Skip to main content

Deep Learning, Sparse Coding, and SVM for Melanoma Recognition in Dermoscopy Images

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9352))

Included in the following conference series:

Abstract

This work presents an approach for melanoma recognition in dermoscopy images that combines deep learning, sparse coding, and support vector machine (SVM) learning algorithms. One of the beneficial aspects of the proposed approach is that unsupervised learning within the domain, and feature transfer from the domain of natural photographs, eliminates the need of annotated data in the target task to learn good features. The applied feature transfer also allows the system to draw analogies between observations in dermoscopic images and observations in the natural world, mimicking the process clinical experts themselves employ to describe patterns in skin lesions. To evaluate the methodology, performance is measured on a dataset obtained from the International Skin Imaging Collaboration, containing 2624 clinical cases of melanoma (334), atypical nevi (144), and benign lesions (2146). The approach is compared to the prior state-of-art method on this dataset. Two-fold cross-validation is performed 20 times for evaluation (40 total experiments), and two discrimination tasks are examined: 1) melanoma vs. all non-melanoma lesions, and 2) melanoma vs. atypical lesions only. The presented approach achieves an accuracy of 93.1% (94.9% sensitivity, and 92.8% specificity) for the first task, and 73.9% accuracy (73.8% sensitivity, and 74.3% specificity) for the second task. In comparison, prior state-of-art ensemble modeling approaches alone yield 91.2% accuracy (93.0% sensitivity, and 91.0% specificity) first the first task, and 71.5% accuracy (72.7% sensitivity, and 68.9% specificity) for the second. Differences in performance were statistically significant (p \(<\) 0.05), suggesting the proposed approach is an effective improvement over prior state-of-art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cancer Facts & Figures 2014. American Cancer Society (2014)

    Google Scholar 

  2. Melanoma Research Gathers Momentum. The Lancet 385(9985), 2323

    Google Scholar 

  3. Oliveria, S.A., Selvam, N., Mehregan, D., Marchetti, M.A., Divan, H.A., Dasgeb, B., Halpern, A.C.: Biopsies of Nevi in Children and Adolescents in the United States, 2009 Through 2013. JAMA Dermatology, December 2014

    Google Scholar 

  4. Kittler, H., Pehamberger, H., Wolff, K., Binder, M.: Diagnostic accuracy of dermoscopy. The Lancet Oncology 3(3), 159–165 (2002)

    Article  Google Scholar 

  5. Abder-Rahman, A.A., Deserno, T.M.: A systematic review of automated melanoma detection in dermatoscopic images and its ground truth data. In: Proc. SPIE, Medical Imaging 2012: Image Perception, Observer Performance, and Technology Assessment, vol. 8318 (2012)

    Google Scholar 

  6. Braun, R.P., Rabinovitz, H.S., Oliviero, M., Kopf, A.W., Saurat, J.H.: Dermoscopy of pigmented skin lesions. J. Am. Acad. Dermatol. 52(1), 109–121 (2005)

    Article  Google Scholar 

  7. Carli, P., Quercioli, E., Sestini, S., Stante, M., Ricci, L., Brunasso, G., De Giorgi, V.: Pattern analysis, not simplified algorithms, is the most reliable method for teaching dermoscopy for melanoma diagnosis to residents in dermatology. Br. J. Dermatol. 148(5), 981–984 (2003)

    Article  Google Scholar 

  8. Rezze, G.G., Soares de Sá, B.C., Neves, R.I.: Dermoscopy: the pattern analysis. An. Bras. Dermatol. 3, 261–268 (2006)

    Article  Google Scholar 

  9. Aubusson, P.J., Harrison A.G., Ritchie S.M.: Metaphor and Analogy in Science and Education. Springer Science & Technology Education Library, vol. 30 (2006)

    Google Scholar 

  10. Gachon, J., et al.: First Prospective Study of the Recognition Process of Melanoma in Dermatological Practice. Arch. Dermatol. 141(4), 434–438 (2005)

