Skip to main content
Intended for healthcare professionals
Restricted access
Research article
First published online May 1, 2014

The Lung Reporting and Data System (LU-RADS): A Proposal for Computed Tomography Screening

Abstract

Abstract

Despite the positive outcome of the recent randomized trial of computed tomography (CT) screening for lung cancer, substantial implementation challenges remain, including the clear reporting of relative risk and suggested workup of screen-detected nodules. Based on current literature, we propose a 6-level Lung-Reporting and Data System (LU-RADS) that classifies screening CTs by the nodule with the highest malignancy risk. As the LU-RADS level increases, the risk of malignancy increases. The LU-RADS level is linked directly to suggested follow-up pathways. Compared with current narrative reporting, this structure should improve communication with patients and clinicians, and provide a data collection framework to facilitate screening program evaluation and radiologist training. In overview, category 1 includes CTs with no nodules and returns the subject to routine screening. Category 2 scans harbor minimal risk, including <5 mm, perifissural, or long-term stable nodules that require no further workup before the next routine screening CT. Category 3 scans contain indeterminate nodules and require CT follow up with the interval dependent on nodule size (small [5-9 mm] or large [≥10 mm] and possibly transient). Category 4 scans are suspicious and are subdivided into 4A, low risk of malignancy; 4B, likely low-grade adenocarcinoma; and 4C, likely malignant. The 4B and 4C nodules have a high likelihood of neoplasm simply based on screening CT features, even if positron emission tomography, needle biopsy, and/or bronchoscopy are negative. Category 5 nodules demonstrate frankly malignant behavior on screening CT, and category 6 scans contain tissue-proven malignancies.

Résumé

En dépit des résultats positifs d'un récent essai clinique randomisé visant le dépistage du cancer du poumon par tomodensitométrie (TDM), l'instauration ou la diffusion des pratiques de dépistage continue de soulever des défis de taille, en ce qui concerne notamment la classification non équivoque du risque relatif et le bilan proposé pour évaluer les nodules décelés par dépistage. Après avoir analysé la documentation scientifique actuelle, nous avons formulé une proposition de système de données et de déclaration à six niveaux, appelée méthodologie LU-RADS (Lung-Reporting and Data System), qui permet de classifier les résultats des tomodensitométries de dépistage en fonction du nodule présentant le risque le plus élevé de cancer du poumon. Dans le cadre de la méthodologie LU-RADS, plus les résultats correspondent à un niveau élevé, plus le risque de malignité est élevé. Le niveau LU-RADS renvoie également directement à des recommandations concernant le cheminement de suivi. Ainsi, comparativement aux comptes rendus descriptifs actuels, cette méthodologie devrait améliorer la communication avec les patients et les cliniciens, et fournir un cadre de collecte de données qui facilitera l'évaluation du programme de dépistage et la formation des radiologistes. En résumé, dans le cadre de la méthodologie LU-RADS, la catégorie 1 correspond aux examens de tomodensitométrie qui ne révèlent aucun nodule et exigent simplement du patient qu'il poursuive le programme de dépistage périodique. Les résultats de catégorie 2 font état d'un risque minimal, notamment de nodules de moins de 5 mm, de nodules péri-scissuraux ou de nodules stables à long terme qui n'exigent aucune autre mesure avant la tenue de la prochaine tomodensitométrie de dépistage périodique. Les résultats de catégorie 3 révèlent des nodules de nature indéterminée. Une tomodensitométrie de suivi doit alors être réalisée, dans un intervalle qui varie selon la taille du nodule (selon qu'il s'agit d'un petit nodule de 5 à 9 mm ou d'un gros nodule de ≥ 10 mm et possiblement transitoire). Pour leur part, les résultats des examens tomodensitométriques de catégorie 4 présentent des caractéristiques suspectes et se subdivisent en trois catégories: 4A, faible risque de malignité; 4B, probabilité d'adénocarcinome de bas grade; et 4C, probabilité de malignité. Les nodules des catégories 4B et 4C sont associés à une forte probabilité de néoplasie simplement en raison des caractéristiques observées par tomodensitométrie de dépistage, et ce, même si une tomographie par émission de positons (TEP), une ponction-biopsie ou une bronchoscopie révèle des résultats négatifs. Enfin, les nodules de catégorie 5 révèlent une séméiologie maligne nettement observable par TDM de dépistage, alors que ceux de catégorie 6 contiennent des tissus dont la malignité a été prouvée.

Get full access to this article

View all access and purchase options for this article.

References

1. Wood D.E. Eapen G.A. Ettinger D.S. et al. Lung cancer screening J Natl Compr Canc Netw 2012; 10:240–265.
2. Bach P.B. Mirkin J.N. Oliver T.K. et al. Benefits and harms of CT screening for lung cancer: a systematic review JAMA 2012; 307:2418–2429.
3. Wender R. Fontham E.T. Barrera E. et al. American Cancer Society lung cancer screening guidelines CA Cancer J Clin 2013; 63:106–117.
4. U.S. Preventative Services Task Force. Draft Recommendation Statement. Screening for Lung Cancer: U.S. Preventive Services Task Force Recommendation Statement. Available at: http://www.uspreventiveservicestaskforce.org/uspstf13/lungcan/lungcandraftrec.htm. Accessed March 20, 2014.
5. Mulshine J.L. van Klaveren R.J. Lung cancer screening: what is the benefit and what do we do about it? Lung Cancer 2011; 71:247–248.
6. Field J.K. Baldwin D. Brain K. et al. CT screening for lung cancer in the UK: position statement by UKLS investigators following the NLST report Thorax 2011; 66:736–737.
7. Silvestri G.A. Screening for lung cancer: it works, but does it really work? Ann Intern Med 2011; 155:537–539.
8. Wiener R.S. Gould M.K. Woloshin S. et al. What do you mean, a spot? A qualitative analysis of patients' reactions to discussions with their physicians about pulmonary nodules Chest 2013; 143:672–677.
9. Mckee B.J. McKee A.B. Flacke S. Initial experience with a free, high-volume, low-dose CT lung cancer screening program J Am Coll Radiol 2013; 10:586–592.
10. Baldwin D.R. Duffy S.W. Walk N.J. et al. UK Lung Screen (UKLS) nodule management protocol: modeling of a single screen randomized controlled trial of low-dose CT screening for lung cancer Thorax 2011; 66:308–313.
11. Xu D.M. Gietema H. de Koning H. et al. Nodule management protocol of the NELSON randomised lung cancer screening trial Lung Cancer 2006; 54:177–184.
12. D'Orsi C.J. Mendelson E.B. Ikeda D.M. et al. Breast Imaging Reporting and Data System: ACR BI-RADS—Breast Imaging Atlas 2003 American College of Radiology Reston, VA
13. Leader J.K. Warfel T.E. Fuhrman C.R. et al. Pulmonary nodule detection with low-dose CT of the lung: agreement among radiologists AJR Am J Roentgenol 2005; 185:973–978.
14. Henschke C.I. Naidich D.P. Yankelevitz D.F. et al. Early lung cancer action project: initial findings on repeat screenings Cancer 2001; 92:153–159.
15. Slattery M.M. Foley C. Kenny D. et al. Long-term follow-up of non-calcified pulmonary nodules (<10 mm) identified during low-dose CT screening for lung cancer Eur Radiol 2012; 22:1923–1928.
16. Ahn M.I. Gleeson T.G. Chan I.H. et al. Perifissural nodules seen at CT screening for lung cancer Radiology 2010; 254:949–956.
17. Takashima S. Sone S. Li F. et al. Small solitary pulmonary nodules (< or =1 cm) detected at population-based CT screening for lung cancer: reliable high-resolution CT features of benign lesions AJR Am J Roentgenol 2003; 180:955–964.
18. De Cicco C. Bellomi M. Bartolomei M. et al. Imaging of lung hamartomas by multidetector computed tomography and positron emission tomography Ann Thorac Surg 2008; 86:1769–1772.
19. Huang Y. Xu D. Jirapatnakul A. et al. CT- and computer-based features of small hamartomas Clin Imaging 2011; 35:116–122.
20. Hillerdal G. Rounded atelectasis. Clinical experience with 74 patients Chest 1989; 95:836–841.
21. Henschke C.I. Yankelevitz D.F. Naidich D.P. et al. CT screening for lung cancer: suspiciousness of nodules according to size on baseline scans Radiology 2004; 231:164–168.
22. Swensen S.J. Jett J.R. Hartman T.E. et al. CT screening for lung cancer: five-year prospective experience Radiology 2005; 235:259–265.
23. van Klaveren R.J. Oudkerk M. Prokop M. et al. Management of lung nodules detected by volume CT scanning N Engl J Med 2009; 361:2221–2229.
24. Piyavisetpat N. Aquino S.L. Hahn P.F. et al. Small incidental pulmonary nodules: how useful is short-term interval CT follow-up? J Thorac Imaging 2005; 20:5–9.
25. McWilliams A.M. Mayo J.R. Ahn M.I. et al. Lung cancer screening using multi-slice thin-section computed tomography and autofluorescence bronchoscopy J Thorac Oncol 2006; 1:61–68.
26. Bellomi M. Veronesi G. Rampinelli C. et al. Evolution of lung nodules < or =5 mm detected with low-dose CT in asymptomatic smokers Br J Radiol 2007; 80:708–712.
27. Libby D.M. Smith J.P. Altorki N.K. et al. Managing the small pulmonary nodule discovered by CT Chest 2004; 125:1522–1529.
28. van't Westeinde S.C. Horeweg N. Vernhout R.M. et al. The role of conventional bronchoscopy in the workup of suspicious CT scan screen-detected pulmonary nodules Chest 2012; 142:377–384.
29. National Lung Screening Trial Research TeamAberle D.R. Adams A.M. et al. Reduced lung-cancer mortality with low-dose computed tomographic screening N Engl J Med 2011; 365:395–409.
30. Aberle D.R. DeMello S. Berg C.D. et al. Results of the two incidence screenings in the National Lung Screening Trial N Engl J Med 2013; 369:920–931.
31. MacMahon H. Austin J.H.M. Gamsu G. et al. Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society Radiology 2005; 237:395–400.
32. Naidich D.P. Bankier A.A. MacMahon H. et al. Recommendations for the management of subsolid pulmonary nodules detected at CT: a statement from the Fleischner Society Radiology 2013; 266:304–317.
33. International Early Lung Cancer Action Program InvestigatorsHenschke C.I. Yankelevitz D.F. et al. Survival of patients with stage I lung cancer detected on CT screening N Engl J Med 2006; 355:1763–1771.
34. McWilliams A. Tammemagi M. Mayo J. et al. Probability of cancer in pulmonary nodules detected on first screening CT N Engl J Med 2013; 369:910–919.
35. Henschke C.I. Yankelevitz D.F. Yip R. et al. Lung cancers diagnosed at annual CT screening: volume doubling times Radiology 2012; 263:578–583.
36. Jennings S.G. Winer-Muram H.T. Tann M. et al. Distribution of stage I lung cancer growth rates determined with serial volumetric CT measurements Radiology 2006; 241:554–563.
37. Lee S.M. Park C.M. Goo J.M. et al. Transient part-solid nodules detected at screening thin-section CT for lung cancer: comparison with persistent part-solid nodules Radiology 2010; 255:242–251.
38. Libby D.M. Wu N. Lee I.J. et al. CT screening for lung cancer: the value of short-term CT follow-up Chest 2006; 129:1039–1042.
39. Roberts H.C. Patsios D. Paul N.S. et al. Lung cancer screening with low-dose computed tomography: Canadian experience Can Assoc Radiol J 2007; 58:225–235.
40. Felix L. Serra-Tosio G. Lantuejoul S. et al. CT characteristics of resolving ground-glass opacities in a lung cancer screening programme Eur J Radiol 2011; 77:410–416.
41. Chun E.J. Lee H.J. Kang W.J. et al. Differentiation between malignancy and inflammation in pulmonary ground-glass nodules: the feasibility of integrated (18)F-FDG PET/CT Lung Cancer 2009; 65:180–186.
42. Ashraf H. Dirksen A. Loft A. et al. Combined use of positron emission tomography and volume doubling time in lung cancer screening with low-dose CT scanning Thorax 2011; 66:315–319.
