Oracle® Call Interface
Programmer's Guide

21c
F31830-04
November 2023

ORACLE"

Oracle Call Interface Programmer's Guide, 21c
F31830-04

Copyright © 1996, 2023, Oracle and/or its affiliates.
Primary Author: Mamata Basapur

Contributing Authors: Rod Ward

Contributors: D. Adams, G. Arora, V. Arora, A. Bande, D. Banerjee, S. Banerjee, M. Bastawala, E. Belden, P.
Betteridge, N. Bhatt, T. Bhosle, J. Blowney, R. Chakravarthula, S. Chandrasekar, B. Cheng, D. Chiba, L.
Chidambaran, C. Colrain, T. Das, Ronald Decker, A. Desai, A. Downing, S. Fogel, T. Hoang, N. Ikeda, K.
Itikarlapalli, C. lyer, S. lyer, V. Jitta, C. Jones, A. Keh, B. Khaladkar, S. Krishnaswamy, R. Kumar, R. Kumar,
S. Lahorani, S. Lari, T. H. Lee, T. Li, C. Liang, I. Listvinsky, J. Liu, E. Lu, S. Lynn, K.Mensah, V. Moore, A.
Mullick, K. Neel, M. Orgiyan, E. Paapanen, S. Pelski, R. Phillips, R. Pingte, R. Rajamani, M. Ramacher, A.
Ramappa, S. Sahu, A. Saxena, S. Seshadri, R. Singh, B. Sinha, H. Slattery, J. Stewart, L. Sun, S. Suresh, S.
Tata, H. Tran, A. Tuininga, S. Vallapureddy, M. Vemana, S. Vemuri, B. Venkatakrishnan, K. Verma, G.
Viswanathan, S. Wolicki, L. Wong, S. Youssef, B. Zebian

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience lix
Documentation Accessibility lix
Related Documents Ix
Conventions Ix

1 OCI: Introduction

1.1 Overview of OCI 1-1
1.2 Building an OCI Application 1-3
1.3 Alternatives to OCI 1-3
1.4 SQL Statements 1-4
1.4.1 Data Definition Language 1-5
1.4.2 Control Statements 1-6
1.4.3 Data Manipulation Language 1-6
1.4.4 Queries 1-6
1.45 PL/SQL 1-7
1.4.6 Embedded SQL 1-8
1.4.7 Special OCI Terms for SQL 1-8
1.5 Procedural and Nonprocedural Elements 1-9
1.6 Object Support 1-10
1.6.1 Client-Side Object Cache 1-11
1.6.2 Associative and Navigational Interfaces 1-11
1.6.3 OCI Runtime Environment for Objects 1-12
1.6.4 Type Management: Mapping and Manipulation Functions 1-12
1.6.5 Object Type Translator 1-12
1.7 Simple Oracle Document Access (SODA) 1-13
1.8 Encapsulated Interfaces 1-14
1.9 User Authentication and Password Management 1-14
1.10 Features to Improve Application Performance and Scalability 1-14
1.11 Oracle Database Advanced Queuing 1-15
1.12 XA Library Support 1-15

ORACLE iii

1.13 Oracle Instant Client and Oracle Instant client Basic Light 1-16

2 Building and Configuring OCI Applications

2.1 Header File and Makefile Locations 2-1
2.2 Building an OCI Application on Linux and UNIX 2-1
2.2.1 Oracle Directory Structure 2-2
2.2.2 Demonstration OCI Programs 2-2
2.3 Building an Application on Windows 2-3
2.4 Database Connection Strings 2-4
2.4.1 Examples of Oracle Database Connection String Connect Identifiers 2-4
2.5 Client and Server Operating with Different Versions of Time Zone Files 2-6
2.6 OCI Client-Side Deployment Parameters Using oraaccess.xml 2-7
2.6.1 About oraaccess.xml 2-7
2.6.2 About Client-Side Deployment Parameters Specified in oraaccess.xml 2-7
2.6.3 High Level Structure of oraaccess.xml 2-8
2.6.4 About Specifying Global Parameters in oraaccess.xml 2-9
2.6.5 About Specifying Defaults for Connection Parameters 2-11
2.6.6 Overriding Connection Parameters at the Connection-String Level 2-13
2.6.7 About OCI Session Pool Configuration in oraaccess.xml 2-17
2.6.8 File (oraaccess.xml) Properties 2-18
2.7 About Compatibility and Upgrading 2-19
2.7.1 Oracle Client and Server Cross Version Compatibility 2-19
2.7.2 Version Compatibility of Statically Linked and Dynamically Linked Applications 2-20
2.7.3 Unsupported OCI Routines 2-20
2.8 Fault Diagnosability in OCI 2-22
2.8.1 About Fault Diagnosability in OCI 2-22
2.8.2 ADR Base Location 2-23
2.8.3 Using ADRCI 2-24
2.8.4 Controlling ADR Creation and Disabling Fault Diagnosability Using sqlnet.ora 2-26

3 OCI Programming Basics

3.1 Overview of OCI Program Programming 3-1
3.2 OCI Data Structures 3-3
3.2.1 Handles 3-3
3.2.1.1 About Allocating and Freeing Handles 3-5

3.2.1.2 Environment Handle 3-6

3.2.1.3 Error Handle 3-6

3.2.1.4 Service Context Handle and Associated Handles 3-6

3.2.1.5 Statement, Bind, and Define Handles 3-8

ORACLE iv

3.2.1.6 Describe Handle 3-9

3.2.1.7 Complex Object Retrieval Handle 3-9
3.2.1.8 Thread Handle 3-10
3.2.1.9 Subscription Handle 3-10
3.2.1.10 Direct Path Handles 3-10
3.2.1.11 Connection Pool Handle 3-11
3.2.1.12 Handle Attributes 3-11
3.2.2 OCI Descriptors 3-12
3.2.2.1 Snapshot Descriptor 3-14
3.2.2.2 LOB and BFILE Locators 3-14
3.2.2.3 Parameter Descriptor 3-15
3.2.2.4 ROWID Descriptor 3-15
3.2.2.5 Date, Datetime, and Interval Descriptors 3-16
3.2.2.6 Complex Object Descriptor 3-16
3.2.2.7 Advanced Queuing Descriptors 3-16
3.2.2.8 User Memory Allocation 3-17

3.3 OCI Programming Steps 3-17
3.3.1 OCI Environment Initialization 3-18
3.3.1.1 About Creating the OCI Environment 3-18
3.3.1.2 About Allocating Handles and Descriptors 3-19
3.3.1.3 Application Initialization, Connection, and Session Creation 3-19
3.3.2 About Processing SQL Statements in OCI 3-25
3.3.3 Commit or Roll Back Operations 3-25
3.3.4 About Terminating the Application 3-25
3.3.5 Error Handling in OCI 3-26
3.3.5.1 Return and Error Codes for Data 3-27
3.3.5.2 Functions Returning Other Values 3-28

3.4 Additional Coding Guidelines 3-28
3.4.1 Operating System Considerations 3-29
3.4.2 Parameter Types 3-29
3.4.2.1 Address Parameters 3-30
3.4.2.2 Integer Parameters 3-30
3.4.2.3 Character String Parameters 3-30
3.4.3 Inserting Nulls into a Column 3-30
3.4.4 Indicator Variables 3-31
3.4.4.1 Input 3-31
3.4.4.2 Output 3-32
3.4.4.3 Indicator Variables for Named Data Types and REFs 3-32
3.4.5 About Canceling Calls 3-32
3.4.6 Positioned Updates and Deletes 3-33
3.4.7 Reserved Words 3-34

ORACLE Y

3.4.7.1 Oracle Reserved Namespaces 3-34

3.4.8 Polling Mode Operations in OCI 3-35
3.4.9 Nonblocking Mode in OCI 3-36
3.4.10 Setting Blocking Modes 3-37
3.4.11 Canceling a Nonblocking Call 3-37
3.5 About Using PL/SQL in an OCI Program 3-37
3.6 OCI Globalization Support 3-38
3.6.1 Client Character Set Control from OCI 3-39
3.6.2 Character Control and OCI Interfaces 3-39
3.6.3 Character-Length Semantics in OCI 3-40
3.6.4 Character Set Support in OCI 3-40
3.6.5 Controlling Language and Territory in OCI 3-40
3.6.6 Other OCI Globalization Support Functions 3-41
3.6.7 About Getting Locale Information in OCI 3-41
3.6.8 About OCI and the BOM (Byte Order Mark) 3-42
3.6.9 About Manipulating Strings in OCI 3-43
3.6.10 About Converting Character Sets in OCI 3-44
3.6.11 OCI Messaging Functions 3-45
3.6.12 Imsgen Utility 3-46
3.6.12.1 Guidelines for Text Message Files 3-46

3.6.12.2 An Example of Creating a Binary Message File from a Text Message
File 3-47

4 Data Types

4.1 Oracle Data Types 4-1
4.1.1 About Using External Data Type Codes 4-3

4.2 Internal Data Types 4-4
4.2.1 LONG, RAW, LONG RAW, VARCHAR?2 4-5
4.2.2 Character Strings and Byte Arrays 4-5
4.2.3 UROWID 4-6
4.2.4 BINARY_FLOAT and BINARY_DOUBLE 4-6
425 JSON 4-7

4.3 External Data Types 4-8
431 VARCHAR2 4-10
4.3.1.1 Input 4-10

4.3.1.2 Output 4-11

4.3.2 NUMBER 4-12
4.3.3 64-Bit Integer Host Data Type 4-13
4.3.3.1 OCI Bind and Define for 64-Bit Integers 4-13

4.3.3.2 Support for OUT Bind DML Returning Statements 4-14

434 INTEGER 4-15

ORACLE vi

4.3.5 FLOAT 4-15

43.6 STRING 4-15
4.3.6.1 Input 4-15
4.3.6.2 Output 4-16

4.3.7 VARNUM 4-16

4.3.8 LONG 4-17

439 VARCHAR 4-17

4.3.10 DATE 4-17

43.11 RAW 4-18

4.3.12 VARRAW 4-19

4.3.13 LONG RAW 4-19

4.3.14 UNSIGNED 4-19

4.3.15 LONG VARCHAR 4-19

4316 LONG VARRAW 4-19

4.3.17 CHAR 4-20
4.3.17.1 Input 4-20
4.3.17.2 Output 4-21

4.3.18 CHARZ 4-21

4.3.19 Named Data Types: Object, VARRAY, Nested Table 4-22

4320 REF 4-22

4.3.21 ROWID Descriptor 4-23

4.3.22 LOB Descriptor 4-23
4.3.22.1 BFILE 4-25
4.3.22.2 BLOB 4-26
4.3.22.3 CLOB 4-26
4.3.22.4 NCLOB 4-26

4.3.23 JSON Descriptor 4-26

4.3.24 Datetime and Interval Data Type Descriptors 4-27
4.3.24.1 ANSI DATE 4-27
4.3.24.2 TIMESTAMP 4-27
4.3.24.3 TIMESTAMP WITH TIME ZONE 4-28
4.3.24.4 TIMESTAMP WITH LOCAL TIME ZONE 4-28
4.3.24.5 INTERVAL YEAR TO MONTH 4-28
4.3.24.6 INTERVAL DAY TO SECOND 4-28
4.3.24.7 About Avoiding Unexpected Results Using Datetime 4-29

4.3.25 Native Float and Native Double 4-29

4.3.26 C Object-Relational Data Type Mappings 4-29

4.4 Data Conversions 4-30

4.4.1 Data Conversions for LOB Data Type Descriptors 4-31

4.4.2 Data Conversions for JSON Data Type 4-32

4.4.3 Data Conversions for Datetime and Interval Data Types 4-32

ORACLE vii

4.4.3.1 Assignment Notes 4-33
4.4.3.2 Data Conversion Notes for Datetime and Interval Types 4-33
4.4.4 Datetime and Date Upgrading Rules 4-34
4.4.4.1 Pre-9.0 Client with 9.0 or Later Server 4-34
4.4.4.2 Pre-9.0 Server with 9.0 or Later Client 4-34
4.45 Data Conversion for BINARY_FLOAT and BINARY_DOUBLE in OCI 4-34
4.5 Typecodes 4-36
4.5.1 Relationship Between SQLT and OCI_TYPECODE Values 4-37
4.6 Definitions in oratypes.h 4-39
Using SQL Statements in OCI
5.1 Overview of SQL Statement Processing 5-1
5.2 About Preparing Statements 5-4
5.2.1 About Using Prepared Statements on Multiple Servers 5-5
5.3 About Binding Placeholders in OCI 5-6
5.3.1 Rules for Placeholders 5-7
5.4 About Executing Statements 5-7
5.4.1 Execution Snapshots 5-8
5.4.2 Execution Modes of OCIStmtExecute() 5-9
5.4.2.1 Using Batch Error Mode 5-9
5.4.2.2 Example of Batch Error Mode 5-11
5.5 About Describing Select-List Items 5-12
5.5.1 Implicit Describe 5-13
5.5.2 Explicit Describe of Queries 5-15
5.6 About Defining Output Variables in OCI 5-16
5.7 About Fetching Results 5-16
5.7.1 About Fetching LOB Data 5-17
5.7.2 About Setting Prefetch Count 5-17
5.8 About Using Scrollable Cursors in OCI 5-18
5.8.1 About Increasing Scrollable Cursor Performance 5-20
5.8.2 Example of Access on a Scrollable Cursor 5-20
Binding and Defining in OCI
6.1 Overview of Binding in OCI 6-1
6.1.1 Named Binds and Positional Binds 6-3
6.1.2 OCI Array Interface 6-4
6.1.3 About Binding Placeholders in PL/SQL 6-5
6.1.4 Steps Used in OCI Binding 6-6
6.1.5 PL/SQL Block in an OCI Program 6-7

ORACLE

6.2 Advanced Bind Operations in OCI
6.2.1 About Binding LOBs
6.2.1.1 Binding LOB Locators
6.2.2 About Binding in OCI_DATA_AT_EXEC Mode
6.2.3 About Binding REF CURSOR Variables
6.3 Overview of Defining in OCI
6.3.1 Steps Used in OCI Defining
6.4 Advanced Define Operations in OCI
6.4.1 About Defining LOB Output Variables
6.4.1.1 About Defining LOB Locators
6.4.1.2 About Defining LOB Data
6.4.2 About Defining PL/SQL Output Variables
6.4.3 About Defining for a Piecewise Fetch
6.5 About Binding and Defining LOB Data
6.5.1 Restrictions on Binding LOB Data
6.5.2 Getting the LOB Length when Selecting LOB Data
6.5.3 Examples of Binding LOB Data
6.6 About Binding and Defining JSON Data
6.6.1 Using JSON Descriptor Interface (SQLT_JSON)
6.6.2 Using LOB Locator Interface
6.6.2.1 Fetching JSON as LOBs
6.6.3 Using Data Interface (Other SQL data types)
6.6.3.1 Binds
6.6.3.2 Defines
6.7 About Array Binds and Defines with JSON Data
6.8 About Binding and Defining Arrays of Structures in OCI
6.8.1 Skip Parameters
6.8.1.1 Skip Parameters for Standard Arrays
6.8.2 OCI Calls Used with Arrays of Structures
6.8.3 Arrays of Structures and Indicator Variables
6.9 About Binding and Defining Multiple Buffers
6.10 DML with a RETURNING Clause in OCI

6.10.1 About Using DML with a RETURNING Clause to Combine Two SQL

Statements
6.10.2 About Binding RETURNING...INTO Variables
6.10.3 OCI Error Handling
6.10.4 DML with RETURNING REF...INTO Clause in OCI
6.10.4.1 Binding the Output Variable
6.10.5 Additional Notes About OCI Callbacks

6.10.6 Array Interface for DML RETURNING Statements in OCI

6.11 Character Conversion in OCI Binding and Defining

ORACLE

6-9
6-10
6-10
6-12
6-12
6-13
6-14
6-15
6-15
6-16
6-16
6-17
6-17
6-18
6-18
6-20
6-20
6-23
6-23
6-24
6-24
6-24
6-25
6-25
6-26
6-27
6-27
6-28
6-29
6-29
6-30
6-33

6-34
6-34
6-35
6-35
6-36
6-37
6-37
6-38

6.11.1 About Choosing a Character Set 6-38

6.11.1.1 Character Set Form and ID 6-39
6.11.1.2 Implicit Conversion Between CHAR and NCHAR 6-40

6.11.2 About Setting Client Character Sets in OCI 6-40
6.11.3 About Binding Variables in OCI 6-41
6.11.3.1 About Using the OCI_ATTR_MAXDATA_SIZE Attribute 6-41
6.11.3.2 About Using the OCI_ATTR_MAXCHAR_SIZE Attribute 6-42
6.11.3.3 Buffer Expansion During OCI Binding 6-42
6.11.3.4 Constraint Checking During Defining 6-43
6.11.3.5 General Compatibility Issues for Character-Length Semantics in OCI 6-45

6.12 PL/SQL REF CURSORs and Nested Tables in OCI 6-47
6.13 Natively Describe and Bind All PL/SQL Types Including Package Types 6-48
6.14 Runtime Data Allocation and Piecewise Operations in OCI 6-49
6.14.1 Valid Data Types for Piecewise Operations 6-50
6.14.2 Types of Piecewise Operations 6-50
6.14.3 About Providing INSERT or UPDATE Data at Runtime 6-51
6.14.3.1 Performing a Piecewise Insert or Update 6-52

6.14.4 Piecewise Operations with PL/SQL 6-54
6.14.5 PL/SQL Indexed Table Binding Support 6-54
6.14.5.1 Restrictions for PL/SQL Indexed Table Binding Interface 6-56

6.14.6 About Providing FETCH Information at Run Time 6-56
6.14.6.1 Performing a Piecewise Fetch 6-57

6.14.7 Piecewise Binds and Defines for LOBs 6-58

7 Describing Schema Metadata

7.1 About Using OCIDescribeAny() 7-1
7.1.1 Limitations on OCIDescribeAny() 7-3
7.1.2 Notes on Types and Attributes 7-3

7.1.2.1 Data Type Codes 7-3
7.1.2.2 About Describing Types 7-4
7.1.2.3 Implicit and Explicit Describe Operations 7-4
7.1.2.4 OCI_ATTR_LIST_ARGUMENTS Attribute 7-5

7.2 Parameter Attributes 7-5
7.2.1 Table or View Parameters 7-7
7.2.2 Procedure, Function, and Subprogram Attributes 7-8
7.2.3 Package Attributes 7-9
7.2.4 Type Attributes 7-9
7.2.5 Type Attribute Attributes 7-11
7.2.6 Type Method Attributes 7-12
7.2.7 Collection Attributes 7-13

ORACLE X

7.2.8 Synonym Attributes 7-14
7.2.9 Sequence Attributes 7-15
7.2.10 Column Attributes 7-16
7.2.11 Argument and Result Attributes 7-20
7.2.12 List Attributes 7-21
7.2.13 Schema Attributes 7-22
7.2.14 Database Attributes 7-22
7.2.15 Rule Attributes 7-23
7.2.16 Rule Set Attributes 7-24
7.2.17 Evaluation Context Attributes 7-24
7.2.18 Table Alias Attributes 7-25
7.2.19 Variable Type Attributes 7-25
7.2.20 Name Value Attributes 7-26

7.3 Character-Length Semantics Support in Describe Operations 7-26
7.3.1 Implicit Describing 7-27
7.3.2 Explicit Describing 7-27
7.3.2.1 Client and Server Compatibility Issues for Describing 7-27

7.4 Examples Using OCIDescribeAny() 7-28
7.4.1 Retrieving Column Data Types for a Table 7-28
7.4.2 Describing the Stored Procedure 7-30
7.4.3 Retrieving Attributes of an Object Type 7-31
7.4.4 Retrieving the Collection Element's Data Type of a Named Collection Type 7-33
7.4.5 Describing with Character-Length Semantics 7-35
7.4.6 Describing Each Column to Know Whether It Is an Invisible Column 7-36

8 LOB and BFILE Operations

8.1 About Using OCI Functions for LOBs 8-1
8.1.1 LOB Performance Guidelines 8-2

8.2 About Creating and Modifying Persistent LOBs 8-2
8.3 About Associating a BFILE in a Table with an Operating System File 8-3
8.4 LOB Attributes of an Object 8-4
8.4.1 Writing to a LOB Attribute of an Object 8-4
8.4.2 Transient Objects with LOB Attributes 8-5

8.5 Array Interface for LOBs 8-5
8.6 About Using LOBs of Size Greater than 4 GB 8-6
8.6.1 Functions to Use for the Increased LOB Sizes 8-7
8.6.2 Compatibility and Migration 8-8

8.7 LOB and BFILE Functions in OCI 8-10
8.7.1 About Improving LOB Read/Write Performance 8-11
8.7.1.1 About Using Data Interface for LOBs 8-11

ORACLE

Xi

8.7.1.2 About Using OCILobGetChunkSize() 8-11
8.7.1.3 About Using OCILobWriteAppend2() 8-12
8.7.1.4 About Using OCILobArrayRead() and OCILobArrayWrite() 8-12
8.7.2 Functions for Opening and Closing LOBs 8-13
8.7.2.1 Restrictions on Opening and Closing LOBs 8-13
8.7.3 LOB Read and Write Callbacks 8-14
8.7.3.1 Callback Interface for Streaming 8-14
8.7.3.2 Reading LOBs by Using Callbacks 8-15
8.7.3.3 Writing LOBs by Using Callbacks 8-16
8.8 Temporary LOB Support 8-18
8.8.1 Creating and Freeing Temporary LOBs 8-19
8.8.2 Temporary LOB Durations 8-20
8.8.3 About Freeing Temporary LOBs 8-21
8.8.4 Take Care When Assigning Pointers 8-21
8.8.5 Temporary LOB Example 8-22
8.9 Prefetching of LOB Data, Length, and Chunk Size 8-25
8.10 Options of SecureFiles LOBs 8-28
9 Managing Scalable Platforms

9.1 OCI Support for Transactions 9-1
9.2 Levels of Transactional Complexity 9-2
9.2.1 Simple Local Transactions 9-2
9.2.2 Serializable or Read-Only Local Transactions 9-3
9.2.3 Global Transactions 9-3
9.2.3.1 Transaction Identifiers 9-3
9.2.3.2 Attribute OCI_ATTR_TRANS_NAME 9-4
9.2.3.3 Transaction Branches 9-4
9.2.3.4 Branch States 9-6
9.2.3.,5 Detaching and Resuming Branches 9-6
9.2.3.6 About Setting the Client Database Name 9-6
9.2.3.7 One-Phase Commit Versus Two-Phase Commit 9-7
9.2.3.8 Preparing Multiple Branches in a Single Message 9-8
9.2.4 Transaction Examples 9-8
9.2.5 Initialization Parameters 9-8
9.2.5.1 Showing Update Successfully, One-Phase Commit 9-9

9.2.5.2 Showing Starting a Transaction, Detach, Resume, Prepare, Two-Phase
Commit 9-9
9.2.5.3 Showing a Read-Only Update Fails 9-10
9.2.5.4 Showing Starting a Read-Only Transaction, Select, and Commit 9-11
9.3 Password and Session Management 9-11
9.3.1 OCI Authentication Management 9-11

ORACLE Xii

9.3.2 OCI Password Management
9.3.2.1 Gradual Database Password Rollover
9.3.3 Secure External Password Store
9.3.4 OCI Session Management
9.4 Middle-Tier Applications in OCI
9.4.1 OCI Attributes for Middle-Tier Applications
9.4.1.1 OCI_CRED_PROXY
9.4.1.2 OCI_ATTR_PROXY_CREDENTIALS
9.4.1.3 OCI_ATTR_DISTINGUISHED_NAME
9.4.1.4 OCI_ATTR_CERTIFICATE
9.4.1.5 OCI_ATTR_INITIAL_CLIENT_ROLES
9.4.1.6 OCI_ATTR_CLIENT_IDENTIFIER
9.4.1.7 OCI_ATTR_PASSWORD
9.5 Externally Initialized Context in OCI
9.5.1 Externally Initialized Context Attributes in OCI
9.5.1.1 OCI_ATTR_APPCTX_SIZE
9.5.1.2 OCI_ATTR_APPCTX_LIST
9.5.1.3 Session Handle Attributes Used to Set an Externally Initialized Context
9.5.2 End-to-End Application Tracing
9.5.21 OCI_ATTR_COLLECT_CALL_TIME
9.5.2.2 OCI_ATTR_CALL_TIME
9.5.2.3 Attributes for End-to-End Application Tracing
9.5.3 Using OCISessionBegin() with an Externally Initialized Context
9.6 Client Application Context
9.6.1 Using Multiple SET Operations
9.6.2 Using CLEAR-ALL Operations Between SET Operations
9.6.3 Network Transport and PL/SQL on Client Namespace
9.7 Using Edition-Based Redefinition
9.8 OCI Security Enhancements
9.8.1 Controlling the Database Version Banner Displayed
9.8.2 Banners for Unauthorized Access and User Actions Auditing
9.8.3 Non-Deferred Linkage
9.9 Overview of OCI Multithreaded Development
9.9.1 Advantages of OCI Thread Safety
9.9.2 OCI Thread Safety and Three-Tier Architectures
9.9.3 About Implementing Thread Safety
9.9.3.1 About Polling Mode Operations and Thread Safety
9.9.3.2 Mixing 7.x and Later Release OCI Calls
9.10 OCIThread Package
9.10.1 Initialization and Termination
9.10.1.1 OCIThread Context

ORACLE

9-13
9-13
9-14
9-15
9-15
9-17
9-17
9-17
9-18
9-18
9-19
9-19
9-20
9-23
9-23
9-23
9-24
9-24
9-25
9-25
9-25
9-26
9-27
9-29
9-30
9-30
9-31
9-32
9-33
9-33
9-34
9-35
9-35
9-36
9-36
9-36
9-38
9-38
9-38
9-39
9-40

Xiii

9.10.2 Passive Threading Primitives 9-40

9.10.2.1 OCIThreadMutex 9-41
9.10.2.2 OCIThreadKey 9-42
9.10.2.3 OCIThreadKeyDestFunc 9-42
9.10.2.4 OCIThreadld 9-43
9.10.3 Active Threading Primitives 9-43
9.10.3.1 OCIThreadHandle 9-44

10 Session Pooling and Connection Pooling in OCI

10.1 Session Pooling in OCI 10-1
10.1.1 Functionality of OCI Session Pooling 10-2
10.1.2 Homogeneous and Heterogeneous Session Pools 10-2
10.1.3 About Using Tags in Session Pools 10-2

10.1.3.1 Multi-Property Tags 10-3
10.1.4 OCI Handles for Session Pooling 10-6
10.1.4.1 OCISPool 10-6
10.1.4.2 OCIAuthinfo 10-6
10.1.5 Using OCI Session Pooling 10-7
10.1.6 OCI Calls for Session Pooling 10-8
10.1.6.1 Allocate the Pool Handle 10-9
10.1.6.2 Create the Pool Session 10-9
10.1.6.3 Log On to the Database 10-9
10.1.6.4 Log Off from the Database 10-10
10.1.6.5 Destroy the Session Pool 10-11
10.1.6.6 Free the Pool Handle 10-11
10.1.7 Example of OCI Session Pooling 10-11

10.2 Database Resident Connection Pooling 10-12

10.3 About Using Oracle Connection Manager in Traffic Director Mode 10-12

10.4 Connection Pooling in OCI 10-15
10.4.1 OCI Connection Pooling Concepts 10-15

10.4.1.1 Similarities and Differences from a Shared Server 10-16
10.4.1.2 Stateless Sessions Versus Stateful Sessions 10-16
10.4.1.3 Multiple Connection Pools 10-17
10.4.1.4 Transparent Application Failover 10-17
10.4.2 Using OCI Calls for Connection Pooling 10-18
10.4.2.1 Allocate the Pool Handle 10-18
10.4.2.2 Create the Connection Pool 10-19
10.4.2.3 Log On to the Database 10-20
10.4.2.4 Deal with SGA Limitations in Connection Pooling 10-21
10.4.2.5 Log Off from the Database 10-22

ORACLE Xiv

10.4.2.6 Destroy the Connection Pool 10-23
10.4.2.7 Free the Pool Handle 10-23

10.4.3 Examples of OCI Connection Pooling 10-23
10.5 When to Use Connection Pooling, Session Pooling, or Neither 10-24
10.5.1 Functions for Session Creation 10-25
10.5.2 About Choosing Between Different Types of OCI Sessions 10-26

11 High Availability in OCI

11.1 Runtime Connection Load Balancing 11-1
11.2 HA Event Notification 11-1
11.2.1 OCIEvent Handle 11-3
11.2.2 OCI Failover for Connection and Session Pools 11-3
11.2.3 OCI Failover for Independent Connections 11-4
11.2.4 Event Callback 11-4
11.2.5 Custom Pooling: Tagged Server Handles 11-5
11.2.6 About Determining Transparent Application Failover (TAF) Capabilities 11-6
11.3 Transparent Application Failover in OCI 11-7
11.3.1 About Configuring Transparent Application Failover 11-7
11.3.2 Transparent Application Failover Callbacks in OCI 11-8
11.3.3 Transparent Application Failover Callback Structure and Parameters 11-9
11.3.4 Failover Callback Structure and Parameters 11-10
11.3.5 Failover Callback Registration 11-11
11.3.6 Failover Callback Example 11-11
11.3.7 Handling OCI_FO_ERROR 11-12
11.4 OCI and Transaction Guard 11-14
11.4.1 Developing Applications that Use Transaction Guard 11-15
11.4.1.1 Typical Transaction Guard Usage 11-16
11.4.1.2 Transaction Guard Examples 11-17

11.5 OCI and Application Continuity 11-22
11.5.1 About Added Support for Application Continuity 11-23
11.5.2 What Happens Following a Recoverable Error 11-23
11.5.3 Criteria for Successful Replay 11-24
11.5.4 What Factors Disable Application Continuity in OCI 11-24
11.5.5 Failed Replay 11-25
11.5.6 When Is Application Continuity Most Effective 11-25
11.5.6.1 Application Continuity in OCI Does Not Support These Constructs 11-25
11.5.6.2 Possible Side Effects of Application Continuity 11-26

11.5.7 When Application Continuity in OCI Can Fail Over 11-26
11.6 Support for Transparent Application Continuity 11-28

ORACLE

XV

11.6.1 Service Attributes and Supported Values 11-28
12 Notification Methods and Database Advanced Queuing
12.1 About Continuous Query Notification 12-1
12.2 Publish-Subscribe Notification in OCI 12-2
12.2.1 Publish-Subscribe Registration Functions in OCI 12-3
12.2.1.1 Publish-Subscribe Register Directly to the Database 12-4
12.2.1.2 Open Registration for Publish-Subscribe 12-7
12.2.1.3 Using OCI to Open Register with LDAP 12-8
12.2.1.4 Setting QOS, Timeout Interval, Namespace, Client Address, and Port
Number 12-10
12.2.1.5 OCI Functions Used to Manage Publish-Subscribe Notification 12-11
12.2.2 Notification Callback in OCI 12-11
12.2.3 Notification Procedure 12-14
12.2.4 Publish-Subscribe Direct Registration Example 12-14
12.2.5 Publish-Subscribe LDAP Registration Example 12-19
12.3 OCI and Database Advanced Queuing 12-22
12.3.1 OCI Database Advanced Queuing Functions 12-23
12.3.2 OCI Database Advanced Queuing Descriptors 12-23
12.3.3 Database Advanced Queuing in OCI Versus PL/SQL 12-24
12.3.4 Using Buffered Messaging 12-29
13 User-Defined Callback Functions in OCI
13.1 About Registering User Callbacks in OCI 13-1
13.1.1 OClUserCallbackRegister 13-3
13.1.2 User Callback Function 13-3
13.1.3 User Callback Control Flow 13-4
13.1.4 User Callback for OCIErrorGet() 13-5
13.1.5 Errors from Entry Callbacks 13-6
13.1.6 Dynamic Callback Registrations 13-6
13.1.7 About Loading Multiple Packages 13-6
13.1.8 Package Format 13-7
13.1.9 User Callback Chaining 13-8
13.1.10 About Accessing Other Data Sources Through OCI 13-8
13.1.11 Restrictions on Callback Functions 13-8
13.1.12 Example of OCI Callbacks 13-9
13.2 OCI Callbacks from External Procedures 13-11

ORACLE

XVi

14 Performance Topics

14.1 Statement Caching in OCI 14-1
14.1.1 Statement Caching Without Session Pooling in OCI 14-2
14.1.2 Statement Caching with Session Pooling in OCI 14-2
14.1.3 Rules for Statement Caching in OCI 14-3
14.1.4 Bind and Define Optimization in Statement Caching 14-5
14.1.5 OCI Statement Caching Code Example 14-6

14.2 Implicit Fetching of ROWIDs 14-6
14.2.1 About Implicit Fetching of ROWIDs 14-6
14.2.2 Example of Implicit Fetching of ROWIDs 14-8

14.3 OCI Support for Implicit Results 14-9

14.4 Client Result Cache 14-12

14.5 Client Statement Cache Auto-Tuning 14-12
14.5.1 About Auto-Tuning Client Statement Cache 14-12
14.5.2 Benefit of Auto-Tuning Client Statement Cache 14-13
14.5.3 Client Statement Cache Auto-Tuning Parameters 14-13

14.5.3.1 <statement_cache> 14-14
14.5.3.2 <auto_tune> 14-14
14.5.3.3 Comparison of the Connection Specific Auto-Tuning Parameters 14-16
14.5.4 Usage Examples of Client Statement Cache Auto Tuning 14-18
14.5.5 Enabling and Disabling OCI Client Auto-Tuning 14-19
14.5.6 Usage Guidelines for Auto-Tuning Client Statement Cache 14-19
15 Database Startup and Shutdown
15.1 About OCI Database Startup and Shutdown 15-1
15.2 Examples of Startup and Shutdown in OCI 15-2
16 Support for Pluggable Databases
16.1 Enhancements on OCI API Calls with Multitenant Container Databases (CDB) in
General 16-1
16.2 OCI Enhancements for ALTER SESSION SET CONTAINER 16-2
16.3 Restrictions on OCI API Calls with Multitenant Container Databases (CDB) in
General 16-2
16.4 Restrictions on OCI Calls with ALTER SESSION SET CONTAINER 16-3
16.5 Restrictions on OCI Calls with ALTER SESSION SWITCH CONTAINER SWITCH
SERVICE 16-4
ORACLE XVii

17 OCI Interface for Using Shards

17.1 About Specifying a Sharding Key and Super Sharding Key for Getting a Connection
from an OCI Session Pool 17-5

17.2 About Specifying a Sharding Key and Super Sharding Key for Getting a Connection
from a Custom Pool 17-6

18 OCI Object-Relational Programming

18.1 OCI Object Overview 18-1
18.2 About Working with Objects in OCI 18-2
18.2.1 Basic Object Program Structure 18-3
18.2.2 Persistent Objects, Transient Objects, and Values 18-4
18.2.2.1 Persistent Objects 18-4
18.2.2.2 Transient Objects 18-5
18.2.2.3 Values 18-6
18.3 About Developing an OCI Object Application 18-6
18.3.1 About Representing Objects in C Applications 18-8
18.3.2 About Initializing the Environment and the Object Cache 18-9
18.3.3 About Making Database Connections 18-10
18.3.4 Retrieving an Object Reference from the Server 18-10
18.3.5 Pinning an Object 18-11
18.3.5.1 Array Pin 18-13
18.3.6 Manipulating Object Attributes 18-13
18.3.7 About Marking Objects and Flushing Changes 18-15
18.3.8 Fetching Embedded Objects 18-15
18.3.9 Object Meta-Attributes 18-17
18.3.9.1 Persistent Object Meta-Attributes 18-17
18.3.9.2 Additional Attribute Functions 18-20
18.3.9.3 Transient Object Meta-Attributes 18-20
18.3.10 Complex Object Retrieval 18-20
18.3.10.1 About Prefetching Objects 18-22
18.3.10.2 About Implementing Complex Object Retrieval in OCI 18-23
18.3.11 COR Prefetching 18-24
18.3.11.1 COR Interface 18-24
18.3.11.2 Example of COR 18-25
18.3.12 OCI Versus SQL Access to Objects 18-26
18.3.13 Pin Count and Unpinning 18-27
18.3.14 NULL Indicator Structure 18-28
18.3.15 About Creating Objects 18-31
18.3.15.1 Attribute Values of New Objects 18-31
18.3.16 About Freeing and Copying Objects 18-33

ORACLE Xviii

18.3.17 Object Reference and Type Reference 18-33
18.3.18 Create Objects Based on Object Views and Object Tables with Primary-Key-
Based OIDs 18-34
18.3.19 Error Handling in Object Applications 18-35
18.4 About Type Inheritance 18-35
18.4.1 Substitutability 18-36
18.4.2 NOT INSTANTIABLE Types and Methods 18-37
18.4.3 OCI Support for Type Inheritance 18-38
18.4.3.1 OCIDescribeAny() 18-38
18.4.3.2 Bind and Define Functions 18-38
18.4.3.3 OCIObjectGetTypeRef() 18-39
18.4.3.4 OCIObjectCopy() 18-39
18.4.3.5 OCICollAssignElem() 18-39
18.4.3.6 OCICollAppend() 18-39
18.4.3.7 OCICollGetElem() 18-40
18.4.4 OTT Support for Type Inheritance 18-40
18.5 About Type Evolution 18-40
19 Object-Relational Data Types in OCI
19.1 Overview of OCI Functions for Objects 19-1
19.2 About Mapping Oracle Data Types to C 19-2
19.2.1 OCI Type Mapping Methodology 19-3
19.3 About Manipulating C Data Types with OCI 19-4
19.3.1 Precision of Oracle Number Operations 19-5
19.4 Date (OClIDate) 19-5
19.4.1 Date Example 19-6
19.5 Datetime and Interval (OCIDateTime, OClinterval) 19-7
19.5.1 About Datetime Functions 19-8
19.5.2 Datetime Example 19-10
19.5.3 About Interval Functions 19-10
19.6 Number (OCINumber) 19-12
19.6.1 OCINumber Examples 19-12
19.7 Fixed or Variable-Length String (OCIString) 19-14
19.7.1 About String Functions 19-15
19.7.2 String Example 19-15
19.8 Raw (OCIRaw) 19-16
19.8.1 About Raw Functions 19-16
19.8.2 Raw Example 19-17
19.9 Collections (OCITable, OClArray, OCIColl, OCllter) 19-17
19.9.1 Generic Collection Functions 19-18
19.9.2 About Collection Data Manipulation Functions 19-19
ORACLE XiX

19.9.3 About Collection Scanning Functions 19-19

19.9.4 Varray/Collection Iterator Example 19-20
19.9.5 About Nested Table Manipulation Functions 19-21
19.9.5.1 Nested Table Element Ordering 19-21
19.9.6 Nested Table Locators 19-22
19.10 About Multilevel Collection Types 19-22
19.10.1 Multilevel Collection Type Example 19-23
19.11 REF (OCIRef) 19-24
19.11.1 About REF Manipulation Functions 19-24
19.11.2 REF Example 19-25
19.12 Object Type Information Storage and Access 19-25
19.12.1 Descriptor Objects 19-25
19.13 AnyType, AnyData, and AnyDataSet Interfaces 19-26
19.13.1 About Type Interfaces 19-27
19.13.1.1 About Creating a Parameter Descriptor for OCIType Calls 19-28
19.13.1.2 About Obtaining the OCIType for Persistent Types 19-30
19.13.1.3 Type Access Calls 19-30
19.13.1.4 Extensions to OCIDescribeAny() 19-30
19.13.2 About OClAnyData Interfaces 19-31
19.13.3 NCHAR Typecodes for OCIAnyData Functions 19-32
19.13.4 About OCIAnyDataSet Interfaces 19-32
19.14 About Binding Named Data Types 19-33
19.14.1 Named Data Type Binds 19-33
19.14.2 About Binding REFs 19-34
19.14.3 Information for Named Data Type and REF Binds 19-35
19.14.4 Information Regarding Array Binds 19-35
19.15 About Defining Named Data Types 19-36
19.15.1 About Defining Named Data Type Output Variables 19-36
19.15.2 About Defining REF Output Variables 19-37
19.15.3 Information for Named Data Type and REF Defines, and PL/SQL OUT Binds 19-37
19.15.3.1 Information About Array Defines 19-39
19.16 About Binding and Defining Oracle C Data Types 19-39
19.16.1 Bind and Define Examples 19-41
19.16.2 Salary Update Examples 19-42
19.16.2.1 Method 1 - Fetch, Convert, Assign 19-43
19.16.2.2 Method 2 - Fetch and Assign 19-44
19.16.2.3 Method 3 - Direct Fetch 19-44
19.16.2.4 Summary and Notes 19-45
19.17 SQLT_NTY Bind and Define Examples 19-45
19.17.1 SQLT_NTY Bind Example 19-46

ORACLE XX

19.17.2 SQLT_NTY Define Example 19-47
20 Direct Path Load Interface

20.1 Direct Path Loading Overview 20-1
20.1.1 Data Types Supported for Direct Path Loading 20-3
20.1.2 Direct Path Handles 20-4
20.1.2.1 Direct Path Context 20-4
20.1.2.2 OCI Direct Path Function Context 20-5
20.1.2.3 Direct Path Column Array and Direct Path Function Column Array 20-6
20.1.2.4 Direct Path Stream 20-6
20.1.3 About Direct Path Interface Functions 20-7
20.1.4 Limitations and Restrictions of the Direct Path Load Interface 20-8
20.1.5 Direct Path Load Examples for Scalar Columns 20-9
20.1.5.1 Data Structures Used in Direct Path Loading Example 20-9
20.1.5.2 Outline of an Example of a Direct Path Load for Scalar Columns 20-11
20.1.6 About Using a Date Cache in Direct Path Loading of Dates in OCI 20-14
20.1.6.1 OCI_ATTR_DIRPATH_DCACHE_SIZE 20-15
20.1.6.2 OCI_ATTR_DIRPATH_DCACHE_NUM 20-15
20.1.6.3 OCI_ATTR_DIRPATH_DCACHE_MISSES 20-15
20.1.6.4 OCI_ATTR_DIRPATH_DCACHE_HITS 20-15
20.1.6.5 OCI_ATTR_DIRPATH_DCACHE_DISABLE 20-15
20.1.7 About Validating Format for Oracle NUMBER and DATE Data 20-16
20.2 Direct Path Loading of Object Types 20-16
20.2.1 Direct Path Loading of Nested Tables 20-17
20.2.1.1 Describing a Nested Table Column and Its Nested Table 20-17
20.2.2 Direct Path Loading of Column Objects 20-18
20.2.2.1 Describing a Column Object 20-18
20.2.2.2 Allocating the Array Column for the Column Object 20-20
20.2.2.3 Loading Column Object Data into the Column Array 20-20
20.2.2.4 OCI_DIRPATH_COL_ERROR 20-21
20.2.3 Direct Path Loading of SQL String Columns 20-21
20.2.3.1 Describing a SQL String Column 20-22
20.2.3.2 Allocating the Column Array for SQL String Columns 20-23
20.2.3.3 Loading the SQL String Data into the Column Array 20-24
20.2.4 Direct Path Loading of REF Columns 20-24
20.2.4.1 Describing the REF Column 20-25
20.2.4.2 Allocating the Column Array for a REF Column 20-27
20.2.4.3 Loading the REF Data into the Column Array 20-27
20.2.5 Direct Path Loading of NOT FINAL Object and REF Columns 20-28
20.2.5.1 Inheritance Hierarchy 20-28

ORACLE

XXi

20.2.5.2 About Describing a Fixed, Derived Type to Be Loaded 20-29
20.2.5.3 About Allocating the Column Array 20-30
20.2.5.4 About Loading the Data into the Column Array 20-30

20.2.6 Direct Path Loading of Object Tables 20-30
20.2.7 Direct Path Loading a NOT FINAL Object Table 20-31
20.3 Direct Path Loading in Pieces 20-32
20.3.1 Loading Object Types in Pieces 20-33
20.4 Direct Path Context Handles and Attributes for Object Types 20-33
20.4.1 Direct Path Context Attributes 20-34
20.4.1.1 OCI_ATTR_DIRPATH_OBJ_CONSTR 20-34

20.4.2 Direct Path Function Context and Attributes 20-34
20.4.2.1 OCI_ATTR_DIRPATH_OBJ_CONSTR 20-35
20.4.2.2 OCI_ATTR_NAME 20-35
20.4.2.3 OCI_ATTR_DIRPATH_EXPR_TYPE 20-36
20.4.2.4 OCI_ATTR_DIRPATH_NO_INDEX_ERRORS 20-37
20.4.25 OCI_ATTR_NUM_COLS 20-37
20.4.2.6 OCI_ATTR_NUM_ROWS 20-38

20.4.3 Direct Path Column Parameter Attributes 20-38
20.4.3.1 OCI_ATTR_NAME 20-39
20.4.3.2 OCI_ATTR_DIRPATH_SID 20-41
20.4.3.3 OCI_ATTR_DIRPATH_OID 20-41

20.4.4 Direct Path Function Column Array Handle for Nonscalar Columns 20-41
20.4.4.1 OCI_ATTR_NUM_ROWS Attribute 20-42

271 Object Advanced Topics in OCI

21.1 Object Cache and Memory Management 21-1
21.1.1 Cache Consistency and Coherency 21-4
21.1.2 Object Cache Parameters 21-4
21.1.3 Object Cache Operations 21-5
21.1.3.1 About Pinning and Unpinning 21-5
21.1.3.2 About Freeing 21-6
21.1.3.3 About Marking and Unmarking 21-6
21.1.3.4 About Flushing 21-6
21.1.3.5 About Refreshing 21-6

21.1.4 About Loading and Removing Object Copies 21-7
21.1.4.1 About Pinning an Object Copy 21-7
21.1.4.2 About Unpinning an Object Copy 21-8
21.1.4.3 About Freeing an Object Copy 21-9

21.1.5 About Making Changes to Object Copies 21-9
21.1.5.1 About Marking an Object Copy 21-10

ORACLE

XXii

21.1.5.2 About Unmarking an Object Copy 21-10

21.1.6 About Synchronizing Object Copies with the Server 21-11
21.1.6.1 About Flushing Changes to the Server 21-11
21.1.6.2 About Refreshing an Object Copy 21-12

21.1.7 Object Locking 21-13
21.1.7.1 Lock Options 21-13
21.1.7.2 About Locking Objects for Update 21-13
21.1.7.3 About Locking with the NOWAIT Option 21-14
21.1.7.4 About Implementing Optimistic Locking 21-14

21.1.8 Commit and Rollback in Object Applications 21-15

21.1.9 Object Duration 21-15
21.1.9.1 Durations Example 21-16

21.1.10 Memory Layout of an Instance 21-17

21.2 Object Navigation 21-18

21.2.1 Simple Object Navigation 21-18

21.3 OCI Navigational Functions 21-21

21.3.1 About Pin/Unpin/Free Functions 21-22

21.3.2 About Flush and Refresh Functions 21-22

21.3.3 About Mark and Unmark Functions 21-22

21.3.4 About Object Meta-Attribute Accessor Functions 21-23

21.3.5 About Other Functions 21-23

21.4 Type Evolution and the Object Cache 21-23

22 OCI Support for ISON

22.1 JSON Data Type Support 22-1
22.1.1 OCI Representation for JSON 22-1
22.2 Compatibility with Client Libraries Prior to Release 21c 22-3
22.3 Mutable and Immutable DOM 22-4
22.3.1 Manifesting JSON as a Mutable DOM 22-5
22.3.2 Manifesting JSON as an Immutable DOM 22-5
22.4 Calling Sequence for Writing and Reading JSON Data 22-6
22,5 JSON DOM Operations 22-7
22.5.1 Scalar Types Mapping 22-7
22.5.2 Reading JSON DOM Scalar Nodes 22-8
22.5.3 Building a JSON DOM 22-11
22.5.3.1 JSON Scalar Types and Scalar Constructors 22-11
22.5.3.2 Building a DOM Using Scalar Nodes 22-12

22.6 Multithreading Using JSON Descriptor 22-18
22.7 Handling Character Sets 22-18

ORACLE XXiii

23 OCI Support for XML

23.1 XML Context 23-1
23.2 XML Data on the Server 23-2
23.3 Using OCI XML DB Functions 23-2
23.4 OCI Client Access to Binary XML 23-3
23.4.1 Accessing XML Data from an OCI Application 23-4
23.4.2 Repository Context 23-4
23.4.3 Create Repository Context from a Dedicated OCI Connection 23-4
23.4.4 Create Repository Context from a Connection Pool 23-5
23.4.5 About Associating Repository Context with a Data Connection 23-5
23.4.6 About Setting XMLType Encoding Format Preference 23-5
23.4.7 Example of Using a Connection Pool 23-6
24 Using the Object Type Translator with OCI

24.1 What Is the Object Type Translator? 24-1
24.1.1 About Creating Types in the Database 24-3
24.1.2 About Invoking OTT 24-4
24.1.2.1 Command Line 24-4
24.1.2.2 Configuration File 24-4
24.1.2.3 INTYPE File 24-5

24.2 OTT Command Line 24-5
24.2.1 OTT Command-Line Invocation Example 24-5
24211 OTT 24-6
24.2.1.2 USERID 24-6
24.2.1.3 INTYPE 24-6
24.2.1.4 OUTTYPE 24-6
24.2.1.5 CODE 24-7
24.2.1.6 HFILE 24-7
24.2.1.7 INITFILE 24-7

24.3 Intype File 24-8
24.4 OTT Data Type Mappings 24-9
24.4.1 About Mapping Object Data Types to C 24-10
24.4.2 OTT Type Mapping Example 24-12
24.4.3 Null Indicator Structs 24-14
24.4.4 OTT Support for Type Inheritance 24-15
24.4.4.1 Substitutable Object Attributes 24-17

24.5 Outtype File 24-18
24.6 About Using OTT with OCI Applications 24-19
24.6.1 About Accessing and Manipulating Objects with OCI 24-20
24.6.2 Calling the Initialization Function 24-21

ORACLE XXIV

24.6.3 Tasks of the Initialization Function 24-23

24.7 OTT Reference 24-23
24.7.1 OTT Command-Line Syntax 24-24
24.7.2 OTT Parameters 24-25

24.7.2.1 USERID 24-26
24.7.2.2 INTYPE 24-26
24.7.2.3 OUTTYPE 24-27
24.7.2.4 CODE 24-27
24.7.2.5 INITFILE 24-27
24.7.2.6 INITFUNC 24-27
24.7.2.7 HFILE 24-28
24.7.2.8 CONFIG 24-28
24.7.2.9 ERRTYPE 24-28
24.7.2.10 CASE 24-29
24.7.2.11 SCHEMA_NAMES 24-29
24.7.2.12 TRANSITIVE 24-30
24.7.2.13 URL 24-30
24.7.3 Where OTT Parameters Can Appear 24-30
24.7.4 Structure of the Intype File 24-31
24.7.4.1 Intype File Type Specifications 24-31
24.7.5 Nested Included File Generation 24-32
24.7.6 SCHEMA_NAMES Usage 24-34
24.7.6.1 Example: Schema_ Names Usage 24-35
24.7.7 Default Name Mapping 24-36
24.7.8 OTT Restriction on File Name Comparison 24-37
24.7.9 OTT Command on Microsoft Windows 24-37

25 Oracle Database Access C API

25.1 Introduction to the Relational Functions 25-1
25.1.1 Conventions for OCI Functions 25-1
25.1.2 Purpose 25-1
25.1.3 Syntax 25-2
25.1.4 Parameters 25-2
25.1.5 Comments 25-2
25.1.6 Returns 25-2
25.1.7 Example 25-2
25.1.8 Related Functions 25-2
25.1.9 About Calling OCI Functions 25-2
25.1.10 Server Round-Trips for LOB Functions 25-3

25.2 Connect, Authorize, and Initialize Functions 25-3

ORACLE' v

25.2.1
25.2.2
25.2.3
25.2.4
25.2.5
25.2.6
25.2.7
25.2.8
25.2.9
25.2.10
25.2.11
25.2.12
25.2.13
25.2.14
25.2.15
25.2.16
25.2.17
25.2.18
25.2.19
25.2.20
25.2.21
25.2.22

OCIAppCtxClearAll()
OCIAppCtxSet()
OCIConnectionPoolCreate()
OClIConnectionPoolDestroy()
OCIDBShutdown()
OCIDBStartup()
OCIEnvCreate()
OCIEnvNIsCreate()
OClInputValidate()
OCIlLogoff()
OClLogon()
OClLogon2()
OCIRequestDisableReplay()
OClServerAttach()
OClServerDetach()
OClSessionBegin()
OCIlSessionEnd()
OClSessionGet()
OClSessionPoolCreate()
OCIlSessionPoolDestroy()
OClSessionRelease()
OClTerminate()

25.3 Handle and Descriptor Functions

2531
25.3.2
25.3.3
2534
25.3.5
25.3.6
25.3.7
25.3.8
25.3.9
25.3.10

OCIArrayDescriptorAlloc()
OCIlArrayDescriptorFree()
OCIAttrGet()
OCIAttrSet()
OCIDescriptorAlloc()
OClDescriptorFree()
OCIHandleAlloc()
OCIHandleFree()
OCIParamGet()
OCIParamsSet()

25.4 Bind, Define, and Describe Functions

254.1
254.2
2543
254.4
25.45
25.4.6
25.4.7

ORACLE

OCIBindArrayOfStruct()
OCIBindByName()
OCIBindByName2()
OCIBindByPos()
OCIBindByPos2()
OCIBindDynamic()
OCIBindObject()

XXVi

25-4

25-5

25-6

25-8

25-9
25-10
25-11
25-15
25-19
25-20
25-21
25-23
25-25
25-26
25-28
25-29
25-32
25-33
25-40
25-43
25-44
25-46
25-47
25-47
25-49
25-50
25-51
25-52
25-54
25-54
25-55
25-56
25-58
25-59
25-60
25-61
25-66
25-72
25-77
25-82
25-86

25.4.8 OCIDefineArrayOfStruct() 25-88
25.4.9 OCIDefineByPos() 25-89
25.4.10 OCIDefineByPos2() 25-94
25.4.11 OCIDefineDynamic() 25-98
25.4.12 OCIDefineObject() 25-101
25.4.13 OClIDescribeAny() 25-103
25.4.14 OCIStmtGetBindInfo() 25-106
25.4.15 OClIServerDatalengthGet() 25-107
26 More Oracle Database Access C API

26.1 Introduction to the Relational Functions 26-1
26.1.1 Conventions for OCI Functions 26-1
26.2 Statement Functions 26-2
26.2.1 OCIStmtExecute() 26-2
26.2.2 OCIStmtFetch2() 26-5
26.2.3 OCISstmtGetNextResult() 26-7
26.2.4 OCIStmtGetPiecelnfo() 26-8
26.2.5 OCIStmtPlaceholderSubstitute() 26-10
26.2.6 OCIStmtPrepare2() 26-12
26.2.7 OCIStmtRelease() 26-14
26.2.8 OCIStmtSetPiecelnfo() 26-15
26.3 LOB Functions 26-17
26.3.1 OClIDurationBegin() 26-19
26.3.2 OClIDurationEnd() 26-20
26.3.3 OCILobAppend() 26-21
26.3.4 OCILobArrayRead() 26-23
26.3.5 OCILobArrayWrite() 26-27
26.3.6 OCILobAssign() 26-31
26.3.7 OCILobCharSetForm() 26-33
26.3.8 OCILobCharSetld() 26-34
26.3.9 OCILobClose() 26-35
26.3.10 OCILobCopy2() 26-36
26.3.11 OCILobCreateTemporary() 26-38
26.3.12 OCILobErase2() 26-40
26.3.13 OCILobFileClose() 26-41
26.3.14 OCILobFileCloseAll() 26-42
26.3.15 OCILobFileExists() 26-43
26.3.16 OCILobFileGetName() 26-44
26.3.17 OCILobFilelsOpen() 26-46
26.3.18 OCILobFileOpen() 26-47
ORACLE XXVii

26.3.19
26.3.20
26.3.21
26.3.22
26.3.23
26.3.24
26.3.25
26.3.26
26.3.27
26.3.28
26.3.29
26.3.30
26.3.31
26.3.32
26.3.33
26.3.34
26.3.35
26.3.36
26.3.37
26.3.38

26.4 Database Advanced Queuing and Publish-Subscribe Functions

26.4.1
26.4.2
26.4.3
26.4.4
26.4.5
26.4.6
26.4.7
26.4.8
26.4.9
26.4.10

OCILobFileSetName()
OCILobFreeTemporary()
OCIlLobGetChunksSize()
OClLobGetContentType()
OClLobGetLength2()
OCIlLobGetOptions()
OCIlLobGetStorageLimit()
OClLoblsEqual()
OCILoblsOpen()
OCIlLoblsTemporary()
OClLobLoadFromFile2()
OClILobLocatorAssign()
OCIlLobLocatorlsInit()
OCILobOpen()
OCILobRead?2()
OClLobSetContentType()
OCIlLobSetOptions()
OCILobTrim2()
OCILobWrite2()
OCILobWriteAppend2()