    Article  Google Scholar 

  11. Garnavi, R., Aldeen, M., Bailey, J.: Computer-aided diagnosis of melanoma using border and wavelet-based texture analysis. IEEE Trans. Inf. Technol. Biomed. 16(6), 1239–1252 (2012)

    Article  Google Scholar 

  12. Ganster, H., Pinz, A., Röhrer, R., Wildling, E., Binder, M., Kittler, H.: Automated Melanoma Recognition. IEEE Transactions on Medical Imaging 20(3) (2001)

    Google Scholar 

  13. Colot, O., Devinoy, R., Sombo, A., de Brucq, D.: A colour image processing method for melanoma detection. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, p. 562. Springer, Heidelberg (1998)

    Google Scholar 

  14. Madooei, A., Drew, M.S., Sadeghi, M., Stella Atkins, M.: Automatic Detection of Blue-White Veil by Discrete Colour Matching in Dermoscopy Images. Medical Image Computing and Computer-Assisted Intervention, 453–460 (2013)

    Google Scholar 

  15. Celebi, M.E., Iyatomi, H., Stoecker, W.V., Moss, R.H., Rabinovitz, H.S., Argenziano, G., Soyer, H.P.: Automatic detection of blue-white veil and related structures in dermoscopy images. Comput. Med. Imaging Graph. 32(8), 670–677 (2008)

    Article  Google Scholar 

  16. Mendonca, T., Ferreira, P.M., Marques, J.S., Marcal, A.R., Rozeira, J.: PH2 - a dermoscopic image database for research and benchmarking. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 5437–5440 (2013)

    Google Scholar 

  17. Barata, C., Ruela, M., et al.: Two Systems for the Detection of Melanomas in Dermoscopy Images using Texture and Color Features. IEEE Systems Journal 99, 1–15 (2013)

    Google Scholar 

  18. Mairal, J., Bach, F., Ponce, J.: Sparse Modeling for Image and Vision Processing. Foundations and Trends in Computer Graphics and Vision 8(2/3), 85–283 (2014)

    Article  Google Scholar 

  19. International Skin Imaging Collaboration Website. http://www.isdis.net/index.php/isic-project

  20. Abedini, M., Codella, N.C.F., Connell, J.H., Garnavi, R., Merler, M., Pankanti, S., Smith, J.R., Syeda-Mahmood, T.: A generalized framework for medical image classification and recognition. IBM Journal of Research and Development 59(2/3) (2015)

    Google Scholar 

  21. Jia, Y., Shelhamer, E, Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional Architecture for Fast Feature Embedding (2014). arXiv preprint arXiv:1408.5093

  22. Kender, J.R.: Separability and refinement of hierarchical semantic video labels and their ground truth. In: 2008 IEEE International Conference on Multimedia and Expo, pp. 673–676, 23 June 2008

    Google Scholar 

  23. Codella, N., Connell, J., Pankanti, S., Merler, M., Smith, J.R.: Automated medical image modality recognition by fusion of visual and text information. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 487–495. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  24. Zhu, C., Bichot, C., Chen, L.: Multi-scale color local binary patterns for visual object classes recognition. In: 20th IAPR International Conference on Pattern Recognition (ICPR), pp. 3065–3068. IEEE Press, New York (2010)

    Google Scholar 

  25. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, vol. 27, pp. 3320–3328 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noel Codella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Codella, N., Cai, J., Abedini, M., Garnavi, R., Halpern, A., Smith, J.R. (2015). Deep Learning, Sparse Coding, and SVM for Melanoma Recognition in Dermoscopy Images. In: Zhou, L., Wang, L., Wang, Q., Shi, Y. (eds) Machine Learning in Medical Imaging. MLMI 2015. Lecture Notes in Computer Science(), vol 9352. Springer, Cham. https://doi.org/10.1007/978-3-319-24888-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24888-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24887-5

  • Online ISBN: 978-3-319-24888-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics