gadgets that leak arbitrary
data at rest, but it is inevitable that complex input-checking
code will contain similar gadgets. Developers already have to
spend a lot of resources to address software bugs. Now, they
also have to look for other code patterns that are traditionally



unexploitable or denial-of-service bugs (Gadget 3), or worst,
they are not even bugs (Gadgets 1, 2) but an attacker can
exploit them to leak kernel data.

We demonstrate proof-of-concept attacks against the Linux
kernel. For this, we develop a loadable-kernel module that
implements Gadgets 1-3 and accepts user inputs through an
ioctl. We sanitize the input correctly (Gadget 1,2) and do
not expose the destination buffer in the user space (Gadget
1,2,3) to ensure that the user cannot attack the kernel using a
software attack.

Evaluation We use one process to perform ioctl calls from
the user space and provide the index and copySize used
by the memcpy to access data and a process on the sibling
CPU thread to execute GDS. The attacker, who controls the
index so it can navigate the victim into prefetching memory
offsets, leaks one dword at a time (based on our observations
in section 4). Iteratively, we increase index by 2 bytes and
combine the next dword if the first 2 bytes of the current
dword matches the last 2 bytes of the previous one, similar
to the ZombieLoad attack [52], but with a 16-bit window
applicable to our dword leak which makes the attack much
more reliable. Alternatively, GDS allows us to leak up to
one qword at a time and use a bigger window, e.g., 32-bit, to
combine the leaked qwords.

We executed attacks with the described gadgets on the
Tiger Lake CPU. We can exploit gadget 1 to steal OOB data
past the source buffer. In this case, we assume the source
buffer is cache-aligned, which means gadget 1 prefetches two
additional cache lines, 128 bytes, to the SIMD register buffers.
On average, after executing the attack ten times, we leaked the
128 OOB data exploiting Gadget 1 in 1.04 seconds. We found
that we can exploit gadgets 2 and 3 to steal arbitrary kernel
data. Gadget 2 does not architecturally access nor copy the
data but prefetches it. Gadget 3 accesses and copies arbitrary
memory to a local memory allocation, inaccessible to the user.
Averaging the attack among ten tries, we leaked 238 bytes of
the Linux banner string, linux_banner exploiting Gadget 2
in 1.37 seconds and Gadget 3 in 1.58 seconds.

Impact on Linux Kernel Similar code patterns, as dis-
cussed in listing 5 can be found in widely-used software. For
instance, we searched through the Linux kernel binary and
found 2728 instances of rep* mov* instructions. We also
searched through the latest Linux kernel source code and dis-
covered 25992 memcpy and 860 memove, which both execute
rep* mov*. Many of these are reachable through multiple
code paths. We leave further analysis of the reachability of
such code gadgets for future work.

7 Gather Value Injection

We introduce the gather value injection (GVI) attack by com-
bining GDS with the LVI [58] technique. To exploit GVI,
attackers only need to find a gather instruction in the vic-

1 // Gadget A: Gather followed by a load
2 new_index[i] = gather(index_base, index[i]);
3 value = data_base[new_index[0]];
4 leak_to_side_channel(value);
5 // Gadget B: Double gather
6 new_index[i] = gather(index_base, index[i]);
7 values[i] = gather(data_base, new_index[i]);
8 leak_to_side_channel(values[i]);

Listing 6: Example GVI gadgets.

tim code followed by data-dependent operations, similar to a
Spectre gadget. We introduce several GVI gadgets and exploit
them to steal out-of-bounds data from a victim process.

7.1 GVI Gadgets
Microarchitectural side-channel attacks can typically leak
secrets from data-dependent operations, but if such operations
rely on gather to access data, they can form a code gadget
exploitable by GVI, leaking arbitrary data in addition to the
data the software was supposed to access. For example, if a
program executes gather instruction and uses its output to
index into another allocated memory, an attacker can coerce
the program to access OOB by injecting stale memory indexes
into gather during transient execution to leak arbitrary data
outside that allocation and from the victim address space.

