Oracle® Database

SecureFiles and Large Objects Developer's
Guide

21c
F31307-04
August 2021

ORACLE"

Oracle Database SecureFiles and Large Objects Developer's Guide, 21c
F31307-04

Copyright © 1996, 2021, Oracle and/or its affiliates.

Primary Authors: Tulika Das, Jayashree Sharma, Janis Greenberg

Contributing Authors: Geeta Arora, Rhonda Day, Tanmay Choudhury, Amith Kumar

Contributors: Bharath Aleti, Parthasarathy Raghunathan, Bharath Aleti, Thomas H. Chang, Maria Chien,
Subramanyam Chitti, Amit Ganesh, Kevin Jernigan, Vikram Kapoor, Balaji Krishnan, Jean de Lavarene, Geoff
Lee, Scott Lynn, Jack Melnick, Atrayee Mullick, Eric Paapanen, Ravi Rajamani, Kam Shergill, Ed Shirk,
Srinivas Vemuri

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and maodifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and maodifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience Xiv
Documentation Accessibility Xiv
Related Documents Xiv
Conventions XV

1 Introduction to Large Objects and SecureFiles
1.1 Changes in Oracle Database 1-1
1.1.1 Updates to Oracle Database Security 21c 1-1
1.2 What Are Large Objects? 1-2
1.3 Where Should We Use LOBSs? 1-2
1.4 LOB Classifications 1-3
1.4.1 Large Object Data Types 1-3
1.4.2 Types of LOBs 1-4
1.4.3 LOBs in Object Data Types 1-5
1.4.4 Oracle Data Types Stored in LOBs 1-5
1.5 LOB Locator and LOB Value 1-5
1.5.1 Using LOBs Without Locators 1-5
1.5.2 Using LOBs with Locators 1-6
1.6 LOB Restrictions 1-6
1.7 How to Navigate This Book 1-8
2 Persistent LOBs

2.1 Creating a Table with LOB Columns 2-1
2.2 Inserting and Updating LOB Values in Tables 2-4
2.2.1 Inserting and Updating with a Buffer 2-4
2.2.2 Inserting and Updating by Selecting a LOB From Another Table 2-4
2.2.3 Inserting and Updating with a NULL or Empty LOB 2-6
2.2.4 Inserting and Updating with a LOB Locator 2-7
2.2.4.1 PL/SQL: Inserting a Row by Initializing a LOB Locator Bind Variable 2-7
2.2.4.2 JDBC (Java): Inserting a Row by Initializing a LOB Locator Bind Variable 2-7

ORACLE

2.2.4.3 OCI (C): Inserting a Row by Initializing a LOB Locator Bind Variable 2-8
2.2.4.4 Pro*C/C++ (C/C++): Inserting a Row by Initializing a LOB Locator Bind
Variable 2-9
2.2.45 Pro*COBOL (COBOL): Inserting a Row by Initializing a LOB Locator
Bind Variable 2-10
2.3 Selecting LOB Values from Tables 2-11
2.3.1 Selecting a LOB into a Character Buffer or a Raw Buffer 2-11
2.3.2 Selecting a LOB into a LOB Variable for Read Operations 2-11
2.3.3 Selecting a LOB into a LOB Variable for Write Operations 2-12
2.4 Performing DML and Query Operations on LOBs in Nested Tables 2-12
2.5 Performing Parallel DDL, Parallel DML (PDML), and Parallel Query (PQ) Operations
on LOBs 2-14
2.6 Sharding with LOBs 2-15
3 Temporary LOBs
3.1 Before You Begin 3-1
3.1.1 Creating Temporary LOBs 3-1
3.1.2 Handling Temporary LOBs on the Client Side 3-2
3.2 Temporary LOB APIs in Different Programmatic Interfaces 3-3
3.2.1 PL/SQL APIs for Temporary LOBs 3-4
3.2.2 JDBC API for Temporary LOBs 3-5
3.2.3 OCI APIs for Temporary LOBs 3-6
3.2.4 ODP.NET API for Temporary LOBs 3-8
3.25 Pro*C/C++ and Pro*COBOL APIs for Temporary LOBs 3-8
4 BFILEs
4.1 DIRECTORY Objects 4-1
4.1.1 DIRECTORY Name Specification 4-1
4.1.2 Security on Directory Objects 4-2
4.2 BFILE Locators 4-4
4.3 BFILE APIs 4-9
4.3.1 Sanity Checking 4-10
4.3.2 Opening and Closing a BFILE 4-10
4.3.3 Reading from a BFILE 4-10
4.3.4 Working with Multiple BFILE Locators 4-11
4.4 BFILE APIs in Different Programmatic Interfaces 4-14
4.4.1 PL/SQL APIs for BFILEs 4-15
4.4.2 JDBC API for BFILEs 4-18
4.4.3 OCI API for BFILEs 4-22
4.4.4 ODP.NET API for BFILEs 4-26

ORACLE

4.45 OCCI API for BFILEs 4-27
4.4.6 Pro*C/C++ and Pro*COBOL API for BFILEs 4-28
5 SQL Semantics for LOBs
5.1 SQL Functions and Operators Supported for Use with LOBs 5-1
5.2 Detailed Semantics of SQL Operations on LOBs 5-5
5.2.1 Return Datatype for SQL Operations on LOBs 5-5
5.2.2 NULL vs EMPTY LOB: Semantic Difference between LOBs and VARCHAR?2 5-5
5.2.3 WHERE Clause Usage with LOBs 5-5
5.2.4 CLOBs and NCLOBs Do Not Follow Session Collation Settings 5-6
5.2.5 Codepoint Semantics 5-6
5.3 Restrictions on SQL Operations on LOBs 5-7
6 PL/SQL Semantics for LOBs
6.1 Implicit Conversion with LOBs 6-1
6.1.1 Implicit Conversion Between CLOB and NCLOB Data Types in SQL 6-2
6.1.2 Implicit Conversions Between CLOB and VARCHAR2 6-3
6.1.3 Implicit Conversions Between BLOB and RAW 6-5
6.1.4 Guidelines and Restrictions for Implicit Conversions with LOBs 6-5
6.1.5 Detailed Examples for Implicit Conversions with LOBs 6-7
6.2 Explicit Data Type Conversion Functions 6-9
6.3 Temporary LOBs Created by SQL and PL/SQL Built-in Functions 6-10
7 Data Interface for LOBs
7.1 Overview of the Data Interface for LOBs 7-1
7.2 Benefits of Using the Data Interface for LOBs 7-1
7.3 Data Interface for LOBs in Java 7-3
7.4 Data Interface for LOBs in OCI 7-6
7.4.1 Binding a LOB in OCI 7-7
7.4.2 Defining a LOB in OCI 7-7
7.4.3 Multibyte Character Sets Used in OCI with the Data Interface for LOBs 7-8
7.4.4 Getting LOB Length 7-8
7.4.5 Using OCI Functions to Perform INSERT or UPDATE on LOB Columns 7-8
7.4.5.1 Performing Simple INSERT or UPDATE Operations in One Piece 7-8
7.4.5.2 Using Piecewise INSERT and UPDATE Operations with Polling 7-9
7.4.5.3 Performing Piecewise INSERT and UPDATE Operations with Callback 7-10
7.4.5.4 Performing Array INSERT and UPDATE Operations 7-12
7.4.6 Using OCI Data Interface to Fetch LOB Data 7-13
7.4.6.1 Performing Simple Fetch Operations in One Piece 7-13
ORACLE v

7.4.6.2 Performing a Piecewise Fetch with Polling 7-14

7.4.6.3 Performing a Piecewise with Callback 7-16

7.4.6.4 Performing an Array Fetch Operation 7-18

7.4.7 PL/SQL and C Binds from OCI 7-19

8 Locator Interface for LOBs

8.1 Before You Begin 8-1
8.1.1 Getting a LOB Locator 8-1
8.1.2 LOB Open and Close Operations 8-2
8.1.3 Read and Write at Chunk Boundaries 8-3
8.1.4 Prefetching LOB Data and Length 8-3
8.1.5 Determining Character Set ID 8-3
8.1.6 LOB APIs 8-4

8.2 PL/SQL API for LOBs 8-7
8.3 JDBC API for LOBs 8-14
8.4 OCI API for LOBs 8-18
8.4.1 Efficiently Reading LOB Data in OCI 8-26
8.4.2 Efficiently Writing LOB Data in OCI 8-31

8.5 ODP.NET API for LOBs 8-34
8.6 OCCI API for LOBs 8-35
8.7 Pro*C/C++ and Pro*COBOL API for LOBs 8-38

9 Distributed LOBs

9.1 Working with Remote LOBs in SQL and PL/SQL 9-1

9.2 Using the Data Interface on Remote LOBs 9-4

9.3 Working with Remote Locators 9-6
9.3.1 Using Local and Remote Locators as Bind with Queries and DML on Remote

Tables 9-7

9.3.2 Using Remote Locator 9-8

9.3.3 Restrictions when using remote LOB locators 9-9

10 Performance Guidelines

10.1 LOB Performance Guidelines 10-1
10.1.1 AlILOBs 10-1
10.1.2 Performance Guidelines While Using Persistent LOBs 10-2
10.1.3 Temporary LOBs 10-2

10.2 Moving Data to LOBs in a Threaded Environment 10-5

10.3 LOB Access Statistics 10-5

ORACLE vi

11 Persistent LOBs: Advanced DDL

11.1 Creating a New LOB Column 11-1
11.1.1 CREATE TABLE BNF 11-2
11.1.2 ENABLE or DISABLE STORAGE IN ROW 11-4
11.1.3 CACHE, NOCACHE, and CACHE READS 11-4
11.1.4 LOGGING and FILESYSTEM_LIKE_LOGGING 11-5
11.1.5 The RETENTION Parameter 11-6
11.1.6 SecureFiles Compression, Deduplication, and Encryption 11-7
11.1.7 BasicFile Specific Parameters 11-11
11.1.8 Restriction on First Extent of a LOB Segment 11-13
11.1.9 Summary of CREATE TABLE LOB Storage Parameters for Securefile LOBs 11-13

11.2 Altering an Existing LOB Column 11-15
11.2.1 ALTER TABLE BNF 11-15
11.2.2 ALTER TABLE MODIFY vs ALTER TABLE MOVE LOB 11-17
11.2.3 ALTER TABLE SecureFiles LOB Features 11-17

11.2.3.1 ALTER TABLE with Advanced LOB Compression 11-17
11.2.3.2 ALTER TABLE with Advanced LOB Deduplication 11-18
11.2.3.3 ALTER TABLE with SecureFiles Encryption 11-18

11.3 Creating an Index on LOB Column 11-19
11.3.1 Function-Based Indexing on LOB Columns 11-19
11.3.2 Domain Indexing on LOB Columns 11-20

11.3.2.1 Extensible Optimizer 11-21
11.3.2.2 Text Indexes on LOB Columns 11-21

11.4 LOBs in Partitioned Tables 11-22
11.4.1 Partitioning a Table Containing LOB Columns 11-23
11.4.2 Default LOB Storage Attributes 11-23
11.4.3 Partition Maintenance Operation 11-24
11.4.4 Creating an Index on a Table Containing Partitioned LOB Columns 11-25

11.5 LOBs in Index Organized Tables 11-25

12 Advanced Design Considerations

12.1 Read-Consistent Locators 12-1
12.1.1 A Selected Locator Becomes a Read-Consistent Locator 12-1
12.1.2 Example of Updating LOBs and Read-Consistency 12-2
12.1.3 Example of Updating LOBs Through Updated Locators 12-3
12.1.4 Example of Updating a LOB Using SQL DML and DBMS_LOB 12-5
12.1.5 Example of Using One Locator to Update the Same LOB Value 12-6
12.1.6 Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable 12-7
12.1.7 Example of Deleting a LOB Using Locator 12-9
12.1.8 Ensuring Read Consistency 12-11

ORACLE vii

12.2 LOB Locators and Transaction Boundaries 12-11

12.2.1 About LOB Locators and Transaction Boundaries 12-11
12.2.2 Read and Write Operations on a LOB Using Locators 12-12
12.2.3 Selecting the Locator Outside of the Transaction Boundary 12-12
12.2.4 Selecting the Locator Within a Transaction Boundary 12-13
12.2.5 LOB Locators Cannot Span Transactions 12-14
12.2.6 Example of Locator Not Spanning a Transaction 12-14
12.3 LOBs in the Object Cache 12-15
12.4 Guidelines for Creating Terabyte sized LOBs 12-16
12.4.1 Creating a Tablespace and Table to Store Terabyte LOBs 12-16

13 Managing LOBs: Database Administration

13.4 LOB Migration with Data Pump 13-1
13.1 Initialization Parameter for SecureFiles LOBs 13-1
13.2 Database Character Set Considerations 13-2
13.3 Database Utilities for Loading Data into LOBs 13-2
13.3.1 Loading LOBs with SQL*Loader 13-2
13.3.2 Loading BFILEs with SQL*Loader 13-5
13.3.3 Loading LOBs with External Tables 13-7
13.3.3.1 Overview of LOBs and External Tables 13-7

13.5 BFILEs Management 13-9
13.5.1 Guidelines for DIRECTORY Usage 13-9
13.5.2 Rules for Using Directory Objects and BFILEs 13-10
13.5.3 Setting Maximum Number of Open BFILEs 13-10
13.6 Managing LOB Signatures 13-11

14 Migrating Columns to SecureFile LOBs

14.1 Migration Considerations 14-1
14.2 Migration Methods 14-1
14.2.1 Migrating LOBs with Online Redefinition 14-2
14.2.2 Migrating LOBs with Data Pump 14-5
14.3 Other Considerations While Migrating LONG Columns to LOBs 14-6
14.3.1 Migrating Applications from LONGs to LOBs 14-6
14.3.2 Alternate Methods for LOB Migration 14-10

15 Introducing the Database File System

15.1 Why a Database File System? 15-1
15.2 What Is Database File System (DBFS)? 15-1
15.2.1 About DBFS 15-1

ORACLE viii

15.2.2 DBFS Server 15-2
15.2.3 DBFS Client Access Methods 15-3

16 DBFS SecureFiles Store

16.1 Setting Up a SecureFiles Store 16-1
16.1.1 About Managing Permissions 16-1
16.1.2 Creating or Setting Permissions 16-1
16.1.3 Creating a SecureFiles File System Store 16-2
16.1.4 Accessing SecureFiles Store 16-4
16.1.5 Reinitializing SecureFiles Store File Systems 16-4
16.1.6 Comparison of SecureFiles LOBs to BasicFiles LOBs 16-4

16.2 Using a DBFS SecureFiles Store File System 16-5
16.2.1 DBFS Content APl Working Example 16-5
16.2.2 Dropping SecureFiles Store File Systems 16-6

16.3 About DBFS SecureFiles Store Package, DBMS_DBFS_SFS 16-7

16.4 Database File System (DBFS)— POSIX File Locking 16-7
16.4.1 About Advisory Locking 16-8
16.4.2 About Mandatory Locking 16-8
16.4.3 File Locking Support 16-8
16.4.4 Compatibility and Migration Factors of Database Filesystem—File Locking 16-9
16.4.5 Examples of Database File System—File Locking 16-9
16.4.6 DBFS Locking Behavior 16-10
16.4.7 Scheduling File Locks 16-11

16.4.7.1 Greedy Scheduling 16-11
16.4.7.2 Fair Scheduling 16-12

17 Using DBFS

17.6 Dropping a File System 17-1
17.1 Installing DBFS 17-1
17.2 Creating a DBFS File System 17-2
17.2.1 About the Create File System Command 17-2
17.2.2 Privileges Required to Create a DBFS File System 17-3
17.2.3 Creating a Non-Partitioned File System 17-4
17.2.4 Creating a Partitioned File System 17-4
17.2.5 Enabling Advanced SecureFiles LOB Features for DBFS 17-5
17.3 Accessing DBFS File System 17-6
17.3.1 DBFS Client Prerequisites 17-6
17.3.2 Multiple Mount Points on DBFS Client 17-7
17.3.2.1 MUMV for CDB Variant 17-7

ORACLE

17.3.2.2

MUMYV for Cross-Database Variant

17.3.3 Manager File System

17.3.3.1
17.3.3.2
17.3.3.3
17.3.3.4
17.3.35

Adding a DBFS Mount Point

Listing DBFS Mount Points

Unmounting a DBFS Mount Point
Configuration Parameters of DBFS Client
Diagnosability of DBFS Client

17.3.4 DBFS Client Command-Line Interface Operations

17.3.4.1
17.3.4.2
17.3.4.3
17.3.4.4

About the DBFS Client Command-Line Interface
Listing a Directory

Copying Files and Directories

Removing Files and Directories

17.3.5 DBFS Mounting Interface (Linux and Solaris Only)

17.35.1
17.3.5.2
17.3.5.3
17.3.5.4
17.3.5.5
17.3.5.6
17.3.5.7
17.3.5.8
17.3.5.9

17.3.5.10 Restrictions on Types of Files Stored at DBFS Mount Points

Installing FUSE on Solaris 11 SRU7 and Later
Solaris-Specific Privileges

About the Mount Command for Solaris and Linux
Mounting a File System with a Wallet

Mounting a File System with Password at Command Prompt

Unmounting a File System
Mounting DBFS Through fstab Utility for Linux

Mounting DBFS Through the vfstab Utility for Solaris

Restrictions on Mounted File Systems

17.3.6 File System Security Model

17.3.6.1
17.3.6.2
17.3.6.3
17.3.6.4

About the File System Security Model
Enabling Shared Root Access

About DBFS Access Among Multiple Database Users
Establishing DBFS Access Sharing Across Multiple Database Users

17.3.7 HTTP, WebDAV, and FTP Access to DBFS

17.3.7.1
17.3.7.2
17.3.7.3
17.3.7.4

Internet Access to DBFS Through XDB

Web Distributed Authoring and Versioning (WebDAV) Access

FTP Access to DBFS
HTTP Access to DBFS

17.4 Maintaining DBFS
17.4.1 Using Oracle Wallet with DBFS Client
17.4.2 DBFS Diagnostics
17.4.3 Preventing Data Loss During Failover Events
17.4.4 Bypassing Client-Side Write Caching
17.4.5 Backing up DBFS

17451
17.45.2

ORACLE

DBFS Backup at the Database Level
DBFS Backup Through a File System Utility

17-8

17-8

17-8
17-10
17-10
17-10
17-11
17-11
17-11
17-12
17-12
17-13
17-13
17-13
17-13
17-13
17-14
17-15
17-15
17-15
17-16
17-17
17-17
17-17
17-18
17-18
17-18
17-19
17-22
17-22
17-23
17-23
17-24
17-24
17-24
17-25
17-26
17-26
17-26
17-26
17-27

17.4.6 Small File Performance of DBFS 17-27

17.5 Shrinking and Reorganizing DBFS Filesystems 17-27
17.5.1 About Changing DBFS File Systems 17-27
17.5.2 Advantages of Online Filesystem Reorganization 17-28
17.5.3 Determining Availability of Online Filesystem Reorganization 17-28
17.5.4 Required Permissions for Online Filesystem Reorganization 17-29
17.5.5 Invoking Online Filesystem Reorganization 17-30

18 DBFS Hierarchical Store

18.1 About the Hierarchical Store Package DBMS_DBFS_HS 18-1
18.2 Setting up the Store 18-1
18.2.1 Creating, Registering, and Mounting the Store 18-1
18.3 Using the Hierarchical Store 18-2
18.3.1 Using Hierarchical Store as a File System 18-2
18.3.2 Using Hierarchical Store as an Archive Solution For SecureFiles LOBs 18-2
18.3.3 Dropping a Hierarchical Store 18-3
18.3.4 Compression to Use with the Hierarchical Store 18-3
18.3.5 Program Example Using Tape 18-3
18.3.6 Program Example Using Amazon S3 18-7
18.4 The DBMS_DBFS_HS Package 18-12
18.4.1 Constants for DBMS_DBFS_HS Package 18-12
18.4.2 Methods for DBMS_DBFS_HS Package 18-12
18.5 Views for DBFS Hierarchical Store 18-13
18.5.1 DBA Views 18-14
18.5.2 User Views 18-14

19 Database File System Links

19.1 About Database File System Links 19-1
19.2 Ways to Create Database File System Links 19-2
19.3 Database File System Links Copy 19-3
19.4 The DBMS_LOB Package Used with DBFS 19-3
19.5 DBMS_LOB Constants Used with DBFS 19-4
19.6 DBMS_LOB Subprograms Used with DBFS 19-4
19.7 Copying a Linked LOB Between Tables 19-6
19.8 Online Redefinition and DBFS Links 19-6
19.9 Transparent Read 19-6

ORACLE Xi

20 DBFS Content API

20.1
20.2
20.3

Overview of DBFS Content API
Stores and DBFS Content API
Getting Started with DBMS_DBFS_CONTENT Package

20.3.1 DBFS Content API Role
20.3.2 Path Name Constants and Types
20.3.3 Path Properties
20.3.4 Content IDs
20.3.5 Path Name Types
20.3.6 Store Features
20.3.7 Lock Types
20.3.8 Standard Properties
20.3.9 Optional Properties
20.3.10 User-Defined Properties
20.3.11 Property Access Flags
20.3.12 Exceptions
20.3.13 Property Bundles
20.3.14 Store Descriptors

20.4 Administrative and Query APIs
20.4.1 Registering a Content Store

20.4.2 Unregistering a Content Store

20.4.3 Mounting a Registered Store

20.4.4 Unmounting a Previously Mounted Store

20.4.5 Listing all Available Stores and Their Features
20.4.6 Listing all Available Mount Points
20.4.7 Looking Up Specific Stores and Their Features

20.5
20.6
20.7
20.8
20.9
20.10
20.11
20.12
20.13
20.14
20.15
20.16
20.17
20.18

ORACLE

Querying DBFS Content API Space Usage

DBFS Content API Session Defaults

DBFS Content API Interface Versioning

DBFS Content API Creation Operations

DBFS Content API Deletion Operations
DBFS Content API Path Get and Put Operations
DBFS Content APl Rename and Move Operations
Directory Listings
DBFS Content API Directory Navigation and Search
DBFS Content API Locking Operations
DBFS Content API Access Checks
DBFS Content API Abstract Operations
DBFS Content API Path Normalization
DBFS Content API Statistics Support

Xii

20-1
20-1
20-2
20-2
20-2
20-2
20-3
20-3
20-4
20-4
20-5
20-5
20-5
20-6
20-6
20-6
20-7
20-7
20-8
20-8
20-8
20-9
20-9
20-10
20-10
20-10
20-11
20-11
20-12
20-12
20-13
20-14
20-14
20-15
20-15
20-15
20-16
20-16
20-17

20.19 DBFS Content API Tracing Support

20-17

20.20 Resource and Property Views 20-18
271 Creating Your Own DBFS Store
21.1 Overview of DBFS Store Creation and Use 21-1
21.2 DBFS Content Store Provider Interface (DBFS Content SPI) 21-2
21.3 Creating a Custom Store Provider 21-3
21.3.1 Installation and Setup 21-3
21.3.2 TBFS Use 21-4
21.3.3 TBFS Internals 21-4
21.3.4 Example Scripts 21-5
21.3.4.1 Driver Script 21-5
21.3.4.2 Creating a Test User, Tablespace and Table to Backup Filesystem 21-6
21.3.4.3 Providing SPI Specification 21-6
21.3.4.4 SPI Implementation of tbfs 21-15
21.3.4.5 Registering and Mounting the DBFS 21-29
22 DBFS Access Using OFS

22.1 OFS Configuration Parameters 22-1
22.1.1 OFS Client Interface 22-1
22.1.1.1 DBMS_FS Package 22-1
22.1.1.2 Views for OFS 22-2

22.2 Accessing DBFS with an NFS Account 22-2
22.2.1 Prerequisites to Access Storage Through NFS Server 22-3
22.2.2 NFS Security 22-3
22.2.2.1 Kerberos 22-4

A Comparing the LOB Interfaces

ORACLE

Xiii

Preface

Preface

This guide describes database features that support application development using
SecureFiles and Large Object (LOB) data types and Database File System (DBFS).
The information in this guide applies to all platforms, and does not include system-
specific information.

Audience

Oracle Database SecureFiles and Large Objects Developer's Guide is intended for
programmers who develop new applications using LOBs and DBFS, and those who
have previously implemented this technology and now want to take advantage of new
features.

Efficient and secure storage of multimedia and unstructured data is increasingly
important, and this guide is a key resource for this topic within the Oracle Application
Developers documentation set.

Feature Coverage and Availability

Oracle Database SecureFiles and Large Objects Developer's Guide contains
information that describes the SecureFiles LOB and BasicFiles LOB features and
functionality of Oracle Database 12c¢ Release 2 (12.2).

Prerequisites for Using LOBs

Oracle Database includes all necessary resources for using LOBs in an application;
however, there are some restrictions as described in the "LOB Rules and Restrictions"
section.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

For more information, see the following manuals:

ORACLE Xiv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

* Oracle Database 2 Day Developer's Guide

* Oracle Database Development Guide

* Oracle Database Utilities

e Oracle XML DB Developer’s Guide

* Oracle Database PL/SQL Packages and Types Reference

* Oracle Database Data Cartridge Developer's Guide

e Oracle Call Interface Programmer's Guide

e Oracle C++ Call Interface Programmer's Guide

* Pro*C/C++ Programmer's Guide

* Pro*COBOL Programmer's Guide

* Oracle Database Programmer's Guide to the Oracle Precompilers
* Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Java
The Oracle Java documentation set includes the following:

e Oracle Database JDBC Developer’s Guide
e Oracle Database Java Developer’s Guide

Basic References

To download free release notes, installation documentation, white papers, or other collateral,
please visit the Oracle Technology Network (OTN)

http://ww. oracl e. com t echnet wor k/ i ndex. ht m

For the latest version of the Oracle documentation, including this guide, visit

http:// ww. oracl e. com t echnet wor k/ docunent ati on/ i ndex. ht m

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

ORACLE v

http://www.oracle.com/technetwork/index.html
http://www.oracle.com/technetwork/documentation/index.html

Introduction to Large Objects and SecureFiles

Large Objects are used to hold large amounts of data inside Oracle Database, SecureFiles
provides performance comparable to file system performance, and DBFS provides file
system interface to files stored in Oracle Database.

1.1 Changes in Oracle Database

The following are the changes in SecureFiles and Large Objects Developer's Guide for
Oracle Database.

* Updates to Oracle Database Security 21c

1.1.1 Updates to Oracle Database Security 21c

Oracle Database release 21c has one new security update that applies to all releases starting
from release 11.2.

Security Update for Native Encryption

Oracle provides a patch that you can download to address necessary security enhancements
that affect native network encryption environments in Oracle Database release 11.2 and later.

This patch is available in My Oracle Support note 2118136.2.
The supported algorithms that have been improved are as follows:

e Encryption algorithms: AES128, AES192 and AES256
e Checksumming algorithms: SHA1, SHA256, SHA384, and SHA512

Algorithms that are deprecated and should not be used are as follows:

- Encryption algorithms: DES, DES40, 3DES112, 3DES168, RC4_40, RC4_56, RC4_128,
and RC4_256

e Checksumming algorithm: MD5

If your site requires the use of network native encryption, then you must download the patch
that is described in My Oracle Support note 2118136.2. To enable a smooth transition for your
Oracle Database installation, this patch provides two parameters that enable you to disable
the weaker algorithms and start using the stronger algorithms. You will need to install this
patch on both servers and clients in your Oracle Database installation.

An alternative to network native encryption is Transport Layer Security (TLS), which provides
protection against person-in-the-middle attacks.

ORACLE 1-1

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2118136.2
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2118136.2

Chapter 1
What Are Large Objects?

¢ See Also:

* Choosing Between Native Network Encryption and Transport Layer
Security in Oracle Database Security Guide

* Improving Native Network Encryption Security in Oracle Database
Security Guide

1.2 What Are Large Objects?

Large Objects (LOBs), SecureFiles LOBs, and Database File System (DBFS) work
together with various database features to support application development.

Large Objects

The maximum size for a single LOB can range from 8 terabytes to 128 terabytes
depending on how your database is configured. Storing data in LOBs enables you to
access and manipulate the data efficiently in your application.

SecureFile LOBs

SecureFile LOBs are LOBs that are created in a tablespace managed with Automatic
Segment Space Management (ASSM). SecureFiles is the default storage mechanism
for LOBs in database tables. Oracle strongly recommends SecureFiles for storing and
managing LOBs.

Database File System (DBFS)

Database File System (DBFS) provides a file system interface to files that are stored in
an Oracle Database.

Files stored in an Oracle Database are usually stored as SecureFiles LOBs, and path
names, directories, and other file system information is stored in the database tables.
SecureFiles LOBs is the default storage method for DBFS, but BasicFiles LOBs can
be used in some situations.

With DBFS, you can make references from SecureFiles LOB locators to files stored
outside the database. These references are called DBFS Links or Database File
System Links.

1.3 Where Should We Use LOBs?

ORACLE

Large objects are suitable for semistructured and unstructured data.

Large object features enable you to store the following types of data in the database
and also in the operating system files that are accessed from the database.

e Semistructured data

Semistructured data has a logical structure that is not typically interpreted by the
database, for example, an XML document that your application or an external
service processes. Oracle Database provides features such as Oracle XML DB,
Oracle Multimedia, and Oracle Spatial and Graph to help your application work
with semistructured data.