OCIAQDeq()
OCIAQDegArray()
OCIAQENq()
OCIAQENgArray()
OCIAQListen2()
OCISubscriptionDisable()
OCISubscriptionEnable()
OCISubscriptionPost()
OCISubscriptionRegister()
OCISubscriptionUnRegister()

26.5 Direct Path Loading Functions

26.5.1
26.5.2
26.5.3
26.5.4
26.5.5
26.5.6
26.5.7
26.5.8
26.5.9

ORACLE

OCIDirPathAbort()
OCIDirPathColArrayEntryGet()
OCIDirPathColArrayEntrySet()
OCIDirPathColArrayReset()
OCIDirPathColArrayRowGet()
OCIDirPathColArrayToStream()
OCIDirPathDataSave()
OCIDirPathFinish()
OCIDirPathFlushRow()

26-48
26-49
26-50
26-52
26-53
26-54
26-56
26-57
26-57
26-59
26-60
26-61
26-63
26-64
26-66
26-70
26-71
26-72
26-74
26-78
26-81
26-82
26-84
26-86
26-88
26-90
26-92
26-93
26-94
26-95
26-97
26-99
26-99
26-100
26-101
26-103
26-103
26-104
26-106
26-107
26-108

XXV

26.5.10
26.5.11
26.5.12

OCIDirPathLoadStream()
OCIDirPathPrepare()
OCIDirPathStreamReset()

26.6 Thread Management Functions

26.6.1
26.6.2
26.6.3
26.6.4
26.6.5
26.6.6
26.6.7
26.6.8
26.6.9
26.6.10
26.6.11
26.6.12
26.6.13
26.6.14
26.6.15
26.6.16
26.6.17
26.6.18
26.6.19
26.6.20
26.6.21
26.6.22
26.6.23
26.6.24
26.6.25

OClIThreadClose()
OClIThreadCreate()
OClIThreadHandleGet()
OCIThreadHndDestroy()
OCIThreadHndInit()
OClIThreadldDestroy()
OCIThreadldGet()
OCIThreadldInit()
OCIThreadldNull()
OClIThreadldSame()
OClIThreadldSet()
OCIThreadldSetNull()
OCIThreadlInit()
OCIThreadlsMulti()
OClIThreadJoin()
OCIThreadKeyDestroy()
OClIThreadKeyGet()
OCIThreadKeylnit()
OClIThreadKeySet()
OCIThreadMutexAcquire()
OCIThreadMutexDestroy()
OCIThreadMutexInit()
OCIThreadMutexRelease()
OCIThreadProcessinit()
OCIThreadTerm()

26.7 Transaction Functions

26.7.1
26.7.2
26.7.3
26.7.4
26.7.5
26.7.6
26.7.7

OClITransCommit()
OClITransDetach()
OClITransForget()
OClITransMultiPrepare()
OClITransPrepare()
OCITransRollback()
OClITransStart()

26.8 Sharding Functions

26.8.1
26.8.2
26.8.3

ORACLE

OCIShardingKeyColumnAdd()
OCIShardingKeyReset()
OCIShardInstancesGet()

26-109
26-110
26-111
26-112
26-113
26-114
26-115
26-116
26-116
26-117
26-118
26-119
26-120
26-121
26-122
26-123
26-124
26-125
26-125
26-126
26-127
26-128
26-129
26-130
26-131
26-131
26-132
26-133
26-134
26-135
26-135
26-138
26-139
26-139
26-140
26-141
26-142
26-148
26-148
26-150
26-151

XXiX

26.9 Miscellaneous Functions 26-154
26.9.1 OCIBreak() 26-154
26.9.2 OCIClientVersion() 26-155
26.9.3 OCIErrorGet() 26-157
26.9.4 OCILdaToSvcCtx() 26-159
26.9.5 OClIPasswordChange() 26-160
26.9.6 OCIPing() 26-163
26.9.7 OCIReset() 26-164
26.9.8 OCIRowidToChar() 26-164
26.9.9 OCIServerRelease() 26-166
26.9.10 OClIServerRelease2() 26-167
26.9.11 OClIServerVersion() 26-168
26.9.12 OCISvcCtxToLda() 26-169
26.9.13 OClUserCallbackGet() 26-170
26.9.14 OClUserCallbackRegister() 26-172

27 OCI Navigational and Type Functions

27.1 Introduction to the Navigational and Type Functions 27-1
27.1.1 Object Types and Lifetimes 27-2
27.1.2 Terminology 27-3
27.1.3 Conventions for OCI Functions 27-3
27.1.4 Return Values 27-3
27.1.5 Navigational Function Return Values 27-4
27.1.6 Server Round-Trips for Cache and Object Functions 27-4
27.1.7 Navigational Function Error Codes 27-4

27.2 OCI Flush or Refresh Functions 27-6
27.2.1 OClICacheFlush() 27-6
27.2.2 OCICacheRefresh() 27-8
27.2.3 OCIObjectFlush() 27-10
27.2.4 OCIObjectRefresh() 27-11

27.3 OCI Mark or Unmark Object and Cache Functions 27-13
27.3.1 OCICacheUnmark() 27-13
27.3.2 OCIObjectMarkDelete() 27-14
27.3.3 OCIObjectMarkDeleteByRef() 27-15
27.3.4 OCIObjectMarkUpdate() 27-16
27.3.5 OCIObjectUnmark() 27-18
27.3.6 OCIObjectUnmarkByRef() 27-19

27.4 OCI Get Object Status Functions 27-20
27.4.1 OCIObjectExists() 27-20
27.4.2 OCIObjectGetProperty() 27-21

ORACLE XXX

27.4.3 OCIObjectlsDirty() 27-24
27.4.4 OCIObjectlsLocked() 27-25
27.5 OCI Miscellaneous Object Functions 27-26
27.5.1 OCIObjectCopy() 27-27
27.5.2 OCIObjectGetAttr() 27-29
27.5.3 OCIObjectGetIind() 27-31
27.5.4 OCIObjectGetObjectRef() 27-32
27.5.5 OCIObjectGetTypeRef() 27-33
27.5.6 OCIObjectLock() 27-34
27.5.7 OCIObjectLockNoWait() 27-35
27.5.8 OCIObjectNew() 27-36
27.5.9 OCIObjectSetAttr() 27-40
27.6 OCI Pin, Unpin, and Free Functions 27-42
27.6.1 OCICacheFree() 27-43
27.6.2 OCICacheUnpin() 27-44
27.6.3 OCIObjectArrayPin() 27-45
27.6.4 OCIObjectFree() 27-46
27.6.5 OCIObjectPin() 27-48
27.6.6 OCIObjectPinCountReset() 27-50
27.6.7 OCIObjectPinTable() 27-51
27.6.8 OCIObjectUnpin() 27-53
27.7 OCI Type Information Accessor Functions 27-55
27.7.1 OCITypeArrayByName() 27-55
27.7.2 OCITypeArrayByFullName() 27-58
27.7.3 OCITypeArrayByRef() 27-60
27.7.4 OCITypeByFullName() 27-62
27.7.5 OCITypeByName() 27-65
27.7.6 OCITypeByRef() 27-67
27.7.7 OCITypePackage() 27-69
28 OCI Data Type Mapping and Manipulation Functions

28.1 Introduction to Data Type Mapping and Manipulation Functions 28-1
28.1.1 Conventions for OCI Functions 28-2
28.1.2 Returns 28-2
28.1.3 Data Type Mapping and Manipulation Function Return Values 28-2
28.1.4 Functions Returning Other Values 28-2
28.1.5 Server Round-Trips for Data Type Mapping and Manipulation Functions 28-3
28.1.6 Examples 28-3
28.2 OCI Collection and Iterator Functions 28-3
28.2.1 OCICollAppend() 28-4
ORACLE XXXi

28.2.2
28.2.3
28.2.4
28.2.5
28.2.6
28.2.7
28.2.8
28.2.9
28.2.10
28.2.11
28.2.12
28.2.13
28.2.14
28.2.15

OCICollAssign()
OCICollAssignElem()
OCICollGetElem()
OCICollGetElemArray()
OCICaolllsLocator()
OCICollMax()
OCICollSize()
OCIColITrim()
OCllterCreate()
OCllterDelete()
OCllterGetCurrent()
OCllterInit()
OCllterNext()
OCllterPrev()

28.3 OCI Date, Datetime, and Interval Functions

28.3.1
28.3.2
28.3.3
28.3.4
28.3.5
28.3.6
28.3.7
28.3.8
28.3.9
28.3.10
28.3.11
28.3.12
28.3.13
28.3.14
28.3.15
28.3.16
28.3.17
28.3.18
28.3.19
28.3.20
28.3.21
28.3.22
28.3.23
28.3.24
28.3.25
28.3.26

ORACLE

OClIDateAddDays()
OCIDateAddMonths()
OClIDateAssign()
OClIDateAddDaysSeconds()
OClIDateCheck()
OCIDateCompare()
OClIDateDaysBetween()
OClIDateDaysSecondsBetween()
OClIDateFromText()
OClDateGetDate()
OClIDateGetTime()
OClDateLastDay()
OClIDateNextDay()
OClIDateSetDate()
OClIDateSetTime()
OClIDateSysDate()
OClIDateTimeAssign()
OClIDateTimeCheck()
OClIDateTimeCompare()
OClIDateTimeConstruct()
OClIDateTimeConvert()
OClIDateTimeFromArray()
OClIDateTimeFromText()
OClIDateTimeGetDate()
OClIDateTimeGetTime()
OClIDateTimeGetTimeZoneName()

XXX

28-5

28-6

28-7
28-10
28-12
28-13
28-14
28-15
28-16
28-18
28-19
28-20
28-22
28-23
28-25
28-27
28-28
28-29
28-29
28-30
28-31
28-32
28-33
28-34
28-35
28-36
28-36
28-37
28-38
28-39
28-39
28-40
28-41
28-42
28-43
28-45
28-46
28-47
28-48
28-49
28-50

28.3.27
28.3.28
28.3.29
28.3.30
28.3.31
28.3.32
28.3.33
28.3.34
28.3.35
28.3.36
28.3.37
28.3.38
28.3.39
28.3.40
28.3.41
28.3.42
28.3.43
28.3.44
28.3.45
28.3.46
28.3.47
28.3.48
28.3.49
28.3.50
28.3.51

OClIDateTimeGetTimeZoneOffset()
OClIDateTimelntervalAdd()
OClIDateTimelntervalSub()
OClIDateTimeSubtract()
OClIDateTimeSysTimeStamp()
OClIDateTimeToArray()
OClIDateTimeToText()
OClIDateToText()
OClIDateZoneToZone()
OClIntervalAdd()
OCllIntervalAssign()
OClIntervalCheck()
OClIntervalCompare()
OClIntervalDivide()
OClIntervalFromNumber()
OClIntervalFromText()
OClIntervalFromTZ()
OClIntervalGetDaySecond()
OClIntervalGetYearMonth()
OClIntervalMultiply()
OClIntervalSetDaySecond()
OClIntervalSetYearMonth()
OClIntervalSubtract()
OClIntervalToNumber()
OClIntervalToText()

28.4 OCI NUMBER Functions

284.1
28.4.2
28.4.3
28.4.4
28.4.5
28.4.6
28.4.7
28.4.8
28.4.9
28.4.10
28.4.11
28.4.12
28.4.13
28.4.14
28.4.15

ORACLE

OCINumberAbs()
OCINumberAdd()
OCINumberArcCos()
OCINumberArcSin()
OCINumberArcTan()
OCINumberArcTan2()
OCINumberAssign()
OCINumberCeil()
OCINumberCmp()
OCINumberCos()
OCINumberDec()
OCINumberDiv()
OCINumberExp()
OCINumberFloor()
OCINumberFromint()

28-51
28-52
28-53
28-54
28-55
28-55
28-56
28-58
28-59
28-60
28-61
28-62
28-63
28-64
28-65
28-66
28-67
28-68
28-69
28-70
28-71
28-72
28-72
28-73
28-74
28-75
28-77
28-78
28-78
28-79
28-80
28-80
28-81
28-82
28-83
28-83
28-84
28-85
28-86
28-86
28-87

XXXiii

28.4.16
28.4.17
28.4.18
28.4.19
28.4.20
28.4.21
28.4.22
28.4.23
28.4.24
28.4.25
28.4.26
28.4.27
28.4.28
28.4.29
28.4.30
28.4.31
28.4.32
28.4.33
28.4.34
28.4.35
28.4.36
28.4.37
28.4.38
28.4.39
28.4.40
28.4.41
28.4.42
28.4.43
28.4.44
28.4.45

OCINumberFromReal()
OCINumberFromText()
OCINumberHypCos()
OCINumberHypSin()
OCINumberHypTan()
OCINumberInc()
OCINumberIntPower()
OCINumberlsint()
OCINumberlsZero()
OCINumberLn()
OCINumberLog()
OCINumberMod()
OCINumberMul()
OCINumberNeg()
OCINumberPower()
OCINumberPrec()
OCINumberRound()
OCINumberSetPi()
OCINumberSetZero()
OCINumberShift()
OCINumberSign()
OCINumberSin()
OCINumberSqrt()
OCINumberSub()
OCINumberTan()
OCINumberTolnt()
OCINumberToReal()

OCINumberToRealArray()

OCINumberToText()
OCINumberTrunc()

28.5 OCI Raw Functions

28.5.1
28.5.2
28.5.3
28.5.4
28.5.5
28.5.6

OCIRawAllocSize()
OCIRawAssignBytes()
OCIRawAssignRaw()
OCIRawPtr()
OCIRawResize()
OCIRawsSize()

28.6 OCI REF Functions

28.6.1
28.6.2
28.6.3

ORACLE

OCIRefAssign()
OCIRefClear()
OCIRefFromHex()

28-88
28-89
28-90
28-91
28-91
28-92
28-93
28-94
28-95
28-95
28-96
28-97
28-98
28-98
28-99
28-100
28-101
28-101
28-102
28-103
28-103
28-104
28-105
28-106
28-106
28-107
28-108
28-109
28-110
28-111
28-112
28-112
28-113
28-114
28-115
28-116
28-117
28-118
28-118
28-119
28-120

XXXIV

28.6.4 OCIRefHexSize() 28-121
28.6.5 OCIReflsEqual() 28-122
28.6.6 OCIReflsNull() 28-123
28.6.7 OCIRefToHex() 28-124
28.7 OCI String Functions 28-125
28.7.1 OCISstringAllocSize() 28-126
28.7.2 OCIStringAssign() 28-127
28.7.3 OCIStringAssignText() 28-128
28.7.4 OCIStringPtr() 28-129
28.7.5 OCIStringResize() 28-130
28.7.6 OCIStringSize() 28-131
28.8 OCI Table Functions 28-132
28.8.1 OClITableDelete() 28-132
28.8.2 OClITableExists() 28-133
28.8.3 OClITableFirst() 28-134
28.8.4 OClTableLast() 28-135
28.8.5 OClITableNext() 28-137
28.8.6 OClITablePrev() 28-138
28.8.7 OClITableSize() 28-139
29 OCI Cartridge Functions
29.1 Introduction to External Procedure and Cartridge Services Functions 29-1
29.1.1 Conventions for OCI Functions 29-1
29.2 Cartridge Services — OCI External Procedures 29-2
29.2.1 OCIExtProcAllocCallMemory() 29-2
29.2.2 OCIExtProcGetEnv() 29-3
29.2.3 OCIExtProcRaiseExcp() 29-5
29.2.4 OCIExtProcRaiseExcpWithMsg() 29-5
29.3 Cartridge Services — Memory Services 29-6
29.3.1 OClIDurationBegin() 29-7
29.3.2 OClIDurationEnd() 29-8
29.3.3 OCIMemoryAlloc() 29-8
29.3.4 OCIMemoryFree() 29-9
29.3.5 OCIMemoryResize() 29-10
29.4 Cartridge Services — Maintaining Context 29-11
29.4.1 OClIContextClearValue() 29-11
29.4.2 OCIContextGenerateKey() 29-12
29.4.3 OCIContextGetValue() 29-13
29.4.4 OCIContextSetValue() 29-13
29.5 Cartridge Services — Parameter Manager Interface 29-15

ORACLE

XXXV

29.5.1 OCIExtractFromFile() 29-15
29.5.2 OCIExtractFromList() 29-16
29.5.3 OCIExtractFromStr() 29-17
29.5.4 OCIExtractInit() 29-18
29.5.5 OCIExtractReset() 29-19
29.5.6 OCIExtractSetKey() 29-20
29.5.7 OCIExtractSetNumKeys() 29-21
29.5.8 OCIExtractTerm() 29-22
29.5.9 OCIExtractToBool() 29-22
29.5.10 OCIExtractTolnt() 29-23
29.5.11 OCIExtractToList() 29-24
29.5.12 OCIExtractToOCINum() 29-25
29.5.13 OCIExtractToStr() 29-25
29.6 Cartridge Services — File 1/O Interface 29-26
29.6.1 OCIFileClose() 29-27
29.6.2 OCIFileExists() 29-28
29.6.3 OCIFileFlush() 29-29
29.6.4 OCIFileGetLength() 29-29
29.6.5 OCIFilelnit() 29-30
29.6.6 OCIFileOpen() 29-31
29.6.7 OCIFileRead() 29-32
29.6.8 OCIFileSeek() 29-33
29.6.9 OCIFileTerm() 29-34
29.6.10 OCIFileWrite() 29-34
29.7 Cartridge Services — String Formatting Interface 29-35
29.7.1 OCIFormatlnit() 29-36
29.7.2 OCIFormatString() 29-36
29.7.3 OCIFormatTerm() 29-41
30 OCI Any Type and Data Functions
30.1 Introduction to Any Type and Data Interfaces 30-1
30.1.1 Conventions for OCI Functions 30-1
30.2 OCI Type Interface Functions 30-2
30.2.1 OCITypeAddAttr() 30-2
30.2.2 OCITypeBeginCreate() 30-3
30.2.3 OCITypeEndCreate() 30-5
30.2.4 OCITypeSetBuiltin() 30-5
30.2.5 OCITypeSetCollection() 30-6
30.3 OCI Any Data Interface Functions 30-7
30.3.1 OCIAnyDataAccess() 30-7
ORACLE XXXVi

30.3.2 OCIAnyDataAttrGet() 30-9
30.3.3 OCIAnyDataAttrSet() 30-11
30.3.4 OCIAnyDataBeginCreate() 30-13
30.3.5 OCIAnyDataCollAddElem() 30-15
30.3.6 OCIAnyDataCollGetElem() 30-16
30.3.7 OCIAnyDataConvert() 30-18
30.3.8 OCIAnyDataDestroy() 30-20
30.3.9 OCIAnyDataEndCreate() 30-20
30.3.10 OCIAnyDataGetCurrAttrNum() 30-21
30.3.11 OCIAnyDataGetType() 30-21
30.3.12 OCIAnyDatalsNull() 30-22
30.3.13 OCIAnyDataTypeCodeToSqlt() 30-23
30.4 OCI Any Data Set Interface Functions 30-24
30.4.1 OCIAnyDataSetAddInstance() 30-24
30.4.2 OCIAnyDataSetBeginCreate() 30-25
30.4.3 OCIAnyDataSetDestroy() 30-27
30.4.4 OCIAnyDataSetEndCreate() 30-27
30.4.5 OCIAnyDataSetGetCount() 30-28
30.4.6 OCIAnyDataSetGetlnstance() 30-28
30.4.7 OCIAnyDataSetGetType() 30-29
31 OCI Globalization Support Functions

31.1 Introduction to Globalization Support in OCI 31-1
31.1.1 Conventions for OCI Functions 31-1
31.2 OCI Locale Functions 31-2
31.2.1 OCINIsCharSetldToName() 31-2
31.2.2 OCINIsCharSetNameTold() 31-3
31.2.3 OCINIsEnvironmentVariableGet() 31-4
31.2.4 OCINIsGetInfo() 31-5
31.2.5 OCINIsNumericInfoGet() 31-8
31.3 OCI Locale-Mapping Function 31-8
31.3.1 OCINIsNameMap() 31-9
31.4 OCI String Manipulation Functions 31-10
31.4.1 OCIMultiBytelnSizeToWideChar() 31-12
31.4.2 OCIMultiByteStrCaseConversion() 31-13
31.4.3 OCIMultiByteStrcat() 31-14
31.4.4 OCIMultiByteStrcmp() 31-15
31.4.5 OCIMultiByteStrcpy() 31-16
31.4.6 OCIMultiByteStrlen() 31-16
31.4.7 OCIMultiByteStrncat() 31-17
ORACLE XXXVii

31.4.8

31.4.9

31.4.10
31.4.11
31.4.12
31.4.13
31.4.14
31.4.15
31.4.16
31.4.17
31.4.18
31.4.19
31.4.20
31.4.21
31.4.22
31.4.23
31.4.24
31.4.25
31.4.26

OCIMultiByteStrncmp()

OCIMultiByteStrncpy()
OCIMultiByteStrnDisplayLength()
OCIMultiByteToWideChar()
OCIWideCharlnSizeToMultiByte()
OCIWideCharMultiByteLength()
OCIWideCharStrCaseConversion()
OCIWideCharStrcat()
OCIWideCharStrchr()
OCIWideCharStremp()
OCIWideCharStrcpy()
OCIWideCharStrlen()
OCIWideCharStrncat()
OCIWideCharStrncmp()
OCIWideCharStrncpy()
OCIWideCharStrrchr()
OCIWideCharToLower()
OCIWideCharToMultiByte()
OCIWideCharToUpper()

31.5 OCI Character Classification Functions

3151
31.5.2
31.5.3
3154
3155
31.5.6
3157
31.5.8
31.5.9
31.5.10
31.5.11
31.5.12

OCIWideCharlsAlnum()
OCIWideCharlsAlpha()
OCIWideCharlsCntrl()
OCIWideCharlsDigit()
OCIWideCharlsGraph()
OCIWideCharlsLower()
OCIWideCharlsPrint()
OCIWideCharlsPunct()
OCIWideCharlsSingleByte()
OCIWideCharlsSpace()
OCIWideCharlsUpper()
OCIWideCharlsXdigit()

31.6 OCI Character Set Conversion Functions

31.6.1
31.6.2
31.6.3
31.6.4

OCICharSetConversionlsReplacementUsed()
OCICharSetToUnicode()
OCINIsCharSetConvert()
OClUnicodeToCharSet()

31.7 OCI Messaging Functions

31.7.1
31.7.2

ORACLE

OCIMessageClose()
OCIMessageGet()

XXXVl

31-18
31-19
31-20
31-21
31-22
31-23
31-23
31-24
31-25
31-26
31-27
31-28
31-28
31-29
31-31
31-31
31-32
31-33
31-34
31-34
31-35
31-36
31-36
31-37
31-37
31-38
31-38
31-39
31-39
31-40
31-40
31-41
31-41
31-42
31-42
31-43
31-45
31-46
31-46
31-47

31.7.3 OCIMessageOpen() 31-48
32 OCI XML DB Functions
32.1 Introduction to XML DB Support in OCI 32-1
32.1.1 Conventions for OCI Functions 32-1
32.1.2 Returns 32-1
32.2 OCI XML DB Functions 32-2
32.2.1 OCIBinXmlICreateReposCtxFromConn() 32-2
32.2.2 OCIBinXmlICreateReposCtxFromCPool() 32-3
32.2.3 OCIBinXmlISetFormatPref() 32-4
32.2.4 OCIBinXmISetReposCtxForConn() 32-4
32.2.5 OCIXmIDbFreeXmICtx() 32-5
32.2.6 OCIXmIDbInitXmICtx() 32-5
33 Oracle ODBC Driver
34 Introduction to the OCI Interface for XStream
34.1 About the XStream Interface 34-1
34.1.1 XStream Out 34-1
34.1.2 XStream In 34-2
34.1.3 Position Order and LCR Streams 34-2
34.1.4 XStream and Character Sets 34-2
34.2 Handler and Descriptor Attributes 34-3
34.2.1 Conventions 34-3
34.2.2 Server Handle Attributes 34-3
34.2.2.1 OCI_ATTR_XSTREAM_ACK_INTERVAL 34-3
34.2.2.2 OCI_ATTR_XSTREAM_IDLE_TIMEOUT 34-4
35 OCI XStream Functions
35.1 About Using the XStream Interface 35-1
35.1.1 XStream Out 35-2
35.1.1.1 LCR Streams 35-2
35.1.1.2 The Processed Low Position and Restart Considerations 35-3
35.1.2 XStream In 35-3
35.1.2.1 Processed Low Position and Restart Ability 35-3
35.1.2.2 Stream Position 354
35.1.3 Security of XStreams 35-4

ORACLE"

XXXiX

35.2 Introduction to XStream Functions
35.3 OCI XStream Functions

35.3.1

35.3.2

35.3.3

35.34

35.3.5

35.3.6

35.3.7

35.3.8

35.3.9

35.3.10
35.3.11
35.3.12
35.3.13
35.3.14
35.3.15
35.3.16
35.3.17
35.3.18
35.3.19
35.3.20
35.3.21
35.3.22
35.3.23
35.3.24
35.3.25
35.3.26
35.3.27
35.3.28
35.3.29
35.3.30
35.3.31
35.3.32
35.3.33
35.3.34
35.3.35
35.3.36
35.3.37
35.3.38
35.3.39

ORACLE

OCILCRAttributesGet()
OCILCRAttributesSet()
OCILCRComparePosition()
OCILCRConvertPosition()
OCILCRFree()
OCILCRDDLInfoGet()
OCILCRHeaderGet()
OCILCRRowStmtGet()
OCILCRRowStmtWithBindVarGet()
OCILCRNew()
OCILCRRowColumninfoGet()
OCILCRRowColumninfoSet()
OCILCRDDLInfoSet()
OCILCRGetLCRIDVersion()
OCILCRHeaderSet()
OCILCRLobInfoGet()
OCILCRLobInfoSet()
OCILCRSCNsFromPosition()
OCILCRSCNToPosition()
OCILCRScnToPosition2()
OCILCRWhereClauseGet()
OCILCRWhereClauseWithBindVarGet()
OCIXStreamInAttach()
OCIXStreamInDetach()
OCIXStreamInLCRSend()
OCIXStreamInLCRCallbackSend()
OCIXStreamInProcessedLWMGet()
OCIXStreamInErrorGet()
OCIXStreamInFlush()
OCIXStreamInChunkSend()
OCIXStreamInCommit()
OCIXStreamInSessionSet()
OCIXStreamOutAttach()
OCIXStreamOutDetach()
OCIXStreamOutLCRReceive()
OCIXStreamOutLCRCallbackReceive()
OCIXStreamOutProcessedLWMSet()
OCIXStreamOutChunkReceive()
OCIXStreamOutGetNextChunk()

Xl

35-5

35-5

35-7

35-8
35-10
35-11
35-12
35-13
35-14
35-17
35-18
35-20
35-21
35-24
35-26
35-29
35-29
35-32
35-33
35-34
35-35
35-36
35-37
35-38
35-40
35-41
35-42
35-43
35-48
35-49
35-50
35-51
35-54
35-55
35-56
35-58
35-58
35-60
35-64
35-66
35-69

35.3.40 OCIXStreamOutSessionSet() 35-72
36 OCI Json Descriptor Functions
36.1 Functions for Writing to a JSON Descriptor 36-1
36.1.1 OClJsonDomDocSet () 36-1
36.1.2 OClJsonTextBufferParse () 36-2
36.1.3 OClJsonTextStreamParse () 36-4
36.1.4 OClIJsonBinaryBufferLoad () 36-6
36.1.5 OClIlJsonBinaryStreamLoad () 36-7
36.1.6 OCIlJsonClone () 36-8
36.2 Functions for Reading from a JSON Descriptor 36-9
36.2.1 OCIlJsonDomDocGet () 36-10
36.2.2 OClJsonToTextBuffer () 36-11
36.2.3 OClJsonToTextStream () 36-13
36.2.4 OClJsonToBinaryBuffer () 36-14
36.2.5 OClJsonToBinaryStream () 36-15
36.2.6 OClJsonBinaryLengthGet () 36-17
37 OCI SODA Functions
37.1 Introduction to OCI SODA Functions 37-1
37.2 OCI SODA Functions 37-1
37.2.1 OCISodaBulkinsert() 37-3
37.2.2 OCISodaBulkinsertAndGet() 37-5
37.2.3 OCISodaBulkinsertAndGetWithOpts() 37-7
37.2.4 OCISodaBulkinsertAndGetWithCtnt() 37-8
37.2.5 OCISodaBulkinsertWithCtnt() 37-10
37.2.6 OCISodaCollCreate() 37-12
37.2.7 OCISodaCollCreateWithMetadata() 37-14
37.2.8 OCISodaCollDrop() 37-15
37.2.9 OCISodaCollGetNext() 37-17
37.2.10 OCISodaCollList() 37-18
37.2.11 OCISodaCollOpen() 37-19
37.2.12 OCISodaDataGuideGet() 37-21
37.2.13 OCISodaDataGuideGetWithOpts () 37-22
37.2.14 OCISodaAsOfTimestampGet () 37-24
37.2.15 OCISodaAsOfScnGet () 37-25
37.2.16 OCISodaDocCount() 37-26
37.2.17 OCISodaDocCountWithFilter() 37-27
37.2.18 OCISodaDocCreate() 37-29
ORACLE xli

37.2.19 OCISodaDocCreateWithKey() 37-31
37.2.20 OCISodaDocCreateWithKeyAndMType() 37-32
37.2.21 OCISodaDocGetNext() 37-34
37.2.22 OCISodaFind() 37-35
37.2.23 OCISodaFindOne() 37-38
37.2.24 OCIlSodaFindOneWithKey() 37-39
37.2.25 OCISodalndexCreate() 37-41
37.2.26 OClSodalndexGet() 37-43
37.2.27 OCIlSodalndexList() 37-43
37.2.28 OCISodalndexDrop() 37-44
37.2.29 OCISodalnsert() 37-45
37.2.30 OCISodalnsertAndGet() 37-47
37.2.31 OCISodalnsertAndGetWithOpts () 37-49
37.2.32 OCISodalnsertAndGetWithCtnt() 37-50
37.2.33 OCISodalnsertWithCtnt() 37-52
37.2.34 OCISodaRemove() 37-54
37.2.35 OCISodaRemoveOneWithKey() 37-55
37.2.36 OCISodaReplOne() 37-57
37.2.37 OCISodaReplOneAndGet() 37-58
37.2.38 OCISodaReplOneAndGetWithCtnt() 37-61
37.2.39 OCISodaReplOneAndGetWithKey() 37-64
37.2.40 OCISodaReplOneWithCtnt() 37-66
37.2.41 OCISodaReplOneWithKey() 37-69
37.2.42 OCISodaSave() 37-70
37.2.43 OCISodaSaveAndGet() 37-71
37.2.44 OCISodaSaveAndGetWithOpts() 37-73
37.2.45 OCISodaSaveWithCtnt() 37-73
37.2.46 OCISodaSaveAndGetWithCtnt() 37-75
37.2.47 OCISodaCollTruncate() 37-77
37.2.48 OCISodaOperKeysSet() 37-78
A Handle and Descriptor Attributes
A.1 Conventions A-2
A.2 Environment Handle Attributes A-3
A.3 Error Handle Attributes A-10
A.4 Service Context Handle Attributes A-10
A5 Server Handle Attributes A-17
A.5.1 Authentication Information Handle Attributes A-21
A.5.2 User Session Handle Attributes A-22
A.6 Administration Handle Attributes A-35

ORACLE

xlii

A.7 Connection Pool Handle Attributes

A7.1

Session Pool Handle Attributes

A.8 Transaction Handle Attributes
A.9 Statement Handle Attributes
A.10 Bind Handle Attributes

A.11 Define Handle Attributes

A.12 Describe Handle Attributes
A.13 Parameter Descriptor Attributes

A.14 Shard Instance Descriptor Attributes

A.15 SODA Document Handle Attributes

A.16 SODA Collection Handle Attributes

A.17 SODA Output Options Handle Attributes
A.18 SODA Operation Options Handle Attributes
A.19 LOB Descriptor and LOB Locator Attributes
A.20 JSON Descriptor Attributes

A.21 Complex Object Attributes

A211
A.21.2

Complex Object Retrieval Handle Attributes
Complex Object Retrieval Descriptor Attributes

A.22 Database Advanced Queuing Descriptor Attributes

A221
A.22.2
A.22.3
A22.4
A.22.5

OCIAQENQOptions Descriptor Attributes
OCIAQDeqOptions Descriptor Attributes
OCIAQMsgProperties Descriptor Attributes
OCIAQAgent Descriptor Attributes
OCIServerDNs Descriptor Attributes

A.23 Subscription Handle Attributes

A.23.1
A.23.2
A.23.3
A.23.4

Continuous Query Notification Attributes
Continuous Query Notification Descriptor Attributes
Notification Descriptor Attributes

Invalidated Query Attributes

A.24 Direct Path Loading Handle Attributes

A.24.1
A.24.2
A.24.3
A.24.4
A.24.5

Direct Path Context Handle (OCIDirPathCtx) Attributes

Direct Path Function Context Handle (OCIDirPathFuncCtx) Attributes
Direct Path Function Column Array Handle (OCIDirPathColArray) Attributes
Direct Path Stream Handle (OCIDirPathStream) Attributes

Direct Path Column Parameter Attributes

A.24.5.1 About Accessing Column Parameter Attributes
A.25 Process Handle Attributes
A.26 Event Handle Attributes

ORACLE

A-35
A-37
A-42
A-42
A-52
A-56
A-58
A-60
A-60
A-61
A-63
A-73
A-73
A-77
A-78
A-79
A-79
A-80
A-80
A-80
A-82
A-86
A-90
A-90
A-91
A-97
A-98
A-101
A-102
A-103
A-103
A-111
A-113
A-114
A-114
A-115
A-119
A-121

xliii

OCI Demonstration Programs

OCI Function Server Round-Trips

C.1 Relational Function Round-Trips C-1
C.2 LOB Function Round-Trips C-3
C.3 JSON Function Round-Trips C-5
C.4 Object and Cache Function Round-Trips C-5
C.5 Describe Operation Round-Trips C-6
C.6 Data Type Mapping and Manipulation Function Round-Trips C-7
C.7 Any Type and Data Function Round-Trips C-7
C.8 Other Local Functions C-8
Getting Started with OCI for Windows
D.1 What Is Included in the OCI Package for Windows? D-1
D.2 Oracle Directory Structure for Windows D-1
D.3 Sample OCI Programs for Windows D-2
D.4 About Compiling OCI Applications for Windows D-2
D.5 About Linking OCI Applications for Windows D-3
D.5.1 ocilib D-3
D.5.2 Client DLL Loading When Using Load Library() D-3
D.6 About Running OCI Applications for Windows D-4
D.7 Oracle XA Library D-4
D.7.1 About Compiling and Linking an OCI Program with the Oracle XA Library D-4
D.7.2 About Using XA Dynamic Registration D-5
D.7.2.1 Adding an Environmental Variable for the Current Session D-5
D.7.2.2 About Adding a Registry Variable for All Sessions D-5
D.7.2.3 Adding a Registry Variable: D-5
D.7.3 XA and TP Monitor Information D-6
D.8 About Using the Object Type Translator for Windows D-6
Deprecated OCI Features and Functions
E.1 Deprecated Initialize Functions E-1
E.1.1 OCIEnvinit() E-2
E.1.2 OClinitialize() E-3
E.2 Deprecated Statement Functions E-5
E.2.1 OCIStmtFetch() E-6
E.2.2 OCIStmtPrepare() E-7
E.3 Deprecated Lob Functions E-9

ORACLE

xliv

E.3.1 OCILobCopy() E-9
E.3.2 OCILobErase() E-10
E.3.3 OCILobGetLength() E-10
E.3.4 OCILobLoadFromFile() E-11
E.3.5 OCILobRead() E-11
E.3.6 OCILobTrim() E-15
E.3.7 OCILobWrite() E-15
E.3.8 OCILobWriteAppend() E-19

E.4 Deprecated Database Advanced Queuing Functions E-22
E.4.1 OCIAQListen() E-23

F Multithreaded extproc Agent

F.1 Why Use the Multithreaded extproc Agent? F-1
F.1.1 The Challenge of Dedicated Agent Architecture F-1
F.1.2 The Advantage of Multithreading F-1

F.2 Multithreaded extproc Agent Architecture F-2
F.2.1 Monitor Thread F-4
F.2.2 Dispatcher Threads F-4
F.2.3 Task Threads F-4

F.3 Administering the Multithreaded extproc Agent F-5
F.3.1 Agent Control Utility (agtctl) Commands F-5
F.3.2 About Using agtctl in Single-Line Command Mode F-6
F.3.2.1 Setting Configuration Parameters for a Multithreaded extproc Agent F-7

F.3.2.2 Starting a Multithreaded extproc Agent F-7

F.3.2.3 Shutting Down a Multithreaded extproc Agent F-7

F.3.2.4 Examining the Value of Configuration Parameters F-8

F.3.2.5 Resetting a Configuration Parameter to Its Default Value F-8

F.3.2.6 Deleting an Entry for a Specific SID from the Control File F-8

F.3.2.7 Requesting Help F-9

F.3.3 Using Shell Mode Commands F-9
F.3.3.1 Example: Setting a Configuration Parameter F-9

F.3.3.2 Example: Starting a Multithreaded extproc Agent F-10

F.3.4 Configuration Parameters for Multithreaded extproc Agent Control F-10

Index

ORACLE

b\

List of Examples

3-12
3-20
3-22
3-22

3-22
3-22
3-22
3-22
3-23
3-23
3-24
3-42
3-43
3-44
3-45
3-46
4-13
4-14

5-6
5-11
5-13
5-15
5-21

6-6

6-7
6-11
6-11
6-14
6-17
6-17

6-20

3-1 Using the OCI_ATTR_USERNAME Attribute to Set the User Name in the Session Handle 3-11

3-2 Returning Describe Information in the Statement Handle Relating to Select-List Items

3-3 Using the OCILogon2 Call for a Single User Session

3-4 Enabling a Local User to Serve as a Proxy for Another User

3-5 Connection String to Use for the Proxy User

3-6 Preserving Case Sensitivity When Enabling a Local User to Serve as a Proxy for
Another User

3-7 Preserving Case Sensitivity in the Connection String

3-8 Using "dilbertimybert]" in the Connection String

3-9 Using "dilbertimybert]"["joe[myjoe]"] in the Connection String

3-10 Setting the Target User Name

3-11 Using OCI to Set the OCI_ATTR_PROXY_CLIENT Attribute and the Proxy dilbert

3-12 Creating and Initializing an OCI Environment

3-13 Getting Locale Information in OCI

3-14 Basic String Manipulation in OCI

3-15 Classifying Characters in OCI

3-16 Converting Character Sets in OCI

3-17 Retrieving a Message from a Text Message File

4-1 OCI Bind and Define Support for 64-Bit Integers

4-2 Binding 8-Byte Integer Data Types for OUT Binds of a DML Returning Statement

5-1 Binding Both Input and Output Variables in Nonquery Operations

5-2 Using Batch Error Execution Mode

5-3 Implicit Describe - Select List Is Available as an Attribute of the Statement Handle

5-4 Explicit Describe - Returning the Select-List Description for Each Column

5-5 Access on a Scrollable Cursor

6-1 Handle Allocation and Binding for Each Placeholder in a SQL Statement

6-2 Defining a PL/SQL Statement to Be Used in OCI

6-3 Binding the Placeholder and Executing the Statement to Insert a Single Locator

6-4 Binding the Placeholder and Executing the Statement to Insert an Array of Locators

6-5 Defining a Scalar Output Variable Following an Execute and Describe Operation

6-6 Defining LOBs Before Execution

6-7 Defining LOBs After Execution

6-8 Allowed: Inserting into C1, C2, and L Columns Up to 8000, 8000, and 2000 Byte-
Sized Bind Variable Data Values, Respectively

ORACLE

XIvi

6-9 Allowed: Inserting into C1 and L Columns up to 2000 and 8000 Byte-Sized Bind Variable
Data Values, Respectively

6-10 Allowed: Updating C1, C2, and L Columns up to 8000, 8000, and 2000 Byte-Sized Bind
Variable Data Values, Respectively

6-11 Allowed: Updating C1, C2, and L Columns up to 2000, 2000, and 8000 Byte-Sized Bind
Variable Data Values, Respectively

6-12 Allowed: Piecewise, Callback, and Array Insert or Update Operations

6-13 Not Allowed: Inserting More Than 4000 Bytes into Both LOB and LONG Columns Using the
Same INSERT Statement

6-14 Allowed: Inserting into the CT3 LOB Column up to 2000 Byte-Sized Bind Variable Data Values

6-15 Not Allowed: Binding Any Length Data to a LOB Column in an Insert As Select Operation

6-16 Using Multiple Bind and Define Buffers

6-17 Binding the REF Output Variable in an OCI Application

6-18 Setting the Client Character Set to OCI_UTF16ID in OCI

6-19 Insert and Select Operations Using the OCI_ATTR_MAXCHAR_SIZE Attribute

6-20 Binding and Defining UTF-16 Data

6-21 Binding the :cursorl Placeholder to the Statement Handle stm2p as a REF CURSOR

6-22 Defining a Nested Table (Second Position) as a Statement Handle

7-1 Initializing the OCI Process in Object Mode

7-2 Using an Explicit Describe to Retrieve Column Data Types for a Table

7-3 Describing the Stored Procedure

7-4 Using an Explicit Describe on a Named Object Type

7-5 Using an Explicit Describe on a Named Collection Type

7-6 Using a Parameter Descriptor to Retrieve the Data Types, Column Names, and Character-
Length Semantics

7-7 Checking for Invisible Columns

8-1 Implementing Read Callback Functions Using OCILobRead2()

8-2 Implementing Write Callback Functions Using OCILobWrite2()

8-3 Using Temporary LOBs

8-4 Prefetching of LOB Data, Length, and Chunk Size

9-1 Defining the OCI_ATTR_SERVER_GROUP Attribute to Pass the Server Group Name

9-2 Defining the OCI_ATTR_PROXY_CREDENTIALS Attribute to Specify the Credentials of the
Application Server for Client Authentication

9-3 Defining the OCI_ATTR_DISTINGUISHED_NAME Attribute to Pass the Distinguished
Name of the Client

9-4 Defining the OCI_ATTR_CERTIFICATE Attribute to Pass the Entire X.509 Certificate

9-5 Defining the OCI_ATTR_INITIAL_CLIENT_ROLES Attribute to Pass the Client Roles

ORACLE

6-21

6-21

6-21
6-22

6-22
6-22
6-22
6-30
6-36
6-40
6-45
6-46
6-48
6-48

7-28
7-30
7-31
7-33

7-35
7-36
8-15
8-17
8-22
8-25
9-15

9-17

9-18

9-18
9-19

xIvii

9-6 Defining the OCI_ATTR_CLIENT_IDENTIFIER Attribute to Pass the End-User Identity 9-19
9-7 Defining the OCI_ATTR_PASSWORD Attribute to Pass the Password for Validation 9-20
9-8 OCI Attributes That Let You Specify the External Name and Initial Privileges of a Client 9-20
9-9 Defining the OCI_ATTR_APPCTX_SIZE Attribute to Initialize the Context Array Size

with the Desired Number of Context Attributes 9-24
9-10 Using the OCI_ATTR_APPCTX_LIST Attribute to Get a Handle on the Application

Context List Descriptor for the Session 9-24

9-11 Calling OCIParamGet() to Obtain an Individual Descriptor for the i-th Application

Context Using the Application Context List Descriptor 9-24
9-12 Defining Session Handle Attributes to Set Externally Initialized Context 9-25
9-13 Using the OCI_ATTR_CALL_TIME Attribute to Get the Elapsed Time of the Last

Server Call 9-26
9-14 Using OCISessionBegin() with an Externally Initialized Context 9-27
9-15 Changing the "responsibility" Attribute Value in the CLIENTCONTEXT Namespace 9-30
9-16 Two Ways to Clear Specific Attribute Information in a Client Namespace 9-30
9-17 Clearing All the Context Information in a Specific Client Namespace 9-31
9-18 Calling OCIAttrSet() to Set the OCI_ATTR_EDITION Attribute 9-32
10-1 Example of PL/SQL Fix-Up Callback 10-4
11-1 Event Notification 11-5
11-2 User-Defined Failover Callback Function Definition 11-11
11-3 Failover Callback Registration 11-12
11-4 Failover Callback Unregistration 11-12
11-5 Callback Function That Implements a Failover Strategy 11-13
11-6 Transaction Guard Demo Program 11-17

12-1 Setting QOS Levels, the Notification Grouping Class, Value, and Type, and the

Namespace Specific Context 12-7
12-2 Using AQ Grouping Notification Attributes in an OCI Notification Callback 12-13
12-3 Implementing a Publish Subscription Notification 12-15
12-4 Registering for Notification Using Callback Functions 12-16
12-5 LDAP Registration 12-19
12-6 Enqueue Buffered Messaging 12-29
12-7 Dequeue Buffered Messaging 12-30
13-1 Pseudocode That Describes the Overall Processing of a Typical OCI Call 13-4
13-2 Environment Variable Setting for the ORA_OCI_UCBPKG Variable 13-10
13-3 Specifying the pkgNInit() and PkgNEnvCallback() Functions 13-10
13-4 Using pkgNEnvCallback() to Register Entry, Replacement, and Exit Callbacks 13-10
13-5 Registering User Callbacks with the NULL ucbDesc 13-10

ORACLE xIviii

13-6 Using the OCIStmtPrepare() Call to Call the Callbacks in Order 13-10

14-1 Optimizing Bind and Define Operations on Statements in the Cache 14-5
14-2 Implicit Fetching of ROWIDs 14-8
14-3 DBMS_SQL RETURN_RESULT Subprogram 14-10
14-4 A PL/SQL Stored Procedure to Implicitly Return Result-Sets (Cursors) to the Client 14-10
14-5 An Anonymous PL/SQL Block to Implicitly Return Result-Sets (Cursors) to the Client 14-10
14-6 Using OCIStmtGetNextResult() to Retrieve and Process the Implicit Results Returned by

Either a PL/SQL Stored Procedure or Anonymous Block 14-11
15-1 Calling OCIDBStartup() to Perform a Database Startup Operation 15-2
15-2 Calling OCIDBShutdown() in OCI_DBSHUTDOWN_FINAL Mode 15-3
15-3 Calling OCIDBShutdown() in OClI_DBSHUTDOWN_ABORT Mode 15-4
18-1 SQL Definition of Standalone Objects 18-5
18-2 SQL Definition of Embedded Objects 18-5
18-3 Pinning an Object 18-12
18-4 Manipulating Object Attributes in OCI 18-14
18-5 Using Complex Object Retrieval in OCI 18-25
18-6 C Representations of Types with Their Corresponding NULL Indicator Structures 18-30
18-7 Creating a New Object for an Object View 18-34
19-1 Manipulating an Attribute of Type OCIDate 19-6
19-2 Manipulating an Attribute of Type OCIDateTime 19-10
19-3 Manipulating an Attribute of Type OCINumber 19-12
19-4 Converting Values in OCINumber Format Returned from OCIDescribeAny() Calls to

Unsigned Integers 19-14
19-5 Manipulating an Attribute of Type OCIString 19-15
19-6 Manipulating an Attribute of Type OCIRaw 19-17
19-7 Using Collection Data Manipulation Functions 19-20
19-8 Using Multilevel Collection Data Manipulation Functions 19-23
19-9 Using REF Manipulation Functions 19-25
19-10 Using Type Interfaces to Construct Object Types 19-27
19-11 Using Type Interfaces to Construct Collection Types 19-28
19-12 Using Special Construction and Access Calls for Improved Performance 19-31
19-13 Method 1 for a Salary Update: Fetch, Convert, and Assign 19-44
19-14 Method 2 for a Salary Update: Fetch and Assign, No Convert 19-44
19-15 Method 3 for a Salary Update: Direct Fetch 19-44
19-16 Using the SQLT_NTY Bind Call Including OCIBindObject() 19-46
19-17 Using the SQLT_NTY Define Call Including OCIDefineObject() 19-47
20-1 Direct Path Programs Must Include the Header Files 20-4

ORACLE wlix

20-2
20-3
20-4
20-5
20-6
20-7
20-8
20-9
20-10
20-11
20-12
20-13
20-14
20-15
20-16
20-17
20-18
20-19
20-20
20-21
20-22
20-23
20-24
21-1
21-2
23-1
24-1
24-2
24-3
24-4
24-5
24-6
24-7
24-8
24-9
24-10
24-11

Passing the Handle Type to Allocate the Function Context
Explicit Allocation of Direct Path Column Array Handle
Explicit Allocation of Direct Path Function Column Array Handle
Allocating a Direct Path Stream Handle

Data Structures Used in Direct Path Loading Examples
Contents of the Header File cdemodp.h

Use of OCI Direct Path Interfaces

Allocating the Column Array and Stream Handles

Getting the Number of Rows and Columns

Setting Input Data Fields

Resetting the Column Array State

Resetting the Stream State

Converting Data to Stream Format

Loading the Stream

Finishing the Direct Path Load Operation

Freeing the Direct Path Handles

Allocating a Child Column Array for a Column Object
Allocating a Child Column Array for a SQL String Column
Allocating a Child Column Array for a REF Column
Allocating the Column Array for the Object Table

Specifying Values for the OCI_ATTR_DIRPATH_EXPR_TYPE Attribute

Setting a Function Context as a Column Attribute

Allocating a Child Column Array for a Function Context

Object Type Representation of a Department Row

C Representation of a Department Row

Initializing and Terminating XML Context with a C API
Definition of the Employee Object Type Listed in the Intype File
Contents of the Generated Header File demo.h

Contents of the demov.c File

Invoking OTT from the Command Line

Contents of a User-Created Intype File

Object Type Definition for Employee

OTT-Generated Struct Declarations

Object Type Definitions for the OTT Type Mapping Example
Various Type Mappings Created by OTT from Object Type Definitions
Object Type and Subtype Definitions

Contents of the Intype File

ORACLE

20-5
20-6
20-6
20-7
20-9
20-9
20-12
20-12
20-13
20-13
20-13
20-13
20-13
20-13
20-14
20-14
20-20
20-23
20-27
20-31
20-36
20-39
20-41
21-18
21-18
23-2
24-2
24-2
24-3
24-5
24-9
24-10
24-10
24-13
24-13
24-16
24-16

24-12
24-13
24-14
24-15
24-16
24-17
24-18
24-19
24-20
24-21
24-22
24-23
26-1

26-2

37-1

37-2

OTT Generates C Structs for the Types and Null Indicator Structs
Contents of an Intype File

Contents of the Outtype File After Running OTT

Content of an Intype File Named ex2c.typ

Invoking OTT and Specifying the Initialization Function

Content of an OTT-Generated File Named ex2cv.c

Object Type Definition to Demonstrate How OTT Generates Include Files
Content of the Intype File

Invoking OTT from the Command Line

Content of the Header File tott95b.h

Content of the Header File tott95a.h

Construct to Use to Conditionally Include the Header File tott95b.h
Creating a Compound Sharding Key

Custom Pool Example

Creating a Collection

Creating a Document

Setting Configuration Parameters and Starting agtctl

ORACLE

24-16
24-18
24-19
24-22
24-22
24-22
24-33
24-33
24-33
24-33
24-34
24-34

26-149

26-152
37-14
37-31

F-5

List of Figures

3-1
3-2
3-3
3-4
5-1
6-1
6-2
6-3
6-4
7-1
9-1
9-2
10-1
12-1
18-1
20-1
20-2
21-1
21-2
22-1
22-2
22-3
24-1
27-1
35-1
35-2
F-1

Basic OCI Program Flow

Components of a Service Context

Statement Handles

Direct Path Handles

Steps in Processing SQL Statements

Using OCIBindByName() to Associate Placeholders with Program Variables
Determining Skip Parameters

Performing Piecewise Insert

Performing Piecewise Fetch

OCIDescribeAny() Table Description

Multiple Tightly Coupled Branches

Session Operating on Multiple Branches

OCI Connection Pooling

Publish-Subscribe Model

Basic Object Operational Flow

Direct Path Loading

Inheritance Hierarchy for a Column of Type Person

Object Cache

Object Graph of person_t Instances

Sample JSON Document

Calling Sequence for Writing JSON Data

Calling Sequence for Reading JSON Data

Using OTT with OCI

Classification of Instances by Type and Lifetime

Execution Flow of the OCIXStreamInLCRCallbackSend() Function
Execution Flow of the OCIXStreamOutLCRCallbackReceive() Function

Multithreaded extproc Agent Architecture

ORACLE

3-2
3-7
3-8
3-10
5-2
6-2
6-28
6-53
6-57
7-2
9-5
9-5
10-17
12-2
18-7
20-1
20-29
21-3
21-20
22-2
22-6
22-6
24-20
27-2
35-46
35-63
F-3

List of Tables

2-1
2-2
2-3
3-1
3-2
3-3
3-4
3-5
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
5-1
6-1
6-2
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12

ORACLE_HOME Directories and Contents

Equivalent OCI Parameter Settings in oraaccess.xml and sqglnet.ora
Unsupported OCI Functions

OCI Handle Types

Descriptor Types

OCI Return Codes

Return and Error Codes

Oracle Reserved Namespaces

Internal Oracle Database Data Types

External Data Types and Codes

VARNUM Examples

Format of the DATE Data Type

Data Conversions

Data Conversions for LOBs

Data Conversions for JSON Data Type

Data Conversion for Datetime and Interval Types

Data Conversion for External Data Types to Internal Numeric Data Types
Data Conversions for Internal to External Numeric Data Types
OCITypeCode Values and Data Types
OCI_TYPECODE to SQLT Mappings
OCI_ATTR_STMT_TYPE Values and Statement Types
Information Summary for Bind Types

Defines

Attributes of All Parameters

Attributes of Tables or Views

Attributes Specific to Tables

Attributes of Procedures or Functions

Attributes Specific to Package Subprograms

Attributes of Packages

Attributes of Types

Attributes of Type Attributes

Attributes of Type Methods

Attributes of Collection Types

Attributes of Synonyms

Attributes of Sequences

ORACLE

6-25
7-5
7-7
7-8
7-8
7-8
7-9
7-9

7-11

7-12

7-13

7-15

7-15

7-13 Attributes of Columns of Tables or Views
7-14 Predefined Collation IDs, Their ub4 Values (in parenthesis), and Their SQL Names
7-15 Attributes of Arguments and Results

7-16 List Attributes

7-17 Attributes Specific to Schemas

7-18 Attributes Specific to Databases

7-19 Attributes Specific to Rules

7-20 Attributes Specific to Rule Sets

7-21 Attributes Specific to Evaluation Contexts
7-22 Attributes Specific to Table Aliases

7-23 Attributes Specific to Variable Types

7-24 Attributes Specific to Name-Value Pair

8-1 LOB Functions Compatibility and Migration
9-1 Global Transaction Identifier

9-2 One-Phase Commit

9-3 Two-Phase Commit

9-4 Read-Only Update Fails

9-5 Read-Only Transaction

9-6 Initialization and Termination Multithreading Functions
9-7 Passive Threading Primitives

9-8 Active Threading Primitives

11-1 Time and Event

12-1 Publish-Subscribe Functions

12-2 AQ Functions

12-3 Enqueue Parameters

12-4 Dequeue Parameters

12-5 Listen Parameters

12-6 Array Enqueue Parameters

12-7 Array Dequeue Parameters

12-8 Agent Parameters

12-9 Message Properties

12-10 Enqueue Option Attributes

12-11 Dequeue Option Attributes

14-1 Comparison of Some Connection Specific Auto-Tuning Parameters
18-1 Meta-Attributes of Persistent Objects

18-2 Set and Check Functions

18-3 Transient Meta-Attributes

ORACLE

7-16
7-19
7-20
7-22
7-22
7-23
7-24
7-24
7-24
7-25
7-25
7-26
8-8
9-4
9-9
9-10
9-10
9-11
9-39
9-41
9-43
11-13
12-11
12-24
12-24
12-25
12-25
12-26
12-26
12-27
12-27
12-28
12-28
14-17
18-17
18-20
18-20

liv

18-4 Attribute Values for New Objects

19-1 Function Prefix Examples

19-2 Binding and Defining Datetime and Interval Data Types
19-3 Datetime Functions

19-4 Interval Functions

19-5 String Functions

19-6 Raw Functions

19-7 Collection Functions

19-8 Collection Scanning Functions

19-9 Nested Table Functions

19-10 REF Manipulation Functions

19-11 Descriptor Objects

19-12 Data Type Mappings for Binds and Defines
20-1 Direct Path Context Functions

20-2 Direct Path Column Array Functions

21-1 Object Attributes After a Refresh Operation
21-2 Example of Allocation and Pin Durations
21-3 Pin, Free, and Unpin Functions

21-4 Flush and Refresh Functions

21-5 Mark and Unmark Functions

21-6 Object Meta-Attributes Functions

21-7 Other Object Functions

22-1 Type Constructs and Constants

22-2 Scalar Types Mapping

22-3 Scalar Types and Contructors

24-1 Object Data Type Mappings for Object Type Attributes
25-1 Mode of a Parameter

25-2 Connect, Authorize, and Initialize Functions
25-3 Handle and Descriptor Functions

25-4 Bind, Define, and Describe Functions

26-1 Statement Functions

26-2 LOB Functions

26-3 Advanced Queuing and Publish-Subscribe Functions
26-4 Direct Path Loading Functions

26-5 Thread Management Functions

26-6 Transaction Functions

26-7 Sharding Functions

ORACLE

18-32
19-5
19-8
19-9

19-11

19-15

19-16

19-19

19-19

19-21

19-24

19-26

19-40
20-7
20-8

21-12

21-17

21-22

21-22

21-23

21-23

21-23
22-2
22-7

22-11

24-11
25-2
25-3

25-47

25-59
26-2

26-17

26-81

26-99

26-112
26-135
26-148

26-8

Miscellaneous Functions

26-9 OCI Function Codes

26-10 Continuation of OCI Function Codes from 97 and Higher

27-1 Type and Lifetime of Instances

27-2 Return Values of Navigational Functions

27-3 OCI Navigational Functions Error Codes

27-4 Flush or Refresh Functions

27-5 Object Status After Refresh

27-6 Mark or Unmark Object and Cache Functions

27-7 Get Object Status Functions

27-8 Miscellaneous Object Functions

27-9 Instances Created

27-10 Pin, Unpin, and Free Functions

27-11 Type Information Accessor Functions

28-1 Function Return Values

28-2 Collection and Iterator Functions

28-3 Element Pointers

28-4 Date Functions

28-5 Error Bits Returned by the valid Parameter for OCIDateCheck()
28-6 Comparison Results

28-7 Error Bits Returned by the valid Parameter for OCIDateTimeCheck()
28-8 Comparison Results Returned by the result Parameter for OCIDateTimeCompare()
28-9 Error Bits Returned by the valid Parameter for OClIntervalCheck()
28-10 Comparison Results Returned by the result Parameter for OClintervalCompare()
28-11 NUMBER Functions

28-12 Comparison Results Returned by the result Parameter for OCINumberCmp()
28-13 Values of result

28-14 Raw Functions

28-15 Ref Functions

28-16 String Functions

28-17 Table Functions

29-1 External Procedures Functions

29-2 Memory Services Functions

29-3 Maintaining Context Functions

29-4 Parameter Manager Interface Functions

29-5 File I/O Interface Functions

29-6 String Formatting Functions

ORACLE

26-154
26-175
26-176
27-3
27-4
27-4
27-6
27-12
27-13
27-20
27-26
27-39
27-42
27-55
28-2
28-3
28-8
28-25
28-30
28-32
28-41
28-43
28-63
28-64
28-76
28-83
28-104
28-112
28-118
28-126
28-132
29-2
29-6
29-11
29-15
29-26
29-35

Ivi

29-7 Format Modifier Flags

29-8 Format Codes to Specify How to Format an Argument Written to a String
30-1 Function Return Values

30-2 Type Interface Functions

30-3 Any Data Functions

30-4 Data Types and Attribute Values

30-5 Data Types and Attribute Values

30-6 Any Data Set Functions

31-1 Function Return Values

31-2 OCI Locale Functions

31-3 OCI Locale-Mapping Function

31-4 OCI String Manipulation Functions

31-5 OCI Character Classification Functions

31-6 OCI Character Set Conversion Functions

31-7 OCI Messaging Functions

32-1 Function Return Values

32-2 OCI XML DB Functions

35-1 Mode of a Parameter

35-2 OCI XStream Functions

35-3 Table Column Data Types

35-4 Required Column List in the First LCR

35-5 Storage of LOB or LONG Data in the LCR

37-1 OCI SODA Functions

A-1 Function Code of the SQL Command Associated with the SQL Statement
B-1 OCI Demonstration Programs

C-1 Server Round-Trips for Relational Operations

C-2 Server Round-Trips for OCILob Calls

C-3 Server Round-Trips for OCIJSON Calls

C-4 Server Round-Trips for Object and Cache Functions
C-5 Server Round-Trips for Describe Operations

C-6 Server Round-Trips for Data Type Manipulation Functions
C-7 Server Round-Trips for Any Type and Data Functions
C-8 Locally Processed Functions

D-1 ORACLE_HOME Directories and Contents

D-2 Oracle XA Components

D-3 Link Libraries

E-1 Deprecated OCI Functions

ORACLE

29-38
29-39
30-1
30-2
30-7
30-10
30-13
30-24
31-1
31-2
31-9
31-11
31-35
31-41
31-46
32-1
32-2
35-5
35-5
35-23
35-53
35-67
37-1
A-49
B-1
C-2
C-3
C-5
C-5
C-7
C-7
C-8
C-8
D-2
D-4
D-5
E-1

Ivii

E-2
E-3
E-4
E-5
E-6
E-7
E-8
F-1
F-2

Deprecated Initialize Functions

Deprecated Statement Functions

Deprecated LOB Functions

Characters or Bytes in amtp for OCILobRead()
Characters or Bytes in amtp for OCILobWrite()
Characters or Bytes in amtp for OCILobWriteAppend()
Deprecated Database Advanced Queuing Functions
Agent Control Utility (agtctl) Commands

Configuration Parameters for agtctl

ORACLE

E-1
E-6
E-9
E-12
E-16
E-20
E-22
F-5
F-10

Iviii

Preface

Audience

Oracle Call Interface (OCI) is an application programming interface (API) that lets
applications written in C or C++ interact with Oracle Database. OCI gives your programs the
capability to perform the full range of database operations that are possible with Oracle
Database, including SQL statement processing and object manipulation.