Listing 6 provides two such examples: In lines 2-3, the
dword/qword output of the gather is used as a memory index
to read data from another allocation. In line 4, the software
performs a data-dependent operation that would leak this data
over a covert channel like the cache. Naturally, software that is
not buggy would encode new_index in a way that it does not
access out-of-bounds memory, but here, we can transiently
inject arbitrary index so new_index would point out to an
arbitrary address inside the victim’s address space, resulting
in leaking arbitrary data. In lines 6-9, we see another example,
but this time, it uses two gather instructions, one to find the
correct index and the second one to access the data, which
should be a widespread use case for the gather instruction.

7.2 Exploiting GVI Gadgets
We demonstrate that an attacker can exploit the code gadgets
mentioned earlier to leak data out-of-bounds from a victim
program’s address space. The victim runs Gadget A or B
to process some data based on the index and also sanity-
checks the input to ensure that the index is not OOB with
respect to the memory allocation data_base. The attacker
does not have direct access to any of the variables in these
gadgets, including index, but it can learn the output of this
operation using the Flush+Reload [63] covert channel. These
are common assumptions for a regular microarchitectural side-
channel attack [13, 31]. The attacker running on the sibling



thread executes multiple vmov to fill up the SIMD register
buffers with invalid out-of-bounds indexes.

Evaluation For evaluation, we set the target of the gather
as UC to ensure it efficiently picks up stale data. We also in-
troduce a cache miss before the gather execution to increase
its transient window, similar to the preparation step we in-
troduced for the GDS in section 3. Real-world code could
unintentionally open the speculative window necessary for
gather (similar to listing 3). We executed this attack 100 times,
and for 10 seconds each, on the Tiger lake machine. Our re-
sults show that we can leak 8734.3 bytes per second of OOB
data from the victim’s address space, confirming that GVI is
a practical attack exploiting the root cause of GDS.

Discussion GVI does not require accessing an exotic mem-
ory address (fault, assist, uncacheable), making it more practi-
cal to exploit against user-level applications. A code sequence
may introduce the proper speculative execution window for
gather similar to listing 3, so the attacker does not need to
create faults or rely on uncacheable memory to exploit a GVI
gadget. The gather instructions are becoming more common
for indexing into non-continuous memory efficiently. For ex-
ample, it is used in various data encoding/decoding libraries
inside the firefox web browser and optimized implementation
of cryptographic routines. Where the software double-index
using gather [11], the GVI attack technique can likely be
applied to leak data/secrets. Future work can investigate the
prevalence of GVI gadgets in applications. Depending on the
upcoming hardware mitigation for Downfall, automated ways
to find such gadgets in large applications could be relevant
for both attackers and defenders.

8 Breaking Intel SGX

In this section, we show that GDS leaks data from the Intel
SGX execution environment at its highest security configu-
ration since the SIMD register buffers is not cleared when
exiting SGX. Consequently, we leak wide register values (due
to fxsave/fxrstor instruction) and use them to steal SGX
sealing keys, which is critical to the enclave root of trust and
its remote attestation.

8.1 Leaking Enclave Registers
Intel SGX (no longer supported on recent client CPUs but
supported on server CPUs) provides a trusted execution en-
vironment for software enclaves that can run on top of a
potentially-compromised OS. SGX enclaves reside in the
virtual address space of a user-space process, but the CPU
enforces the confidentiality and integrity of the enclave by
isolating its runtime memory so that even the OS cannot ac-
cess it. When the CPU receives an interrupt or exception in
enclave mode, the CPU securely saves and scrubs the register
context and exits the enclave. The untrusted software can

resume the enclave’s execution using eresume instruction.
Intel SGX also supports remote attestation, which is critical
for remote users to verify the integrity of the enclave and the
CPU hardware.

On a Kaby Lake CPU vulnerable to Foreshadow [57],
MDS [52, 60] and LVI [58], customers can only rely on
SGX’s highest security by applying microcode patches and
disabling SMT. Microarchitectural buffers and the L1D cache
are flushed before exiting the enclave on the latest microcodes
to prevent leaks across context switching. And the remote
attestation protocol informs the user that the enclave is exe-
cuting at its highest security guarantee when the system has
SMT disabled [23, 26].

We bypass these defenses and leak secrets from secure
enclaves at their highest security configurations. We develop
a simple enclave application that populates wide registers
(%xmm0-15) with a known data pattern for this proof of con-
cept. We use the SGX-STEP[59] tool to control the enclave
execution in the popular OS adversary model that SGX sup-
ports [25, 37, 59] and pause the enclave’s execution after the
program fills these registers. Then we apply zero-stepping
technique [41, 54, 59] by marking the enclave code page as
non-executable. While zero-stepping on the same instruction,
we execute GDS on the same execution thread after every
exit of the enclave to see if it leaks the same CPU regis-
ter values from repeated execution of the fxsave/fxrstor
instructions. We executed this proof-of-concept, and the ob-
servation confirms SGX is vulnerable to GDS even without
using hyperthreading and on the latest microcode update for
the Kaby Lake CPU. Now that we have established vulnera-
bility of SGX to GDS during context switching, we can use
the same attack technique to break the SGX root of trust.

8.2 Stealing Sealing Key

Stealing the Intel SGX sealing keys compromises the root of
trust for SGX enclaves. Intel SGX remote attestation protocol
relies on data sealing, which encrypts data using keys derived
from the CPU fuse before writing them to the disk. Intel EPID
protocol [4] used by SGX seals the attestation key inside the
provisioning enclave and unseals it in the quoting enclave,
used by almost all enclaves to perform remote attestation. Us-
ing an approach similar to previous work (Foreshadow [57]),
we steal the sealing key, compromising the security of remote
attestation for SGX enclaves; therefore, SGX enclaves cannot
be trusted anymore.

The sgx_seal_data inside Intel SGX SDK accesses exe-
cutes the sgx_get_key function, which uses a special CPU
instruction to derive a hardware key from the CPU. Then,
it executes Intel’s IPP implementation of the AES cryptog-
raphy to encrypt a data blob. During encryption, IPP calls
l9_aes128_KeyExpansion_NI function to expand the mas-
ter AES-128 key into AES round keys.



We attack the l9_aes128_KeyExpansion_NI function by
pausing the execution of sgx_seal_data at the begining of
this function and right after it loads the AES-128 master key
into the %xmm0 register (Listing 7). Once we are there, we
execute the same attack described earlier, combining GDS
with zero stepping to iteratively leaks key values that are
exposed while saving and restoring wide registers.

<l9_aes128_KeyExpansion_NI>:
endbr64
vmovdqu (%rsi),%xmm0
vpslldq $0x4,%xmm0,%xmm2 // <-- Zero Stepping

Listing 7: Targeted code to steal SGX sealing key.

Evaluation We used vpgatherdd and vpermdd to leak dif-
ferent dword values upon context switching. We executed this
attack for 10 seconds for each of the four dwords correspond-
ing to a 128-bit AES key. The correct dwords leaks with the
highest frequency, which we simply combined to construct
the master AES key. The attack may sometimes fail due to an
unrelated register value leaking with higher frequency since
we cannot choose which entry of the SIMD register buffers
we leak. However, among all the register values during zero
stepping, the dwords from the AES key have a noticeable
uniformly random distribution. Therefore, we simply rerun
the attack a few times until we see the correct dwords that
have a uniformly random distribution, as expected for AES
keys.

9 Mitigation

9.1 Software-based workarounds
We discuss software workarounds to mitigate GDS and GVI.

Disabling SMT Disabling SMT, i.e., hyperthreading can
partially mitigate GDS and GVI attacks in exchange for losing
performance. A computer with hyperthreading is 30% faster
than an identical system [7], which makes disabling SMT
expensive for customers. Besides, it does not prevent data
leaks across context switching.

Disallowing affected instructions The OS and compiler
can disallow certain instructions that leak secrets to gather to
mitigate data leaks. The compiler can rewrite SIMD memory
instructions with equivalent normal reads to prevent applica-
tions from directly leaking data. The OS can disable com-
monly used instructions that use the SIMD register buffers,
rep mov and xsave/xrstor, to prevent leaking arbitrary
memory and registers. However, this could not fully miti-
gate the attack if the software misses some instructions that
still leak and could be disruptive for some applications.

Disabling gather Intel could issue a microcode patch that
disables the gather instruction, slowing down or breaking

applications that rely on this performance feature. However,
this is impractical and requires changing the ISA since gather
is a built-in part of the AVX2.
Preventing transient forwarding Preventing transient for-
warding of data to following instructions can mitigate Down-
fall attacks. Adding a load fence lfence after the gather in
applications may prevent GVI attacks, ensuring that gather
does not transiently forward data to the following instructions.
Similarly, in environments where the compiler is trusted, and
the attacker cannot choose native instructions (e.g., WASM),
the compiler can add lfence to gather to mitigate GDS. Intel
plan to release a microcode update that prevents transient
forwarding of data from gather to mitigate GDS and GVI.

9.2 Testing
Researchers have proposed several tools to automatically test
for transient execution attacks [14, 30, 40, 42], which could
be promising for finding these vulnerabilities earlier. Mainly,
Transynther [40] uses a fuzzing-based approach to discover
Meltdown/MDS-like attacks. We analyzed Transynther [39]
and discovered that it does not generate the gather instruc-
tion, one of the reasons it has not found GDS. We modified
it to only test for gather and executed 1000 tests. Looking
through the tests, we confirm that Transynther can rediscover
GDS leaking stale SIMD data from both CPU threads and in
various trigger conditions (e.g., Meltdown-MPK, Meltdown-
UC, Meltdown-US). Although this analysis does not quantify
the performance of Transynther in finding GDS since we
artificially modified it only to target gather and not other in-
structions, it serves as a proof-of-concept that fuzzing can be a
promising direction to find these vulnerabilities automatically.

10 Conclusion

We conclude that the majority of superscalar CPUs are vul-
nerable to Gather Data Sampling, exposing users’ data across
various security domains. The previous defense is ineffec-
tive. Recent CPUs are not secure, but they also leak more
data compared to older generations and are easier to exploit,
as demonstrated by leaking multiword AES keys. We also
show that gather enables a whole new class of transient ex-
ecution attacks exposing arbitrary and OOB data from the
applications process and the OS kernel.

Mitigating GDS without eradicating the root cause in hard-
ware is expensive. As the size of microarchitectural data struc-
tures also grows, mitigations based on flushing buffers would
also be less efficient, i.e., more flushing. On the other hand,
automated testing can practically find new vulnerabilities in
CPUs, but such tools need to have better coverage of the hard-
ware and the supported instructions, which are challenging
due to the complexity and proprietary aspect of the hardware.

Our analysis and findings focus on Intel CPUs with the
majority market share for superscalar CPUs. Intel states that



newer CPUs such as Alder Lake, Raptor Lake, and Sapphire
Rapids are unaffected, although not a security consideration
and seems just a side effect of a significantly modified archi-
tecture. However, our findings are alarming for other CPU
vendors as well. The attack technique we demonstrated can
broadly apply, even though each vendor implements Gather
and SIMD register buffers differently. Our preliminary tests
on AMD Zen2 showed no sign of data leaks, but we plan to
continue our investigation of automated and scalable testing
of other CPUs manufactured by Intel and different vendors.
Intel has shared the paper (with our permission) with other
CPU and software vendors so that those organizations can
assess the impact on their products.
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