Skip to main content
Log in

Artificial Intelligence in pathology: current applications, limitations, and future directions

  • Review Article
  • Published:
Irish Journal of Medical Science (1971 -) Aims and scope Submit manuscript

Abstract

Purpose

Given AI's recent success in computer vision applications, majority of pathologists anticipate that it will be able to assist them with a variety of digital pathology activities. Massive improvements in deep learning have enabled a synergy between Artificial Intelligence (AI) and deep learning, enabling image-based diagnosis against the backdrop of digital pathology. AI-based solutions are being developed to eliminate errors and save pathologists time.

Aims

In this paper, we will discuss the components that went into the use of Artificial Intelligence in Pathology, its use in the medical profession, the obstacles and constraints that it encounters, and the future possibilities of AI in the medical field.

Conclusions

Based on these factors, we elaborate upon the use of AI in medical pathology and provide future recommendations for its successful implementation in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodfellow I, Bengio Y, Courville A (2016) Introduction. In: Deep Learning. MIT Press p 3–4

  2. Russell SJ, Norvig P, Davis E (2021) Introduction. In: Artificial Intelligence: A Modern Approach. Pearson; 3rd ed p.20–21

  3. Topol E (2019) Deep medicine: how artificial intelligence can make healthcare human again. Basic Books. Chapter 1. Introduction to Deep Medicine p 10–29

  4. McCorduck P (2004) Machines who think: a personal inquiry into the history and prospects of artificial intelligence. Natick: A.K. Peters

  5. Louis DN, Feldman M, Carter AB et al (2016) Computational pathology: a path ahead. Arch Pathol Lab Med 140:41–50. https://doi.org/10.5858/arpa.2015-0093-SA

    Article  PubMed  Google Scholar 

  6. Louis DN, Gerber GK, Baron JM et al (2014) Computational pathology: an emerging definition. Arch Pathol Lab Med 138:1133–1138. https://doi.org/10.5858/arpa.2014-0034-ED

    Article  PubMed  Google Scholar 

  7. Abels E, Pantanowitz L, Aeffner F et al (2019) Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the digital pathology association. J Pathol 249:286–294. https://doi.org/10.1002/path.5331

    Article  PubMed  PubMed Central  Google Scholar 

  8. Saco A, Ramírez J, Rakislova N et al (2016) Validation of whole-slide imaging for histolopathogical diagnosis: current state. Pathobiology 83:89–98. https://doi.org/10.1159/000442823

    Article  PubMed  Google Scholar 

  9. Williams BJ, Bottoms D, Treanor D (2017) Future-proofing pathology: the case for clinical adoption of digital pathology. J Clin Pathol 70:1010–1018. https://doi.org/10.1136/jclinpath-2017-204644

    Article  PubMed  Google Scholar 

  10. Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60:84–90. https://doi.org/10.1145/3065386

  11. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–44. https://doi.org/10.1038/nature14539

  12. Williams B, Hanby A, Millican-Slater R et al (2020) Digital pathology for primary diagnosis of screen-detected breast lesions - experimental data, validation and experience from four centres. Histopathology 76:968–975. https://doi.org/10.1111/his.14079

    Article  PubMed  Google Scholar 

  13. Komura D, Ishikawa S (2018) Machine learning methods for histopathological image analysis. Comput Struct Biotechnol J 16:34–42. https://doi.org/10.1016/j.csbj.2018.01.001

  14. Epstein JI, Allsbrook WC Jr, Amin MB, Egevad LL (2006) Update on the Gleason grading system for prostate cancer: results of an international consensus conference of urologic pathologists. AdvAnatPathol 13:57–59. https://doi.org/10.1097/01.pap.0000202017.78917.18

    Article  Google Scholar 

  15. Gurcan MN, Boucheron LE, Can A et al (2009) Histopathological image analysis: a review. IEEE Rev BiomedEng 2:147–171. https://doi.org/10.1109/RBME.2009.2034865

    Article  Google Scholar 

  16. Erickson BJ, Korfiatis P, Kline TL et al (2018) Deep learning in radiology: Does one size fit all? J Am Coll Radiol 15:521–526. https://doi.org/10.1016/j.jacr.2017.12.027

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wenig BM (2002) Squamous cell carcinoma of the upper aerodigestive tract: precursors and problematic variants. Mod Pathol 15:229–254. https://doi.org/10.1038/modpathol.3880520

    Article  PubMed  Google Scholar 

  18. Harmon SA, Sanford TH, Brown GT et al (2020) Multiresolution application of artificial intelligence in digital pathology for prediction of positive lymph nodes from primary tumors in bladder cancer. JCO Clin Cancer Inform 4:367–382. https://doi.org/10.1200/CCI.19.00155