This guide is intended for programmers developing new applications or converting existing
applications to run in the Oracle Database environment. This comprehensive treatment of
OCl is also valuable to systems analysts, project managers, and others interested in the
development of database applications.

This guide assumes that you have a working knowledge of application programming using C.
Readers should also be familiar with the use of structured query language (SQL) to access
information in relational database systems. In addition, some sections of this guide assume
knowledge of the basic concepts of object-oriented programming.

¢ See Also:

e Oracle Database SQL Language ReferenceandOracle Database
Administrator’s Guide for information about SQL

e Oracle Database Concepts

e Oracle Database New Features Guide for information about the differences
between the Standard Edition and the Enterprise Edition and all the features
and options that are available to you

e Oracle C++ Call Interface Programmer's Guide for more information about OCI
functionality for C++ that enables programmers to manipulate database objects
of user-defined types as C++ objects

Documentation Accessibility

ORACLE

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

lix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Related Documents

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database
installation. See Oracle Database Sample Schemas for information about how these
schemas were created and how you can use them.

To download free release notes, installation documentation, white papers, or other
collateral, visit the Oracle Technology Network (OTN). You must register online before
using OTN; registration is free and can be done at

http://www.oracle.com/technetwork/community/join/overview/

If you have a user name and password for OTN, then you can go directly to the
documentation section of the OTN Web site at
http://www.oracle.com/technetwork/indexes/documentation/

Oracle Call Interface Programmer's Guide does not contain all information that
describes the features and functionality of OCI in the Oracle Database Standard

Edition and Enterprise Edition products. Explore the following documents for additional
information about OCI.

e Oracle Database Data Cartridge Developer's Guide provides information about
cartridge services and OCI calls pertaining to development of data cartridges.

e Oracle Database Globalization Support Guide explains OCI calls pertaining to NLS
settings and globalization support.

e Oracle Database Advanced Queuing User's Guide supplies information about OCI
calls pertaining to Advanced Queuing.

e Oracle Database Development Guide explains how to use OCI with the XA library.

e Oracle Database SecureFiles and Large Objects Developer's Guide provides
information about using OCI calls to manipulate LOBSs, including code examples.

e Oracle Database Object-Relational Developer's Guide offers a detailed
explanation of object types.

For additional information about Oracle Database, consult the following documents:
* Oracle Database Net Services Administrator's Guide

e Oracle Database New Features Guide

* Oracle Database Concepts

* Oracle Database Reference

* Oracle Database Error Messages Reference

Conventions

The following text conventions are used in this document:

ORACLE Ix

http://www.oracle.com/technetwork/community/join/overview/
http://www.oracle.com/technetwork/indexes/documentation/

Preface

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLSs, code in
examples, text that appears on the screen, or text that you enter.

ORACLE Ixi

OCI: Introduction

This chapter contains these topics:

Overview of OCI

Building an OCI Application

Alternatives to OCI

SQL Statements

Procedural and Nonprocedural Elements

Object Support

Simple Oracle Document Access (SODA)
Encapsulated Interfaces

User Authentication and Password Management
Features to Improve Application Performance and Scalability
Oracle Database Advanced Queuing

XA Library Support

1.1 Overview of OCI

Oracle Call Interface (OCI) is an application programming interface (API) that lets you create
applications that use function calls to access an Oracle database and control all phases of
SQL statement execution and data access.

ORACLE

OCI supports the data types, calling conventions, syntax, and semantics of C and C++.

OCI provides:

High performance and scalability through the efficient use of system memory and
network connectivity

Consistent interfaces for dynamic session and transaction management in a two-tier
client/server or multitier environment

N-tier authentication
Comprehensive support for application development using Oracle Database objects

Access to external databases, such as Oracle TimesTen In-Memory Database and
Oracle In-Memory Database Cache. See Oracle TimesTen In-Memory Database C
Developers Guide.

Applications that support an increasing number of users and requests without additional
hardware investments

Ways to manipulate data and schemas in an Oracle Database using the C programming
language and a library of standard database access and retrieval functions in the form of
a dynamic runtime library (OCI library) that can be linked in an application at run time.

1-1

Chapter 1
Overview of OCI

» Encapsulated or opaque interfaces, whose implementation details are unknown

» Simplified user authentication and password management

» Extensions to improve application performance and scalability

» Consistent interface for transaction management

» OCI extensions to support client-side access to Oracle objects

» Significant advantages over other methods of accessing an Oracle Database:
— More fine-grained control over all aspects of application design
— High degree of control over program execution

— Use of familiar third-generation language programming techniques and
application development tools, such as browsers and debuggers

— Connection pooling, session pooling, and statement caching that enable
building of scalable applications

— Support of dynamic SQL

— Availability on the broadest range of operating systems of all the Oracle
programmatic interfaces

— Dynamic binding and defining using callbacks
— Description functionality to expose layers of server metadata
— Asynchronous event notification for registered client applications

— Enhanced array data manipulation language (DML) capability for array inserts,
updates, and deletes

— Ability to associate commit requests with executes to reduce round-trips

— Optimization of queries using transparent prefetch buffers to reduce round-
trips

— Thread safety, which eliminates the need for mutual exclusive locks (mutexes)
on OCI handles

— APIs to design a scalable, multithreaded application that can support large
numbers of users securely

— SQL access functions, for managing database access, processing SQL
statements, and manipulating objects retrieved from an Oracle database

— Data type mapping and manipulation functions, for manipulating data
attributes of Oracle types

— Data loading functions, for loading data directly into the database without
using SQL statements

— External procedure functions, for writing C callbacks from PL/SQL

¢ See Also:

e Oracle Call Interface

¢ Related Documents

ORACLE 1-2

Chapter 1
Building an OCI Application

1.2 Building an OCI Application

You compile and link an OCI program in the same way that you compile and link a non-
database application. There is no need for a separate preprocessing or precompilation step.

OCI supports most popular compilers. The details of linking an OCI program vary from
system to system. On some operating systems, it may be necessary to include other libraries,
in addition to the OCI library, to properly link your OCI programs. See your Oracle Database
system-specific documentation and the installation guide for more information about
compiling and linking an OCI application for your operating system.

1.3 Alternatives to OCI

ORACLE

Some alternatives to using the Oracle Call Interface (OCI) include:

e Oracle Database Programming Interface for C (ODPI-C)
e Oracle C++ Call Interface (OCCI)

e Oracle Pro*C/C++ Precompiler

* Oracle ODBC Driver

Oracle Database Programming Interface for C (ODPI-C)

ODPI-C is an open source library of C code that simplifies the use of common Oracle Call
Interface (OCI) features for Oracle Database drivers and user applications. ODPI-C sits on
top of OCI and requires Oracle client libraries. ODPI-C:

» Favors ease of use aimed at driver writers where niche special-case OCI features are not
needed.

* Provides a faster implementation of drivers with considerably less code. Oracle features
can be exposed to users rapidly and in a consistent way.

* Provides simpler memory management for binding variables and fetching.

* Automatically converts binding and ‘defining’ (for fetches) to "native” C types so that
additional calls do not need to be made. This is beneficial particularly for numbers and
dates. The ability to retrieve LONG and LOB columns as strings and buffers is an
advantage as well.

* Provides a "safer" API in that resource handles are validated. Casts are not needed. A
reference counting mechanism adds resiliency by stopping applications from destroying
in-use OCI resources.

* Provides an API that simplifies connection and resource management. For example, it
automatically does session pool pinging to provide better High Availability.

* Provides an alternative programming experience from OCI that uses a multiple getter and
setter model for handling attributes.

* Provides a sample Makefile that builds ODPI-C as a shared library. Or, the ODPI-C
source code can be included in your project and built as you would build an OCI
application.

1-3

Chapter 1
SQL Statements

¢ See Also:

ODPI-C Home Page, for a list of ODPI-C supported features and a list of
references including to its home page, code location on github, and
documentation

Oracle C++ Call Interface (OCCI)

The Oracle C++ Call Interface (OCCI) is an application programming interface (API)
that allows applications written in C++ to interact with one or more Oracle database
servers. OCCI gives your programs the ability to perform the full range of database
operations that are possible with an Oracle database server, including SQL statement
processing and object manipulation.

See Also:

Oracle C++ Call Interface Programmer's Guide

Oracle Pro*CI/C++ Precompiler

Oracle Pro*C/C++ Precompiler is a programming tool that enables the user to embed
SQL statements in a high-level source program. The precompiler accepts the source
program as input, translates the embedded SQL statements into standard Oracle
runtime library calls, and generates a modified source program that you can compile,
link, and execute in the usual way.

¢ See Also:

Pro*C/C++ Programmer's Guide

Oracle ODBC Driver

The Oracle ODBC Driver enables ODBC applications on Microsoft Windows, as well
as UNIX platforms like Linux, Solaris, IBM Advanced Interactive eXecutive (AIX), HP-
UX Itaniutm, and IBM Linux on Platform z read and write access to Oracle® databases
through the ODBC interface using Oracle Net Services software.

" See Also:

Oracle Database Development Guide for more information about the Oracle
ODBC Driver

1.4 SQL Statements

One of the main tasks of an OCI application is to process SQL statements.

ORACLE 1-4

Chapter 1
SQL Statements

Different types of SQL statements require different processing steps in your program. It is
important to take this into account when coding your OCI application. Oracle Database
recognizes several types of SQL statements:

» Data Definition Language (DDL)
« Control Statements
— Transaction Control
— Session Control
— System Control
e Queries
o Data Manipulation Language (DML)
« PL/SQL
e Embedded SQL
e Special OCI Terms for SQL

¢ See Also:
Using SQL Statements in OCI

1.4.1 Data Definition Language

ORACLE

Data definition language (DDL) statements manage schema objects in the database.

DDL statements create new tables, drop old tables, and establish other schema objects.
They also control access to schema objects.

The following is an example of creating and specifying access to a table:

CREATE TABLE employees
(name VARCHAR2 (20),
12),

ssn VARCHAR? (
empno NUMBER (6)
mgr NUMBER (6) ,
salary NUMBER (6)) ;

GRANT UPDATE, INSERT, DELETE ON employees TO donna;
REVOKE UPDATE ON employees FROM jamie;

DDL statements also allow you to work with objects in the Oracle database, as in the
following series of statements that create an object table:

CREATE TYPE person t AS OBJECT (
name VARCHAR2 (30),
ssn VARCHAR2 (12),
address VARCHAR2Z (50));

CREATE TABLE person tab OF person t;

1-5

Chapter 1
SQL Statements

1.4.2 Control Statements

OCI applications treat transaction control, session control, and system control
statements as if they were DML statements.

¢ See Also:

Oracle Database SQL Language Reference for information about these
types of statements

1.4.3 Data Manipulation Language

Data manipulation language (DML) statements can change data in the database
tables.

For example, DML statements are used to:

e Insert new rows into a table

* Update column values in existing rows

* Delete rows from a table

* Lock a table in the database

» Explain the execution plan for a SQL statement

* Require an application to supply data to the database using input (bind) variables

¢ See Also:

About Binding Placeholders in OCI for more information about input bind
variables

DML statements also allow you to work with objects in the Oracle database, as in the
following example, which inserts an instance of type person_t into the object table
person_tab:

INSERT INTO person tab
VALUES (person t('Steve May','987-65-4320",'146 Winfield Street'));

1.4.4 Queries

ORACLE

Queries are statements that retrieve data from a database.

A query can return zero, one, or many rows of data. All queries begin with the SQL
keyword SELECT, as in the following example:

SELECT dname FROM dept
WHERE deptno = 42;

1-6

Chapter 1
SQL Statements

Queries access data in tables, and they are often classified with DML statements. However,
OCI applications process queries differently, so they are considered separately in this guide.

Queries can require the program to supply data to the database using input (bind) variables,
as in the following example:

SELECT name
FROM employees
WHERE empno = :empnumber;

In the preceding SQL statement, :empnumber is a placeholder for a value that is to be
supplied by the application.

When processing a query, an OCI application also must define output variables to receive the
returned results. In the preceding statement, you must define an output variable to receive
any name values returned from the query.

¢ See Also:

e Overview of Binding in OCI for more information about input bind variables
e Overview of Defining in OCI for information about defining output variables

e Using SQL Statements in OCI for detailed information about how SQL
statements are processed in an OCI program

1.4.5 PL/SQL

ORACLE

PL/SQL is Oracle's procedural extension to the SQL language.

PL/SQL processes tasks that are more complicated than simple queries and SQL data
manipulation language statements. PL/SQL allows some constructs to be grouped into a
single block and executed as a unit. Among these are:

e One or more SQL statements

e Variable declarations

* Assignment statements

* Procedural control statements (IF...THEN...ELSE statements and loops)
* Exception handling

You can use PL/SQL blocks in your OCI program to:

* Call Oracle Database stored procedures and stored functions

» Combine procedural control statements with several SQL statements, so that they are
executed as a unit

* Access special PL/SQL features such as records, tables, cursor FOR loops, and
exception handling

» Use cursor variables

» Take advantage of implicit result set capability that allows reuse of existing stored
procedure designs that return implicit result sets

» Access and manipulate objects in an Oracle database

1-7

Chapter 1
SQL Statements

The following PL/SQL example issues a SQL statement to retrieve values from a table
of employees, given a particular employee number. This example also demonstrates
the use of placeholders in PL/SQL statements.

BEGIN
SELECT ename, sal, comm INTO :emp name, :salary, :commission
FROM emp
WHERE empno = :emp number;

END;

Note that the placeholders in this statement are not PL/SQL variables. They represent
input values passed to the database when the statement is processed. These
placeholders must be bound to C language variables in your program.

¢ See Also:

e Oracle Database PL/SQL Language Reference for information about
coding PL/SQL blocks

e About Binding Placeholders in PL/SQL for information about working
with placeholders in PL/SQL

1.4.6 Embedded SQL

OCI processes SQL statements as text strings that an application passes to the
database on execution.

The Oracle precompilers (Pro*C/C++, Pro*COBOL, Pro*FORTRAN) allow you to
embed SQL statements directly into your application code. A separate precompilation
step is then necessary to generate an executable application.

It is possible to mix OCI calls and embedded SQL in a precompiler program.

See Also:

Pro*C/C++ Programmer's Guide

1.4.7 Special OCI Terms for SQL

ORACLE

This guide uses special terms to refer to the different parts of a SQL statement.

For example, consider the following SQL statement:

SELECT customer, address
FROM customers

WHERE bus type = 'SOFTWARE'
AND sales volume = :sales;

It contains the following parts:

e A SQL command - SELECT

1-8

Chapter 1
Procedural and Nonprocedural Elements

* Two select-list items - customer and address

* A table name in the FROM clause - customers

» Two column names in the WHERE clause - bus_type and sales volume
e Aliteral input value in the WHERE clause - 'SOFTWARE'

e A placeholder for an input variable in the WHERE clause - :sales

When you develop your OCI application, you call routines that specify to the Oracle database
the address (location) of input and output variables of your program. In this guide, specifying
the address of a placeholder variable for data input is called a bind operation. Specifying the
address of a variable to receive select-list items is called a define operation.

For PL/SQL, both input and output specifications are called bind operations.

See Also:

e Using SQL Statements in OCI for more information about these terms and
operations

1.5 Procedural and Nonprocedural Elements

ORACLE

OCI enables you to develop scalable, multithreaded applications in a multitier architecture
that combines the nonprocedural data access power of structured query language (SQL) with
the procedural capabilities of C and C++.

* In a nonprocedural language program, the set of data to be operated on is specified, but
what operations are to be performed, or how the operations are to be conducted, is not
specified. The nonprocedural nature of SQL makes it an easy language to learn and to
use to perform database transactions. It is also the standard language used to access
and manipulate data in modern relational and object-relational database systems.

e In a procedural language program, the execution of most statements depends on
previous or subsequent statements and on control structures, such as loops or
conditional branches, that are not available in SQL. The procedural nature of these
languages makes them more complex than SQL, but it also makes them more flexible
and powerful.

The combination of both nonprocedural and procedural language elements in an OCI
program provides easy access to an Oracle database in a structured programming
environment.

OCI supports all SQL data definition, data manipulation, query, and transaction control
facilities that are available through an Oracle database. For example, an OCI program can
run a query against an Oracle database. The query can require the program to supply data to
the database using input (bind) variables, as follows:

SELECT name FROM employees WHERE empno = :empnumber;

In the preceding SQL statement, : empnumber is a placeholder for a value that is to be
supplied by the application.

1-9

Chapter 1
Object Support

You can also take advantage of PL/SQL, Oracle's procedural extension to SQL. The
applications you develop can be more powerful and flexible than applications written in
SQL alone. OCI also provides facilities for accessing and manipulating objects in a
database.

1.6 Object Support

OCI has facilities for working with object types and objects.

An object type is a user-defined data structure representing an abstraction of a real-
world entity. For example, the database might contain a definition of a person object.
That object might have attributes—first name, last name, and age—to represent a
person's identifying characteristics.

The object type definition serves as the basis for creating objects that represent
instances of the object type by using the object type as a structural definition, you
could create a person object with the attribute values 'John’, '‘Bonivento’, and '30'".
Object types may also contain methods—programmatic functions that represent the
behavior of that object type.

OCI provides a comprehensive application programming interface for programmers
seeking to use Oracle Database object capabilities.

These capabilities include:

* Executing SQL statements that manipulate object data and schema information
» Passing of object references and instances as input variables in SQL statements

» Declaring object references and instances as variables to receive the output of
SQL statements

» Fetching object references and instances from a database

» Describing the properties of SQL statements that return object instances and
references

» Describing PL/SQL procedures or functions with object parameters or results

* Extension of commit and rollback calls to synchronize object and relational
functionality

OCI object features can be divided into the following major categories:

e Client-Side Object Cache

» Associative and Navigational Interfaces to access and manipulate objects
e OCI Runtime Environment for Objects

* Type Management: Mapping and Manipulation Functions to access information
about object types and control data attributes of Oracle types

» Object Type Translator (OTT) utility, for mapping internal Oracle Database schema
information to client-side language bind variables

ORACLE 1-10

Chapter 1
Object Support

¢ See Also:

* Encapsulated Interfaces which describes additional OCI calls that are provided
to support manipulation of objects after they have been accessed by SQL
statements

e Oracle Database Concepts

e Oracle Database Object-Relational Developer's Guide

1.6.1 Client-Side Object Cache

The object cache is a client-side memory buffer that provides lookup and memory
management support for objects.

The object cache stores and tracks object instances that have been fetched by an OCI
application from the server to the client side. The object cache is created when the OCI
environment is initialized. When multiple applications run against the same server, each has
its own object cache. The cache tracks the objects that are currently in memory, maintains
references to objects, manages automatic object swapping, and tracks the meta-attributes or
type information about objects. The object cache provides the following features to OCI
applications:

* Improved application performance by reducing the number of client/server round-trips
required to fetch and operate on objects

» Enhanced scalability by supporting object swapping from the client-side cache

* Improved concurrency by supporting object-level locking

1.6.2 Associative and Navigational Interfaces

ORACLE

What are the different types of interfaces OCI applications can use to access objects?

Applications using OCI can access objects in an Oracle database through several types of
interfaces:

e Using SQL SELECT, INSERT, and UPDATE statements

» Using a C-style pointer chasing scheme to access objects in the client-side cache by
traversing the corresponding smart pointers or REFS

OCI provides a set of functions with extensions to support object manipulation using SQL
SELECT, INSERT, and UPDATE statements. To access Oracle Database objects, these SQL
statements use a consistent set of steps as if they were accessing relational tables. OCI
provides the following sets of functions required to access objects:

* Binding and defining object type instances and references as input and output variables
of SQL statements

* Executing SQL statements that contain object type instances and references
* Fetching object type instances and references

» Describing select-list items of an Oracle object type

1-11

Chapter 1
Object Support

OCI also provides a set of functions using a C-style pointer chasing scheme to access
objects after they have been fetched into the client-side cache by traversing the
corresponding smart pointers or REFS. This navigational interface provides functions
for:

» Instantiating a copy of a referenceable persistent object (that is, of a persistent
object with object ID in the client-side cache) by pinning its smart pointer or REF

e Traversing a sequence of objects that are connected to each other by traversing
the REFs that point from one to the other

« Dynamically getting and setting values of an object's attributes

1.6.3 OCI Runtime Environment for Objects

OCI provides functions for objects to manage how Oracle Database objects are used
on the client side.

These functions provide for:

e Connecting to an Oracle database server to access its object functionality,
including initializing a session, logging on to a database server, and registering a
connection

e Setting up the client-side object cache and tuning its parameters
e Getting errors and warning messages

» Controlling transactions that access objects in the database

» Associatively accessing objects through SQL

» Describing PL/SQL procedures or functions whose parameters or results are
Oracle types

1.6.4 Type Management: Mapping and Manipulation Functions

OCI provides two sets of functions to work with Oracle Database objects.

* Type Mapping functions allow applications to map attributes of an Oracle schema
represented in the server as internal Oracle data types to their corresponding host
language types.

* Type Manipulation functions allow host language applications to manipulate
individual attributes of an Oracle schema such as setting and getting their values
and flushing their values to the server.

Additionally, the 0CIDescribeAny () function provides information about objects stored
in the database.

1.6.5 Object Type Translator

ORACLE

The Object Type Translator (OTT) utility translates schema information about Oracle
object types into client-side language bindings of host language variables, such as
structures.

The OTT takes as input an intype file that contains metadata information about Oracle
schema objects. It generates an outtype file and the header and implementation files
that must be included in a C application that runs against the object schema. Both OCI

1-12

Chapter 1
Simple Oracle Document Access (SODA)

applications and Pro*C/C++ precompiler applications may include code generated by the
OTT. The OTT is beneficial because it:

* Improves application developer productivity: OTT eliminates the need for you to code the
host language variables that correspond to schema objects.

* Maintains SQL as the data definition language of choice: By providing the ability to
automatically map Oracle schema objects that are created using SQL to host language
variables, OTT facilitates the use of SQL as the data definition language of choice. This
in turn allows Oracle Database to support a consistent model of data.

» Facilitates schema evolution of object types: OTT regenerates included header files when
the schema is changed, allowing Oracle applications to support schema evolution.

OTT is typically invoked from the command line by specifying the intype file, the outtype file,
and the specific database connection. With Oracle Database, OTT can only generate C
structures that can either be used with OCI programs or with the Pro*C/C++ precompiler
programs.

1.7 Simple Oracle Document Access (SODA)

ORACLE

SODA for Cis a C API that is part of Oracle Call Interface (OCI).

SODA for C implements Simple Oracle Document Access (SODA). You can use it to perform
create, read (retrieve), update, and delete (CRUD) operations on documents of any kind, and
you can use it to query JSON documents. You compile programs that use SODA for C the
same way you compile other OCI programs. SODA is a set of NoSQL-style APIs that let you
create and store collections of documents in Oracle Database, retrieve them, and query
them, without needing to know Structured Query Language (SQL) or how the data in the
documents is stored in the database. Oracle Database supports storing and querying JSON
data. To access this functionality, you need structured query language (SQL) with special
JSON SQL operators. SODA for C hides the complexities of SQL/JSON programming.

Related Topics
* Oracle Database Introduction to Simple Oracle Document Access (SODA)
» Oracle Database SODA for C Developers Guide

* OCI SODA Functions
The following table lists the OCI SODA functions that are described in this chapter.

* Handles
Almost every OCI call includes in its parameter list one or more handles.

« SODA Collection Handle Attributes
Lists and describes the OCI SODA collection handle attributes.

» SODA Document Handle Attributes

* SODA Operation Options Handle Attributes
Lists and describes the OCI SODA Operation Options handle attributes.

* SODA Output Options Handle Attributes
Lists and describes the OCI SODA Output Options handle attributes. This handle is used
to return the number of documents processed by a bulk operation. Currently, it is returned
only by bulk insert methods.

1-13

Chapter 1
Encapsulated Interfaces

1.8 Encapsulated Interfaces

All the data structures that are used by OCI calls are encapsulated in the form of
opaque interfaces that are called handles.

A handle is an opaque pointer to a storage area allocated by the OCI library that
stores context information, connection information, error information, or bind
information about a SQL or PL/SQL statement. A client allocates certain types of
handles, populates one or more of those handles through well-defined interfaces, and
sends requests to the server using those handles. In turn, applications can access the
specific information contained in a handle by using accessor functions.

The OCI library manages a hierarchy of handles. Encapsulating the OCI interfaces
with these handles has several benefits to the application developer, including:

* Reduction of server-side state information that must be retained, thereby reducing
server-side memory usage

* Improvement of productivity by eliminating the need for global variables, making
error reporting easier, and providing consistency in the way OCI variables are
accessed and used

» Allows changes to be made to the underlying structure without affecting
applications

1.9 User Authentication and Password Management

OCI provides application developers with user authentication and password
management.

This is supported in several ways:

e OCIl enables a single OCI application to authenticate and maintain multiple users.

e OCI enables the application to update a user's password, which is particularly
helpful if an expired password message is returned by an authentication attempt.

OCI supports two types of login sessions:

* Alogin function for sessions by which a single user connects to the database
using a login name and password

* A mechanism by which a single OCI application authenticates and maintains
multiple sessions by separating the login session (the session created when a
user logs in to an Oracle database) from the user sessions (all other sessions
created by a user)

Privileged connections, such as SYSDBA, SYSOPER, proxy authentication, external
authentication, and others, are also supported.

1.10 Features to Improve Application Performance and
Scalability

OCI provides several feature extensions to improve application performance and
scalability.

ORACLE 1-14

Chapter 1
Oracle Database Advanced Queuing

Application performance has been improved by reducing the number of client to server
round-trips required, and scalability improvements have been made by reducing the amount
of state information that must be retained on the server side. Some of these features include:

e Statement caching to improve performance by caching executable statements that are
used repeatedly

e Client result caching to limit the number of round trips to the database server

* Implicit prefetching of SELECT statement result sets to eliminate the describe round-trip,
reduce round-trips, and reduce memory usage

e Elimination of open and close cursor round-trips
e Support for multithreaded environments
e Session multiplexing over connections

e Consistent support for a variety of configurations, including standard two-tier client/server
configurations, server-to-server transaction coordination, and three-tier transaction
processing (TP)-monitor configurations

e Consistent support for local and global transactions, including support for the XA
interface's TM_JOIN operation

* Improved scalability by providing the ability to concentrate connections, processes, and
sessions across users on connections and by eliminating the need for separate sessions
to be created for each branch of a global transaction

« Allowing applications to authenticate multiple users and allow transactions to be started
on their behalf

1.11 Oracle Database Advanced Queuing

OCI provides an interface to Oracle Database Advanced Queuing (Database AQ) feature.

Database AQ provides message queuing as an integrated part of Oracle Database.
Database AQ provides this functionality by integrating the queuing system with the database,
thereby creating a message-enabled database. By providing an integrated solution, Database
AQ frees you to devote your efforts to your specific business logic rather than having to
construct a messaging infrastructure.

See Also:

OCI and Database Advanced Queuing

1.12 XA Library Support

ORACLE

OCI supports the Oracle XA library.

The xa.h header file is in the same location as all the other OCI header files. For Linux or
UNIX, the path is SORACLE HOME/rdbms/public. Users of the demo rdbms.mk file on Linux or
UNIX are not affected because this make file includes the $ORACLE HOME/rdbms/public
directory.

For Windows, the path is ORACLE BASE\ORACLE HOME\oci\include.

1-15

Chapter 1
Oracle Instant Client and Oracle Instant client Basic Light

¢ See Also:

e Oracle XA Library for more information about Windows and XA
applications

e Oracle Database Development Guide for information about developing
applications with Oracle XA

1.13 Oracle Instant Client and Oracle Instant client Basic

Light

ORACLE

Oracle Instant Client enables applications to connect to a local or remote Oracle
Database for development and production deployment

About Oracle Instant Client: The Oracle Instant Client libraries provide the
necessary network connectivity, as well as Oracle Database client-side files to
create and run Oracle Call Interface (OCI), OCCI, ODBC, and JDBC OCI
applications to make full use of Oracle Database.

About Oracle Instant Client Basic Light: Oracle Instant Client Basic Light further
reduces the disk space requirements of a client installation.

1-16

Building and Configuring OCI Applications

This chapter describes features about building and configuring OCI applications on Linux,
UNIX, and Windows operating systems.

For other supported operating systems, see the platform specific installation guides for more
information.

This chapter includes the following topics:

* Header File and Makefile Locations

e Building an OCI Application on Linux and UNIX

e Building an Application on Windows

» Database Connection Strings

* Client and Server Operating with Different Versions of Time Zone Files
* OCI Client-Side Deployment Parameters Using oraaccess.xml

* About Compatibility and Upgrading

* Fault Diagnosability in OCI

2.1 Header File and Makefile Locations

The OCI and OCCI header files that are required for OCI and OCCI client application
development on Linux and UNIX operating systems reside in the SORACLE HOME/rdbms/
public directory.

These files are available both with the Oracle Database Server installation, and with the
Oracle Database Client Administration and Custom installations.

All demonstration programs and their related header files reside in the SORACLE HOME/rdbms/
demo directory once they are installed. These demonstration files are installable only from the
Examples media. See OCI Demonstration Programs for the names of these programs and
their purposes.

Several makefiles are provided in the demo directory. Each makefile contains comments with
instructions on its use in building OCI executables. Oracle recommends that you use these
demonstration makefiles whenever possible to avoid errors in compilation and linking.

The demo_rdbms.mk file in the demo directory and is an example makefile. See the comments
on how to build the demonstration OCI programs. The demo rdbms.mk file includes

the SORACLE HOME/rdbms/public directory. Ensure that your own customized makefiles have
the SORACLE HOME/rdbms/public directory in the INCLUDE path.

The ociucb.mk file is a makefile in demo for building a callback shared library.

2.2 Building an OCI Application on Linux and UNIX

How to build an OCI application on Linux and UNIX.

ORACLE 2-1

Chapter 2
Building an OCI Application on Linux and UNIX

This topic describes the features of OCI that apply to building applications on Linux
and UNIX in the following topics:

* Oracle Directory Structure

* Demonstration OCI Programs

¢ See Also:

e Oracle Database Client Installation Guide for Linux for operating system
requirements for x86—64 Linux platforms, supported Oracle Linux and
Red Hat Enterprise distributions for x86-64 platforms, and installation
requirements for programming environments for Linux x86-64

e Oracle Database Instant Client Installation Guide for Apple Mac OS X
(Intel) for checking the software requirements

2.2.1 Oracle Directory Structure

The $ORACLE HOME directory contains the following directories described in the
following table that are relevant to OCI.

These directories are for the full client and Oracle Database, but not for the Oracle
Instant Client. These files include the library files needed to link and run OCI
applications, and link with other Oracle products.

Table 2-1 ORACLE_HOME Directories and Contents

Directory Name Contents

/admin Configuration files

/demo Sample programs, make files, SQL files, and
so forth

/imclude Header files

/1ib Library files

/mesg Message files

/public Public header files

2.2.2 Demonstration OCI Programs

ORACLE

A set of OCI demonstration programs and their corresponding project files are
optionally installed after an Oracle Database installation and set up in the
ORACLE BASE/ORACLE HOME/demo subdirectory.

Build and run these OCI demonstration programs to familiarize yourself with the steps
involved in developing OCI applications.

For Oracle Database Enterprise Edition (Oracle Database EE) users:

2-2

Chapter 2
Building an Application on Windows

To build a demo OCI program, run the make file (demo rdbms.mk) located in the /demo
directory. For example, to build a single OCI demo, use the following make command syntax:

make -f demo rdbms.mk build EXE=demo OBJS="demo.o ..."

For example, to build the OCI cdemo81.c program, enter the following make command:

make -f demo rdbms.mk build EXE=cdemo81 OBJS=cdemo8l.o

In this example, the executable file is created or updated from the object file, which in turn is
made by compiling the source file cdemo81.c.

Where:

The build option in the command, regenerates client shared libraries. That is, it results in re-
linking the oracle shared library. The build command option should be specified only if you
apply a patch to the client.

For Oracle Database Express Edition (Oracle Database XE) users:

You should not use the build option in the demo rdbms.nk file as it does not support
regenerating the client shared library. Oracle Database XE is bundled only with binaries
required to run the applications, utilities, and the database. You can compile and link
application and demo programs with the specified header files.

¢ Note:

genclntsh and genclntst scripts cannot be used as the object (.0's) or archive
(.a's) libraries required for patching and re-linking are not available in the installed
location.

¢ See Also:

e Oracle Database Examples Installation Guide for information about installing
the demonstration OCI programs using Oracle Universal Installer

* Review the contents of the demo_rdbms.mk file to learn more about running the
many other OCI demonstration programs that are available in the demo
subdirectory.

e OCI Demonstration Programs for more information about OCI demonstration
programs

2.3 Building an Application on Windows

How to build an OCI application on Windows.

See Getting Started with OCI for Windows for complete information.

ORACLE 2-3

Chapter 2
Database Connection Strings

¢ See Also:

Oracle Database Client Installation Guide for Microsoft Windows for
information about Oracle Database software client requirements.

2.4 Database Connection Strings

This topic describes Oracle Net naming methods for connecting to Oracle Databases.

In particular, the connect identifier inthe 0CIServerAttach() call can be specified
in the following formats:

Starting with Oracle Database 19c release, the Easy Connect Plus syntax has
been extended, see About Easy Connect Plus.

An Easy Connect Plus string has the following syntax:

[[protocol:]//lhostl{,hostl2}[:portl]{,host2:port2}[/service name]
[:server] [/instance name] [?
parameter name=value{¶meter name=value}]

You can set the value of net service name to OCIServerAttach() as follows:

net service name=
(DESCRIPTION=
(ADDRESS=(protocol address_information))
(CONNECT DATA=
(SERVICE NAME=service name)))

As an Oracle Net connect descriptor of the form:

" (DESCRIPTION=(ADDRESS=(PROTOCOL=protocol-name) (HOST=host-name) (PORT=port-
number))
(CONNECT_DATA:(SERVICE_NAME:serVice—name)))"

A Connection Name that is resolved through Directory Naming where the site is
configured for LDAP server discovery.

¢ See Also:

Oracle Database Net Services Administrator's Guide and Oracle Database
Net Services Reference for more information about naming methods such as
tnsnames.ora and directory naming.

2.4.1 Examples of Oracle Database Connection String Connect

|dentifiers

If you are using OCI applications, for example SQL*Plus, then you can specify the
database connection string in the following ways:

If the 1istener.ora file on the Oracle database contains the following:

ORACLE

2-4

ORACLE

Chapter 2
Database Connection Strings

LISTENER = (ADDRESS LIST=
(ADDRESS= (PROTOCOL=tcp) (HOST=server6) (PORT=1573)
)

SID LIST LISTENER = (SID LIST=

(SID_DESC=(SID NAME=rdbms3) (GLOBAL DBNAME=rdbms3.server6.us.alchemy.com)
(ORACLE_HOME=/home/dba/rdbms3/oracle))
)

For example, the OCI application connect identifier has of the following format:

"server6:1573/rdbms3.server6.us.alchemy.com"

The connect identifier can also be specified as:

" (DESCRIPTION= (ADDRESS= (PROTOCOL=tcp) (HOST=server6) (PORT=1573)) (CONNECT DATA=
(SERVICE NAME=rdbms3.server6.us.alchemy.com)))"

Alternatively, you can set the LOCAL environment variable to any of the previous connect
identifiers and connect without specifying the connect identifier. For example:

export LOCAL=//server6:1573/rdbms3.server6.us.alchemy.com

You can also specify the LOCAL environment variable as follows:

export LOCAL=(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp) (HOST=server6) (PORT=1573)
(CONNECT DATA=(SERVICE NAME=rdbms3.server6.us.alchemy.com)))

Then you can invoke the OCI application with an empty connect identifier. For example, to
run SQL*Plus:

sqlplus user

The connect descriptor can also be stored in the tnsnames.ora file. For example, the
tnsnames.ora file contains the following connect descriptor:

conn str = (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=server6)(PORT=1573))(CONNECTiDATA=
(SERVICE NAME=rdbms3.server6.us.alchemy.com)))

If the tnsnames.ora file is located in the /home/webuser/myconfigs directory, then you can
set the variable TNS ADMIN (or LOCAL on Windows) as:

export TNS ADMIN=/home/webuser/myconfigs

Then you can use the connect identifier conn_str for invoking OCI application, for example
SQL*Plus, or for your OCI connection.

" Note:

TNS_ADMIN specifies the directory where configuration file such as tnsnames.ora file
is located and is not the full path of the tnsnames.ora file.

If the preceding tnsnames.ora file is located in an installation based Oracle home in the /
network/server6/home/dba/oracle/network/admin directory, then the ORACLE HOME
environment variable can be set as follows and OCI applications, for example SQL*Plus can
be invoked as previously, with the identifier conn str:

2-5

Chapter 2
Client and Server Operating with Different Versions of Time Zone Files

export ORACLE HOME=/network/server6/home/dba/oracle

Finally, if tnsnames.ora can be located by TNS ADMIN or ORACLE HOME, then the LOCAL
environment variable can be set as follows enabling you to invoke OCI application, for
example SQL*Plus without a connect identifier:

export LOCAL=conn str

2.5 Client and Server Operating with Different Versions of
Time Zone Files

In Oracle Database Release 11.2 (or later) you can use different versions of the time
zone file on the client and server.

Both client and server must be 11.2 or later to operate in such a mixed mode. This
section discusses the ramifications of operating in such a mode. To avoid these
ramifications use the same time zone file version for client and server.

The following behavior is seen when the client and server use different time zones file
versions. Note that the use of different time zone file versions only affects the handling
of TIMESTAMP WITH TIMEZONE (TSTZ) data type values.

e The OCI Datetime and Interval APIs listed here unconditionally raise an error
when the input parameters are of TSTZ type. This is because these operations
depend on the local time zone file on the client that is not synchronized with the
database. Continuing with the computation in such a configuration can result in
inconsistent computations across the client and database tiers.

OClIDateTimeCompare()
OClIDateTimeConstruct()
OClDateTimeConvert()
OClIDateTimeSubtract()
OClIntervalAdd()
OClintervalSubtract()
OClintervalFromTZ()
OClIDateTimeGetTimeZoneName()
OClIDateTimeGetTimeZoneOffset()*
OCIDateTimeSysTimeStamp()

e There is a performance penalty when you retrieve or modify TSTz values. The
performance penalty arises because of the additional conversions needed to
compensate for the client and server using different time zone file versions.

» If new time zone regions are defined by the more recent time zone file, you can
see an error operating on a TIMESTAMP WITH TIMEZONE value belonging to the new
region on a node that has a time zone file version that does not recognize the new
time zone region.

Applications that manipulate opaque type or XMLType instances or both containing
TSTZ type attributes must use the same time zone file version on client and server to
avoid data loss.

1 Returns an ORA-01805 error when timezone files on the client and server do not match (regions are not
synchronized); returns OCI_SUCCESS when region time zone values are the same (represent the same instant in
UTC), though the TIME ZONE offsets are different.

ORACLE 2-6

Chapter 2
OCI Client-Side Deployment Parameters Using oraaccess.xml

¢ See Also:

Oracle Database Globalization Support Guide for information about upgrading the
time zone file and timestamp with time zone data

2.6 OCI Client-Side Deployment Parameters Using
oraaccess.xm|

This topic describes the OCI client-side deployment parameters using oraaccess.xml.
This section includes the following topics:

* About oraaccess.xml

» About Client-Side Deployment Parameters Specified in oraaccess.xml

» High Level Structure of oraaccess.xml

» About Specifying Global Parameters in oraaccess.xml

* About Specifying Defaults for Connection Parameters

* Overriding Connection Parameters at the Connection-String Level

» About OCI Session Pool Configuration in oraaccess.xml

* File (oraaccess.xml) Properties

2.6.1 About oraaccess.xml

Starting with Oracle Database Release 12¢ Release 1 (12.1), Oracle provides an
oraaccess.xml file, a client-side configuration file.

You can use the oraaccess.xnl file to configure selected OCI parameters (some of which are
accepted programatically in various OCI API calls), thereby allowing OCI behavior to be
changed during deployment without modifying the source code that calls OCI.

Updates to the oraaccess.xml file will not affect already running clients. In order to pick up
any updates to the oraaccess.xml file, already running clients need to be restarted.

The oraaccess.xnl file is read from the directory specified by the TNS ADMIN environment
variable in regular and instant client installations. This is the SORACLE HOME/network/admin
directory on UNIX operating systems and the $ORACLE HOME$\NETWORK\ADMIN directory on
Microsoft Windows operating systems, if TNS_ADMIN is not set in regular client installations.

2.6.2 About Client-Side Deployment Parameters Specified in
oraaccess.xml

When equivalent parameters are set both in the sqlnet.ora and oraaccess.xnl files, the
oraaccess.xnl file setting takes precedence over the corresponding sqglnet.ora file setting.

ORACLE 2.7

Chapter 2
OCI Client-Side Deployment Parameters Using oraaccess.xml

In such cases, Oracle recommends using the oraaccess.xml file settings moving
forward. For any network configuration, the sqlnet.ora file continues to be the primary
file as network level settings are not supported in the oraaccess.xml file.

2.6.3 High Level Structure of oraaccess.xml

Describes the high-level structure of the oraaccess.xnl file.

ORACLE

The oraaccess.xnl file has a top-level node <oraaccess> with the following three

elements:

* <default parameters> - This element describes any default parameter settings
shared across connections. These default parameters include:

Defaults for global parameters - These global parameters can only be
specified once and hence are applicable to all connections and cannot be
overridden at the connection level. These parameters are specified using the
following tags:

*

*

*

<events> - Creates the OCI Environment in OCI_EVENTS mode, which is
required for Fast Application Notification (FAN) and runtime connection
load balancing

<result cache> - Sets OCI client result cache parameters

<diag> - Sets OCI fault diagnosability parameters

Defaults for connection-specific parameters - Connection parameters can be
set to different values for specific connections. However, they too can be
defaulted, and overridden on a per connection string basis as needed. These
defaults are shared across all connections (unless overridden at the
connection level, which is described in the <config descriptions> list item)
that follows. These defaults are specified by the following tags:

*

<prefetch> - Sets the number of prefetch rows for all queries; specified
using the <rows> parameter.

<statement cache> - Sets the maximum number of statements that can
be cached per session; specified using the <size> parameter.

<auto tune> - Consists of: <enable> to turn auto tuning on or off;
<ram_threshold>, which sets the memory threshold for auto-tuning to stop
using more memory when available physical memory on the client system
has reached this threshold; and <memory target>, which sets the memory
limit that OCI auto-tuning can use per client process.

<fan subscription failure action> - Sets the action upon subscription
failure to be either the value trace or error.

<ons> - Sets a variety of ONS client-side deployment configuration
parameters used for FAN notifications.

* <config descriptions> - This element associates a configuration alias element
(<config alias>), which is basically a name, with a specific set of parameters
(<parameters>) that contain one or more connection parameters. These
connection parameters are the same connection parameters within the element
<default parameters> described previously, namely: <prefetch>,
<statement cache>, <auto tune>, <fan subscription failure action> and

<ons>.

2-8

Chapter 2
OCI Client-Side Deployment Parameters Using oraaccess.xml

<connection configs> - This element associates one or more connection strings used
by an application with a config alias, thus allowing multiple connection string elements to
share the same set of parameters.

A connection configuration element (<connection config>) associates a connection
string element (<connection string>) with a configuration alias element
(<config alias>).

A connection string is indirectly associated with a set of parameters through the
configuration alias, which allows multiple connection string elements to share the same
set of parameters.

The sections that follow describe these client-side deployment parameters in more detail.

" See Also:

About Specifying Defaults for Connection Parameters

2.6.4 About Specifying Global Parameters in oraaccess.xml

ORACLE

As described, the <default parameters> tag allows specifying default values for various OCI
parameters.

Of these, some parameters can only be specified once and hence apply to all connections.
These global parameters are described using the following tags:

<events>

This creates the OCI Environment in OCI_EVENTS mode, which is required for Fast
Application Notification (FAN) and runtime connection load balancing.

<events>
true <!--value could be false also -->
</events>

<result cache>

— <max rset rows> - Maximum size of any result set in rows in the per-process query
cache. Equivalent to OCI_RESULT CACHE MAX RSET ROWS inthe sqlnet.ora file.

— <max rset size> - Maximum client result cache size. Set the size to 32,768 bytes
(32 Kilobytes (KB)) or greater. Equivalent to 0OCI_RESULT CACHE MAX RSET SIZE in the
sqlnet.ora file.

— <max_size> - Maximum size in bytes for the per-process query cache. Specifying a
size less than 32,768 in the client disables the client result cache feature. Equivalent
to OCI RESULT CACHE MAX SIZE inthe sqglnet.ora file.

<result_cache>
<max_rset rows>10</max rset rows>
<max rset size>65535</max_rset size>
<max_size>65535</max_size>

</result cache>

When equivalent parameters are set both in the sqlnet.ora and oraaccess.xml files, the
oraaccess.xnl file setting takes precedence over the corresponding sglnet.ora file
setting.

2-9

Chapter 2
OCI Client-Side Deployment Parameters Using oraaccess.xml

See Table 2-2 for a listing of equivalent OCI parameter settings.
e <diag>
You can specify the following elements:

— <adr_enabled> - Enables or disables diagnosability. Equivalent to
DIAG ADR ENABLED in the sqlnet.ora file. Values: true or false.

— <dde enabled> - Enables or disables DDE. Values: true or false.

— <adr base> - Sets the ADR base directory, which is a system-dependent
directory path string to designate the location of the ADR base to use in the
current ADRCI session. Equivalent to ADR_BASE in the sglnet.ora file. Value:
directory path for ADR base directory.

— <sighandler enabled> - Enables or disables OCI signal handler. Values: true
or false.

— <restricted> - Enables or disables full dump files. Oracle Database client
contains advanced features for diagnosing issues, including the ability to dump
diagnostic information when important errors are detected. By default, these
dumps are restricted to a small subset of available information, to ensure that
application data is not dumped. However, in many installations, secure
locations for dump files may be configured, ensuring the privacy of such logs.
In such cases, it is recommended to turn on full dumps; this can greatly speed
resolution of issues. Full dumps can be enabled by specifying a value of false.
Values: true or false.

— <trace_events> - Indicates the trace event number and the level of tracing to
be in effect. Currently only event 10883 is supported. The available levels are
5 and 10.

<diag>
<adr enabled>false</adr enabled>
<dde_enabled>false</dde enabled>
<adr base>/foo/adr</adr base>
<sighandler enabled>false</sighandler enabled>
<restricted>true</restricted>
<trace_events>
<trace event>
<number>10883</number>
<level>5</level>
</trace_event>
</trace_events>
</diag>

When equivalent parameters are set both in the sqlnet.ora and oraaccess.xml
files, the oraaccess.xml file setting takes precedence over the corresponding
sqlnet.ora file setting.

See Table 2-2 for a listing of equivalent OCI parameter settings.

Table 2-2 Equivalent OCI Parameter Settings in oraaccess.xml and

sqlnet.ora
. __|
Parameter Group oraaccess.xml sqlnet.ora Parameters
Parameters
OCI client result <max_rset rows> OCI RESULT CACHE MAX RSET ROWS
cache

ORACLE 2-10

Chapter 2
OCI Client-Side Deployment Parameters Using oraaccess.xml

Table 2-2 (Cont.) Equivalent OCI Parameter Settings in oraaccess.xml and

sqglnet.ora
___|
Parameter Group oraaccess.xml sqlnet.ora Parameters
Parameters

OCI client result <max_rset size> OCI RESULT CACHE MAX RSET SIZE
cache

OCI client result <max_size> OCI_RESULT CACHE MAX SIZE
cache

OCI fault <adr_enabled> DIAG ADR ENABLED

diagnosability

OCI fault <dde_enabled> DIAG DDE ENABLED

diagnosability

OCI fault <adr base> ADR BASE

diagnosability

¢ See Also:

e Oracle Database Development Guide for information about deployment time
settings for client result cache and client configuration file parameters

e Oracle Database Net Services Reference for more information about ADR
diagnostic parameters in the sqlnet.ora file

2.6.5 About Specifying Defaults for Connection Parameters

ORACLE

Describes the default values you can set for connection parameters shared across
connections.

You can specify the following connection parameters that are shared across connections:

e <prefetch> - Specifies prefetch row count for SELECT statements.

<prefetch>
<rows>100</rows>
</prefetch>

Setting this parameter appropriately can help reduce round-trips to the database, thereby
improving application performance.

Note that this only overrides the 0OCI_ATTR PREFETCH ROWS parameter (whether explicitly
specified by the application or not). If the application has specified

OCI_ATTR PREFETCH MEMORY explicitly, then the actual prefetch row count will be
determined by using both constraints. The 0OCI_ATTR PREFETCH MEMORY constraint
equivalent cannot be specified in the oraaccess.xnl file.

Also note that OCI prefetching may still get disabled if the SELECT statement fetches
columns of specific data types. For more details, see About Fetching Results for
information about limitations of OCI prefetch.

* <statement cache> - Specifies the number of OCI Statement handles that can be cached
per session.

2-11

ORACLE

Chapter 2
OCI Client-Side Deployment Parameters Using oraaccess.xml

<statement cache>
<size>100</size>
</statement cache>

Caching statement handles improves repeat execute performance by reducing
client side and server side CPU consumption and network traffic.

Note that for this parameter to take effect, the application must be programmed to
use OCIStatementPrepare2 () and OCIStatementRelease () calls (and not the
older 0CISatementPrepare () and OCIHandleFree () equivalents for getting and
disposing of statement handles.

<auto_tune> - Used to enable OCI Auto tuning.

<auto_tune>
<enable>true</enable>
<ram_threshold>0.1</ram threshold><!--percentage -->
<memory target>2M</memory target>

</auto_tune>

Enabling auto-tuning can help OCI automatically tune the statement-cache size
based on specified memory constraints. This can help dynamically tune the
statement cache size to an appropriate value based on runtime application
characteristics and available memory resources.

Note that for auto tuning OCI Statement Cache, the application must be
programmed to use OCIStatementPrepare2 () and OCIStatementRelease () calls
(and not the older oCISatementPrepare () and OCIHandleFree () equivalents for
getting and disposing of statement handles.

<fan subscription failure action> - Used to determine how OCI responds to a
failure to subscribe for FAN notifications.

A value of trace records any failure to subscribe for FAN notifications (if FAN is
enabled) in the trace file and OCI proceeds ignoring the failure. A value of error
makes OCI return an error if an attempt to subscribe for FAN notifications fails.

<fan>
<!--only possible values are "trace" and "error" -->
<subscription failure action>
trace
</subscription failure action>
</fan>

<ons> - Sets up Oracle Notification Service (ONS) parameters.
You can specify the following connection parameters:

— <subscription wait timeout> - Length of time in seconds the client waits for
its subscription to the ONS server.

— <auto_config> - true or false. If true, the configuration specified in this section
will augment the auto configuration information that the client receives from
the database. If false, it will override the same.

— <thread stack_size> - Size in bytes of the event notification thread stack.
— <debug> - true or false. Whether debug mode is on (true) or off (false).

— <wallet location> - Directory that contains an auto logon wallet file for a
secure ONS subscription.

— <servers> - Host list with ports and connection distribution.

2-12

Chapter 2
OCI Client-Side Deployment Parameters Using oraaccess.xml

<ons>
<!--values or in seconds -->
<subscription wait_ timeout>
5
</subscription wait timeout>
<auto_config>true</auto config> <!--boolean -->
<threadstacksize>100k</threadstacksize>
<debug>true</debug>
<wallet location>/etc/oracle/wallets/</wallet location>
<servers>
<address_list>
<name>pacific</name>
<max_connections> 3 <\max connections>
<hosts>
10.228.215.121:25293,
10.228.215.122:25293
</hosts>
</address_list>
<address_list>
<name>Europe</name>
<max_connections>3<\max_connections>
<hosts>
myhostl.mydomain.com:25273,
myhost2.mydomain.com:25298,
myhost3.mydomain.com:30004
</hosts>
</address_list>
</servers>
</ons>

See Also:

° <auto_tune>
e <ram_threshold>
* <memory_target>

e Oracle Universal Connection Pool Developer’s Guide for information about
ONS configuration parameters

2.6.6 Overriding Connection Parameters at the Connection-String Level

Using the oraaccess.xml file also allows you to override the very same set of connection-
specific parameters at the connection-string level as well.

This allows for overriding those connection-specific parameters based on requirements of
individual applications.

Using the <config descriptions> tag, you can specify a set of connection-specific
parameters (<parameters>) to be associated with a configuration alias (<config alias>,
which creates a named group of connection-specific parameters). Thereafter, using the
<connection configs> tag, you can associate one or more connection-strings (specified
using the <connection-string> tag) with a <config alias>. This permits a level of
indirection that allows multiple <connection string> elements to share the same set of
<parameters>.

ORACLE 2-13

Chapter 2
OCI Client-Side Deployment Parameters Using oraaccess.xml

Example 1

This example shows a very simple oraaccess.xmnl file configuration that highlights
defaulting of global and connection parameters applicable across all connections.

<?xml version="1.0" encoding="ASCII" ?>
<l-=
Here is a sample oraaccess.xml.
This shows defaulting of global and connection parameters
across all connections.
-—>
<oraaccess xmlns="http://xmlns.oracle.com/oci/oraaccess"
xmlns:oci="http://xmlns.oracle.com/oci/oraaccess"
schemalLocation="http://xmlns.oracle.com/oci/oraaccess
http://xmlns.oracle.com/oci/oraaccess.xsd">
<default parameters>
<prefetch>
<rows>50</rows>
</prefetch>
<statement cache>
<size>100</size>
</statement cache>
<result cache>
<max_rset_rows>100</max_rset rows>
<max_rset_size>10K</max_rset size>
<max_size>64M</max size>
</result cache>
</default parameters>
</oraaccess>

Example 2
This example shows connection parameters being overridden at the connection level.

<?xml version="1.0" encoding="ASCII" ?>
<l--
Here is a sample oraaccess.xml.
This highlights some connection parameters being
overridden at the connection level
-—>
<oraaccess xmlns="http://xmlns.oracle.com/oci/oraaccess"
xmlns:oci="http://xmlns.oracle.com/oci/oraaccess"
schemaLocation="http://xmlns.oracle.com/oci/oraaccess
http://xmlns.oracle.com/oci/oraaccess.xsd">
<default parameters>
<prefetch>
<rows>50</rows>
</prefetch>
<statement cache>
<size>100</size>
</statement cache>
<auto_tune>
<enable>true</enable>
<ram_threshold>2.67</ram_threshold>
<memory target>204800</memory target>
</auto_tune>
<result cache>
<max_rset rows>100</max_rset rows>
<max_rset size>10K</max_rset size>
<max_size>64M</max_size>

ORACLE 2-14

Chapter 2
OCI Client-Side Deployment Parameters Using oraaccess.xml

</result_cache>
</default parameters>

<l--
Create configuration descriptions, which are
groups of connection parameters associated with
a config alias.

-—>

<config descriptions>
<config description>
<config alias>bar</config alias>
<parameters>
<prefetch>
<rows>20</rows>
</prefetch>
</parameters>
</config description>
<config description>
<config alias>foo</config alias>
<parameters>
<statement cache>
<size>15</size>
</statement cache>
</parameters>
</config description>
</config descriptions>
<--
Now map the connection string used by the application
with a config alias.
-=>
<connection configs>
<connection_config>
<connection string>hr db</connection string>
<config alias>foo</config alias>
</connection config>
<connection_config>
<connection string>finance db</connection string>
<config alias>bar</config alias>
</connection config>
</connection configs>
</oraaccess>

Example 3

This example highlights setup for FAN noatifications.

<?xml version="1.0" encoding="ASCII" ?>
<l-=
Here is a sample for oraaccess.xml for
setting up for FAN notifications.
-—>
<oraaccess xmlns="http://xmlns.oracle.com/oci/oraaccess"
xmlns:oci="http://xmlns.oracle.com/oci/oraaccess"
schemaLocation="http://xmlns.oracle.com/oci/oraaccess
http://xmlns.oracle.com/oci/oraaccess.xsd">
<default parameters>
<fan>
<!-- only possible values are "trace" or "error" -->
<subscription failure action>
error
</subscription failure action>
</fan>

ORACLE 2-15

Chapter 2
OCI Client-Side Deployment Parameters Using oraaccess.xml

<ons>
<subscription _wait_ timeout>
5
</subscription wait timeout>
<auto_config>true</auto config>
</ons>
<events>true</events>
</default parameters>
</oraaccess>

Example 4

This example highlights an advanced oraaccess.xnl file configuration usage with
manual ONS settings. Manual ONS settings should be used rarely.

<?xml version="1.0" encoding="ASCII" ?>
<l--
Here is a sample for oraaccess.xml that highlights
manual ONS settings.
-—>
<oraaccess xmlns="http://xmlns.oracle.com/oci/oraaccess"
xmlns:oci="http://xmlns.oracle.com/oci/oraaccess"
schemalocation="http://xmlns.oracle.com/oci/oraaccess
http://xmlns.oracle.com/oci/oraaccess.xsd">
<default parameters>

<fan>
<!-- only possible values are "trace" or "error" -->
<subscription failure action>
error
</subscription failure action>
</fan>
<ons>
<subscription wait timeout>
5

</subscription wait timeout>
<auto_config>true</auto config>
<!--This provides the manual configuration for ONS.
Note that this functionality should not need to be used
as auto_config can normally discover this
information. -->
<servers>
<address_list>
<name>pacific</name>
<max connections>3</max_connections>
<hosts>10.228.215.121:25293, 10.228.215.122:25293</hosts>
</address_list>
<address_list>
<name>Europe</name>
<max_connections>3</max_connections>
<hosts>myhostl.mydomain.com:25273,
myhost2.mydomain.com:25298,
myhost3.mydomain.com:30004</hosts>
</address_list>
</servers>
</ons>
<events>true</events>
</default parameters>
</oraaccess>

ORACLE 2-16

Chapter 2
OCI Client-Side Deployment Parameters Using oraaccess.xml

¢ See Also:

About Specifying Defaults for Connection Parameters about overriding the very
same set of connection-specific parameters at the connection-string level

2.6.7 About OCI Session Pool Configuration in oraaccess.xml

ORACLE

Beginning with Oracle Database release 18c, version 18.1, the OCI session pool
configuration can be set up using the oraaccess.xml client-side configuration file.

The OCI session pool is configured by specifying the following set of parameters in the
oraaccess.xml configuration file. These parameters can be specified in the default
parameters section or in the configuration descriptions section. If specified in the default
parameters section, then it applies to all the session pools in the application. These settings
can benefit any OCI Session Pool allowing OCI Session Pool settings to be overridden.

* <session pool>— Sets up session pool parameters.

— <enable> — Setting this to true makes the session pool configuration effective. This
is a mandatory parameter, that means, if the <session pool> parameter is
configured, then <enable> parameter must also be configured.

* <min size>— Minimum number of connections in the pool. The default is 0.

* <max_size>— Maximum number of connections in the pool. This is a mandatory
parameter, that means, if the <session pool> parameter is configured, then <max size>
parameter must also be configured.

e <increment>— Amount of increase in the number of connections in the pool as the pool
expands. The default is 1.

e <inactivity timeout>— Maximum time in seconds for which a connection stays idle in
the pool, after which it is terminated. The default is 0, that means, there is no limit for
which a connection stays idle in the pool.

* <max_use_ session>— Maximum number of times a connection can be taken and
released to the pool. The default is 0, that means, there is no limit to take a connection
and release to the pool.

* <max life time session>— Time, in seconds, a connection will stay after it has been
created in the pool. The default is 0, that means, there is no limit for a connection to stay
after it has been created in the pool.

Using the oraaccess.xml file allows you to configure an OCI session pool for each needed
connection service. The following example shows two groups of connection parameters
associated with its respective config alias, the sales config andthe hr config, where each
connection string that the application uses is mapped with its respective config alias, thus
providing two OCI session pools.

<oraaccess xmlns="http://xmlns.oracle.com/oci/oraaccess"
xmlns:oci="http://xmlns.oracle.com/oci/oraaccess"
schemaLocation="http://xmlns.oracle.com/oci/oraaccess
http://xmlns.oracle.com/oci/oraaccess.xsd">
<default parameters>
</default parameters>
<l--

2-17

Chapter 2
OCI Client-Side Deployment Parameters Using oraaccess.xml

Create configuration descriptions, which are
groups of connection parameters associated with
a config alias.
-=>
<config descriptions>
<config description>
<config alias> sales config </config alias>
<parameters>
<session pool>
<enable>true</enable>
<min size> 10 </min size>
<max_ size> 100 </max_size>
<increment> 5 </increment>
</session pool>
</parameters>
</config description>
<config description>
<config alias> hr config </config alias>
<parameters>
<session pool>
<enable>true</enable>
<max size> 10 </max size>
</session pool>
</parameters>
</config description>
</config descriptions>
<I--
Now map the connection string used by the application
with a config alias.
-—>
<connection configs>
<connection config>
<connection string>sales.us.acme.com</connection string>
<config alias>sales config</config alias>
</connection config>
<connection config>
<connection string>hr.us.acme.com</connection string>
<config alias>hr config</config alias>
</connection config>
</connection configs>
</oraaccess>

2.6.8 File (oraaccess.xml) Properties

Lists some high level rules with regards to the oraaccess.xml file syntax stated here
for simplicity.

The XML schema specified in the oraaccess.xsd file is the ultimate formal reference
for oraaccess syntax:

* The contents of the file are case sensitive, and all elements (tags, parameter
names) are in lower case.

* Comments are allowed between parameters (nodes); for example, Comment "<!--
comments -->".

ORACLE 2-18

Chapter 2
About Compatibility and Upgrading

» For the syntax with respect to the order of the parameters, see the XML Schema:
oraaccess.xsd file (see information about the oraaccess.xsd file later in this list).

* For memory size, valid values and formats are 100, 100k, 100K, 1000M, and 1121m.
This means only suffixes 'M', 'm’, 'K', 'k’, or no suffix are allowed. 'K' or 'k' means kilobytes
and 'M' or 'm' means megabytes. No suffix means the size is in bytes.

» <ram_threshold> should be a decimal number between 0 and 100 and indicates a
percentage value.

* Where a number is expected, only positive unsigned integers are allowed; no sign is
allowed. An example of a valid number usage is <statement cache> <size>100</size>
</statement cache>).

» Configuration alias names (<config alias>foo</config alias>) are not case-sensitive
» String parameters (such as <config alias>) are not expected to be quoted.

* These rules are all encapsulated in the schema definition.

* OCI will report an error if OCI is provided an invalid oraaccess.xmnl file.

* Before deploying an oraaccess.xnl file, Oracle recommends that you validate it with the
Oracle supplied XML schema file: oraaccess.xsd. The schema file is installed under
ORACLE HOME/rdbms/admin in a regular client and under instantclient 12 2/sdk/admin
in an instant client SDK. Customers can use their own favorite XML validation tools to
perform the validation after modifying the oraaccess.xml file.

* Sample oraaccess.xnl files can be found in the ORACLE HOME/rdbms/demo directory in a
regular client and in the instantclient 12 2/sdk/demo in an instant client. The
parameters in these files are for demonstration purpose only and should be modified and
tested as per the application's requirement before deploying it.

2.7 About Compatibility and Upgrading

The following sections discuss issues concerning compatibility between different releases of
OCI client and server, changes in the OCI library routines, and upgrading an application from
the release 7.x OCI to the current release of OCI:

» Oracle Client and Server Cross Version Compatibility
* Version Compatibility of Statically Linked and Dynamically Linked Applications
* Unsupported OCI Routines

2.7.1 Oracle Client and Server Cross Version Compatibility

As a general guide, Oracle client and server versions are cross version compatible with a
number versions.

This means that you can connect to some older and newer versions of the database and do
not always have to upgrade both the client and server at the same time.

However, certain products or utilities may impose additional restrictions on supported
combinations specific to the product or utility.

ORACLE 2-19

Chapter 2
About Compatibility and Upgrading

¢ See Also:

My Oracle Support Document 207303.1 for information about client and
server interoperability support matrix for different Oracle versions.

2.7.2 Version Compatibility of Statically Linked and Dynamically Linked
Applications

Here are the rules for relinking for a new release.

Statically linked OCI applications:

Statically linked OCI applications must be relinked for both major and minor
releases, because the statically linked Oracle Database client-side library code
may be incompatible with the error messages in the upgraded Oracle home. For
example, if an error message was updated with additional parameters then it is no
longer compatible with the statically linked code.

Dynamically linked OCI applications:

Dynamically linked OCI applications from Oracle Database 10g and later releases
need not be relinked. That is, the Oracle Database client-side dynamic library is
upwardly compatible with the previous version of the library. Oracle Universal
Installer creates a symbolic link for the previous version of the library that resolves
to the current version. Therefore, an application that is dynamically linked with the
previous version of the Oracle Database client-side dynamic library does not need
to be relinked to operate with the current version of the Oracle Database client-
side library.

" Note:

If the application is linked with a runtime library search path (such as -
rpath on Linux), then the application may still run with the version of
Oracle Database client-side library it is linked with. To run with the
current version of Oracle Database client-side library, it must be relinked.

¢ See Also:

— Oracle Database Upgrade Guide for information about compatibility
and upgrading

— The server versions supported currently are found on My Oracle
Support Document 207303.1

2.7.3 Unsupported OCI Routines

ORACLE

2-20

ORACLE

Chapter 2
About Compatibility and Upgrading

The release 7.3 OCI calls are not supported. Table 3-3 lists the 7.x OCI calls with their
supported equivalents.

Table 2-3 Unsupported OCI Functions

__|
7.x OCI Routine Equivalent or Similar Later OCI Routine

obindps (), obndraf(), OCIBindByName () or OCIBindByName?2 (), OCIBindByPos () or

obndrn (), obndrv()

OCIBindByPos2 () (Note: additional bind calls may be necessary for
some data types)

obreak () OCIBreak ()
ocan () none
oclose () Note: cursors are not used in release 8.x or later

ocof (), ocon()

ocom ()

odefin(), odefinps/()

OCIstmtExecute () with OCI_COMMIT ON SUCCESS mode
OCITransCommit ()

OCIDefineByPos () or OCIDefineByPos2 () (Note: additional define
calls may be necessary for some data types)

odescr () Note: schema objects are described with OCIDescribeAny(). A
describe, as used in release 7.x, most often be done by calling
OCIAttrGet() on the statement handle after SQL statement execution.

odessp () OCIDescribeAny ()

oerhms () OCIErrorGet ()

oexec (), oexn() OCIStmtExecute ()

oexfet ()

OCIStmtExecute (), OCIStmtFetch2 () (Note: result set rows can be
implicitly prefetched)

ofen(), ofetch() OCIStmtFetch2 ()

oflng() none

ogetpi () OCIStmtGetPieceInfo ()
olog() OCILogon () or OCILogon2 ()
ologof () OCILogoff ()

onbclr (), onbset(),
onbtst ()

Note: nonblocking mode can be set or checked by calling
OCIAttrSet () or OCIAttrGet () on the server context handle or
service context handle

oopen () Note: cursors are not used in release 8.x or later
oopt () none

oparse () OCIStmtPrepare?2 (); however, itis all local
opinit () OCIEnvCreate ()

orol () OCITransRollback()

osetpi () OCIStmtSetPiecelInfo()

sqlld2 () SQLSvcCtxGet or SQLEnvGet

sgllda() SQLSvcCtxGet or SQLEnvGet

odsc () Note: see odescr() preceding

oermsg () OCIErrorGet ()

olon() OCISessionGet ()

2-21

Chapter 2
Fault Diagnosability in OCI

Table 2-3 (Cont.) Unsupported OCI Functions

7.x OCI Routine Equivalent or Similar Later OCI Routine

orlon() 0OCISessionGet ()

oname () Note: see odescr () preceding

0sql3 () Note: see oparse () preceding

obind() OCIBindByName (), OCIBindByPos () (Note: additional bind calls may
be necessary for some data types)

obindn () OCIBindByName (), OCIBindByPos () (Note: additional bind calls
may be necessary for some data types)

odfinn () OCIDefineByPos () (Note: additional define calls may be necessary
for some data types)

odsrbn () Note: see odescr () in Table 2-3

ologon () 0CISessionget ()

osql () Note: see oparse () Table 2-3

See Also:

e OCI Programming Basics for information about what additional program
logic may be required before or after the new or current call is made.

2.8 Fault Diagnosability in OCI

This section describes the following topics:

e About Fault Diagnosability in OCI

* ADR Base Location

e Using ADRCI

e Controlling ADR Creation and Disabling Fault Diagnosability Using sqlnet.ora

2.8.1 About Fault Diagnosability in OCI

ORACLE

Fault diagnosability was introduced into OCI in Oracle Database 11g Release 1 (11.1).

An incident (an occurrence of a problem) on the OCI client is captured without user
intervention in the form of diagnostic data: dump files or core dump files. Up to
Release 11.2.0.1, the diagnostic data was stored in an Automatic Diagnostic
Repository (ADR) subdirectory created for the incident. For example, if a Linux or
UNIX application fails with a NULL pointer reference, then the core file is written in the
ADR home directory (if it exists) instead of the operating system directory. The ADR
subdirectory structure and a utility to deal with the output, ADR Command Interpreter
(ADRCI), are discussed in the following sections. However, beginning with Release
11.2.0.2, the diagnostic data is stored in the current directory.

2-22

ORACLE

Chapter 2
Fault Diagnosability in OCI

An ADR home is the root directory for all diagnostic data for an instance of a particular
product such as OCI and a particular operating system user. ADR homes are grouped under
the same root directory, the ADR base.

Fault diagnosability and the ADR structure for Oracle Database are described in detail in the
discussion of managing diagnostic data in Oracle Database Administrator's Guide.

2.8.2 ADR Base Location

Describes how the location of the ADR base is determined.

The location of the ADR base is determined by OCI in the following order:

1.

For all diagnosability parameters, OCI first looks in the file oraaccess.xml. If these
parameters are not set there, then OCI looks next in sqlnet.ora (if it exists) for a
statement such as (Linux or UNIX):

ADR_BASE=/foo/adr

adr (the name of a directory) must exist and be writable by all operating system users
who execute OCI applications and want to share the same ADR base. foo stands for a
path name. The location of sqlnet.ora is given in the directory $STNS ADMIN ($TNS_ADMINS%
on Windows). If there is no $TNS_ADMIN then the current directory is used. If ADR BASE is
set and one sqlnet.ora is shared by all users, then OCI stops searching when directory
adr does not exist or is not writable by the user. If ADR BASE is not set, then OCI
continues the search, testing for the existence of certain directories.

For example, if sglnet.ora contains the entry ADR BASE=/home/chuck/test then the
ADR base is /home/chuck/test/oradiag chuck and the ADR home could be something
like /home/chuck/test/oradiag chuck/diag/clients/user chuck/

host 4144260688 11.

SORACLE BASE ($ORACLE BASE$% on Windows) exists. In this case, the client subdirectory
exists because it was created during installation of the database using Oracle Universal
Installer.

For example, if SORACLE BASEis /home/chuck/obase then the ADR base is /home/chuck/
obase and the ADR home could be similar to /home/chuck/obase/diag/clients/
user chuck/host 4144260688 11.

SORACLE HOME ($ORACLE BASE% on Windows) exists. In this case, the client subdirectory
exists because it was created during installation of the database using Oracle Universal
Installer.

For example, if SORACLE HOME is /ade/chuck 11/oracle then the ADR base is /ade/
chuck 11/oracle/log and the ADR home could be similar to /ade/chuck 11/
oracle/log/diag/clients/user chuck/host 4144260688 11.

Operating system home directory: $HOME on Linux or UNIX, or $USERPROFILE% On
Windows. On Linux or UNIX the location could be something like this for user chuck: /
home/chuck/oradiag chuck. On Windows, a folder named Oracle is created under
C:\Documents and Settings\chuck.

For example, in an Instant Client, if $HOME is /home/chuck then the ADR base is /home/
chuck/oradiag chuck and the ADR home could be /home/chuck/oradiag chuck/diag/
clients/user chuck/host 4144260688 11.

On Windows, if the application is run as a service, the home directory option is skipped.

2-23

Chapter 2
Fault Diagnosability in OCI

6. Temporary directory in the Linux or UNIX operating system: /var/tmp.

For example, in an Instant Client, if $HOME is not writable, then the ADR base
iS /var/tmp/oradiag_chuck and the ADR home could be /var/tmp/
oradiag chuck/diag/clients/user chuck/host 4144260688 11.

Temporary directories in the Windows operating system, searched in the foolowing

order:
a. $TMPS
b. $TEMPS

C. SUSERPROFILE%
d. Windows system directory

If none of these directory choices are available and writable, or the ADR base is not
created, then there are no diagnostics.

¢ See Also:

Oracle Database Net Services Reference

2.8.3 Using ADRCI

ORACLE

ADRCI is a command-line tool that enables you to view diagnostic data within the ADR
and to package incident and problem information into a zip file for Oracle Support to
use.

You can use ADRCI interactively and from a script. A problem is a critical error in OCI
or the client. Each problem has a problem key. An incident is a single occurrence of a
problem and is identified by a unique numeric incident ID. Each incident has a problem
key that is a set of attributes: the ORA error number, error parameter values, and other
information. Two incidents have the same root cause if their problem keys match.

What follows is a launch of ADRCI in a Linux system, a use of the HELP command for
the sHOW BASE command, and then the use of the sHOW BASE command with the option
-PRODUCT CLIENT, which is necessary for OCI applications. The ADRCI commands are
case-insensitive. User input is shown in bold.

% adrci
ADRCI: Release 12.2.0.0.0 - Development on Wed Dec 2 18:26:29 2015
Copyright (c) 1982, 2015, Oracle. All rights reserved. ADR base = "/u0l/app/
oracle/log"
adrci> help show base
Usage: SHOW BASE [-product <product name>]
Purpose: Show the current ADR base setting.
Options:

[-product <product name>]: This option allows users to show the
given product's ADR Base location. The current registered products are

2-24

Chapter 2
Fault Diagnosability in OCI

"CLIENT" and "ADRCI".

Examples:
show base -product client
show base

adrci> show base -product client
ADR base = "/u0l/app/oracle/log"

Next, the SET BASE command is described:

adrci> help set base
Usage: SET BASE <base str> | -product <product name>

Purpose: Set the ADR base to use in the current ADRCI session.
If there are valid ADR homes under the base, all homes will
will be added to the current ADRCI session.

Arguments:
<base str>: It is the ADR base directory, which is a system-dependent
directory path string.
-product <product name>: This option allows users to set the
given product's ADR Base location. The current registered products are
"CLIENT" and "ADRCI".

Notes:
On platforms that use "." to signify current working directory,
it can be used as base str.

Example:
set base /net/sttttdl/scratch/someone/view storage/someone v1/log
set base -product client
set base .

adrci> quit

When ADRCI is started, the default ADR base is for the rdbms server. SORACLE HOME is set to
"/u0l/app/oracle/":

% adrci
ADRCI: Release 12.2.0.0.0 - Development on Wed Dec 2 18:26:29 2015
Copyright (c) 1982, 2015, Oracle. All rights reserved.

ADR base = "/u0l/app/oracle/log"
adrci>

For OCI application incidents you must check and set the base:

adrci> show base -product client
ADR base is "/ulOl/app/oracle/log"
adrci> set base /home/chuck 13/oradiag_chuck

For Instant Client there is no SORACLE HOME, so the default base is the user's home directory:

adrci> show base -product client

ADR base is "/home/chuck 13/oradiag chuck"
adrci> set base /home/chuck/oradiag chuck
adrci> show incidents

ORACLE 2-25

Chapter 2
Fault Diagnosability in OCI

ADR Home = /home/chuck/oradiag chuck/diag/clients/user chuck/host 4144260688 11:

Kk Ak kA A A A A A A Ak kA Ak A A A A A Ak Ak kA Ak A A A A A Ak ko hk kA A A A Ak Ak hk kA A kA h Ak hkhkkhk Ak k Ak Ak hkhk kK

INCIDENT ID PROBLEM KEY CREATE TIME

1 oci 24550 [6] 2015-12-02 17:20:02.803697
-07:00
1 rows fetched

adrci>

¢ See Also:

Oracle Database Ultilities for an introduction to ADRCI

2.8.4 Controlling ADR Creation and Disabling Fault Diagnosability
Using sqlnet.ora

ORACLE

Describes how to control ADR creation and disabling fault diagnosability using
sqlnet.ora.

To disable diagnosability, turn off diagnostics by setting the following parameters in
sqlnet.ora (the default is TRUE):

DIAG_ADR ENABLED=FALSE
DIAG_DDE ENABLED=FALSE

To turn off the OCI signal handler and reenable standard operating system failure
processing, place the following parameter setting in sglnet.ora:

DIAG SIGHANDLER ENABLED=FALSE

As noted previously, ADR BASE is used in sqlnet.ora to set the location of the ADR
base.

Oracle Database client contains advanced features for diagnosing issues, including
the ability to dump diagnostic information when important errors are detected. By
default, these dumps are restricted to a small subset of available information, to
ensure that application data is not dumped. However, in many installations, secure
locations for dump files may be configured, ensuring the privacy of such logs. In such
cases, it is recommended to turn on full dumps; this can greatly speed resolution of
issues. Full dumps can be enabled by adding the following line to the sqglnet.ora file
used by your Oracle Database client installation:

DIAG _RESTRICTED=FALSE

To verify that diagnosability features are working correctly:

1. Upgrade your application to use the latest client libraries.
2. Start your application.

3. Check the file sqlnet.log in your application's TNS ADMIN directory for error
messages indicating that diagnosability could not be started (normally this is due
to invalid directory names or permissions).

2-26

Chapter 2
Fault Diagnosability in OCI

¢ See Also:

e Oracle Database Net Services Reference for the ADR parameter settings in
sglnet.ora

* Oracle Database Net Services Administrator's Guide for more information about
the structure of ADR

ORACLE 2.97

OCI Programming Basics

This chapter introduces concepts and procedures involved in programming with OCI.

After reading this chapter, you should have most of the tools necessary to understand and
create a basic OCI application.

This chapter includes the following major sections:

e Overview of OCI Program Programming
* OC] Data Structures

* OCI Programming Steps

e Error Handling in OCI

e Additional Coding Guidelines

e About Using PL/SQL in an OCI Program
* OCI Globalization Support

New users should pay particular attention to the information presented in this chapter,
because it forms the basis for the rest of the material presented in this guide. The information
in this chapter is supplemented by information in later chapters.

See Also:

e Oracle Database Globalization Support Guide for a discussion of the OCI
functions that apply to a multilingual environment

e Oracle Database Data Cartridge Developer's Guide for a discussion of the OCI
functions that apply to cartridge services

3.1 Overview of OCI Program Programming

ORACLE

The general goal of an OCI application is to operate on behalf of multiple users.

In an n-tiered configuration, multiple users are sending HTTP requests to the client
application. The client application may need to perform some data operations that include
exchanging data and performing data processing.

OCI uses the following basic program flow:

1. Create the environment by initializing the OCI programming environment and threads.
2. Allocate necessary handles, and establish server connections and user sessions.

3. Exchange data with the database server by executing SQL statements on the server, and
perform necessary application data processing.

3-1

Chapter 3
Overview of OCI Program Programming

4. Execute prepared statements, or prepare a new statement for execution.
5. Terminate user sessions and disconnect from server connections.

6. Free handles and data structures.

Figure 3-1 illustrates the flow of steps in an OCI application. OCI Programming Steps
describes each step in more detail.

Figure 3-1 Basic OCI Program Flow

Qreate
Environment

v

Allocate Handles
and Data Structures

v

Connect to Server
and Begin Session

v

Issue SQL
and Process Data

v

Disconnect

v

Free Handles
& Data Structures

The diagram and the list of steps present a simple generalization of OCI programming
steps. Variations are possible, depending on the functionality of the program. OCI
applications that include more sophisticated functionality, such as managing multiple
sessions and transactions and using objects, require additional steps.

All OCI function calls are executed in the context of an environment. There can be
multiple environments within an OCI process. If an environment requires any process-
level initialization, then it is performed automatically.

Note:

It is possible to have multiple active connections and statements in an OCI
application.

¢ See Also:

OCI Object-Relational Programming through Using the Object Type
Translator with OCI for information about accessing and manipulating objects

ORACLE 3-2

Chapter 3
OCI Data Structures

3.2 OCI Data Structures

Handles and descriptors are opaque data structures that are defined in OCI applications.

Handles and descriptors can be allocated directly, through specific allocate calls, or they can
be implicitly allocated by OCI functions.

" Note:

Programmers who have previously written 7.x OCI applications must become
familiar with these data structures that are used by most OCI calls.

Handles and descriptors store information pertaining to data, connections, or application
behavior. Handles are defined in more detail in the next section.

This section includes the following topics: Handles

Related Topics

* OCI Descriptors
OCI descriptors and locators are opaque data structures that maintain data-specific
information.

3.2.1 Handles

Almost every OCI call includes in its parameter list one or more handles.

A handle is an opaque pointer to a storage area allocated by the OCI library. You use a
handle to store context or connection information, (for example, an environment or service
context handle), or it may store information about OCI functions or data (for example, an error
or describe handle). Handles can make programming easier, because the library, rather than
the application, maintains this data.

Most OCI applications must access the information stored in handles. The get and set
attribute OCI calls, 0OCIAttrGet () and OCIAttrSet (), access and set this information.

Table 3-1 lists the handles defined for OCI. For each handle type, the C data type and handle
type constant used to identify the handle type in OCI calls are listed.

Table 3-1 OCI Handle Types

Description C Data Type Handle Type Constant
OCI environment handle OCIEnv OCI HTYPE ENV

OClI error handle OCIError OCI HTYPE ERROR
OCl service context handle 0CISveCtx OCI_HTYPE SVCCTX
OCI statement handle OCIStmt OCI HTYPE STMT

OCI bind handle OCIBind OCI_HTYPE BIND

OCI define handle OCIDefine OCI HTYPE DEFINE
OCl describe handle OCIDescribe OCI_HTYPE DESCRIBE

ORACLE

3-3

Table 3-1 (Cont.) OCI Handle Types
]

Chapter 3
OCI Data Structures

Description C Data Type Handle Type Constant

OCI server handle OCIServer OCI_HTYPE SERVER

OCI user session handle OCISession OCI_HTYPE SESSION

OCIl authentication information handle OCIAuthInfo OCI HTYPE AUTHINFO

OCI connection pool handle OCICPool OCI_HTYPE CPOOL

OCI session pool handle OCISPool OCI HTYPE SPOOL

OCl transaction handle OCITrans OCI_HTYPE TRANS

OCI complex object retrieval (COR) OCIComplexObject OCI_HTYPE COMPLEXOBJECT
handle

OCI thread handle OCIThreadHandle Not applicable

OCI subscription handle OCISubscription OCI HTYPE SUBSCRIPTION
OCI direct path context handle OCIDirPathCtx OCI_HTYPE DIRPATH CTX

OCl direct path function context OCIDirPathFuncCtx OCI HTYPE DIRPATH FN CTX
handle

OCl direct path column array handle ~ OCIDirPathColArray OCI HTYPE DIRPATH COLUMN ARRAY
OCl direct path stream handle OCIDirPathStream OCI HTYPE DIRPATH STREAM
OCI process handle OCIProcess OCI_HTYPE PROC

OCI administration handle OCIAdmin OCI HTYPE ADMIN

OCI HA event handle OCIEvent Not applicable

OCI SODA collection handle O0CISodaColl OCI HTYPE SODA COLLECTION
OCI SODA collection cursor handle 0CISodaCollCursor OCI HTYPE SODA CURSOR

OCI SODA document cursor handle ~ 0CISodaDocCursor OCI_HTYPE SODA DOC_CURSOR
OCI SODA document handle OCISodaDoc OCI HTYPE SODA DOCUMENT
OCI SODA output options handle OCISodaOutputOptions OCI HTYPE SODA OUTPUT OPTIONS

OCI SODA operation options handle

OCISodaOperationOptions

OCI_HTYPE SODA OPER_OPTIONS

This section includes the following topics:

* About Allocating and Freeing Handles

* Environment Handle

Error Handle

* Service Context Handle and Associated Handles

» Statement, Bind, and Define Handles

» Describe Handle

» Complex Object Retrieval Handle

e Thread Handle

e Subscription Handle

* Direct Path Handles

* Connection Pool Handle

ORACLE

3-4

Chapter 3
OCI Data Structures

* Handle Attributes
* OCI Descriptors
Related Topics

* Handle Attributes
* OCIAttrSet()

* OCIAttrGet()

3.2.1.1 About Allocating and Freeing Handles

Your application allocates all handles (except the bind, define, and thread handles) for a
particular environment handle.

You pass the environment handle as one of the parameters to the handle allocation call. The
allocated handle is then specific to that particular environment.

The bind and define handles are allocated for a statement handle, and contain information
about the statement represented by that handle.

Note:

The bind and define handles are implicitly allocated by the OCI library, and do not
require user allocation.

The environment handle is allocated and initialized with a call to OCIEnvCreate () oOr to
OCIEnvNlsCreate (), one of which is required by all OCI applications.

All user-allocated handles are initialized using the OCI handle allocation call,
OCIHandleAlloc ().

The types of handles include: session pool handle, direct path context handle, thread handle,
COR handle, subscription handle, describe handle, statement handle, service context handle,
error handle, server handle, connection pool handle, event handle, and administration
handle.

The thread handle is allocated with the 0OCIThreadHndInit () call.

An application must free all handles when they are no longer needed. The 0OCIHandleFree ()
function frees all handles.

" Note:

When a parent handle is freed, all child handles associated with it are also freed
and can no longer be used. For example, when a statement handle is freed, any
bind and define handles associated with it are also freed.

Handles lessen the need for global variables. Handles also make error reporting easier. An
error handle is used to return errors and diagnostic information.

ORACLE 3-5

Chapter 3
OCI Data Structures

Related Topics

* OCI Demonstration Programs
* OCIEnvCreate()

* OCIEnvNIsCreate()

e OCIHandleAlloc()

* OCIThreadHndInit()

* OCIHandleFree()

3.2.1.2 Environment Handle

The environment handle defines a context in which all OCI functions are invoked.
Each environment handle contains a memory cache that enables fast memory access.
All memory allocation under the environment handle is done from this cache. Access
to the cache is serialized if multiple threads try to allocate memory under the same
environment handle. When multiple threads share a single environment handle, they
may block on access to the cache.

The environment handle is passed as the parent parameter to the OCIHandleAlloc()
call to allocate all other handle types. Bind and define handles are allocated implicitly.

3.2.1.3 Error Handle

The error handle is passed as a parameter to most OCI calls.

The error handle maintains information about errors that occur during an OCI
operation. If an error occurs in a call, the error handle can be passed to
OCIErrorGet () to obtain additional information about the error that occurred.

Allocating the error handle is one of the first steps in an OCI application because most
OCI calls require an error handle as a parameter.

Related Topics

e About Implementing Thread Safety
To take advantage of thread safety, an application must be running on a thread-
safe operating system.

3.2.1.4 Service Context Handle and Associated Handles

A service context handle defines attributes that determine the operational context for
OCI calls to a server.

The service context handle contains three handles as its attributes, that represent a
server connection, a user session, and a transaction. These attributes are illustrated in
Figure 3-2.

ORACLE 3-6

ORACLE

Chapter 3
OCI Data Structures

Figure 3-2 Components of a Service Context

Server Tser Session
Handie Har

» A server handle identifies a connection to a database. It translates into a physical
connection in a connection-oriented transport mechanism.

» Auser session handle defines a user's roles and privileges (also known as the user's
security domain), and the operational context in which the calls execute.

* A transaction handle defines the transaction in which the SQL operations are performed.
The transaction context includes user session state information, including any fetch state
and package instantiation.

Breaking the service context handle down in this way provides scalability and enables
programmers to create sophisticated multitiered applications and transaction processing (TP)
monitors to execute requests on behalf of multiple users on multiple application servers and
different transaction contexts.

You must allocate and initialize the service context handle with 0CIHandleAlloc (),

OCILogon (), or 0OCILogon2 () before you can use it. The service context handle is allocated
explicitly by 0CIHandleAlloc (). It can be initialized using OCIAttrSet () with the server, user
session, and transaction handle. If the service context handle is allocated implicitly using
OCILogon (), itis already initialized.

Applications maintaining only a single user session for each database connection at any time
can call oCILogon () to get an initialized service context handle.

In applications requiring more complex session management, the service context handle
must be explicitly allocated, and the server and user session handles must be explicitly set
into the service context handle. 0OCIServerAttach () and OCISessionBegin () calls initialize
the server and user session handle respectively.

An application only defines a transaction explicitly if it is a global transaction or there are
multiple transactions active for sessions. It works correctly with the implicit transaction
created automatically by OCI when the application makes changes to the database.

3-7

Chapter 3
OCI Data Structures

¢ See Also:

e OCI Support for Transactions

e OCI Environment Initialization, and Password and Session Management
for more information about establishing a server connection and user
session

* OCIHandleAlloc()

e OClLogon()

e OClILogon2()

* OCIAttrSet()

e OCIServerAttach()
e OClISessionBegin()
* OCISessionGet()

3.2.1.5 Statement, Bind, and Define Handles

ORACLE

A statement handle is the context that identifies a SQL or PL/SQL statement and its
associated attributes

A statement handle is shown in Figure 3-3.

Figure 3-3 Statement Handles

G0
g
24
12}

Define Bind
Handle Handle

Information about input and output bind variables is stored in bind handles. The OCI
library allocates a bind handle for each placeholder bound with the 0CIBindByName ()
or OCIBindByName2 () or OCIBindByPos () or OCIBindByPos2 () function. The user must
not allocate bind handles. They are implicitly allocated by the bind call.

Fetched data returned by a query (select statement) is converted and retrieved
according to the specifications of the define handles. The OCI library allocates a define
handle for each output variable defined with 0CIDefineByPos () Oor OCIDefineByPos2 ().
The user must not allocate define handles. They are implicitly allocated by the define
call.

Bind and define handles are implicitly allocated by the OCI library, and are
transparently reused if the bind or define operation is repeated. The actual value of the
bind or define handle is needed by the application for the advanced bind or define
operations described in Binding and Defining in OCI. The handles are freed when the
statement handle is freed or when a new statement is prepared on the statement

3-8

Chapter 3
OCI Data Structures

handle. Explicitly allocating bind or define handles may lead to memory leaks. Explicitly
freeing bind or define handles may cause abnormal program termination.

¢ See Also:

e "Advanced Bind Operations in OCI"

e "Advanced Define Operations in OCI"
e OCIBindByName()

e OCIBindByName2()

e OCIBindByPos()

e OCIBindByPos2()

e OCIDefineByPos()

e OCIDefineByPos2()

3.2.1.6 Describe Handle

The describe handle is used by the OCI describe call, 0CIDescribelny ().

The 0CIDescribeAny () call obtains information about schema objects in a database (for
example, functions or procedures). The call takes a describe handle as one of its parameters,
along with information about the object being described. When the call completes, the
describe handle is populated with information about the object. The OCI application can then
obtain describe information through the attributes of the parameter descriptors.

See Also:

» Describing Schema Metadata for more information about using the
OCIDescribeAny () function

e OCIDescribeAny()

3.2.1.7 Complex Object Retrieval Handle

ORACLE

The complex object retrieval (COR) handle is used by some OCI applications that work with
objects in an Oracle database.

The complex object retrieval (COR) handle contains COR descriptors, provides instructions
for retrieving objects referenced by another object.

Related Topics

e Complex Object Retrieval
A complex object includes its root object and its set of logically related objects each of
which are prefetched based on a given depth level.

3-9

Chapter 3
OCI Data Structures

3.2.1.8 Thread Handle

The thread handle is used in multithreaded applications.

For information about the thread handle, which is used in multithreaded applications,
see the following OCIThread Package.

Related Topics

e OCIThread Package
The 0CIThread package provides some commonly used threading primitives.

3.2.1.9 Subscription Handle

The subscription handle is used by an OCI client application that registers and
subscribes to receive notifications of database events or events in the AQ namespace.

The subscription handle encapsulates all information related to a registration from a
client.

Related Topics

* Publish-Subscribe Notification in OCI
The publish-subscribe notification feature allows an OCI application to receive
client notifications directly, register an email address to which notifications can be
sent, register an HTTP URL to which natifications can be posted, or register a
PL/SQL procedure to be invoked on a notification.

3.2.1.10 Direct Path Handles

ORACLE

The direct path handles are necessary for an OCI application that uses the direct path
load engine in the Oracle database.

The direct path load interface enables the application to access the direct block
formatter of the Oracle database. Figure 3-4 shows the different kinds of direct path
handles.

Figure 3-4 Direct Path Handles

Related Topics

» Direct Path Loading Overview
The direct path load interface enables an OCI application to access the direct path
load engine of Oracle Database to perform the functions of the SQL*Loader utility.

» Direct Path Loading Handle Attributes

3-10

Chapter 3
OCI Data Structures

3.2.1.11 Connection Pool Handle

The connection pool handle is used for applications that pool physical connections into virtual
connections.

The connection pool handle is used for applications that pool physical connections into virtual
connections by calling specific OCI functions.

Related Topics

e Connection Pooling in OCI
Connection pooling is the use of a group (the pool) of reusable physical connections by
several sessions to balance loads.

3.2.1.12 Handle Attributes

ORACLE

All OCI handles have attributes that represent data stored in that handle.

You can read handle attributes by using the attribute get call, OCIAttrGet (), and you can
change them with the attribute set call, OCIAttrSet ().

For example, the statements in Example 3-1 set the user name in the session handle by
writing to the OCI_ATTR USERNAME attribute:

Some OCI functions require that particular handle attributes be set before the function is
called. For example, when 0CISessionBegin () is called to establish a user's login session,
the user name and password must be set in the user session handle before the call is made.

Other OCI functions provide useful return data in handle attributes after the function
completes. For example, when 0CIstmtExecute () is called to execute a SQL query, describe
information relating to the select-list items is returned in the statement handle, as shown in
Example 3-2.

" See Also:

e The description of OCIArrayDescriptorAlloc() for an example showing how to
allocate a large number of descriptors

e Handle and Descriptor Attributes
e OCIAttrGet()

e OCIAttrSet()

* OClISessionBegin()

e OCIStmtExecute()

Example 3-1 Using the OCI_ATTR_USERNAME Attribute to Set the User Name in the
Session Handle

text username[] = "hr";
err = OCIAttrSet ((void *) mysessp, OCI HTYPE SESSION, (void *)username,
(ub4) strlen((char *)username), OCI ATTR USERNAME, (OCIError *) myerrhp);

3-11

Chapter 3
OCI Data Structures

Example 3-2 Returning Describe Information in the Statement Handle Relating

to Select-List Items

ub4 parmecnt;

/* get the number of columns in the select list */

err = OCIAttrGet
&parmcnt,

3.2.2 OCI Descriptors

((void
(ubd *) 0,

*) stmhp,

(ub4)OCI_HTYPE_STMT,
(ub4)OCI_ATTR PARAM COUNT, errhp);

(void *)

OCI descriptors and locators are opaque data structures that maintain data-specific

information.

Table 3-2 lists OCI descriptors, along with their C data type, and the OCI type constant
that allocates a descriptor of that type in a call to 0OCIDescriptorAlloc(). The
OCIDescriptorFree () function frees descriptors and locators.

Table 3-2 Descriptor Types

Description C Data Type OCI Descriptor Type Constant
Snapshot descriptor 0CISnapshot OCI_DTYPE SNAP

Result set descriptor OCIResult OCI DTYPE RSET (Deprecated)
LOB data type locator OCILobLocator OCI_DTYPE LOB

JSON Descriptor OCIJson OCI_DTYPE JSON

BFILE data type locator OCILobLocator OCI DTYPE FILE

Read-only parameter descriptor OCIParam OCI_DTYPE PARAM

ROWID descriptor OCIRowid OCI DTYPE ROWID

ANSI DATE descriptor OCIDateTime OCI_DTYPE DATE

TIMESTAMP descriptor OCIDateTime OCI DTYPE TIMESTAMP
TIMESTAMP WITH TIME ZONE descriptor OCIDateTime OCI DTYPE TIMESTAMP TZ
TIMESTAMP WITH LOCAL TIME ZONE OCIDateTime OCI _DTYPE TIMESTAMP LTZ
descriptor

INTERVAL YEAR TO MONTH descriptor OCIInterval OCI DTYPE INTERVAL YM
INTERVAL DAY TO SECOND descriptor OCIInterval OCI _DTYPE INTERVAL DS

User callback descriptor OCIUcb OCI DTYPE UCB

Distinguished names of the database OCIServerDNs OCI DTYPE SRVDN

servers in a registration request

Complex object descriptor OCIComplexObjectComp OCI DTYPE COMPLEXOBJECTCOMP
Advanced queuing enqueue options OCIAQEngOptions OCI_DTYPE AQENQ OPTIONS
Advanced queuing dequeue options OCIAQDegOptions OCI DTYPE AQDEQ OPTIONS
Advanced queuing message properties OCIAQMsgProperties OCI DTYPE AQMSG PROPERTIES
Advanced queuing agent OCIAQAgent OCI DTYPE AQAGENT

Advanced queuing notification OCIAQNotify OCI_DTYPE AQNFY

Advanced queuing listen options OCIAQListenOpts OCI DTYPE AQLIS OPTIONS
Advanced queuing message properties ~ OCIAQLisMsgProps OCI DTYPE AQLIS MSG PROPERTIES
Change notification None OCI_DTYPE_ CHDES

ORACLE

3-12

Chapter 3
OCI Data Structures

Table 3-2 (Cont.) Descriptor Types

Description C Data Type OCI Descriptor Type Constant
Table change None OCI_DTYPE TABLE CHDES
Row change None OCI_DTYPE ROW CHDES
Shard key and shard group key descriptor 0OCIShardkey OCI_DTYPE SHARD KEY
¢ Note:
Although there is a single C type for 0OCILobLocator, this locator is allocated with a
different OCI type constant for internal and external LOBs. LOB and BFILE Locators
discusses this difference.
The following list describes the main purpose of each descriptor type. The sections that follow
describe each descriptor type in more detail:
* OCISnapshot - Used in statement execution
* OCILobLocator - Used for LOB (0CI DTYPE LOB) Or BFILE (OCI DTYPE FILE) calls
° 0CIJson - to represent a JSON document in OCI. It is identified by the descriptor type
OCI_DTYPE_JSON
° OCIParam- Used in describe calls
° OCIRowid - Used for binding or defining ROWID values
e 0OCIDateTime and OCIInterval - Used for datetime and interval data types
* OCIComplexObjectComp - Used for complex object retrieval
* OCIAQEngOptions, OCIAQDeqOptions, OCIAQMsgProperties, OCIAQAgent - Used for
Advanced Queuing
* OCIAQNotify - Used for publish-subscribe notification
* 0CIServerDNs - Used for LDAP-based publish-subscribe notification
This section includes the following topics:
* Snapshot Descriptor
e LOB and BFILE Locators
e OCI Representation for JSON
* Parameter Descriptor
« ROWID Descriptor
» Date, Datetime, and Interval Descriptors
e Complex Object Descriptor
* Advanced Queuing Descriptors
e User Memory Allocation
ORACLE 3-13

Chapter 3
OCI Data Structures

Related Topics

* OCIDescriptorAlloc()

* OCIDescriptorFree()

* OCIlArrayDescriptorAlloc()

* OCIArrayDescriptorFree()
Free a previously allocated array of descriptors.

3.2.2.1 Snapshot Descriptor

The snapshot descriptor is an optional parameter to the execute call,
OCIStmtExecute ().

The snapshot descriptor indicates that a query is being executed against a database
snapshot that represents the state of a database at a particular time.

Allocate a snapshot descriptor with a call to 0OCIDescriptorAlloc () by passing
OCI DTYPE SNAP as the type parameter.

Related Topics
e OCIStmtExecute()
e OCIDescriptorAlloc()

e Execution Snapshots
The ocIstmtExecute () call provides the ability to ensure that multiple service
contexts operate on the same consistent snapshot of the database's committed
data.

3.2.2.2 LOB and BFILE Locators

ORACLE

A large object (LOB) is an Oracle data type that can hold binary large object (BLOB) or
character large object (CLOB) data.

In the database, an opaque data structure called a LOB locator is stored in a LOB
column of a database row, or in the place of a LOB attribute of an object. The locator
serves as a pointer to the actual LOB value, which is stored in a separate location.

Note:

Depending on your application, you may or may not want to use LOB
locators. You can use the data interface for LOBs, which does not require
LOB locators. In this interface, you can bind or define character data for CLOB
columns or RAW data for BLOB columns.

The OCI LOB locator is used to perform OCI operations against a LOB (BLOB or CLOB)
or FILE (BFILE). OCILobXxX functions take a LOB locator parameter instead of the LOB
value. OCI LOB functions do not use actual LOB data as parameters. They use the
LOB locators as parameters and operate on the LOB data referenced by them.

3-14

Chapter 3
OCI Data Structures

The LOB locator is allocated with a call to 0OCIDescriptorAlloc () by passing OCI DTYPE LOB
as the type parameter for BLOBS or CLOBS, and OCI_DTYPE FILE for BFILES.

" Note:

The two LOB locator types are not interchangeable. When binding or defining a
BLOB or CLOB, the application must take care that the locator is properly allocated by
using OCI DTYPE LOB. Similarly, when binding or defining a BFILE, the application
must be sure to allocate the locator using OCI_DTYPE FILE.

An OCI application can retrieve a LOB locator from the Oracle database by issuing a SQL
statement containing a LOB column or attribute as an element in the select list. In this case,
the application would first allocate the LOB locator and then use it to define an output
variable. Similarly, a LOB locator can be used as part of a bind operation to create an
association between a LOB and a placeholder in a SQL statement.

Related Topics

* LOB and BFILE Operations
This chapter describes LOB and BFILE operations.

* About Binding and Defining LOB Data
Oracle Database allows nonzero binds for INSERTS and UPDATES of any size LOB.

e About Defining LOB Data
e OCIDescriptorAlloc()

3.2.2.3 Parameter Descriptor

OCI applications use parameter descriptors to obtain information about select-list columns or
schema objects.

This information is obtained through a describe operation.

The parameter descriptor is the only descriptor type that is not allocated using
OCIDescriptorAlloc (). You can obtain it only as an attribute of a describe handle, statement
handle, or through a complex object retrieval handle by specifying the position of the
parameter using an OCIParamGet () call.

Related Topics
e OCIDescriptorAlloc()
e OCIParamGet()

e About Describing Select-List Items
If your OCI application is processing a query, you may need to obtain more information
about the items in the select list.

e Describing Schema Metadata

3.2.2.4 ROWID Descriptor

The ROWID descriptor, 0CIRowid, is used by applications that must retrieve and use Oracle
ROWIDs.

ORACLE 3-15

3.2.2.5 Date,

Chapter 3
OCI Data Structures

To work with a ROWID an application can define a ROWID descriptor for a rowid position
in a SQL select list, and retrieve a ROWID into the descriptor. This same descriptor can
later be bound to an input variable in an INSERT statement or WHERE clause.

ROWIDS are also redirected into descriptors using OCIAttrGet () on the statement
handle following an execute operation.

Related Topics
* OCIAttrGet()

Datetime, and Interval Descriptors

The date, datetime, and interval descriptors are used by applications that use the date,
datetime, or interval data types (0CIDate, OCIDateTime, and OCIInterval).

These descriptors can be used for binding and defining, and are passed as
parameters to the functions 0OCIDescriptorAlloc () and OCIDescriptorFree () to
allocate and free memory.

Related Topics

» OCIDescriptorAlloc()

» OCIDescriptorFree()

* Data Types

» OCI Data Type Mapping and Manipulation Functions

3.2.2.6 Complex Object Descriptor

Complex object retrieval (COR) may improve application performance when dealing
with objects.

Application performance when dealing with objects may be increased using complex
object retrieval (COR).

Related Topics

* Complex Object Retrieval
A complex object includes its root object and its set of logically related objects
each of which are prefetched based on a given depth level.

3.2.2.7 Advanced Queuing Descriptors

ORACLE

There are a number of Oracle Database Advanced Queuing descriptors for use to
maintain data-specific information.

Oracle Database Advanced Queuing provides message queuing as an integrated part
of Oracle Database.

Related Topics

e OCI and Database Advanced Queuing
OCI provides an interface to the Database Advanced Queuing (Database AQ)
feature. Database Advanced Queuing provides message queuing as an integrated
part of Oracle Database.

3-16

Chapter 3
OCI Programming Steps

» Publish-Subscribe Registration Functions in OCI
You can register directly to the database or register using Lightweight Directory Access
Protocol (LDAP).

3.2.2.8 User Memory Allocation

The 0CIDescriptorAlloc() call has an xtramem sz parameter in its parameter list.

The xtramem sz parameter is used to specify the amount of user memory that should be
allocated along with a descriptor or locator.

Typically, an application uses this parameter to allocate an application-defined structure that
has the same lifetime as the descriptor or locator. This structure can be used for application
bookkeeping or storing context information.

Using the xtramem sz parameter means that the application does not need to explicitly
allocate and deallocate memory as each descriptor or locator is allocated and deallocated.
The memory is allocated along with the descriptor or locator, and freeing the descriptor or
locator (with 0CIDescriptorFree ()) frees the user's data structures as well.

The 0CIHandleAlloc () call has a similar parameter for allocating user memory that has the
same lifetime as the handle.

The 0CIEnvCreate () and (0OCIEnvInit () deprecated) calls have a similar parameter for
allocating user memory that has the same lifetime as the environment handle.

Related Topics

* OCIDescriptorAlloc()
* OClIDescriptorFree()
* OCIHandleAlloc()

* OCIEnvCreate()

e OCIEnvInit()

3.3 OCI Programming Steps

ORACLE

The following sections describe in detail each of the steps in developing an OCI application.

Some of the steps are optional. For example, you do not need to describe or define select-list
items if the statement is not a query. Application-specific processing also occurs in between
any and all of the OCI function steps.

The following sections describe the steps that are required of an OCI application:
* OCI Environment Initialization

* About Processing SQL Statements in OCI

e Commit or Roll Back Operations

* About Terminating the Application

e Error Handling in OCI

3-17

Chapter 3
OCI Programming Steps

¢ See Also:

e The first sample program in OCI Demonstration Programs for an
example showing the use of OCI calls for processing SQL statements.

e Runtime Data Allocation and Piecewise Operations in OCI for a detailed
description of the special case of dynamically providing data at run time

e About Binding and Defining Arrays of Structures in OCI for a description
of the special considerations for operations involving arrays of structures

e Error Handling in OCI for an outline of the steps involved in processing a
SQL statement within an OCI program

e Overview of OCI Multithreaded Development for information about using
the OCI to write multithreaded applications

e SQL Statements for more information about types of SQL statements

3.3.1 OCI Environment Initialization

This section describes how to initialize the OCI environment, establish a connection to
a server, and authorize a user to perform actions against the database.

First, the three main steps in initializing the OCI environment are described in the
following sections:

e About Creating the OCI Environment
* About Allocating Handles and Descriptors

* Application Initialization, Connection, and Session Creation

3.3.1.1 About Creating the OCI Environment

ORACLE

Each OCI function call is executed in the context of an environment that is created with
the OCIEnvCreate () call.

The OCIEnvCreate () call must be invoked before any other OCI call is executed. The
only exception is the setting of a process-level attribute for the OCI shared mode.

The mode parameter of OCIEnvCreate () specifies whether the application calling the
OCl library functions can:

* Runin a threaded environment (mode = OCI_THREADED).

* Use objects (mode = 0OCI_OBJECT). Use with AQ subscription registration.
» Use subscriptions (mode = 0CI_EVENTS).

The mode can be set independently in each environment.

It is necessary to initialize in object mode if the application binds and defines objects,
or if it uses the OCI's object navigation calls. The program may also choose to use
none of these features (mode = OCI_DEFAULT) or some combination of them, separating
the options with a vertical bar. For example if mode = (OCI_THREADED | OCI_OBJECT),
then the application runs in a threaded environment and uses objects.

3-18

Chapter 3
OCI Programming Steps

You can specify user-defined memory management functions for each OCI environment.

See Also:

* OCIEnvCreate(), OCIEnvNIsCreate(), and OClInitialize() (deprecated) for more
information about the initialization calls

e Overview of OCI Multithreaded Development

e OCI Object-Relational Programming , Object-Relational Data Types in OClI,
Direct Path Load Interface, Object Advanced Topics in OCI, and Using the
Object Type Translator with OCI

e Publish-Subscribe Notification in OCI

3.3.1.2 About Allocating Handles and Descriptors

Oracle Database provides OCI functions to allocate and deallocate handles and descriptors.

You must allocate handles using 0CIHandleAlloc () before passing them into an OCI call,
unless the OCI call, such as 0CIBindByPos () or OCIBindByPos? (), allocates the handles for
you.

You can allocate the types of handles listed in Table 3-1 with 0CIHandleAlloc () Depending
on the functionality of your application, it must allocate some or all of these handles.

Related Topics

e OCIHandleAlloc()
e OCIBindByPos()
e OCIBindByPos2()

3.3.1.3 Application Initialization, Connection, and Session Creation

ORACLE

An application must call 0CIEnvNlsCreate () to initialize the OCI environment handle. Existing
applications may have used OCIEnvCreate ().

Following this step, the application has several options for establishing an Oracle database
connection and beginning a user session.

These methods include:

e Single User, Single Connection
e Client Access Through a Proxy

e Nonproxy Multiple Sessions or Connections

< Note:

OCIEnvCreate () Or OCIEnvNlsCreate () should be used instead of the
OCIInitialize() and OCIEnvInit () calls. 0OCIInitialize () and OCIEnvInit ()
calls are supported for backward compatibility.

3-19

Chapter 3
OCI Programming Steps

3.3.1.3.1 Single User, Single Connection

ORACLE

The single user, single connection option is the simplified logon method, which can be
used if an application maintains only a single user session for each database
connection at any time.

When an application calls 0CILogon2 () or 0CILogon (), the OCI library initializes the
service context handle that is passed to it, and creates a connection to the specified
Oracle database for the user making the request.

Example 3-3 shows what a call to 0CILogon2 () looks like for a single user session with
user name hr, password hr, and database oracledb.

The parameters to this call include the service context handle (which has been
initialized), the user name, the user's password, and the name of the database that are
used to establish the connection. With the last parameter, mode, set to 0CI_DEFAULT,
this call has the same effect as calling the older 0CILogon (). Use 0CILogon2 () for any
new applications. The server and user session handles are implicitly allocated by this
function.

If an application uses this logon method, the service context, server, and user session
handles are all read-only; the application cannot switch session or transaction by
changing the appropriate attributes of the service context handle using an
OCIAttrSet () call

An application that initializes its session and authorization using 0CILogon2 () must
terminate them using 0CILogoff ().

< Note:

For simplicity in demonstrating this feature, this example does not perform
the password management techniques that a deployed system normally
uses. In a production environment, follow the Oracle Database password
management guidelines, and disable any sample accounts. See Oracle
Database Security Guide for password management guidelines and other
security recommendations.

Example 3-3 Using the OCILogon2 Call for a Single User Session

OCILogon2 (envhp, errhp, &svchp, (text *)"hr", (ub4)strlen("hr"), (text *)"hr",
(ub4)strlen("hr"), (text *)"oracledb", (ub4d)strlen("oracledb"),
OCI_DEFAULT);

See Also:

Operating System Considerations for information regarding operating
systems providing facilities for spawning processes that allow child
processes to reuse state created by their parent process. This section
explains why the child process must not use the same database connection
as created by the parent.

3-20

Chapter 3
OCI Programming Steps

3.3.1.3.2 Client Access Through a Proxy

ORACLE

Proxy authentication is a process typically employed in an environment with a middle tier
such as a firewall, in which the end user authenticates to the middle tier, which then
authenticates to the database on the user's behalf—as its proxy.

The middle tier logs in to the database as a proxy user. A proxy user can switch identities
and, after logging in to the database, switch to the end user's identity. It can perform
operations on the end user's behalf, using the authorization appropriate to that particular end
user.

" Note:

In release 1 of Oracle 11g, standards for acceptable passwords were greatly raised
to increase security. Examples of passwords in this section are incorrect. A
password must contain no fewer than eight characters. See the guidelines for
securing passwords Oracle Database Security Guide for additional information.

Proxy to database users is supported by using OCI and the ALTER USER statement, whose
BNF syntax is:

ALTER USER <targetuser> GRANT CONNECT THROUGH <proxy> [AUTHENTICATION REQUIRED];

The ALTER USER statement is used once in an application. Connections can be made multiple
times afterward. In OCI, you can either use connect strings or the function 0OCIAttrSet () with
the parameter OCI_ATTR PROXY CLIENT.

Even though beginning with Oracle Database 12¢c Release 2 (12.2) the maximum length of
each identifier is increased to 128 bytes, the user name and proxy combination can not
exceed 250 bytes.

After a proxy switch is made, the current and connected user is the target user of the proxy.
The identity of the original user is not used for any privilege calculations. The original user
can be a local or external user.

Example 3-4 through Example 3-11 show connect strings that you can use in functions such
as 0CILogon2 () (Setmode = OCI DEFAULT), OCILogon (), OCISessionBegin () with
OCIAttrSet () (pass the attribute OCI_ATTR USERNAME of the session handle), and so on.

In Example 3-4, Dilbert and Joe are two local database users. To enable Dilbert to serve as a
proxy for Joe, use the SQL statement shown in Example 3-4.

When user name dilbert is acting on behalf of joe, use the connection string shown in
Example 3-5. (The user name dilbert has the password tiger123).

The left and right brackets "[" and "]" are entered in the connection string.

In Example 3-6, "Dilbert" and "Joe" are two local database users. The names are case-
sensitive and must be enclosed in double quotation marks. To enable "Dilbert" to serve as a
proxy for "Joe", use the SQL statement shown in Example 3-6.

When "Dilbert" is acting on behalf of "Joe", use the connection string shown in Example 3-7.
Be sure to include the double quotation marks (") characters.

3-21

ORACLE

Chapter 3
OCI Programming Steps

When the proxy user is created as "dilbert{mybert]", use the connection string shown in
Example 3-8 to connect to the database. (The left and right brackets "[" and "]" are
entered in the connection string.)

In Example 3-9, dilbertfmybert] and joe[myjoe] are two database users that contain the
left and right bracket characters "[" and "]". If dilbertimybert] wants to act on behalf of
joe[myjoe], Example 3-9 shows the connect statement to use.

In Example 3-10, you can set the target user name by using the ALTER USER statement.

" See Also:

« OCI_ATTR_PROXY_CLIENT

e Oracle Database Security Guide for a discussion of proxy authentication
e Password and Session Management

e OCIAttrSet()

Note:

There are compatibility issues of client access through a proxy. Because this
feature was introduced in Oracle Database release 10.2, pre-10.2 clients do
not have it. If newer clients use the feature with pre-10.2 Oracle databases,
the connect fails and the client returns an error after checking the database
release level.

Example 3-4 Enabling a Local User to Serve as a Proxy for Another User

ALTER USER joe GRANT CONNECT THROUGH dilbert;

Example 3-5 Connection String to Use for the Proxy User

dilbert[joe]/tigerl23@dbl

Example 3-6 Preserving Case Sensitivity When Enabling a Local User to Serve
as a Proxy for Another User

ALTER USER "Joe" GRANT CONNECT THROUGH "Dilbert";

Example 3-7 Preserving Case Sensitivity in the Connection String

"Dilbert" ["Joe"]/tigerl23@dbl

Example 3-8 Using "dilbertfmybert]" in the Connection String

"dilbert [mybert]"/tigerl23

rem the user was already created this way:
rem CREATE USER "dilbert[mybert]" IDENTIFIED BY tigerl23;

Example 3-9 Using "dilbertfmybert]"["joe[myjoe]"] in the Connection String

"dilbert [mybert]"["joe[myjoe]"]/tigerl23

3-22

Chapter 3
OCI Programming Steps

Example 3-10 Setting the Target User Name

ALTER USER joe GRANT CONNECT THROUGH dilbert;

Then, as shown in Example 3-11, in an OCI program, use the oCIAttrSet () call to set the
attribute OCI_ATTR PROXY CLIENT and the proxy dilbert. In your program, use these
statements to connect multiple times.

Example 3-11 Using OCI to Set the OCI_ATTR_PROXY_CLIENT Attribute and the
Proxy dilbert

OCIAttrSet(session, OCI_HTYPE SESSION, (void *)"dilbert",
(ub4d)strlen("dilbert"), OCI_ATTR_USERNAME,
error handle);

OCIAttrSet(session, OCI_HTYPE SESSION, (void *)"tigerl23",
(ubd)strlen("tigerl23"), OCI_ATTR PASSWORD,
error handle);

OCIAttrSet(session, OCI_HTYPE SESSION, (void *)"joe",
(ub4d) strlen("joe"), OCI_ATTR PROXY CLIENT,
error handle);

3.3.1.3.3 Nonproxy Multiple Sessions or Connections

ORACLE

The nonproxy multiple sessions or connections option uses explicit attach and begin-session
calls to maintain multiple user sessions and connections on a database connection.

Specific calls to attach to the Oracle database and begin sessions are:

° OCIServerAttach() - Creates an access path to the Oracle database for OCI operations.

° OCISessionBegin() - Establishes a session for a user against a particular Oracle
database. This call is required for the user to execute operations on the Oracle database.

A subsequent call to 0CISessionBegin () using different service context and session context
handles logs off the previous user and causes an error. To run two simultaneous
nonmigratable sessions, a second 0CISessionBegin () call must be made with the same
service context handle and a new session context handle.

These calls set up an operational environment that enables you to execute SQL and PL/SQL
statements against a database.

" See Also:

* Connect, Authorize, and Initialize Functions

e Session Pooling and Connection Pooling in OCI for more information about
maintaining multiple sessions, transactions, and connections

* Client Character Set Control from OCI for the use of OCIEnvNlsCreate ()

Example 3-12 demonstrates the creation and initialization of an OCI environment.

A server context is created and set in the service handle.

* Then a user session handle is created and initialized using a database user name and
password.

* For simplicity, error checking is not included.

3-23

ORACLE

Chapter 3
OCI Programming Steps

The demonstration program cdemo81.c in the demo directory illustrates this process,
with error checking.

Example 3-12 Creating and Initializing an OCI Environment

#include <oci.h>

main ()

{

OCIEnv *myenvhp; /* the environment handle */
OCIServer *mysrvhp; /* the server handle */
OCIError *myerrhp; /* the error handle */
OCISession *myusrhp; /* user session handle */
OCISvcCtx *mysvchp; /* the service handle */

/* initialize the mode to be the threaded and object environment */
(void) OCIEnvCreate (&myenvhp, OCI THREADED|OCI OBJECT, (void *)O0,
0, 0, 0, (size t) 0, (void **)0);

/* allocate a server handle */
(void) OCIHandleAlloc ((void *)myenvhp, (void **)e&mysrvhp,
OCI_HTYPE SERVER, 0, (void **) 0);

/* allocate an error handle */
(void) OCIHandleAlloc ((void *)myenvhp, (void **)s&myerrhp,
OCI _HTYPE ERROR, 0, (void **) 0);

/* create a server context */
(void) OCIServerAttach (mysrvhp, myerrhp, (text *)"instl alias",
strlen ("instl alias"), OCI_DEFAULT);

/* allocate a service handle */
(void) OCIHandleAlloc ((void *)myenvhp, (void **)e&mysvchp,
OCI_HTYPE SVCCTX, 0, (void **) 0);

/* set the server attribute in the service context handle*/
(void) OCIAttrSet ((void *)mysvchp, OCI HTYPE SVCCTX,
(void *)mysrvhp, (ub4) 0, OCI_ATTR SERVER, myerrhp);

/* allocate a user session handle */
(void) OCIHandleAlloc ((void *)myenvhp, (void **)e&myusrhp,
OCI_HTYPE SESSION, 0, (void **) 0);

/* set user name attribute in user session handle */
(void) OCIAttrSet ((void *)myusrhp, OCI HTYPE SESSION,

(void *)"hr", (ubd)strlen("hr"),

OCI ATTR USERNAME, myerrhp);

/* set password attribute in user session handle */
(void) OCIAttrSet ((void *)myusrhp, OCI HTYPE SESSION,

(void *)"hr", (ubd4)strlen("hr"),

OCI ATTR PASSWORD, myerrhp);

(void) OCISessionBegin ((void *) mysvchp, myerrhp, myusrhp,
OCI CRED RDBMS, OCI DEFAULT);

/* set the user session attribute in the service context handle*/

(void) OCIAttrSet ((void *)mysvchp, OCI HTYPE SVCCTX,
(void *)myusrhp, (ub4) 0, OCI ATTR SESSION, myerrhp);

3-24

Chapter 3
OCI Programming Steps

}

3.3.2 About Processing SQL Statements in OCI

What are the specific steps involved in processing SQL statements in OCI.

Using SQL Statements in OCI outlines the specific steps involved in processing SQL
statements in OCI.

3.3.3 Commit or Roll Back Operations

An application commits changes to the database by calling 0CITransCommit ().

The 0CITransCommit () call uses a service context as one of its parameters. The transaction
is associated with the service context whose changes are committed. This transaction can be
explicitly created by the application or implicitly created when the application modifies the
database.

" Note:

By using the 0CI_COMMIT ON SUCCESS mode of the 0CIStmtExecute () call, the
application can selectively commit transactions after each statement execution,
saving an extra round-trip.

To roll back a transaction, use the 0OCITransRollback () call.

If an application disconnects from Oracle Database in a way other than a normal logoff, such
as losing a network connection, and 0CITransCommit () has not been called, all active
transactions are rolled back automatically.

See Also:

* "Service Context Handle and Associated Handles"

e "OCI Support for Transactions"

3.3.4 About Terminating the Application

ORACLE

What should an application do before it terminates.

An OCI application should perform the following steps before it terminates:

1. Delete the user session by calling 0CISessionEnd () for each session.

2. Delete access to the data sources by calling 0CIserverDetach () for each source.
3. Explicitly deallocate all handles by calling 0CIHandleFree () for each handle.
4

Delete the environment handle, which deallocates all other handles associated with it.

3-25

Chapter 3
OCI Programming Steps

< Note:

When a parent OCI handle is freed, any child handles associated with it
are freed automatically

The calls to 0CIServerDetach () and 0CISessionEnd () are not mandatory but are
recommended. If the application terminates, and 0OCITransCommit () (transaction
commit) has not been called, any pending transactions are automatically rolled back.

¢ See Also:

The first sample program in OCI Demonstration Programs for an example
showing handles being freed at the end of an application

" Note:

If the application uses the simplified logon method of 0CILogon2 (), then a
call to 0CILogoff () terminates the session, disconnects from the Oracle
database, and frees the service context and associated handles. The
application is still responsible for freeing other handles it allocated.

3.3.5 Error Handling in OCI

OCI function calls have a set of return codes.

These OCI function call return codes are listed in Table 3-3, which indicate the
success or failure of the call, such as 0CI_SUCCESS or OCI_ERROR, or provide other
information that may be required by the application, such as OCI_NEED DATA or
OCI_STILL EXECUTING. Most OCI calls return one of these codes.

To verify that the connection to the server is not terminated by the 0OCI_ERROR, an
application can check the value of the attribute OCI_ATTR SERVER STATUS in the server
handle. If the value of the attribute is OCI_SERVER NOT CONNECTED, then the connection
to the server and the user session must be reestablished.

¢ See Also:

e "Functions Returning Other Values" for exceptions
e "OCIErrorGet()" for complete details and an example of usage

e "Server Handle Attributes"

ORACLE 3-26

Table 3-3 OCI Return Codes
]

Chapter 3
OCI Programming Steps

OCI Return Code Value Description

OCI_SUCCESS 0 The function completed successfully.

OCI_SUCCESS WITH INFO 1 The function completed successfully; a call to OCIErrorGet ()
returns additional diagnostic information. This may include warnings.

OCI_NO DATA 100 The function completed, and there is no further data.

OCI_ERROR -1 The function failed; a call to OCIErrorGet () returns additional
information.

OCI INVALID HANDLE -2 An invalid handle was passed as a parameter or a user callback was
passed an invalid handle or invalid context. No further diagnostics
are available.

OCI_NEED DATA 99 The application must provide runtime data.

OCI_STILL EXECUTING -3123 The service context was established in nonblocking mode, and the
current operation could not be completed immediately. The operation
must be called again to complete. OCIErrorGet () returns
ORA-03123 as the error code.

OCI CONTINUE -24200 This code is returned only from a callback function. It indicates that
the callback function wants the OCI library to resume its normal
processing.

OCI ROWCBK DONE -24201 This code is returned only from a callback function. It indicates that

the callback function is done with the user row callback.

If the return code indicates that an error has occurred, the application can retrieve error
codes and messages specific to Oracle Database by calling 0CIErrorGet (). One of the
parameters to OCIErrorGet () is the error handle passed to the call that caused the error.

Note:

Multiple diagnostic records can be retrieved by calling 0OCIErrorGet () repeatedly
until there are no more records (OCI_NO DATA is returned). OCIErrorGet () returns at
most a single diagnostic record.

This section includes the following topics:

e Return and Error Codes for Data

* Functions Returning Other Values

3.3.5.1 Return and Error Codes for Data

The OCI return code, error number, indicator variable, and column return code are specified
when the data fetched is normal, null, or truncated.

ORACLE

In Table 3-4, the OCI return code, error number, indicator variable, and column return code
are specified when the data fetched is normal, null, or truncated.

3-27

Chapter 3
Additional Coding Guidelines

¢ See Also:

"Indicator Variables"

Table 3-4 Return and Error Codes
]

State of Data Return Code Indicator - Not provided Indicator - Provided
Not null or Not provided ~ OCI_SUCCESS OCI_SUCCESS
truncated Error = 0 Error =0
Indicator = 0
Not null or Provided OCI_SUCCESS OCI_SUCCESS
truncated Error =0 Error = 0
Return code =0 Indicator =0

Return code =0

Null data Not provided ~ OCI_ERROR OCI_SUCCESS
Error = 1405 Error=0
Indicator = -1
Null data Provided OCI_ERROR OCI_SUCCESS
Error = 1405 Error=0
Return code = 1405 Indicator = -1
Return code = 1405
Truncated data Not provided ~ OCI_ERROR OCI_ERROR
Error = 1406 Error = 1406
Indicator = data_len
Truncated data Provided OCI_SUCCESS WITH INFO OCI_SUCCESS WITH INFO
Error = 24345 Error = 24345
Return code = 1405 Indicator = data_len

Return code = 1406

For truncated data, data_len is the actual length of the data that has been truncated if
this length is less than or equal to sB2MAXVAL. Otherwise, the indicator is set to -2.

3.3.5.2 Functions Returning Other Values

Some functions return values other than the OCI error codes.

These other OCI error codes are listed in Table 3-3. When you use these functions, be
aware that they return values directly from the function call, rather than through an ouT
parameter. More detailed information about each function and its return values is listed
in the reference chapters.

3.4 Additional Coding Guidelines

This section explains some additional issues when coding OCI applications.

This section includes the following topics:

ORACLE 3-28

Chapter 3
Additional Coding Guidelines

* Operating System Considerations
e Parameter Types

* Inserting Nulls into a Column

* Indicator Variables

* About Canceling Calls

» Positioned Updates and Deletes
* Reserved Words

* Polling Mode Operations in OCI

* Nonblocking Mode in OCI

e Setting Blocking Modes

» Canceling a Nonblocking Call

3.4.1 Operating System Considerations

Operating systems may provide facilities for spawning processes that allow child processes
to reuse the state created by their parent process.

After spawning a child process, the child process must not use the same database
connection as created by the parent. Any attempt on behalf of the child process to use the
same database connection as the parent may cause undesired connection interference and
result in intermittent ORA-03137 errors, because Oracle Net expects only one user process to
be using a connection to the database.

Where multiple, concurrent connections are required, consider using threads if your platform
supports a threads package. Concurrent connections are supported in either single-threaded
or multithreaded applications. For better performance with many concurrently opened
connections, consider pooling them.

" See Also:

e Overview of OCI Multithreaded Development
e OCIThread Package
e Session Pooling in OCI

¢ When to Use Connection Pooling, Session Pooling, or Neither

3.4.2 Parameter Types

ORACLE

OCI functions take a variety of different types of parameters, including integers, handles, and
character strings.

Special considerations must be taken into account for some types of parameters, as
described in the following sections:

e Address Parameters

* Integer Parameters

3-29

Chapter 3
Additional Coding Guidelines

e Character String Parameters

This section includes the following topics:

¢ See Also:

Connect, Authorize, and Initialize Functions for more information about
parameter data types and parameter passing conventions

3.4.2.1 Address Parameters

Address parameters are used to pass the address of the variable to Oracle Database.
You should be careful when developing in C, because it normally passes scalar
parameters by value.

3.4.2.2 Integer Parameters

Binary integer and short binary integer parameters are numbers whose size is system-
dependent.

See Oracle Database documentation that is specific to your operating system for the
size of these integers on your system.

3.4.2.3 Character String Parameters

Character strings are a special type of address parameter.

Each OCI routine that enables a character string to be passed as a parameter also
has a string length parameter. The length parameter should be set to the length of the
string.

¢ Note:

Unlike earlier versions of OCI, you do not pass -1 for the string length
parameter of a null-terminated string.

3.4.3 Inserting Nulls into a Column

How to insert a null into a database column.
You can insert a null into a database column in several ways.

* One method is to use a literal NULL in the text of an INSERT or UPDATE statement.
For example, the SQL statement makes the ENAME column NULL.

INSERT INTO empl (ename, empno, deptno)
VALUES (NULL, 8010, 20)

e Use indicator variables in the OCI bind call.

ORACLE 3-30

Chapter 3
Additional Coding Guidelines

* Insert a NULL to set both the buffer length and maximum length parameters to zero on a
bind call.

" Note:

Following the SQL standard requirements, Oracle Database returns an error if
an attempt is made to fetch a null select-list item into a variable that does not
have an associated indicator variable specified in the define call.

Related Topics

e Indicator Variables
Each bind and define OCI call has a parameter that associates an indicator variable, or
an array of indicator variables, with a DML statement, a PL/SQL statement, or a query.

3.4.4 Indicator Variables

3.4.4.1 Input

ORACLE

Each bind and define OCI call has a parameter that associates an indicator variable, or an
array of indicator variables, with a DML statement, a PL/SQL statement, or a query.

The C language does not have the concept of null values; therefore, you associate indicator
variables with input variables to specify whether the associated placeholder is a NULL. When
data is passed to an Oracle database, the values of these indicator variables determine
whether a NULL is assigned to a database field.

For output variables, indicator variables determine whether the value returned from Oracle is
a NULL or a truncated value. For a NULL fetch in an 0CIStmtFetch2 () call or a truncation in an
OCIstmtExecute () call, the OCI call returns 0OCI_SUCCESS WITH INFO. The output indicator
variable is set.

The data type of indicator variables is sb2. For arrays of indicator variables, the individual
array elements should be of type sb2.

This section includes the following topics:
* Input
e Output

* Indicator Variables for Named Data Types and REFs

What values can be assigned to an indicator variable.

For input host variables, the OCI application can assign the following values to an indicator
variable:

Input Indicator Value Action Taken by Oracle Database

-1 Oracle Database assigns a NULL to the column, ignoring the value of the
input variable.

>=0 Oracle Database assigns the value of the input variable to the column.

3-31

Chapter 3
Additional Coding Guidelines

3.4.4.2 Output

What values can be assigned to an indicator variable.

On output, Oracle Database can assign the following values to an indicator variable:

Output Indicator Value = Meaning

-2 The length of the item is greater than the length of the output
variable; the item has been truncated. Additionally, the original
length is longer than the maximum data length that can be
returned in the sb2 indicator variable.

-1 The selected value is null, and the value of the output variable is
unchanged.

0 Oracle Database assigned an intact value to the host variable.

>0 The length of the item is greater than the length of the output

variable; the item has been truncated. The positive value returned
in the indicator variable is the actual length before truncation.

3.4.4.3 Indicator Variables for Named Data Types and REFs

Indicator variables for most data types introduced after release 8.0 behave as
described earlier.

The only exception is SQLT_NTY (a named data type). For data of type SQLT_NTY,
the indicator variable must be a pointer to an indicator structure. Data of type
SQLT_REF uses a standard scalar indicator, just like other variable types.

When database types are translated into C struct representations using the Object
Type Translator (OTT), a null indicator structure is generated for each object type. This
structure includes an atomic null indicator, plus indicators for each object attribute.

See Also:

e Documentation for the OTT in Using the Object Type Translator with
OCI, and NULL Indicator Structure for information about NULL indicator
structures

e Descriptions of 0CIBindByName () and 0CIBindByPos () in Bind, Define,
and Describe Functions, and the sections Information for Named Data
Type and REF Binds, and Information for Named Data Type and REF
Defines, and PL/SQL OUT Binds for more information about setting
indicator parameters for named data types and REFS

3.4.5 About Canceling Calls

ORACLE

How do you cancel long-running or repeated OCI calls.

On most operating systems, you can cancel long-running or repeated OCI calls by
entering the operating system's interrupt character (usually Control+C) from the
keyboard.

3-32

Chapter 3
Additional Coding Guidelines

< Note:

This is not to be confused with canceling a cursor, which is accomplished by calling
OCIStmtFetch2 () with the nrows parameter set to zero.

When you cancel the long-running or repeated call using the operating system interrupt, the
error code ORA-01013 ("user requested cancel of current operation”) is returned.

When given a particular service context pointer or server context pointer, the 0CIBreak ()
function performs an immediate (asynchronous) stop of any currently executing OCI function
associated with the server. It is normally used to stop a long-running OCI call being
processed on the server. The 0CIReset () function is necessary to perform a protocol
synchronization on a nonblocking connection after an OCI application stops a function with
OCIBreak ().

< Note:

OCIBreak () works on Windows systems.

The status of potentially long-running calls can be monitored using nonblocking calls. Use
multithreading for new applications.

¢ See Also:

e Overview of OCI Multithreaded Development
e OCIThread Package

3.4.6 Positioned Updates and Deletes

ORACLE

You can use the ROWID associated with a SELECT...FOR UPDATE OF... statement in a later UPDATE
or DELETE statement.

The ROWID is retrieved by calling 0CIAttrGet () on the statement handle to retrieve the
handle's 0OCI_ATTR ROWID attribute.

For example, consider a SQL statement such as the following:

SELECT ename FROM empl WHERE empno = 7499 FOR UPDATE OF sal

When the fetch is performed, the ROWID attribute in the handle contains the row identifier of
the selected row. You can retrieve the ROWID into a buffer in your program by calling
OCIAttrGet () as follows:

OCIRowid *rowid; /* the rowid in opaque format */

/* allocate descriptor with OCIDescriptorAlloc() */

status = OCIDescriptorAlloc ((void *) envhp, (void **) &rowid,
(ub4) OCI DTYPE ROWID, (size t) 0, (void **) 0);

3-33

Chapter 3
Additional Coding Guidelines

status = OCIAttrGet ((void *) mystmtp, OCI_HTYPE STMT,
(void *) rowid, (ub4 *) 0, OCI_ATTR ROWID, (OCIError *) myerrhp);

You can then use the saved ROWID in a DELETE or UPDATE statement. For example, if
rowid is the buffer in which the row identifier has been saved, you can later process a
SQL statement such as the following by binding the new salary to the :1 placeholder
and rowid to the :2 placeholder.

UPDATE empl SET sal = :1 WHERE rowid = :2

Be sure to use data type code 104 (ROWID descriptor, see Table 4-2) when binding
rowid to :2.

By using prefetching, you can select an array of ROWIDs for use in subsequent batch
updates.

" See Also:

« UROWID and DATE for more information about ROWIDS

e External Data Types for a table of external data types and codes

3.4.7 Reserved Words

Some words are reserved by Oracle.

That is, some reserved words have a special meaning to Oracle and cannot be
redefined. For this reason, you cannot use them to name database objects such as
columns, tables, or indexes.

This section includes the following topic: Oracle Reserved Namespaces

¢ See Also:

Oracle Database SQL Language Reference and Oracle Database PL/SQL
Language Reference to view the lists of the Oracle keywords or reserved
words for SQL and PL/SQL

3.4.7.1 Oracle Reserved Namespaces

ORACLE

What namespaces are reserved by Oracle. For a complete list of functions within a
particular namespace, refer to the document that corresponds to the appropriate
Oracle library.

Table 3-5 contains a list of namespaces that are reserved by Oracle. The initial
characters of function names in Oracle libraries are restricted to the character strings
in this list. Because of potential name conflicts, do not use function names that begin
with these characters.

3-34

Chapter 3
Additional Coding Guidelines

Table 3-5 Oracle Reserved Namespaces

Namespace Library
XA External functions for XA applications only
SO External SQLLIB functions used by Oracle Precompiler and SQL*Module
applications
0, OCI External OCI functions internal OCI functions
UPI, KP Function names from the Oracle UPI layer
NA Oracle Net Native Services Product
NC Oracle Net RPC Project
ND Oracle Net Directory
NL Oracle Net Network Library Layer
NM Oracle Net Management Project
NR Oracle Net Interchange
NS Oracle Net Transparent Network Service
NT Oracle Net Drivers
- Oracle Net Security Service
Oracle Net V1
OSN
Oracle Net Two Task
TTC
GEN, L, ORA Core library functions
LI, 1M, IX Function names from the Oracle Globalization Support layer
S Function names from system-dependent libraries
KO Kernel Objects

3.4.8 Polling Mode Operations in OCI

OCI has calls that poll for completion.

ORACLE

Examples of such polling mode calls are:

* OCI calls in nonblocking mode

* OClI calls that operate on LOB data in pieces such as 0CILobRead?2 () and

OCILobWrite?2 ()

e OCIStmtExecute() and OCIStmtFetch? () when used with 0OCIStmtSetPieceInfo() and
OCIStmtGetPiecelInfo()

In such cases, OCI requires that the application ensure that the same OCI call is repeated on
the connection and nothing else is done on the connection in the interim. Performing any
other OCI call on such a connection (when OCI has handed control back to the caller) can
result in unexpected behavior.

Hence, with such polling mode OCI calls, the caller must ensure that the same call is
repeated on the connection and that nothing else is done until the call completes.

OCIBreak () and OCIReset () are exceptions to the rule. These calls are allowed so that the
caller can stop an OCI call that has been started.

3-35

Chapter 3
Additional Coding Guidelines

3.4.9 Nonblocking Mode in OCI

ORACLE

OCI provides the ability to establish a server connection in blocking mode or
nonblocking mode.

Note:

Because nonblocking mode requires the caller to repeat the same call until it
completes, it increases CPU usage. Instead, use multithreaded mode.

See Also:

e Overview of OCI Multithreaded Development
e OCIThread Package

When a connection is made in blocking mode, an OCI call returns control to an OCI
client application only when the call completes, either successfully or in error. With the
nonblocking mode, control is immediately returned to the OCI program if the call could
not complete, and the call returns a value of OCI_STILL EXECUTING.

In nonblocking mode, an application must test the return code of each OCI function to
see if it returns OCI_STILL EXECUTING. If it does, the OCI client can continue to
process program logic while waiting to retry the OCI call to the server. This mode is
particularly useful in graphical user interface (GUI) applications, real-time applications,
and in distributed environments.

The nonblocking mode is not interrupt-driven. Rather, it is based on a polling
paradigm, which means that the client application must check whether the pending call
is finished at the server by executing the call again with the exact same parameters.

The following features and functions are not supported in nonblocking mode:
* Direct Path Load

* LOB buffering

» Objects

* Query cache

* Scrollable cursors

» Transparent application failover (TAF)
° OCIAQEngArray()

. OCIAQDegArray ()

* OCIDescribeAny ()

* OCILobArrayRead()

* OCILobArrayWrite()

3-36

Chapter 3
About Using PL/SQL in an OCI Program

. OCITransStart()

. OCITransDetach ()

3.4.10 Setting Blocking Modes

You can modify or check an application's blocking status by calling oCIAttrSet () to set the
status, or OCIAttrGet () to read the status on the server context handle with the attrtype
parameter set to OCI ATTR NONBLOCKING MODE.

You must set this OCI_ATTR NONBLOCKING MODE attribute only after OCISessionBegin () Or
0CILogon2 () has been called. Otherwise, an error is returned.

Note:

Only functions that have a server context or a service context handle as a
parameter can return OCI_STILL EXECUTING.

¢ See Also:

Server Handle Attributes

3.4.11 Canceling a Nonblocking Call

You can cancel a long-running OCI call by using the 0CIBreak () function while the OCI call is
in progress.

You must then issue an 0OCIReset () call to reset the asynchronous operation and protocol.

3.5 About Using PL/SQL in an OCI Program

ORACLE

PL/SQL is Oracle's procedural extension to the SQL language.

PL/SQL supports tasks that are more complicated than simple queries and SQL data
manipulation language (DML) statements. PL/SQL enables you to group some constructs
into a single block and execute it as a unit. These constructs include:

e One or more SQL statements

* Variable declarations

* Assignment statements

* Procedural control statements such as IF...THEN...ELSE statements and loops
* Exception handling

You can use PL/SQL blocks in your OCI program to perform the following operations:

e Call Oracle stored procedures and stored functions

e Combine procedural control statements with several SQL statements, to be executed as
a unit

3-37

Chapter 3
OCI Globalization Support

Access special PL/SQL features such as tables, CURSOR FOR loops, and exception
handling

Use cursor variables

Operate on objects in a server

4

Note:

— Although OCI can only directly process anonymous blocks, and not
named packages or procedures, you can always put the package or
procedure call within an anonymous block and process that block.

— Note that all OUT variables must be initialized to NULL (through an
indicator of -1, or an actual length of 0) before a PL/SQL begin-end
block can be executed in OCI.

— OCI does not support the PL/SQL RECORD data type.

— When binding a PL/SQL VARCHAR?2 variable in OCI, the maximum
size of the bind variable is 32767 bytes, because of the overhead of
control structures.

Note:

When you write PL/SQL code, it is important to remember that the parser
treats everything between a pair of hyphens"--" and a carriage return
character as a comment. So if comments are indicated on each line by
"--", the C compiler can concatenate all lines in a PL/SQL block into a
single line without putting a carriage return "\n" for each line. In this
particular case, the parser fails to extract the PL/SQL code of a line if the
previous line ends with a comment. To avoid the problem, the
programmer should put "\n" after each "--" comment to ensure that the
comment ends there.

See Also:

Oracle Database PL/SQL Language Reference for information about
coding PL/SQL blocks

3.6 OCI Globalization Support

ORACLE

The following sections introduce OCI functions that can be used for globalization
purposes, such as deriving locale information, manipulating strings, character set
conversion, and OCI messaging.

These functions are also described in detail in other chapters of this guide because
they have multiple purposes and functionality.

This section includes the following topics:

3-38

Chapter 3
OCI Globalization Support

* Client Character Set Control from OCI

* Character Control and OCI Interfaces

* Character-Length Semantics Support in Describe Operations
e Character Set Support in OCI

» Controlling Language and Territory in OCI

* Other OCI Globalization Support Functions
* About Getting Locale Information in OCI

* About OCI and the BOM (Byte Order Mark)
e About Manipulating Strings in OCI

* About Converting Character Sets in OCI

* OCI Messaging Functions

* Imsgen Utility

3.6.1 Client Character Set Control from OCI

The function 0OCIEnvNlsCreate () enables you to set character set information in applications
independently from NLS LANG and NLS_NCHAR settings.

0CI_UTF16ID cannot be set from NLS LANG or NLS_NCHAR and must be set using
OCIEnvNlsCreate (). One application can have several environment handles initialized within
the same system environment using different client-side character set IDs and national
character set IDs. For example:

OCIEnvNlsCreate (OCIEnv **envhpp, ..., csid, ncsid);
In this example, csid is the value for the character set ID for the parameter charset, and
ncsid is the value for the national character set ID for the parameter ncharset. Either can be

0 or 0CI_UTF161ID. If both are 0, this is equivalent to using OCIEnvCreate () instead. The other
arguments are the same as for the 0OCIEnvCreate () call.

Any Oracle character set ID, except ALL6UTF16, can be specified through the
OCIEnvNlsCtrate () function to specify the encoding of metadata, SQL CHAR data, and SQL
NCHAR data.

You can retrieve character sets in NLS_LANG and NLS_NCHAR through another function,
OCINlsEnvironmentVariableGet ().

¢ See Also:

e OCIEnvNIsCreate()

e About Setting Client Character Sets in OCI for a pseudocode fragment that
illustrates a sample usage of these calls

3.6.2 Character Control and OCI Interfaces

How is character control performed by OCI interfaces.

ORACLE 3-39

Chapter 3
OCI Globalization Support

The 0CINlsGetInfo () function returns information about any character set, including
0CI UTF161ID if this value has been used in OCIEnvNlsCreate ().

The 0CIAttrGet () function returns the character set ID and national character set ID
that were passed into OCIEnvNlsCreate (). This is used to get

OCI ATTR ENV CHARSET IDand OCI ATTR ENV NCHARSET ID. This includes the value
OCI UTF161ID.

If both charset and ncharset parameters were set to 0 by OCIEnvNlsCreate (), the
character set IDs in NLS_LANG and NLS_NCHAR are returned.

The oCcIAttrSet () function sets character IDs as the defaults if
OCI_ATTR CHARSET FORM is reset through this function. The eligible character set IDs
include OCI_UTF16ID if OCIEnvNlsCreate () is passed as charset Or ncharset.

The 0CIBindByName () Or OCIBindByName2 () and OCIBindByPos () Or OCIBindByPos2 ()
functions bind variables with the default character set in the 0CIEnvNlsCreate () call,
including 0CI_UTF16ID. The actual length and the returned length are always in bytes if
OCIEnvNlsCreate () is used.

The 0CIDefineByPos () Or OCIDefineByPos2 () function defines variables with the
value of charset in OCIEnvNlsCreate (), including OCI_UTF161ID, as the default. The
actual length and returned length are always in bytes if 0CIEnvN1sCreate () is used.
This behavior for bind and define handles is different from that when 0CIEnvCreate ()
is used and OCI_UTF161D is the character set ID for the bind and define handles.

3.6.3 Character-Length Semantics in OCI

OCI works as a translator between server and client, and passes around character
information for constraint checking.

There are two kinds of character sets: variable-width and fixed-width. (A single-byte
character set is a special case of a fixed-width character set where each byte stands
for one character.)

For fixed-width character sets, constraint checking is easier, as the number of bytes is
equal to a multiple of the number of characters. Therefore, scanning of the entire string
is not needed to determine the number of characters for fixed-width character sets.
However, for variable-width character sets, complete scanning is needed to determine
the number of characters in a string.

3.6.4 Character Set Support in OCI

How does OCI support character sets.

See Character-Length Semantics Support in Describe Operations and Character
Conversion in OCI Binding and Defining for a complete discussion of character set
support in OCI.

3.6.5 Controlling Language and Territory in OCI

The NLS language and territory can also be set programmatically using the attributes
OCI _ATTR ENV NLS LANGUAGE and OCI ATTR ENV NLS TERRITORY on OCI environment
handle.

ORACLE 3-40

Chapter 3
OCI Globalization Support

See the following attributes for more details on their usage. These attributes will be effective
for the database sessions created from that environment handle after the attributes have
been set.

- OCI_ATTR_ENV_NLS_LANGUAGE
« OCI_ATTR_ENV_NLS_TERRITORY

3.6.6 Other OCI Globalization Support Functions

Many globalization support functions accept either the environment handle or the user
session handle.

The OCI environment handle is associated with the client NLS environment variables. This
environment does not change when ALTER SESSION statements are issued to the server. The
character set associated with the environment handle is the client character set. The OCI
session handle (returned by 0CISessionBegin ()) is associated with the server session
environment. The NLS settings change when the session environment is modified with an
ALTER SESSION statement. The character set associated with the session handle is the
database character set.

Note that the OCI session handle does not have NLS settings associated with it until the first
transaction begins in the session. SELECT statements do not begin a transaction.

¢ See Also:

e OCI Globalization Support Functions

e Oracle Database Globalization Support Guide for information about OCI
programming with Unicode

3.6.7 About Getting Locale Information in OCI

An Oracle Database locale consists of language, territory, and character set definitions.

The locale determines conventions such as day and month names, as well as date, time,
number, and currency formats. A globalized application follows a user's locale setting and
cultural conventions. For example, when the locale is set to German, users expect to see day
and month names in German.

¢ See Also:

e OCI Locale Functions
* OCINIsEnvironmentVariableGet()

You can retrieve the following information with the 0CIN1sGetInfo () function:

* Days of the week (translated)

* Abbreviated days of the week (translated)

ORACLE 3-41

Chapter 3
OCI Globalization Support

* Month names (translated)
» Abbreviated month names (translated)
* Yes/no (translated)

* AM/PM (translated)

* AD/BC (translated)

* Numeric format

* Debit/credit

e Date format

e Currency formats

» Default language

* Default territory

* Default character set

e Default linguistic sort

* Default calendar

The code in Example 3-13 retrieves locale information and checks for errors.

Example 3-13 Getting Locale Information in OCI

sword MyPrintLinguisticName (envhp, errhp)
OCIEnv *envhp;
OCIError *errhp;
{
OraText infoBuf[OCI NLS MAXBUFSZ];
sword ret;

ret = OCINlsGetInfo (envhp, /* environment handle */
errhp, /* error handle */
infoBuf, /* destination buffer */
(size t) OCI NLS MAXBUFSZ, /* buffer size */
(ub2) OCI NLS LINGUISTIC NAME); /* item */

if (ret != OCI_SUCCESS)

{
checkerr (errhp, ret, OCI_HTYPE ERROR);
ret = OCI ERROR;

}

else
{

printf ("NLS linguistic: %s\n", infoBuf);
}

return (ret);

3.6.8 About OCI and the BOM (Byte Order Mark)

OCI does not support nor handle the BOM (byte order mark) and assumes that the
byte order is native to the machine on which your application is executing.

Your OCI application must not pass a string containing a BOM expecting that OCI can
detect the encoding of the string. Your OCI application must remove the BOM if it

ORACLE 3-42

Chapter 3
OCI Globalization Support

exists in the string being passed in and ensure that it is in the encoding the OCI function
expects.

3.6.9 About Manipulating Strings in OCI

Multibyte strings and wide-character strings are supported for string manipulation.

Multibyte strings are encoded in native Oracle character sets. Functions that operate on
multibyte strings take the string as a whole unit with the length of the string calculated in
bytes. Wide-character string (wchar) functions provide more flexibility in string manipulation.
They support character-based and string-based operations where the length the string
calculated in characters.

The wide-character data type, 0OCIWchar, is Oracle-specific and should not be confused with
the wchar t data type defined by the ANSI/ISO C standard. The Oracle wide-character data
type is always 4 bytes in all operating systems, whereas the size of wchar t depends on the
implementation and the operating system. The Oracle wide-character data type normalizes
multibyte characters so that they have a uniform fixed width for easy processing. This
guarantees no data loss for round-trip conversion between the Oracle wide-character set and
the native character set.

String manipulation can be classified into the following categories:

e Conversion of strings between multibyte and wide character
* Character classifications

e Case conversion

* Calculations of display length

* General string manipulation, such as comparison, concatenation, and searching

See Also:

OCI String Manipulation Functions

Example 3-14 shows a simple case of manipulating strings.

The OCI character classification functions are described in detail in OCI Character
Classification Functions.

Example 3-15 shows how to classify characters in OCI.
Example 3-14 Basic String Manipulation in OCI

size t MyConvertMultiByteToWideChar (envhp, dstBuf, dstSize, srcStr)

OCIEnv *envhp;

OCIWchar *dstBuf;

size t dstSize;

OraText *srcStr; /* null terminated source string */

{
sword ret;
size t dstLen = 0;
size t srclLen;

/* get length of source string */
srcLen = OCIMultiByteStrlen(envhp, srcStr);

ORACLE 3-43

ret = OCIMultiByteInSizeToWideChar (envhp,

Chapter 3
OCI Globalization Support

/* environment handle */

dstBuf, /* destination buffer */
dstSize, /* destination buffer size */
srcStr, /* source string */
srclen, /* length of source string */
&dstLen) ; /* pointer to destination length */

if (ret != OCI SUCCESS)
{

checkerr (envhp, ret, OCI_HTYPE ENV);
}

return (dstLen) ;

Example 3-15 Classifying Characters in OCI

boolean MyIsNumberWideCharString(envhp, srcStr)
OCIEnv *envhp;
OCIWchar *srcStr;
{
OCIWchar *pstr = srcStr;

boolean status = TRUE;

/* wide char source string */

/* define and init pointer */
/* define and initialize status variable */

/* Check input */
if (pstr == (OCIWchar*) NULL)
return (FALSE) ;

if (*pstr == (OCIWchar) NULL)
return (FALSE) ;

/* check each character for digit */
do
{
if (OCIWideCharIsDigit (envhp,
{

*pstr) != TRUE)

status = FALSE;
break; /* non-decimal digit character */

}

} while (*++pstr != (OCIWchar) NULL);

return (status);

3.6.10 About Converting Character Sets in OCI

ORACLE

Conversion between Oracle character sets and Unicode (16-bit, fixed-width Unicode
encoding) is supported.

Replacement characters are used if a character has no mapping from Unicode to the
Oracle character set. Therefore, conversion back to the original character set is not
always possible without data loss.

Character set conversion functions involving Unicode character sets require data bind
and define buffers to be aligned at a ub2 address or an error is raised.

Example 3-16 shows a simple conversion into Unicode.

3-44

Chapter 3
OCI Globalization Support

¢ See Also:

OCI Character Set Conversion Functions

Example 3-16 Converting Character Sets in OCI

/* Example of Converting Character Sets in OCI

size t MyConvertMultiByteToUnicode (envhp, errhp, dstBuf, dstSize, srcStr)
OCIEnv *envhp;
OCIError *errhp;
ub2 *dstBuf;
size t dstSize;
OraText *srcStr;
{
size t dstLen = 0;
size t srclLen = 0;
OraText tb[OCI NLS MAXBUFSZ]; /* NLS info buffer */
ub2 cid; /* OCIEnv character set ID */

/* get OCIEnv character set */

checkerr (errhp, OCINlsGetInfo(envhp, errhp, tb, sizeof(tb),
OCI_NLS_CHARACTER SET));

cid = OCINlsCharSetNameToId (envhp, tb);

if (cid == OCI_UTF16ID)
{
ub?2 *srcStrUb2 = (ub2*)srcStr;
while (*srcStrUb2++) ++srclen;
srcLen *= sizeof (ub2);
}
else
srcLen = OCIMultiByteStrlen(envhp, srcStr);

checkerr (errhp,

OCINlsCharSetConvert (
envhp, /* environment handle */
errhp, /* error handle */
OCI_UTF16ID, /* Unicode character set ID */
dstBuf, /* destination buffer */
dstSize, /* size of destination buffer */
cid, /* OCIEnv character set ID */
srcStr, /* source string */
srclen, /* length of source string */

&dstLen)); /* pointer to destination length */

return dstLen/sizeof (ub2);

3.6.11 OCI Messaging Functions

The user message API provides a simple interface for cartridge developers to retrieve their
own messages and Oracle Database messages.

Example 3-17 creates a message handle, initializes it to retrieve messages from impus.msg,
retrieves message number 128, and closes the message handle. It assumes that OCI

ORACLE' 3-45

Chapter 3
OCI Globalization Support

environment handles, OCI session handles, and the product, facility, and cache size
have been initialized properly.

Example 3-17 Retrieving a Message from a Text Message File

OCIMsg msghnd; /* message handle */
/* initialize a message handle for retrieving messages from impus.msg*/
err = OCIMessageOpen (hndl,errhp, &msghnd, prod,fac,O0CI DURATION SESSION);
if (err != OCI_SUCCESS)
/* error handling */

/* retrieve the message with message number = 128 */
msgptr = OCIMessageGet (msghnd, 128, msgbuf, sizeof (msgbuf));

/* do something with the message, such as display it */

/* close the message handle when there are no more messages to retrieve */
OCIMessageClose (hndl, errhp, msghnd);

See Also:

e Oracle Database Data Cartridge Developer's Guide

e OCI Messaging Functions

3.6.12 Imsgen Utility

The 1msgen utility converts text-based message files (.msg) into binary format (.msb)
so that Oracle Database messages and OCI messages provided by the user can be
returned to OCI functions in the desired language.

The BNF syntax of the Imsgen utility is as follows:

Imsgen text file product facility [language]

In the preceding syntax:

* text fileis amessage text file.

e product is the name of the product.
e facilityisthe name of the facility.

e language is the optional message language corresponding to the language
specified in the NLS_LANG parameter. The language parameter is required if the
message file is not tagged properly with language.

This section includes the following topics:
* Guidelines for Text Message Files

* An Example of Creating a Binary Message File from a Text Message File

3.6.12.1 Guidelines for Text Message Files

What are the guidelines that text message files must follow.

Text message files must follow these guidelines:

ORACLE 3-46

Chapter 3
OCI Globalization Support

* Lines that start with "/" and "//" are treated as internal comments and are ignored.

» To tag the message file with a specific language, include a line similar to the following:
CHARACTER SET NAME= Japanese Japan.JALGEUC

» Each message contains three fields:

message _number, warning level, message text

— The message number must be unique within a message file.
— The warning level is not currently used. Set to 0.
— The message text cannot be longer than 76 bytes.

The following is an example of an Oracle Database message text file:

/ Copyright (c) 2001 by the Oracle Corporation. All rights reserved.
/ This is a test us7ascii message file

CHARACTER SET NAME= american america.us7ascii

/

00000, 00000, "Export terminated unsuccessfully\n"

00003, 00000, "no storage definition found for segment ($1u, %lu)"

3.6.12.2 An Example of Creating a Binary Message File from a Text Message File

ORACLE

How do you create a binary message file from a text message file.

The following table contains sample values for the 1msgen parameters:

Imsgen Parameter Value

product SHOME /myApplication
facility imp

language AMERICAN

text file impus.msg

The text message file is found in the following location:
SHOME /myApp/mesg/impus.msg
One of the lines in the text message file is:

00128,2, "Duplicate entry %s found in %s"

The 1msgen utility converts the text message file (impus.msg) into binary format, resulting in a
file called impus.msb:

% lmsgen impus.msg SHOME/myApplication imp AMERICAN

The following output results:

Generating message file impus.msg -->
/home/scott/myApplication/mesg/impus.msb

NLS Binary Message File Generation Utility: Version 9.2.0.0.0 -Production
Copyright (c) Oracle Corporation 1979, 2001. All rights reserved.

CORE 9.2.0.0.0 Production

3-47

Data Types

This chapter provides a reference to Oracle external data types used by OCI applications.

It also discusses Oracle data types and the conversions between internal and external
representations that occur when you transfer data between your program and an Oracle
database.

This chapter contains these topics:

* Oracle Data Types

* Internal Data Types
» External Data Types
» Data Conversions

* Typecodes

» Definitions in oratypes.h

¢ See Also:

Oracle Database SQL Language Reference for detailed information about
Oracle internal data types

4.1 Oracle Data Types

ORACLE

One of the main functions of an OCI program is to communicate with an Oracle database.

The OCI application may retrieve data from database tables through SQL SELECT queries, or
it may modify existing data in tables through INSERT, UPDATE, or DELETE sStatements.

Inside a database, values are stored in columns in tables. Internally, Oracle represents data
in particular formats known as internal data types. Examples of internal data types include
NUMBER, CHAR, and DATE (see Table 4-1).

In general, OCI applications do not work with internal data type representations of data, but
with host language data types that are predefined by the language in which they are written.
When data is transferred between an OCI client application and a database table, the OCI
libraries convert the data between internal data types and external data types.

External data types are host language types that have been defined in the OCI header files.
When an OCI application binds input variables, one of the bind parameters is an indication of
the external data type code (or SQLT code) of the variable. Similarly, when output variables
are specified in a define call, the external representation of the retrieved data must be
specified.

4-1

ORACLE

Chapter 4
Oracle Data Types

In some cases, external data types are similar to internal types. External types provide
a convenience for the programmer by making it possible to work with host language
types instead of proprietary data formats.

Note:

Even though some external types are similar to internal types, an OCI
application never binds to internal data types. They are discussed here
because it can be useful to understand how internal types can map to
external types.

OCI can perform a wide range of data type conversions when transferring data
between an Oracle database and an OCI application. There are more OCI external
data types than Oracle internal data types. In some cases, a single external type maps
to an internal type; in other cases, multiple external types map to a single internal type.

The many-to-one mappings for some data types provide flexibility for the OCI
programmer. For example, suppose that you are processing the following SQL
statement:

SELECT sal FROM emp WHERE empno = :employee number

You want the salary to be returned as character data, instead of a binary floating-point
format. Therefore, you specify an Oracle database external string data type, such as
VARCHAR? (code = 1) or CHAR (code = 96) for the dty parameter in the

OCIDefineByPos () Or OCIDefineByPos2 () call for the sal column. You also must
declare a string variable in your program and specify its address in the valuep
parameter. See Table 4-2 for more information.

If you want the salary information to be returned as a binary floating-point value,
however, specify the FLOAT (code = 4) external data type. You also must define a
variable of the appropriate type for the valuep parameter.

Oracle Database performs most data conversions transparently. The ability to specify
almost any external data type provides a lot of power for performing specialized tasks.
For example, you can input and output DATE values in pure binary format, with no
character conversion involved, by using the DATE external data type.

To control data conversion, you must use the appropriate external data type codes in
the bind and define routines. You must tell Oracle Database where the input or output
variables are in your OCI program and their data types and lengths.

OCI also supports an additional set of OCI typecodes that are used by the Oracle
Database type management system to represent data types of object type attributes.
You can use a set of predefined constants to represent these typecodes. The
constants each contain the prefix 0CI_TYPECODE.

In summary, the OCI programmer must be aware of the following different data types
or data representations:

* Internal Oracle data types, which are used by table columns in an Oracle
database. These also include data types used by PL/SQL that are not used by
Oracle Database columns (for example, indexed table, boolean, record).

4-2

Chapter 4
Oracle Data Types

» External OCI data types, which are used to specify host language representations of
Oracle data.

e OCI TYPECODE values, which are used by Oracle Database to represent type information
for object type attributes.

Information about a column's internal data type is conveyed to your application in the form of
an internal data type code. With this information about what type of data is to be returned,
your application can determine how to convert and format the output data. The Oracle
internal data type codes are listed in the section Internal Data Types.

¢ See Also:

e DATE for a description of the external data type

e Internal Data Types

e External Data Types and About Using External Data Type Codes

e Typecodes, and Relationship Between SQLT and OCI_TYPECODE Values

e Oracle Database SQL Language Reference for detailed information about
Oracle internal data types

e About Describing Select-List Items for information about describing select-list
items in a query

4.1.1 About Using External Data Type Codes

ORACLE

An external data type code indicates to Oracle Database how a host variable represents data
in your program.

This determines how the data is converted when it is returned to output variables in your
program, or how it is converted from input (bind) variables to Oracle Database column
values. For example, to convert a NUMBER in an Oracle database column to a variable-length
character array, you specify the VARCHAR?2 external data type code in the 0CIDefineByPos ()
call that defines the output variable.

To convert a bind variable to a value in an Oracle Database column, specify the external data
type code that corresponds to the type of the bind variable. For example, to input a character
string such as 02-FEB-65 to a DATE column, specify the data type as a character string and
set the length parameter to 9.

It is always the programmer's responsibility to ensure that values are convertible. If you try to
insert the string "MY BIRTHDAY" into a DATE column, you get an error when you execute the
statement.

" See Also:

Table 4-2 for a complete list of the external data types and data type codes

4-3

Chapter 4
Internal Data Types

4.2 Internal Data Types

Lists and describes the internal data types.

Table 4-1 lists the internal Oracle Database data types (also known as built-in), along
with each type's maximum internal length and data type code. PL/SQL types listed in

Table 4-11 and Table 4-12 are also considered to be internal data types.

Table 4-1 Internal Oracle Database Data Types
]
Internal Oracle Database Data Type Maximum Internal Length Data Type
Code
VARCHAR2, NVARCHAR2 4000 bytes (standard) 1
32767 bytes (extended)
NUMBER 21 bytes 2
LONG 2731-1 bytes (2 gigabytes) 8
DATE 7 bytes 12
RAW 2000 bytes (standard) 23
32767 bytes (extended)
LONG RAW 2"31-1 bytes 24
ROWID 10 bytes 69
CHAR, NCHAR 2000 bytes 96
BINARY FLOAT 4 bytes 100
BINARY DOUBLE 8 bytes 101
User-defined type (object type, VARRAY, Not Applicable 108
nested table)
REF Not Applicable 111
CLOB, NCLOB 128 terabytes 112
BLOB 128 terabytes 113
BFILE Maximum operating system 114
file size or UBSMAXVAL
JSON 32 MB 119
TIMESTAMP 11 bytes 180
TIMESTAMP WITH TIME ZONE 13 bytes 181
INTERVAL YEAR TO MONTH 5 bytes 182
INTERVAL DAY TO SECOND 11 bytes 183
UROWID 3950 bytes 208
TIMESTAMP WITH LOCAL TIME ZONE 11 bytes 231

This section includes the following topics:

* LONG, RAW, LONG RAW, VARCHAR2
e Character Strings and Byte Arrays

« UROWID

ORACLE 4-4

Chapter 4
Internal Data Types

* BINARY_FLOAT and BINARY_DOUBLE
« JSON

¢ See Also:

Oracle Database SQL Language Reference for more information about these built-
in data types

4.2.1 LONG, RAW, LONG RAW, VARCHARZ2

Use piecewise capabilities provided by specific OCI APIs to perform inserts, updates or
fetches of these data types.

You can use the piecewise capabilities provided by 0CIBindByName () Oor OCIBindByName2 (),
OCIBindByPos () Or OCIBindByPos2 (), OCIDefineByPos () Or OCIDefineByPos2 (),
OCIStmtGetPiecelInfo (), and OCIStmtSetPiecelInfo () to perform inserts, updates or fetches
involving column data of the LONG, RAW, LONG RAW, and VARCHAR? data types.

¢ See Also:

e OCIBindByName() or OCIBindByName2()
e OCIBindByPos() or OCIBindByPos2()

e OCIDefineByPos() or OCIDefineByPos2()
e OCIStmtGetPiecelnfo()

e OCIStmtSetPiecelnfo()

4.2.2 Character Strings and Byte Arrays

ORACLE

Use Oracle internal data types to specify columns that contain characters or arrays of bytes.

You can use following Oracle internal data types to specify columns that contain characters or
arrays of bytes: CHAR, VARCHAR2, RAW, LONG, and LONG RAW.

< Note:

LOBs can contain characters and BFILES can contain binary data. They are handled
differently than other types, so they are not included in this discussion.

CHAR, VARCHAR?2, and LONG columns normally hold character data. RaW and LONG RAW hold bytes
that are not interpreted as characters (for example, pixel values in a bit-mapped graphic
image). Character data can be transformed when it is passed through a gateway between
networks. Character data passed between machines using different languages, where single
characters may be represented by differing numbers of bytes, can be significantly changed in
length. Raw data is never converted in this way.

4-5

Chapter 4
Internal Data Types

It is the responsibility of the database designer to choose the appropriate Oracle
internal data type for each column in the table. The OCI programmer must be aware of
the many possible ways that character and byte-array data can be represented and
converted between variables in the OCI program and Oracle Database tables.

When an array holds characters, the length parameter for the array in an OCI call is
always passed in and returned in bytes, not characters.

¢ See Also:

LOB and BFILE Operations for more information about CHAR, VARCHAR2, RAW,
LONG, and LONG RAW data types

4.2.3 UROWID

The Universal ROWID (UROWID) is a data type that can store both logical and physical
rowids of Oracle Database tables.

Logical rowids are primary key-based logical identifiers for the rows of index-organized
tables (10Ts).

To use columns of the UROWID data type, the value of the COMPATIBLE initialization
parameter must be set to 8.1 or later.

The following host variables can be bound to Universal ROWIDs:

* SQLT CHR (VARCHAR2)

* SQLT VCS (VARCHAR)

* SQLT STR (NULL-terminated string)
* SQLT LVC (LONG VARCHAR)

* SQLT AFC (CHAR)

* SQLT AVC (CHARZ)

e SQLT vST (OCI String)

e SQLT RDD (ROWID descriptor)

4.2.4 BINARY_FLOAT and BINARY_DOUBLE

ORACLE

The BINARY FLOAT and BINARY DOUBLE data types represent single-precision and
double-precision floating point values that mostly conform to the IEEE754 Standard for
Floating-Point Arithmetic.

Prior to the addition of these data types with release 10.1, all numeric values in an
Oracle Database were stored in the Oracle NUMBER format. These new binary floating
point types do not replace Oracle NUMBER. Rather, they are alternatives to Oracle
NUMBER that provide the advantage of using less disk storage.

These internal types are represented by the following codes:

¢ SQLT IBFLOAT for BINARY FLOAT

4-6

Chapter 4
Internal Data Types

° SQLT IBDOUBLE for BINARY DOUBLE

All the following host variables can be bound to BINARY FLOAT and BINARY DOUBLE data
types:

* SQLT BFLOAT (native float)

* SQOLT BDOUBLE (native double)
* SQLT INT (integer)

* SQLT FLT (float)

* SQLT NUM (Oracle NUMBER)

* SQLT UIN (unsigned)

* SQLT VNU (VARNUM)

* SQLT CHR (VARCHAR?2)

* SQLT VCS (VARCHAR)

* SQLT STR (NULL-terminated String)
* SQLT LVC (LONG VARCHAR)

* SQLT AFC (CHAR)

* SQLT AVC (CHARZ)

e SQLT vST (OCIString)

For best performance, use external types SQLT BFLOAT and SQLT BDOUBLE in conjunction with
the BINARY FLOAT and BINARY DOUBLE data types.

4.2.5 JSON

Release 21c introduces a dedicated JsoN data type.

JSON is a new SQL and PL/SQL data type for JSON data. The data is stored in the database
in a binary form for faster access to nested JSON values.

You can use JSON data type and its instances in most places where a SQL data type is
allowed, such as in following cases:

e As the column type for table
* View DDL
* As a parameter type for a PL/SQL subprogram

* In expressions where a SQL/JSON function or conditions are allowed

¢ See Also:

¢ Overview of JSON in Oracle Database

ORACLE 47

4.3 External Data Types

Table 4-2 External Data Types and Codes

Chapter 4

External Data Types

Lists and describes the data type codes for external data types.

Table 4-2 lists data type codes for external data types. For each data type, the table
lists the program variable types for C from or to which Oracle Database internal data is

normally converted.

External Data Type Code Program Variable?! OCI-Defined Constant
VARCHAR2 1 char[n] SQLT CHR
NUMBER 2 unsigned char[21] SQLT NUM
8-bit signed INTEGER 3 signed char SQLT INT
16-bit signed INTEGER 3 signed short, signed int SQLT INT
32-bit signed INTEGER 3 signed int, signed long SQLT INT
64-bit signed INTEGER 3 signed long, signed long long SQLT INT
FLOAT 4 float, double SQLT FLT
NULL-terminated STRING 5 char[n+1] SQLT STR
VARNUM 6 char[22] SQLT VNU
LONG 8 char[n] SQLT ING
VARCHAR 9 char[n+sizeof(short integer)] SQLT VCS
DATE 12 char([7] SQLT DAT
VARRAW 15 unsigned char[n+sizeof(short SQLT VBI
integer)]
native float 21 float SQLT BFLOAT
native double 22 double SQLT BDOUBLE
RAW 23 unsigned char[n] SQLT BIN
LONG RAW 24 unsigned char[n] SQLT LBI
UNSIGNED INT 68 unsigned SQLT UIN
LONG VARCHAR 94 char[n+sizeof(integer)] SQLT LVC
LONG VARRAW 95 unsigned char[n+sizeof(integer)] SQLT LVB
CHAR 96 char[n] SQLT AFC
CHARZ 97 char[n+1] SQLT AVC
ROWID descriptor 104 OCIRowid * SQLT RDD
NAMED DATATYPE 108 struct SQLT NTY
REF 110 OCIRef SQLT REF
Character LOB descriptor 112 OClLobLocator? SQLT CLOB
Binary LOB descriptor 113 OClLobLocator? SQLT BLOB
Binary FILE descriptor 114 OClLobLocator SQLT FILE
JSON descriptor 119 OClJson SQLT JSON

ORACLE

4-8

Table 4-2 (Cont.) External Data Types and Codes

Chapter 4
External Data Types

External Data Type Code Program Variable?! OCIl-Defined Constant
OCI STRING type 155 OCIString SQLT VST?

OCI DATE type 156 OClDate * SQLT ODT®

ANSI DATE descriptor 184 OClDateTime * SQLT DATE
TIMESTAMP descriptor 187 OClDateTime * SQLT TIMESTAMP
TIMESTAMP WITH TIME ZONE 188 OClDateTime * SQLT TIMESTAMP TZ
descriptor

INTERVAL YEAR TO MONTH 189 OClinterval * SQLT INTERVAL YM
descriptor

INTERVAL DAY TO SECOND 190 OClinterval * SQLT INTERVAL DS
descriptor

TIMESTAMP WITH LOCAL TIME 232 OClIDateTime * SQLT TIMESTAMP LTZ

ZONE descriptor

1 Where the length is shown as n, it is a variable, and depends on the requirements of the program (or of the operating system for

ROWID).

2 In applications using data type mappings generated by OTT, CLOBs may be mapped as OCIClobLocator, and BLOBs may be mapped
as OCIBlobLocator. For more information, see Chapter 15.

3 For more information about the use of these data types, see Chapter 12.

This section includes the following topics describing these external data types:

ORACLE

VARCHAR?2
NUMBER

64-Bit Integer Host Data Type
INTEGER

FLOAT

STRING
VARNUM

LONG
VARCHAR

DATE

RAW

VARRAW

LONG RAW
UNSIGNED
LONG VARCHAR
LONG VARRAW
CHAR

CHARZ

Named Data Types: Object, VARRAY, Nested Table

4-9

Chapter 4
External Data Types

e REF

* ROWID Descriptor

e LOB Descriptor

e JSON Descriptor

» Datetime and Interval Data Type Descriptors
* Native Float and Native Double

* C Object-Relational Data Type Mappings

4.3.1 VARCHARZ2

4.3.1.1 Input

ORACLE

The VARCHAR? data type is a variable-length string of characters with a maximum
length of 4000 bytes.

If the init.ora parameter max_string size = standard (default value), the maximum
length of a VARCHAR2 can be 4000 bytes. If the init.ora parameter max_string size
= extended, the maximum length of a VARCHAR2 can be 32767 bytes.

Note:

If you are using Oracle Database objects, you can work with a special
0CIString external data type using a set of predefined OCI functions.

This section includes the following topics:

* Input
e Output
¢ See Also:

e init.ora parameter MAX_STRING_SIZE in Oracle Database Reference
for more information about extended data types

* Object-Relational Data Types in OCI for more information about the
0CIString external data type

The value sz parameter determines the length in the 0CIBindByName () or
0CIBindByPos () call. If you are using extended VARCHAR? lengths, then the value sz
parameter determines the length in the 0CIBindByName2 () and 0CIBindByPos2 () calls.

If the value sz parameter is greater than zero, Oracle Database obtains the bind
variable value by reading exactly that many bytes, starting at the buffer address in your
program. Trailing blanks are stripped, and the resulting value is used in the SQL
statement or PL/SQL block. If, with an INSERT statement, the resulting value is longer

4-10

Chapter 4
External Data Types

than the defined length of the database column, the INSERT fails, and an error is returned.

Note:

A trailing NULL is not stripped. Variables should be blank-padded but not NULL-
terminated.

If the value sz parameter is zero, Oracle Database treats the bind variable as a NULL,
regardless of its actual content. Of course, a NULL must be allowed for the bind variable value
in the SQL statement. If you try to insert a NULL into a column that has a NOT NULL integrity
constraint, Oracle Database issues an error, and the row is not inserted.

When the Oracle internal (column) data type is NUMBER, input from a character string that
contains the character representation of a number is legal. Input character strings are
converted to internal numeric format. If the VARCHAR?2 string contains an illegal conversion
character, Oracle Database returns an error and the value is not inserted into the database.

¢ See Also:

e OCIBindByName()
« OCIBindByPos()

e OCIBindByName2()
« OCIBindByPos2()

4.3.1.2 Output

ORACLE

You must specify the desired length for the return value in value sz for bind and define
functions.

Specify the desired length for the return value in the value sz parameter of the
0CIDefineByPos () call, or the value sz parameter of OCIBindByName () Or OCIBindByPos ()
for PL/SQL blocks. If zero is specified for the length, no data is returned. If you are using
extended VARCHAR? lengths, then the value sz parameter determines the desired length for
the return value in the 0CIDefineByPos2 () call, or in the 0CIBindByName2 () and
0CIBindByPos2 () calls for PL/SQL blocks.

If you omit the rlenp parameter of 0CIDefineByPos (), returned values are blank-padded to
the buffer length, and NULLs are returned as a string of blank characters. If r1enp is included,
returned values are not blank-padded. Instead, their actual lengths are returned in the rlenp
parameter.

To check if a NULL is returned or if character truncation has occurred, include an indicator
parameter in the 0OCIDefineByPos () call. Oracle Database sets the indicator parameter to -1
when a NULL is fetched and to the original column length when the returned value is
truncated. Otherwise, it is set to zero. If you do not specify an indicator parameter and a NULL
is selected, the fetch call returns the error code OCI_SUCCESS WITH INFO. Retrieving
diagnostic information for the error returns ORA-1405.

4-11

Chapter 4
External Data Types

¢ See Also:

e Indicator Variables

e OCIDefineByPos() or OCIDefineByPos2()
OCIBindByName() or OCIBindByName2()
OCIBindByPos() or OCIBindByPos2()

4.3.2 NUMBER

ORACLE

You should not need to use NUMBER as an external data type.

If you do use it as an external data type, Oracle Database returns numeric values in its
internal 21-byte binary format and expects this format on input. The following
discussion is included for completeness only.

" Note:

If you are using objects in an Oracle database, you can work with a special
OCINumber data type using a set of predefined OCI functions.

Oracle Database stores values of the NUMBER data type in a variable-length format. The
first byte is the exponent and is followed by 1 to 20 mantissa bytes. The high-order bit
of the exponent byte is the sign bit; it is set for positive numbers, and it is cleared for
negative numbers. The lower 7 bits represent the exponent, which is a base-100 digit
with an offset of 65.

To calculate the decimal exponent, add 65 to the base-100 exponent and add another
128 if the number is positive. If the number is negative, you do the same, but
subsequently the bits are inverted. For example, -5 has a base-100 exponent = 62
(Ox3e). The decimal exponent is thus (~0x3e) -128 - 65 = Oxcl -128 -65 =193 -128
-65 = 0.

Each mantissa byte is a base-100 digit, in the range 1..100. For positive numbers, the
digit has 1 added to it. So, the mantissa digit for the value 5 is 6. For negative
numbers, instead of adding 1, the digit is subtracted from 101. So, the mantissa digit
for the number -5 is 96 (101 - 5). Negative numbers have a byte containing 102
appended to the data bytes. However, negative numbers that have 20 mantissa bytes
do not have the trailing 102 byte. Because the mantissa digits are stored in base 100,
each byte can represent 2 decimal digits. The mantissa is normalized; leading zeros
are not stored.

Up to 20 data bytes can represent the mantissa. However, only 19 are guaranteed to
be accurate. The 19 data bytes, each representing a base-100 digit, yield a maximum
precision of 38 digits for an Oracle NUMBER.

If you specify the data type code 2 in the dty parameter of an 0OCIDefineByPos () Of
OCIDefineByPos2 () call, your program receives numeric data in this Oracle internal
format. The output variable should be a 21-byte array to accommodate the largest
possible number. Note that only the bytes that represent the number are returned.

4-12

Chapter 4
External Data Types

There is no blank padding or NULL termination. If you must know the number of bytes
returned, use the VARNUM external data type instead of NUMBER.

¢ See Also:

* OCINumber Examples
* VARNUM for a description of the internal NUMBER format
e Number (OCINumber) more information about the 0CINumber data type

* OCIDefineByPos() or OCIDefineByPos2()

4.3.3 64-Bit Integer Host Data Type

You can bind and define integer values greater than 32-bit size (more than nine digits of
precision) from and into a NUMBER column using a 64-bit native host variable and SQLT INT or
SQLT UIN as the external data type in an OCI application.

Starting with release 11.2, OCI supports the ability to bind and define integer values greater
than 32-bit size (more than nine digits of precision) from and into a NUMBER column using a
64-bit native host variable and SQLT INT or SQLT UIN as the external data type in an OCI
application.

This feature enables an application to bind and define 8-byte native host variables using

SQLT INT or SQLT UIN external data types in the OCI bind and define function calls on all
platforms. The 0CIDefineByPos () Or OCIDefineByPos2 (), OCIBindByName () Of
0CIBindByName2 (), and OCIBindByPos () Or OCIBindByPos2 () function calls can specify an 8-
byte integer data type pointer as the valuep parameter. This feature enables you to insert and
fetch large integer values (up to 18 decimal digits of precision) directly into and from native
host variables and to perform free arithmetic on them.

This section includes the following topics:

* OCI Bind and Define for 64-Bit Integers

e Support for OUT Bind DML Returning Statements
* OCIDefineByPos() or OCIDefineByPos2()

* OCIBindByName() or OCIBindByName2()

* OCIBindByPos() or OCIBindByPos2()

4.3.3.1 OCI Bind and Define for 64-Bit Integers

ORACLE

Shows a code fragment for an OCI bind and define for 64-bit integers.
Example 4-1 shows a code fragment that works without errors.
Example 4-1 OCI Bind and Define Support for 64-Bit Integers
};.Variable declarations */

orasb8 sbigvall, sbigval2, sbigval3; // Signed 8-byte variables.
oraub8 ubigvall, ubigval2, ubigval3; // Unsigned 8-byte variables.

4-13

Chapter 4
External Data Types

/* Bind Statements */

OCIBindByPos (..., (void *) é&sbigvall, sizeof(sbigvall), ..., SQLT INT, ...);
OCIBindByPos (..., (void *) &ubigvall, sizeof (ubigvall), ..., SQLT UIN, ...);
OCIBindByName (..., (void *) é&sbigval2, sizeof(sbigval2), ..., SQLT INT, ...);
OCIBindByName (..., (void *) &ubigval2, sizeof (ubigval2), ..., SQLT UIN, L)
/* Define Statements */

OCIDefineByPos(..., (void *) &sbigval3, sizeof(sbigval3), ..., SQLT INT, ...);
OCIDefineByPos(..., (void *) &ubigval3, sizeof (ubigval3), ..., SQLT UIN, ...);

4.3.3.2 Support for OUT Bind DML Returning Statements

ORACLE

Shows a code fragment that illustrates binding 8-byte integer data types for OUT binds
of a DML returning statement.

Example 4-2 shows a code fragment that illustrates binding 8-byte integer data types
for OUT binds of a DML returning statement.

Example 4-2 Binding 8-Byte Integer Data Types for OUT Binds of a DML
Returning Statement

/* Define SQL statements to be used in program. */

static text *dml stmt = (text *) " UPDATE emp SET sal = sal + :1
WHERE empno = :2
RETURNING sal INTO :outl";

/* Declare all handles to be used in program. */
OCIStmt *stmthp;
OCIError *errhp;
OCIBind *bndlp = (OCIBind ¥*)
OCIBind *bnd2p
OCIBind *bnd3p

0;
(OCIBind *) 0;
(OCIBind *) 0

’

/* Bind variable declarations */
orasb8 sbigval; // OUT bind variable (8-byte size).
sword eno, hike; // IN bind variables.

/* get values for IN bind variables */

/* Bind Statements */
OCIBindByPos (stmthp, &bndlp, errhp, 1, (dvoid *) &hike,
sb4) sizeof (hike), SQLT INT, (dvoid *) O,
ub2 *) 0, (ub2 *) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT);
tmthp, &bnd2p, errhp, 2, (dvoid *) é&eno,
4) sizeof(eno), SQLT INT, (dvoid *) O,

OCIBindByPos (s
sb
ub2 *) 0, (ub2 *) 0, (ub4) 0, (ub4 *) 0, OCI DEFAULT);
(
(
(

(
(
(
(
(
e

OCIBindByNam stmthp, &bnd3p, errhp, (text *) ":outl", -1,

dvoid *) &sbigval, sizeof (sbigval), SQLT INT, (dvoid *) 0,
ub2 *) 0, (ub2 *) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT);

/* Use the returned OUT bind variable value */

4-14

Chapter 4
External Data Types

4.3.4 INTEGER

The INTEGER data type converts numbers.

An external integer is a signed binary number; the size in bytes is system-dependent. The
host system architecture determines the order of the bytes in the variable. A length
specification is required for input and output. If the number being returned from Oracle
Database is not an integer, the fractional part is discarded, and no error or other indication is
returned. If the number to be returned exceeds the capacity of a signed integer for the
system, Oracle Database returns an "overflow on conversion" error.

4.3.5 FLOAT

The FLOAT data type processes numbers that have fractional parts or that exceed the
capacity of an integer.

The number is represented in the host system's floating-point format. Normally the length is
either 4 or 8 bytes. The length specification is required for both input and output.

The internal format of an Oracle number is decimal, and most floating-point implementations
are binary; therefore, Oracle Database can represent numbers with greater precision than
floating-point representations.

" Note:

You may receive a round-off error when converting between FLOAT and NUMBER.
Using a FLOAT as a bind variable in a query may return an ORA-1403 error. You can
avoid this situation by converting the FLOAT into a STRING and then using VARCHAR?2
or a NULL-terminated string for the operation.

4.3.6 STRING

4.3.6.1 Input

ORACLE

The NULL-terminated STRING format behaves like the VARCHAR2 format, except that the string
must contain a NULL terminator character.

The STRING data type is most useful for C language programs.

This section includes the following topics:
* Input
e Output

The string length supplied in the 0CIBindByName () Or OCIBindByPos () call limits the scan for
the NULL terminator.

If the NULL terminator is not found within the length specified, Oracle Database issues the
following error:

ORA-01480: trailing NULL missing from STR bind value

4-15

Chapter 4
External Data Types

If the length is not specified in the bind call, OCI uses an implied maximum string
length of 4000.

The minimum string length is 2 bytes. If the first character is a NULL terminator and the
length is specified as 2, a NULL is inserted into the column, if permitted. Unlike types
VARCHAR?2 and CHAR, a string containing all blanks is not treated as a NULL on input; it is
inserted as is.

< Note:

You cannot pass -1 for the string length parameter of a NULL-terminated
string

4.3.6.2 Output

A NULL terminator is placed after the last character returned.

If the string exceeds the field length specified, it is truncated and the last character
position of the output variable contains the NULL terminator.

A NULL select-list item returns a NULL terminator character in the first character
position. An ORA-01405 error is also possible.

4.3.7 VARNUM

The VARNUM data type is like the external NUMBER data type, except that the first byte
contains the length of the number representation.

This length does not include the length byte itself. Reserve 22 bytes to receive the
longest possible VARNUM. Set the length byte when you send a VARNUM value to Oracle
Database.

Table 4-3 shows several examples of the VARNUM values returned for numbers in a
table.

Table 4-3 VARNUM Examples

|
Decimal Value Length Byte Exponent Byte Mantissa Bytes Terminator Byte

0 1 128 Not applicable Not applicable
5 2 193 6 Not applicable
-5 3 62 96 102

2767 3 194 28, 68 Not applicable
-2767 4 61 74, 34 102

100000 2 195 11 Not applicable
1234567 5 196 2,24, 46, 68 Not applicable

ORACLE 4-16

Chapter 4
External Data Types

4.3.8 LONG

The LONG data type stores character strings longer than 4000 bytes.

You can store up to 2 gigabytes (2731-1 bytes) in a LoNG column. Columns of this type are
used only for storage and retrieval of long strings. They cannot be used in functions,
expressions, or WHERE clauses. LONG column values are generally converted to and from
character strings.

Do not create tables with LONG columns. Use LOB columns (CLOB, NCLOB, or BLOB) instead.
LONG columns are supported only for backward compatibility.

Oracle also recommends that you convert existing LONG columns to LOB columns. L.OB
columns are subject to far fewer restrictions than LONG columns. Furthermore, LOB
functionality is enhanced in every release, but LONG functionality has been static for several
releases.

4.3.9 VARCHAR

The VARCHAR data type stores character strings of varying length.

The first 2 bytes contain the length of the character string, and the remaining bytes contain
the string. The specified length of the string in a bind or a define call must include the two
length bytes, so the largest VARCHAR string that can be received or sent is 65533 bytes long,
not 65535.

4.3.10 DATE

ORACLE

The DATE data type can update, insert, or retrieve a date value using the Oracle internal date
binary format.

A date in binary format contains 7 bytes, as shown in Table 4-4.

Table 4-4 Format of the DATE Data Type

Byte 1 2 3 4 5 6 7
Meaning Century Year Month Day Hour Minute Second
Example (for 30- 119 192 11 30 16 18 1

NOV-1992, 3:17 PM)

The century and year bytes (bytes 1 and 2) are in excess-100 notation. The first byte stores
the value of the year, which is 1992, as an integer, divided by 100, giving 119 in excess-100
notation. The second byte stores year modulo 100, giving 192. Dates Before Common Era
(BCE) are less than 100. The era begins on 01-JAN-4712 BCE, which is Julian day 1. For
this date, the century byte is 53, and the year byte is 88. The hour, minute, and second bytes
are in excess-1 notation. The hour byte ranges from 1 to 24, the minute and second bytes
from 1 to 60. If no time was specified when the date was created, the time defaults to
midnight (1, 1, 1).

When you enter a date in binary format using the DATE external data type, the database does
not do consistency or range checking. All data in this format must be carefully validated
before input.

4-17

Chapter 4
External Data Types

< Note:

There is little need to use the Oracle external DATE data type in ordinary
database operations. It is much more convenient to convert DATE into
character format, because the program usually deals with data in a character
format, such as DD-MON-YY.

When a DATE column is converted to a character string in your program, it is returned
using the default format mask for your session, or as specified in the INIT.ORA file.

If you are using objects in an Oracle database, you can work with a special 0CIDate
data type using a set of predefined OCI functions.

See Also:

e Date (OClIDate) for more information about the 0CIDate data type

< Datetime and Interval Data Type Descriptors for information about
DATETIME and INTERVAL data types

4.3.11 RAW

The rRAW data type is used for binary data or byte strings that are not to be interpreted
by Oracle Database, for example, to store graphics character sequences.

The maximum length of a Raw column is 2000 bytes. If the init.ora parameter

max string size = standard (default value), the maximum length of a RAW can be
2000 bytes. If the init.ora parameter max string size = extended, the maximum
length of a RAW can be 32767 bytes.

When RaW data in an Oracle Database table is converted to a character string in a
program, the data is represented in hexadecimal character code. Each byte of the RAW
data is returned as two characters that indicate the value of the byte, from '00' to 'FF'.
To input a character string in your program to a Raw column in an Oracle Database
table, you must code the data in the character string using this hexadecimal code.

You can use the piecewise capabilities provided by 0CIDefineByPos (),
OCIBindByName (), OCIBindByPos (), OCIStmtGetPieceInfo (), and
OCIstmtSetPieceInfo () to perform inserts, updates, or fetches involving RAW (or LONG
RAW) columns.

If you are using objects in an Oracle database, you can work with a special 0CIRaw
data type using a set of predefined OCI functions.

ORACLE 4-18

Chapter 4
External Data Types

¢ See Also:
e Oracle Database SQL Language Reference for more information about
MAX STRING SIZE

e init.ora parameter MAX_STRING_SIZE in Oracle Database Reference for
more information about extended data types

* Raw (OCIRaw)for more information about this data type

4.3.12 VARRAW

The VARRAW data type is similar to the RAW data type.

However, the first 2 bytes contain the length of the data. The specified length of the string in a
bind or a define call must include the two length bytes, so the largest VARRAW string that can
be received or sent is 65533 bytes, not 65535. For converting longer strings, use the LONG
VARRAW external data type.

4.3.13 LONG RAW

The LONG RAW data type supports a 2 gigabyte length.

The LONG RAW data type is similar to the RAW data type, except that it stores raw data with a
length up to 2 gigabytes (2731-1 bytes).

4.3.14 UNSIGNED

The UNSIGNED data type is used for unsigned binary integers.

The size in bytes is system-dependent. The host system architecture determines the order of
the bytes in a word. A length specification is required for input and output. If the number
being output from Oracle Database is not an integer, the fractional part is discarded, and no
error or other indication is returned. If the number to be returned exceeds the capacity of an
unsigned integer for the system, Oracle Database returns an "overflow on conversion” error.

4.3.15 LONG VARCHAR

The LONG VARCHAR data type stores data from and into an Oracle Database LONG column.

The first 4 bytes of a LONG VARCHAR contain the length of the item. So, the maximum length of
a stored item is 2731-5 hytes.

4.3.16 LONG VARRAW

The LONG VARRAW data type is used to store data from and into an Oracle Database LONG RAW
column.

The length is contained in the first four bytes. The maximum length is 2/31-5 bytes.

ORACLE 4-19

Chapter 4
External Data Types

4.3.17 CHAR

The CHAR data type is a string of characters, with a maximum length of 2000.
CHAR strings are compared using blank-padded comparison semantics.

This section includes the following topics:

* Input
e Output
See Also:

Oracle Database SQL Language Reference

4.3.17.1 Input

The length is determined by the value sz parameter in the 0OCIBindByName () Or
OCIBindByName?2 () Or OCIBindByPos () Or OCIBindByPos2 () call.

¢ Note:

The entire contents of the buffer (value sz chars) is passed to the database,
including any trailing blanks or NULLS.

If the value sz parameter is zero, Oracle Database treats the bind variable as a NULL,
regardless of its actual content. Of course, a NULL must be allowed for the bind
variable value in the SQL statement. If you try to insert a NULL into a column that has a
NOT NULL integrity constraint, Oracle Database issues an error and does not insert the
row.

Negative values for the value sz parameter are not allowed for CHARS.

When the Oracle internal (column) data type is NUMBER, input from a character string
that contains the character representation of a number is legal. Input character strings
are converted to internal numeric format. If the CHAR string contains an illegal
conversion character, Oracle Database returns an error and does not insert the value.
Number conversion follows the conventions established by globalization support
settings for your system. For example, your system might be configured to recognize a
comma (,) rather than a period (.) as the decimal point.

¢ See Also:

e OCIBindByName() or OCIBindByName2()
e OCIBindByPos() or OCIBindByPo0s2()

ORACLE 4-20

Chapter 4
External Data Types

4.3.17.2 Output

Specify the desired length for the return value in the value sz parameter of the
OCIDefineByPos () Or OCIDefineByPos2 () call.

If zero is specified for the length, no data is returned.

If you omit the rlenp parameter of 0OCIDefineByPos () Or OCIDefineByPos2 (), returned values
are blank padded to the buffer length, and NULLs are returned as a string of blank characters.
If rlenp is included, returned values are not blank-padded. Instead, their actual lengths are
returned in the rlenp parameter.

To check whether a NULL is returned or character truncation occurs, include an indicator
parameter or array of indicator parameters in the 0CIDefineByPos () Or OCIDefineByPos?2 ()
call. An indicator parameter is set to -1 when a NULL is fetched and to the original column
length when the returned value is truncated. Otherwise, it is set to zero. If you do not specify
an indicator parameter and a NULL is selected, the fetch call returns an ORA-01405 error.

You can also request output to a character string from an internal NUMBER data type. Number
conversion follows the conventions established by the globalization support settings for your
system. For example, your system might use a comma (,) rather than a period (.) as the
decimal point.

See Also:

e Indicator Variables
e OCIDefineByPos() or OCIDefineByPos2()

4.3.18 CHARZ

The CHARZ external data type is similar to the CHAR data type, except that the string must be
NULL-terminated on input, and Oracle Database places a NULL-terminator character at the end
of the string on output.

The NULL terminator serves only to delimit the string on input or output; it is not part of the
data in the table.

On input, the length parameter must indicate the exact length, including the NULL terminator.
For example, if an array in C is declared as follows, then the length parameter when you bind
my num must be seven. Any other value would return an error for this example.

char my_num[] = "123.45";

The following new external data types were introduced with or after release 8.0. These data
types are not supported when you connect to an Oracle release 7 server.

ORACLE 4-21

Chapter 4
External Data Types

< Note:

Both internal and external data types have Oracle-defined constant values,
such as SQLT NTY, SQLT REF, corresponding to their data type codes.
Although the constants are not listed for all of the types in this chapter, they
are used in this section when discussing new Oracle data types. The data
type constants are also used in other chapters of this guide when referring to
these new types.

4.3.19 Named Data Types: Object, VARRAY, Nested Table

Named data types are user-defined types that are specified with the CREATE TYPE
command in SQL.

Examples include object types, varrays, and nested tables. In OCI, named data type
refers to a host language representation of the type. The SQLT NTY data type code is
used when binding or defining named data types.

In a C application, named data types are represented as C structs. These structs can
be generated from types stored in the database by using the Object Type Translator.
These types correspond to OCI_TYPECODE OBJECT.

¢ See Also:

e Object Type Information Storage and Access for more information about
working with named data types in OCI

e Using the Object Type Translator with OCI for information about how
named data types are represented as C structs

4.3.20 REF

This is a reference to a named data type.

The C language representation of a REF is a variable declared to be of type 0OCIRef *.
The SQLT REF data type code is used when binding or defining REFS.

Access to REFS is only possible when an OCI application has been initialized in object
mode. When REFs are retrieved from the server, they are stored in the client-side
object cache.

To allocate a REF for use in your application, you should declare a variable to be a
pointer to a REF, and then call 0CIObjectNew (), passing OCI_TYPECODE REF as the
typecode parameter.

ORACLE 4-22

Chapter 4
External Data Types

¢ See Also:

« OCIObjectNew()

e Object Advanced Topics in OCI for more information about working with REFS in
the OCI

4.3.21 ROWID Descriptor

The ROWID data type identifies a particular row in a database table.

ROWID can be a select-list item in a query, such as:

SELECT ROWID, ename, empno FROM emp

In this case, you can use the returned ROWID in further DELETE statements.

If you are performing a SELECT for UPDATE, the ROWID is implicitly returned. This ROWID can be
read into a user-allocated ROWID descriptor by using 0CIAttrGet () on the statement handle

and used in a subsequent UPDATE statement. The prefetch operation fetches all ROWIDS on a
SELECT for UPDATE; use prefetching and then a single row fetch.

You access rowids using a ROWID descriptor, which you can use as a bind or define variable.

¢ See Also:

« OCIAttrGet()

e OCI Descriptors and Positioned Updates and Deletes for more information
about the use of the ROWID descriptor

4.3.22 LOB Descriptor

A LOB (large object) stores binary or character data up to 128 terabytes (TB) in length.

Binary data is stored in a BLOB (binary LOB), and character data is stored in a CLOB (character
LOB) or NCLOB (national character LOB).

LOB values may or may not be stored inline with other row data in the database. In either
case, LOBs have the full transactional support of the Oracle database. A database table
stores a LOB locator that points to the LOB value, which may be in a different storage space.

When an OCI application issues a SQL query that includes a LOB column or attribute in its
select list, fetching the results of the query returns the locator, rather than the actual LOB
value. In OCI, the LOB locator maps to a variable of type 0CILobLocator.

ORACLE 4-23

ORACLE

Chapter 4
External Data Types

< Note:

Depending on your application, you may or may not want to use LOB
locators. You can use the data interface for LOBs, which does not require
LOB locators. In this interface, you can bind or define character data for CLOB
columns or RAW data for BLOB columns.

The OCI functions for LOBs take a LOB locator as one of their arguments. The OCI
functions assume that the locator has already been created, whether or not the LOB to
which it points contains data.

Bind and define operations are performed on the LOB locator, which is allocated with
the OCIDescriptorAlloc () function.

The locator is always fetched first using SQL or 0CIObjectPin (), and then operations
are performed using the locator. The OCI functions never take the actual LOB value as
a parameter.

The data type codes available for binding or defining LOBs are:
* SQLT BLOB - A binary LOB data type
* SQLT CLOB - A character LOB data type

The NCLOB is a special type of CLOB with the following requirements:

* To write into or read from an NCLOB, the user must set the character set form
(csfrm) parameter to be SQLCS NCHAR.

e The amount (amtp) parameter in calls involving CLOBS and NCLOBS is always
interpreted in terms of characters, rather than bytes, for fixed-width character sets.

This section includes the following topics:

 BFILE
- BLOB
- CLOB
« NCLOB

4-24

Chapter 4
External Data Types

¢ See Also:

e OCI Descriptors for more information about descriptors, including the LOB
locator

e Oracle Database SQL Language Reference and Oracle Database SecureFiles
and Large Objects Developer's Guide for more information about LOBs

e About Binding and Defining LOB Data
e About Defining LOB Data

e LOB and BFILE Functions in OCI

e OClIDescriptorAlloc()

e OCIObjectPin()

* LOB and BFILE Operations for more information about OCI LOB functions

4.3.22.1 BFILE

Oracle Database supports access to binary files (BFILES).

The BFILE data type provides access to LOBs that are stored in file systems outside an
Oracle database.

A BFILE column or attribute stores a file LOB locator, which serves as a pointer to a binary file
on the server's file system. The locator maintains the directory object and the file name. The
maximum size of a BFILE is the smaller of the operating system maximum file size or
UBBMAXVAL.

Binary file LOBs do not participate in transactions. Rather, the underlying operating system
provides file integrity and durability.

The database administrator must ensure that the file exists and that Oracle Database
processes have operating system read permissions on the file.

The BFILE data type allows read-only support of large binary files; you cannot modify a file
through Oracle Database. Oracle Database provides APIs to access file data.

The data type code available for binding or defining BFILES is SOLT BFILE (a binary FILE LOB
data type)

¢ See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for more
information about directory aliases

ORACLE 4-25

Chapter 4
External Data Types

4.3.22.2 BLOB

The BLOB data type stores unstructured binary large objects.

BLOBS can be thought of as bit streams with no character set semantics. BLOBS can
store up to 128 terabytes of binary data.

BLOBs have full transactional support; changes made through OCI participate fully in
the transaction. The BLOB value manipulations can be committed or rolled back. You
cannot save a BLOB locator in a variable in one transaction and then use it in another
transaction or session.

4.3.22.3 CLOB

The CLOB data type stores fixed-width or variable-width character data.
CLOBS can store up to 128 terabytes of character data.

CLOBs have full transactional support; changes made through OCI participate fully in
the transaction. The CLOB value manipulations can be committed or rolled back. You
cannot save a CLOB locator in a variable in one transaction and then use it in another
transaction or session.

4.3.22.4 NCLOB

An NCLOB is a national character version of a CLOB.

It stores fixed-width, single-byte or multibyte national character set (NCHAR) data, or
variable-width character set data. NCLOBS can store up to 128 terabytes of character
text data.

NCLOBS have full transactional support; changes made through OCI participate fully in
the transaction. NCLOB value manipulations can be committed or rolled back. You
cannot save an NCLOB locator in a variable in one transaction and then use it in another
transaction or session.

4.3.23 JSON Descriptor

ORACLE

JSON data type is used to store JSON data in a native binary format.

When an OCI application executes a SQL statement that includes a JSON column, the
results fetched from the query populates the descriptor. In OCI, JISON maps to a
variable of type 0CIJson.

Bind and define operations are performed on the JSON descriptor, which is allocated
with the oCIDescriptorAlloc () function. The data type code for binding and defining
JSON is SQLT JSON. This is referred to as JSON descriptor interface.

Apart from JSON descriptor interface, depending on your application, you can use
either LOB locator or data interface to fetch the JSON value. In such cases, the
conversion to textual JSON happens on the server.

The OCI functions for JSON has JSON descriptor as one of the arguments. You can
read and write data from or to a JSON descriptor.

4-26

Chapter 4
External Data Types

4.3.24 Datetime and Interval Data Type Descriptors

Lists and describes the datetime and interval data type descriptors.
The datetime and interval data type descriptors are briefly summarized here.

This section includes the following topics:

* ANSI DATE

e TIMESTAMP

e TIMESTAMP WITH TIME ZONE

e TIMESTAMP WITH LOCAL TIME ZONE
* INTERVAL YEAR TO MONTH

* INTERVAL DAY TO SECOND

e About Avoiding Unexpected Results Using Datetime

¢ See Also:

Oracle Database SQL Language Reference

4.3.24.1 ANSI DATE

ANSI DATE is based on DATE, but contains no time portion. It also has no time zone.

aANST DATE follows the ANSI specification for the DATE data type. When assigning an ANST DATE
to a DATE or a time stamp data type, the time portion of the Oracle DATE and the time stamp
are set to zero. When assigning a DATE or a time stamp to an ANSI DATE, the time portion is
ignored.

Instead of using the ANST DATE data type, Oracle recommends that you use the TIMESTAMP
data type, which contains both date and time.

4.3.24.2 TIMESTAMP

The TIMESTAMP data type is an extension of the DATE data type. It stores the year, month, and
day of the DATE data type, plus the hour, minute, and second values.

The TIMESTAMP data type has no time zone. The TIMESTAMP data type has the following form:

TIMESTAMP (fractional seconds precision)

In this form, the optional fractional seconds precision specifies the number of digits in the
fractional part of the SECOND datetime field and can be a number in the range 0 to 9. The
default is 6.

ORACLE 4-27

Chapter 4
External Data Types

4.3.24.3 TIMESTAMP WITH TIME ZONE

TIMESTAMP WITH TIME ZONE (TSTZ) is a variant of TIMESTAMP that includes an explicit
time zone displacement in its value.

The time zone displacement is the difference in hours and minutes between local time
and UTC (coordinated universal time—formerly Greenwich mean time). The
TIMESTAMP WITH TIME ZONE data type has the following form:

TIMESTAMP(fractional_seconds_precision) WITH TIME ZONE

In this form, fractional seconds precision optionally specifies the number of digits
in the fractional part of the SECOND datetime field, and can be a number in the range 0
to 9. The default is 6.

Two TIMESTAMP WITH TIME ZONE values are considered identical if they represent the
same instant in UTC, regardless of the TIME ZONE offsets stored in the data.

4.3.24.4 TIMESTAMP WITH LOCAL TIME ZONE

TIMESTAMP WITH LOCAL TIME ZONE (TSLTZ) is another variant of TIMESTAMP that includes
a time zone displacement in its value.

Storage is in the same format as for TIMESTAMP. This type differs from TIMESTAMP WITH
TIME ZONE in that data stored in the database is normalized to the database time zone,
and the time zone displacement is not stored as part of the column data. When
retrieving the data, Oracle Database returns it in your local session time zone.

The time zone displacement is the difference (in hours and minutes) between local
time and UTC (coordinated universal time—formerly Greenwich mean time). The
TIMESTAMP WITH LOCAL TIME ZONE data type has the following form:

TIMESTAMP (fractional seconds precision) WITH LOCAL TIME ZONE

In this form, fractional seconds precision optionally specifies the number of digits
in the fractional part of the SECOND datetime field and can be a number in the range 0 to
9. The default is 6.

4.3.24.5 INTERVAL YEAR TO MONTH

INTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH datetime
fields.

The INTERVAL YEAR TO MONTH data type has the following form:

INTERVAL YEAR (year precision) TO MONTH

In this form, the optional year precision is the number of digits in the YEAR datetime
field. The default value of year precisionis 2.

4.3.24.6 INTERVAL DAY TO SECOND

INTERVAL DAY TO SECOND stores a period of time in terms of days, hours, minutes, and
seconds.

The INTERVAL DAY TO SECOND data type has the following form:

ORACLE 4-28

Chapter 4
External Data Types

INTERVAL DAY (day precision) TO SECOND(fractional seconds precision)

In this form:

* day precision is the number of digits in the DAY datetime field. It is optional. Accepted
values are 0 to 9. The default is 2.

» fractional seconds precision is the number of digits in the fractional part of the
SECOND datetime field. Accepted values are 0 to 9. The value should be provided as
nanoseconds. The Default Day to Second precision is 6 unless the precision is specified
to a different value at the time of creating the table. In this case, the least significant three
digits will be truncated.

4.3.24.7 About Avoiding Unexpected Results Using Datetime

How to avoid unexpected results using datetime.

< Note:

To avoid unexpected results in your data manipulation language (DML) operations
on datetime data, you can verify the database and session time zones by querying
the built-in SQL functions DBTIMEZONE and SESSIONTIMEZONE. If the time zones have
not been set manually, Oracle Database uses the operating system time zone by
default. If the operating system time zone is not a valid Oracle Database time zone,
Oracle Database uses UTC as the default value.

4.3.25 Native Float and Native Double

The native float (SQLT BFLOAT) and native double (SOLT BDOUBLE) data types represent the
single-precision and double-precision floating-point values.

They are represented natively, that is, in the host system's floating-point format.

These external types were added in release 10.1 to externally represent the BINARY FLOAT
and BINARY DOUBLE internal data types. Thus, performance for the internal types is best when
used in conjunction with external types native float and native double respectively. This draws
a clear distinction between the existing representation of floating-point values (SQLT FLT) and
these types.

4.3.26 C Object-Relational Data Type Mappings

OCI supports Oracle-defined C data types for mapping user-defined data types to C
representations (for example, OCINumber, OCIArray).

OCI provides a set of calls to operate on these data types, and to use these data types in
bind and define operations, in conjunction with OCI external data types.

ORACLE 4-29

Chapter 4
Data Conversions

¢ See Also:

Object-Relational Data Types in OCI for information about using these
Oracle-defined C data types

4.4 Data Conversions

Shows the supported conversions from internal data types to external data types and
from external data types into internal column representations.

Table 4-5 shows the supported conversions from internal data types to external data
types, and from external data types into internal column representations, for all data
types available through release 7.3. Information about data conversions for data types
newer than release 7.3 is listed here:

* REFs stored in the database are converted to SOLT REF on output.
* SQLT REF is converted to the internal representation of REFS on input.

* Named data types stored in the database can be converted to SQLT NTY (and
represented by a C struct in the application) on output.

* SQLT NTY (represented by a C struct in an application) is converted to the internal
representation of the corresponding type on input.

LOBs are shown in Table 4-6, because of the width limitation.

¢ See Also:

Object-Relational Data Types in OCI for information about 0CIString,
OCINumber, and other new data types

Table 4-5 Data Conversions

NAl INTERNAL NA NA NA NA NA NA NA NA
DATA
TYPES->
EXTERNAL VARCHAR2 NUMBER LONG ROWID UROWID DATE RAW LONG CHAR
DATA TYPES RAW
VARCHAR2 1102 Ife} I/0 1103 1103 I/0* /o> 1od NA
NUMBER /08 110 I NA NA NA NA NA 1108
INTEGER 1108 I/0 [NA NA NA NA NA 1108
FLOAT 1108 11O [NA NA NA NA NA 1108
STRING I/0 1’0 110 1103 /03 1/0% /o> /058 1/O
VARNUM 1108 I/0 | NA NA NA NA NA 1108
DECIMAL 1108 11O | NA NA NA NA NA 1108
LONG o] 110 I/0 1103 1103 l/o* /o> /058 1/o
ORACLE 4-30

Table 4-5 (Cont.) Data Conversions

Chapter 4
Data Conversions

NAl INTERNAL NA NA NA NA NA NA NA NA

DATA

TYPES->
EXTERNAL VARCHAR2 NUMBER LONG ROWID UROWID DATE RAW LONG CHAR
DATA TYPES RAW
VARCHAR I/0 110 11O 1103 1103 I/10% 1103 I/10%8 1/0
DATE I/O NA I NA NA 11O NA NA 110
VARRAW 1/0° NA 18,9 NA NA NA I/0 11O 1/10°
RAW 1/0° NA 18,9 NA NA NA I/0 I/0 1/10°
LONG RAW 0109 NA 18,9 NA NA NA I/O 110 09
UNSIGNED 1/10® 11O I NA NA NA NA NA 1108
LONG I/0 110 110 1103 1103 /0% 1105 11058 1/0
VARCHAR
LONG VARRAW 1/O° NA 18,9 NA NA NA 110 110 1/10°
CHAR 1/0 11O 110 1103 1103 /0% 1/10° 1° 110
CHARZ I/O I/O I/O 1103 1103 l/04 VoS 15 110
ROWID 13 NA NA I/0 1/0 NA NA NA 13
descriptor

1 NA means not applicable.
2 1/0 = Conversion is valid for input or output.

w

format.

For input, host string must be in hexadecimal format. On output, column value is returned in hexadecimal format.
For output, column value must represent a valid number.

| = Conversion is valid for input only.

Length must be less than or equal to 2000.

On input, column value is stored in hexadecimal format. On output, column value must be in hexadecimal format.
O = Conversion is valid for output only.

© B © 00 N O 0 b

This section includes the following topics:

» Data Conversions for LOB Data Type Descriptors

» Data Conversions for Datetime and Interval Data Types

» Datetime and Date Upgrading Rules

» Data Conversion for BINARY_FLOAT and BINARY_DOUBLE in OCI

4.4.1 Data Conversions for LOB Data Type Descriptors

Shows the data conversions for LOBS.

For input, host string must be in Oracle ROWID/UROWID format. On output, column value is returned in Oracle ROWID/UROWID

For input, host string must be in the Oracle DATE character format. On output, column value is returned in Oracle DATE format.

Table 4-6 shows the data conversions for LoOBs. For example, the external character data
types (VARCHAR, CHAR, LONG, and LONG VARCHAR) convert to the internal CLOB data type,

ORACLE 4-31

Chapter 4
Data Conversions

whereas the external raw data types (RAW, VARRAW, LONG RAW, and LONG VARRAW)
convert to the internal BLOB data type.

Table 4-6 Data Conversions for LOBs

EXTERNAL DATA TYPES INTERNAL CLOB INTERNAL BLOB
VARCHAR 1101 NA2?

CHAR 110 NA

LONG 110 NA

LONG VARCHAR 110 NA

RAW NA 110

VARRAW NA 110

LONG RAW NA 110

LONG VARRAW NA 110

1 1/O = Conversion is valid for input or output.
2 NA means not applicable.

4.4.2 Data Conversions for JSON Data Type
Shows the data conversion for JSON data type.

Table 4-7 Data Conversions for JSON Data Type

External Typesl/internal Types JSON
VARCHAR2 I/o!
CLOB 110
BLOB 110

1 1/O = Conversion is valid for input or output.

4.4.3 Data Conversions for Datetime and Interval Data Types

Shows the data conversion for datetime and interval data types.

You can also use one of the character data types for the host variable used in a fetch
or insert operation from or to a datetime or interval column. Oracle Database does the
conversion between the character data type and datetime or interval data type for you
(see Table 4-8.

Table 4-8 Data Conversion for Datetime and Interval Types

External Typesl/internal VARCHAR, DATE TS TSTZ TSLTZ |INTERVAL INTERVAL

Types CHAR YEARTO DAY TO
MONTH SECOND

VARCHAR2, CHAR I/0? 110 110 110 110 110 110

DATE 110 110 110 110 110 NA2 NA

ORACLE 4-32

Chapter 4
Data Conversions

Table 4-8 (Cont.) Data Conversion for Datetime and Interval Types

External Typesl/internal VARCHAR, DATE TS TSTZ TSLTZ INTERVAL INTERVAL

Types CHAR YEARTO DAY TO
MONTH SECOND

OCI DATE 110 110 110 110 110 NA NA

ANSI DATE 110 1/10 1/10 1/10 1/10 NA NA

TIMESTAMP (TS) 11O 110 110 110 110 NA NA

TIMESTAMP WITH TIME ZONE /O 110 110 110 110 NA NA

(TSTZ)

TIMESTAMP WITH LOCAL I/O 110 110 110 110 NA NA

TIME ZONE (TSLTZ)

INTERVAL YEAR TO MONTH /O NA NA NA NA 110 NA

INTERVAL DAY TO SECOND /O NA NA NA NA NA 110

1 1/O = Conversion is valid for input or output.

2 NA means not applicable.
This section includes the following topics:
* Assignment Notes

- Data Conversion Notes for Datetime and Interval Types

4.4.3.1 Assignment Notes

When you assign a source with a time zone to a target without a time zone, the time zone
portion of the source is ignored.

When you assign a source without a time zone to a target with a time zone, the time zone of
the target is set to the session's default time zone.

When you assign an Oracle Database DATE to a TIMESTAMP, the TIME portion of the DATE is

copied over to the TIMESTAMP. When you assigh a TIMESTAMP to Oracle Database DATE, the
TIME portion of the result DATE is set to zero. This is done to encourage upgrading of Oracle
Database DATE to ANSI-compliant DATETIME data types.

When you assign an ANSI DATE to an Oracle DATE or a TIMESTAMP, the TIME portion of the
Oracle Database DATE and the TIMESTAMP are set to zero. When you assign an Oracle
Database DATE or a TIMESTAMP to an ANSI DATE, the TIME portion is ignored.

When you assign a DATETIME to a character string, the DATETIME is converted using the
session's default DATETIME format. When you assign a character string to a DATETIME, the
string must contain a valid DATETIME value based on the session's default DATETIME format

When you assign a character string to an INTERVAL, the character string must be a valid
INTERVAL character format.

4.4.3.2 Data Conversion Notes for Datetime and Interval Types

Describes some information for datetime and interval types.

ORACLE 4-33

Chapter 4
Data Conversions

When you convert from TSLTZ to CHAR, DATE, TIMESTAMP, and TSTz, the value is
adjusted to the session time zone.

When you convert from CHAR, DATE, and TIMESTAMP to TSLTZ, the session time zone is
stored in memory.

When you assign TSLTZ to ANSI DATE, the time portion is zero.

When you convert from TSTZ, the time zone that the time stamp is in is stored in
memory.

When you assign a character string to an interval, the character string must be a valid
interval character format.

4.4.4 Datetime and Date Upgrading Rules

OCI has full forward and backward compatibility between a client application and the
Oracle database for datetime and date columns.

This section includes the following topics:
e Pre-9.0 Client with 9.0 or Later Server
* Pre-9.0 Server with 9.0 or Later Client

4.4.4.1 Pre-9.0 Client with 9.0 or Later Server

The only datetime data type available to a pre-9.0 application is the DATE data type,
SQLT DAT.

When a pre-9.0 client that defined a buffer as SQLT DAT tries to obtain data from a
TSLTZ column, only the date portion of the value is returned to the client.

4.4.4.2 Pre-9.0 Server with 9.0 or Later Client

When a pre-9.0 server is used with a 9.0 or later client, the client can have a bind or
define buffer of type SQLT TIMESTAMP LTZ.

The following compatibilities are maintained in this case.

If any client application tries to insert a SQLT TIMESTAMP LTZ (or any of the new
datetime data types) into a DATE column, an error is issued because there is potential
data loss in this situation.

When a client has an OUT bind or a define buffer that is of data type
SQLT TIMESTAMP LTZ and the underlying server-side SQL buffer or column is of DATE
type, then the session time zone is assigned.

4.4.5 Data Conversion for BINARY _FLOAT and BINARY_DOUBLE in

OCl

ORACLE

Shows the supported conversions between internal numeric data types and all
relevant external types.

Table 4-9 shows the supported conversions between internal numeric data types and
all relevant external types. An () implies that the conversion is valid for input only

4-34

Chapter 4
Data Conversions

(binds), and (O) implies that the conversion is valid for output only (defines). An (I/O) implies
that the conversion is valid for input and output (binds and defines).

Table 4-9 Data Conversion for External Data Types to Internal Numeric Data Types
]

External Typeslinternal Types BINARY_FLOAT BINARY_DOUBLE
VARCHAR ljot 110
VARCHAR2 Ie] I/O
NUMBER I/O I/0
INTEGER /0 /0
FLOAT I/O I/O
STRING I/0 I/0
VARNUM /0 /0
LONG 110 I/0
UNSIGNED INT I/O /0
LONG VARCHAR I/O I/O
CHAR I/0 I/0
BINARY FLOAT /0 /0
BINARY DOUBLE I/O I/O

1 An (I/O) implies that the conversion is valid for input and output (binds and defines)

Table 4-10 shows the supported conversions between all relevant internal types and numeric
external types. An (1) implies that the conversion is valid for input only (only for binds), and
(O) implies that the conversion is valid for output only (only for defines). An (I/O) implies that
the conversion is valid for input and output (binds and defines).

Table 4-10 Data Conversions for Internal to External Numeric Data Types
]

Internal Types/External Types Native Float Native Double
VARCHAR2 I/0t 110

NUMBER /0 1/0

LONG 12 |

CHAR 1/0 1/0

BINARY FLOAT 110 110

BINARY DOUBLE 1/0 1/0

1 An (I/O) implies that the conversion is valid for input and output (binds and defines)
2 An () implies that the conversion is valid for input only (only for binds)

ORACLE 4-35

Chapter 4
Typecodes

4.5 Typecodes

ORACLE

A unique typecode is associated with each Oracle Database type, whether scalar,
collection, reference, or object type.

This typecode identifies the type, and is used by Oracle Database to manage
information about object type attributes. This typecode system is designed to be
generic and extensible. It is not tied to a direct one-to-one mapping to Oracle data
types. Consider the following SQL statements:

CREATE TYPE my type AS OBJECT
(attrl NUMBER,

attr2 INTEGER,

attr3 SMALLINT) ;

CREATE TABLE my table AS TABLE OF my type;

These statements create an object type and an object table. When it is created,

my table has three columns, all of which are of Oracle NUMBER type, because
SMALLINT and INTEGER map internally to NUMBER. The internal representation of the
attributes of my type, however, maintains the distinction between the data types of the
three attributes: attrl is OCI_TYPECODE NUMBER, attr2 is OCI _TYPECODE INTEGER, and
attr3is OCI_TYPECODE SMALLINT. If an application describes my type, these
typecodes are returned.

0CITypeCode is the C data type of the typecode. The typecode is used by some OCI
functions, like OCIObjectNew(), where it helps determine what type of object is
created. It is also returned as the value of some attributes when an object is described,;
for example, querying the OCI ATTR TYPECODE attribute of a type returns an
OCITypeCode value.

Table 4-11 lists the possible values for an 0CITypeCode. There is a value
corresponding to each Oracle data type.

Table 4-11 OCITypeCode Values and Data Types
|

Value Data Type

OCI_TYPECODE REF REF

OCI_TYPECODE DATE DATE

OCI TYPECODE TIMESTAMP TIMESTAMP

OCI_TYPECODE TIMESTAMP TZ TIMESTAMP WITH TIME ZONE
OCI TYPECODE TIMESTAMP LTZ TIMESTAMP WITH LOCAL TIME ZONE
OCI TYPECODE INTERVAL YM INTERVAL YEAR TO MONTH
OCI_TYPECODE INTERVAL DS INTERVAL DAY TO SECOND
OCI_TYPECODE REAL Single-precision real
OCI_TYPECODE DOUBLE Double-precision real
OCI_TYPECODE FLOAT Floating-point

OCI _TYPECODE NUMBER Oracle NUMBER

OCI TYPECODE BFLOAT BINARY_FLOAT

4-36

Chapter 4
Typecodes

Table 4-11 (Cont.) OCITypeCode Values and Data Types
|

Value

Data Type

OCI_TYPECODE BDOUBLE
OCI_TYPECODE DECIMAL
OCI_TYPECODE OCTET
OCI_TYPECODE INTEGER
OCI_TYPECODE SMALLINT
OCI_TYPECODE RAW
OCI_TYPECODE VARCHAR2
OCI_TYPECODE VARCHAR
OCI_TYPECODE CHAR
OCI_TYPECODE_ VARRAY
OCI_TYPECODE TABLE
OCI_TYPECODE CLOB
OCI_TYPECODE BLOB
OCI_TYPECODE BFILE
OCI_TYPECODE OBJECT
OCI_TYPECODE NAMEDCOLLECTION
OCI_TYPECODE BOOLEAN!
OCI_TYPECODE RECORD!
OCI_TYPECODE ITABLE!
OCI_TYPECODE INTEGER!

BINARY_DOUBLE

Decimal

Octet

Integer

Small int

RAW

Variable string ANSI SQL, that is, VARCHAR2
Variable string Oracle SQL, that is, VARCHAR
Fixed-length string inside SQL, that is SQL CHAR
Variable-length array (varray)

Multiset

Character large object (CLOB)

Binary large object (BLOB)

Binary large object file (BFILE)

Named object type, or SYS.XMLType
Collection

Boolean

Record

Index-by BINARY_INTEGER

PLS_INTEGER or BINARY_INTEGER

1 This type is a PL/SQL type only.

This section includes the following topic: Relationship Between SQLT and OCI_TYPECODE

Values.

4.5.1 Relationship Between SQLT and OCI_TYPECODE Values

Oracle Database recognizes two different sets of data type code values.

ORACLE

One set is distinguished by the SQLT prefix, the other by the 0CI_TYPECODE prefix.

The sQLT typecodes are used by OCI to specify a data type in a bind or define operation,
enabling you to control data conversions between Oracle Database and OCI client
applications. The 0CI_TYPECODE types are used by Oracle's type system to reference or
describe predefined types when manipulating or creating user-defined types.

In many cases, there are direct mappings between SQLT and 0CI_TYPECODE values. In other
cases, however, there is not a direct one-to-one mapping. For example,

OCI TYPECODE SIGNEDS8, OCI TYPECODE SIGNED16, OCI TYPECODE SIGNED32,

OCI_TYPECODE INTEGER, OCI_TYPECODE OCTET, and OCI_TYPECODE SMALLINT are all mapped

to the SQLT INT type.

4-37

Chapter 4
Typecodes

Table 4-12 illustrates the mappings between SQLT and 0CI TYPECODE types.

Table 4-12 OCI_TYPECODE to SQLT Mappings
-

Oracle Type System Typename

Oracle Type System Type

Equivalent SQLT Type

BFILE
BLOB

BOOLEAN?

CHAR

CLOB

COLLECTION

DATE

TIMESTAMP

TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH LOCAL TIME ZONE
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND
FLOAT

DECIMAL

DOUBLE

BINARY FLOAT

BINARY DOUBLE

INDEX-BY BINARY INTEGER!
INTEGER

NUMBER

OCTET

PLS INTEGER or BINARY INTEGER!
POINTER

RAW

REAL

REF

RECORD?
OBJECT or SYS.XMLType
SIGNED (8)

SIGNED (16)

SIGNED (32)

SMALLINT

TABLE’

UNSIGNED (8)

UNSIGNED (16)

ORACLE

OCI_TYPECODE BFILE
OCI_TYPECODE BLOB
OCI_TYPECODE BOOLEAN
OCI_TYPECODE CHAR (n)
OCI_TYPECODE CLOB
OCI_TYPECODE NAMEDCOLLECTION
OCI_TYPECODE DATE
OCI_TYPECODE TIMESTAMP
OCI_TYPECODE TIMESTAMP TZ
OCI_TYPECODE TIMESTAMP LTZ
OCI_TYPECODE INTERVAL YM
OCI_TYPECODE INTERVAL DS
OCI_TYPECODE FLOAT (b)
OCI_TYPECODE DECIMAL (p)
OCI_TYPECODE DOUBLE
OCI_TYPECODE BFLOAT
OCI_TYPECODE BDOUBLE
OCI_TYPECODE ITABLE
OCI_TYPECODE INTEGER
OCI_TYPECODE NUMBER (p,)
OCI_TYPECODE OCTET
OCI_TYPECODE PLS_INTEGER
OCI_TYPECODE PTR
OCI_TYPECODE RAW
OCI_TYPECODE REAL
OCI_TYPECODE REF
OCI_TYPECODE RECORD
OCI_TYPECODE OBJECT
OCI_TYPECODE SIGNEDS
OCI_TYPECODE SIGNED16
OCI_TYPECODE SIGNED32
OCI_TYPECODE SMALLINT
OCI_TYPECODE TABLE
OCI_TYPECODE UNSIGNEDS
OCI_TYPECODE UNSIGNED16

SQLT BFILE

SQLT BLOB

SQLT BOL

SQLT AFC(n)?

SQLT CLOB

SQLT NCO

SQLT DAT

SQLT TIMESTAMP
SQLT TIMESTAMP TZ
SQLT TIMESTAMP LTZ
SQLT INTERVAL YM
SQLT INTERVAL DS
SQLT FLT (8)°
SQLT NUM (p, 0)*
SQLT FLT (8)

SQLT BFLOAT

SQLT BDOUBLE
SQLT NTY
SQLT INT (i)°
SQLT NUM (p, s)®
SQLT INT (1)

SQLT INT
<NONE>

SQLT LVB

SQLT FLT (4)

SQLT REF

SQLT NTY

SQLT NTY

SQLT INT (1)

SQLT INT (2)

SQLT INT (4)

SQLT INT (i)°
<NONE>

SQLT UIN (1)

SQLT UIN (2)

4-38

Chapter 4
Definitions in oratypes.h

Table 4-12 (Cont.) OCI_TYPECODE to SQLT Mappings
]

Oracle Type System Typename Oracle Type System Type Equivalent SQLT Type
UNSIGNED(32) OCI_TYPECODE UNSIGNED32 SQLT UIN (4)

VARRAY’ OCI TYPECODE VARRAY <NONE>

VARCHAR OCI_TYPECODE VARCHAR (n) SQLT CHR ()2
VARCHAR2 OCI_TYPECODE VARCHAR2 (n) SQLT VCS (n)?

1 This type is a PL/SQL type only.

2 nis the size of the string in bytes.

3 These are floating-point numbers, the precision is given in terms of binary digits. b is the precision of the number in binary digits.
4 This is equivalent to a NUMBER with no decimal places.

5 iis the size of the number in bytes, set as part of an OCI call.

6 pis the precision of the number in decimal digits; s is the scale of the number in decimal digits.

7

Can only be part of a named collection type.

4.6 Definitions in oratypes.h

Describes the contents of the oratypes.h header file.

Throughout this guide there are references to data types like ub2 or sb4, or to constants like
UB4MAXVAL. These types are defined in the oratypes.h header file, which is found in the
public directory. The exact contents may vary according to the operating system that you are
using.

" Note:

The use of the data types in oratypes.h is the only supported means of supplying
parameters to OCI.

ORACLE 4-39

Using SQL Statements in OCI

This chapter discusses the concepts and steps involved in processing SQL statements with
Oracle Call Interface.

This chapter contains these topics:

* Overview of SQL Statement Processing
* About Preparing Statements

* About Binding Placeholders in OCI

* About Executing Statements

* About Describing Select-List Items

* About Defining Output Variables in OCI
* About Fetching Results

* About Using Scrollable Cursors in OCI

5.1 Overview of SQL Statement Processing

One of the most common tasks of an OCI program is to accept and process SQL statements.

Chapter 3 “OCI Programming Basics” discussed the basic steps involved in any OCI
application. This chapter presents a more detailed look at the specific tasks involved in
processing SQL statements in an OCI program.

This section outlines the specific steps involved in accepting and processing SQL statements.

Once you have allocated the necessary handles and connected to an Oracle database, follow
the steps illustrated in Figure 5-1.

ORACLE 5-1

ORACLE

Chapter 5
Overview of SQL Statement Processing

Figure 5-1 Steps in Processing SQL Statements

o[Prepare | OCISimtPrepare2()
Statement
* 4 5
[Bind 7y OCIBindByMame()/OCIBindByMamez()

" OCIBindByPosi)/OCIBindByPos2()
(_Flacenolders OCIBindObject()
1 OCIBindArrayOfStruct()

OCIBindDynamic()

[Execute OCIStmiExecuta()
| Statement
° OCIF G
Describe IFaramzet()
| Select-list Items” OCIAttrGet()
* .
[Define OCIDefineByPos()

e OCIDefineObject()
| Output Vanables OCIDefineArrayOfStruct()

v OCIDefineDynamic(}
Eateh and | OCIStmiFetchi)
| Process Data”
I * These steps performead
if necessany

Prepare the statement. Define an application request using OCIStmtPrepare? ().
OCIStmtPrepare? () is an enhanced version of 0OCIStmtPrepare () that was
introduced to support statement caching. Beginning with Oracle Database 12¢
Release 2 (12.2), oCcIStmtPrepare () is deprecated.

Bind placeholders, if necessary. For DML statements and queries with input
variables, perform one or more of the following bind calls to bind the address of
each input variable (or PL/SQL output variable) or array to each placeholder in the
statement.

°* OCIBindByPos2 () Or OCIBindByPos ()

* OCIBindByName?2 () Or OCIBindByName ()
* OCIBindObject()

. OCIBindDynamic ()

. OCIBindArrayOfStruct ()

Execute the statement by calling 0CIstmtExecute (). For DDL statements, no
further steps are necessary.

Describe the select-list items, if necessary, usingoCIParamGet () and

OCIAttrGet (). This is optional step is not required if the number of select-list items
and the attributes of each item (such as its length and data type) are known at
compile time.

Define output variables, if necessary. For queries, perform one or more define
calls to 0CIDefineByPos2 () Or 0OCIDefineByPos (), , OCIDefineObject (),
OCIDefineDynamic (), Of OCIDefineArrayOfStruct () to define an output variable
for each select-list item in the SQL statement. Note that you do not use a define

5-2

ORACLE

Chapter 5
Overview of SQL Statement Processing

call to define the output variables in an anonymous PL/SQL block. You did this when you
bound the data.

6. Fetch the results of the query, if necessary, by calling 0OCIStmtFetch2 ().

After these steps have been completed, the application can free allocated handles and then
detach from the server, or it may process additional statements.

" Note:

OCI programs no longer require an explicit parse step. If a statement must be
parsed, that step occurs upon execution, meaning that release 8.0 or later
applications must issue an execute command for both DML and DDL statements.

The following sections describe each step in detail.

" Note:

Some variation in the order of steps is possible. For example, it is possible to do the
define step before the execute step if the data types and lengths of returned values
are known at compile time.

Additional steps beyond those listed earlier may be required if your application must do any
of the following:

e Initiate and manage multiple transactions
e Manage multiple threads of execution

» Perform piecewise inserts, updates, or fetches

5-3

Chapter 5
About Preparing Statements

¢ See Also:

e Statement Caching in OCI

e OCI Programming Basics

* OCIStmtPrepare2() or OCIStmtPrepare()
e OCIBindByPos2() or OCIBindByPos()

e OCIBindByName2() or OCIBindByName()
* OCIBindObject()

e OCIBindDynamic()

* OCIBindArrayOfStruct()

* OCIStmtExecute()

e OCIParamGet()

* OCIAttrGet()

* OCIDefineByPos2() or OCIDefineByPos()
e OCIDefineObject()

* OCIDefineDynamic()

e OCIDefineArrayOfStruct()

e OCIStmtFetch2()

5.2 About Preparing Statements

ORACLE

SQL and PL/SQL statements are prepared for execution by using the statement
prepare call and any necessary bind calls.

In this phase, the application specifies a SQL or PL/SQL statement and binds
associated placeholders in the statement to data for execution. The client-side library
allocates storage to maintain the statement prepared for execution.

An application requests a SQL or PL/SQL statement to be prepared for execution
using the oCcIstmtPrepare? () call and passes to this call a previously allocated
statement handle. This is a completely local call, requiring no round-trip to the server.
No association is made between the statement and a particular server at this point.

Following the request call, an application can call 0OCIAttrGet () on the statement
handle, passing OCI_ATTR STMT TYPE to the attrtype parameter, to determine what
type of SQL statement was prepared. The possible attribute values and corresponding
statement types are listed in Table 5-1.

Table 5-1 OCI_ATTR_STMT_TYPE Values and Statement Types
|

Attribute Value Statement Type
OCI STMT SELECT SELECT statement
OCI STMT UPDATE UPDATE statement

5-4

Chapter 5
About Preparing Statements

Table 5-1 (Cont.) OCI_ATTR_STMT_TYPE Values and Statement Types
|

Attribute Value Statement Type
OCI_STMT DELETE DELETE statement
OCI STMT INSERT INSERT statement
OCI_STMT CREATE CREATE statement
OCI_STMT DROP DROP statement

OCI _STMT ALTER ALTER statement
OCI STMT BEGIN BEGIN... (PL/SQL)
OCI STMT DECLARE DECLARE... (PL/SQL)
OCI STMT CALL CALL... (PL/SQL)
OCI STMT MERGE MERGE... (PL/SQL)

This section includes the following topic: About Using Prepared Statements on Multiple
Servers

¢ See Also:

e OCIStmtPrepare2()
« OCIAttrGet()
e About Using PL/SQL in an OCI Program

5.2.1 About Using Prepared Statements on Multiple Servers

A prepared application request can be executed on multiple servers at run time by
reassociating the statement handle with the respective service context handles for the
servers.

All information about the current service context and statement handle association is lost
when a new association is made.

For example, consider an application such as a network manager, which manages multiple
servers. In many cases, it is likely that the same SELECT statement must be executed against
multiple servers to retrieve information for display. OCI allows the network manager
application to prepare a SELECT statement once and execute it against multiple servers. It
must fetch all of the required rows from each server before reassociating the prepared
statement with the next server.

" Note:

If a prepared statement must be reexecuted frequently on the same server, it is
more efficient to prepare a new statement for another service context.

ORACLE 5-5

Chapter 5
About Binding Placeholders in OCI

5.3 About Binding Placeholders in OCI

ORACLE

Most DML statements, and some queries (such as those with a WHERE clause), require
a program to pass data to Oracle Database as part of a SQL or PL/SQL statement.

This data can be constant or literal, known when your program is compiled. For
example, the following SQL statement, which adds an employee to a database,
contains several literals, such as 'BESTRY" and 2365:

INSERT INTO emp VALUES
(2365, 'BESTRY', 'PROGRAMMER', 2000, 20)

Coding a statement like this into an application would severely limit its usefulness. You
must change the statement and recompile the program each time you add a new
employee to the database. To make the program more flexible, you can write the
program so that a user can supply input data at run time.

When you prepare a SQL statement or PL/SQL block that contains input data to be
supplied at run time, placeholders in the SQL statement or PL/SQL block mark where
data must be supplied. For example, the following SQL statement contains five
placeholders, indicated by the leading colons (:ename), that show where input data
must be supplied by the program.

INSERT INTO emp VALUES
(:empno, :ename, :job, :sal, :deptno)

You can use placeholders for input variables in any DELETE, INSERT, SELECT, Or UPDATE
statement, or in a PL/SQL block, in any position in the statement where you can use
an expression or a literal value. In PL/SQL, placeholders can also be used for output
variables.

Placeholders cannot be used to represent other Oracle objects such as tables. For
example, the following is not a valid use of the emp placeholder:

INSERT INTO :emp VALUES
(12345, 'OERTEL', 'WRITER', 50000, 30)

For each placeholder in a SQL statement or PL/SQL block, you must call an OCI
routine that binds the address of a variable in your program to that placeholder. When
the statement executes, the database gets the data that your program placed in the
input variables or bind variables and passes it to the server with the SQL statement.

Binding is used for both input and output variables in nonquery operations. In
Example 5-1, the variables empno_out, ename out, job_out, sal out, and deptno out
should be bound. These are outbinds (as opposed to regular inbinds).

Example 5-1 Binding Both Input and Output Variables in Nonquery Operations

INSERT INTO emp VALUES
(:empno, :ename, :job, :sal, :deptno)
RETURNING
(empno, ename, job, sal, deptno)
INTO
(:empno_out, :ename out, :job out, :sal out, :deptno out)

This section includes the following topic: Rules for Placeholders

5-6

Chapter 5
About Executing Statements

¢ See Also:

Binding and Defining in OCI for detailed information about implementing bind
operations

5.3.1 Rules for Placeholders

Lists and describes the rules for forming placeholders.
The rules for forming placeholders are as follows:

e The first character is a colon (":").

e The colon is followed by a combination of underscore (" "), AtoZ,atoz,or0to9.
However, the first character following the colon cannot be an underscore.

e The letters must be only from the English alphabet, and only the first 30 characters after
the colon are significant. The name is case-insensitive.

e The placeholder can consist of only digits after the colon. If it is only digits, the
placeholder must be less than 65536. If the name starts with a digit, then only digits are
allowed.

e The hyphen ("-") is not allowed.

5.4 About Executing Statements

An OCI application executes prepared statements individually using 0OCIStmtExecute ().

When an OCI application executes a query, it receives from the Oracle database data that
matches the query specifications. Within the database, the data is stored in Oracle-defined
formats. When the results are returned, the OCI application can request that data be
converted to a particular host language format, and stored in a particular output variable or
buffer.

For each item in the select list of a query, the OCI application must define an output variable
to receive the results of the query. The define step indicates the address of the buffer and the
type of the data to be retrieved.

Note:

If output variables are defined for a SELECT statement before a call to
OCIstmtExecute (), the number of rows specified by the iters parameter are
fetched directly into the defined output buffers and additional rows equivalent to the
prefetch count are prefetched. If there are no additional rows, then the fetch is
complete without calling 0CIStmtFetch? ().

For nonqueries, the number of times the statement is executed during array operations
equals iters - rowoff, where rowoff is the offset in the bound array, and is also a
parameter of the 0CIStmtExecute () call.

ORACLE .

Chapter 5
About Executing Statements

For example, if an array of 10 items is bound to a placeholder for an INSERT statement,
and iters is set to 10, all 10 items are inserted in a single execute call when rowoff is
zero. If rowoff is set to 2, only 8 items are inserted.

This section includes the following topics:
* Execution Snapshots

* Execution Modes of OCIStmtExecute()

See Also:

e OCIStmtExecute()
e OCIStmtFetch2()
e About Defining Output Variables in OCI

5.4.1 Execution Snapshots

The ocIstmtExecute () call provides the ability to ensure that multiple service contexts
operate on the same consistent snapshot of the database's committed data.

This is achieved by taking the contents of the snap out parameter of one
OCIstmtExecute () call and passing that value as the snap in parameter of the next
OCIStmtExecute () call.

¢ Note:

Uncommitted data in one service context is not visible to another context,
even when both calls are using the same snapshot.

The data type of both the snap _out and snap_in parameter is 0OCISnapshot.
OClSnapshot is an OCI snapshot descriptor that is allocated with the
OCIDescriptorAlloc () function.

It is not necessary to specify a snapshot when calling 0OCIStmtExecute (). The
following sample code shows a basic execution in which the snapshot parameters are
passed as NULL.

checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4d) 0,
(OCISnapshot *)NULL, (OCISnapshot *) NULL, OCI DEFAULT));

" Note:

The checkerr () function, which is user-developed, evaluates the return code
from an OCI application.

ORACLE 5-8

Chapter 5
About Executing Statements

¢ See Also:

* OCIStmtExecute()
e OClIDescriptorAlloc()
e OCI Descriptors

5.4.2 Execution Modes of OCIStmtExecute()

You can specify a number of modes for the 0CIStmtExecute () call.

This section describes the OCIStmtExecute() call. See ocIStmtExecute () for other values of
the parameter mode.

This section includes the following topics:
e Using Batch Error Mode

* Example of Batch Error Mode

" See Also:
OCIStmtExecute()

5.4.2.1 Using Batch Error Mode

ORACLE

OCI provides the ability to perform array DML operations.

For example, an application can process an array of INSERT, UPDATE, Or DELETE Statements
with a single statement execution. If one of the operations fails due to an error from the
server, such as a unique constraint violation, the array operation terminates, and OCI returns
an error. Any rows remaining in the array are ignored. The application must then reexecute
the remainder of the array, and go through the whole process again if it encounters more
errors, which causes additional round-trips.

To facilitate processing of array DML operations, OCI provides the batch error mode (also
called the enhanced DML array feature). This mode, which is specified in the
OCIStmtExecute () call, simplifies DML array processing if there are one or more errors. In
this mode, OCI attempts to insert, update, or delete all rows, and collects information about
any errors that occurred. The application can then retrieve error information and reexecute
any DML operations that failed during the first call. In this way, all DML operations in the array
are attempted in the first call, and any failed operations can be reissued in a second call.

" Note:

This feature is only available to applications linked with release 8.1 or later OCI
libraries running against a release 8.1 or later server. Applications must also be
recoded to account for the new program logic described in this section.

5-9

ORACLE

Chapter 5
About Executing Statements

This mode is used as follows:

1.

The user specifies 0CI_BATCH ERRORS as the mode parameter of the
OCIStmtExecute () call.

After performing an array DML operation with 0CIStmtExecute (), the application
can retrieve the number of errors encountered during the operation by calling
OCIAttrGet () on the statement handle to retrieve the OCI_ATTR NUM DML ERRORS
attribute, as shown in the following code example.

Calling OCIAttrGet() to Retrieve the Number of Errors Encountered During an
Array DML Operation

ub4 num_errs;
OCIAttrGet (stmtp, OCI HTYPE STMT, &num errs, 0, OCI ATTR NUM DML ERRORS,
errhp);

The application extracts each error using 0OCIParamGet (), along with its row
information, from the error handle that was passed to the oCIStmtExecute () call.
To retrieve the information, the application must allocate an additional new error
handle for the oc1ParamGet () call, populating the new error handle with batched
error information. The application obtains the syntax of each error with
OCIErrorGet (), and the row offset into the DML array at which the error occurred,
by calling oCIAttrGet () on the new error handle.

For example, after the num_errs amount has been retrieved, the application can
issue the following calls shown in the following code example.

Retrieving Information About Each Error Following an Array DML Operation

OCIError errhndl, errhp2;
for (i=0; i<num errs; i++)
{
OCIParamGet (errhp, OCI HTYPE ERROR, errhp2, (void **)&errhndl, 1i);
OCIAttrGet (errhndl, OCI HTYPE ERROR, &row offset, O,
OCI_ATTR DML ROW OFFSET, errhp2);
OCIErrorGet (..., errhndl, ...);

Following this operation, the application can correct the bind information for the
appropriate entry in the array using the diagnostic information retrieved from the
batched error. Once the appropriate bind buffers are corrected or updated, the
application can reexecute the associated DML statements.

Because it cannot be determined at compile time which rows in the first execution
may cause errors, the binds for the subsequent DML should be done dynamically
by passing in the appropriate buffers at run time. The bind buffers used in the
array binds done on the first DML operation can be reused.

See Also:

« OCIStmtExecute()
« OCIAttrGet()

e OCIParamGet()

e OCIErrorGet()

5-10

Chapter 5
About Executing Statements

5.4.2.2 Example of Batch Error Mode

Shows how the batch error execution mode might be used.

Example 5-2 shows an example of how the batch error execution mode might be used. In this
example, assume that you have an application that inserts five rows (with two columns, of
types NUMBER and CHAR) into a table. Furthermore, assume that only two rows (1 and 3) are
successfully inserted in the initial DML operation. The user then proceeds to correct the data
(wrong data was being inserted the first time) and to issue an update with the corrected data.
The user uses statement handles stmtpl and stmtp2 to issue the INSERT and UPDATE
statements, respectively.

In Example 5-2, 0CIBindDynamic () is used with a callback because the user does not know
at compile time what rows may return with errors. With a callback, you can simply pass the
erroneous row numbers, stored in row _off, through the callback context and send only those
rows that must be updated or corrected. The same bind buffers can be shared between the
INSERT and the UPDATE statement executions.

Example 5-2 Using Batch Error Execution Mode

OCIBind *bindpl[2], *bindp2[2];

ub4 num errs, row off [MAXROWS], number [MAXROWS] = {1,2,3,4,5};
char grade[MAXROWS] = {'A','B','C','D','E'};

OCIError *errhp2;

OCIError *errhndl [MAXROWS];

/* Array bind all the positions */
OCIBindByPos (stmtpl, &bindpl[0],errhp,1, (void *)&number[0],
sizeof (number[0]),SQLT INT, (void *)0, (ub2 *)0, (ub2 *)O0,
0, (ub4 *) 0,0CI_DEFAULT) ;
OCIBindByPos (stmtpl,&bindpl[1l],errhp,2, (void *)&grade(0],
sizeof (grade[0]),SQLT CHR, (void *)0, (ub2 *)0, (ub2 *)0,0,
(ub4d *) 0,0CI_DEFAULT) ;
/* execute the array INSERT */
OCIStmtExecute (svchp,stmtpl,errhp,5,0,0,0,0CI BATCH ERRORS);
/* get the number of errors. A different error handler errhp2 is used so that
* the state of errhp is not changed */
OCIAttrGet (stmtpl, OCI_HTYPE STMT, é&num errs, O,
OCI_ATTR NUM DML ERRORS, errhp?);
if (num errs) {
/* The user can do one of two things: 1) Allocate as many */
/* error handles as number of errors and free all handles */
/* at a later time; or 2) Allocate one err handle and reuse */
/* the same handle for all the errors */
for (i = 0; 1 < num errs; i++) |
OCIHandleAlloc((void *)envhp, (void **)é&errhndl[i],
(ub4) OCI HTYPE ERROR, 0, (void *) 0);
OCIParamGet (errhp, OCI HTYPE ERROR, errhp2, &errhndl[i], 1i);
OCIAttrGet (errhndl[i], OCI HTYPE ERROR, &row off[i], O,
OCI_ATTR DML ROW OFFSET, errhp?);
/* get server diagnostics */
OCIErrorGet (..., errhndl([i], ...);
}
}
/* make corrections to bind data */
OCIBindByPos (stmtp2,&bindp2[0],errhp,1, (void *)0,sizeof (grade[0]),SQLT INT,
(void *)0, (ub2 *)0, (ub2 *)0,0, (ub4 *)0,0CI_DATA AT EXEC);
OCIBindByPos (stmtp2,&bindp2[1],errhp,2, (void *)0,sizeof (number[0]), SQLT DAT,
(void *)0, (ub2 *)0, (ub2 *)0,0, (ub4 *)0,0CI_DATA AT EXEC);

ORACLE 5-11

Chapter 5
About Describing Select-List ltems

/* register the callback for each bind handle, row off and position

* information can be passed to the callback function by means of context
* pointers.

*/

OCIBindDynamic (bindp2[0],errhp,ctxpl,my callback,0,0);

OCIBindDynamic (bindp2[1],errhp,ctxp2,my callback,0,0);

/* execute the UPDATE statement */

OCIStmtExecute (svchp,stmtp2,errhp,num errs,0,0,0,0CI_BATCH ERRORS);

¢ See Also:
OCIBindDynamic()

5.5 About Describing Select-List ltems

ORACLE

If your OCI application is processing a query, you may need to obtain more information
about the items in the select list.

This is particularly true for dynamic queries whose contents are not known until run
time. In this case, the program may need to obtain information about the data types
and column lengths of the select-list items. This information is necessary to define
output variables that may receive query results.

For example, consider a query where the program has no prior information about the
columns in the employees table:

SELECT * FROM employees

There are two types of describes available: implicit and explicit.

An implicit describe does not require any special calls to retrieve describe information
from the server, although special calls are necessary to access the information. An
implicit describe allows an application to obtain select-list information as an attribute of
the statement handle after a statement has been executed without making a specific
describe call. It is called implicit because no describe call is required. The describe
information comes free with the statement execution.

An explicit describe requires the application to call a particular function to bring the
describe information from the server. An application may describe a select list (query)
either implicitly or explicitly. Other schema elements must be described explicitly.

You can describe a query explicitly before execution by specifying 0CI_DESCRIBE ONLY
as the mode of ocIStmtExecute (), which does not execute the statement, but returns
the select-list description. For performance reasons, Oracle recommends that
applications use the implicit describe, which comes free with a standard statement
execution.

An explicit describe with the 0CIDescribeAny () call obtains information about schema
objects rather than select lists.

In all cases, the specific information about columns and data types is retrieved by
reading handle attributes.

This section includes the following topics:

5-12

Chapter 5
About Describing Select-List ltems

* Implicit Describe

» Explicit Describe of Queries

¢ See Also:

e Describing Schema Metadata for information about using OCIDescribeAny() to
obtain metadata pertaining to schema objects

« OCIStmtExecute()
e OClIDescribeAny()

5.5.1 Implicit Describe

ORACLE

After a SQL statement is executed, information about the select list is available as an
attribute of the statement handle. No explicit describe call is needed.

To retrieve information about multiple select-list items, an application can call 0OCIParamGet ()
with the pos parameter set to 1 the first time, and then iterate the value of pos and repeat the
OCIParamGet () call until OCI_ERROR with ORA-24334 is returned. An application could also
specify any position n to get a column at random.

Once a parameter descriptor has been allocated for a position in the select list, the
application can retrieve specific information by calling 0CIAttrGet () on the parameter
descriptor. Information available from the parameter descriptor includes the data type and
maximum size of the parameter.

The sample code in Example 5-3Example 5-3 shows a loop that retrieves the column names
and data types corresponding to a query following query execution. The query was
associated with the statement handle by a prior call to 0CIStmtPrepare2 ().

The checkerr () function in Example 5-3 is used for error handling. The complete listing can
be found in the first sample application in OCI Demonstration Programs.

The calls to OCIAttrGet () and oCIParamGet () are local calls that do not require a network
round-trip, because all of the select-list information is cached on the client side after the
statement is executed.

Example 5-3 Implicit Describe - Select List Is Available as an Attribute of the
Statement Handle

OCIParam *mypard = (OCIParam *) 0;

ub?2 dtype;

text *col name;

ub4 counter, col name len, char semantics;
ub?2 col width;

sb4 parm_status;

text *sglstmt = (text *)"SELECT * FROM employees WHERE employee id = 100";
checkerr (errhp, OCIStmtPrepare2(svchp, &stmthp, errhp, (OraText *)sqglstmt,

(ub4)strlen((char *)sqglstmt), NULL, O,
(ub4) OCI NTV SYNTAX, (ub4) OCI DEFAULT));

5-13

ORACLE

Chapter 5
About Describing Select-List ltems

checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, 0, 0, (OCISnapshot *)O,
(OCISnapshot *)0, OCI DEFAULT));

/* Request a parameter descriptor for position 1 in the select list */
counter = 1;
parm status = OCIParamGet ((void *)stmthp, OCI HTYPE STMT, errhp,

(void **)é&mypard, (ub4) counter);

/* Loop only if a descriptor was successfully retrieved for
current position, starting at 1 */

while (parm status == OCI_SUCCESS) ({
/* Retrieve the data type attribute */
checkerr (errhp, OCIAttrGet ((void*) mypard, (ub4) OCI DTYPE PARAM,
(void*) s&dtype, (ub4 *) 0, (ub4) OCI ATTR DATA TYPE,
(OCIError *) errhp));

/* Retrieve the column name attribute */

col name len = 0;

checkerr (errhp, OCIAttrGet ((void*) mypard, (ub4) OCI DTYPE PARAM,
(void**) &col name, (ub4 *) &col name len, (ub4) OCI ATTR NAME,
(

OCIError *) errhp));

/* Retrieve the length semantics for the column */
char semantics = 0;
checkerr (errhp, OCIAttrGet ((void*) mypard, (ub4) OCI DTYPE PARAM,
(void*) &char semantics, (ub4 *) 0, (ub4) OCI_ATTR CHAR USED,
(OCIError *) errhp));
col width = 0;
if (char semantics)
/* Retrieve the column width in characters */
checkerr (errhp, OCIAttrGet((void*) mypard, (ub4) OCI DTYPE PARAM,
(void*) &col width, (ub4 *) 0, (ub4) OCI _ATTR CHAR SIZE,
(OCIError *) errhp));
else
/* Retrieve the column width in bytes */
checkerr (errhp, OCIAttrGet((void*) mypard, (ub4) OCI DTYPE PARAM,
(void*) &col width, (ub4 *) 0, (ub4) OCI ATTR DATA SIZE,
(OCIError *) errhp));

/* increment counter and get next descriptor, if there is one */
counter++;
parm status = OCIParamGet ((void *)stmthp, OCI HTYPE STMT, errhp,
(void **)é&mypard, (ub4) counter);
} /* while */

¢ See Also:

e OCIParamGet()

« OCIAttrGet()

e OCIStmtPrepare2()

e OCIArrayDescriptorAlloc()

e Parameter Attributes for a list of the specific attributes of the parameter
descriptor that may be read by OCIArrayDescriptorAlloc()

5-14

Chapter 5
About Describing Select-List ltems

5.5.2 Explicit Describe of Queries

You can describe a query explicitly before execution by specifying 0CI_DESCRIBE ONLY as the
mode of 0CIStmtExecute ()

This does not execute the statement, but returns the select-list description.

< Note:

To maximize performance, Oracle recommends that applications execute the
statement in default mode and use the implicit describe that accompanies the
execution.

The code in Example 5-4 demonstrates the use of explicit describe in a select list to return
information about columns.

Example 5-4 Explicit Describe - Returning the Select-List Description for Each
Column

int 1 = 0;

ub4 numcols = 0;

ub2 type = 0;

OCIParam *colhd = (OCIParam *) O0; /* column handle */

text *sglstmt = (text *)"SELECT * FROM employees WHERE employee id = 100";

checkerr (errhp, OCIStmtPrepare2(svchp, &stmthp, errhp, (OraText *)sqglstmt,
(ub4) strlen((char *)sqglstmt), NULL, O,
(ub4) OCI NTV SYNTAX, (ub4) OCI DEFAULT));

/* initialize svchp, stmthp, errhp, rowoff, iters, snap in, snap out */

/* set the execution mode to OCI_DESCRIBE ONLY. Note that setting the mode to
OCI DEFAULT does an implicit describe of the statement in addition to executing
the statement */

checkerr (errhp, OCIStmtExecute (svchp, stmthp, errhp, 0, O,
(OCISnapshot *) 0, (OCISnapshot *) 0, OCI DESCRIBE ONLY));

/* Get the number of columns in the query */
checkerr (errhp, OCIAttrGet ((void *)stmthp, OCI_HTYPE STMT, (void *)é&numcols,
(ub4 *)0, OCI_ATTR PARAM COUNT, errhp));

/* go through the column list and retrieve the data type of each column.
Start from pos = 1 */
for (i = 1; 1 <= numcols; 1i++)
{
/* get parameter for column i */
checkerr (errhp, OCIParamGet ((void *)stmthp, OCI_HTYPE STMT, errhp, (void **)&colhd,
1))

/* get data-type of column i */

type = 0;

checkerr (errhp, OCIAttrGet((void *)colhd, OCI DTYPE PARAM,
(void *)&type, (ub4 *)0, OCI ATTR DATA TYPE, errhp));

ORACLE 5-15

Chapter 5
About Defining Output Variables in OCI

¢ See Also:
OCIStmtExecute()

5.6 About Defining Output Variables in OCI

Query statements return data from the database to your application.

When processing a query, you must define an output variable or an array of output
variables for each item in the select list from which to retrieve data. The define step
creates an association that determines where returned results are stored, and in what
format.

For example, to process the following statement you would normally define two output
variables: one to receive the value returned from the name column, and one to receive

the value returned from the ssn column:

SELECT name, ssn FROM employees
WHERE empno = :empnum

¢ See Also:
Binding and Defining in OCI

5.7 About Fetching Results

ORACLE

If an OCI application has processed a query, it is typically necessary to fetch the
results with 0OCIStmtFetch2 () after the statement has completed execution.

The ocIstmtFetch2 () function supports scrollable cursors.

Fetched data is retrieved into output variables that have been specified by define
operations.

¢ Note:

If output variables are defined for a SELECT statement before a call to
OoCIStmtExecute (), the number of rows specified by the iters parameter is
fetched directly into the defined output buffers

This section includes the following topics:
e About Fetching LOB Data
e About Setting Prefetch Count

5-16

Chapter 5
About Fetching Results

¢ See Also:

e About Using Scrollable Cursors in OCI
e OCIStmtFetch2()
* OCIStmtExecute()

e These statements mentioned previously fetch data associated with the sample
code in Steps Used in OCI Defining. See that example for more information.

e Overview of Defining in OCI for information about defining output variables

5.7.1 About Fetching LOB Data

If LOB columns or attributes are part of a select list, they can be returned as LOB locators or
actual LOB values, depending on how you define them.

If LOB locators are fetched, then the application can perform further operations on these
locators through the 0CILobxxX functions.

¢ See Also:

e LOB and BFILE Operations for more information about working with LOB
locators in OCI

e About Defining LOB Output Variables for usage and examples of selecting LOB
data without the use of locators

5.7.2 About Setting Prefetch Count

ORACLE

To minimize server round-trips and optimize performance, OCI can prefetch result set rows
when executing a query.

You can customize this prefetching by setting either the 0CI_ATTR PREFETCH ROWS Of
OCI ATTR PREFETCH MEMORY attribute of the statement handle using the 0OCIAttrSet ()
function. These attributes are used as follows:

* OCI ATTR PREFETCH ROWS sets the number of rows to be prefetched. If it is not set, then
the default value is 1. If the iters parameter of 0OCIStmtExecute () is O and prefetching is
enabled, the rows are buffered during calls to 0cIStmtFetch2 (). The prefetch value can
be altered after execution and between fetches.

* OCI ATTR PREFETCH MEMORY sets the memory allocated for rows to be prefetched. The
application then fetches as many rows as can fit into that much memaory.

When both of these attributes are set, OCI prefetches rows up to the

OCI_ATTR PREFETCH ROWS limit unless the OCI_ATTR PREFETCH MEMORY limit is reached, in
which case OCI returns as many rows as can fit in a buffer of size

OCI ATTR PREFETCH MEMORY.

5-17

Chapter 5
About Using Scrollable Cursors in OCI

By default, prefetching is turned on, and OCI fetches one extra row, except when
prefetching cannot be supported for a query (see the note that follows). To turn
prefetching off, set both the OCI ATTR PREFETCH ROWS and OCI ATTR PREFETCH MEMORY
attributes to zero.

If both OCI ATTR PREFETCH ROWS and OCI ATTR PREFETCH MEMORY attributes are
explicitly set, OCI uses the tighter of the two constraints to determine the number of
rows to prefetch.

To prefetch exclusively based on the memory constraint, set the

OCI_ATTR PREFETCH MEMORY attribute and be sure to disable the

OCI_ATTR PREFETCH ROWS attribute by setting it to zero (to override the default setting
of 1 row).

To prefetch exclusively based on the number of rows constraint, set the
OCI ATTR PREFETCH ROWS attribute and disable the OCI ATTR PREFETCH MEMORY
attribute by setting it to zero (if it was ever explicitly set to a non-zero value).

Prefetching is possible for REF CURSORS and nested cursor columns. By default,
prefetching is not turned on for REF CURSORS. To turn on prefetching for REF CURSORS,
set the OCI_ATTR PREFETCH ROWS or OCI_ATTR PREFETCH MEMORY attribute before
fetching rows from the REF CURSOR. When a REF CURSOR is passed multiple times
between an OCI application and PL/SQL and fetches on the REF CURSOR are done in
OCl and in PL/SQL, the rows prefetched by OCI (if enabled) cause the application to
behave as if out-of-order rows are being fetched in PL/SQL. In such situations, OCI
prefetch should not be enabled on REF CURSORS.

Note:

Prefetching is not in effect if LoNG, LOB, JSON or Opaque Type columns
(such as xMLType) are part of the query.

¢ See Also:

» Statement Handle Attributes
e OCIAttrSet()

e OCIStmtExecute()

e OCIStmtFetch2()

5.8 About Using Scrollable Cursors in OCI

ORACLE

A cursor is a current position in a result set.

Execution of a cursor puts the results of the query into a set of rows called the result
set that can be fetched either sequentially or nonsequentially. In the latter case, the
cursor is known as a scrollable cursor.

5-18

ORACLE

Chapter 5
About Using Scrollable Cursors in OCI

A scrollable cursor supports forward and backward access into the result set from a given
position, by using either absolute or relative row number offsets into the result set.

Rows are numbered starting at one. For a scrollable cursor, you can fetch previously fetched
rows, the nth row in the result set, or the nth row from the current position. Client-side
caching of either the partial or entire result set improves performance by limiting calls to the
server.

Oracle Database does not support DML operations on scrollable cursors. A cursor cannot be
made scrollable if the LONG data type is part of the select list.

Moreover, fetches from a scrollable statement handle are based on the snapshot at execution
time. OCI client prefetching works with OCI scrollable cursors. The size of the client prefetch
cache can be controlled by the existing OCI attributes OCI_ATTR PREFETCH ROWS and
OCI_ATTR PREFETCH MEMORY.

Note:

Do not use scrollable cursors unless you require their functionality, because they
use more server resources and can have greater response times than nonscrollable
cursors.

The ocIStmtExecute () call has an execution mode for scrollable cursors,

OCI STMT SCROLLABLE READONLY. The default for statement handles is nonscrollable, forward
sequential access only, where the mode is OCI_FETCH NEXT. You must set this execution
mode each time the statement handle is executed.

The statement handle attribute OCI_ATTR CURRENT POSITION can be retrieved only by using
OCIAttrGet (). This attribute cannot be set by the application; it indicates the current position
in the result set.

For nonscrollable cursors, OCI_ATTR ROW_COUNT is the total number of rows fetched into the
user buffers with the oCIStmtFetch2 () calls since this statement handle was executed.
Because nonscrollable cursors are forward sequential only, 0CI_ATTR ROW_COUNT also
represents the highest row number detected by the application.

Beginning with Oracle Database Release 12.1, using the attribute OCI_ATTR UB8 ROW COUNT
is preferred to using the attribute 0OCI_ATTR ROW_COUNT if row count values can exceed the
value of UB4MAXVAL for an OCI application.

For scrollable cursors, 0CI_ATTR ROW_COUNT represents the maximum (absolute) row number
fetched into the user buffers. Because the application can arbitrarily position the fetches, this
does not have to be the total number of rows fetched into the user's buffers since the
(scrollable) statement was executed.

The attribute OCI_ATTR ROWS_FETCHED on the statement handle represents the number of
rows that were successfully fetched into the user's buffers in the last fetch call or execute. It
works for both scrollable and nonscrollable cursors.

Use the ocIStmtFetch2 () call, instead of the ocIStmtFetch () call, which is retained for
backward compatibility. You are encouraged to use oCcIStmtFetch2 () for all new applications,
even those not using scrollable cursors. This call also works for nonscrollable cursors, but
can raise an error if any other orientation besides 0CI_DEFAULT or OCI_FETCH NEXT is passed.

5-19

Chapter 5
About Using Scrollable Cursors in OCI

Scrollable cursors are supported for remote mapped queries. Transparent application
failover (TAF) is supported for scrollable cursors.

Note:

If you call ocIStmtFetch2 () with the nrows parameter set to 0, the cursor is
canceled.

This section includes the following topics:
e About Increasing Scrollable Cursor Performance

* Example of Access on a Scrollable Cursor

¢ See Also:

e OCIStmtExecute()

e OCIAttrGet()

e OCIStmtFetch2()

e About Setting Prefetch Count

5.8.1 About Increasing Scrollable Cursor Performance

Response time is improved if you use OCI client-side prefetch buffers.

After calling ocIstmtExecute () for a scrollable cursor, call 0CIStmtFetch2 () using
OCI_FETCH LAST to obtain the size of the result set. Then set 0CI ATTR PREFETCH ROWS
to about 20% of that size, and set OCI_PREFETCH MEMORY if the result set uses a large
amount of memory.

¢ See Also:

e OCIStmtExecute()
e OCIStmtFetch2()

5.8.2 Example of Access on a Scrollable Cursor

ORACLE

Shows the use of a scrollable cursor.

Assume that a result set is returned by the following SQL query, and that the table EMP
has 14 rows:

SELECT empno, ename FROM emp

One use of scrollable cursors is shown in Example 5-5.

5-20

ORACLE

Chapter 5
About Using Scrollable Cursors in OCI

Example 5-5 Access on a Scrollable Cursor

/* execute the scrollable cursor in the scrollable mode */
OCIStmtExecute (svchp, stmthp, errhp, (ub4)0, (ub4)0, (CONST OCISnapshot *)NULL,
(OCISnapshot *) NULL, OCI_ STMT SCROLLABLE READONLY);

/* Fetches rows with absolute row numbers 6, 7, 8. After this call,
OCI_ATTR CURRENT POSITION = 8, OCI ATTR ROW COUNT = § */
checkprint (errhp, OCIStmtFetch2 (stmthp, errhp, (ub4) 3,

OCI FETCH ABSOLUTE, (sb4) 6, OCI DEFAULT);

/* Fetches rows with absolute row numbers 6, 7, 8. After this call,
OCI_ATTR CURRENT POSITION = 8, OCI ATTR ROW COUNT = § */
checkprint (errhp, OCIStmtFetch2 (stmthp, errhp, (ub4) 3,

OCI FETCH RELATIVE, (sb4) -2, OCI DEFAULT) ;

/* Fetches rows with absolute row numbers 14. After this call,
OCI_ATTR CURRENT POSITION = 14, OCI ATTR ROW COUNT = 14 */
checkprint (errhp, OCIStmtFetch2 (stmthp, errhp, (ub4) 1,

OCI _FETCH LAST, (sb4) 0, OCI DEFAULT);

/* Fetches rows with absolute row number 1. After this call,
OCI_ATTR CURRENT POSITION = 1, OCI ATTR ROW COUNT = 14 */
checkprint (errhp, OCIStmtFetch2 (stmthp, errhp, (ub4) 1,
OCI _FETCH FIRST, (sb4) 0, OCI DEFAULT);

/* Fetches rows with absolute row numbers 2, 3, 4. After this call,
OCI_ATTR CURRENT POSITION = 4, OCI ATTR ROW COUNT = 14 */
checkprint (errhp, OCIStmtFetch2 (stmthp, errhp, (ub4) 3,

OCI_FETCH NEXT, (sb4) 0, OCI DEFAULT);

/* Fetches rows with absolute row numbers 3,4,5,6,7. After this call,
OCI_ATTR CURRENT POSITION = 7, OCI ATTR ROW COUNT = 14. It is assumed
the user's define memory is allocated. */
checkprint (errhp, OCIStmtFetch2(stmthp, errhp, (ub4) 5,

OCI _FETCH PRIOR, (sb4) 0, OCI DEFAULT);

}
checkprint (errhp, status)
{
ub4 rows fetched;
/* This checks for any OCI errors before printing the results of the fetch call
in the define buffers */
checkerr (errhp, status);
checkerr (errhp, OCIAttrGet ((CONST void *) stmthp, OCI_HTYPE STMT,
(void *) &rows fetched, (uint *) 0, OCI_ATTR ROWS FETCHED, errhp));

5-21

Binding and Defining in OCI

This chapter describes binding and defining in OCI.
This chapter contains these topics:

e Overview of Binding in OCI

e Advanced Bind Operations in OCI

e Overview of Defining in OCI

* Advanced Define Operations in OCI

e About Binding and Defining LOB Data

* About Binding and Defining JSON Data

* About Binding and Defining Arrays of Structures in OCI
* About Binding and Defining Multiple Buffers

* DML with a RETURNING Clause in OCI

e Character Conversion in OCI Binding and Defining

* PL/SQL REF CURSORs and Nested Tables in OCI

* Natively Describe and Bind All PL/SQL Types Including Package Types

* Runtime Data Allocation and Piecewise Operations in OCI

6.1 Overview of Binding in OCI

ORACLE

This chapter expands on the basic concepts of binding and defining, and provides more
detailed information about the different types of binds and defines you can use in OCI
applications.

Additionally, this chapter discusses the use of arrays of structures, and other issues involved
in binding, defining, and character conversions.

For example, given the INSERT statement:

INSERT INTO emp VALUES
(:empno, :ename, :job, :sal, :deptno)

Then given the following variable declarations:

text *ename, *Jjob;
sword empno, sal, deptno;

the bind step makes an association between the placeholder name and the address of the

program variables. The bind also indicates the data type and length of the program variables,
as illustrated in Figure 6-1.

6-1

Chapter 6
Overview of Binding in OCI

Figure 6-1 Using OCIBindByName() to Associate Placeholders with Program Variables

INSERT INTO emp

VALUES

OCIBindByName ()

Address
Data Type
Length

ORACLE

(empno, ename, job, sal, deptno)

rempno, :ename, :Jj sal, :deptno)
&empno ename &sal &deptno
integer string string integer integer
sizeof (empno) strlen (ename) +1 strlen (job)+1 sizeof (sal) sizeof (deptno)

If you change only the value of a bind variable, it is not necessary to rebind it to
execute the statement again. Because the bind is by reference, as long as the address
of the variable and handle remain valid, you can reexecute a statement that references
the variable without rebinding.

Note:

At the interface level, all bind variables are considered at least IN and must
be properly initialized. If the variable is a pure oUT bind variable, you can set
the variable to 0. You can also provide a NULL indicator and set that indicator
to -1 (NULL).

In the Oracle database, data types have been implemented for named data types,
REFS and LOBs, and they can be bound as placeholders in a SQL statement.

< Note:

For opaque data types (descriptors or locators) whose sizes are not known,
pass the address of the descriptor or locator pointer. Set the size parameter
to the size of the appropriate data structure, (sizeof (structure)).

This section includes the following topics:

* Named Binds and Positional Binds

e OCI Array Interface

e About Binding Placeholders in PL/SQL
e Steps Used in OCI Binding

e PL/SQL Block in an OCI Program

6-2

Chapter 6
Overview of Binding in OCI

¢ See Also:

Steps Used in OCI Binding for the code that implements this example

6.1.1 Named Binds and Positional Binds

ORACLE

In a named bind, each placeholder in the statement has a name associated with it, while in a
positional bind, the placeholders are referred to by their position in the statement rather than
by their names.

The SQL statement in Figure 6-1 is an example of a named bind. Each placeholder in the
statement has a name associated with it, such as '‘ename' or 'sal'. When this statement is
prepared and the placeholders are associated with values in the application, the association
is made by the name of the placeholder using the 0CIBindByName () Or OCIBindByName2 () call
with the name of the placeholder passed in the placeholder parameter.

A second type of bind is known as a positional bind. In a positional bind, the placeholders are
referred to by their position in the statement rather than by their names. For binding
purposes, an association is made between an input value and the position of the placeholder,
using the 0CIBindByPos () Or OCIBindByPos2 () call.

To use the previous example for a positional bind:

INSERT INTO emp VALUES
(:empno, :ename, :job, :sal, :deptno)

The five placeholders are then each bound by calling 0CIBindByPos () Or OCIBindByPos2 ()
and passing the position number of the placeholder in the position parameter. For example,
the :empno placeholder would be bound by calling 0CIBindByPos () Or OCIBindByPos2 () with
a position of 1, :ename with a position of 2, and so on.

In a duplicate bind, only a single bind call may be necessary. Consider the following SQL
statement, which queries the database for employees whose commission and salary are both
greater than a given amount:

SELECT empno FROM emp
WHERE sal > :some value
AND comm > :some value

An OCI application could complete the binds for this statement with a single call to
0CIBindByName () Or OCIBindByName2 () to bind the :some value placeholder by name. In this
case, all bind placeholders for :some value get assigned the same value as provided by the
OCIBindByName () Or OCIBindByName2 () call.

Now consider the case where a 6th placeholder is added that is a duplicate. For example,
add :ename as the 6th placeholder in the first previous example:

INSERT INTO emp VALUES
(:empno, :ename, :job, :sal, :deptno, :ename)

If you are using the 0CIBindByName () Or OCIBindByName?2 () call, just one bind call suffices to
bind both occurrences of the :ename placeholder. All occurrences of :enanme in the statement
will get bound to the same value. Moreover, if new bind placeholders get added as a result of
which bind positions for existing bind placeholders change, you do not need to change your

6-3

Chapter 6
Overview of Binding in OCI

existing bind calls in order to update bind positions. This is a distinct advantage in
using the 0CIBindByName () or OCIBindByName?2 () call if your program evolves to add
more bind variables in your statement text.

If you are using the 0CIBindByPos () or 0CIBindByPos2 () call, however, you have
increased flexibility in terms of binding duplicate bind-parameters separately, if you
need it. You have the option of binding any of the duplicate occurrences of a bind
parameter separately. Any unbound duplicate occurrences of a parameter inherit the
value from the first occurrence of the bind parameter with the same name. The first
occurrence must be explicitly bound.

In the context of SQL statements, the position n indicates the bind parameter at the
nth position. However, in the context of PL/SQL statements, 0CIBindByPos () or
0CIBindByPos2 () has a different interpretation for the position parameter: the position
n in the bind call indicates a binding for the nth unique parameter name in the
statement when scanned left to right.

Using the previous example again and the same SQL statement text, if you want to
bind the 6th position separately, the :ename placeholder would be bound by calling
0CIBindByPos () or 0CIBindByPos2 () with a position of 6. Otherwise, if left
unbound, :ename would inherit the value from the first occurrence of the bind
parameter with the same name, in this case, from :ename in position 2.

¢ See Also:

e OCIBindByName() or OCIBindByName2()
e OCIBindByPos() or OCIBindByPos2()

6.1.2 OCI Array Interface

ORACLE

You can pass data to the Oracle database in various ways.

You can execute a SQL statement repeatedly using the 0oCIStmtExecute () routine and
supply different input values on each iteration.

You can use the Oracle array interface and input many values with a single statement
and a single call to ocIstmtExecute (). In this case, you bind an array to an input
placeholder, and the entire array can be passed at the same time, under the control of
the iters parameter.

The array interface significantly reduces round-trips to the database when you are
updating or inserting a large volume of data. This reduction can lead to considerable
performance gains in a busy client/server environment. For example, consider an
application that inserts 10 rows into the database. Calling 0CIStmtExecute () 10 times
with single values results in 10 network round-trips to insert all the data. The same
result is possible with a single call to 0OCIStmtExecute () using an input array, which
involves only one network round-trip.

Beginning with Oracle Database 12c¢ Release 2 (12.2), support is added for Hybrid
Columnar Compression (HCC) with conventional DMLs, so HCC can be used during
array inserts with OCI. HCC conventional array inserts are only supported for HCC
tables on ASSM tablespaces. .

6-4

Chapter 6
Overview of Binding in OCI

< Note:

When you use the OCI array interface to perform inserts, row triggers in the
database are fired as each row is inserted.

The maximum number of rows allowed in an array DML statement is 4 billion -1
(3,999,999,999). However, if you use ub8 instead of ub4, this increases the
maximum number of rows allowed in an array DML statement to be more than 4
billion rows.

See Also:

e OCIStmtExecute()

e About Table Compression in Oracle Database Administrator’s Guide for
information about how to configure HCC

6.1.3 About Binding Placeholders in PL/SQL

ORACLE

You process a PL/SQL block by placing the block in a string variable, binding any variables,
and then executing the statement containing the block, just as you would with a single SQL
statement.

When you bind placeholders in a PL/SQL block to program variables, you must use
OCIBindByName () Or OCIBindByName2 () Or OCIBindByPos () Or OCIBindByPos2 () to perform
the basic binds for host variables that are either scalars or arrays.

The following short PL/SQL block contains two placeholders, which represent IN parameters
to a procedure that updates an employee's salary, when given the employee number and the
new salary amount:

char plsql statement[] = "BEGIN\
RAISE SALARY (:emp number, :new_sal);\
END; "

These placeholders can be bound to input variables in the same way as placeholders in a
SQL statement.

When processing PL/SQL statements, output variables are also associated with program
variables by using bind calls.

For example, consider the following PL/SQL block:

BEGIN
SELECT ename, sal,comm INTO :emp name, :salary, :commission
FROM emp
WHERE empno = :emp number;

END;

In this block, you would use 0CIBindByName () Or OCIBindByName?2 () to bind variables in place
of the :emp name, :salary, and :commission output placeholders, and in place of the input
placeholder :emp number.

6-5

Chapter 6
Overview of Binding in OCI

< Note:

All buffers, even pure oUT buffers, must be initialized by setting the buffer
length to zero in the bind call, or by setting the corresponding indicator to -1.

¢ See Also:

e OCIBindByName() or OCIBindByName2()
e OCIBindByPos() or OCIBindByPos2()

« Information for Named Data Type and REF Binds for more information
about binding PL/SQL placeholders

6.1.4 Steps Used in OCI Binding

ORACLE

Placeholders are bound in several steps.

For a simple scalar or array bind, it is only necessary to specify an association
between the placeholder and the data, by using 0CIBindByName () Or
OCIBindByName?2 () Or OCIBindByPos () Or OCIBindByPos2 ().

Once the bind is complete, the OCI library detects where to find the input data or
where to put the PL/SQL output data when the SQL statement is executed. Program
input data does not need to be in the program variable when it is bound to the
placeholder, but the data must be there when the statement is executed.

The following code example in Example 6-1 shows handle allocation and binding for
each placeholder in a SQL statement.

" Note:

The checkerr () function evaluates the return code from an OCI application.
The code for the function is in the Example for 0CIErrorGet ().

Example 6-1 Handle Allocation and Binding for Each Placeholder in a SQL
Statement

/* The SQL statement, associated with stmthp (the statement handle)

by calling OCIStmtPrepare2() */

text *insert = (text *) "INSERT INTO emp (empno, ename, job, sal, deptno)\
VALUES (:empno, :ename, :job, :sal, :deptno)";

/* Bind the placeholders in the SQL statement, one per bind handle. */

checkerr (errhp, OCIBindByName (stmthp, &bndlp, errhp, (text *) ":ENAME",
strlen(":ENAME"), (ubl *) ename, enamelen+l, SQLT STR, (void *) 0,
(ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI DEFAULT));

6-6

Chapter 6
Overview of Binding in OCI

checkerr (errhp, OCIBindByName (stmthp, &bnd2p, errhp, (text *) ":JOB",
strlen(":JOB"), (ubl *) job, joblen+l, SQLT STR, (void *)
&job_ind, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));
checkerr (errhp, OCIBindByName (stmthp, &bnd3p, errhp, (text *) ":SAL",
strlen(":SAL"), (ubl *) &sal, (sword) sizeof(sal), SQLT INT,
(void *) &sal ind, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) O,
OCI DEFAULT));
checkerr (errhp, OCIBindByName (stmthp, &bnd4p, errhp, (text *) ":DEPTNO",
strlen(":DEPTNO"), (ubl *) &deptno, (sword) sizeof (deptno), SQLT INT,
(void *) 0, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));
checkerr (errhp, OCIBindByName (stmthp, &bnd5p, errhp, (text *) ":EMPNO",
strlen(":EMPNO"), (ubl *) &empno, (sword) sizeof (empno), SQLT INT,
(void *) 0, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0,0CI_DEFAULT));

¢ See Also:

* OCIBindByName() or OCIBindByName2()
e OCIBindByPos() or OCIBindByPos2()
OCIErrorGet()

6.1.5 PL/SQL Block in an OCI Program

ORACLE

Perhaps the most common use for PL/SQL blocks in OCI is to call stored procedures or
stored functions.

Assume that there is a procedure named RAISE SALARY stored in the database, and you
embed a call to that procedure in an anonymous PL/SQL block, and then process the
PL/SQL block.

The following program fragment shows how to embed a stored procedure call in an OCI
application. The program passes an employee number and a salary increase as inputs to a
stored procedure called raise salary:

raise salary (employee num IN, sal increase IN, new salary OUT);

This procedure raises a given employee's salary by a given amount. The increased salary
that results is returned in the stored procedure's variable, new_salary, and the program
displays this value.

Note that the PL/SQL procedure argument, new salary, although a PL/SQL OUT variable,
must be bound, not defined.

Example 6-2 demonstrates how to perform a simple scalar bind where only a single bind call
is necessary. In some cases, additional bind calls are needed to define attributes for specific
bind data types or execution modes.

Example 6-2 Defining a PL/SQL Statement to Be Used in OCI

/* Define PL/SQL statement to be used in program. */
text *give raise = (text *) "BEGIN\
RAISE SALARY (:emp number, :sal increase, :new_salary);\

END;";
OCIBind *bndlp = NULL; /* the first bind handle */
OCIBind *bnd2p = NULL; /* the second bind handle */
OCIBind *bnd3p = NULL; /* the third bind handle */

6-7

Chapter 6
Overview of Binding in OCI

static void checkerr();
sb4 status;

main ()

{
sword empno, raise, new sal;
OCISession *usrhp = (OCISession *)NULL;

/* attach to Oracle database, and perform necessary initializations
and authorizations */

/* prepare the statement request, passing the PL/SQL text
block as the statement to be prepared */
checkerr (errhp, OCIStmtPrepare2(svchp, &stmthp, errhp, (text *) give raise,
(ub4)
strlen(give raise), NULL, 0, OCI NTV SYNTAX, OCI DEFAULT));

/* bind each of the placeholders to a program variable */
checkerr (errhp, OCIBindByName (stmthp, &bndlp, errhp, (text *) ":emp number",
-1, (ubl *) &empno,
(sword) sizeof (empno), SQLT INT, (void *) O,
(ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));

checkerr (errhp, OCIBindByName (stmthp, &bnd2p, errhp, (text *) ":sal increase",
-1, (ubl *) &raise,
(sword) sizeof (raise), SQLT INT, (void *) O,
(ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));

/* remember that PL/SQL OUT variables are bound, not defined */

checkerr (errhp, OCIBindByName (stmthp, &bnd3p, errhp, (text *) ":new salary",
-1, (ubl *) &new sal,
(sword) sizeof (new sal), SQLT INT, (void *) O,
(ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));

/* prompt the user for input values */
printf ("Enter the employee number: ");
scanf ("%d", &empno);

/* flush the input buffer */
myfflush();

printf ("Enter employee's raise: ");
scanf ("%d", &raise);

/* flush the input buffer */
myfflush();

/* execute PL/SQL block*/
checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
(OCISnapshot *) NULL, (OCISnapshot *) NULL, OCI DEFAULT));

/* display the new salary, following the raise */
printf ("The new salary is %d\n", new sal);

OCIStmtRelease (stmthp, errhp, NULL, 0, OCI DEFAULT);
}

ORACLE 6-8

¢ See Also:

Chapter 6
Advanced Bind Operations in OCI

Why a PL/SQL OUT variable must be bound and not defined is explained in About
Defining PL/SQL Output Variables and in Information for Named Data Type and
REF Defines, and PL/SQL OUT Binds.

6.2 Advanced Bind Operations in OCI

More advanced bhind operations include multistep binds, and binds of named data types and
REFs.

About Binding Placeholders in OCI discussed how a basic bind operation is performed to
create an association between a placeholder in a SQL statement and a program variable by
using OCIBindByName () Or OCIBindByName2 () Of OCIBindByPos () OfF OCIBindByPos2 (). This
section covers more advanced bind operations, including multistep binds, and binds of
named data types and REFs.

In some cases, additional bind calls are necessary to define specific attributes for certain bind
data types or certain execution modes.

The following sections describe these special cases, and the information about binding is
summarized in Table 6-1.

Table 6-1 Information Summary for Bind Types

Type of Bind

Bind Data Type

Notes

Scalar

Array of scalars

Named data type

Boolean

REF

LOB
BFILE

Array of structures or
static arrays

ORACLE

Any scalar data type

Any scalar data type

SQLT NTY

SQLT BOL

SQLT REF

SQLT BLOB
SQLT CLOB

Varies

Bind a single scalar using OCIBindByName () or
OCIBindByName2 () or OCIBindByPos () or OCIBindByPos2 ().

Bind an array of scalars using OCIBindByName () or

OCIBindByName?2 () or OCIBindByPos () or OCIBindByPos2 ().

Includes records and collections

Two bind calls are required:

. OCIBindByName () or OCIBindByName?2 () or
OCIBindByPos () or OCIBindByPos2 ()

° OCIBindObject ()

Bind a Boolean using OCIBindByName () or OCIBindByName?2 ()

or OCIBindByPos () or OCIBindByPos2 ().

Two bind calls are required:

. OCIBindByName () or OCIBindByName?2 () or
OCIBindByPos () or OCIBindByPos2 ()

° OCIBindObject ()

Allocate the LOB locator using OCIDescriptorAlloc (), and

then bind its address, OCILobLocator **, with

OCIBindByName () or OCIBindByName2 () or OCIBindByPos ()

or OCIBindByPos2 (), by using one of the LOB data types.

Two bind calls are required:

. OCIBindByName () or OCIBindByName?2 () or
OCIBindByPos () or OCIBindByPos2 ()

* OCIBindArrayOfStruct()

6-9

Chapter 6
Advanced Bind Operations in OCI

Table 6-1 (Cont.) Information Summary for Bind Types

___|]
Type of Bind Bind Data Type Notes

Piecewise insert Varies OCIBindByName () or OCIBindByName?2 () or OCIBindByPos ()
or OCIBindByPos2 () is required. The application may also need
to call OCIBindDynamic () to register piecewise callbacks.

REF CURSOR variables ~ SQLT RSET Allocate a statement handle, OCIStmt, and then bind its address,
OCIStmt **,usingthe SQLT RSET data type.

This section includes the following topics:

e About Binding LOBs

* About Binding in OCI_DATA_AT_EXEC Mode
* About Binding REF CURSOR Variables

¢ See Also:

« Named Data Type Binds for information about binding named data types
(objects)

e About Binding REFs

e OCIBindByName() or OCIBindByName2()
e OCIBindByPos() or OCIBindByPos2()

e OCIBindObject()

e OClIDescriptorAlloc()

e OCIBindArrayOfStruct()

e OCIBindDynamic()

6.2.1 About Binding LOBs

There are two ways of binding LOBs:

e Bind the LOB locator, rather than the actual LOB values. In this case the LOB
value is written or read by passing a LOB locator to the OCI LOB functions.

e Bind the LOB value directly, without using the LOB locator.
This section includes the following topics:

e Binding LOB Locators

e About Binding and Defining LOB Data

6.2.1.1 Binding LOB Locators

Either a single locator or an array of locators can be bound in a single bind call.

ORACLE 6-10

Chapter 6
Advanced Bind Operations in OCI

In each case, the application must pass the address of a LOB locator and not the locator
itself. For example, suppose that an application has prepared this SQL statement where
one lob is a bind variable corresponding to a LOB column:

INSERT INTO some table VALUES (:one_ lob)

Then your application makes the following declaration:

OCILobLocator * one lob;

Then the calls in Example 6-3 would be used to bind the placeholder and execute the
statement:

You can also insert an array using the same SQL INSERT statement. In this case, the
application would include the code shown in Example 6-4.

You must allocate descriptors with the 0CIDescriptoraAlloc () function before they can be
used. In an array of locators, you must initialize each array element using
OCIDescriptorAlloc (). Use OCI_DTYPE LOB as the type parameter when allocating BLOBS,
CLOBs, and NCLOBs. Use OCI_DTYPE FILE when allocating BFILES.

Example 6-3 Binding the Placeholder and Executing the Statement to Insert a Single
Locator

/* initialize single locator */
OCIDescriptorAlloc(..., &one lob, OCI DTYPE LOB,...);

/* pass the address of the locator */

OCIBindByName (..., (void *) &one lob,... SQLT CLOB, ...);
OCIStmtExecute (...,1,...) /* 1 is the iters parameter */

Example 6-4 Binding the Placeholder and Executing the Statement to Insert an Array
of Locators

OCILobLocator * lob array[10];
for (i=0; i<10, i++)
OCIDescriptorAlloc(...,&lob array[i], OCI DTYPE LOB,...);

/* initialize array of locators */

OCIBindByName (..., (void *) lob array,...);
OCIStmtExecute(...,10,...); /* 10 is the iters parameter */

This section includes the following topic: Restrictions on Binding LOB Locators

¢ See Also:
OCIDescriptorAlloc()

6.2.1.1.1 Restrictions on Binding LOB Locators

What are the restrictions on binding LOB locators.
Observe the following restrictions when you bind LOB locators:

e Piecewise and callback INSERT or UPDATE operations are not supported.

ORACLE 6-11

Chapter 6
Advanced Bind Operations in OCI

* When using a FILE locator as a bind variable for an INSERT or UPDATE Statement,
you must first initialize the locator with a directory object and file name, by using
OCILobFileSetName () before issuing the INSERT or UPDATE Statement.

¢ See Also:

e LOB and BFILE Operations for more information about the OCI LOB
functions

e OCILobFileSetName()

6.2.2 About Binding in OCI_DATA_AT_EXEC Mode

If the mode parameter in a call to 0CIBindByName () Oor OCIBindByName2 () Of
OCIBindByPos () Or OCIBindByPos2 () is setto OCI_DATA AT EXEC, an additional call to
0CIBindDynamic () is necessary if the application uses the callback method for
providing data at run time.

The call to ocIBindDynamic () sets up the callback routines, if necessary, for indicating
the data or piece provided. If the 0OCI_DATA AT EXEC mode is chosen, but the standard
OCI piecewise polling method is used instead of callbacks, the call to
OCIBindDynamic () iS not necessary.

When binding RETURN clause variables, an application must use OCI_DATA AT EXEC
mode, and it must provide callbacks.

¢ See Also:

* Runtime Data Allocation and Piecewise Operations in OCI for more
information about piecewise operations

e OCIBindByName() or OCIBindByName2()
e OCIBindByPos() or OCIBindByPos2()
e OCIBindDynamic()

6.2.3 About Binding REF CURSOR Variables

REF CURSORs are bound to a statement handle with a bind data type of SQLT RSET.

" See Also:
PL/SQL REF CURSORs and Nested Tables in OCI

ORACLE 6-12

Chapter 6
Overview of Defining in OCI

6.3 Overview of Defining in OCI

Query statements return data from the database to your application.

When processing a query, you must define an output variable or an array of output variables
for each item in the select list for retrieving data. The define step creates an association that
determines where returned results are stored, and in what format.

For example, if your program processes the following statement then you would normally
define two output variables: one to receive the value returned from the name column, and one
to receive the value returned from the ssn column:

SELECT name, ssn FROM employees
WHERE empno = :empnum

If you were only interested in retrieving values from the name column, you would not need to
define an output variable for ssn. If the SELECT statement being processed returns more than
a single row for a query, the output variables that you define can be arrays instead of scalar
values.

Depending on the application, the define step can occur before or after an execute operation.
If you know the data types of select-list items at compile time, the define can occur before the
statement is executed. If your application is processing dynamic SQL statements entered by
you at run time or statements that do not have a clearly defined select list, the application
must execute the statement to retrieve describe information. After the describe information is
retrieved, the type information for each select-list item is available for use in defining output
variables.

OCI processes the define call locally on the client side. In addition to indicating the location of
buffers where results should be stored, the define step determines what data conversions
must occur when data is returned to the application.

" Note:

Output buffers must be 2-byte aligned.

The dty parameter of the 0CIDefineByPos () or 0CIDefineByPos2 () call specifies the data
type of the output variable. OCI can perform a wide range of data conversions when data is
fetched into the output variable. For example, internal data in Oracle DATE format can be
automatically converted to a String data type on output.

This section includes the following topic: Steps Used in OCI Defining

See Also:

< Data Types for more information about data types and conversions
e About Describing Select-List ltems
e OCIDefineByPos() or OCIDefineByPos2()

ORACLE 6-13

Chapter 6
Overview of Defining in OCI

6.3.1 Steps Used in OCI Defining

A basic define is done with a position call, 0CIDefineByPos () Or OCIDefineByPos?2 ().

This step creates an association between a select-list item and an output variable.
Additional define calls may be necessary for certain data types or fetch modes. Once
the define step is complete, the OCI library determines where to put retrieved data.
You can make your define calls again to redefine the output variables without having to
reprepare or reexecute the SQL statement.

Example 6-5 shows a scalar output variable being defined following an execute and
describe operation.

" See Also:

e About Describing Select-List Items for an explanation of the describe
step

* OCIDefineByPos() or OCIDefineByPos2()

Example 6-5 Defining a Scalar Output Variable Following an Execute and
Describe Operation

SELECT department name FROM departments WHERE department id = :dept input

/* The input placeholder was bound earlier, and the data comes from the
user input below */

printf ("Enter employee dept: ");
scanf ("%d", &deptno);

/* Execute the statement. If OCIStmtExecute() returns OCI NO DATA, meaning that
no data matches the query, then the department number is invalid. */

if ((status = OCIStmtExecute(svchp, stmthp, errhp, 0, 0, (OCISnapshot *) 0,
(OCISnapshot *) 0,
OCI_DEFAULT))
&& (status != OCI NO DATA))

checkerr (errhp, status);
return OCI_ERROR;
}

if (status == OCI NO DATA) ({
printf ("The dept you entered does not exist.\n");
return 0;

/* The next two statements describe the select-list item, dname, and
return its length */
checkerr (errhp, OCIParamGet ((void *)stmthp, (ub4) OCI HTYPE STMT, errhp, (void
**) gparmdp, (ub4) 1));
checkerr (errhp, OCIAttrGet((void*) parmdp, (ub4) OCI DTYPE PARAM,
(void*) &deptlen, (ub4 *) &sizelen, (ub4) OCI ATTR DATA SIZE,
(OCIError *) errhp));

ORACLE 6-14

Chapter 6
Advanced Define Operations in OCI

/* Use the retrieved length of dname to allocate an output buffer, and
then define the output variable. If the define call returns an error,
exit the application */

dept = (text *) malloc((int) deptlen + 1);

if (status = OCIDefineByPos (stmthp, &defnp, errhp,

1, (void *) dept, (sb4) deptlen+l,
SQLT STR, (void *) 0, (ub2 *) 0,
(ub2 *) 0, OCI DEFAULT))
{
checkerr (errhp, status);
return OCI_ ERROR;
}

6.4 Advanced Define Operations in OCI

This section covers advanced define operations, including multistep defines and defines of
named data types and REFS.

In some cases, the define step requires additional calls than just a call to 0CIDefineByPos ()
or OCIDefineByPos2 (); for example, that define the attributes of an array fetch,
OCIDefineArrayOfStruct (), or a named data type fetch, 0OCIDefineObject (). For example,
to fetch multiple rows with a column of named data types, all the three calls must be invoked
for the column. To fetch multiple rows of scalar columns only, OCIDefineArrayOfStruct ()
and OCIDefineByPos () Or OCIDefineByPos2 () are sufficient.

Oracle Database also provides predefined C data types that map object type attributes.

This section includes the following topics:
* About Defining LOB Output Variables
e About Defining PL/SQL Output Variables

» About Defining for a Piecewise Fetch

See Also:

* Object-Relational Data Types in OCI

e Advanced Define Operations in OCI

e OCIDefineByPos() or OCIDefineByPos2()
e OCIDefineArrayOfStruct()

e OCIDefineObject()

6.4.1 About Defining LOB Output Variables

ORACLE

There are two ways of defining LOBs:

» Define a LOB locator, rather than the actual LOB values. In this case, the LOB value is
written or read by passing a LOB locator to the OCI LOB functions.

» Define a LOB value directly, without using the LOB locator.

This section includes the following topics:

6-15

Chapter 6
Advanced Define Operations in OCI

* About Defining LOB Locators
e About Defining LOB Data

6.4.1.1 About Defining LOB Locators

Either a single locator or an array of locators can be defined in a single define call. In
each case, the application must pass the address of a LOB locator and not the locator
itself. For example, suppose that an application has prepared the following SQL
statement:

SELECT lobl FROM some table;

In this statement, 1obl is the LOB column, and one_lob is a define variable
corresponding to a LOB column with the following declaration:

OCILobLocator * one lob;

Then the following calls would be used to bind the placeholder and execute the
statement:

/* initialize single locator */
OCIDescriptorAlloc(...&one lob, OCI DTYPE LOB...);

/* pass the address of the locator */
OCIBindByName (..., (void *) &one lob,... SQLT CLOB, ...);
OCIStmtExecute(...,1,...); /* 1 is the iters parameter */

You can also insert an array using this same SQL SELECT statement. In this case, the
application would include the following code:

OCILobLocator * lob array[10];

for (i=0; i<10, i++)
OCIDescriptorAlloc(...&lob array(i], OCI DTYPE LOB...);
/* initialize array of locators */

OCIBindByName (..., (void *) lob array,...);
OCIStmtExecute(...,10,...); /* 10 is the iters parameter */

Note that you must allocate descriptors with the 0CIDescriptorAlloc () function
before they can be used. In an array of locators, you must initialize each array element
using OCIDescriptorAlloc (). Use OCI DTYPE LOB as the type parameter when
allocating BLOBS, CLOBS, and NCLOBs. Use OCI_DTYPE FILE when allocating BFILES.

6.4.1.2 About Defining LOB Data

ORACLE

Oracle Database allows nonzero defines for SELECTs of any size LOB. So you can
select up to the maximum allowed size of data from a LOB column using
OCIDefineByPos() and PL/SQL defines. Because there can be multiple LOBs in a row,
you can select the maximum size of data from each one of those LOBs in the same
SELECT statement.

The following SQL statement is the basis for Example 6-6 and Example 6-7:

CREATE TABLE lob tab (Cl CLOB, C2 CLOB);

6-16

Chapter 6
Advanced Define Operations in OCI

Example 6-6 Defining LOBs Before Execution

void select define before execute() /* A function in an OCI program */
{
/* The following is allowed */
ubl buffer1([8000];
ubl buffer2[8000];
text *select sql = (text *)"SELECT cl, c2 FROM lob tab";
OCIStmtPrepare (stmthp, errhp, select sql, (ub4)strlen((char*)select sql),
(ub4) OCI NTV SYNTAX, (ub4) OCI DEFAULT);
OCIDefineByPos (stmthp, &defhp[0], errhp, 1, (void *)bufferl, 8000,
SQLT LNG, (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OCI DEFAULT);
OCIDefineByPos (stmthp, &defhp[l], errhp, 2, (void *)buffer2, 8000,
SQLT LNG, (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OCI DEFAULT);
OCIStmtExecute (svchp, stmthp, errhp, 1, 0, (OCISnapshot *)O0,
(OCISnapshot *)0, OCI DEFAULT);

Example 6-7 Defining LOBs After Execution

void select execute before define()

{
/* The following is allowed */
ubl bufferl[8000];
ubl buffer2[8000];

text *select sqgl (text *)"SELECT cl, c2 FROM lob tab";

OCIstmtPrepare (stmthp, errhp, select sql, (ub4)strlen((char*)select sql),
(ub4) OCI NTV SYNTAX, (ub4) OCI DEFAULT);
OCIStmtExecute (svchp, stmthp, errhp, 0, 0, (OCISnapshot *)O0,
(OCISnapshot *)0, OCI DEFAULT);
OCIDefineByPos (stmthp, &defhp[0], errhp, 1, (void *)bufferl, 8000,
SQLT ING, (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OCI DEFAULT);
OCIDefineByPos (stmthp, &defhp[l], errhp, 2, (void *)buffer2, 8000,
SQLT ING, (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OCI DEFAULT);
OCIStmtFetch (stmthp, errhp, 1, OCI FETCH NEXT, OCI DEFAULT);

6.4.2 About Defining PL/SQL Output Variables

Do not use the define calls to define output variables for select-list items in a SQL SELECT
statement inside a PL/SQL block.

Use OCI bind calls instead.

¢ See Also:

Information for Named Data Type and REF Defines, and PL/SQL OUT Binds for
more information about defining PL/SQL output variables

6.4.3 About Defining for a Piecewise Fetch

A piecewise fetch requires an initial call to 0CIDefineByPos () Or OCIDefineByPos2 ().

ORACLE 6-17

Chapter 6
About Binding and Defining LOB Data

An additional call to 0CIDefineDynamic () iS necessary if the application uses callbacks
rather than the standard polling mechanism.
¢ See Also:

e OCIDefineByPos()or OCIDefineByPos2()
e OCIDefineDynamic()

6.5 About Binding and Defining LOB Data

Oracle Database allows nonzero binds for INSERTS and UPDATES of any size LOB.

So you can bind data into a LOB column using 0CIBindByPos () Or OCIBindByPos?2 (),
OCIBindByName () Or OCIBindByName2 (), and PL/SQL binds.

The bind of more than 4 kilobytes of data to a LOB column uses space from the
temporary tablespace. Ensure that your temporary tablespace is big enough to hold at
least the amount of data equal to the sum of all the bind lengths for LOBs. If your
temporary tablespace is extendable, it is extended automatically after the existing
space is fully consumed. Use the following command to create an extendable
temporary tablespace:

CREATE TABLESPACE ... AUTOEXTEND ON ... TEMPORARY ...;

This section includes the following topics:

e Restrictions on Binding LOB Data

e Getting the LOB Length when Selecting LOB Data
e Examples of Binding LOB Data

¢ See Also:

e OCIBindByPos() or OCIBindByPos2()
e OCIBindByName() or OCIBindByName2()

6.5.1 Restrictions on Binding LOB Data

ORACLE

What are the restrictions on binding LOB data.
Observe the following restrictions when you bind LOB data:

e If a table has both 1.oNG and LOB columns, then you can have binds of greater
than 4 kilobytes for either the LONG column or the LOB columns, but not both in the
same statement.

e In an INSERT AS SELECT operation, Oracle Database does not allow binding of any
length data to LOB columns.

6-18

Chapter 6
About Binding and Defining LOB Data

* A special consideration applies on the maximum size of bind variables that are neither
LONG or LOB, but that appear after any LOB or LONG bind variable in the SQL
statement. You receive an ORA-24816 error from Oracle Database if the maximum size for
such bind variables exceeds 4000 bytes. To avoid this error, you must set
OCI_ATTR MAXDATA SIZE to 4000 bytes for any such binds whose maximum size may
exceed 4000 bytes on the server side after character set conversion. Alternatively,
reorder the binds so that such binds are placed before any LONG or LOBs in the bind list.

» Oracle Database does not do implicit conversions, such as HEX to RAW or RAW to HEX, for
data of size more than 4000 bytes. The PL/SQL code in the following code example
illustrates this:

Demonstrating Some Implicit Conversions That Cannot Be Done

create table t (cl clob, c2 blob);
declare

text varchar (32767) ;

binbuf raw(32767);

begin
text := lpad ('a', 12000, 'a');
binbuf := utl raw.cast to raw(text);

-- The following works:
insert into t values (text, binbuf);

-- The following does not work because Oracle dpes not do implicit
-- hex to raw conversion.
insert into t (c2) values (text);

-- The following does not work because Oracle does not do implicit
-- raw to hex conversion.
insert into t (cl) values (binbuf);

-- The following does not work because you cannot combine the
-- utl raw.cast to raw() operator with the >4k bind.
insert into t (c2) values (utl raw.cast to raw(text));

end;

/

e If you bind more than 4000 bytes of data to a BLOB or a CLOB, and the data is filtered by a
SQL operator, then Oracle Database limits the size of the result to at most 4000 bytes.

For example:

create table t (cl clob, c2 blob);

-- The following command inserts only 4000 bytes because the result of
-- LPAD is limited to 4000 bytes

insert into t(cl) wvalues (lpad('a', 5000, 'a'));

-- The following command inserts only 2000 bytes because the result of
-- LPAD is limited to 4000 bytes, and the implicit hex to raw conversion

-- converts it to 2000 bytes of RAW data.
insert into t(c2) values (lpad('a', 5000, 'a'));

" See Also:
About Using the OCI_ATTR_MAXDATA_SIZE Attribute

ORACLE 6-19

Chapter 6
About Binding and Defining LOB Data

6.5.2 Getting the LOB Length when Selecting LOB Data

When a lob column is accessed using the Data Interface, the server sends the LOB
data length followed by LOB data. The LOB data length is the length of the LOB data
stored on the server prior to any conversions. On the OCI client side, fetched LOB
data length is saved in the define handle.

The application can use 0CIServerDataLengthGet () function to access the LOB data
length right after the fetch is executed. This is available in all fetch modes, that is,
single piece, piecewise and callback. It can also be accessed inside the callback. This
function helps the application to allocate the buffer wisely and get the LOB data. The
OCIServerDatalengthGet () function does not incur a roundtrip to the server. It should
not be used before a fetch operation. For piecewise or callback operations, the
OClServerDatalengthGet() function must be used after the first piece is fetched.

Related Topics

e Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch with Callback:
Example with Length

» OClServerDataLengthGet()
Gets the LOB data length when fetching LOB as buffer.

6.5.3 Examples of Binding LOB Data

Shows some exampled of binding LOB data.
The following SQL statements are used in Example 6-8 through Example 6-15:

CREATE TABLE foo (a INTEGER);
CREATE TYPE lob typ AS OBJECT (Al CLOB);
CREATE TABLE lob long tab (Cl CLOB, C2 CLOB, CT3 lob typ, L LONG);

Example 6-8 Allowed: Inserting into C1, C2, and L Columns Up to 8000, 8000,
and 2000 Byte-Sized Bind Variable Data Values, Respectively

void insert () /* A function in an OCI program */
{
/* The following is allowed */
ubl buffer[8000];
text *insert sql = (text *) "INSERT INTO lob long tab (Cl, C2, L) \
VALUES (:1, :2, :3)";
OCIStmtPrepare (stmthp, errhp, insert_sql, strlen((char*)insert_sql),
(ub4) OCI NTV SYNTAX, (ub4) OCI DEFAULT);
OCIBindByPos (stmthp, &bindhp[0], errhp, 1, (void *)buffer, 8000,
SQLT LNG, 0, 0, 0, 0, 0, (ub4) OCI DEFAULT);
OCIBindByPos (stmthp, &bindhp[l], errhp, 2, (void *)buffer, 8000,
SQLT LNG, 0, 0, 0, 0, 0, (ub4) OCI DEFAULT);
OCIBindByPos (stmthp, &bindhp[2], errhp, 3, (void *)buffer, 2000,
SQLT LNG, 0, 0, 0, 0, 0, (ub4) OCI DEFAULT);
OCIStmtExecute (svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,
(OCISnapshot *) NULL, OCI DEFAULT);

ORACLE 6-20

ORACLE

Chapter 6
About Binding and Defining LOB Data

Example 6-9 Allowed: Inserting into C1 and L Columns up to 2000 and 8000 Byte-
Sized Bind Variable Data Values, Respectively

void insert ()

{

/* The following is allowed */

ubl buffer[8000];

text *insert_sql = (text *) "INSERT INTO lob long tab (Cl, L) \

VALUES (:1, :2)";
OCIStmtPrepare (stmthp, errhp, insert_sql, strlen((char*)insert_sql),
(ub4) OCI_ NTV SYNTAX, (ub4) OCI DEFAULT);

OCIBindByPos (stmthp, &bindhp[0], errhp, 1, (void *)buffer, 2000,
SQLT LNG, 0, 0, 0, 0, 0, (ub4) OCI DEFAULT);

OCIBindByPos (stmthp, &bindhp[l], errhp, 2, (void *)buffer, 8000,
SQLT LNG, 0, 0, 0, 0, 0, (ub4) OCI DEFAULT);

OCIStmtExecute (svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,

(OCISnapshot *) NULL, OCI DEFAULT);

Example 6-10 Allowed: Updating C1, C2, and L Columns up to 8000, 8000, and 2000
Byte-Sized Bind Variable Data Values, Respectively

void update ()

{

/* The following is allowed, no matter how many rows it updates */
ubl buffer[8000];
text *update sql = (text *)"UPDATE lob long tab SET \
Cl = :1, C2=:2, L=:3";
OCIStmtPrepare (stmthp, errhp, update sql, strlen((char*)update sql),
(ub4) OCI NTV SYNTAX, (ub4) OCI DEFAULT);
OCIBindByPos (stmthp, &bindhp[0], errhp, 1, (void *)buffer, 8000,
SQLT ING, 0, 0, 0, 0, 0O, (ub4) OCI DEFAULT);
OCIBindByPos (stmthp, &bindhp[l], errhp, 2, (void *)buffer, 8000,
SQLT ING, 0, 0, 0, 0, O, (ub4) OCI DEFAULT);
OCIBindByPos (stmthp, &bindhp[2], errhp, 3, (void *)buffer, 2000,
SQLT ING, 0, 0, 0, 0, O, (ub4) OCI DEFAULT);
OCIStmtExecute (svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,
(OCISnapshot *) NULL, OCI DEFAULT);

Example 6-11 Allowed: Updating C1, C2, and L Columns up to 2000, 2000, and 8000
Byte-Sized Bind Variable Data Values, Respectively

void update ()

{

/* The following is allowed, no matter how many rows it updates */
ubl buffer[8000];
text *update sqgl = (text *)"UPDATE lob long tab SET \
Cl =:1, C2=:2, L=:3";
OCIStmtPrepare (stmthp, errhp, update sql, strlen((char*)update sql),
(ub4) OCI_NTV SYNTAX, (ub4) OCI_DEFAULT);
OCIBindByPos (stmthp, &bindhp[0], errhp, 1, (void *)buffer, 2000,
SQLT ING, 0, 0, 0, 0, 0, (ub4) OCI DEFAULT);
OCIBindByPos (stmthp, &bindhp[l], errhp, 2, (void *)buffer, 2000,
SQLT ING, 0, 0, 0, 0, 0, (ub4) OCI DEFAULT);
OCIBindByPos (stmthp, &bindhp[2], errhp, 3, (void *)buffer, 8000,
SQLT ING, 0, 0, 0, 0, 0, (ub4) OCI DEFAULT);
OCIStmtExecute (svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,
(OCISnapshot *) NULL, OCI DEFAULT);

6-21

ORACLE

Chapter 6
About Binding and Defining LOB Data

Example 6-12 Allowed: Piecewise, Callback, and Array Insert or Update
Operations

void insert ()

{

/* Piecewise, callback and array insert/update operations similar to
* the allowed regular insert/update operations are also allowed */

Example 6-13 Not Allowed: Inserting More Than 4000 Bytes into Both LOB and
LONG Columns Using the Same INSERT Statement

void insert ()
{
/* The following is NOT allowed because you cannot insert >4000 bytes
* into both LOB and LONG columns */
ubl buffer[8000];
text *insert sql = (text *)"INSERT INTO lob long tab (Cl, L) \
VALUES (:1, :2)";
OCIStmtPrepare (stmthp, errhp, insert sql, strlen((char*)insert sql),
(ub4) OCI NTV SYNTAX, (ub4) OCI DEFAULT);
OCIBindByPos (stmthp, &bindhp[0], errhp, 1, (void *)buffer, 8000,
SQLT ING, 0, 0, 0, 0, 0, (ub4) OCI DEFAULT);
OCIBindByPos (stmthp, &bindhp[l], errhp, 2, (void *)buffer, 8000,
SQLT ING, 0, 0, 0, 0, 0, (ub4) OCI DEFAULT);
OCIStmtExecute (svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,
(OCISnapshot *) NULL, OCI DEFAULT);

Example 6-14 Allowed: Inserting into the CT3 LOB Column up to 2000 Byte-
Sized Bind Variable Data Values

void insert()
{
/* Insert of data into LOB attributes is allowed */
ubl buffer[8000];
text *insert sql = (text *)"INSERT INTO lob long tab (CT3) \
VALUES (lob typ(:1))";
OCIStmtPrepare (stmthp, errhp, insert sql, strlen((char*)insert sql),
(ub4) OCI_NTV SYNTAX, (ub4) OCI DEFAULT);
OCIBindByPos (stmthp, &bindhp[0], errhp, 1, (void *)buffer, 2000,
SQLT ING, 0, 0, 0, 0, 0, (ub4) OCI DEFAULT);
OCIStmtExecute (svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,
(OCISnapshot *) NULL, OCI DEFAULT);

Example 6-15 Not Allowed: Binding Any Length Data to a LOB Column in an
Insert As Select Operation

void insert ()

{

/* The following is NOT allowed because you cannot do insert as
* select character data into LOB column */
ubl buffer[80007];
text *insert_sql = (text *)"INSERT INTO lob long tab (Cl) SELECT \
:1 from FOO";
OCIStmtPrepare (stmthp, errhp, insert_sql, strlen((char*)insert_sql),
(ub4) OCI NTV SYNTAX, (ub4) OCI DEFAULT);
OCIBindByPos (stmthp, &bindhp[0], errhp, 1, (void *)buffer, 8000,
SQLT LNG, 0, 0, 0, 0, 0, (ubd) OCI DEFAULT);
OCIStmtExecute (svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,

6-22

Chapter 6
About Binding and Defining JSON Data

(OCISnapshot *) NULL, OCI DEFAULT);

6.6 About Binding and Defining JSON Data

This section describes the three possible interfaces used for performing binds and defines
against the JSON type column.

This section includes the following topics:
e Using JSON Descriptor Interface (SQLT_JSON)
* Using LOB Locator Interface

» Using Data Interface (Other SQL data types)

6.6.1 Using JSON Descriptor Interface (SQLT_JSON)

ORACLE

This section describes how to perform binds using JSON descriptor Interface.

OCl users can allocate a descriptor of type 0CIJson*, write to it, and then use it to bind or
define against JSON type target. The input data type for the bind or define should be

SQLT JSON. The following example code snippet shows how to perform binds into the JSON
column:

/* Bind an allocated descriptor against the JSON column */
rc = OCIBindByPos2 (stmthp2, &bindhp, errhp, 2,

(void *)&jsond, /* JSON Document descriptor pointer
*/

0, /* Size, can be 0
*/

SQLT JSON, /* Data type of the bind is JSON
*/

&ind, (ub4 *)0, (ub2 *)0, (ub4)0, (ub4
*)0,

(ub4) OCI DEFAULT);
if (rc != OCI_SUCCESS) goto err hndlr;

The following example code snippet shows how to define from the JSON column:

/* Use an allocated descriptor to read from the JSON column */
rc = OCIDefineByPos2 (stmthpl, &defhp, errhp, 1,
(void *)&jsond, /* JSON Document descriptor pointer

*/

0, /* Size, can be 0
*/

SQLT JSON, /* Data type of the define is JSON
*/

&ind, 0, 0, 0);
(ub4) OCI_DEFAULT) ;
if (rc != OCI_SUCCESS) goto err hndlr;

6-23

6.6.2 Using LOB Locator Interface

This section lists the the SQL data types that correspond to LOB locators that are used
to bind and define by the OCI applications.

Chapter 6
About Binding and Defining JSON Data

OCI application can bind and define using the following SQL data types that
correspond to LOB locators:

SQLT BLOB — Binary LOB

SQLT CLOB — Character LOB

< Note:

In case of define, when using BLOB type, the textual JSON retrieved are

UTF-8 encoded.

6.6.2.1 Fetching JSON as LOBs

ORACLE

This section describes fetching JSON as LOBs.

When using the LOB locator interface with a LOB locator returned by an SQL or JSON
operation on a JSON-type operand:

The LOB is temporary and read-only.

You need not explicitly free the LOB. It is freed automatically at the next fetch.

6.6.3 Using Data Interface (Other SQL data types)

This section lists the other SQL data types that can be used to bind and define by the
OCI applications.

Following are the SQL data types corresponding to linear character and binary data:

SQLT CHR — Character string

SQLT BIN — Binary data

SQLT STR — Null-terminated string

SQLT LNG — Long character string

SQLT LBI — Long binary data

SQLT AFC — ANSI fixed character string
SQLT AVC — ANSI variable character string
SQLT vCS — Variable character string
SQLT VBI — Variable binary

SQLT VST — OCIString type

SOLT LVC — LONG VARCHAR type
SOLT LVB — LONG VARRAW type

6-24

6.6.3.1 Binds

Chapter 6
About Binding and Defining JSON Data

< Note:

For the preceding SQL data types listed, the output textual JSON (defines) are also
returned in the environment handle or NLS LANG and the conversion of textual JSON
to or from the binary JSON happens on the server.

This section lists and describes the binds.

Datatype Conversion Details

SQLT BLOB Auto-detection of textual JSON's encoding (UTF-8 or UTF-16) happens on
server.. If BLOB data is UTF-8 or UTF-16 encoded, then textual JSON
conversion to native binary JSON format happens on the server. If BLOB
data is in native binary JSON format, then no conversion happens.

SQLT CLOB The conversion from textual JSON data in the CLOB to native binary format
happens on the server.

SQLT CHR Textual JSON is assumed to be in the client character set as set in the

SOLT STR environment handle or in the bind handle of the column. Conversion to native

- binary format happens on the server. If the size is greater than 32K, then it

SQLT_AFC would take long bind code path.

SQLT_LNG Textual is in client character set only if csid or ncsid is not set in the bind

SQLT VST handle.

SQLT AVC

SQLT VCS

SQLT LVC

SQLT BIN If binary data is UTF-8 or UTF-16 encoded, then textual JSON conversion to

SOLT LVB native binary JSON format happens on the server. If data is in native binary

- JSON format, then no conversion happens. If the size is greater than 32K,
SQLT_LBI then it would take long bind code path. Allowed input values must be in
SQLT VBI JSON text format and binary JSON fomat.

If data is not in unicode an error is returned.

6.6.3.2 Defines

This section lists and describes defines.

Table 6-2 Defines
]

Datatype

Conversion Details

SQLT BLOB

ORACLE

Conversion from native binary JSON format to UTF-8 encoded textual JSON
in BLOB happens on the server. Client character set has no effect. The client
receives a BLOB locator and not the BLOB data itself.

It is important that it returns text as it improves performance. The text can be
returned as database characterset as it is twice better than returning a
CLOB.

6-25

Chapter 6
About Array Binds and Defines with JSON Data

Table 6-2 (Cont.) Defines
]

Datatype Conversion Details
SQLT CLOB Conversion from native binary JSON format to textual JSON happens on the
server. The server sends a CLOB locator and not the CLOB data itself.
It is important that it returns text as it improves performance. The text can be
returned as database characterset as it is twice better than returning a
CLOB.
SQLT CHR Conversion from native binary JSON format to textual JSON happens on the
SOLT STR server. The textual JSON is in the character set as in the define handle or
- the environment handle. Client side conversion happens based on client
SQLT_AFC characterset. In client characterset only if csid or ncsid is not set in the
SQLT AVC define handle.
SQLT LNG
SQLT VST
SQLT VCS
SQLT LVC
SQLT BIN Conversion from native binary JSON format to UTF-8 encoded textual JSON
SOLT LBI happens on the server. The client character set has no effect.
- It is important that it returns text as it improves performance. The text can be
SQLT VBI L . .
- returned as database characterset as it is twice better than returning a
SQLT LVB CLOB.

6.7 About Array Binds and Defines with JSON Data

ORACLE

JSON descriptors can also work with array binds and defines. In an array of
descriptors, you must initialize each array element using 0CIDescriptorAlloc ()
function before ocIstmtExecute () function. The following code snippet shows an
example of array binds:

OCIJson *jsond arr([10];

for (i=0; i<10, i++)
OCIDescriptorAlloc(..., &jsond arr[i], OCI DTYPE JSON...);
/* initialize array of
JSON descriptors */

OCIBindByPos2 (..., (void *) jsond arr,...);
OCIStmtExecute (..., 10, ...); /* 10 is the iters
parameter */

The following code snippet shows an example of array fetches:

OCIJson * jsond arr[10];

for (i=0; i<10, i++)
OCIDescriptorAlloc(..., &jsond arr[i],
OCI_DTYPE JSON...);
/* initialize array of JSON
descriptors */

6-26

Chapter 6
About Binding and Defining Arrays of Structures in OCI

OCIDefineByPos2(..., (void *) jsond arr,...);
OCIStmtExecute (..., 10, ...); /* 10 is the iters parameter */

6.8 About Binding and Defining Arrays of Structures in OCI

Defining arrays of structures requires an initial call to 0CIDefineByPos () Or
OCIDefineByPos2 ().

An additional call to 0CIDefineArrayOfStruct () iS necessary to set up each additional
parameter, including the skip parameter necessary for arrays of structures operations.

Using arrays of structures can simplify the processing of multirow, multicolumn operations.
You can create a structure of related scalar data items, and then fetch values from the
database into an array of these structures, or insert values into the database from an array of
these structures.

For example, an application may need to fetch multiple rows of data from columns NAME, AGE,
and sALARY. The application can include the definition of a structure containing separate fields
to hold the NaAME, AGE, and SALARY data from one row in the database table. The application
would then fetch data into an array of these structures.

To perform a multirow, multicolumn operation using an array of structures, associate each
column involved in the operation with a field in a structure. This association, which is part of
OCIDefineArrayOfStruct () and OCIBindArrayOfStruct () calls, specifies where data is
stored.

This section includes the following topics:

e Skip Parameters

* OCI Calls Used with Arrays of Structures

* Arrays of Structures and Indicator Variables

* About Array Binds and Defines with JSON Data

¢ See Also:

e OCIDefineByPos() or OCIDefineByPos2()
e OCIDefineArrayOfStruct()
e OCIBindArrayOfStruct()

6.8.1 Skip Parameters

ORACLE

When you split column data across an array of structures, it is no longer stored contiguously
in the database.

The single array of structures stores data as though it were composed of several arrays of
scalars. For this reason, you must specify a skip parameter for each field that you are binding
or defining. This skip parameter is the number of bytes that must be skipped in the array of
structures before the same field is encountered again. In general, this is equivalent to the
byte size of one structure.

6-27

Chapter 6
About Binding and Defining Arrays of Structures in OClI

Figure 6-2 shows how a skip parameter is determined. In this case, the skip parameter
is the sum of the sizes of the fields fieldl (2 bytes), field2 (4 bytes), and field3 (2
bytes), which is 8 bytes. This equals the size of one structure.

Figure 6-2 Determining Skip Parameters

On some operating systems it may be necessary to set the skip parameter to
sizeof(one array element) rather than sizeof(struct), because some compilers
insert extra bytes into a structure.

Consider an array of C structures consisting of two fields, a ub4 and a ub1:

struct demo {
ubd fieldl;
ubl field2;
}i
struct demo demo array[MAXSIZE];

Some compilers insert 3 bytes of padding after the ubl so that the ub4 that begins the
next structure in the array is properly aligned. In this case, the following statement may
return an incorrect value:

skip parameter = sizeof (struct demo);

On some operating systems this produces a proper skip parameter of 8. On other
systems, skip parameter is set to 5 bytes by this statement. In the latter case, use the
following statement to get the correct value for the skip parameter:

skip parameter = sizeof(demo array([0]);

This section includes the following topic: Skip Parameters for Standard Arrays.

6.8.1.1 Skip Parameters for Standard Arrays

ORACLE

Arrays of structures are an extension of binding and defining arrays of single variables.

When you specify a single-variable array operation, the related skip equals the size of
the data type of the array under consideration. For example, consider an array
declared as follows:

text emp names[4][20];

The skip parameter for the bind or define operation is 20. Each data element in the
array is then recognized as a separate unit, rather than being part of a structure.

6-28

Chapter 6
About Binding and Defining Arrays of Structures in OCI

6.8.2 OCI Calls Used with Arrays of Structures

What calls must be used when you perform operations involving arrays of structures.
Two OCI calls must be used when you perform operations involving arrays of structures:
e Use 0CIBindArrayOfStruct () for binding fields in arrays of structures for input variables

* UseoCIDefineArrayOfStruct () for defining arrays of structures for output variables.

Note:

Binding or defining for arrays of structures requires multiple calls. A call to
OCIBindByName () Or OCIBindByName?2 () Or OCIBindByPos () Or OCIBindByPos2 ()
must precede a call to 0CIBindArrayOfStruct (), and a call to

0CIDefineByPos () Or OCIDefineByPos2 () must precede a call to
OCIDefineArrayOfStruct ().

¢ See Also:

e OCIBindArrayOfStruct()

e OCIDefineArrayOfStruct()

e OCIBindByName() or OCIBindByName2()
e OCIBindByPos() or OCIBindByPo0s2()

e OCIDefineByPos()or OCIDefineByPos2()

6.8.3 Arrays of Structures and Indicator Variables

The implementation of arrays of structures in addition supports the use of indicator variables
and return codes.

You can declare parallel arrays of column-level indicator variables and return codes that
correspond to the arrays of information being fetched, inserted, or updated. These arrays can
have their own skip parameters, which are specified during 0CIBindArrayOfStruct () or
OCIDefineArrayOfStruct () calls.

You can set up arrays of structures of program values and indicator variables in many ways.
Consider an application that fetches data from three database columns into an array of
structures containing three fields. You can set up a corresponding array of indicator variable
structures of three fields, each of which is a column-level indicator variable for one of the
columns being fetched from the database. A one-to-one relationship between the fields in an
indicator struct and the number of select-list items is not necessary.

ORACLE 6-29

Chapter 6
About Binding and Defining Multiple Buffers

¢ See Also:

e Indicator Variables
e OCIBindArrayOfStruct()
e OCIDefineArrayOfStruct()

6.9 About Binding and Defining Multiple Buffers

ORACLE

You can specify multiple buffers for use with a single bind or define call.

Performance is improved because the number of round-trips is decreased when data
stored at different noncontiguous addresses is not copied to one contiguous location.
CPU time spent and memory used are thus reduced.

The data type oc110V is defined as:

typedef struct OCIIOV
{
void *bfp; /* The pointer to a buffer for the data */
ub4d Dbfl; /* The size of the buffer */
}OCIIOV;

The value 0CI_IOV for the mode parameter is used in the OCIBindByPos () or
0CIBindByPos2 () and OCIBindByName () Or OCIBindByName2 () functions for binding
multiple buffers. If this value of mode is specified, the address of 0cI110vV must be
passed in parameter valuep. The size of the data type must be passed in the
parameter valuesz. For example:

OCIIOV vecarr[NumBuffers];

/* For bind at position 1 with data type int */

OCIBindByPos (stmthp, bindp, errhp, 1, (void *)é&vecarr[0],
sizeof (int), ... OCI_IOV);

The value 0CI_I0V for the mode parameter is used in the 0OCIDefineByPos () oOr
OCIDefineByPos2 () function for defining multiple buffers. If this value of mode is
specified, the address of 0CI10V is passed in parameter valuep. The size of the data
type must be passed in the parameter valuesz. This mode is intended to be used for
scatter or gather binding, which allows multiple buffers to be bound or defined to a
position, for example column A for the first 10 rows in one buffer, next 5 rows in one
buffer, and the remaining 25 rows in another buffer. That eliminates the need to
allocate and copy all of them into one big buffer while doing the array execute
operation.

Example 6-16 illustrates the use of the structure 0CIIOV and its mode values.

Example 6-16 Using Multiple Bind and Define Buffers

/* The following macros mention the maximum length of the data in the
* different buffers. */

#define LENGTH DATE 10

6-30

Chapter 6
About Binding and Defining Multiple Buffers

#define LENGTH EMP NAME 100

/* These two macros represent the number of elements in each bind and define
array */

#define NUM BIND 30

#define NUM DEFINE 45

/* The bind buffers for inserting dates */
char buf 1[NUM BIND] [LENGTH DATE],
char buf 2[NUM BIND * 2] [LENGTH DATE],

/* The bind buffer for inserting emp name */
char buf 3[NUM BIND * 3] [LENGTH EMP NAME],

/* The define buffers */
char buf 4[NUM DEFINE] [LENGTH EMP NAME];
char buf 5[NUM DEFINE] [LENGTH EMP NAME];

/* The size of data value for buffers corresponding to the same column must be
the same, and that value is passed in the OCIBind or Define calls.
buf 4 and buf 5 above have the same data values; that is, LENGTH EMP NAME
although the number of elements are different in the two buffers.

*/

OCIBind *bndhpl = (OCIBind *)0;
OCIBind *bndhp2 = (OCIBind *)0;
OCIDefine *defhp = (OCIDefine *)0;
OCIStmt *stmthp = (OCIStmt *)0;
OCIError *errhp = (OCIError *)0;

OCIIOV bvec([2], dvec[2];

/*
Example of how to use indicators and return codes with this feature,
showing the allocation when using with define. You allocate memory
for indicator, return code, and the length buffer as one chunk of
NUM DEFINE * 2 elements.

*/

short *indname [NUM DEFINE*2]; /* indicators */

ub4 *alenname [NUM DEFINE*2]; /* return lengths */
ub? *rcodename [NUM DEFINE*2]; /* return codes */

static text *insertstr =
"INSERT INTO EMP (EMP NAME, JOIN DATE) VALUES (:1, :2)";
static text *selectstr = "SELECT EMP NAME FROM EMP";

/* Allocate environment, error handles, and so on, and then initialize the
environment. */

/* Prepare the statement with the insert query in order to show the
binds. */
OCIStmtPrepare (stmthp, errhp, insertstr,
(ub4d)strlen((char *)insertstr),
(ub4) OCI_NTV SYNTAX, (ub4)OCI DEFAULT) ;

/* Populate buffers with values. The following represents the simplest

* way of populating the buffers. However, in an actual scenario

* these buffers may have been populated by data received from different
* sources. */

ORACLE 6-31

ORACLE

Chapter 6
About Binding and Defining Multiple Buffers

/* Store the date in the bind buffers for the date. */
strcpy (buf 1[0], "21-SEP-02");

strepy (buf 1[NUM BIND - 1], "21-0CT-02");
strepy (buf 2[0], "22-0CT-02");
strepy (buf 2[2*NUM BIND - 1], "21-DEC-02");

memset (bvec[0], 0, sizeof (OCIIOV));
memset (bvec[1], 0, sizeof (OCIIOV));

/* Set up the addresses in the IO Vector structure */
bvec[0].bfp = buf 1[0]; /* Buffer address of the data */
bvec[0].bfl = NUM BIND*LENGTH DATE; /* Size of the buffer */

/* And so on for other structures as well. */
bvec[l].bfp = buf 2[0]; /* Buffer address of the data */
bvec[1l].bfl = NUM BIND*2*LENGTH DATE; /* Size of the buffer */

/* Do the bind for date, using OCIIOV */

0CIBindByPos (stmthp, &bindhp2, errhp, 2, (void *)&bvec[0],
sizeof (buf 1[0]), SQLT STR,
(void *)inddate, (ub2 *)alendate, (ub2 *)rcodedate, O,
(ub4 *)0, OCI _IOV);

/* Store the employee names in the bind buffers, 3 for the names */
strcpy (buf 3[0], "JOHN ");

strcpy (buf 3[NUM BIND *3 - 1], "HARRY");

/* Do the bind for employee name */

OCIBindByPos (stmthp, &bindhpl, errhp, 1, buf 3[0], sizeof (buf 3[0]),
SQLT STR, (void *)indemp, (ub2 *)alenemp, (ub2 *)rcodeemp, 0,
(ub4 *)0, OCI DEFAULT) ;

OCIStmtExecute (svchp, stmthp, errhp, NUM BIND*3, O,
(OCISnapshot *)0, (OCISnapshot *)0, OCI DEFAULT);

/* Now the statement to depict defines */
/* Prepare the statement with the select query in order to show the
defines */
OCIStmtPrepare (stmthp, errhp, selectstr, (ub4)strlen((char *)selectstr),
(ub4) OCI_NTV SYNTAX, (ub4)OCI DEFAULT) ;

memset (dvec[0], 0, sizeof (OCIIOV);
memset (dvec[1], 0, sizeof (OCIIOV));

/* Set up the define vector */
dvec[0] .bfp = buf 4[0];
dvec[0] .bfl = NUM DEFINE*LENGTH EMP NAME;

dvec[1l].bfp = buf 5[0];
dvec[1l].bfl = NUM DEFINE*LENGTH EMP NAME;

/*
Pass the buffers for the indicator, length of the data, and the
return code. Note that the buffer where you receive

the data is split into two locations,

each having NUM DEFINE number of elements. However, the indicator

6-32

Chapter 6
DML with a RETURNING Clause in OCI

buffer, the actual length buffer, and the return code buffer comprise a
single chunk of NUM DEFINE * 2 elements.
*/
OCIDefineByPos (stmthp, &defhp, errhp, 1, (void *)&dvec[0],
sizeof (buf 4[0]), SQLT STR, (void *)indname,
(ub2 *)alenname, (ub2 *)rcodename, OCI IOV);

OCIStmtExecute (svchp, stmthp, errhp, NUM DEFINE*2, O,
(OCISnapshot*)0,
(OCISnapshot*)0, OCI DEFAULT);

¢ See Also:

* OCIBindByName() or OCIBindByName2()
e OCIBindByPos() or OCIBindByPos2()
e OCIDefineByPos() or OCIDefineByPos2()

6.10 DML with a RETURNING Clause in OCI

This section outlines the rules for correctly implementing DML statements with the RETURNING
clause.

OCI supports the use of the RETURNING clause with SQL INSERT, UPDATE, and DELETE
statements.

This section includes the following topics:

e About Using DML with a RETURNING Clause to Combine Two SQL Statements
e About Binding RETURNING...INTO Variables

e OCI Error Handling

e DML with RETURNING REF...INTO Clause in OCI

* Additional Notes About OCI Callbacks

e Array Interface for DML RETURNING Statements in OCI

See Also:

e The Database demonstration programs included with your Oracle installation
for complete examples. For additional information, see OCI Demonstration
Programs.

e