43. McWilliams A. Mayo J. Computed tomography-detected noncalcified pulmonary nodules: a review of evidence for significance and management Proc Am Thorac Soc 2008; 5:900–904.
44. May B.J. Levsky J.M. Godelman A. et al. Should CT play a greater role in preventing the resection of granulomas in the era of PET? AJR Am J Roentgenol 2011; 196:795–800.
45. Deppen S. Putnam J.B. Jr. Andrade G. et al. Accuracy of FDG-PET to diagnose lung cancer in a region of endemic granulomatous disease Ann Thorac Surg 2011; 92:428–432discussion 433
46. Yao X. Gomes M.M. Tsao M.S. et al. Fine-needle aspiration biopsy versus core-needle biopsy in diagnosing lung cancer: a systematic review Curr Oncol 2012; 19:e16–e27.
47. Fan L. Liu S.Y. Li Q.C. et al. Multidetector CT features of pulmonary focal ground-glass opacity: differences between benign and malignant Br J Radiol 2012; 85:897–904.
48. Kim H.Y. Shim Y.M. Lee K.S. et al. Persistent pulmonary nodular ground-glass opacity at thin-section CT: histopathologic comparisons Radiology 2007; 245:267–275.
49. Nakata M. Saeki H. Takata I. et al. Focal ground-glass opacity detected by low-dose helical CT Chest 2002; 121:1464–1467.
50. Suzuki K. Asamura H. Kusumoto M. et al. “Early” peripheral lung cancer: prognostic significance of ground glass opacity on thin-section computed tomographic scan Ann Thorac Surg 2002; 74:1635–1639.
51. Nakayama H. Yamada K. Saito H. et al. Sublobar resection for patients with peripheral small adenocarcinomas of the lung: surgical outcome is associated with features on computed tomographic imaging Ann Thorac Surg 2007; 84:1675–1679.
52. Yoshizawa A. Motoi N. Riely G.J. et al. Impact of proposed IASLC/ATS/ERS classification of lung adenocarcinoma: prognostic subgroups and implications for further revision of staging based on analysis of 514 stage I cases Mod Pathol 2011; 24:653–664.
53. Veronesi G. Maisonneuve P. Bellomi M. et al. Estimating overdiagnosis in low-dose computed tomography screening for lung cancer: a cohort study Ann Intern Med 2012; 157:776–784.
54. Vazquez M. Carter D. Brambilla E. et al. Solitary and multiple resected adenocarcinomas after CT screening for lung cancer: histopathologic features and their prognostic implications Lung Cancer 2009; 64:148–154.
55. Greenberg A.K. Lu F. Goldberg J.D. et al. CT scan screening for lung cancer: risk factors for nodules and malignancy in a high-risk urban cohort PLoS One 7 2012 e39403
56. Kodama K. Higashiyama M. Yokouchi H. et al. Natural history of pure ground-glass opacity after long-term follow-up of more than 2 years Ann Thorac Surg 2002; 73:386–392.
57. Sawada S. Komori E. Nogami N. et al. Evaluation of lesions corresponding to ground-glass opacities that were resected after computed tomography follow-up examination Lung Cancer 2009; 65:176–179.
58. Hasegawa M. Sone S. Takashima S. et al. Growth rate of small lung cancers detected on mass CT screening Br J Radiol 2000; 73:1252–1259.
59. Oda S. Awai K. Murao K. et al. Volume-doubling time of pulmonary nodules with ground glass opacity at multidetector CT: assessment with computer-aided three-dimensional volumetry Acad Radiol 2011; 18:63–69.
60. Maeda R. Isowa N. Onuma H. et al. The maximum standardized uptake values on positron emission tomography to predict the Noguchi classification and invasiveness in clinical stage IA adenocarcinoma measuring 2 cm or less in size Interact Cardiovasc Thorac Surg 2009; 9:70–73.
61. Tsunezuka Y. Shimizu Y. Tanaka N. et al. Positron emission tomography in relation to Noguchi's classification for diagnosis of peripheral non-small-cell lung cancer 2 cm or less in size World J Surg 2007; 31:314–317.
62. Heyneman L.E. Patz E.F. PET imaging in patients with bronchioloalveolar cell carcinoma Lung Cancer 2002; 38:261–266.
63. Franks T.J. Galvin J.R. Jett J.R. et al. Expert opinion: role of percutaneous biopsy of part-solid nodules in the IASLC/ATS/ERS international multidisciplinary classification of lung adenocarcinoma J Thorac Imaging 26 2011 189
64. Shimizu K. Ikeda N. Tsuboi M. et al. Percutaneous CT-guided fine needle aspiration for lung cancer smaller than 2 cm and revealed by ground-glass opacity at CT Lung Cancer 2006; 51:173–179.
65. Patz E.F. Pinsky P. Gatsonis C. et al. Overdiagnosis in low-dose computed tomography screening for lung cancer JAMA Intern Med 2014; 174:269–274.
66. Min J.H. Lee H.Y. Lee K.S. et al. Stepwise evaluation from a focal pure pulmonary ground-glass opacity nodule into an invasive lung adenocarcinoma: an observation for more than 10 years Lung Cancer 2010; 69:123–126.
67. Lindell R.M. Hartman T.E. Swensen S.J. et al. Five-year lung cancer screening experience: CT appearance, growth rate, location, and histologic features of 61 lung cancers Radiology 2007; 242:555–562.
68. Mayo J.R. Clifton J.C. Powell T.I. et al. Lung nodules: CT-guided placement of microcoils to direct video-assisted thoracoscopic surgical resection Radiology 2009; 250:576–585.
69. Matsuguma H. Yokoi K. Anraku M. et al. Proportion of ground-glass opacity on high-resolution computed tomography in clinical T1 N0 M0 adenocarcinoma of the lung: a predictor of lymph node metastasis J Thorac Cardiovasc Surg 2002; 124:278–284.
70. Ohde Y. Nagai K. Yoshida J. et al. The proportion of consolidation to ground-glass opacity on high resolution CT is a good predictor for distinguishing the population of non-invasive peripheral adenocarcinoma Lung Cancer 2003; 42:303–310.
71. Takashima S. Maruyama Y. Hasegawa M. et al. Prognostic significance of high-resolution CT findings in small peripheral adenocarcinoma of the lung: a retrospective study on 64 patients Lung Cancer 2002; 36:289–295.
72. Lindell R.M. Hartman T.E. Swensen S.J. et al. Lung cancer screening experience: a retrospective review of PET in 22 non-small cell lung carcinomas detected on screening chest CT in a high-risk population AJR Am J Roentgenol 2005; 185:126–131.
73. Gould M.K. Fletcher J. Iannettoni M.D. et al. Evaluation of patients with pulmonary nodules: when is it lung cancer?: ACCP evidence-based clinical practice guidelines (2nd edition) Chest 2007; 132:108S–30.
74. Johnson B.E. Second lung cancers in patients after treatment for an initial lung cancer J Natl Cancer Inst 1998; 90:1335–1345.
75. Revel M.P. Bissery A. Bienvenu M. et al. Are two-dimensional CT measurements of small noncalcified pulmonary nodules reliable? Radiology 2004; 231:453–458.
76. Gietema H.A. Wang Y. Xu D. et al. Pulmonary nodules detected at lung cancer screening: interobserver variability of semiautomated volume measurements Radiology 2006; 241:251–257.
77. Honda O. Johkoh T. Sumikawa H. et al. Pulmonary nodules: 3D volumetric measurement with multidetector CT: effect of intravenous contrast medium Radiology 2007; 245:881–887.
78. Zerhouni E.A. Spivey J.F. Morgan R.H. et al. Factors influencing quantitative CT measurements of solitary pulmonary nodules J Comput Assist Tomogr 1982; 6:1075–1087.
79. Goldin D. Emerson S. Farah M.C. et al. Shielding artificially increases the attenuation of water: study of CT gradient attenuation induced by shielding (CT GAINS) Acad Radiol 2013; 20:231–237.

Cite article

Cite article

Cite article

OR

Download to reference manager

If you have citation software installed, you can download article citation data to the citation manager of your choice

Share options

Share

Share this article

Share with email
EMAIL ARTICLE LINK
Share on social media

Share access to this article

Sharing links are not relevant where the article is open access and not available if you do not have a subscription.

For more information view the Sage Journals article sharing page.

Information, rights and permissions

Information

Published In

Article first published online: May 1, 2014
Issue published: May 2014

Keywords

  1. Nodule risk
  2. Lung cancer screening
  3. Lung nodules
  4. Low-dose computed tomography
  5. National lung screening trial
  6. LU-RADS

Rights and permissions

© 2014 Canadian Association of Radiologists.
Request permissions for this article.
PubMed: 24758919

Authors

Affiliations

Daria Manos, MD
Department of Diagnostic Radiology, QE II Health Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada
Jean M. Seely, MD
Diagnostic Imaging, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
Jana Taylor, MD
McGill Health Center, Montreal General Site, McGill University, Montreal, Quebec, Canada
Joy Borgaonkar, MD
Department of Diagnostic Radiology, QE II Health Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada
Heidi C. Roberts, MD
Department of Medical Imaging, Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
John R. Mayo, MD
Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada

Notes

*
Address for correspondence: Daria Manos, MD, Department of Diagnostic Radiology, QEII VG Site, Room 308, 1276 South Park Street, Halifax, Nova Scotia B3H 2Y9, Canada. [email protected]

Metrics and citations

Metrics

Journals metrics

This article was published in Canadian Association of Radiologists Journal.

VIEW ALL JOURNAL METRICS

Article usage*

Total views and downloads: 134

*Article usage tracking started in December 2016


Articles citing this one

Receive email alerts when this article is cited

Web of Science: 0

Crossref: 0

  1. Assessment of Lung Nodule Detection and Lung CT ...
    Go to citation Crossref Google Scholar
  2. Lung cancer screening, diagnosis, and treatment: The radiologist's per...
    Go to citation Crossref Google Scholar
  3. Concept and prospect of the Human-Computer Multi-Disciplinary team (MD...
    Go to citation Crossref Google Scholar
  4. Medical image data augmentation: techniques, comparisons and interpret...
    Go to citation Crossref Google Scholar
  5. Invasiveness assessment by artificial intelligence against intraoperat...
    Go to citation Crossref Google Scholar
  6. A Novel Deep Learning Model Based on Multi-Scale and Multi-View for De...
    Go to citation Crossref Google Scholar
  7. Contextualizing the Role of Volumetric Analysis in Pulmonary Nodule As...
    Go to citation Crossref Google Scholar
  8. 3D multi‐view squeeze‐and‐excitation convolutional neural network for ...
    Go to citation Crossref Google Scholar
  9. Early Diagnosis and Lung Cancer Screening
    Go to citation Crossref Google Scholar
  10. Qualitative (and Quantitative) Values of the Lung-RADS and Computed To...
    Go to citation Crossref Google Scholar
  11. Comparison of two reader modes of computer-aided diagnosis in lung nod...
    Go to citation Crossref Google Scholar
  12. An ISHAP-based interpretation-model-guided classification method for m...
    Go to citation Crossref Google Scholar
  13. Innovations in Bronchoscopy: Robotic-assisted Bronchoscopy
    Go to citation Crossref Google Scholar
  14. A survey of computer-aided diagnosis of lung nodules from CT scans usi...
    Go to citation Crossref Google Scholar
  15. Characteristics of Ground-Glass Nodules Detected by Low-Dose Computed ...
    Go to citation Crossref Google Scholar
  16. Validation of the BRODERS classifier (Benign versus ...
    Go to citation Crossref Google Scholar
  17. Deep convolutional neural networks for multiplanar lung nodule detecti...
    Go to citation Crossref Google Scholar
  18. SANet: A Slice-Aware Network for Pulmonary Nodule Detection
    Go to citation Crossref Google Scholar
  19. Reporting radiographers and their role in thoracic CT service improvem...
    Go to citation Crossref Google Scholar
  20. Reporting and Data Systems (disambiguation)
    Go to citation Crossref Google Scholar
  21. Automatic Pulmonary Nodule Detection in CT Scans Using Convolutional N...
    Go to citation Crossref Google Scholar
  22. Screening and Early Detection
    Go to citation Crossref Google Scholar
  23. Multi-Task Learning for Lung Nodule Classification on Chest CT
    Go to citation Crossref Google Scholar
  24. How clinical imaging can assess cancer biology
    Go to citation Crossref Google Scholar
  25. Clinical significance of perifissural nodules in the oncologic populat...
    Go to citation Crossref Google Scholar
  26. CT screening for lung cancer: Are we ready to implement in Europe?
    Go to citation Crossref Google Scholar
  27. End-to-end lung cancer screening with three-dimensional deep learning ...
    Go to citation Crossref Google Scholar
  28. Improving Accuracy of Lung Nodule Classification Using Deep Learning w...
    Go to citation Crossref Google Scholar
  29. Incorporating automatically learned pulmonary nodule attributes into a...
    Go to citation Crossref Google Scholar
  30. Initial surgical experience following implementation of lung cancer sc...
    Go to citation Crossref Google Scholar
  31. Early Detection and Chemoprevention of Lung Cancer
    Go to citation Crossref Google Scholar
  32. Validation, comparison, and combination of algorithms for automatic de...
    Go to citation Crossref Google Scholar
  33. Trends in radiology and experimental research
    Go to citation Crossref Google Scholar
  34. Malignancy risk estimation of pulmonary nodules in screening CTs: Comp...
    Go to citation Crossref Google Scholar
  35. Malignancy estimation of Lung-RADS criteria for subsolid nodules on CT...
    Go to citation Crossref Google Scholar
  36. Reflections on the Implementation of Low-dose Computed Tomography Scre...
    Go to citation Crossref Google Scholar
  37. Reflexiones sobre la implementación del cribado mediante tomografía co...
    Go to citation Crossref Google Scholar
  38. Canadian Association of Radiologists: Guide on Computed Tomography Scr...
    Go to citation Crossref Google ScholarPub Med
  39. Lung-RADS Category 4X: Does It Improve Prediction of Malignancy in Sub...
    Go to citation Crossref Google Scholar
  40. Validation of the SHOX2 / PTGER4 DNA Methylation Marker Panel for Plas...
    Go to citation Crossref Google Scholar
  41. Lung Cancer Screening
    Go to citation Crossref Google Scholar
  42. LUNGx Challenge for computerized lung nodule classification
    Go to citation Crossref Google Scholar
  43. The IASLC Lung Cancer Staging Project: Proposals for Coding T Categori...
    Go to citation Crossref Google Scholar
  44. Lung cancer screening makes the GRADE
    Go to citation Crossref Google Scholar
  45. Pulmonary Nodule Detection in CT Images: False Positive Reduction Usin...
    Go to citation Crossref Google Scholar
  46. A Comparative Analysis of Image Segmentation Techniques Toward Automat...
    Go to citation Crossref Google Scholar
  47. Observer Variability for Classification of Pulmonary Nodules on Low-Do...
    Go to citation Crossref Google Scholar
  48. Lung Cancer Screening
    Go to citation Crossref Google Scholar
  49. Automatic detection of large pulmonary solid nodules in thoracic CT im...
    Go to citation Crossref Google Scholar
  50. ESR/ERS white paper on lung cancer screening
    Go to citation Crossref Google Scholar
  51. ESR/ERS white paper on lung cancer screening
    Go to citation Crossref Google Scholar
  52. Surgeons and Lung Cancer Screening
    Go to citation Crossref Google Scholar
  53. Pulmonary Nodule Characterization, Including Computer Analysis and Qua...
    Go to citation Crossref Google Scholar

Figures and tables

Figures & Media

Tables

View Options

Get access

Access options

If you have access to journal content via a personal subscription, university, library, employer or society, select from the options below:

CAR members can access this journal content using society membership credentials.

CAR members can access this journal content using society membership credentials.


Alternatively, view purchase options below:

Purchase 24 hour online access to view and download content.

Access journal content via a DeepDyve subscription or find out more about this option.

View options

PDF/ePub

View PDF/ePub

Full Text

View Full Text