    Article  PubMed  Google Scholar 

  19. Ibrahim A, Gamble P, Jaroensri R et al (2020) Artificial intelligence in digital breast pathology: techniques and applications. Breast 49:267–273. https://doi.org/10.1016/j.breast.2019.12.007

    Article  PubMed  Google Scholar 

  20. Niazi MKK, Parwani AV, Gurcan MN (2019) Digital pathology and artificial intelligence. Lancet Oncol 20:e253–e261. https://doi.org/10.1016/S1470-2045(19)30154-8

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ali HR, Dariush A, Provenzano E et al (2016) Computational pathology of pre-treatment biopsies identifies lymphocyte density as a predictor of response to neoadjuvant chemotherapy in breast cancer. Breast Cancer Res 18:21–22. https://doi.org/10.1186/s13058-016-0682-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sornapudi S, Stanley RJ, Stoecker WV et al (2018) Deep learning nuclei detection in digitized histology images by Superpixels. J Pathol Inform 9:5. https://doi.org/10.4103/jpi.jpi_74_17

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nicholls HL, John CR, Watson DS et al (2020) Reaching the end-game for GWAS: machine learning approaches for the prioritization of complex disease loci. Front Genet 11:350. https://doi.org/10.3389/fgene.2020.00350

    Article  PubMed  PubMed Central  Google Scholar 

  24. Khera AV, Chaffin M, Aragam KG et al (2018) Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet 50(9):1219–1224. https://doi.org/10.1038/s41588-018-0183-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Försch S, Klauschen F, Hufnagl P, Roth W (2021) Artificial intelligence in pathology. Dtsch Arztebl Int 118:194–204

    PubMed  Google Scholar 

  26. Cruz-Roa A, Gilmore H, Basavanhally A et al (2017) Accurate and reproducible invasive breast cancer detection in whole-slide images: a deep learning approach for quantifying tumor extent. Sci Rep 7:46450. https://doi.org/10.1038/srep46450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kather JN et al (2019) Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study. PLoS Med 16(1):e1002730

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hegde N, Hipp JD, Liu Y et al (2019) Similar image search for histopathology: SMILY. NPJ Digit Med 2:56. https://doi.org/10.1038/s41746-019-0131-z

  29. Ferroni P, Zanzotto F, Riondino S et al (2019) Breast cancer prognosis using a machine learning approach. Cancers (Basel) 11:328. https://doi.org/10.3390/cancers11030328

  30. Wulczyn E, Steiner DF, Xu Z et al (2020) Deep learning-based survival prediction for multiple cancer types using histopathology images. PLoS One 15:e0233678. https://doi.org/10.1371/journal.pone.0233678

  31. Bejnordi BE, Veta M, van Diest JP et al (2017) Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318:2199–2210. https://doi.org/10.1001/jama.2017.14585

  32. Coudray N, Ocampo PS, Sakellaropoulos T et al (2018) Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat Med 24:1559–1567. https://doi.org/10.1038/s41591-018-0177-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mobadersany P, Yousefi S, Amgad M et al (2018) Predicting cancer outcomes from histology and genomics using convolutional networks. Proc Natl Acad Sci USA 115(13):E2970–E2979. https://doi.org/10.1073/pnas.1717139115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pantanowitz L, Sinard JH, Henricks WH et al (2013) Validating whole slide imaging for diagnostic purposes in pathology: guideline from the College of American Pathologists Pathology and Laboratory Quality Center. Arch Pathol Lab Med 137(12):1710–22. https://doi.org/10.5858/arpa.2013-0093-CP

  35. Kohlberger T, Liu Y, Moran M et al (2019) Whole-Slide image focus quality: automatic assessment and impact on AI cancer detection. J Pathol Inform 10:39–40. https://doi.org/10.4103/jpi.jpi_11_19

    Article  PubMed  PubMed Central  Google Scholar 

  36. Benitez JM, Castro JL, Requena I (1997) Are artificial neural networks black boxes? IEEE Trans Neural Netw 8:1156–1164. https://doi.org/10.1109/72.623216

    Article  CAS  PubMed  Google Scholar 

  37. Hartman DJ, Pantanowitz L, McHugh JS et al (2017) Enterprise implementation of digital pathology: feasibility, challenges, and opportunities. J Digit Imaging 30:555–560. https://doi.org/10.1007/s10278-017-9946-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cui M, Zhang DY (2021) Artificial intelligence and computational pathology. Lab Invest 101:412–422. https://doi.org/10.1038/s41374-020-00514-0

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhil Sajithkumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajithkumar, A., Thomas, J., Saji, A.M. et al. Artificial Intelligence in pathology: current applications, limitations, and future directions. Ir J Med Sci 193, 1117–1121 (2024). https://doi.org/10.1007/s11845-023-03479-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11845-023-03479-3

Keywords

Navigation