1-2

Chapter 1
LOB Classifications

e Unstructured data

Unstructured data is easily not broken down into smaller logical structures and is not
typically interpreted by the database or your application, such as a photographic image
stored as a binary file.

Data unsuited for LOBs

e Simple Structured Data
Simple structured data can be organized into relational tables that are structured based
on business rules.

e Complex Structured Data
Complex structured data is suited for the object-relational features of the Oracle
Database such as collections, references, and user-defined types.

Maximum Size of a LOB

The maximum permissible LOB size for your configuration depends on the block size setting
of the tablespace. It is calculated as (4 gi gabytes - 1)*(space usable for data in the
LOB bl ock) . For example, if a LOB is stored in a tablespace of block size 8K, then the
approximate maximum LOB size is about 32 terabytes.

1.4 LOB Classifications

LOBs store a variety of data such as audio, video, documents, and so on. Based on the type
of data stored in the LOB or memory management mechanism used, there are different
classifications.

1.4.1 Large Object Data Types

ORACLE

Oracle Database provides a set of large object data types as SQL data types, where the term
LOB generally refers to the set.

In general, the descriptions given for the data types in this table and related sections, also
apply to the corresponding data types provided for other programmatic environments.

The following table describes each large object data type that the database supports and
describes the kind of data that uses it.

Table 1-1 Types of Large Object Data

___|
SQL Data Type Description

BLOB Binary Large Object
Stores any kinds of data in binary format. Used for images, audio, and video.
CLOB Character Large Object

Stores string data in the database character set format. Used for large strings or
documents that use the database character set exclusively. Characters in the
database character set are in a fixed width format.

NCLOB National Character Set Large Object

Stores string data in National Character Set format, typically large strings or
documents. Supports characters of varying width format.

1-3

Chapter 1
LOB Classifications

Table 1-1 (Cont.) Types of Large Object Data

___|
SQL Data Type Description

BFI LE External Binary File

A binary file stored outside of the database in the host operating system file
system, but accessible from database tables. BFI LEs can be accessed from your
application on a read-only basis. Use BFI LEs to store static data, such as image
data, that is not manipulated in applications.

Any kind of data, that is, any operating system file, can be stored in a BFI LE. For
example, you can store character data in a BFI LE and then load the BFI| LE data
into a CLOB, specifying the character set upon loading.

1.4.2 Types of LOBs

ORACLE

This section describes the three types of LOB data that Oracle supports.

Persistent LOBs

A persistent LOB is a LOB instance that exists in a table row in the database.
Persistent LOBs participate in database transactions. You can recover persistent LOBs
in the event of transaction or media failure, and any changes to a persistent LOB value
can be committed or rolled back. In other words, all the Atomicity, Consistency,
Isolation, and Durability (ACID) properties that apply to database objects apply to
persistent LOBs. Persistent LOBs can be of data types BLOB, CLOB and NCLOB.

Temporary LOBs

A temporary LOB instance is created when you instantiate a LOB only within the
scope of your local application. Temporary LOBs are transient, just like other local
variables in an application. A temporary LOB becomes persistent when you insert it
into a table row. Temporary LOBs can be of data types BLOB, CLOB and NCLOB.

BFILEs

BFI LEs are data objects stored in operating system files, outside the database
tablespaces. Data stored in a table column of type BFI LE is physically located in an
operating system file, not in the database.

BFI LEs are read-only data types. The database allows read-only byte stream access to
data stored in BFI LES. You cannot write to or update a BFI LE from within your
application.

You typically use BFI LEs to hold:

* Binary data that does not change while your application is running, such as
graphics

» Data that is loaded into other large object types, such as a BLOB or CLOB, where the
data can then be manipulated

» Data that is appropriate for byte-stream access, such as multimedia

Any storage device accessed by your operating system can hold BFI LE data, including
hard disk drives, CD-ROMs, PhotoCDs, and DVDs. The database can access BFI LEs
provided the operating system supports stream-mode access to the operating system
files.

1-4

Chapter 1
LOB Locator and LOB Value

< Note:

All the information related to BFILES is exclusively documented either in BFILES or
in Managing LOBs: Database Administration.

1.4.3 LOBs in Object Data Types

Typically, there is no difference in the use of a LOB instance in a LOB column or in an object
data type, as its member.

In this guide, the term LOB attribute refers to a LOB instance that is a member of an object
data type. Unless otherwise specified, discussions that apply to LOB columns also apply to
LOB attributes.

1.4.4 Oracle Data Types Stored in LOBs

Many data types provided with Oracle Database are stored as or created with LOB types.
The following list mentions a few data types that you can store with LOB types:

e VARCHAR2 or RAWdata types of size greater than 4000 bytes

* JSONdata type

* XM.Type stored as Bl NARY XML or CLOB

* VARRAY stored as LOB

1.5 LOB Locator and LOB Value

A LOB instance has a locator and a value. A LOB locator is a reference, or a pointer, to
where the LOB value is physically stored. The LOB value is the data stored in the LOB.

A LOB locator can be assigned to any LOB instance of the same type, such as BLOB, CLOB,
NCLOB, or BFI LE. When you use a LOB in an operation such as passing a LOB as a
parameter, you are actually passing a LOB locator. For the most part, you can work with a
LOB instance in your application without being concerned with the semantics of LOB
locators. There is no requirement to dereference LOB locators, as is required with pointers in
some programming languages.

There are two different techniques to access and modify LOBSs:

1.5.1 Using LOBs Without Locators

LOBs can be used in many operations similar to how VARCHARZ2 or RAW data types are
used. Such LOB operations can be performed without the use of LOB locators.

LOB operations that are similar to VARCHAR2 and RAWtypes include:

* SQL and PLSQL built-in functions and implicit assignments

ORACLE 1-5

Chapter 1
LOB Restrictions

¢ See Also:

— SQL Semantics for LOBs
— PL/SQL Semantics for LOBs

Data interface on LOBs that enables you to insert or select entire LOB data in a
LOB column without using a LOB locator as follows:

— Use a bind variable associated with a LOB column to insert character data into
a CLOB, or RAWdata into a BLOB. For example, in PLSQL you can insert a
VARCHAR2 buffer into a CLOB column, and in OCI you can bind a buffer of type
SQLT_CHARto a CLOB column.

— Define an output buffer in your application that holds character data selected
from a CLOB or RAWdata selected from a BLOB. For example, in PLSQL you can
select the CLOB output of a query into a VARCHAR2 buffer, and in OCI you can
define a CLOB query result item to a buffer of type SQLT_CHAR.

¢ See Also:

Data Interface for LOBs

1.5.2 Using LOBs with Locators

You can use the LOB locator to access and modify LOB values by passing the LOB
locator to the LOB APIs supplied with the database. These operations support efficient
piecewise read and write to LOBSs.

You should use this mode if your application needs to perform random or piecewise
read or write calls to LOBs, which means it needs to specify the offset or amount of the
operation to read or write a part of the LOB value.

¢ See Also:

Locator Interface for LOBs

1.6 LOB Restrictions

You have to keep a few restrictions in mind while working with LOB data.

ORACLE

LOB columns are subiject to the following rules and restrictions:

You cannot specify a LOB as a primary key column.

You cannot specify LOB columns in the ORDER BY clause of a query, the GROUP BY
clause of a query, or an aggregate function.

You cannot specify a LOB column in a SELECT... DI STI NCT or SELECT... UNI QUE
statement or in a join. However, you can specify a LOB attribute of an object type
column in a SELECT... DI STI NCT statement, a query that uses the UNI ON, or a M NUS

1-6

ORACLE

Chapter 1
LOB Restrictions

set operator if the object type of the column has a MAP or ORDER function defined on it.
Clusters cannot contain LOBs, either as key or nonkey columns.
Even though compressed VARRAY data types are supported, they are less performant.

The following data structures are supported only as temporary instances. You cannot
store these instances in database tables:

— VARRAY of any LOB type

— VARRAY of any type containing a LOB type, such as an object type with a LOB
attribute

— ANYDATA of any LOB type
— ANYDATA of any type containing a LOB
The first (I NI TI AL) extent of a LOB segment must contain at least three database blocks.

The minimum extent size is 14 blocks. For an 8K block size (the default), this is
equivalent to 112K.

When creating an AFTER UPDATE DML trigger, you cannot specify a LOB column in the
UPDATE COF clause. For a table on which you have defined an AFTER UPDATE DM trigger, if
you use OCI functions or the DBMS_LOB package to change the value of a LOB column or
the LOB attribute of an object type column, the database does not fire the DML trigger.

You cannot specify a LOB column as part of an index key. However, you can specify a
LOB column in the indextype specification of a functional or domain index. In addition,
Oracle Text lets you define an index on a CLOB column.

In SQL Loader, a field read from a LOB cannot be used as an argument to a clause.

Case-insensitive searches on CLOB columns often do not succeed. If you perform the
following case-insensitive search on a CLOB column:

ALTER SESSI ON SET NLS_COWP=LI NGUI STI C;
ALTER SESSI ON SET NLS_SORT=BI NARY_Cl ;
SELECT * FROM ci _test WHERE LOWER(clob_col) LIKE 'aa%;

The select fails without the LOAER function. You can perform case-insensitive searches
with Oracle Text or the DBMS_LOB. I NSTR() function.

" See Also:

e Restrictions on SQL Operations on LOBs

e Guidelines and Restrictions for Implicit Conversions with LOBs
e #unique_35

e Restrictions when using remote LOB locators

* Restrictions on Mounted File Systems

* Restrictions on Types of Files Stored at DBFS Mount Points

e Restrictions on Index Organized Tables with LOB Columns

e Restrictions on Migrating LOBs with Data Pump

1-7

Chapter 1
How to Navigate This Book

1.7 How to Navigate This Book

ORACLE

This section elaborates how to navigate this book using a flow chart that provides
information about the relevant chapters you must read for understanding various
concepts or performing various tasks.

DEFS Chapters

15. Introducing the Database File System
16. Using DEFS

17. DBFS Securefiles store

BFILEs Chapters e Wh;::‘::“ U951 4B DBFs Hie rarchical stor

4. BFILEs application 10. Database File Systzm Links

13. Managing LOBs: Database need? 20. DEFSICDME""AN
Administrztion 21. Craating Your Own DBFS Store

22. DBFS Access using OFS

LOBs {

Intreductory Chapters
2. Persistent LOBs
3. Temporary LOBS

l

" Sequential access; Random Access;
Access LOBs like VARCHARS .) L .,
) Fead/Write entire LOB ’, Read MWrite piecewise
5. 5L Semantics for LOBs What's Use LOB Locator
- [— e
&. PL/S0L Semantics for LOEs my access E. Locator LOBs
7. Data Interface for LOBs pattern? -

|
Remote Access;
Sequential or Random

Access LOBs like VARCHARS, or
Use LOB Locator
2.Distributad LOBs

I
L 4

+* Keep in mind **
10. Performance Gui

¥

Advanced featuras (as needed)
11, Persistent LOBs: Advanced DDL
12. advanced Design Considerations

13 ing LOBs : Database Administration
14. Migrating Columns to SecureFile LOBs

1-8

Persistent LOBS

A persistent LOB is a LOB instance that exists in a table row in the database. Persistent
LOBs can be stored as SecureFiles or BasicFiles.

The term LOB can represent LOBs of either SecureFiles or BasicFiles type, unless the
storage type is explicitly indicated. It can be either by name for both storage types, or by
reference to archiving or linking, which only applies to the SecureFiles storage type. Oracle
strongly recommends SecureFiles for storing and managing LOBs.

SecureFiles LOB storage is the default in the CREATE TABLE statement, if no storage type is
explicitly specified. All new LOB columns use SecureFiles LOB storage by default, which is
the recommended method for storing and managing LOBs. SecureFiles LOB storage is
designed to provide great performance and scalability to meet or exceed the performance of
traditional network file system. However, you must use BasicFiles LOB storage for LOB
storage in tablespaces that are not managed with Automatic Segment Space Management
(ASSM). SecureFiles LOBs can only be created in tablespaces managed with Automatic
Segment Space Management (ASSM).

2.1 Creating a Table with LOB Columns

ORACLE

You can use the CREATE TABLE statement or an ALTER TABLE ADD column statement to create
a new LOB column. This section introduces basic DDL operations on LOBs to get you started
quickly.

Following is an example of creating a table with columns of various LOB types, including
LOBs in Object Types and nested tables:

CREATE USER pmidentified by password;
GRANT CONNECT, RESOURCE to pm | DENTI FI ED BY pm
CONNECT pm pm

-- Create an object type with a LOB
CREATE TYPE adheader typ AS OBJECT (
header _nane VARCHAR2(256) ,

creation_date DATE,
header _t ext VARCHAR(1024) ,
| ogo BLOB);

CREATE TYPE textdoc_typ AS OBJECT (
document _typ VARCHAR2(32),
formatted doc BLOB);

-- Create a nested tahle type of Chject type containing a LOB
CREATE TYPE Textdoc_ntab AS TABLE of textdoc_typ;

-- Create a table of Chject type, and specify a default value for LOB col um

CREATE TABLE adheader tab of adheader typ (
| ogo DEFAULT EMPTY_BLOB(),

2-1

ORACLE

Chapter 2
Creating a Table with LOB Columns

CONSTRAI NT header _name CHECK (header _name |'S NOT NULL),
header text DEFAULT NULL);

-- Create a table with colums of different LOB types,

-- and of object type with LOBs, and nested table containing LOB

CREATE TABLE print_nedi a

(product _id NUMBER(6),

ad_i d NUMBER(6),

ad_conposite BLOB,

ad_sourcetext CLOB,

ad_finaltext CLOB,

ad_fltextn NCLOB,

ad_testdocs _ntab textdoc_tab,

ad_phot o BLOB,

ad_graphi ¢ BFI LE,

ad_header adheader _typ,

press_rel ease LONG NESTED TABLE ad_t extdocs_ntab STORE AS

t ext docs_nest edt ab;

CREATE UNI QUE | NDEX pri nt medi a_pk
ON print_media (product_id, ad_id);

2-2

ORACLE

Figure 2-1 print_media table

Chapter 2
Creating a Table with LOB Columns

PRINT_MEDIA Table

| Column name

] l Column Type ‘

product_id

ad_id
ad_composite
ad_sourcetext
ad_finaltext
ad_fltextn
ad_textdocs_ntab
ad_photo
ad_graphic
ad_header

press_release

NUMBER (6)
NUMBER (6)

BLOB

CLOB

CLOB

NCLOB

NESTED TABLE
BLOB

BFILE

USER DEFINED TYPE

LONG

You can also perform advanced DDL operations, like the following, on LOBSs:

e Specify LOB storage parameters: You can override the default LOB storage settings by
specifying parameters like SECUREFI LE/ BASI CFI LE, TABLESPACE where the LOB data will
be stored, ENABLE/ DI SABLE STORAGE | N ROW RETENTI ON, caching, logging, etc. You can
also specify SecureFile specific parameters like COWPRESSI ON, DEDUPLI CATI ON and

ENCRYPTI ON.

e Alter an existing LOB column: You can use the ALTER TABLE MODI FY LOB syntax to
change any LOB storage parameters that don't require LOB data movement and the
ALTER TABLE MOVE LOB syntax to change any LOB storage parameters that require LOB

data movement.

e Create indexes on LOB columns: You can build a functional or a domain index on a LOB
column. You cannot build a B-tree or bitmap index on a LOB column.

» Partition a table containing LOB columns: All partitioning schemes supported by Oracle

are fully supported on LOBs.

2-3

Chapter 2
Inserting and Updating LOB Values in Tables

* Use LOBs in Index-Organized tables.

See Also:

Persistent LOBs: Advanced DDL

2.2 Inserting and Updating LOB Values in Tables

Oracle Database provides various methods to insert and update the data available in
LOB columns of database tables.

2.2.1 Inserting and Updating with a Buffer

You can insert a character string directly into a CLOB or NCLOB column. Similarly, you
can insert a raw buffer into a BLOB column. This is the most efficient way to insert data
into a LOB.

The following code snippet inserts a character string into a CLOB column:

/* Store records in the archive table Online_nedia: */
I NSERT I NTO Online_nedia (product _id, product text) VALUES (3060, 'some
text about this CRT Mnitor');

The following code snippet updates the value in a CLOB column with character buffer:

UPDATE Online_nedia set product _text = 'sone other text' where
product _id = 3060;

" See Also:

Data Interface for LOBs for more information about | NSERT and UPDATE
operations

2.2.2 Inserting and Updating by Selecting a LOB From Another Table

ORACLE

You can insert into a LOB column of a table by selecting data from a LOB column of
the same table or a different table. You can also insert data into a LOB column of a
table by selecting a LOB returned by a SQL operator or a PL/SQL function.

Ensure that you meet the following conditions while selecting data from columns that
are part of more than one table:

* The LOB data type is the same for both the columns in the tables

* Implicit conversion is allowed between the two LOB data types used in both the
columns

When a BLOB, CLOB, or NCLOB is copied from one row to another in the same table or a
different table, the actual LOB value is copied, not just the LOB locator.

2-4

Chapter 2
Inserting and Updating LOB Values in Tables

The following code snippet demonstrates inserting a LOB column from by selecting a LOB
from another table. The columns onl i ne_nedi a. product _t ext and
print_medi a.ad_sourcet ext are both CLOB types.

/* Insert values into Print_nedia by selecting fromOnline_nedia: */

I NSERT I NTO Print_nedia (product _id, ad_id, ad_sourcetext)

(SELECT product id, 11001, product text FROM Online_media WHERE product _id =
3060) ;

/* Insert values into Print_nedia by selecting a SQuL function returning a
CLOB */

I NSERT I NTO Print_nedia (product_id, ad_id, ad_sourcetext)

(SELECT product id, 11001, substr(product text, 5) FROM Online_nedi a WHERE
product _id = 3060);

/* Updating a row by selecting a LOB from another table (persistent LOBs) */

UPDATE Print_nedia SET ad_sourcetext = (SELECT product text FROM
online_nedi a WHERE product _id = 3060);
WHERE product _id = 3060 AND ad_id = 11001;

/* Updating a row by selecting a SQ function returning a CLOB */

UPDATE Print_nedia SET ad_sourcetext = (SELECT substr(product text, 5) FROM
online_nedi a WHERE product _id = 3060);
WHERE product _id = 3060 AND ad_id = 11001;

The following code snippet demonstrates updating a LOB column from by selecting a LOB
from another table.

/* Updating a row by selecting a LOB from another table (persistent LOBs) */
UPDATE Print_nedia SET ad_sourcetext = (SELECT product _text FROM
online_nedi a WHERE product _id = 3060);

VWHERE product _id = 3060 AND ad_id = 11001,

/* Updating a row by selecting a SQL function returning a CLOB */

UPDATE Print_nedia SET ad_sourcetext = (SELECT substr(product _text, 5) FROM
online_nedi a WHERE product _id = 3060)

VWHERE product _id = 3060 AND ad_id = 11001,

See Also:

e Oracle Database SQL Language Reference for more information on | NSERT

» Performing Parallel DDL, Parallel DML (PDML), and Parallel Query (PQ)
Operations on LOBs for information about how to make the | NSERT AS SELECT
operation run in parallel

ORACLE 2-5

Chapter 2
Inserting and Updating LOB Values in Tables

2.2.3 Inserting and Updating with a NULL or Empty LOB

ORACLE

You can set a persistent LOB, that is, a LOB column in a table or a LOB attribute in an
object type that you defined, to be NULL or empty.

Inserting a NULL LOB value

A persistent LOB set to NULL has no locator. A NULL value is stored in the row in the
table, not a locator. This is the same process as for scalar data types. To INSERT a
NULL value into a LOB column, simply use a statement like:

I NSERT | NTO print_nedia(product _id, ad_id, ad sourcetext) VALUES (1, 1,
NULL) ;

This is useful in situations where you want to use a SELECT statement, such as the
following, to determine whether or not the LOB holds a NULL value:

SELECT COUNT (*) FROM print_medi a WHERE ad_graphic |'S NULL;

Caution:

You cannot call DBVMS_LOB functions or LOB APIs in other Programmatic
Interfaces on a NULL LOB, so you must then use a SQL UPDATE statement to
reset the LOB column to a non-NULL (or empty) value.

Inserting an EMPTY LOB value

Before you can write data to a persistent LOB using an API like DBMS_LOB. WRI TE or
OCl LobW i t e2, the LOB column must be non-NULL, that is, it must contain a locator that
points to an empty or a populated LOB value.

You can initialize a BLOB column value by using the EMPTY_BLOB() function as a default
predicate. Similarly, a CLOB or NCLOB column value can be initialized by using the
EMPTY_CLOB() function. Use the RETURNI NG clause in the | NSERT and UPDATE
statement, to minimize the number of round trips while writing the LOB using APIs.

Following PL/SQL block initializes a CLOB column with an empty LOB using the
EMPTY_CLOB() function and also updates the LOB value in a column with an empty
CLOB using the EMPTY_CLOB() function.

DECLARE
c CLCB;
amt | NTEGER : = 11,
buf VARCHAR(11) := 'Hello there';
BEG N
/* Insert enpty clob() */
I NSERT I NTO Print_nedia(product _id, ad_id, ad_sourcetext) VALUES (1,
1, EMPTY_CLOB()) RETURNI NG ad_source | NTO c;
/* The follow ng statenent updates the persistent LOB directly */
DBVS_LOB.WRI TE(c, ant, 1, buf);

2-6

Chapter 2
Inserting and Updating LOB Values in Tables

/* Update colum to an enpty_clob() */

UPDATE Print _nedia SET ad_sourcetext = EMPTY_CLOB() WHERE product _id = 2
AND ad id = 2 RETURNI NG ad_source | NTO c;

/* The follow ng statenent updates the persistent LOB directly */

DBMS _LOB. WRI TE(c, ant, 1, buf);
END;
/

2.2.4 Inserting and Updating with a LOB Locator

If you are using a Programmatic Interface, which has a LOB variable that was previously
populated by a persistent or temporary LOB locator, then you can insert a row by initializing
the LOB bind variable.

You can populate a LOB variable with a persistent LOB or a temporary LOB by either
selecting one out from the database using SQL or by creating a temporary LOB. This section
provides information about how to achieve this in various programmatic environments.

2.2.4.1 PLISQL: Inserting a Row by Initializing a LOB Locator Bind Variable

The following code snippet demonstrates how to insert a row by initializing a LOB locator bind
variable using PL/SQL APIs.

/* inserting a row through an insert statement */

CREATE OR REPLACE PROCEDURE insertLOB_proc (Lob_loc IN BLOB) IS

BEG N
/* Insert the BLOB into the row */
DBMS_QUTPUT. PUT_LINE(" ------------ LOB | NSERT EXAMPLE ------------ ")

I NSERT | NTO print_nedia (product_id, ad_id, ad_photo)
VALUES (3106, 60315, Lob_loc);
END;
/

2.2.4.2 JDBC (Java): Inserting a Row by Initializing a LOB Locator Bind Variable

ORACLE

The following code snippet demonstrates how to insert a row by initializing a LOB locator bind
variable using JDBC APIs:

/'l Core JDBC cl asses:

inport java.sql.DriverManager;
inport java.sql.Connection;

inport java.sql.Statenent;

inport java.sql.PreparedStatenent;
inport java.sql.ResultSet;

inport java.sql.SQLException;

/1 Oracle Specific JDBC cl asses:
inport oracle.sql.*;
inport oracle.jdbc.driver.*;

public class linsert
{
public static void main (String args [])
throws Exception

/1 Load the Oracle JDBC driver

2-7

Chapter 2
Inserting and Updating LOB Values in Tables

DriverManager.registerDriver (new oracle.jdbc.driver.OacleDriver ());
/1 Connect to the database:
Connection conn =

Driver Manager. get Connection ("jdbc:oracle:oci8: @, "pnt, "password");

/1 It's faster when auto commit is off:
conn. set Aut oCommi t (fal se);

Il Create a Statenent:
Statement stnt = conn.createStatenent ();

try

{
Resul t Set rset = stnt.executeQuery (
"SELECT ad_photo FROM Print_medi a WHERE product _id = 3106 AND ad_i d = 13001");
if (rset.next())

Il retrieve the LOB locator fromthe Result Set

BLOB adphoto_blob = ((Oracl eResul t Set)rset).getBLOB (1);
Oracl ePreparedSt at ement ops =

(Oracl ePreparedSt at ement) conn. prepar eSt at enent (

"I NSERT I NTO Print_media (product_id, ad_id, ad_photo) VALUES (2268,

+

}

"21001, ?)");
ops. set Bl ob(1, adphoto_blob);
ops. execute();
conn.comit();
conn. cl ose();

}

}
catch (SQLException e)
{

}
}

e.printStackTrace();

2.2.4.3 OCI (C): Inserting a Row by Initializing a LOB Locator Bind Variable

The following code snippet demonstrates how to insert a row by initializing a LOB
locator bind variable using OCI APIs:

ORACLE

/* Insert the Locator into table using Bind Variables. */
#i ncl ude <oratypes. h>

#i ncl ude <l obdeno. h>

voi d insertLOB_proc(QOCl LobLocator *Lob_l oc, OClEnv *envhp,

{

OCl Error *errhp, OClSvcCtx *svchp, OClStnt *stnthp)

i nt product _i d;
OCl Bi nd *bndhp3;

OCl Bi nd *bndhp2;

OCl Bi nd *bndhpl;

t ext *insstm =

(text *) "INSERT INTO Print_media (product_id, ad_id, ad_sourcetext) \
VALUES (:1, :2, :3)";

printf ("----------- OCl Lob Insert Demp -------------- \n");
/* Insert the locator into the Print_nedia table with product_i d=3060 */
product _id = (int)3060;

/* Prepare the SQL statement */

checkerr (errhp, OCl StntPrepare(stnthp, errhp, insstnt, (ub4)
strien((char *) insstnt),

2-8

Chapter 2
Inserting and Updating LOB Values in Tables

(ub4) OCI_NTV_SYNTAX, (ub4)QCI DEFAULT)):

/* Binds the bind positions */

checkerr (errhp, OC Bi ndByPos(stnthp, &ndhpl, errhp, (ub4) 1,
(void *) &product _id, (sh4) sizeof(product_id),
SQLT_INT, (void *) 0, (ub2 *)0, (ub2 *)0,
(ub4) 0, (ub4 *) 0, (ub4) OC _DEFAULT));

checkerr (errhp, OC BindByPos(stnthp, &bndhpl, errhp, (ub4) 2,
(void *) &product _id, (sh4) sizeof(product_id),
SQLT_INT, (void *) 0, (ub2 *)0, (ub2 *)0,
(ub4) 0, (ub4 *) 0, (ub4) OC _DEFAULT));

checkerr (errhp, OC BindByPos(stnthp, &bndhp2, errhp, (ub4) 3,
(void *) &Lob_loc, (sh4) 0, SQT_CLOB,
(void *) 0, (ub2 *)0, (ub2 *)O,
(ub4) 0, (ub4 *) 0, (ub4) OCl_DEFAULT));

/* Execute the SQL statenent */
checkerr (errhp, OC StntExecute(svchp, stnthp, errhp, (ub4) 1, (ub4) 0,
(CONST OClI Snapshot*) 0, (OCI Snapshot*) 0,
(ub4) OCl _DEFAULT));
}

2.2.4.4 Pro*C/C++ (C/C++): Inserting a Row by Initializing a LOB Locator Bind

Variable

ORACLE

The following code snippet demonstrates how to insert a row by initializing a LOB locator bind
variable using Pro*C/C++ APIs:

#i ncl ude <oci . h>
#i ncl ude <stdio. h>
#incl ude <sql ca. h>

voi d Sanpl e_Error()
{
EXEC SQL WHENEVER SQLERROR CONTI NUE;
printf("%*s\n", sqlca.sqglerrmsqglerrm, sqglca.sqglerrmsqglerrnt);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);
}

voi d insertUseBi ndVari abl e_proc(Rownum Lob_| oc)
int Rownum Rownun?;
OCl Bl obLocat or *Lob_| oc;

EXEC SQL WHENEVER SQLERROR DO Sanpl e_Error();
EXEC SQL I NSERT INTO Print_nedia (product_id, ad_id, ad_photo)
VALUES (: Rownum :Rownun?, :Lob_loc);
}
voi d insertBLOB_proc()

{
OCl Bl obLocat or *Lob_| oc;

/* Initialize the BLOB Locator: */
EXEC SQL ALLOCATE : Lob_l oc;

/* Select the LOB fromthe row where product_id = 2268 and ad_i d=21001: */

EXEC SQL SELECT ad_photo INTO : Lob_| oc
FROM Print _medi a WHERE product _id = 2268 AND ad_id = 21001;

2-9

Chapter 2
Inserting and Updating LOB Values in Tables

/* Insert into the row where product _id = 3106 and ad_id = 13001: */
i nsert UseBi ndVari abl e_proc(3106, 13001, Lob_loc);

/* Rel ease resources held by the locator: */
EXEC SQL FREE : Lob_| oc;
}

voi d main()
{
char *sanp = "pni password";
EXEC SQL CONNECT : pm
i nsertBLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

2.2.4.5 Pro*COBOL (COBOL): Inserting a Row by Initializing a LOB Locator

Bind Variable

ORACLE

The following code snippet demonstrates how to insert a row by initializing a LOB
locator bind variable using Pro*COBOL APIs:

You can insert a row by initializing a LOB locator bind variable in COBOL
(Pro*COBOL).

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. | NSERT- LCB.
ENVI RONMVENT DI VI SI ONL
DATA DI VI SI ON.
VORKI NG- STORAGE SECTI ON.

01 BLOB1 SQL-BLOB.
01 USERID PIC X(11) VALUES "PM password".
EXEC SQL | NCLUDE SQLCA END- EXEC.

PRCCEDURE DI VI SI ON.
| NSERT- LOB.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL- ERROR END- EXEC.
EXEC SQL CONNECT : USERI D END- EXEC.
* |nitialize the BLOB | ocator
EXEC SQL ALLOCATE : BLOB1 END- EXEC.
* Popul ate the LOB
EXEC SQL WHENEVER NOT FOUND GOTO END- OF- BLOB END- EXEC.
EXEC SQL
SELECT AD_PHOTO | NTO : BLOB1 FROM PRI NT_MEDI A
WHERE PRODUCT I D = 2268 AND AD I D = 21001 END- EXEC.

* |nsert the value with PRODUCT_I D of 3060
EXEC SQL
I NSERT | NTO PRI NT_MEDI A (PRODUCT_I D, AD_PHOTO)
VALUES (3060, 11001, :BLOB1) END-EXEC.

* Free resources held by |ocator
END- OF- BLOB.
EXEC SQL WHENEVER NOT FOUND CONTI NUE END- EXEC.
EXEC SQL FREE : BLOB1 END- EXEC.
EXEC SQL ROLLBACK WORK RELEASE END- EXEC.
STOP RUN.

2-10

Chapter 2
Selecting LOB Values from Tables

SQL- ERROR
EXEC SQL WHENEVER SQLERRCR CONTI NUE END- EXEC.
DI SPLAY " "
DI SPLAY " ORACLE ERRCR DETECTED: ".
DI SPLAY " "
DI SPLAY SQLERR\C.
EXEC SQL ROLLBACK WORK RELEASE END- EXEC.
STOP RUN.

2.3 Selecting LOB Values from Tables

You can select a LOB into a Character Buffer, a RAW Buffer, or a LOB variable for performing
read and write operations.

2.3.1 Selecting a LOB into a Character Buffer or a Raw Buffer

You can directly select a CLOB or NCLOB value into a character buffer or a BLOB value. This
is called the Data Interface, and is the most efficient way for selecting from a LOB column.

¢ See Also:

* Data Interface for LOBs
* PL/SQL Semantics for LOBs

2.3.2 Selecting a LOB into a LOB Variable for Read Operations

You can select a persistent or temporary LOB into a LOB variable, and then use APIs to
perform various read operations on it.

Following code selects a LOB Locator into a variable:

DECLARE
persl ob CLOB;
tenpl ob CLOB;
anmt | NTEGER : = 11,
buf VARCHAR(100) ;
BEG N
SELECT ad_source, substr(ad_source, 3) INTO perslob, tenplob FROM
Print_nmedia WHERE product _id = 1 AND ad_id = 1;
DBVS_LOB. READ(per sl ob, ant, buf);
DBVS_LOB. READ(t enpl ob, ant, buf);
END;
/

ORACLE 2-11

Chapter 2
Performing DML and Query Operations on LOBs in Nested Tables

¢ See Also:

¢ A Selected Locator Becomes a Read-Consistent Locator

« LOB Locators and Transaction Boundaries

2.3.3 Selecting a LOB into a LOB Variable for Write Operations

To perform a write operation using a LOB locator, you must lock the row in the table in
order to prevent other database users from writing to the LOB during a transaction.

You can use one of the following mechanisms for this operation:

e Performing an | NSERT or an UPDATE operation with a RETURNI NG clause.

¢ See Also:

Inserting and Updating with a NULL or Empty LOB

» Performing a SELECT for an UPDATE operation. The following code snippet shows
how to select a LOB value to perform a write operation using UPDATE.

DECLARE

¢ CLOB;

anmt I NTEGER : = 9;

buf VARCHAR(100) := 'New Val ue';
BEG N

SELECT ad_sourcetext INTO ¢ FROM Print_nedi a WHERE product _id =
1 AND ad_id = 1 FOR UPDATE;

DBMS LOB.WRI TE(c, ant, 1, buf);
END;
/

e Using an OCI pi n or | ock function in OCI programs.

2.4 Performing DML and Query Operations on LOBs in
Nested Tables

ORACLE

This section describes the | NSERT, UPDATE, and SELECT operations on LOBs in Nested
Tables. To update LOBs in a nested table, you must lock the row containing the LOB
explicitly.

To lock the row containing the LOB, you must specify the FOR UPDATE clause in the
subquery prior to updating the LOB value. The following example shows how to
perform DML and query operations on LOBs in nested tables.

2-12

ORACLE

Chapter 2
Performing DML and Query Operations on LOBs in Nested Tables

< Note:

Locking the row of a parent table does not lock the row of a nested table containing
LOB columns.

Example 2-1 Performing DML and Query Operations on LOBs in Nested Tables

CONNECT pm pm

-- INSERT a row into the NT colum of print_nmedia with actual data for |ob

I NSERT INTO print_nedia (product _id, ad_id, ad_textdocs_ ntab)

VALUES

(1, 1, textdoc_tab(textdoc typ('txt', to_bl ob(' BABABABABABA)),
textdoc_typ('pdf', to_bl ob(' AAAAAAAAAAAA'))));

-- INSERT a row into the NT colum of print_nmedia with enpty lob for the |ob
I NSERT INTO print_nedia (product _id, ad_id, ad_textdocs_ ntab)
VALUES
(2, 2, textdoc_tab(textdoc typ('txt', enpty blob()),
textdoc_typ(' pdf', enpty _blob())));

SET SERVERQUTPUT ON

-- I NSERT-RETURNING then wite to the LOBs
DECLARE

txt textdoc_tab;
BEG N

I NSERT I NTO print_nedia p(product _id, ad id, ad textdocs_ntab) VALUES

(3, 3, textdoc_ tab(textdoc typ('txt', enpty_blob()),
textdoc_typ(' pdf', enpty blob())))
RETURNI NG p. ad_textdocs_ntab into txt;

for elemin 1 .. txt.count |oop
DBVS_LOB. WRI TEAPPEND(t xt (el em) . formatted_doc, 2, hextoraw(elem|'FF));
end | oop;
END;
/

SELECT ad_textdocs _ntab FROM print_media WHERE product _id = 3;
-- SELECT on NT lob, then read
DECLARE

txt textdoc_tab;
pos | NTEGER,

2-13

Chapter 2
Performing Parallel DDL, Parallel DML (PDML), and Parallel Query (PQ) Operations on LOBs

ant | NTECER,

buf RAW 40);
BEG N

SELECT ad_textdocs_ntab INTO txt FROM print_nmedi a WHERE product _id =
1;

for elemin 1 .. txt.count |oop
am := 40;
pos := 1;
DBMVS _LOB. READ(t xt (el em). formatted_doc, ant, pos, buf);
DBVS_QUTPUT. PUT_LI NE(buf) ;
end | oop;
END;
/

-- SELECT for update on the NT lob, then wite
DECLARE
txt textdoc_tab;
pos | NTEGER;
ant | NTECER,
buf RAW 40);
BEG N
SELECT ad_textdocs_ntab INTO txt FROM print_nedia
WHERE product _id = 1 FOR UPDATE;

for elemin 1 .. txt.count |oop
DBVS_LOB. WRI TEAPPEND(t xt (el em) . f ormat t ed_doc, 2,
hextoraw(el enf|' FF));
end | oop;
END;
/

SELECT ad_t extdocs_ntab FROM print_media WHERE product _id = 1;

2.5 Performing Parallel DDL, Parallel DML (PDML), and
Parallel Query (PQ) Operations on LOBs

ORACLE

Oracle supports parallel execution of the following operations when performed on
partitioned tables with SecureFiles LOBs or BasicFiles LOBs.

e CREATE TABLE AS SELECT
e | NSERT AS SELECT
e Multitable | NSERT

e SELECT
» DELETE
e UPDATE

* MERGE (conditional UPDATE and | NSERT)
e ALTER TABLE MOVE
¢ SQL Loader

2-14

Chapter 2
Sharding with LOBs

Import/Export

Additionally, Oracle supports parallel execution of the following operations when performed
on non-partitioned tables with only SecureFile LOBs:

CREATE TABLE AS SELECT

I NSERT AS SELECT

Multitable | NSERT

SELECT

DELETE

UPDATE

MERCE (conditional UPDATE and | NSERT)
ALTER TABLE MOVE

SQL Loader

Restrictions on parallel operations with LOBs

Parallel insert direct load (PIDL) is disabled if a table also has a BasicFiles LOB column,
in addition to a SecureFiles LOB column.

PDML is disabled if LOB column is part of a constraint.
PDML does not work when there are any domain indexes defined on the LOB column.
Parallelism must be specified only for top-level non-partitioned tables.

Use the ALTER TABLE MOVE statement with LOB storage clause, to change the storage
properties of LOB columns instead of the ALTER TABLE MODI FY statement. The ALTER
TABLE MOVE statement is more efficient because it executes in parallel and does not
generate undo logs.

¢ See Also:

Oracle Database Administrator's Guide section "Managing Processes for Parallel
SQL Execution"

Oracle Database SQL Language Reference section "ALTER TABLE"

2.6 Sharding with LOBs

LOBs can be used in a sharded environment. This section discusses the interfaces to support
LOBs in sharded tables.

ORACLE

The following interfaces are supported:

Query and DML statements
— Cross shard queries involving LOBs are supported.

— DML statements involving more than one shard are not supported. This behavior is
similar to scalar columns.

— DML statements involving a single shard are supported from coordinator.

2-15

ORACLE

Chapter 2
Sharding with LOBs

— Locator selected from a shard can be passed as bind value to the same shard.

QOCl Lob

All non-BFILE related OCILob APIs in a sharding environment are supported, with
some restrictions.

On the coordinator, the OCl _ATTR _LOB_REMOTE attribute of a LOB descriptor returns
TRUE if the LOB was obtained from a sharded table.

Restrictions: For APIs that take two locators as input, OCl LobAppend,
CCl LobConpar e for example, both of the locators should be obtained from the
same shard. If locators are from different shards an error is given.

DBMS_LOB

All non-BFILE related DBMS_LOB APIs in a sharding environment are supported,
with some restrictions. On the coordinator, DBMS_LOB. i srenot e returns TRUE if the
LOB was obtained from a sharded table.

Restrictions: For APIs that take two locators as input, DBM5S_LOB. append and
DBMS_LOB. conpar e for example, both of the locators should be obtained from the
same shard. If the locators are from different shards an error given.

¢ See Also:
Sharded Tables

2-16

Temporary LOBs

Temporary LOBs are transient, just like other local variables in an application. This chapter
discusses operations that are specific to temporary LOBSs.

3.1 Before You Begin

Ensure that you go through the topics in this section before you start working with temporary
LOBs.

3.1.1 Creating Temporary LOBs

ORACLE

This section describes how a temporary LOB gets created or generated in a client program.
You can create temporary LOB instances in one of the following ways:

» Declare a variable of the given LOB data type and pass it to the temporary LOB creation
API. For example, in PL/SQL it is DBM5_LOB. CREATETEMPORARY, and in OCl it is
OCl LobCr eat eTenporary() .

* Invoke a SQL or PL/SQL built-in function that produces a temporary LOB, for example,
the SUBSTR function.

* Invoke a PL/SQL stored procedure or function that returns a temporary LOB as an QUT
bind variable or a return value.

The temporary LOB instance exists in your application until it goes out of scope, your session
terminates, or you explicitly free the instance.

Temporary LOBs reside in either the PGA memory or the temporary tablespace, depending
on their size. Ensure that the PGA memory and the temporary tablespace have space that is
large enough for the temporary LOBs used by your application.

< Note:

e Oracle highly recommends that you release the temporary LOB instances to
free the system resources. Failure to do so may cause accumulation of
temporary LOBs and can considerably slow down your system.

e Starting with Oracle Database Release 21c, you do not need to check whether
a LOB is temporary or persistent before releasing the temporary LOB. If you
call the DBVS_LOB. FREETEMPORARY procedure or the OCl LobFr eeTenpor ar y()
function on a LOB, it will perform either of the following operations:

— For atemporary LOB, it will release the LOB.

— For a persistent LOB, it will do nothing (no-op).

3-1

Chapter 3
Before You Begin

¢ See Also:

Performance Guidelines

3.1.2 Handling Temporary LOBs on the Client Side

ORACLE

You must consider the aspects discussed in this section while handling the temporary
LOBs that are generated by the client programs.

Preventing Temporary LOB Accumulation

Every time a client program such as JDBC or OCI obtains a LOB locator from SQL or
PL/SQL, and you suspect that it is producing a temporary LOB, then free the LOB as
soon as your application has consumed the LOB. If you do not free the temporary
LOB, then it will lead to accumulation of temporary LOBs, which can considerably slow
down your system.

" Note:

A temporary LOB duration is always upgraded to SESSI ON, when it is shipped
to the client side.

For example, to prevent temporary LOB accumulation, an OCI application must call
the OCl LobFr eeTenpor ary() function in the following scenarios:

e After getting a locator from a define during a SELECT statement or an OUT bind
variable from a PL/SQL procedure or function. It is desirable that you free the
temporary LOB as soon as you finish performing the required operations on it. If
not, then you must free it before reusing the variable for fetching the next row or
for another purpose.

* Before performing a pointer assignment, like <var1 = var 2>, free the old
temporary LOB in the variable <var 1>.

LOB Assignment

You must take special care when assigning the OCl LobLocat or pointers in an OCI
program while using the assignment (=) operator. Pointer assignments create a
shallow copy of the LOB. After the pointer assignment, the source and the target LOBs
point to the same copy of data. This means that if you call the OCl LobFr eeTenporary()
function on either one of them, then both variables will point to non-existent LOBSs.

These semantics are different from using the LOB APIs, such as the

OCl LobLocat or Assi gn() function to perform assignments. When you use these APIs,
the locators logically point to independent copies of data after assignment. This means
that eventually the OCl LobFr eeTenpor ary() function must be called on each LOB
descriptor separately, so that it frees all LOBs involved in the operation.

For temporary LOBSs, before performing pointer assignments, you must ensure that
you free any temporary LOB in the target LOB locator by calling the

CCl FreeTenporary() function. In contrast, when the OCl LobLocat or Assi gn() function
is used, the original temporary LOB in the target LOB locator variable, if any, is freed
automatically before the assignment happens.

3-2

Chapter 3
Temporary LOB APIs in Different Programmatic Interfaces

3.2 Temporary LOB APIs in Different Programmatic Interfaces

This section lists the temporary LOB specific APIs in different Programmatic Interfaces.

Most of the examples in the following sections use the pri nt _medi a table. Following is the

structure of the print _nedi a table.

PRINT_MEDIA Table

[Column name J [Column Type J
product_id NUMBER (6)
ad_id NUMBER (6)
ad_composite BLOB
ad_sourcetext CLOB
ad_finaltext CLOB
ad_fltextn NCLOB
ad_textdocs_ntab NESTED TABLE
ad_photo BLOB
ad_graphic BFILE
ad_header USER DEFINED TYPE
press_release LONG

¢ See Also:

Comparing the LOB Interfaces

ORACLE"

3-3

Chapter 3
Temporary LOB APIs in Different Programmatic Interfaces

3.2.1 PL/SQL APIs for Temporary LOBs

ORACLE

This section describes the PL/SQL APIs used with temporary LOBSs.

See Also:
DBMS_LOB

Table 3-1 DBMS_LOB Functions and Procedures for Temporary LOBs
|

Function | Procedure Description

CREATETEMPORARY Creates a Temporary LOB

| STEMPORARY Checks if a LOB locator refers to a temporary
LOB

FREETEMPORARY Frees a temporary LOB

Example 3-1 PL/SQL API for Temporary LOBs

DECLARE
bl obl BLOB;
clobl CLOB;
cl ob2 CLOB;
ncl obl NCLOB;
BEG N
-- create a tenp LOB using CREATETEMPORARY and fill it with data
DBVS_LOB. CREATETEMPORARY(bl obl, TRUE, DBMS_LOB. SESSI ON) ;
writeDataToLOB proc(bl obl);

-- create a tenp LOB using SQ built-in function
SELECT substr(ad_sourcetext, 5) INTO clobl FROM print_medi a WHERE
product _id=1 AND ad_i d=1,

-- create a tenp LOB using a PLSQL built-in function
nclobl := TO NCLOB(cl obl);

-- create a tenp LOB using a PLSQL procedure. Assume foo creates a
temp lob and it's parameter is I N OUT
foo(clob2);

-- Qther APIs
CALL_LOB_API S(bl ob1, clobl, clob2, nclobl);

-- free tenp LOBs

DBVS_LOB. FREETEMPORARY(bl ob1)
DBVS_LOB. FREETEMPORARY(cl ob1)
DBVS_LOB. FREETEMPORARY(¢l 0b2)
DBVS_LOB. FREETEMPORARY(ncl obl

)

END;

3-4

Chapter 3
Temporary LOB APIs in Different Programmatic Interfaces

/
show errors;

3.2.2 JDBC API for Temporary LOBs

This section describes the PL/SQL APIs used with temporary LOBSs.

¢ See Also:
Working with LOBs and BFILEs

Table 3-2 jdbc.sql.Clob and java.sql.Blob APIs for Temporary LOBs
]

Methods Description

createTenporary Creates a temporary LOB

i sTenporary Checks if a LOB locator refers to a temporary LOB
freeTenporary Frees a temporary LOB

Example 3-2 JDBC API for Temporary LOBs

public class |istenmpc

{

public static void main (String args [])
throws Exception

{

Connection conn = LobDempbConnecti onFact ory. get Connection();

/1 SELECT TEMPORARY LOB USI NG SQL
Statenent stmt = conn.createStatenent ();
Resul t Set rset = stnt.executeQuery
(" SELECT SUBSTR(ad_sourcetext, 5) FROM Print_nedi a WHERE
product id = 3106 AND ad _id = 1");
if (rset.next())

{
Clob clob = rset.getClob (1);

Systemout.printin("ls lob tenporary: " + ((CLOB)clob).isTenporary());

call _other _apis to read wite fromlob(clob);
clob.free();

}

stnt.close();

/' CREATE TEMPORARY LOB VI A API
Clob clob = conn.createC ob();

Systemout.printin("Is clob tenporary: " +
((oracle.jdbc. Oracl eCl ob)cl ob).isTenmporary());

call _other apis to read wite fromlob(clob);

/1 ALWAYS FREE THE TEMPORARY LOB WHEN DONE W TH

T

ORACLE 3-5

Chapter 3
Temporary LOB APIs in Different Programmatic Interfaces

clob.free();

conn. cl ose();

}
}

3.2.3 OCI APIs for Temporary LOBs

ORACLE

This section describes the OCI APIs used with temporary LOBs.

¢ See Also:
LOB and BFILE Operations

Table 3-3 OCI APIs for Temporary LOBs
|

Function | Procedure Description

OCl LobCr eat eTenpor ar y() Creates a Temporary LOB

OCl Lobl sTenpor ary() Checks if a LOB locator refers to a temporary
LOB

OCl LobFreeTenpor ar y() Frees a temporary LOB

Example 3-3 OCI APIs for Temporary LOBs

void tenp_| ob_operations()

{
QOCl LobLocat or *tenp_cl obZl;
QCl LobLocat or *tenp_cl ob2;

oCl st nt *stnmhp = (OCI Stnt *) O

OCl Defi ne *df nhpl;

ubl buf p[BUFLEN ;

ub4 amp = 0;

ub8 bamtp = 0;

ub8 cantp = 0;

ub2 retl1, rcodel,

sh4 ind ptrl = 0;

bool ean i stemp = FALSE;

char *sel stnmt = "SELECT SUBSTR(ad_sourcetext, 5) FROM

Print_nedia WHERE product _id = 3106 AND ad_id = 1";

/* allocate |lob descriptors */
checkerr(errhp, OCl DescriptorAlloc((dvoid *) envhp, (dvoid **)
& enp_clobl,
(ub4) OCl _DTYPE LOB, (size t) O,
(dvoid **) 0));
checkerr(errhp, OCl DescriptorAlloc((dvoid *) envhp, (dvoid **)
& enp_cl ob2,
(ub4) OCl _DTYPE LOB, (size t) O,
(dvoid **) 0));

/* statement handle */

3-6

ORACLE

Chapter 3
Temporary LOB APIs in Different Programmatic Interfaces

checkerr(errhp, OC Handl eAlloc((dvoid *)envhp, (dvoid **) &stmhp,
(ub4) OCI _HTYPE_STMI, (size_t) 0, (dvoid **) 0));

checkerr(errhp, OCl Handl eAlloc((dvoid *)stnmhp, (dvoid **) &dfnhpl,
(ub4) OCI _HTYPE_DEFINE, (size_t) 0, (dvoid **) 0));

[¥ e SELECT TEMPORARY LOB USI NG SQL

........................ %/

checkerr(errhp, OC StntPrepare(stnmhp, errhp, (text *) sel_stnt,
(ub4) strlen(sel_stnt), OCl _NTV_SYNTAX, OCl_DEFAULT));

checkerr (errhp, OCl DefineByPos(stmp, &dfnhpl, errhp, (ub4) 1, & enp_clobl,
(sb4) -1, SQLT CLOB, & nd_ptrl, &retll, &rcodel,
(ub4) OCI _DEFAULT));

checkerr(errhp, OC StntExecute(svchp, stmhp, errhp, (ub4) 0, (ub4) O,
(OCl Snapshot *) NULL, (OClI Snapshot *) NULL,

OCl _DEFAULT));

checkerr(errhp, OC StntFetch(stmhp, errhp, 1, OCl _FETCH NEXT,

OCl _DEFAULT));

checkerr(errhp, OCl LobWiteAppend2(svchp, errhp, tenp_clobl,
(oraub8 *)&bantp, (oraub8 *) &cantp, bufp, (oraub8)BUFLEN,
OCl _ONE_PI ECE, (dvoid*)0, (OCICallbackLobWite2)0, (ub2)O0,
(ubl) SQ.CS_IMPLICIT));

[¥ e CREATE TEMPORARY LOB USI NG API

checkerr (errhp, OCl LobCreateTenporary(svchp, errhp, tenp_clob2,
(ub2) 0, OCl_DEFAULT, OCI _TEMP_CLOB,
FALSE, OCl _DURATI ON_SESSI ON));

/[* wite into bufp */
strcepy((char *)bufp, (const char *)"Demp programfor testing tenp |obs");
bantp = amtp = (ub4) strlen((char *)bufp);

/[* wite bufp contents to tenp | ob */

checkerr(errhp, OCl LobWite2(svchp, errhp, tenp_clob2, &antp, 1,
(dvoid *)bufp, (ub4)banmtp , OCl _ONE_PIECE, (dvoid *)O,
(OCl Cal | backLobWite) 0, (ub2) 0, (ubl) SQLCS IMPLICIT));

[¥ e ALVAYS FREE TEMPORARY LOBS

checkerr(errhp, OCl LoblsTenporary(envhp, errhp, tenmp_clobl, & stenp));

if (istenp)
checkerr(errhp, OCl LobFreeTenporary(svchp, errhp, tenp_clobl));

checkerr(errhp, OCl LoblsTenporary(envhp, errhp, tenmp_clob2, & stenp));

if (istenp)
checkerr(errhp, OCl LobFreeTenporary(svchp, errhp, tenp_clob2));

/* Free lob descriptors */
checkerr(errhp, OCl DescriptorFree ((dvoid *)tenp_clobl, (ub4)

OCl_DTYPE_LOB));

checkerr(errhp, OCl DescriptorFree ((dvoid *)tenp_clob2, (ub4)

3-7

Chapter 3
Temporary LOB APIs in Different Programmatic Interfaces

OCl_DTYPE_LOB));
}

3.2.4 ODP.NET API for Temporary LOBs

This section describes the ODP.NET APIs used with temporary LOBs.

¢ See Also:
Temporary LOBs

Table 3-4 ODP.NET methods for Temporary LOBs in the OracleClob and
OracleBlob Classes

Methods Description

Add() Creates a temporary LOB

| sTenporary() Checks if a LOB locator refers to a temporary
LOB

Di spose() or d ose() Frees a temporary LOB

3.2.5 Pro*C/C++ and Pro*COBOL APIs for Temporary LOBs

This section describes the Pro*C/C++ and Pro*COBOL APIs for Temporary LOBs.

¢ See Also:

e Pro*C/C++ Programmer's Guide
e Pro*COBOL Programmer's Guide

Table 3-5 Pro*C/C++ and Pro*COBOL APIs for Temporary LOBs

Statement Description

CREATE TEMPORARY Creates a Temporary LOB

DESCRI BE [| STEMPORARY] Checks if a LOB locator refers to a temporary
LOB

FREE TEMPORARY Frees a temporary LOB

ORACLE 3-8

BFILES

BFI LEs are data objects stored in operating system files, outside the database tablespaces.
Data stored in a table column of type BFI LE is physically located in an operating system file,
not in the database. The BFI LE column stores a reference to the operating system file.

BFI LEs are read-only data types. The database allows read-only byte stream access to data
stored in BFI LEs. You cannot write to or update a BFI LE from within your application.

You create BFI LEs to hold the following types of data:
» Binary data that does not change while your application is running, such as graphics.

« Data that is loaded into other large object types, such as a BLOB or CLOB, where the data
can be manipulated.

» Data that is appropriate for byte-stream access, such as multimedia.

Any storage device accessed by your operating system can hold BFI LE data, including hard
disk drives, CD-ROMs, PhotoCDs, and DVDs. The database can access BFI LEs provided the
operating system supports stream-mode access to the operating system files.

4.1 DIRECTORY Objects

A BFI LE locator is initialized by using the function BFI LENAMVE(DI RECTORY, FI LENAME) . This
section describes how to initialize the DI RECTCRY Object.

A DI RECTORY object specifies a logical alias name for a physical directory on the database
server file system under which the file to be accessed is located. You can access a file in the
server file system only if you have the required access privilege on the DI RECTORY object. You
can also use Oracle Enterprise Manager Cloud Control to manage the DI RECTCRY objects.

The DI RECTORY object provides the flexibility to manage the locations of the files, instead of
forcing you to hard-code the absolute path names of physical files in your applications.

A DI RECTCORY object name is used in conjunction with the BFI LENAME function, in SQL and PL/
SQL, or the OCl LobFi | eSet Name() function in OCI, for initializing a BFI LE locator.

¢ See Also:

e CREATE DI RECTCRY in Oracle Database SQL Language Reference

e See Oracle Database Administrator's Guide for the description of Oracle
Enterprise Manager Cloud Control

4.1.1 DIRECTORY Name Specification

You must have CREATE ANY DI RECTCORY system privilege to create directories.

ORACLE 4-1

Chapter 4
DIRECTORY Objects

The naming convention for DI RECTCRY objects is the same as that for tables and
indexes. That is, normal identifiers are interpreted in uppercase, but delimited
identifiers are interpreted as is. For example, the following statement:

CREATE OR REPLACE DI RECTORY scott _dir AS '/usr/home/scott';

creates or redefines a DI RECTORY object whose name is 'SCOTT_DI R (in uppercase).
But if a delimited identifier is used for the DI RECTORY name, as shown in the following
statement

CREATE DI RECTORY "Mary_Dir" AS '/usr/hone/ mary';

then the DI RECTORYdirectory object name is 'Mary_Dir'. Use 'SCOTT_DI R and 'Mary_Dir’
when calling BFI LENAME. For example:

BFI LENAVE(' SCOTT DIR , 'afile’)
BFI LENAVE(' Mary Dir', 'afile’)

WARNING:

The database does not verify that the directory and path name you specify
actually exist. You must ensure to specify a valid directory name in your
operating system. If your operating system uses case-sensitive path names,
then be sure that you specify the directory name in the correct format. There
is no requirement to specify a terminating slash (for example, / t np/ is not
necessary, simply use / t np).

Directory specifications cannot contain ".." anywhere in the path (for
example: . ./../abc/ def orabc/../def orabc/def/hij..

On Windows Platform

On Windows platforms the directory names are case-insensitive. Therefore the
following two statements refer to the same directory:

CREATE DI RECTORY "hig_cap_dir" AS "g:\data\source";

CREATE DI RECTORY "smal | _cap_dir" AS "G \ DATA\ SOURCE";

4.1.2 Security on Directory Objects

ORACLE

This section describes the security on DI RECTCRY objects.
The DI RECTCORY object model has two distinct levels of security:

e SQL DDL: CREATE or DROP a DI RECTCRY object
¢ SQL DML: READ system and object privileges on DI RECTORY objects

DBA Privileges: CREATE / DROP DIRECTORY

The DI RECTCORY object is a system owned object. Oracle Database supports the
following system privileges, which are granted only to DBA:

e CREATE ANY DI RECTORY: For creating or altering the DI RECTORY object creation
» DROP ANY DI RECTORY: For deleting the DI RECTORY object

4-2

Chapter 4
DIRECTORY Objects

WARNING:

Because CREATE ANY DIRECTORY and DROP ANY DIRECTORY privileges potentially
expose the server file system to all database users, the DBA should be prudent in
granting these privileges to normal database users to prevent security breach.

¢ See Also:

Oracle Database SQL Language Reference for information about system owned
objects, CREATE DI RECTORY and DROP DI RECTORY

USER Privileges: READ Permission on the Directory

READ permission on the DI RECTORY object enables you to read files located under that
directory. The creator of the DI RECTORY object automatically earns the READ privilege.

If you have been granted the READ permission with GRANT option, then you may in turn grant
this privilege to other users or roles and then add them to your privilege domains.

" Note:

The READ permission is defined only on the DI RECTORY object, not on individual files.
Hence there is no way to assign different privileges to files in the same directory.

The physical directory that it represents may or may not have the corresponding operating
system privileges (read in this case) for the Oracle Server process.

It is the responsibility of the DBA to ensure the following:

e That the physical directory exists

* Read permission for the Oracle Server process is enabled on the file, the directory, and
the path leading to it

* The directory remains available, and read permission remains enabled, for the entire
duration of file access by database users

The privilege just implies that as far as the Oracle Server is concerned, you may read from
files in the directory. These privileges are checked and enforced by the PL/SQL DBV5_LOB
package and OCI APIs at the time of the actual file operations.

¢ See Also:

e Guidelines for DIRECTORY Usage

e Oracle Database SQL Language Reference for information about the GRANT,
REVOKE and AUDI T system and object privileges that provide security for BFI LEs.

ORACLE 4.3

Chapter 4
BFILE Locators

Catalog Views on DIRECTORY Objects

Catalog views are provided for DI RECTORY objects to enable users to view object
names and corresponding paths and privileges. Following are the supported views:

e ALL_DI RECTORI ES (OMNER, DI RECTCRY_NAME, DI RECTORY_PATH)
This view describes all directories accessible to the user.

e DBA DI RECTORI ES(OMNER, DI RECTORY_NAME, DI RECTORY_PATH)
This view describes all directories specified for the entire database.

4.2 BFILE Locators

For BFI LEs, the value is stored in a server-side operating system file, in other words,
BFI LEs are external to the database. The BFI LE locator that refers to the file is stored
in the database row.

To associate an operating system file to a BFI LE, first create a DI RECTORY object that is
an alias for the full path name to the operating system file. Then, you can initialize an
instance of BFI LE type, using the BFI LENAME function in SQL or PL/SQL, or

OCl LobFi | eSet Nane() in OCI. You can use this BFI LE instance in one of the following
ways:

» If your need for a particular BFI LE is temporary and limited within the module on
which you are working, then you can assign this BFI LE instance to a PL/SQL or
OCl local variable of type BFI LE. Subsequently, you can use the BFI LE related
APIs on this variable without having to associate this with a column in the
database. The BFI LE API operations on a temporary instance are executed on the
client side, without any round-trips to the server.

e You can insert a persistent reference to a BFI LE in the BFI LE column using an
| NSERT or UPDATE statement. Before using SQL to insert or update a row with a
BFI LE, you must initialize the BFI LE variable to either NULL or a DI RECTORY object
name and file name.

Note:

The OCl Set At tr () function does not allow you to set a BFI LE locator to
NULL. To insert a NULL BFI LE in OCI, you must set the bind value to NULL.

It is possible to have multiple BFI LE columns in the same record or different records
referring to the same file. For example, the following UPDATE statements set the BFI LE
column of the row with key _val ue = 21 in | ob_t abl e to point to the same file as the
row with key_val ue = 22.

UPDATE | ob_table SET f_lob = (SELECT f_| ob FROM | ob_t abl e WHERE
key_val ue = 22) WHERE
key_val ue = 21;

ORACLE 4-4

ORACLE

Chapter 4
BFILE Locators

¢ See Also:
Loading BFILEs with SQL*Loader

BFILEs in Objects

If you are using BFI LEs in objects, you must first set the BFI LE value, and then flush the
object to the database. So, you must first call the OCl Obj ect New() function, followed by the
OCl LobFi | eSet Nane() function and the OCl (bj ect Fl ush() function respectively.

BFILEs in Shared Server (Multithreaded Server) Mode

The database does not support session migration for BFI LE data types in shared server
(multithreaded server) mode. This implies that in shared server sessions, BFI LE operations
are bound to one shared server, they cannot migrate from one server to another, and open
BFI LE instances can persist beyond the end of a call to a shared server.

Examples of Creating Directory Objects and BFILE Locators

Many examples in the following sections use the print _nedi a table. Following is the
structure of the table:

4-5

ORACLE

Figure 4-1 print_media table

Chapter 4
BFILE Locators

PRINT_MEDIA Table

| Column name] [Column Type J
product_id NUMBER (6)
ad_id NUMBER (6)
ad_composite BLOB
ad_sourcetext CLOB
ad_finaltext CLOB
ad_fltextn NCLOB
ad_textdocs_ntab NESTED TABLE
ad_photo BLOB
ad_graphic BFILE
ad_header USER DEFINED TYPE
press_release LONG

Example 4-1 Inserting BFILEs in SQL and PL/SQL

conn syst enf manager

- The DBA creates DI RECTORY object and grants READ to the user
create or replace directory MYDIR as '/your/directory/path/here';
GRANT read ON DI RECTORY MYDIR TO pm

conn pni pm

- Use BFILENAME to create a BFILE | ocator for |NSERT

I NSERT | NTO print_nedia

(product id, ad_id, ad_conposite, ad _sourcetext, ad_graphic)

VALUES

(1, 1, enpty_blob(), enpty clob(), BFILENAVE(' MDIR ,'filel. txt'));

4-6

ORACLE

Chapter 4
BFILE Locators

-- After this statenent, 2 rows point to the same BFILE

I NSERT | NTO print_nedia

(product _id, ad_id, ad_conposite, ad_sourcetext, ad_graphic)
select 2, ad_id, ad_conposite, ad_sourcetext, ad_graphic from

print_media;

-- Update the 2nd row to point to a different file
UPDATE print_media SET ad_graphic = BFILENAME(' MYDIR , " file2.txt') WHERE
product id =2;

-- Insert a 3rd rowwith invalid file name

I NSERT | NTO print_nedia

(product _id, ad_id, ad_conposite, ad_sourcetext, ad_graphic)
VALUES

(3, 3, enpty_blob(), enpty_clob(),
BFI LENAME(' MYDIR , ' fil e_does_not _exist.txt'));

-- Insert a NULL for BFILE

I NSERT | NTO print_nedia

(product _id, ad_id, ad_conposite, ad_sourcetext, ad_graphic)
VALUES

(4, 4, enpty_blob(), enpty_clob(), NULL);

-- Inserting in PLSQL using a BFILE variable
DECLARE
f BFILE;
BEG N
f := BFILENAME(' WDIR ,"'file5.txt");
I NSERT INTO print_nedia (product_id, ad_id, ad_conposite, ad_sourcetext,
ad_graphi c)
VALUES (5, 5, NULL, NULL, f);
END;
/
SELECT product _id, ad_id, ad_graphic FROM print_nedi a ORDER BY 1, 2;

Example 4-2 Inserting BFILEs in OCI

STATI C TEXT *insstnmt = "INSERT INTO print_media (product _id, ad_id,
ad_graphic) VALUES (:1, :1, :2)";
sword insert _bfile()

{
QCl LobLocat or *f = (OCl LobLocator *)O0;

oCl St nt *stnt hp;

OCl Bi nd *bndpl = (OCIBind *) 0;
OCl Bi nd *bndp2 = (OCIBind *) 0;
ub4 id;

CHECK_ERROR (OCl Handl eAl I oc((dvoid *) envhp, (dvoid **) &stnthp,
OCl _HTYPE STMI, (size_t) 0, (dvoid **) 0));

/*************** AI | ocate deSCI'I pt or ***********************I

CHECK _ERROR (OCl DescriptorAlloc((dvoid *) envhp, (dvoid **) &f,

4-7

Chapter 4
BFILE Locators

(ub4)OCl _DTYPE_FI LE, (size_t) O,
(dvoid **) 0));

/********** Execute InSStm to Insel’t f ********************/
id=6;
CHECK_ERROR (OCI LobFi | eSet Nane(envhp, errhp, &f,
(text*)"MYDIR', sizeof ("MYDIR") -1,
(text*)"file6.txt",
sizeof ("file6.txt") -1));

CHECK_ERROR (OCI St nt Prepare(stnthp, errhp, insstnt,
(ub4) strlen((char *) insstnt),
(ub4) OCI _NTV_SYNTAX, (ub4) OCl _DEFAULT));

CHECK_ERROR (OCl Bi ndByPos(st nt hp, &bndpl, errhp, (ub4) 1, (dvoid *)

& d,

(sb4) sizeof (id), SQT_INT, (dvoid *) O,
(ub2 *) 0,

(ub2 *)0, (ub4) 0, (ub4*) 0, (ub4)
OCl _DEFAULT)) ;

CHECK_ERROR (OCl Bi ndByPos(st nt hp, &bndp2, errhp, (ub4) 2, (dvoid *)

&f 4,

(sh4) -1, SQ.T_BFILE, (dvoid *) 0, (ub2
*) 0]

(ub2 *)0, (ub4) 0, (ub4*) 0, (ub4)
OCl _DEFAULT)) ;

CHECK_ERROR (OCI St nt Execut e(svchp, stnthp, errhp, (ub4) 1, (ub4) O,
(CONST OCI Snapshot *) NULL, (OCI Snapshot
*) NULL,
OCl _DEFAULT));

/********** Execute InSStm to Insel’t NULL ********************/
id=7;
CHECK_ERROR (OCI St nt Prepare(stnthp, errhp, insstnt,

(ub4) strlen((char *) insstnt),

(ub4) OCI _NTV_SYNTAX, (ub4) OCl _DEFAULT));

CHECK_ERROR (OCl Bi ndByPos(st nt hp, &bndpl, errhp, (ub4) 1, (dvoid *)

& d,

(sb4) sizeof (id), SQT_INT, (dvoid *) O,
(ub2 *) 0,

(ub2 *)0, (ub4) 0, (ub4*) 0, (ub4)
OCl _DEFAULT)) ;

CHECK_ERROR (OCl Bi ndByPos(st nt hp, &bndp2, errhp, (ub4) 2, (dvoid *)

NULL,

(sb4) -1, SQLT_BFILE, (dvoid *) 0, (ub2
*) 0]

(ub2 *)0, (ub4) 0, (ub4*) 0, (ub4)
OCl _DEFAULT)) ;

CHECK_ERROR (OCI St nt Execut e(svchp, stnthp, errhp, (ub4) 1, (ub4) O,

ORACLE 4-8

ORACLE

NULL,

4.3 BFILE APIs

Chapter 4
BFILE APIs

(CONST OCI Snapshot *) NULL, (OCl Snapshot *)

OCl _DEFAULT))

This section discusses the different operations supported through BFI LEs.

Once you initialize a BFI LE variable either by using the BFI LENAME function or an equivalent
API, or by using a SELECT operation on a BFILE column, you can perform read operations on
the BFI LE using APIs such as DBM5S_LOB. Note that BFI LE is a read-only data type. So, you
cannot update or delete the operating system files, accessed using BFI LEs, through the

BFI LE APIs.

The operations performed on BFI LEs are divided into following categories:

Table 4-1 Operations on BFILEs

Category Operation Example function /procedure
in DBMS_LOB package
Sanity Checking Check if the BFI LE exists on the FI LEEXI SI TS
server
Get the DI RECTORY object name FI LEGETNAME
and file name
Set the name of a BFI LEina BFI LENAME
locator without checking if the
directory or file exists
Open / Close Open a file OPEN
Check if the file was opened | SOPEN
using the input BFI LE locators
Close the file CLOSE
Close all previously opened files FI LECLOSEALL
Read Operations Get the length of the BFI LE CETLENGTH
Read data from the BFI LE READ
starting at the specified offset
Return part of the BFI LE value ~ SUBSTR
starting at the specified offset
using SUBSTR
Return the matching position of a | NSTR
pattern in a BFI LE using | NSTR
Operations involving multiple Assign BFI LE locator st C to dst := src

locators

BFI LE locator dst

Load BFI LE data into a LOB

LOADCLOBFROVFI LE,
LOADBLOBFROVFI LE

Compare all or part of the value
of two BFI LEs

COMPARE

4-9

Chapter 4
BFILE APIs

4.3.1 Sanity Checking

Sanity Checking functions on BFILEs enable you to retrieve information about the
BFILEs.

Recall that the BFI LENAME() and OCl LobFi | eSet Nanme() functions do not verify that the
directory and path name you specify actually exist. You can use the sanity checking
functions to verify that a BFI LE exists and to extract the directory and file names from a
BFI LE locator.

4.3.2 Opening and Closing a BFILE

You must OPEN a BFI LE before performing any operations on it, and CLCSE it before you
terminate your program.

A BFI LE locator operates like a file descriptor available as part of the standard input/
output library of most conventional programming languages. This implies that once
you define and initialize a BFI LE locator, and open the file pointed to by this locator, all
subsequent operations until the closure of the file must be done from within the same
program block using the locator or local copies of it. The BFI LE locator variable can be
used as a parameter to other procedures, member methods, or external function
callouts. However, it is recommended that you open and close a file from the same
program block at the same nesting level.

You must close all the open BFI LE instances even in cases, where an exception or
unexpected termination of your application occurs. In these cases, if a BFI LE instance
is not closed, then it is still considered open by the database. Ensure that your
exception handling strategy does not allow BFI LE instances to remain open in these
situations.

You can close all open BFI LEs together by using a procedure like
DBMS_LOB. FI LECLCSEALL or OCl LobFi | ed oseAl'l ().

4.3.3 Reading from a BFILE

ORACLE

You can perform many different read operations on the BFI LE data, including reading
its length, reading part of the data, or reading the whole data.

When reading from a large BFI LE, you can use the streaming read mode in JDBC or
OCIl. In JDBC, you can achieve this by using the get Bi narySt r eam() method. In OCI,
you can achieve it in the way as described in the following section.

Streaming Read in OCI

The most efficient way to read large amounts of BFI LE data is by using the

COCl LobRead2() function with the streaming mechanism enabled, and using polling or
callback. To do so, specify the starting point of the read using the of f set parameter as
follows:

ub8 char_ant 0;
ub8 byte ant 0;
ub4 offset = 1000;

OCl LobRead2(svchp, errhp, locp, &yte ant, &char_ant, offset, bufp,

4-10

Chapter 4
BFILE APIs

bufl |
OCl _ONE_PIECE, 0, 0, 0, 0);

When using polling mode, be sure to look at the value of the byt e_ant parameter after each
COCl LobRead2() call to see how many bytes were read into the buffer, because the buffer may
not be entirely full.

When using callbacks, the | enp parameter, which is input to the callback, indicates how many
bytes are filled in the buffer. Be sure to check the | enp parameter during your callback
processing because the entire buffer may not be filled with data.

Amount Parameter

* When calling the DBM5_LOB. READ API, the size of the anount parameter can be larger than
the size of the data. However, this parameter should be less than or equal to the size of
the buffer. In PL/SQL, the buffer size is limited to 32K.

* When calling the OCl LobRead2() function, you can pass a value of UBBMAXVAL for the
byt e_ant parameter to read to the end of the BFI LE.

4.3.4 Working with Multiple BFILE Locators

ORACLE

Some BFI LE operations accept two locators, at least one of which is a BFI LE locator. For the
assignment and the comparison operations involving BFILES, both the locators must be of
BFI LE type.

Loading a LOB with BFI LE data involves special considerations that we will discuss in the
following sections:

Loading a LOB with BFILE Data

In PLSQL, the DBMS_LOB. LOADFROMWFI LE procedure is deprecated in favor of

DBMVS_LOB. LOADBLOBFROWFI LE and DBMS_LOB. LOADCLOBFROVFI LE. Specifically, when you use
DBVS_LOB. LOADCLOBFROVFI LE procedure to load a CLOB or NCLOB instance, it will perform the
character set conversions.

Specifying the Amount of BFILE Data to Load

The value you pass for the amount parameter to functions listed in the table below must be
one of the following:

* An amount less than or equal to the actual size (in bytes) of the BFI LE you are loading.

e The maximum allowable LOB size (in bytes). Passing this value, loads the entire BFI LE.
You can use this technique to load the entire BFI LE without determining the size of the
BFI LE before loading. To get the maximum allowable LOB size, use the technique
described in the following table:

Table 4-2 Maximum LOB Size for Load from File Operations

Environment Function To pass maximum LOB size,
get value of:

DBMVS_LOB DBMS_LOB. LOADBLOBFROMFI LE DBMS_LOB. LOBMAXSI ZE

DBMVS_LOB DBMS_LOB. LOADCLOBFROMFI LE DBMS_LOB. LOBMAXSI ZE

06 CCl LobLoadFr onFi | e2() UBSMAXVAL

4-11

ORACLE

Chapter 4
BFILE APIs

Table 4-2 (Cont.) Maximum LOB Size for Load from File Operations

Environment Function To pass maximum LOB size,
get value of:
06 CCl LobLoadFr onFi | e() (For UB4MAXVAL
LOBs less than 4 gigabytes in
size.)

Loading a BLOB with BFILE Data

The DBM5S_LOB. LOADBLOBFROWFI LE procedure loads a BLOB with data from a BFI LE. It
can be used to load data into any persistent or temporary BLOB instance. This
procedure returns the new source and the destination offsets of the BLOB, which you
can then pass into subsequent calls, when used in a loop.

Loading a CLOB with BFILE Data

The DBMS_LOB. LOADCLOBFROVFI LE procedure loads a CLOB or NCLOB with character data
from a BFI LE. It can be used to load data into a persistent or temporary CLOB or NCLOB
instance. You can specify the character set ID of the BFI LE when calling this procedure
and ensure that the character set is properly converted from the BFI LE data character
set to the destination CLOB or NCLOB character set. This procedure returns the new
source and destination offsets of the CLOB or NCLOB, which you can then passe into
subsequent calls, when used in a loop.

The following example illustrates:
e Howtousedefault csid(0).
e How to load the entire file without calling get | engt h for the BFI LE.

* How to find out the actual amount loaded using return offsets.

This example assumes that ad_sour ce is a BFI LE in UTF8 character set format and the
database character set is UTF8.

CREATE OR REPLACE PROCEDURE | 0adCLOBl1 proc (dst _loc IN QUT CLOB) IS
src_loc BFI LE : = BFI LENAME(' MEDIA DIR , "monitor_3060.txt") ;
ant NUMBER : = DBMS_LOB. LOBMAXSI ZE;
src_of fset NUMBER :
dst _of fset NUMBER :
[ang_ctx NUMBER :
war ni ng NUMBER;

BEG N
DBVS_QUTPUT. PUT_LINE(' ------------ LOB LOADCLOBFORMFI LE EXAMPLE

------------);
DBMS_LOB. FI LEOPEN(sr c_| oc, DBMS_LOB. FI LE_READONLY) ;

1
1
DBVS_LOB. DEFAULT_LANG CTX:

/* The default _csid can be used when the BFILE encoding is in the
same charset

* as the destination CLOB/ NCLOB char set

*/

DBMS_LOB. LOADCLOBFROVFI LE(dst _| oc, src_loc, ant, dst_offset,
src_of fset,

DBMS_LOB. DEFAULT_CSI D, |ang_ctx, war ni ng) ;
DBMS_QUTPUT. PUT_LI NE(' Amount specified ' || ant) ;

4-12

ORACLE

Chapter 4
BFILE APIs

DBMS_QUTPUT. PUT_LI NE(" Nunber of bytes read fromsource: ' ||
(src_offset-1));

DBMS_QUTPUT. PUT_LI NE(" Nunber of characters witten to destination: ' ||
(dst_offset-1));

| F (warning = DBVS_LOB. WARN | NCONVERTI BLE_CHAR)

THEN

DBMS_QUTPUT. PUT_LI NE(' War ni ng: I nconvertible character');

END | F;

DBVS_LOB. FI LECLOSEALL() ;
END;
/

The following example illustrates:

* How to get the character set ID from the character set name using the NLS_CHARSET | D
function.

e How to load a stream of data from a single BFI LE into different LOBs using the returned
offset value and the language context | ang_ct x.

* How to read a warning message
This example assumes that ad_file_ext 01 is a BFI LEin JAL6TSTSET format and the
database national character set is ALI6UTF16.

CREATE OR REPLACE PROCEDURE | 0adCLOB2 proc (dst _locl IN QUT NCLOB, dst | oc2
IN QUT NCLOB) IS

src_loc BFI LE : = BFI LENAME(' MEDIA DIR , ' monitor _3060.txt");
amt NUMBER : = 100;

src_offset NUMBER := 1;

dst _offset NUMBER := 1;

src_osin NUMBER;

cs_id NUMBER :

| ang_ctx NUMBER :

war ni ng NUMBER;
BEG N

DBVS_QUTPUT. PUT_LINE(" ------------ LOB LOADCLOBFORMFI LE EXAMPLE
------------)

DBVS_LOB. FI LEOPEN(src_l oc, DBVS_LOB. FI LE_READONLY) ;

DBVS_QUTPUT. PUT_LINE(" BFILE csid is ' || cs_id) ;

NLS CHARSET | D(' JAL6TSTSET'); /* 998 */
dbns_| ob. default | ang_ctx;

/* Load the first 1KB of the BFILE into dst_locl */

DBNVS_QUTPUT. PUT_LINE(" - -----nmmmmmmmmmmmmmmeenma ")
DBMS_OUTPUT. PUT_LINE(' First load ') ;
DBNVS_QUTPUT. PUT_LINE(' - -----nmmmmmmmmmmmmmeemaa ")

DBMS_LOB. LOADCLOBFROVFI LE(dst locl, src_loc, ant, dst_offset, src_offset,
cs_id, lang_ctx, warning);

/* the nunber bytes read nay or nmay not be 1k */
DBMS_QUTPUT. PUT_LINE(' Amount specified ' || ant) ;
DBMS_QUTPUT. PUT_LI NE(" Nunber of bytes read fromsource: ' ||

(src_offset-1));
DBMS_QUTPUT. PUT_LI NE(" Nunber of characters witten to destination: ' ||

4-13

Chapter 4
BFILE APIs in Different Programmatic Interfaces

(dst_offset-1));
if (warning = dbns_| ob. warn_i nconverti bl e_char)
t hen

DBMS_QUTPUT. PUT_LI NE(' War ni ng: I nconvertible character');
end if;

/* load the next 1KB of the BFILE into the dst |oc2 */

DBVS_QUTPUT. PUT_LI NE(" ----------mmmmmmmm e o ")
DBMS_QUTPUT. PUT_LI NE(" Second load ') ;
DBVS_QUTPUT. PUT_LI NE(" ----------mmmmmmmm e o ")

/* Notice we are using the src_offset and lang_ctx returned fromthe
previ ous

* |oad. W do not use value 1001 as the src_offset here because
sonetinmes the

* actual anount read may not be the same as the anount specified

*/

src_osin := src_offset;

dst _offset := 1,

DBMS_LOB. LOADCLOBFROVFI LE(dst 1 oc2, src_loc, ant, dst_offset,

src_of fset,

cs_id, lang_ctx, warning);

DBMS_QUTPUT. PUT_LI NE(" Nunber of bytes read fromsource: ' ||
(src_offset-src_osin));

DBMS_QUTPUT. PUT_LI NE(" Nunber of characters witten to destination: '

I
(dst_offset-1));
if (warning = DBMS_LOB. WARN_| NCONVERTI BLE_CHAR)
t hen
DBMS_QUTPUT. PUT_LI NE(' War ni ng: I nconvertible character');
end if;
DBVS_LOB. FI LECLOSEALL() ;

END;
/

4.4 BFILE APIs in Different Programmatic Interfaces

ORACLE

This section lists all the APIs from different Programmatic Interfaces supported by
Oracle Database.

" Note:

The PL/SQL DBM5_LOB package provides a rich set of operations on BFI LEs.
If you are using a different Programmatic Interface where some of these
operations are not provided, then call the corresponding PL/SQL DBVS_LOB
procedure or function.

4-14

¢ See Also:

Comparing the LOB Interfaces

4.4.1 PLISQL APIs for BFILES

Chapter 4

BFILE APIs in Different Programmatic Interfaces

This section describes the PL/SQL APIs that you can use with BFILEs.

" See Also:
DBMS_LOB

Table 4-3 DBMS_LOB functions and procedures for BFILEs

Category Function/ Procedure Description
Sanity Checking FI LEEXI STS Checks if the BFI LE exists on the
server
FI LEGETNANVE Gets the DI RECTORY object
name and file name
BFI LENAME Sets the name of a BFI LEin a
locator without checking if the
directory or file exists
Open/Close OPEN, FI LECPEN Opens a file. Use OPEN instead

of FI LEOPEN.

| SOPEN, FI LEI SOPEN

Checks if the file was opened
using the input BFI LE locators.
Use | SCPEN instead of

FI LEI SOPEN.

CLOSE, FILECLOSE

Closes the file. Use CLOSE
instead of FI LECLCSE.

FI LECLOSEALL Closes all previously opened
files.

Read Operations CETLENGTH Gets the length of the BFI LE

READ Reads data from the BFI LE
starting at the specified offset.

SUBSTR Returns part of the BFI LE value
starting at the specified offset.

I NSTR Returns the matching position of
the nth occurrence of the pattern
in the BFI LE.

Operations involving multiple := (operator) Assigns a BFI LE locator to

locators

another

LOADCLOBFROMWFI LE

Loads character data from a file
intoa LOB

LOADBLOBFROVFI LE

Loads binary data from a file into
alLOB

LOADFROWFI LE

Loads BFI LE data into a LOB
(deprecated)

ORACLE

4-15

ORACLE

Chapter 4
BFILE APIs in Different Programmatic Interfaces

Table 4-3 (Cont.) DBMS_LOB functions and procedures for BFILEs

Category Function/ Procedure Description
COVPARE Compares the value of two
BFI LEs.

Example 4-3 PL/SQL API for BFILEs

decl are
f BFI LE;
f2 BFI LE;
b BLOB;
c CLCB;

dest of fset NUMBER
src_offset NUMBER

I ang NUMBER;
warn NUMBER;
buf f er RAW 128) ;
ant NUVBER;
| en NUMBER;
pos NUMBER;

filenane VARCHAR2(1128) ;
di rname VARCHAR2(128) ;
BEG N

/* Select out a BFILE |ocator */
SELECT ad_graphic INTO f FROM print_medi a WHERE product _id = 1 AND
ad_id = 1;

/* __ */
A LR LR R T Sanity Checking --------------------------- */
/* __ */
A LR T Det ermi ning Whet her a BFILE Exists ---------------- */

if DBMS_LOB. FILEEXI STS(f) = 1 then
DBMS_QUTPUT. PUT_LI NE(' F exists!');

el se

DBMS_QUTPUT. PUT_LI NE(' F does not exist :(');

return;
end if;
A CGetting Directory Object Nane and File Nane of a BFILE ----*/
DBVS_LOB. FI LEGETNAME(f, dirnane, filenane);
DBVMS_CQUTPUT. PUT_LINE(' F: directory: '|| dirname ||" filename: '||

filenane);

/* __ */
A LR Open/ U 0Se ------mmmmm e */
/* __ */
A LR Opening @ BFILE --------mmmmmmmieiaea e o */

DBVS_LOB. OPEN(f, DBMS_LOB. LOB_READONLY);

4-16

ORACLE

Chapter 4
BFILE APIs in Different Programmatic Interfaces

A L EE T Determining Whether a BFILE Is Open --------------- */
if DBMS_LOB.ISOPEN(f) = 1 then
DBMS_QUTPUT. PUT_LINE(' F is open!");

el se

DBVS_QUTPUT. PUT_LINE("F is not open :(");
end if;
A LR LT Cosing a BFILE ----------mmmmmmmmaaa o */
DBMS_LOB. CLOSE(f);
A LT Gosing All Cpen BFILEs with FILECLOSEALL ----------- */
DBVS_LOB. FI LECLOSEALL;
/2 * |
A LR E T BFILE operations ---------------mmmmmmmmoon */
/2 * |

DBMS_LOB. OPEN(f, dbms_| ob. 1 ob_readonly);

A R LR Getting the Length of a BFILE ------------------ */
len : = DBMS_LOB. GETLENGTH(f);

DBMS_QUTPUT. PUT_LI NE(' dbms_| ob. getl ength: " ||l en);

A LR Readi ng BFILE Data ---------------------- */
am = 15;

DBMS_LOB. READ(f, ant, 1, buffer);
DBVS_QUTPUT. PUT_LI NE(' dbns_l ob. read: ' || UTL_RAW CAST_TO VARCHAR2(buffer));

[Hemeeae-- Readi ng a Portion of BFILE Data Using SUBSTR ----------- */
buf fer := DBMS_LOB. SUBSTR(f, 15, 3);
DBMS_QUTPUT. PUT_LI NE(' dbms_| ob. substr: ' ||

UTL_RAW CAST_TO VARCHAR2(buffer));

[*-em-- Checking If a Pattern Exists in a BFILE Using INSTR ------- */
pos := DBMS_LOB.INSTR(f, utl _raw cast_to rawm('BFILE), 1, 1);
if pos !'=0 then

DBMS_QUTPUT. PUT_LI NE(' dbrs_| ob.instr: "BFILE" word exists in position '

pos);
el se
DBMS_QUTPUT. PUT_LI NE(' dbnms_| ob.instr: "BFILE" word does not exist in

file);

end if;

/2 * |

A LT Qperations involving 2 locators --------------------- */

/2 * |

A LR Assigning a BFILE Locator ---------------------- *|

f2 :=1f; -- where f2 is also a bfile variable

ant := 15;

DBMS _LOB. READ(f2, ant, 1, buffer);
DBMS_QUTPUT. PUT_LI NE(" assign: dbnms_lob.read: '||

UTL_RAW CAST_TO VARCHAR2(buffer));

4-17

Chapter 4
BFILE APIs in Different Programmatic Interfaces

A R E T Loading a LOB with BFILE Data -------------------- */
/* Select out BLOB and CLOB for update so we can wite to them*/

sel ect ad_conposite, ad_sourcetext into b, ¢

fromprint_media where product _id =1 and ad_id = 1 for update;

/* Load BLOB from BFILE */
dest of f set 1;
src_of fset 1;

DBMS_LOB. LOADBLOBFROVFI LE(b, f, dbms_| ob. | obmaxsi ze, dest_of f set,
src_offset);

/* Load CLOB from BFILE, for this operation is necessary to know the
char set
* id of BFILE to read it correctly */

dest offset := 1;
src_of fset =1,
| ang 1= 0

/* Specifying the amunt as DBMS _LOB. LOBMAXSI ZE to copy till end of
file */
DBVS_LOB. LOADCLOBFROVFI LE(c, f, DBMS_LOB. LOBMAXSI ZE, dest _of f set,
src_of fset,
NLS CHARSET ID('utf8'), lang, warn);

A LR Conparing Al or Parts of Two BFILES ------------- *|
SELECT ad_graphic INTO f2 FROM print_medi a WHERE product _id = 2 AND
ad_id = 1;

DBVMS_LOB. OPEN(f 2, dbns_| ob. | ob_readonly);
i f DBMS_LOB. COWPARE(f, f2, 10, 1, 1) =0 then

DBMS_QUTPUT. PUT_LI NE(' dbrs_| ob. conpare: They are equals!!');
el se

DBMS_QUTPUT. PUT_LI NE(' dbns_| ob. conpare: They are not equals :(');
end if;

-- Cose just f
DBVS_LOB. CLOSE(f);

-- Cose the rest of bfiles opended
DBVS_LOB. FI LECLOSEALL;

END;
/

4.4.2 JDBC API for BFILES

ORACLE

This section describes the JDBC APIs that you can use to work with BFILEs.

In JDBC, the oracl e. j dbc. Oracl eBfi | e interface provides methods for performing
operations on BFI LE data in the database. It encapsulates the BFI LE locators, so you
do not deal with locators, but instead use methods and properties provided to perform
operations and get state information.

4-18

Chapter 4

BFILE APIs in Different Programmatic Interfaces

To retrieve the locator for the most current row, you must call the get BFI LE() method on the
O acl eResul t Set each time a move operation is made, depending on whether the instance is

a BFI LE.

" See Also:
Working with LOBs and BFILEs

Table 4-4 JDBC APIs for BFILES

Category Function/ Procedure

Description

Sanity Checking bool ean fil eExi sts()

Checks if the BFI LE exists on the
server

public java.lang. String
get Name()

Gets the file name

public java.lang. String
getDirAlias()

Gets the DI RECTORY object
name

Open/Close public void openFile()

Opens a file.

public bool ean
i sFileCpen()

Checks if the file was opened
using the input BFI LE locators. .

public void closeFile()

Closes the file. Use CLOSE
instead of FI LECLOSE.

Read Operations ong | ength()

Gets the length of the BFI LE

public
java.io.InputStream
get Bi narySt rean()

Reads the BFI LE as a binary
stream.

byte[] getBytes(long,
int)

Gets the contents of the BFI LE
as an array of bytes, given an
offset

int getBytes(long, int,

Reads a subset of the BFI LE into
a byte array

Finds the first appearance of the
given BFI LE contents within the
LOB, from the given offset.

byte[])

| ong
position(oracle.jdbc.Oac
leBfile, long)

 ong position(byte[],

[ong)

Finds the first appearance of the
given byte array within the
BFI LE, from the given offset

Operations involving multiple
locators

[use equal sign]

Assigns a BFI LE locator to
another

Example 4-4 JDBC API for BFILEs
static void run_query() throws Exception {

try(
Oracl eConnection con =

St at enent stnt
)

Resul t Set rs =

get Connection();
con.createStatenent();

nul I ;

ORACLE

4-19

ORACLE

Chapter 4
BFILE APIs in Different Programmatic Interfaces

OracleBfile f = null;
OracleBfile f2 = null;
OracleBfile f3 = null;

[nput Streamin = null;

String out put = null;

byte buffer[] = new byte[15];
[ong pos;

String filenane = null;

String dirnane = null;

[ong len = 0;

rs = stnt.executeQuery("select ad_graphic fromprint_nedia where
product id = 1");

rs.next();

f = (OracleBfile)((OacleResultSet)rs).getBfile(l);

rs.close();

rs = stnt.executeQuery("select ad_graphic fromprint_nedia where
product id = 2");

rs.next();

f2 = (OacleBfile)((Oracl eResul t Set)rs).getBfile(1);

rs.close();

stnt.close();

2
*/

A e R R T Sanity Checking ------------------o-mmmomu-
*/

2
*/

A LT Det erm ni ng Whether a BFILE Exists ----------------
*/

if (f.fileExists())

Systemout.printIn("F exists!");
el se
Systemout.printIn("F does not exist :(");

A CGetting Directory Object Name and File Nane of a BFILE ----
*/

dirnane = f.getDirAlias();

filename = f.get Nanme();

Systemout.printin("Directory: " + dirname + " Filenane: " +
filenane);

2
*/

A LR TP Open/ A 0Se --------mmmme e
*/

2

4-20

Chapter 4
BFILE APIs in Different Programmatic Interfaces

*/

A LR T T Opening @ BFILE ----------mmmmmmmiaao o */
f. open(Lar geChj ect AccessMbde. MODE_READONLY) ;

A LT Det erm ni ng Whether a BFILE Is Cpen --------------- */
if (f.isOpen())

Systemout.printIn("F is open!");
el se

Systemout.printIn("F is not open :(");

A LR T T Cosing a BFILE ----------mmmmmmaaa o */
f.close();

/5 *|
A R TP BFILE operations -------------c-mmmmmmanoo */
/5 *|

f. open(LargeChj ect AccessMbde. MODE_READONLY) ;

A LT CGetting the Length of a BFILE ------------------ */
len = f.length();
Systemout.println("F Length: "+l en);

A LR T Reading BFILE Data ---------------------- */
in=f.getBinaryStream);

in. read(buffer);

in.close();

output = new String(buffer);

Systemout.printin("Buffer: " + output);
[*---- Checking If a Pattern Exists in a BFILE Using POSITION ------ */
pos = f.position("BFILE". getBytes(), 1);
if (pos I=-1)

Systemout.printIn("\"BFILE\" word exists in position: " + pos);
el se

Systemout.printIn("\"BFILE\" word doesn't exist :(");
/5 * |
A LT Qperations involing 2 locators --------------------- */
/O *|
A LR T Assigning a BFILE Locator ---------------------- */
f3 =f;
in=f3.getBinaryStream);
in. read(buffer);
in.close();
output = new String(buffer);
Systemout.println("assign: Buffer: " + output);
A LT Conparing All or Parts of Two BFILES ------------- */

ORACLE 4-21

f 2. open(Lar ge(hj ect Accesshbde. MODE_READONLY) ;

Chapter 4

BFILE APIs in Different Programmatic Interfaces

pos = f.position(f2, 1);

if (pos I=-1)
Systemout.printIn("f2 exists in position

el se

+ pos);

Systemout.printIn("f2 doesn't exist in position");

f.close()
f2.cl ose(
f3.cl ose(

4.4.3 OCI API for BFILES

This section describes the OCI APlIs that you can use with BFILESs.

¢ See Also:

LOB and BFILE Operations

Table 4-5 OCI APIs for BFILEs
L

Category

Function/ Procedure

Description

Sanity Checking

QOCl LobFi | eExi sts()

Checks if the BFI LE exists on
the server

OCl LobFi | eGet Nane()

Gets the DI RECTORY object
name and the file name

OCl LobFi | eSet Nane()

Sets the name of a BFI LEin a
locator without checking if the
directory or file exists

QOCl LobLocatorIslnit()

Checks whether a LOB
Locator is initialized

Open/Close

OCl LobOpen() and
QOCl LobFi | eQpen()

Opens a file. Use
Cci LobQpen() instead of
OCl LobFi | eQpen() .

QOCl Lobl sQpen() and
CCl LobFi | el sOpen()

Checks if the file was opened
using the input BFI LE
locators. Use

OCl Lobl sOpen() instead of
Cci LobFi | el sQpen() .

OCl Lobd ose() and
QOCl LobFi | ed ose()

Closes the file. Use
Cci Lobd ose() instead of
Cci LobFi | eC ose().

QOCl LobFi | eCl oseAl | ()

Closes all previously opened
files.

Read Operations

CCl LobGet Lengt h2()

Gets the length of the BFI LE

CCl LobRead2()

Reads data from the BFI LE
starting at the specified offset.

ORACLE

4-22

ORACLE

Table 4-5 (Cont.) OCI APIs for BFILEs

Chapter 4

BFILE APIs in Different Programmatic Interfaces

Category Function/ Procedure

Description

OCl LobAr rayRead()

Reads data using multiple
locators in one round trip.

Operations involving multiple
locators

QOCl LobLocat or Assi gn()

Assigns a BFI LE locator to
another

OCl LobLoadFr onFi | e2()

Loads BFI LE data from a file
intoa LOB

Example 4-5 OCI API for BFILEs

static text *selstm = (text *) "select ad_graphic, ad_conposite,
ad_sourcetext fromprint_media where product _id =1 and ad_id = 1 for update”

sword run_query()

{
QCl LobLocat or *f = (OCl LobLocator *)O0;
QCl LobLocat or *f2 = (OCl LobLocator *)O0;

(OCl LobLocat or *)0;

QCl LobLocat or *b
*¢ = (OCl LobLocator *)O0;

OCl LobLocat or

oCl St nt *st nt hp;

QOCl Def i ne *defnlp = (OCl Define *) 0;
OCl Def i ne *defn2p = (OCl Define *) 0;
QOCl Def i ne *defn3p = (OCl Define *) 0;
ub4 bfilelen;

ubl | buf[128];

ub8 am = 15;

bool ean flag = FALSE;

ub4 id=10;

t ext filenane[128];

ub2 filename_| en;

t ext di rnane[128];

ub2 di rname_| en;

CHECK_ERROR (OCl Handl eAl oc((dvoid *) envhp, (dvoid **) &stnthp,

OCl_HTYPE_STMI, (size_t) 0, (dvoid **)

/************** AI | ocate deSCFI ptors ***********************/

CHECK_ERROR (OCl DescriptorAlloc((dvoid *) envhp, (dvoid **) &f,

(ub4) OCI_DTYPE FILE, (size_t) O,
(dvoid **) 0));

CHECK_ERROR (OCI DescriptorAlloc((dvoid *) envhp, (dvoid **) &f 2,

CHECK_ERROR (OCl DescriptorAlloc((dvoid *) envhp, (dvoid **) &b,
0

(ub4) OCI _DTYPE FILE, (size_t) O,
(dvoid **) 0));

(ub4) OCI_DTYPE LOB, (size_t)

4-23

ORACLE

Chapter 4
BFILE APIs in Different Programmatic Interfaces

(dvoid **) 0));

CHECK_ERROR (OCl DescriptorAlloc((dvoid *) envhp, (dvoid **) &c,
(ub4)OCl _DTYPE LOB, (size_t) O,
(dvoid **) 0));

/********** Execute Sel Stm to get fl b, c ***********************/
CHECK_ERROR (OCI St nt Prepare(stnthp, errhp, selstnt,

(ub4) strlen((char *) selstnt),

(ub4) OCI _NTV_SYNTAX, (ub4) OCl _DEFAULT));

CHECK_ERROR (OCl Def i neByPos(st nt hp, &defnlp, errhp, (ub4) 1, (dvoid
*) &,
(sh4) -1, SQ.T_BFILE, (dvoid *) 0, (ub2
*) 0,
(ub2 *)0, (ub4) OCI _DEFAULT));
CHECK_ERROR (OCl Def i neByPos(st nt hp, &defn2p, errhp, (ub4) 2, (dvoid
*) &b,
(sh4) -1, SQT_BLOB, (dvoid *) 0, (ub2 *)
01
(ub2 *)0, (ub4) OCI _DEFAULT));
CHECK_ERROR (OCI Def i neByPos(st nt hp, &defn3p, errhp, (ub4) 3, (dvoid
*) &c,
(sh4) -1, SQT_CLOB, (dvoid *) 0, (ub2 *)
01
(ub2 *)0, (ub4) OCI _DEFAULT));

CHECK_ERROR (OCI St nt Execut e(svchp, stnthp, errhp, (ub4) 1, (ub4) O,
(CONST OClI Snapshot *) NULL, (OCI Snapshot

*) NULL,

OCl _DEFAULT));
/2 * |
A R EEEEE T Sanity Checking ----------------mmmmmamann *|
/2 *|
A LR Det ermi ning Whet her a BFILE Exists ---------------- *|

CHECK_ERROR (OCl LobFi | eExi st s(svchp, errhp, f, &flag));
printf("OC LobFileExists: %\n", (flag)?"TRUE":"FALSE");

[*-em-- Getting Directory Object Name and File Nane of a BFILE ----*/
CHECK_ERROR (OCl LobFi | eGet Nane(envhp, errhp, f, (text*)dirnaneg,
&di rname_| en,
(text*)filename, &filenane_len));
printf("OC LobFileGetNanme: Directory: %*s Filaname: %*s \n",
dirnane_len, dirname, filename_len, filename);

/2 * |
A LR LT Open/ A 0Se ---------mmmm s *|
/2 * |
A LR LT Opening @ BFILE ---------nmmmmmmaiaeao o *|

CHECK_ERROR (OCI LobFi | eCpen(svchp, errhp, f, OCl _FILE READONLY));
printf("OC LobFileCpen: Works\n");

4-24

Chapter 4
BFILE APIs in Different Programmatic Interfaces

A L EE T Determining Whether a BFILE Is Open --------------- */
CHECK_ERROR (OCl LobFi | el sOpen(svchp, errhp, f, &flag));
printf("OC LobFilelsOpen: %\n", (flag)?"TRUE":"FALSE");

A LR LT Cosing a BFILE ----------mmmmmmmmaaa o */
CHECK_ERROR (OCI LobFi | ed ose (svchp, errhp, f));

A LT Gosing All Cpen BFILEs with FILECLOSEALL ----------- */
CHECK_ERROR (OCl LobFi | eCl oseAl | (svchp, errhp));
/2 * |
A LR E T BFILE operations ---------------mmmmmmmmoon */
/2 * |

CHECK_ERROR (OCI LobFi | eCpen(svchp, errhp, f, OCl _FILE READONLY));
printf("OC LobFileCpen: Works\n");

A R LR Getting the Length of a BFILE ------------------ */
CHECK_ERROR (OCl LobGet Lengt h(svchp, errhp, b, &bfilelen));
printf("OC LobGetLength: loblen: %l \n", bfilelen);

A LR Readi ng BFILE Data ---------------------- */
CHECK_ERROR (OCl LobRead2(svchp, errhp, f, &ant,

NULL, (oraub8)1, | buf,

(oraub8)si zeof (1 buf), OCI _ONE_PI ECE , (dvoi d*)O0,

NULL, (ub2)0, (ubl)SQCS IMPLICIT));
printf("OC LobRead2: buf: %*s ant: % u\n", ant, |buf, ant);

2 * |
A LT Qperations involing 2 locators --------------------- */
/2 * |
A LR Assigning a BFILE Locator ---------------------- */

CHECK_ERROR (OCI LobLocat or Assi gn(svchp, errhp, f, & 2));
printf("OC LobLocator Assi gn: Wrks! \n");

am = 15;
CHECK_ERROR (OCl LobRead2(svchp, errhp, f2, &ant,
NULL, (oraub8)1, | buf,
(oraub8)si zeof (1 buf), OCI _ONE_PI ECE , (dvoi d*)0,
NULL, (ub2)0, (ubl)SQLCS_IMPLICIT));
printf("OC LobLocator Assi gn: OCl LobRead2: buf: %*s ant: %u\n", ant,

I buf, ant);
A R Loading a LOB with BFILE Data -------------------- *|
/* Load BLOB from BFILE. Specify anobunt = UBBMAXVAL to copy till end of
bfile */

CHECK_ERROR (OCl LobLoadFronFil e2(svchp, errhp, b, f, UBSMAXVAL, 1,1));
printf("OC LobLoadFronFile2: BLOB case Wrks\n");

/* Load CLOB from BFILE. Specify anpbunt = UBBMAXVAL to copy till end of
bfile.

* Note that there is no character set conversion here. */

CHECK_ERROR (OCl LobLoadFronFil e2(svchp, errhp, ¢, f, UBSMAXVAL, 1,1));

printf("OC LobLoadFronFile2: CLOB case Wrks\n");

ORACLE 4-25

Chapter 4
BFILE APIs in Different Programmatic Interfaces

[* Cose just f */
CHECK_ERROR (OCI LobFi | ed ose (svchp, errhp, f));

/* Cose the rest of bfiles opened */
CHECK_ERROR (OCl LobFi | eCl oseAl | (svchp, errhp));

QOCl Descri ptorFree((dvoid *) b, (ub4) SQT BLOB);
OCl Descri ptorFree((dvoid *) ¢, (ub4) SQT CLOB);
OCl Descri ptorFree((dvoid *) f, (ub4) SQT_BFILE);
QOCl DescriptorFree((dvoid *) f2, (ub4) SQT_BFILE);

CHECK_ERROR (OCl Handl eFree((dvoid *) stnthp, OCl _HTYPE_STMI));

4.4.4 ODP.NET API for BFILEs

This section describes the ODP.NET APIs that you can use with BFILEs.

¢ See Also:

OracleBFile Class

Table 4-6 ODP.NET methods in OracleBfileClass

Category Function/Description Description
Sanity Checking Fil eExists Checks if the BFILE exists on
the server
Fi | eName Sets or gets the file name
Di rect or yName Sets or gets the DI RECTORY
object name
Open/Close OpenFile Opens a file. Use OPEN
instead of FI LEOPEN.
I sOpen Checks if the file was opened

using the input BFILE locators.
Use | SOPEN instead of

FI LEI SOPEN.
CoseFile Closes the file.
Read Operations Length Get the length of the BFILE
Val ue Returns the entire LOB data

as a string for CLOB and a
byte array for BLOB

Read Reads data from the BFILE
starting at the specified offset.

Sear ch Returns the matching position
of the nth occurrence of the
pattern in the BFILE.

Operations involving multiple ~ Conpar e Compares the values of two
locators BFILEs

ORACLE 4-26

Chapter 4
BFILE APIs in Different Programmatic Interfaces

Table 4-6 (Cont.) ODP.NET methods in OracleBfileClass

___|
Category Function/Description Description

| sEqual Check if two LOBs point to the
same LOB data

4.4.5 OCCI API for BFILEs

ORACLE

This section describes the OCCI APIs that you can use with BFI LEs.

In OCCI, the Bfi | e class enables you to instantiate a Bf i | e object in your C++ application.
You must then use methods of the Bf i | e class, such as the set Nane() method, to initialize
the Bf i | e object, which associates the object properties with an object of type BFI LE in a
BFI LE column of the database.

See Also:

Bfile Class

Amount Parameter for OCCI LOB copy() Methods

The copy() method on C ob and Bl ob enables you to load data from a BFI LE. You can pass
one of the following values for the amount parameter to this method:

e An amount smaller than the size of the BFI LE to load a portion of the data
e An amount equal to the size of the BFI LE to load all of the data
* The UBSMAXVAL constant to load all of the BFI LE data

You cannot specify an amount larger than the length of the BFI LE.
Amount Parameter for OCCI read() Operations

The read() method on an C ob, Bl ob, or Bf i | e object, reads data from a BFI LE. You can
pass one of these values for the amount parameter to specify the amount of data to read:

* An amount smaller than the size of the BFI LE to load a portion of the data
* An amount equal to the size of the BFI LE to load all of the data
e An amount equal to zero (0) to read until the end of the BFI LE in streaming mode

You cannot specify an amount larger than the length of the BFI LE.

Table 4-7 OCCI Methods for BFILEs
|

Category Function/ Procedure Description
Sanity Checking fileExists() Checks if the BFI LE exists on the
server
get Fi | eName() Gets the file name
getDirAias() Gets the DI RECTORY object
name

4-27

Chapter 4
BFILE APIs in Different Programmatic Interfaces

Table 4-7 (Cont.) OCCI Methods for BFILEs

___|
Category Function/ Procedure Description

set Name() Sets the name of a BFI LEin a
locator without checking if the
directory or file exists.

islnitialized() Checks whether a BFI LE is
initialized.
Open/Close open() Opens a file.
i sOpen() Checks if the file was opened
using the input BFILE locators.
cl ose() Closes the file.
Read Operations [engt h() Gets the length of the BFI LE
read() Reads data from the BFI LE
starting at the specified offset.
Operations involving multiple (operator) = Assigns a BFI LE locator to
locators another. Use the assignment
operator (=) or the copy
constructor.
Bl ob. copy() or Loads BFI LEdata into a LOB
d ob. copy()

4.4.6 Pro*C/C++ and Pro*COBOL API for BFILES

This section describes Pro*C/C++ and Pro*COBOL APIs APIs you can use for
BFILEs.
¢ See Also:

e Pro*C/C++ Programmer's Guide
e Pro*COBOL Programmer's Guide

Table 4-8 Pro*C/C++ and Pro*COBOL APIs for BFILEs
]

Category Function/ Procedure Description
Sanity Checking DESCRI BE[FI LEEXI STS] Checks if the BFI LE exists on
the server
DESCRI BE[DI RECTORY, FI LE Gets the directory object name
NAME] and file name
FI LE SET Sets the name of a BFI LE in a

locator without checking if the
directory or file exists

Open/Close OPEN Opens a file.
DESCRI BE[| SOPEN]| Checks if the file was opened
using the input BFI LE
locators.

ORACLE 4-28

ORACLE

Chapter 4
BFILE APIs in Different Programmatic Interfaces

Table 4-8 (Cont.) Pro*C/C++ and Pro*COBOL APIs for BFILEs

Category Function/ Procedure Description
CLOSE Closes the file.
FI LE CLOSE ALL Closes all previously opened
files.
Read Operations DESCRI BE[LENGTH| Gets the length of the BFI LE
READ Reads data from the BFI LE
starting at the specified offset.
Operations involving multiple ~ ASSI GN Assigns a BFI LE locator to
locators another
LOAD FROM FI LE Loads BFI LE data into a LOB

4-29

SQL Semantics for LOBs

You can use various SQL mechanisms to operate on LOBs.

You can access CLOB and NCLOB data types using SQL VARCHAR2 semantics, such as SQL
string operators and functions. These techniques allow you to use LOBs directly in SQL code
and provide an alternative to using LOB-specific APIs for some operations, and are beneficial

in the following situations:

* When performing operations on LOBs that are relatively small in size, i.e., up to about

100K bytes

» After migrating your database from LONG columns to LOB data types, so that any SQL
string functions contained in your existing PL/SQL application continue to work

SQL semantics are not recommended in the following situations, you must use LOB APIs

instead:

* When using advanced features such as random access and piece-wise fetch.

* When performing operations on LOBs that are relatively large in size (greater than 1MB),
because using SQL semantics can impact performance.

¢ Note:

SQL semantics are used with persistent and temporary LOBs, and do not apply to

BFILEs.

5.1 SQL Functions and Operators Supported for Use with LOBs

Many SQL operators and functions that take VARCHAR2 columns as arguments, also accept
LOB columns. The following list summarizes those categories of SQL functions and operators

that are supported for use with LOBs.

SQL Operations/ Functions Support
Concatenation Supported
Comparison Some comparison functions are not supported for

Character functions
Conversion

Aggregate functions
Unicode functions

LOBs
Supported

Some conversion functions are not supported for
LOBs

Not supported
Not supported

ORACLE

5-1

¢ See Also:

Chapter 5

SQL Functions and Operators Supported for Use with LOBs

Working with Remote LOBs in SQL and PL/SQL

The following table provides the details on each of the operations that accept VARCHAR2
types as operands or arguments, or return a VARCHAR? value.

* The SQL column identifies the built-in functions and operators that are supported
for CLOB and NCLOB data types. The LENGTH function is also supported for the BLOB

data type.

e The PL/SQL column identifies the PL/SQL built-in functions and operators that are
supported on LOBs.

e Functions designated as CNV in the SQL or PL/SQL column in the table are
performed by converting the CLOB to a character data type, such as VARCHAR2. In
the SQL environment, only the first 4K bytes of the CLOB are converted and used in
the operation. In the PL/SQL environment, only the first 32K bytes of the CLOB are
converted and used in the operation.

Table 5-1 SQL VARCHAR2 Functions and Operators on LOBs
]

Category Operator / Function SQL Example | Comments SQL PL/ISQL

Concatenation ||, CONCAT() Select clobCol || clobCol2 fromtab; Yes Yes

Comparison = ,!=,>>= < <=<> if clobCol=clobCol 2 then... No Yes

N=

Comparison [N, NOT I N if clobCol NOT IN (clobl, clob2, clob3) No Yes
then. ..

Comparison SOVE, ANY, ALL if clobCol < SOME (select clobCol2 No N/A
from..) then...

Comparison BETWEEN if clobCol BETWEEN cl obCol 2 and No Yes
clobCol 3 then...

Comparison LI KE [ESCAPE] if clobCol LIKE '%attern% then... Yes Yes

Comparison 1S [NOT] NULL where clobCol |'S NOT NULL Yes Yes

Character I NI TCAP, NLS | NI TCAP sel ect I NITCAP(clobCol) from.. CNV CNV

Functions

Character LONER, NLS_LOVER, ...Where LOAER(cl obCol 1) = Yes Yes

Functions UPPER, NLS_UPPER LOAER(cl obCol 2)

Character LPAD, RPAD sel ect RPAD(clobCol, 20, ' La') from.. Yes Yes

Functions

Character TRIM LTRIM RTRI M ...where RTRIMLTRI MclobCol,"ab'), Yes Yes

Functions "xy') ='cd

Character REPLACE sel ect REPLACE(cl obCol, 'orig',' new) Yes Yes

Functions from..

Character SOUNDEX ... where SOUNDEX(cl obCd) = CNV CNV

Functions SOUNDEX(" SMYTHE')

Character SUBSTR ...where substr(clobCol, 1,4) = like Yes Yes

Functions "TH' S

ORACLE 5-2

Table 5-1 (Cont.) SQL VARCHAR2 Functions and Operators on LOBs

Chapter 5

SQL Functions and Operators Supported for Use with LOBs

Category Operator / Function SQL Example | Comments SQL PL/ISQL
Character TRANSLATE sel ect TRANSLATE(cl obCol , CNV CNV
Functions '123abc','NC') from..
Character ASCl | sel ect ASCII(clobCol) from.. CNV CNV
Functions
Character I NSTR ...where instr(clobCol, 'book') = 11 Yes Yes
Functions
Character LENGTH ...where length(clobCol) != 7, Yes Yes
Functions
Character NLSSORT ...where NLSSORT (clobCol,' NLS SORT = CNV CNV
Functions German') > NLSSORT ('S',"'NLS SORT =
German')
Character | NSTRB, SUBSTRB, These functions are supported only for CLOBs that Yes Yes
Functions LENGTHB use single-byte character sets. (LENGTHB is
supported for BLOBs and CLCBs.)
Character REGEXP_LI KE This function searches a character column for a Yes Yes
Functions - pattern. Use this function in the WHERE clause of a
Regular query to return rows matching the regular
Expressions expression you specify.
Character REGEXP_REPLACE This function searches for a pattern in a character Yes Yes
Functions - column and replaces each occurrence of that
Regular pattern with the pattern you specify.
Expressions
Character RECEXP_I NSTR This function searches a string for a given Yes Yes
Functions - occurrence of a regular expression pattern. You
Regular specify which occurrence you want to find and the
Expressions start position to search from. This function returns
an integer indicating the position in the string
where the match is found.
Character REGEXP_SUBSTR This function returns the actual substring matching Yes Yes
Functions - the regular expression pattern you specify.
Regular
Expressions
Conversion CHARTOROW D CHARTOROW D(cl obCol) CNV CNV
Conversion COVPOSE COVPOSE(" string') CNV CNV
Returns a Unicode string given a string in the data
type CHAR, VARCHAR2, CLOB, NCHAR, NVARCHAR?,
NCLOB.
Conversion DECOVPCSE DECOVPOSE("' str' [CANONI CAL | CNV CNV
COVPATI BI LI TY])
Valid for Unicode character arguments.
Conversion HEXTORAW HEXTORAW CLOB) No CNV
Conversion CONVERT sel ect Yes CNV
CONVERT(cl obCol , ' VEBDEC , ' WEBHP")
from..
Conversion TO DATE TO DATE(cl obCol) CNV CNV
Conversion TO_NUMBER TO_NUMBER(cl obCol) CNV CNV
ORACLE 5-3

Chapter 5

SQL Functions and Operators Supported for Use with LOBs

Table 5-1 (Cont.) SQL VARCHAR2 Functions and Operators on LOBs

Category Operator / Function SQL Example | Comments SQL PL/ISQL
Conversion TO_TI MESTAMP TO_TI MESTAMP(cl obCol) No CNV
Conversion TO_MULTI _BYTE TO_MULTI _BYTE(cl obCol) CNV CNV
TO_SI NGLE_BYTE TO_SI NGLE_BYTE(cl obCol)
Conversion TO CHAR TO_CHAR(¢l obCol) Yes Yes
Conversion TO _NCHAR TO NCHAR(¢l obCol) Yes Yes
Conversion TO LOB I NSERT I NTO... SELECT N/A N/A
TO _LOB(I ongCol). ..
Note that TO_LOB can only be used to create or
insert into a table with LOB columns as SELECT
FROMa table with a LONG column.
Conversion TO CLOB TO_CLOB(var char 2Col) Yes Yes
Conversion TO_NCLOB TO_NCLOB(var char 2Cl ob) Yes Yes
Aggregate COUNT sel ect count(clobCol) from.. No N/A
Functions
Aggregate MAX, M N sel ect MAX(clobCol) from.. No N/A
Functions
Aggregate CGROUPI NG sel ect grouping(clobCol) from.. group No N/A
Functions by cube (clobCol);
Other GREATEST, LEAST sel ect GREATEST (cl obCol 1, cl obCol 2) No CNV
Functions from..
Other DECODE sel ect DECODE(cl obCol, conditionl, CNV CNV
Functions val uel, defaultValue) from..
Other NVL sel ect NVL(clobCol,"NULL") from .. Yes Yes
Functions
Other DUMP sel ect DUMP(cl obCol) from .. No N/A
Functions
Other VSl ZE sel ect VSIZE(cl obCol) from.. No N/A
Functions
Unicode I NSTR2, SUBSTR2, These functions use UCS2 code point semantics. No CNV
LENGTH2, LI KE2
Unicode | NSTR4, SUBSTR4, These functions use UCS4 code point semantics. No CNV
LENGTH4, LI KE4
Unicode | NSTRC, SUBSTRC, These functions use complete character semantics. No CNV
LENGTHC, LI KEC
¢ See Also:
e Oracle Database SQL Language Reference for syntax details on SQL
functions for regular expressions.
e Oracle Database Development Guide for information on using regular
expressions with the database.
ORACLE 5-4

Chapter 5
Detailed Semantics of SQL Operations on LOBs

5.2 Detailed Semantics of SQL Operations on LOBs

This section explains semantics of SQL operations on LOBs in details.

5.2.1 Return Datatype for SQL Operations on LOBs

The return data type of SQL functions on LOBs is dependent on the input parameters.

The return type of a function or operator that takes a LOB or VARCHAR? is the same as the
data type of the argument passed to the function or operator. Functions that take more than
one argument, such as CONCAT, return a LOB data type if one or more arguments is a LOB.

Example 5-1 CONCAT function returning CLOB

CONCAT(CLOB, VARCHAR?2) CLOB

Any LOB instance returned by a SQL function is a temporary LOB instance. LOB instances in
tables (persistent LOBs) are not modified by SQL functions, even when the function is used
in the SELECT list of a query.

5.2.2 NULL vs EMPTY LOB: Semantic Difference between LOBs and
VARCHAR?2

For the VARCHAR? data type, a string of length zero is indistinguishable from a NULL value for
the column.

For the column of a LOB data type, there are three possible states:
1. NULL: This means the column has no LOB locator.

2. Zero-length value: This can be achieved by inserting an EMPTY LOB into the column, or by
using an APl such as DBVMS_LOB. TRI M) to trim the length to zero. In either case, there is
a valid LOB locator in the column, but the LOB value length is zero.

3. Non-zero length value.

Due to this difference, the LENGTH function differs depending on whether the argument passed
is a LOB or a character string:

e For a character string of length zero, the LENGTH function returns NULL.

» For a CLOB of length zero, or an empty locator such as that returned by EMPTY_CLOB() , the
LENGTH and DBMS_LOB. GETLENGTH functions return 0.

Similarly, when used with LOBs, the | S NULL and | S NOT NULL operators determine whether
a LOB locator is stored in the row:

* When you pass an initialized LOB of length zero to the | S NULL function, FALSE is
returned. These semantics are compliant with the SQL 92 standard.

* When you pass a VARCHAR? of length zero to the I S NULL function, TRUE is returned.

5.2.3 WHERE Clause Usage with LOBs

SQL functions with LOBs as arguments, except functions that compare LOB values, are
allowed in predicates of the WHERE clause.

ORACLE 5-5

Chapter 5
Detailed Semantics of SQL Operations on LOBs

The LENGTH function, for example, can be included in the predicate of the WHERE
clause:

CREATE TABLE t (n NUMBER, c¢ CLOB);
INSERT INTO t VALUES (1, "abc');

SELECT * FROMt WHERE ¢ | S NOT NULL,;

SELECT * FROMt WHERE LENGTH(c) > 0;

SELECT * FROM't WHERE c LIKE ' %% ;

SELECT * FROMt WHERE SUBSTR(c, 1, 2) LIKE '%%;
SELECT * FROMt WHERE INSTR(c, 'b') = 2;

5.2.4 CLOBs and NCLOBs Do Not Follow Session Collation Settings

Learn about various operators on CLOBs and NCLOBs and compare the operations on
VARCHAR2 and NVARCHAR? variables with respect to LOBs in this section.

Standard operators that operate on CLOBs and NCLOBs without first converting them to
VARCHAR2 or NVARCHAR2, are marked as 'Yes' in the SQL or PL/SQL columns of Table
7-1. These operators do not behave linguistically, except for REGEXP functions. Binary
comparison of the character data is performed irrespective of the NLS_COWP and
NLS_SORT parameter settings.

These REGEXP functions are the exceptions, where, if CLOB or NCLOB data is passed in,
the linguistic comparison is similar to the comparison of VARCHAR2 and NVARCHAR2
values.

« REGEXP_LIKE

. REGEXP_REPLACE
« REGEXP_INSTR

. REGEXP_SUBSTR
« REGEXP_COUNT

¢ Note:
CLOBs and NCLOBs support the default USING NLS_COMP option.

¢ See Also:

Oracle Database Reference for more information about NLS_COWP

5.2.5 Codepoint Semantics

ORACLE

Codepoint semantics of the | NSTR, SUBSTR, LENGTH, and LI KE functions differ
depending on the data type of the argument passed to the function.

These functions use different codepoint semantics depending on whether the
argument is a VARCHAR2 or a CLOB type as follows:

5-6

https://docs.oracle.com/en/database/oracle/oracle-database/20/adlob/SQL-semantics-and-LOBs.html#GUID-D8F66A2A-4D17-49C3-ADB2-BE384510DD6D__G1016221
https://docs.oracle.com/en/database/oracle/oracle-database/20/adlob/SQL-semantics-and-LOBs.html#GUID-D8F66A2A-4D17-49C3-ADB2-BE384510DD6D__G1016221

Chapter 5
Restrictions on SQL Operations on LOBs

* When the argument is a CLOB, UCS2 codepoint semantics are used for all character sets.

e When the argument is a character type, such as VARCHAR2, the default codepoint
semantics are used for the given character set:

— UCS2 codepoint semantics are used for ALL6UTF16 and UTF8 character sets.
— UCS4 codepoint semantics are used for all other character sets, such as AL32UTFS8.

* If you are storing character data in a CLOB or NCLOB, then note that the amount and offset
parameters for any APIs that read or write data to the CLOB or NCLOB are specified in
UCS2 codepoints. In some character sets, a full character consists one or more UCS2
codepoints called a surrogate pair. In this scenario, you must ensure that the amount or
offset you specify does not cut into a full character. This avoids reading or writing a partial
character.

» Oracle Database helps to detect half surrogate pair on read or write boundaries in case
of SQL functions and in case of read/write through LOB APIs. The behavior is as follows:

— If the starting offset is in the middle of a surrogate pair, an error is raised for both read
and write operations.

— If the read amount reads only a partial character, increment or decrement the amount
by 1 to read complete characters.

" Note:

The output amount may vary from the input amount.

— If the write amount overwrites a partial character, an error is raised to prevent the
corruption of existing data caused by overwriting of a partial character in the
destination CLOB or NCLCB.

" Note:

This check only applies to the existing data in the CLOB or NCLOB. You must
make sure that the incoming buffer for the write operation starts and ends in
complete characters.

5.3 Restrictions on SQL Operations on LOBs

There are many SQL operations that are not supported on LOB columns. This section lists
those operations.

Table 5-2 Unsupported Usage of LOBs in SQL

SQL Operations Not Supported Example of unsupported usage
SELECT DI STI NCT SELECT DI STINCT cl obCol from..
SELECT clause SELECT. .. ORDER BY cl obCol
ORDER BY

ORACLE 5.7

Chapter 5
Restrictions on SQL Operations on LOBs

Table 5-2 (Cont.) Unsupported Usage of LOBs in SQL

SQL Operations Not Supported Example of unsupported usage

SELECT clause SELECT avg(nunm) FROM..

GROUP BY GROUP BY cl obCaol

UNI ON, | NTERSECT, M NUS SELECT cl obCol 1 fromtabl UNI ON SELECT cl obCol 2 from
(Note that UNI ON ALL works for LOBs.) tab2;

Join queries SELECT... FROM .. WHERE tabl.cl obCol = tab2.clobCol
Index columns CREATE | NDEX cl obl ndx ON tab(cl obCol). ..

Related Topics

e BFILE APIs
This section discusses the different operations supported through BFI LEs.

ORACLE 5-8

PL/SQL Semantics for LOBs

This chapter covers topics related to PL/SQL semantics for LOBs.

6.1 Implicit Conversion with LOBS

ORACLE

This section describes the implicit conversion process in PL/SQL from one LOB type to
another LOB type or from a LOB type to a non-LOB type.

Most of the in the following sections use pri nt _nmedi a table. Following is the structure of
print_medi a table:

Figure 6-1 print_media table

PRINT_MEDIA Table

| Column name] [Column Type J
product_id NUMBER (6)
ad_id NUMBER (6)
ad_composite BELOB
ad_sourcetext CLOB
ad_finaltext CLOB
ad_fltextn NCLOB
ad_textdocs_ntab NESTED TABLE
ad_photo BLOB
ad_graphic BFILE
ad_header USER DEFINED TYPE
press_release LONG

6-1

Chapter 6
Implicit Conversion with LOBs

6.1.1 Implicit Conversion Between CLOB and NCLOB Data Types in

sQL

ORACLE

This section describes support for implicit conversions between CLOB and NCLOB
data types.

The database enables you to perform operations such as cross-type assignment and
cross-type parameter passing between CLOB and NCLOB data types. The database
performs implicit conversions between these types when necessary to preserve
properties such as character set formatting.

Note that, when implicit conversions occur, each character in the source LOB is
changed to the character set of the destination LOB, if needed. In this situation, some
degradation of performance may occur if the data size is large. When the character set
of the destination and the source are the same, there is no degradation of
performance.

After an implicit conversion between CLOB and NCLOB types, the destination LOB is
implicitly created as a temporary LOB. This new temporary LOB is independent from
the source LOB. If the implicit conversion occurs as part of a define operation in a
SELECT statement, then any modifications to the destination LOB do not affect the
persistent LOB in the table that the LOB was selected from as shown in the following
example:

SQ.> -- check Iob Iength before update
SQ.> SELECT DBMS_LOB. GETLENGTH(ad_sourcet ext) FROM Print _nedia
2 WHERE product _i d=3106 AND ad_id = 13001,

DBVS_LOB. GETLENGTH(AD_SOURCETEXT)

sQL>
SQL> DECLARE
2 clobl CLOB;
3 ant NUMBER =10;
4 BEGN
5 - select a clob colum into a clob, no inplicit convesion
6 SELECT ad_sourcetext |NTO cl obl FROM Print_medi a
7 VHERE product _i d=3106 and ad_i d=13001 FOR UPDATE;
8 - Trimthe selected Iob to 10 bytes
9 DBMS_LOB. TRI M cl obl, ant);
10 END;
11 1/
PL/ SQL procedure successful ly conpl eted.

SQL> -- Modification is performed on clobl which points to the

SQL> -- clob colum in the table

SQ.> SELECT DBMS_LOB. GETLENGTH(ad_sourcet ext) FROM Print _nedia
2 WHERE product _i d=3106 AND ad_id = 13001,

DBVS_LOB. GETLENGTH(AD_SOURCETEXT)

6-2

Chapter 6
Implicit Conversion with LOBs

SQL> ROLLBACK;
Rol | back conpl ete.

SQ.> -- check I ob Iength before update
SQ.> SELECT DBMS_LOB. GETLENGTH(ad_sourcet ext) FROM Print _nedia
2 WHERE product _i d=3106 AND ad_id = 13001,

DBVS_LOB. GETLENGTH(AD_SOURCETEXT)

SQL>

SQL> DECLARE
2 nclobl NCLOB;
3 amt NUMBER =10;

4 BEGN

5

6 - select a clob colum into a nclob, inplicit conversion occurs
7 SELECT ad_sourcetext |NTO nclobl FROM Print_nedi a

8 VHERE product _i d=3106 AND ad_i d=13001 FOR UPDATE;

9

10 DBMS_LOB. TRIM ncl obl, ant); -- Trimthe selected Iob to 10 bytes
11 END;

12/

PL/ SQL procedure successful ly conpl eted.

SQL> -- Modification to nclobl does not affect the clob in the table,
SQL> -- because nclobl is a independent tenporary LOB

SQ.> SELECT DBMS_LOB. GETLENGTH(ad_sourcet ext) FROM Print _nedia
2 WHERE product _i d=3106 AND ad_id = 13001,

DBVS_LOB. GETLENGTH(AD_SOURCETEXT)

¢ See Also:

Oracle Database SQL Language Reference for details on implicit conversions
supported for all data types.

6.1.2 Implicit Conversions Between CLOB and VARCHAR?2

ORACLE

This section describes support for implicit conversions between CLOB and VARCHAR? data
types.

Implicit conversions from CLOB to VARCHAR2 and from VARCHAR? to CLOB data types are
supported in PL/SQL.

¢ See Also:

SQL Semantics for LOBs for details on LOB support in SQL statements.

6-3

ORACLE

Chapter 6
Implicit Conversion with LOBs

< Note:

While this section uses VARCHAR2 data type as an example for simplicity,
other character types like CHAR and LONG can also participate in implicit
conversions with CLOBs.

Assigning a CLOB to a VARCHAR2 in PL/ISQL

When assigning a CLOB to a VARCHAR?, the data stored in the CLOB column is retrieved
and stored into the VARCHAR2 buffer. If the buffer is not large enough to contain all the
CLOB data, then a truncation error is thrown and no data is written to the buffer. This is
consistent with VARCHAR2 semantics. After successful completion of this assignment
operation, the VARCHAR2 variable holds the data as a regular character buffer. This
operation can be performed in the following ways:

e SELECT persistent or temporary CLOB data into a character buffer variable such as
CHAR, LONG, or VARCHAR2. In a single SELECT statement, you can have more than
one of such defines.

e Assign a CLOB to a VARCHAR2, CHAR, or LONG variable.

e Pass CLOB data types to built-in SQL and PL/SQL functions and operators that
accept VARCHAR2 arguments, such as the | NSTR function and the SUBSTR function.

* Pass CLOB data types to user-defined PL/SQL functions that accept VARCHAR2 or
LONG data types.

The following example illustrates the way CLOB data is accessed when the CLOBs are
treated as VARCHARZs:

DECLARE
my St or yBuf VARCHAR2(32000) ;
nyLob CLOB;

BEG N

-- Select a LOB into a VARCHAR2 vari abl e
SELECT ad_sourcetext | NTO nyStoryBuf FROM print_nedia WHERE ad_id =
12001;
DBVS_QUTPUT. PUT_LI NE(my St or yBuf) ;
-- Assign a LOB to a VARCHAR2 variabl e
SELECT ad_sourcetext | NTO nyLob FROM print_nedia WHERE ad_id = 12001;
nmySt oryBuf : = nyLob;
DBVS_QUTPUT. PUT_LI NE(my St or yBuf) ;
END;
/

Assigning a VARCHAR2 to a CLOB in PL/ISQL

A VARCHAR2 can be assigned to a CLOB in the following scenarios:

* | NSERT or UPDATE character data stored in VARCHAR2, CHAR, or LONG variables into a
CLOB column. Multiple such binds are allowed in a single | NSERT or UPDATE
statement.

* Assign a VARCHAR2, CHAR, or LONG variable to a CLOB variable.

6-4

Chapter 6
Implicit Conversion with LOBs

» Pass VARCHAR? or LONG data types to user-defined PL/SQL functions that accept LOB
data types.

DECLARE
myLOB CLOB;
BEG N
-- Select a VARCHAR2 into a LOB variable
SELECT ' ABCDE' | NTO nyLOB FROM print_nedia WHERE ad_id = 11001;
-- nyLOB is a tenporary LOB.
-- Use nyLOB as a | ob locator
DBVS_QUTPUT. PUT_LINE(' I's tenp? ' || DBMS_LOB. | STEMPORARY(nyLOB)) ;

-- Insert a VARCHAR2 into a |ob colum
I NSERT | NTO print_nedi a(product _id, ad_id, AD SOURCETEXT) VALUES (1000, 1,
" ABCDE') ;

-- Assign a VARCHAR2 to a LOB variable
nyLob :="XYZ';
END;

/

6.1.3 Implicit Conversions Between BLOB and RAW

This section describes support for implicit conversions between BLOB and RAW data types.

Most discussions related to PL/SQL semantics for implicit conversion between CLOB and
VARCHAR2 data types also apply to the implicit conversion process between BLOB and RAWdata
types, unless mentioned otherwise. However, to provide concise description, most examples
in this chapter do not explicitly mention BLOB and RAWdata types. The following operations
involving BLOB data types support implicit conversions:

* | NSERT or UPDATE binary data stored in RAWor LONG RAWvariables into a BLOB column.
Multiple such binds are allowed in a single | NSERT or UPDATE statement.

e SELECT persistent or temporary BLOB data into a binary buffer variable such as RAWand
LONGRAW Multiple such defines are allowed in a single SELECT statement.

e Assign a BLOB to a RAWor LONG RAWvariable, or assign a RAWor LONG RAWto a BLOB
variable.

» Pass BLOB data types to built-in or user-defined PL/SQL functions defined to accept RAW
or LONG RAWdata types or pass RAWor LONG RAWdata types to built-in or user-defined
PL/SQL functions defined to accept BLOB data types.

6.1.4 Guidelines and Restrictions for Implicit Conversions with LOBs

ORACLE

This section describes the techniques that you use to access LOB columns or attributes
using the Data Interface for LOBs.

Data from CLOB and BLOB columns or attributes can be referenced by regular SQL statements,
such as | NSERT, UPDATE, and SELECT.

There is no piecewise | NSERT, UPDATE, or fetch routine in PL/SQL. Therefore, the amount of
data that can be accessed from a LOB column or attribute is limited by the maximum
character buffer size in PL/SQL, which is 32767 bytes. For this reason, only LOBs less than

6-5

Chapter 6
Implicit Conversion with LOBs

32 kilo bytes in size can be accessed by PL/SQL applications using the data interface
for persistent LOBs.

If you must access a LOB with a size more than 32 ki | obytes -1 bytes, using the
data interface, then you must make JDBC or OCI calls from the PL/SQL code to use
the APIs for piecewise insert and fetch.

Use the following guidelines for using the Data Interface to access LOB columns or
attributes:

e SELECT operations

LOB columns or attributes can be selected into character or binary buffers in PL/
SQL. If the LOB column or attribute is longer than the buffer size, then an
exception is raised without filling the buffer with any data. LOB columns or
attributes can also be selected into LOB locators.

* INSERT operations

You can | NSERT into tables containing LOB columns or attributes using regular
| NSERT statements in the VALUES clause. The field of the LOB column can be a
literal, a character data type, a binary data type, or a LOB locator.

e UPDATE operations

LOB columns or attributes can be updated as a whole by UPDATE... SET
statements. In the SET clause, the new value can be a literal, a character data
type, a binary data type, or a LOB locator.

* There are restrictions for binds of more than 4000 bytes:

— If atable has both LONGand LOB columns, then you can bind more than 4000
bytes of data to either the LONG or LOB columns, but not both in the same
statement.

— Inan | NSERT AS SELECT operation, binding of any length data to LOB columns
is not allowed.

— If you bind more than 4000 bytes of data to a BLOB or a CLOB, and the data
consists of a SQL operator, then Oracle Database limits the size of the result
to at most 4000 bytes. For example, the following statement inserts only 4000
bytes because the result of LPAD is limited to 4000 bytes:

I NSERT I NTO print_nedia (ad_sourcetext) VALUES (Ipad('a', 5000,
ra'));

— The database does not do implicit hexadecimal to RAWor RAWto hexadecimal
conversions on data that is more than 4000 bytes in size. You cannot bind a
buffer of character data to a binary data type column, and you cannot bind a
buffer of binary data to a character data type column if the buffer is over 4000
bytes in size. Attempting to do so results in your column data being truncated
at 4000 bytes.

For example, you cannot bind a VARCHAR2 buffer to a BLOB column if the buffer
is more than 4000 bytes in size. Similarly, you cannot bind a RAWbuffer to a
CLOB column if the buffer is more than 4000 bytes in size.

ORACLE 6-6

Chapter 6
Implicit Conversion with LOBs

6.1.5 Detailed Examples for Implicit Conversions with LOBs

The example in this section demonstrates using multiple VARCHAR and RAWbinds in | NSERT
and UPDATE operations.

Example 6-1 Using Character and RAW Binds in INSERT and UPDATE Operations

The following example demonstrates using Character and RAWbinds for LOB columns in
| NSERT and UPDATE operations

DECLARE
bi gt ext VARCHAR2(32767) ;
smal | text VARCHAR2(2000);
bi graw RAW (32767);
BEG N
bigtext := LPAD('a', 32767, 'a');
smal [text := LPAD('a', 2000, 'a');
bigraw : = utl _raw cast_to_raw (bigtext);

/* Multiple long binds for LOB colums are allowed for |INSERT: */
I NSERT | NTO print_nedi a(product _id, ad_id, ad_sourcetext, ad_conposite)
VALUES (2004, 1, bigtext, bigraw;

/* Single long bind for LOB colums is allowed for INSERT: */
I NSERT I NTO print_nedia (product_id, ad_id, ad_sourcetext)
VALUES (2005, 2, smalltext);

bigtext := LPAD('b', 32767, 'b');
smal [text := LPAD('b', 20, 'a');
bigraw : = utl _raw cast_to_raw (bigtext);

/* Multiple long binds for LOB colums are allowed for UPDATE: */
UPDATE print_nedia SET ad_sourcetext = bigtext, ad_conposite = bhigraw,
ad_finaltext = smalltext;

/* Single long bind for LOB colums is allowed for UPDATE */
UPDATE print_media SET ad_sourcetext = smalltext, ad_finaltext = bigtext;

/* The following is NOT all owed because we are trying to insert nore than
4000 bytes of data in a LONG and a LOB col um: */

I NSERT | NTO print_nedi a(product _id, ad_id, ad_sourcetext, press_release)
VALUES (2030, 3, bigtext, bigtext);

/* Insert of data into LOB attribute is allowed */
I NSERT | NTO print_nedi a(product _id, ad_id, ad_header)
VALUES (2049, 4, adheader _typ(null, null, null, bigraw));

/* The following is not allowed because we try to perform | NSERT AS
SELECT data | NTO LOB */

I NSERT | NTO print_nedi a(product _id, ad_id, ad_sourcetext)
SELECT 2056, 5, bigtext FROM dual;

END;
/

ORACLE .

ORACLE

Chapter 6
Implicit Conversion with LOBs

Example 6-2 Multiple Defines for LOBs in SELECT

The following example demonstrates performing a SELECT operation to retrieve
multiple persistent or temporary CLOBs from a SQL query into a VARCHAR? variable, or
a BLOB to a RAWvariable.

DECLARE

ad_src_buffer VARCHAR2(32000) ;

ad_conp_buffer RAW32000) ;
BEG N

/* This retrieves the LOB colums if they are up to 32000 bytes,

* otherwise it raises an exception */

SELECT ad_sourcetext, ad _conposite INTO ad_src_buffer, ad_conp_buffer

FROM print _nedia
VWHERE product _i d=2004 AND ad_i d=5;

/* This retrieves the tenmporary LOB produced by SUBSTRif it is up to
32000 bytes,
* otherwise it raises an exception */
SELECT substr(ad_sourcetext, 2) INTO ad_src_buffer FROM print_nedia
WHERE product i d=2004 AND ad_i d=5; END;

Example 6-3 Implicit Conversions between BLOB and RAW

Implicit assignment works for variables declared explicitly and for variables declared
by referencing an existing column type using the % YPE attribute as show in the
following example. The example assumes that column | ong_col in table t has been
migrated from a LONGto a CLOB column.

CREATE TABLE t (long col LONG; -- Alter this table to change LONG
colum to LOB
DECLARE
a VARCHAR2(100);
b t.long_col %ype;, -- This variable changes fromLONG to CLOB
BEG N
SELECT * INTO b FROM t;
a:=b; -- This changes from"VARCHAR2 := LONG to VARCHAR2 := CLOB
b :=a -- This changes from"LONG := VARCHAR2 to CLOB : = VARCHAR2
END;

Example 6-4 Calling PL/SQL and C Procedures from PL/SQL

You can call a PL/SQL or C procedure from PL/SQL. You can pass a CLOB as an actual
parameter, where a VARCHAR? is the formal parameter, or you can pass a VARCHAR? as
an actual parameter, where a CLOB is the formal parameter. The same holds good for
BLOBs and RAWs. One example of when these cases can arise is when either the formal
or the actual parameter is an anchored type, that is, the variable is declared using the
t abl e_nane. col utm_nane% ype syntax. PL/SQL procedures or functions can accept a
CLOB or a VARCHAR? as a formal parameter. This holds for both built-in and user-defined
procedures and functions.

6-8

Chapter 6
Explicit Data Type Conversion Functions

The following example demonstrates implicit conversion during procedure calls:

CREATE OR REPLACE PROCEDURE foo(vvv | N VARCHAR2, ccc | NOUT CLOB) AS
BEG N
END;
/
DECLARE

vvv VARCHAR2[32000] : = rpad('varchar', 32000, 'varchar')
ccc CLOB := rpad('clob', 32000, 'clob")

BEG N

foo(vvv, ccc); -- No inplicit conversion needed here

foo(ccc, vvv); -- Inplicit conversion for both paraneters done here
END;

/

Example 6-5 Implicit Conversion with PL/SQL built-in functions

The following example illustrates the use of CLOBs in PL/SQL built-in functions.

DECLARE
nmy_ad CLOB;
revised ad CLOB;
nmyG st VARCHAR2(100):= 'This is ny gist.';
revi sedd st VARCHAR2(100);
BEG N
I NSERT I NTO print_nedia (product_id, ad_id, ad_sourcetext)
VALUES (2004, 5, 'Source for advertisement 1');

- select a CLOB colum into a CLOB variable
SELECT ad_sourcetext INTO ny_ad FROM print_nedia
WHERE product i d=2004 AND ad_i d=5;

- perform VARCHAR2 operations on a CLOB variable
revised ad := UPPER(SUBSTR(ny_ad, 1, 20));

- revised ad is a tenporary LOB
- Concat a VARCHAR2 at the end of a CLOB
revised ad := revised_ ad || nyGst;

- The follow ng statement raises an error if nmy_ad is
- longer than 100 bytes
nyG st := ny_ad;
END;
/

6.2 Explicit Data Type Conversion Functions

This section describes the explicit conversion functions in SQL and PL/SQL to convert other
data types to and from CLOB, NCLOB, and BLOB data types.

e TO CLOB(): Converts from VARCHAR2, NVARCHAR2, or NCLOB to a CLOB

ORACLE 6-9

Chapter 6
Temporary LOBs Created by SQL and PL/SQL Built-in Functions

TO NCLOB() : Converts from VARCHAR?, NVARCHAR2, or CLOB to an NCLOB

TO BLOB(varchar|cl ob, destcsid,[m me_type]): Converts the object from its
current character set to the given character set in dest csi d. The resultant object is
BLOB. Following are various ways in which you can use the conversion function:

— TO BLOB(character, destcsid)

— TOBLOB(character, destcsid, mme_type)
— TO BLOB(clobh, destcsid)

— TOBLOB(clob, destcsid, mne_type)

If the dest csi d is 0, then it converts to the database character set ID. The
parameter ni ne_t ype is applicable only to | NSERT and UPDATE statements on
Secure File LOB columns. If the mi ne_t ype parameter is used in SELECT statements
or in temporary or BasicFile LOBs, then it is ignored.

TO BLOB(var char) : Converts the input to RAWbefore converting to BLOB. In other
words, TO BLOB(HEXTORAW var char)) and TO BLOB(var char) are equivalent.

" Note:
TO BLOB(CLOB) is not supported.

TO CHAR() : Converts a CLOB to a CHAR type. When you use this function to convert
a character LOB into the database character set, if the LOB value to be converted
is larger than the target type, then the database returns an error. Implicit
conversions also raise an error if the LOB data does not fit.

TO NCHAR() : Converts an NCLOB to an NCHAR type. When you use this function to
convert a character LOB into the national character set, if the LOB value to be
converted is larger than the target type, then the database returns an error. Implicit
conversions also raise an error if the LOB data does not fit.

CAST does not directly support any of the LOB data types. When you use CAST to
convert a CLOB value into a character data type, an NCLOB value into a national
character data type, or a BLOB value into a RAWdata type, the database implicitly
converts the LOB value to character or raw data and then explicitly casts the
resulting value into the target data type. If the resulting value is larger than the
target type, then the database returns an error.

6.3 Temporary LOBs Created by SQL and PL/SQL Built-in

Functions

When a LOB is returned from a SQL or PL/SQL built-in function, then the result
returned is a temporary LOB. Similarly, a LOB returned from a user-defined PL/SQL
function or procedure, as a value or an OUT parameter, may be a temporary LOB.

ORACLE

In PL/SQL, a temporary LOB has the same lifetime (duration) as the local PL/SQL
program variable in which it is stored. It can be passed to subsequent SQL or PL/SQL
VARCHAR2 functions or queries as a PL/SQL local variable. The temporary LOB goes
out of scope at the end of the program block at which time, the LOB is freed. These
are the same semantics as those for PL/SQL VARCHAR? variables. At any time,

6-10

ORACLE

Chapter 6
Temporary LOBs Created by SQL and PL/SQL Built-in Functions

nonetheless, you can use a DBVS_LOB. FREETEMPORARY() call to release the resources taken
by the local temporary LOBs.

Note:

If a SQL or PL/SQL function returns a temporary LOB, or if a LOB is an OUT
parameter for a PL/SQL function or procedure, then you must free it as soon as you
are done with it. Failure to do so may cause temporary LOB accumulation and can
considerably slow down your system.

The following example illustrates implicit creation of temporary LOBs using SQL built-in
functions:

DECLARE
vcl VARCHAR2(32000);
bl CLOB;
b2 CLOB;
BEG N
SELECT cl obCol 1 I NTO vc1l FROM tab WHERE col | D=1;
-- Iblis a tenporary LOB
SELECT cl obCol 2 || clobCol 3 INTO I bl FROM tab WHERE col | D=2;

[b2 := vcl|| |Ibl;

-- Ib2 is astill tenporary LOB, so the persistent data in the database
-- is not nodified. An update is necessary to nodify the table data.
UPDATE tab SET clobCol1 = | b2 WHERE col ID = 1,

DBVS_LOB. FREETEMPORARY(| b2); -- Free up the space taken by | b2

<... sSome nore queries ...>
END, -- at the end of the block, Ibl is automatically freed

Here is another example of implicit creation of temporary LOBs using PL/SQL built-in
functions.

1 DECLARE

2 nmyStory CLOB;

3 revisedStory CLOB;

4 nyG st VARCHAR2(100);

5 revisedG st VARCHAR2(100);

6 BEG N

7 - select a CLOB colum into a CLOB variable

8 SELECT Story INTO nyStory FROM print_medi a WHERE product _i d=10;
9 -- perform VARCHAR2 operations on a CLOB variable

10 revi sedStory : = UPPER(SUBSTR(nyStory, 100, 1));

11 -- revisedStory is a tenporary LOB

12 -- Concat a VARCHAR2 at the end of a CLOB

13 revisedStory := revisedStory || nyG st;

14 -- The following statenent raises an error because nyStory is
15 -- longer than 100 bytes

16 myG st := nyStory;

17 END;

/

Note that in the preceding example:

6-11

ORACLE

Chapter 6
Temporary LOBs Created by SQL and PL/SQL Built-in Functions

* Inline number 7, a temporary CLOB is implicitly created and is pointed to by the
revi sedSt ory CLOB locator.

* Inline number 13, nyG st is appended to the end of the temporary LOB, which
has the same effect as the following code snippet:

DBVS_LOB. WRI TEAPPEND(r evi sedStory, nyG st, length(nyGst));
In some scenarios, implicitly created temporary LOBs in PL/SQL statements can
change the representation of previously defined LOB locators. The following code

shippet explains this scenario:

Change in Locator-Data Linkage

1 DECLARE

2 nyStory CLOB;

3 ant nunber: =100;

4 buf fer VARCHAR2(100):='sone data';

5 BEG N

6 - select a CLOB colum into a CLOB variable

7 SELECT Story INTO nyStory FROM print_nedi a WHERE product _i d=10;

8 DBVS_LOB. WRI TE(nyStory, ant, 1, buf);

9 -- wite to the persistent LOBin the table

10

11 myStory: = UPPER(SUBSTR(nyStory, 100, 1));

12 -- perform VARCHAR2 operations on a CLOB variable, tenporary LOB created.
13 -- Changes are not reflected in the database table fromthis point on.
14

15 UPDATE print_nedia SET Story = nyStory WHERE product _id = 10;

16 -- an update is necessary to synchronize the data in the table.

17 END;

In the preceding example, mySt ory represents a persistent LOB column in the
print_medi a table. The DBVM5_LOB. WRI TE procedure writes the data directly to the table
without an UPDATE statement in the code.

Subsequently in line number 11, a temporary LOB is created and assigned to nySt ory
because nySt ory is now used like a local VARCHAR? variable. The LOB locator mySt ory
now points to the newly-created temporary LOB.

Therefore, modifications to nySt ory are no longer reflected in the database. To
propagate the changes to the database table now, you must use an UPDATE statement.
Note that for the previous persistent LOB, the UPDATE statement is not required.

¢ See Also:

Working with Remote LOBs in SQL and PL/SQL for PL/SQL functions that
support remote LOBs and BFI LEs

6-12

Data Interface for LOBS

This chapter discusses how to perform DML and Query operations on LOBs. These
operations are similar to the ones performed on traditional Character and RAW data types.

7.1 Overview of the Data Interface for LOBS

The data interface for LOBs includes a set of Java and OCI APIs that are extended to work
with the LOB data types.

These APls, originally designed for use with legacy data types such as VARCHAR2, RAW

LONG, and LONG RAW can also be used with the corresponding LOB data types shown in the
following table. The table shows the legacy data types in the bind or define type column and
the corresponding supported LOB data type in the LOB column type column. You can use the
data interface for LOBs to store and manipulate character data and binary data in a LOB
column just as if it were stored in the corresponding legacy data type. The data interface
supports data size up to two gigabytes minus one (2 GB - 1), the maximum size of an sh4
data type.

" Note:

The data interface works for persistent and temporary LOBs and LOBs that are
attributes of objects. In this chapter LOB columns means LOB columns and LOB
attributes.

While most of this discussion focuses on character data types, the same concepts apply to
the full set of character and binary data types listed in the following table. CLOB also means
NCLOB in the table.

Table 7-1 Corresponding LONG and LOB Data Types in OCI

Bind or Define Type LOB Column Type Used For Storing
SQLT_AFC(n) CLOB Character data
SQT_CHR CLOB Character data
SQLT_LNG CLOB Character data
SQLT_VCS CLOB Character data
SQLT_BIN BLOB Binary data
SQ.T_LBI BLOB Binary data
SQT_LVB BLOB Binary data

7.2 Benefits of Using the Data Interface for LOBS

ORACLE

This section discusses the benefits of the using the Data Interface for LOBs.

7-1

Chapter 7
Benefits of Using the Data Interface for LOBs

Following are the benefits of using the Data Interface for LOBs:

If your application uses LONG data types, then you can use the same application
with LOB data types with little or no modification of your existing application
required. To do so, just convert LONG columns in your tables to LOB columns.

¢ See Also:

Migrating Columns to SecureFile LOBs

The Data Interface gives you the best performance if you know the maximum size
of your LOB data, and you intend to read or write the entire LOB. A piecewise

I NSERT or fetch using the data interface makes only 1 round-trip the server, as
opposed to using LOB API which makes separate round-trips to get the locator
and to read/write data.

You can read LOB data in one OCl St nt Fet ch() call, instead of fetching the LOB
locator first and then calling OCl LobRead2() . This improves performance when you
want to read LOB data starting at the beginning.

You can use array bind and define interfaces to insert and select multiple rows with
LOBs in one round trip. Irrespective of whether the LOB data is inserted or fetched
using single piece, piecewise or callbacks, it is inserted or fetched in a single
round trip for multiple rows when using array binds or defines.

¢ Caution:

If your application needs to perform random or piecewise read or write calls
to LOBs, which means it needs to specify the offset or amount of the
operation, then use the LOB APIs instead of the Data Interface.

¢ See Also:

Locator Interface for LOBs

Most of the examples in the following sections use the pri nt _medi a table. Following is
the structure of the pri nt _nedi a table.

ORACLE

7-2

Figure 7-1 print_media Table

Chapter 7
Data Interface for LOBs in Java

PRINT_MEDIA Table

| Column name] [Column Type J
product_id NUMBER (6)
ad_id NUMBER (6)
ad_composite BLOB
ad_sourcetext CLOB
ad_finaltext CLOB
ad_fltextn NCLOB
ad_textdocs_ntab NESTED TABLE
ad_photo BLOB
ad_graphic BFILE
ad_header USER DEFINED TYPE
press_release LONG

7.3 Data Interface for LOBS In Java

This section discusses the usage of data interface for LOBs in Java.

ORACLE

You can read and write CLOB and BLOB data using the same streaming mechanism as for LONG

and LONG RAWdata.

For read operations, use the def i neCol umType(nn, Types. LONGVARCHAR) method or the
def i neCol umType(nn, Types. LONGVARBI NARY) method on the persistent or temporary LOBs
returned by the SELECT statement. This produces a direct stream on the data that is similar to

VARCHAR2 or RAWcolumn.

7-3

ORACLE

Chapter 7
Data Interface for LOBs in Java

< Note:

1. If you use VARCHAR or RAWas the def i neCol umType, then the selected
value will be truncated to size 32k.

2. Standard JDBC methods such as get String or get Byt es on Resul t Set
and Cal | abl eSt at enent are not part of the Data Interface as they use
the LOB locator underneath.

To insert character data into a LOB column in a Prepar edSt at enent , you may use
setBinaryStream(), set Character Strean(), or set Ascii Strean() for a parameter
which is a BLOB or CLOB. These methods use the stream interface to create a LOB in
the database from the data in the stream. If the length of the data is known, for better
performance, use the versions of set Bi naryStrean() or set Charact er Stream
functions which accept the length parameter. The data interface also supports
standard JDBC methods such as set Stri ng or set Byt es on Prepar edSt at enent to
write LOB data. It is easier to code, and in many cases faster, to use these APIs for
LOB access. All these techniques reduce database round trips and result in improved
performance in many cases.

The following code snippets work with all JIDBC drivers:
Bind:
This is for the non-streaming mode:
String sql = "insert into print_media (product_id, ad_id, ad_final _text)" +
" values (:1, :2, :3)";
PreparedSt at ement pstnt = conn. prepareStatement (sql);
pstnt.setint(1, 2);
pstnt.setlnt(2, 20);

pstmt.setString(3, "Java string”);
int rows = pstnt.executeUpdate();

" Note:

Oracle supports the non-streaming mode for strings of size up to 2 GB, but
your machine's memory may be a limiting factor.

For the streaming mode, the same code as the preceding works, except that the
set String() statement is replaced by one of the following:

pstnt.set CharacterStrean{ 3, new Label edReader (), 1000000);
pstnt.setAsciiStrean{ 3, new Label edAsciilnputStrean{), 1000000);

< Note:

You can use the streaming interface to insert Gigabyte sized character and
binary data into a LOB column.

7-4

ORACLE

Chapter 7
Data Interface for LOBs in Java

Here, Label edReader () and Label edAsci i I nput Strean() produce character and ASCII
streams respectively. If ad_fi nal t ext were a BLOB column instead of a CLOB, then the
preceding example works if the bind is of type RAW

pstnt.setBytes(3, <some byte[] array>);
pstnt.setBinaryStream 3, new Label edl nput Strean{), 1000000);

Here, Label edl nput St ream) produces a binary stream.
Define:
For non-streaming mode:

Oracl eStatement stnmt = (Oracl eStatenment) (conn. createStatenment());
stnt. defineCol umType(1, Types.VARCHAR);
Resul t Set rst = stnt.executeQuery("select ad_finaltext fromprint_nedia");
while(rst.next())

{
String s = rst.getString(1);
Systemout.printin(s);

}

Note:

If the LOB size is greater than 32767 bytes, the data is truncated and no error is
thrown.

For streaming mode:

OracleStatenment stnt = (Oracl eStatenent)(conn. createStatenent());
stnt. defineCol umType(1, Types.LONGVARCHAR);
Resul t Set rst = stnt.executeQuery("select ad_finaltext fromprint_media");
while(rs.next()) {
Reader reader = rs.getCharacterStrean(1);
int data = 0;
data = reader.read();
while(-1 !'= data){
Systemout.print((char)(data));
data = reader.read();

}

reader. cl ose();

}

Note:

Specifying the datatype as LONGVARCHAR lets you select the entire LOB. If the define
type is set as VARCHAR instead of LONGVARCHAR, the data will be truncated at 32k.

If ad_final t ext were a BLOB column instead of a CLOB, then the preceding examples work if
the define is of type LONGVARBI NARY:

OracleStatement stnt = (Oracl eStat ement) conn. creat eSt at ement () ;

stnt . defineCol umType(1, Types.|NTEGER);

7-5

Chapter 7
Data Interface for LOBs in OCI
stnt . defineCol umType(2, Types. LONGVARBI NARY);

Resul t Set rset = stnt.executeQuery("SELECT I D, LOBCOL FROM LOBTAB");
whi l e(rset. next())

{
[* using getBytes() */
/*
byte[] b = rset.getBytes("LOBCOL");
Systemout.printIn("ID: " + rset.getlnt("ID') +" length: " +
b.length);
*/
[* using getBinaryStream) */
[nput Stream byte_stream = rset. get Bi naryStrean("LOBCOL");
byte [] b = new byte [100000];
int b len = byte streamread(b);
Systemout.printin("ID. " + rset.getlnt("ID') +" length:
"+ b_len);
byte_stream cl ose();
}
¢ See Also:

Working with Large Objects and SecureFiles

7.4 Data Interface for LOBs in OCI

This section discusses OCI functions included in the data interface for LOBs. These
OCI functions work for LOB data types exactly the same way as they do for VARCHAR or
LONG data types.

Using these functions, you can perform | NSERT, UPDATE and fetch operations in OCI on
LOBs. These techniques are the same as the ones that you use on the other data
types for storing character or binary data.

" Note:

You can use array bind and define interfaces to insert and select multiple
rows with LOBSs in one round trip.

¢ See Also:

Runtime Data Allocation and Piecewise Operations in OCI

ORACLE 7-6

Chapter 7
Data Interface for LOBs in OCI

7.4.1 Binding a LOB in OCI

This section describes the operations that you can use for binding the LOB data types in OCI.
* Regular, piecewise, and callback binds for | NSERT and UPDATE operations

* Array binds for | NSERT and UPDATE operations

e Parameter passing across PL/SQL and OCI boundaries

Piecewise operations can be performed by polling or by providing a callback. To support
these operations, the following OCI functions accept the LONG and LOB data types listed in
Table 7-1.

e (OCl Bi ndByNane() and COCl Bi ndByPos()

These functions create an association between a program variable and a placeholder in
the SQL statement or a PL/SQL block for | NSERT and UPDATE operations.

e (OCl Bi ndDynami c()

You use this call to register callbacks for dynamic data allocation for | NSERT and UPDATE
operations

e OC Stnt CetPiecelnfo() and OCl St nt Set Pi ecel nf o()

These calls are used to get or set piece information for piecewise operations.

7.4.2 Defining a LOB in OCI

The OCI functions discussed in this section associate a LOB type with a data type and an
output buffer.

The data interface for LOBs enables the following OCI functions to accept the LONG and
LOB data types listed in Table 7-1.

You can use the following functions
e (OCl DefineByPos()

This call associates an item in a SELECT list with the type and output data buffer.
e OCl Definebynam c()

This call registers user callbacks for SELECT operations if the OCl _DYNAM C_FETCH mode
was selected in OCl Def i neByPos() function call. You can use the

OCl Dat aSer ver Lengt hGet () function to retrieve LOB length while using dynamic define
callback.

When you use these functions with LOB types, the LOB data, and not the locator, is selected
into your buffer. Note that in OCI, you cannot specify the amount you want to read using the
data interface for LOBs. You can only specify the buffer length of your buffer. The database
only reads whatever amount fits into your buffer and the data is truncated.

ORACLE .

Chapter 7
Data Interface for LOBs in OCI

7.4.3 Multibyte Character Sets Used in OCI with the Data Interface for

LOBs

This section discusses the functionality of Data Interface for LOBs when the OCI client
uses a multibyte character set.

When the client character set is in a multibyte format, functions included in the data
interface operate the same way with LOB datatypes as they do for VARCHAR2 or LONG
data types as follows:

* For a piecewise fetch in a multibyte character set, a multibyte character could be
cut in the middle, with some bytes at the end of one buffer and remaining bytes in
the next buffer.

» For a regular fetch, if the buffer cannot hold all bytes of the last character, then
Oracle returns as many bytes as fit into the buffer, hence returning partial
characters.

7.4.4 Getting LOB Length

This section describes how an OCI application can fetch the LOB length.

To fetch the LOB data length, use the OCl Ser ver Dat aLengt hGet () OCI function. When
you access a LOB column using the Data Interface, the server first sends the LOB
data length, followed by LOB data. The server first communicates the length of the
LOB data, before any conversions are made. The OCI client stores the retrieved LOB
length in def i ne handle. The OCI application can use the OCl Ser ver Dat aLengt hGet ()
function to access the LOB length.

You can access the LOB length in all fetch modes, that is, single piece, piecewise, and
callback. You can also access it inside the callback without incurring a round-trip to the
server. However, you should not use it before the fetch operation. In case of piecewise
or callback operations, you should use it right after the first piece is fetched.

7.4.5 Using OCI Functions to Perform INSERT or UPDATE on LOB

Columns

This section discusses the various techniques you can use to perform | NSERT or
UPDATE operations on LOB columns or attributes using the data interface.

The operations described in this section assume that you have initialized the OCI
environment and allocated all necessary handles.

7.4.5.1 Performing Simple INSERT or UPDATE Operations in One Piece

ORACLE

This section lists the steps to perform simple | NSERT or UPDATE operations in one
piece, using the data interface for LOBs.

1. Call OCl Stnt Prepare() to prepare the statement in OCl _DEFAULT mode.

2. Call OCl Bi ndByName() or OCl Bi ndbyPos() in OCl _DEFAULT mode to bind a
placeholder for LOB as character data or binary data.

3. Call OCl St nt Execut e() to do the actual | NSERT or UPDATE operation.

7-8

Chapter 7
Data Interface for LOBs in OCI

Following is an example of binding character data for | NSERT and UPDATE operations on a
LOB column.

voi d sinmple_insert()
{
/* Insert of data into LOB attributes is allowed. */
ubl buffer[8000];
text *insert_sqgl = (text *)"INSERT INTO Print_nedia (ad_header) \
VALUES (adheader _typ(NULL, NULL, NULL,:1))";
OCl Stnt Prepare(stnthp, errhp, insert_sqgl, strlen((char*)insert_sql),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);
OCl Bi ndByPos(stnt hp, &bi ndhp[0], errhp, 1, (dvoid *)buffer, 2000,
SQLT_LNG 0, 0, 0, 0, O, (ub4) OCl _DEFAULT);
QOCl St nt Execut e(svchp, stnthp, errhp, 1, 0, (const OCl Snapshot*) 0,
(OCl Snapshot *) 0, OCI _DEFAULT);

7.4.5.2 Using Piecewise INSERT and UPDATE Operations with Polling

ORACLE

This section lists the steps to perform piecewise INSERT or UPDATE operations with polling,
using the data interface for LOBs.

1. Call OCl Stnt Prepare() to prepare the statement in OCl _DEFAULT mode.

2. Call OCl Bi ndByName() or OCl Bi ndbyPos() in OCl _DATA_AT_EXEC mode to bind a LOB as
character data or binary data.

3. Call OC St nt Execut e() in default mode. Do each of the following in a loop while the value
returned from CCl St nt Execut e() is OCl _NEED_DATA. Terminate your loop when the value
returned from OCl St mt Execut e() is OCl _SUCCESS.

e Call OCl St nt Get Pi ecel nfo() to retrieve information about the piece to be inserted.
e Call OCl St nt Set Pi ecel nf o() to set information about piece to be inserted.

The following example illustrates using piecewise | NSERT with polling using the data interface
for LOBs.

voi d piecew se_insert()
{
text *sqglstnmt = (text *)"INSERT INTO Print_media(Product _id, Ad_id,\
Ad_sourcetext) VALUES (:1, :2, :3)";
ub2 rcode;
ubl piece, i;
word product _id = 2004;
word ad_id = 2;
ub4 buf | en;
char buf[5000];

OCl Stnt Prepare(stnthp, errhp, sqlstnt, (ub4)strlen((char *)sqlstnt),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);
QOCl Bi ndByPos(stnthp, &ndhp[0], errhp, (ub4) 1,
(dvoid *) &product _id, (sh4) sizeof(product id), SQLT INT,
(dvoid *) 0, (ub2 *)0, (ub2 *)O0,
(ub4) 0, (ub4 *) 0, (ub4) OCI DEFAULT);
QOCl Bi ndByPos(stnthp, &bndhp[1], errhp, (ub4) 2,

7-9

Chapter 7
Data Interface for LOBs in OCI

(dvoid *) &ad_id, (sbh4) sizeof(ad_id), SQLT_INT,
(dvoid *) 0, (ub2 *)0, (ub2 *)O,
(ub4) 0, (ub4 *) 0, (ub4) OCl_DEFAULT);
OCl Bi ndByPos(stnthp, &bndhp[2], errhp, (ub4) 3,
(dvoid *) 0, (sb4) 15000, SQT_LNG
(dvoid *) 0, (ub2 *)0, (ub2 *)O,
(ub4) 0, (ub4 *) 0, (ub4) OCl _DATA AT_EXEC);

i =0;
while (1)
{.

i ++;

retval = OCl St nt Execute(svchp, stnthp, errhp, (ub4) 1, (ub4) 0,
(CONST OCl Snapshot*) 0, (OCI Snapshot*) 0,
(ub4) OCI _DEFAULT);
swi tch(retval)
{
case OCl _NEED DATA:
menset ((void *)buf, (int)' A +i, (size_t)5000);
bufl en = 5000;
if (i == 1) piece = OC _FI RST_PI ECE;
else if (i == 3) piece = OCl _LAST Pl ECE;
el se piece = OCl _NEXT_PI ECE;

if (OC StntSetPiecelnfo((dvoid *)bndhp[2],
(ub4) CCl _HTYPE BIND, errhp, (dvoid *)buf,
&buflen, piece, (dvoid *) 0, & code))
{
printf("ERROR OCl StntSetPiecelnfo: % \n", retval);
br eak;

}

br eak;

case OCl _SUCCESS:
break;

defaul t:
printf("oci exec returned % \n", retval);
report_error(errhp);
retval = OCl _SUCCESS,

} /* end switch */

if (retval == OCl _SUCCESS)
br eak;

} /* end while(l1) */
}

7.4.5.3 Performing Piecewise INSERT and UPDATE Operations with Callback

This section lists the steps to perform piecewise | NSERT or UPDATE operations with
callback, using the data interface for LOBs.

1. Call OC Stnt Prepare() to prepare the statement in OCI _DEFAULT mode.

2. Call OCl Bi ndByNane() or OCl Bi ndbyPos() in OCl _DATA AT _EXEC mode to bind a
placeholder for the LOB column as character data or binary data.

ORACLE 7-10

ORACLE

Chapter 7
Data Interface for LOBs in OCI

3. Call OCl Bi ndDynani c() to specify the callback.
4. Call OCl St nt Execut e() in default mode.

You do not need to supply an output callback for pure | N binds in OCI to SQL/PLSQL
operation. Starting from Oracle Database 21c Release, you do not need to supply an input
callback for pure QUT binds in OCI to SQL/PLSQL operation.

The following example illustrates binding character data to LOB columns using a piecewise
| NSERT with callback:

voi d cal | back_i nsert ()
{
word buflen = 15000;
word product_id = 2004;
word ad_id = 3;
text *sglstmt = (text *) "INSERT INTO Print_nedia(Product_id, Ad_id,\
Ad_sourcetext) VALUES (:1, :2, :3)";
word pos = 3;

OCl St nt Prepare(stnthp, errhp, sqglstnt, (ub4)strlen((char *)sqglstnt),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT)

OCl Bi ndByPos(st nt hp, &bndhp[0], errhp, (ub4) 1,
(dvoid *) é&product _id, (sh4) sizeof(product _id), SQLT_INT,
(dvoid *) 0, (ub2 *)0, (ub2 *)O,
(ub4) 0, (ub4 *) 0, (ub4) OCI _DEFAULT);
OCl Bi ndByPos(st nt hp, &bndhp[1], errhp, (ub4) 2,
(dvoid *) &ad_id, (sbh4) sizeof(ad_id), SQ.T_INT,
(dvoid *) 0, (ub2 *)0, (ub2 *)O,
(ub4) 0, (ub4 *) 0, (ub4) OCI _DEFAULT);
OCl Bi ndByPos(stnthp, &bndhp[2], errhp, (ub4) 3,
(dvoid *) 0, (sb4) buflen, SQT _CHR,
(dvoid *) 0, (ub2 *)0, (ub2 *)O,
(ub4) 0, (ub4 *) 0, (ub4) OCI _DATA AT_EXEC);

OCl Bi ndDynami c(bndhp[2], errhp, (dvoid *) (dvoid *) &pos,
insert_cbk, (dvoid *) 0, (OC CallbackQutBind) 0);

QCl St nt Execut e(svchp, stnthp, errhp, (ub4) 1, (ub4) O,
(const OCl Snapshot*) 0, (OCl Snapshot*) 0,
(ub4) OCI _DEFAULT);
} /* end insert_data() */

/* Inbind call back to specify input data. */

static sb4 insert_cbk(dvoid *ctxp, OC Bind *bindp, ub4 iter, ub4 index,
dvoid **bufpp, ub4 *al enpp, ubl *piecep, dvoid

**indpp)

{

static int a
word j;
ub4 inpos = *((ub4 *)ctxp);
char buf[5000];

0;

swi t ch(inpos)

{

7-11

Chapter 7
Data Interface for LOBs in OCI

case 3:

menset ((void *)buf, (int) "A +a, (size_t) 5000);

*bufpp = (dvoid *) buf;

*al enpp = 5000 ;

a++;

br eak;
defaul t: printf("ERROR invalid position nunber: %\ n", inpos);
}

*indpp = (dvoid *) 0;
*pi ecep = OCl _ONE_PI ECE;
if (inpos == 3)

if (a<=1)
{
*pi ecep = OCl _FI RST_PI ECE;
printf("Insert callback: 1st piece\n");
}
else if (a<3d)
{
*pi ecep = OCl _NEXT_PI ECE;
printf("Insert callback: %' th piece\n", a);
}
el se {
*pi ecep = OCl _LAST_PI ECE;
printf("Insert callback: %' th piece\n", a);
a=0;
}
}
return OCl _CONTI NUE;

}

7.4.5.4 Performing Array INSERT and UPDATE Operations

ORACLE

To perform array | NSERT or UPDATE operations using the data interface for LOBs, use
any of the techniques discussed in this section.

Use the | NSERT or UPDATE operations in conjunction with OCl Bi ndArrayOf Struct (), or
by specifying the number of iterations (i t er), with i t er value greater than 1, in the

OCl St nt Execut e() call. Irrespective of whether the LOB data is inserted using single
piece, piecewise or callbacks, it is inserted in a single round trip for multiple rows when
using array binds.

The following example illustrates binding character data for LOB columns using an
array | NSERT operation:

void array_insert()
{
ub4 i;
word buflen;
word arrbuf 1] 5];
word arrbuf2[5];
text arrbuf3[5][5000];
text *insstm = (text *)"INSERT INTO Print_media(Product_id, Ad_id,\
Ad_sourcetext) VALUES (:PID, :AID, :SRCTXT)";

7-12

Chapter 7
Data Interface for LOBs in OCI

OCl St nt Prepare(stnthp, errhp, insstnt,
(ubd)strlen((char *)insstnt), (ub4) OCI _NTV_SYNTAX,
(ub4) OCl _DEFAULT);

OCl Bi ndByName(st nt hp, &bndhp[0], errhp,
(text *) ":PID', (sb4) strlen((char *) ":PID"),
(dvoid *) &arrbufl[0], (sb4) sizeof(arrbufl[0]), SQLT_INT,
(dvoid *) 0, (ub2 *)0, (ub2 *) O,
(ub4) 0, (ub4 *) 0, (ub4) OCl_DEFAULT);

OCl Bi ndByName(st nt hp, &bndhp[1], errhp,
(text *) ":AID', (sb4) strlen((char *) ":AID"),
(dvoid *) &arrbuf2[0], (sh4) sizeof(arrbuf2[0]), SQLT_INT,
(dvoid *) 0, (ub2 *)0, (ub2 *) O,
(ub4) 0, (ub4 *) 0, (ub4) OCl_DEFAULT);

OCl Bi ndByName(st nt hp, &bndhp[2], errhp,
(text *) ":SRCTXT", (sb4) strlen((char *) ":SRCTXT"),
(dvoid *) arrbuf3[0], (sb4) sizeof(arrbuf3[0]), SQT_CHR
(dvoid *) 0, (ub2 *) 0, (ub2 *) 0,
(ub4) 0, (ub4 *) 0, (ub4) OCl_DEFAULT);

OCl Bi ndArrayOf Struct (bndhp[0], errhp sizeof (arrbufi1[0]),
i ndsk, rlsk, rcsk);

OCl Bi ndArrayOf Struct (bndhp[1], errhp, sizeof (arrbuf2[0]),
i ndsk, rlsk, rcsk);

OCl Bi ndArrayOf Struct (bndhp[2], errhp, sizeof(arrbuf3[0]),
i ndsk, rlsk, rcsk);

for (i=0; i<5; i++)
{
arrbuf1fi] 2004;
arrbuf2[i] =i +4;
menset ((void *)arrbuf3[i], (int)' A +i, (size_t)5000);
}
QCl St nt Execut e(svchp, stnthp, errhp, (ub4) 5, (ub4) O,
(const OCl Snapshot*) 0, (OCl Snapshot*) 0,
(ub4) OCl _DEFAULT);

7.4.6 Using OCI Data Interface to Fetch LOB Data

This section discusses techniques you can use to fetch data from persistent or temporary
LOBs in OCI using the data interface.

7.4.6.1 Performing Simple Fetch Operations in One Piece

Follow the steps listed in this section for performing a simple fetch operation on LOBs in one
piece, using the data interface for LOBs.

1. Call OCl St nt Prepare() to prepare the SELECT statement in OCI _DEFAULT mode.

ORACLE 7-13

Chapter 7
Data Interface for LOBs in OCI

2. Call OCl Defi neByPos() to define a select list position in OCI _DEFAULT mode to
define a LOB as character data or binary data.

3. Call OCl St nt Execut e() to run the SELECT statement.
4. Call OC Stnt Fetch() to do the actual fetch.

The following example illustrates selecting a persistent LOB or temporary LOB using a
simple fetch:

void sinple_fetch()
{
word retval;
text buf[15000];
/*
This statenment returns a persistent LOB, but can be nodified to
return a tenporary LOB
using the query ' SELECT SUBSTR(Ad_sourcetext,5) FROM Print_nedia
WHERE Product id = 2004
*/
text *selstm = (text *) "SELECT Ad_sourcetext FROM Print_media WHERE\
Product id = 2004";

OCl St nt Prepare(stnthp, errhp, selstnt, (ub4)strlen((char *)selstnt),
(ub4) OCI _NTV_SYNTAX, (ub4) OCl _DEFAULT);

retval = OCl Stnt Execute(svchp, stnthp, errhp, (ub4) 0, (ub4) O,
(const OCl Snapshot*) 0, (OC Snapshot *)
(ub4) OCI _DEFAULT);
while (retval == OCl _SUCCESS || retval == OCl _SUCCESS W TH | NFO
{
OCl Def i neByPos(stnt hp, &defhp, errhp, (ub4) 1, (dvoid *) buf,
(sb4) sizeof (buf), (ub2) SQT CHR (dvoid *) O,
(ub2 *) 0, (ub2 *) 0, (ub4) OCl DEFAULT);
retval = OCl StntFetch(stnthp, errhp, (ub4) 1,
(ub4) OCI _FETCH NEXT, (ub4) OCI _DEFAULT);
if (retval == OCl _SUCCESS || retval == OCl _SUCCESS W TH_| NFO
printf("buf = %*s\n", 15000, buf);

0,

7.4.6.2 Performing a Piecewise Fetch with Polling

ORACLE

Follow the steps listed in this section to perform a piecewise fetch operation on a LOB
column with polling, using the data interface for LOBs.

1. Call OCl St nt Prepare() to prepare the SELECT statement in OCI _DEFAULT mode.

2. Call OCl Def i nebyPos() to define a select list position in OCl _DYNAM C_FETCH mode
to define the LOB column as character data or binary data.

3. Call OC St nt Execut e() to run the SELECT statement.

4. Call OC Stnt Fet ch() in default mode. Optionally, you can use
OCl Server Dat aLengt hGet () to get the LOB length and use it to allocate the buffer
to hold the LOB data. Do each of the following in a loop while the value returned

7-14

ORACLE

Chapter 7
Data Interface for LOBs in OCI

from OCl St nt Fet ch() is OCI _NEED DATA. Terminate your loop when the value returned
from OCl St nt Fet ch() is OCl _SUCCESS.

e Call OC St nt Get Pi ecel nfo() to retrieve information about the piece to be fetched.

e Call OCl St nt Set Pi ecel nfo() to set information about piece to be fetched.

The following example illustrates selecting a LOB column into a character buffer using a
piecewise fetch with polling:

voi d piecewi se_fetch()

{

text buf[15000];

ub4 buf | en=5000;

word retval;

text *selstm = (text *) "SELECT Ad_sourcetext FROM Print_nedia
WHERE Product _id = 2004 AND Ad_id = 2";

OCl St nt Prepare(stnthp, errhp, selstnt,
(ub4) strlen((char *)selstnt),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);

OCl Def i neByPos(stnthp, &dfnhp, errhp, (ub4) 1,
(dvoid *) NULL, (sb4) 100000, SQ.T_LNG
(dvoid *) 0, (ub2 *) 0,
(ub2 *) 0, (ub4) OCl _DYNAM C FETCH);

retval = OCl Stnt Execute(svchp, stnthp, errhp, (ub4) 0, (ub4) O,
(CONST OCl Snapshot*) 0, (OCl Snapshot *)
(ub4) OCI _DEFAULT);

01

retval OCl Stnt Fetch(stnthp, errhp, (ub4) 1,

(ub2) OCI _FETCH_NEXT, (ub4) OCl _DEFAULT):

while (retval != OCl _NO DATA && retval != OCl _SUCCESS)
{

ubl piece;

ub4 iter;

ub4 idx;

genclr((void *)buf, 5000);
switch(retval)
{
case OCl _NEED DATA:
OCl St nt Get Pi ecel nfo(stnthp, errhp, &hdlptr, &hdltype,
& n out, &ter, & dx, &piece);
bufl en = 5000;
OCl St nt Set Pi ecel nfo(hdl ptr, hdltype, errhp,
(dvoid *) buf, &buflen, piece,
(CONST dvoid *) & ndpl, (ub2 *) 0);
retval = OCl _NEED DATA,
br eak;
defaul t:
printf("ERROR piece-wise fetching, %\n", retval);
return;
} /* end switch */

7-15

}

Chapter 7
Data Interface for LOBs in OCI

retval = OCl StntFetch(stnthp, errhp, (ub4) 1,
(ub2) OCI _FETCH NEXT, (ub4) OCl _DEFAULT);
printf("Data : % 5000s\n", buf);
} /* end while */

7.4.6.3 Performing a Piecewise with Callback

ORACLE

Follow the steps listed in this section to perform a piecewise fetch operation on a LOB
column with callback, using the data interface for LOBs.

1.
2.

o o M o

Call OCl St nt Prepare() to prepare the statement in OCI _DEFAULT mode.

Call OCl Def i nebyPos() to define a select list position in OCI _DYNAM C_FETCH mode
to define the LOB column as character data or binary data.

Call OCl St nt Execut e() to run the SELECT statement.
Call OCl Def i neDynani ¢() to specify the callback.
Call OCl St nt Fet ch() in default mode.

Inside the callback, you can optionally use OCl Ser ver Dat aLengt hGet () to get the
LOB length during the first fetch. You can use this value to allocate the buffer to
hold LOB data

The following example illustrates selecting a LOB column into a LOB buffer when
using a piecewise fetch with callback:

char buf[5000];
voi d cal | back_fetch()

{

}

/*

word outpos = 1;
text *sqglstnm = (text *) "SELECT Ad_sourcetext FROM Print_media WHERE
Product id = 2004 AND Ad_id = 3";

QOCl Stnt Prepare(stnthp, errhp, sqlstnt, (ub4)strlen((char *)sqlstnt),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);
QOCl Def i neByPos(stnthp, &dfnhp[0], errhp, (ub4) 1,
(dvoid *) 0, (sh4)3 * sizeof (buf), SQT CHR
(dvoid *) 0, (ub2 *)0, (ub2 *)O,
(ub4) OCl _DYNAM C FETCH);

QOCl Def i neDynami c(df nhp[0], errhp, (dvoid *) &out pos,
(OCl Cal | backDefine) fetch_cbk);

QCl St nt Execut e(svchp, stnthp, errhp, (ub4) 1, (ub4) O,
(const OCl Snapshot*) 0, (QOCl Snapshot*)
(ub4) OCl _DEFAULT);

buf[4999 1 ="'\0';

printf("Select callback: Last piece: %\n", buf);

01

/* Fetch callback to specify buffers. */

/*

__ %[

static sh4 fetch _cbk(dvoid *ctxp, OCl Define *dfnhp, ub4 iter, dvoid

7-16

ORACLE

Chapter 7
Data Interface for LOBs in OCI

**puf pp,
ub4 **al enpp, ubl *piecep, dvoid **indpp, ub2 **rcpp)
{
static int a = 0;
ub4 outpos = *((ub4 *)ctxp);
ub4 | en = 5000;
swi t ch(out pos)
{
case 1:
a ++;
*bufpp = (dvoid *) buf;
*al enpp = &l en;
br eak;
defaul t:
*bufpp = (dvoid *) 0;
*al enpp = (ub4 *) O;
printf("ERROR invalid position number: %l\n", outpos);
}
*indpp = (dvoid *) 0;
*rcpp = (ub2 *) 0;

buf[len] = "\0";
if (a<=1)
{
*pi ecep = OCl _FI RST_PI ECE;
printf("Select callback: Oth piece\n");
}
else if (a<3d)
{
*pi ecep = OCl _NEXT_PI ECE;
printf("Select callback: %' th piece: %\n", a-1, buf);
}
el se {
*piecep = OCl _LAST_PI ECE;
printf("Select callback: %' th piece: %\n", a-1, buf);
a=_0;
}
return OCl _CONTI NUE;

This example illustrates selecting a LOB column into a character buffer when using a
piecewise fetch with callback, along with fetching the length of LOB data.

#define MAX_BUF_SZ 1048576 /* Max allocation size = 1M */
char *buffer = NULL;
ub8 buf len = 0;

/* Define callback function */

sh4 DefineCbk(void *cbctx, OC Define *defnhp, ub4 iter,
void **bufp, ub4 **alenp, ubl *piecep,
void **indp, ub2 **rcodep)

{

static sword piece = 1,

7-17

Chapter 7
Data Interface for LOBs in OCI

bool ean isValidLen = FALSE;
buf len = 0;

if (piece == 1)
{
QOCl Server Dat aLengt hGet (def nhp, & sValidLen, (ub8 *) &buf | en,
(OCl Error *)chctx, 0);

if (buf_len > MAX BUF_SZ)
buf len = MAX BUF Sz,

buffer = (char *)malloc(buf_len);
*pbufp = buffer;
*alenp = (ub4 *) &buf len;

}

el se

{
printf("Data = %\n", buffer);
buf len = MAX BUF_ Sz,

}

pi ece++;

return OCl _CONTI NUE;

}

voi d define_cal | back()

{

t ext *sglstmt = (text *)"select lobcol fromlob_table";

OCl Stnt Prepare(stnthp, errhp, sqlstnt, (ub4)strlen(sqlstnt),
(ub4) OCI _NTV_SYNTAX, (ub4) OCl _DEFAULT);

OCl Def i neByPos(st nt hp, &defhpl, errhp, (ub4)l, (dvoid *)O,
(sb4) (10 * MAX BUF_S7), SQLT_STR (dvoid *) O,
(ub2 *) 0, (ub2 *) 0, (ub4)COCl _DYNAM C _FETCH);

QOCl Def i neDynami c(def hpl, errhp, errhp,

(OCl Cal | backDef i ne) Def i neCbk) ;

QCl St nt Execut e(svchp, stnthp, errhp, (ub4) 0, (ub4) O,
(CONST OCl Snapshot *) 0, (OCI Snapshot *) O,
(ub4) OCl _DEFAULT);

QCl Stnt Fetch(stnthp, errhp, 1, OCl_FETCH NEXT, OCl _DEFAULT);

buffer[buf len] ="'\0";
printf(" Data = %\n", buffer);
if (buffer)

free(buffer);

7.4.6.4 Performing an Array Fetch Operation

Use any of the techniques discussed in this section to perform an array fetch operation
in OCI, using the data interface for LOBs.

Use the techniques discussed below, in conjunction with OCl Def i neArrayOf Struct (),
or by specifying the number of iterations (i t er), with the value of i t er greater than 1,
in the OCI St nt Execut e() call. Irrespective of whether the LOB data is fetched using

ORACLE 7-18

Chapter 7
Data Interface for LOBs in OCI

single piece, piecewise or callbacks, it is fetched in a single round trip for multiple rows when
using array defines.

The following example illustrates selecting a LOB column into a character buffer using an
array fetch:

void array_fetch()
{
word i;
text arrbuf[5][5000];
text *selstnm = (text *) "SELECT Ad_sourcetext FROM Print_medi a WHERE
Product _id = 2004 AND Ad_id >=4";

OCl Stnt Prepare(stnthp, errhp, selstnt, (ub4)strlen((char *)selstnt),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);

QCl St nt Execut e(svchp, stnthp, errhp, (ub4) 0, (ub4) O,
(const OCl Snapshot*) 0, (QOCI Snapshot*) 0, (ub4)

OCl_DEFAULT);

OCl Def i neByPos(stnthp, &defhpl, errhp, (ub4) 1,
(dvoid *) arrbuf[0Q], (sb4) sizeof(arrbuf[0]),
(ub2) SQLT_CHR (dvoid *) O,
(ub2 *) 0, (ub2 *) 0, (ub4) OCl DEFAULT);

OCl Defi neArrayCf Struct (df nhpl, errhp, sizeof(arrbuf[0]), indsk,
rl sk, rcsk);

retval = OCl StntFetch(stnthp, errhp, (ub4) 5,

(ub4) OCl _FETCH NEXT, (ub4) OCI _DEFAULT);
if (retval == OCl _SUCCESS || retval == OCl _SUCCESS W TH_| NFO
{

printf("%5000s\n", arrbuf[0]);
printf("%5000s\n", arrbuf[1]);
printf("%5000s\n", arrbuf[2]);
printf("%5000s\n", arrbuf[3]);
printf("%5000s\n", arrbuf[4]);

7.4.7 PL/SQL and C Binds from OCI

ORACLE

Learn about PL/SQL and C Binds from OCI with respect to LOBs in this section.

When you call a PL/SQL procedure from OCI, and have an | Nor OUT or I N OUT bind, you
should be able to:

» Bind a variable as SQLT_CHR or SQLT_LNGwhere the formal parameter of the PL/SQL
procedure is SQLT_CLOB, or

» Bind a variable as SQLT_BI Nor SQLT_LBI where the formal parameter is SQLT_BLOB

The following two cases work:

7-19

ORACLE

Chapter 7
Data Interface for LOBs in OCI

Calling PL/SQL Out-binds in the "begin foo(:1); end;" Manner
Here is an example of calling PL/SQL out-binds in the "begin foo(:1); end;" Manner:

text *sglstnt = (text *)"BEG N get_lob(:c); END, " ;

Calling PL/SQL Out-binds in the "call foo(:1);" Manner
Here is an example of calling PL/SQL out-binds in the "call foo(:1);" manner:

text *sqglstm = (text *)"CALL get_lob(:c);" ;

In both these cases, the rest of the program has these statements:

OCl Stnt Prepare(stnthp, errhp, sqglstnt, (ub4)strlen((char *)sqlstnt),
(ub4) OOl _NTV_SYNTAX, (ub4) OCI _DEFAULT);
curlen = 0;

OCl Bi ndByNane(st nt hp, &bndhp[3], errhp,
(text *) ":c", (sb4) strlen((char *) ":c"),
(dvoid *) buf5, (sh4) LONGLEN, SQLT_CHR
(dvoid *) 0, (ub2 *) 0, (ub2 *) 0,
(ub4) 1, (ub4 *) &curlen, (ub4) OCI _DATA AT_EXEC);

The PL/SQL procedure, get _| ob(), is as follows:

procedure get_lob(c INOUT CLOB) is -- This night have been col um% ype
BEG N
. /* The procedure body could be in PL/SQ or Ct/
END;

7-20

Locator Interface for LOBSs

The Locator Interface for LOBs refers to a set of APIs in different programmatic interfaces,
which enables you to perform operations on persistent and temporary LOBs using the LOB
locator.

These operations typically take an offset, or an amount parameter, or both, as input argument
to facilitate efficient random and piecewise operations on the LOB.

¢ See Also:

BFILE APIs for operations involving the BFILE data type.

8.1 Before You Begin

Learn about the concepts that you should know before using the programmatic interfaces to
work on LOBs, using the LOB locator.

8.1.1 Getting a LOB Locator

ORACLE

All LOB APIs need a valid LOB locator to be passed as an input. This section discusses
various methods to populate LOB variables using a LOB locator.

All LOB APIs need a valid LOB locator to be passed as an input. Use one of the following
methods to populate a LOB variable in your application with a LOB locator:

* Persistent LOBs: First create a table with a LOB column, then insert a value into the LOB
column and select out the LOB locator. To modify an existing LOB using a LOB locator,
you must lock the row in the table in order to prevent other database users from writing to
the LOB during a transaction.

See Also:

— Persistent LOBs for information on how to create a a table with a LOB
column and populate it.

— Selecting a LOB into a LOB Variable for Read Operations for information on
how to select a LOB locator for LOB read operations.

— Selecting a LOB into a LOB Variable for Write Operations for information on
how to lock the row for LOB modify operations.

e Temporary LOBs: You can create a temporary LOB by using an API like
DBMS_LOB. CREATETEMPORARY or by invoking a SQL or PL/SQL function that returns a
temporary LOB.

8-1

Chapter 8
Before You Begin

¢ See Also:

Temporary LOBs

8.1.2 LOB Open and Close Operations

ORACLE

The LOB APIs include operations that enable you to explicitly open and close a LOB
instance.

You can open and close a persistent or temporary LOB instance of any type: BLOB,
CLOB or NCLOB. You open a LOB to achieve one or both of the following results:

e Open the LOB in read-only mode

This ensures that the LOB (both the LOB locator and LOB value) cannot be
changed in your session until you explicitly close the LOB. For example, you can
open the LOB to ensure that the LOB is not changed by some other part of your
program while you are using the LOB in a critical operation. After you perform the
operation, you can then close the LOB.

e Open the LOB in read-write mode

Opening a LOB in read-write mode defers any index maintenance on the LOB
column until you close the LOB. Opening a LOB in read-write mode is only useful
if there is a functional or domain index on the LOB column, and you do not want
the database to perform index maintenance every time you write to the LOB. This
technique can improve the performance of your application if you are doing
several write operations on the LOB while it is open. Note that any index on the
LOB column is not valid until you explicitly close the LOB.

If you do not explicitly open the LOB instance, then every modification to the LOB
implicitly opens and closes the LOB instance. The database performs index
maintenance for any functional and domain indexes on the LOB column on each
implicit close of the LOB. This means that the indexes on the LOB are updated as
soon as any modification to the LOB instance is made. These indexes are always
valid and can be used at any time.

The open state of a LOB is associated with the LOB instance, not the LOB locator. The
locator does not save any information indicating whether the LOB instance that it
points to is open.

You must close any LOB instance that you explicitly open in the following places:

* Between DML statements that start a transaction, including SELECT ... FOR
UPDATE and COMM T.

* Within an autonomous transaction block.

» Before the end of a session (when there is no transaction in progress in the
session).

If you do not explicitly close the LOB instance, then it is implicitly closed at the end of
the session and no index triggers are fired, which means that any indexes on the LOB
column are not updated. In this situation, you must rebuild your indexes on the LOB
column.

Committing a transaction on the open LOB instance causes an error. When this error
occurs, the LOB instance is closed implicitly, any modifications to the LOB instance are

8-2

Chapter 8
Before You Begin

saved, and the transaction is committed, but any indexes on the LOB column are not
updated. In this situation, you must rebuild your indexes on the LOB column.

If you subsequently rollback the transaction, then the LOB instance is rolled back to its
previous state, but the LOB instance is no longer explicitly open.

Keep track of the open or closed state of LOBs that you explicitly open. The following actions
cause an error:

e Explicitly opening a LOB instance that has been explicitly open earlier.

« Explicitly closing a LOB instance that is has been explicitly closed earlier.

This occurs whether you access the LOB instance using the same locator or different
locators.

8.1.3 Read and Write at Chunk Boundaries

To improve performance, you should perform LOB reads and writes using offsets and amount
that are a multiple of the value returned by GETCHUNKSI ZE function.

If it is appropriate for your application, then you should batch reads and writes until you have
enough for an entire chunk instead of issuing several LOB read or write calls that operate on
the same LOB chunk.

8.1.4 Prefetching LOB Data and Length

In most clients like JDBC, OCI and ODP.NET, the number of server round trips can be
reduced by prefetching part of the data and metadata (length and chunk size) along with the
LOB locator during the fetch. This applies to persistent LOBs, temporary LOBs, and BFI LEs.

For small to medium sized LOBs, Oracle recommends setting the prefetch length such that
about majority of your LOBs are smaller than the prefetch size.

LOB prefetch size can be set at the session level, and can be overwritten at the statement or
the column level.

8.1.5 Determining Character Set ID

Some LOB APIs such as DBM5S_LOB. LOADCLOBFROVFI LE, OCl LobRead2() and OCl LobWit e2()
take in a character set ID as an input. To determine the character set ID, you must know the
character set name.

A user can select from the VENLS_VALI D_VALUES view, which lists the names of the character
sets that are valid as database and national character sets. Then call the function

NLS CHARSET | Dwith the desired character set name as the one string argument. The
character set ID is returned as an integer.

Although UTF16 is not allowed as a database or national character set, LOB APIs support it
for database conversion purposes. Use character set | D = 1000 for UTF16, or in OCI, you
can use OCl _UTF16l D.

ORACLE 8-3

¢ See Also:

8.1.6 LOB APIs

Chapter 8
Before You Begin

e OClUnicodeToCharSet() for information on the OCl Uni codeToChar Set ()
function and details on OCI syntax in general.

e Overview of Globalization Support for detailed information about
implementing applications in different languages.

Once a LOB variable is initialized with either a persistent or a temporary LOB locator,
subsequent read operations on the LOB can be performed using APIs such as the
DBM5_LOB package subprograms.

The operations supported on LOBs are divided into the following categories:

Table 8-1 Operations supported by LOB APIs
|

Category

Operation

Example function/procedure
in DBMS_LOB or OCILob

Sanity Checking

Check if the LOB variable has
been initialized

QOCl LobLocatorlslnit

Find out if the BLOBor CLOB | SSECUREFI LE
locator is a SecureFile
Open/Close Open a LOB OPEN
Check is a LOB is open | SOPEN
Close the LOB CLOSE
Read Operations Get the length of the LOB GETLENGTH

Get the LOB storage limit for
the database configuration

GET_STORAGE_LIM T

Get the optimum read or write GETCHUNKSI ZE
size
Read data from the LOB READ
starting at the specified offset
Return part of the LOB value SUBSTR
starting at the specified offset
using SUBSTR
Return the matching position | NSTR
of a pattern in a LOB using
I NSTR
Modify Operations Write data to the LOB at a VWRI TE
specified offset
Write data to the end of the VRl TEAPPEND
LOB
Erase part of a LOB, starting ERASE
at a specified offset
Trim the LOB value to the TRIM
specified shorter length
Operations involving multiple ~ Check whether the two LOB ~ OCl Lobl sEqual

locators

locators are the same

ORACLE

8-4

ORACLE

Table 8-1 (Cont.) Operations supported by LOB APIs

Chapter 8
Before You Begin

Category

Operation Example function/procedure
in DBMS_LOB or OCILob

Compare all or part of the COVPARE

value of two LOBs

Append a LOB value to APPEND

another LOB

Copy all or part of a LOB to corY

another LOB

Assign LOB locator Sr ¢ to dst: =src,

LOB locator dst OCl LobLocat or Assi gn

Converts aBLOBtoa CLOBor CONVERTTOBLOB,

aCLOBtoaBLOB CONVERTTOCLOB

Load BFI LE data into a LOB

LOADCLOBFROVFI LE,
LOADBLOBFROMFI LE

Operations Specific to
SecureFiles

Returns options
(deduplication, compression,
encryption) for SecureFiles.

GETOPTI ONS

Sets LOB features
(deduplication and
compression) for SecureFiles

SETOPTI ONS

Gets the content string for a
SecureFiles.

GETCONTENTTYPE

Sets the content string for a
SecureFiles.

SETCONTENTTYPE

Delete the data from the LOB
at the given offset for the given
length

FRAGVENT DELETE

Insert the given data (<
32KBytes) into the LOB at the
given offset

FRAGVENT_| NSERT

Move the given amount of
bytes from the given offset to
the new given offset

FRAGVENT_MOVE

Replace the data at the given
offset with the given data (<
32kBytes)

FRAGVENT_REPLACE

¢ See Also:

 BFILEs

e Temporary LOBs

e Comparing the LOB Interfaces

8-5

ORACLE

< Note:

Chapter 8
Before You Begin

The DBMS_LOB package provides a rich set of operations on LOBSs. If you are
using a different programmatic interface, where some of these operations are
not provided, then call the corresponding PL/SQL procedure or function in
DBMS_LOB package.

Most of the code examples in the following sections use the pri nt _nedi a table with

the following structure:

Figure 8-1 print_media table

PRINT_MEDIA Table

| Column name] [Column Type J
product_id NUMBER (6)
ad_id NUMBER (6)
ad_composite BLOB
ad_sourcetext CLOB
ad_finaltext CLOB
ad_fltextn NCLOB
ad_textdocs_ntab NESTED TABLE
ad_photo BLOB
ad_graphic BFILE
ad_header USER DEFINED TYPE
press_release LONG

8-6

8.2 PL/SQL API for LOBs

The DBM5_LOB package enables you to access and make changes to LOBs in PL/SQL.

ORACLE

" See Also:

Chapter 8
PL/SQL API for LOBs

DBMS_LOB for more information on DBMS_LOB package.

Guidelines for Offset and Amount Parameters in DBMS_LOB Operations

The following guidelines apply to the of f set and amount parameters used in the DBVS_LOB

PL/SQL package procedures:

e For character data in all formats, either in fixed-width or variable-width, the amount and
of f set parameters are in characters. This applies to operations on CLOB and NCLCB data

types.

e For binary data, the of f set and anbunt parameters are in bytes. This applies to
operations on BLOB data types.

* When using the DBMS_LOB. READ procedure, the anobunt parameter should be less than or
equal to the size of the buffer, which is limited to 32K. However, the anount parameter
can be larger than the size of the LOB data.

Table 8-2 DBMS_LOB functions and procedures for LOBs
]

Category Function/Procedure Description
Sanity Checking | SSECUREFI LE Find out if the BLOB or CLOB
locator is a SecureFile
Open/Close OPEN Open a LOB
| SOPEN Check if a LOB is open
CLOSE Close the LOB
Read Operations CETLENGTH
CET_STORAGE LIMT
CETCHUNKSI ZE
READ
SUBSTR
I NSTR
Modify Operations WRI TE Write data to the LOB at a
specified offset
VIRl TEAPPEND Write data to the end of the LOB
ERASE Erase part of a LOB, starting at a
specified offset
TRIM Trim the LOB value to the
specified shorter length
Operations involving multiple COVPARE Compare all or part of the value
locators of two LOBs
APPEND Append a LOB value to another

LOB

8-7

Chapter 8
PL/SQL API for LOBs

Table 8-2 (Cont.) DBMS_LOB functions and procedures for LOBs
]

Category Function/Procedure Description
CoPY Copy all or part of a LOB to
another LOB
dst :=src Assign LOB locator sr ¢ to LOB
locator dst
CONVERTTOBLORB, Converts aBLOBto a CLOBor a
CONVERTTOCLOB CLOBto aBLOB
LOADCLOBFROVFI LE, LOADBLOB Load BFI LE data into a LOB
FROVFI LE
Operations specific to GETOPTI ONS Returns options (deduplication,
SecureFiles compression, encryption) for
SecureFiles.
SETOPTI ONS Sets LOB features (deduplication
and compression) for
SecureFiles
GETCONTENTTYPE Gets the content string for a
SecureFiles.
SETCONTENTTYPE Sets the content string for a
SecureFiles.
FRAGVENT_DELETE Delete the data from the LOB at
the given offset for the given
length
FRAGVENT _I NSERT Insert the given data (<
32KBytes) into the LOB at the
given offset
FRAGVENT_MOVE Move the given amount of bytes
from the given offset to the new
given offset
FRAGVENT_REPLACE Replace the data at the given
offset with the given data (<
32kBytes)

Example 8-1 PL/SQL API for LOBs

DECLARE
retval | NTEGER,;
clobl CLOsB;
cl ob2 CLOsB;
cl ob3 CLOB;
bl obl BLOB;
buf VARCHAR2(32767) ;
bufl en | NTEGER : = 32760;
| obl enl | NTEGER;

-- Following are the variables that you need for the convertToBl ob
and convertTod ob functions

anmt NUMBER : = 0;
src NUMBER : = 1 ;
dst NUVBER : = 1 ;
I ang NUMBER : = 0;

ORACLE 8-8

ORACLE

Chapter 8
PL/SQL API for LOBs

war n NUVBER;

BEG N

SELECT ad_sourcetext |INTO clobl FROM print_nedia
VWHERE product _id = 1 AND ad_id = 1;

-- the select statement is defined with FOR UPDATE so that we can wite

to it

SELECT ad_finaltext INTO clob2 FROM print_nedi a
WHERE product _id = 1 AND ad_id =1 FOR UPDATE;
/* Note that all the wites to clob2 will get reflected in the colum */

/O *|
A L EE T Sanity Checking -----------------mmmmunnn */
/O *|

i f DBMS_LOB. | SSECUREFI LE(cl obl) = TRUE then
DBVS_QUTPUT. PUT_LI NE(' CLOBL is SECUREFILE);

el se

DBVS_QUTPUT. PUT_LI NE(' CLOBL is BASICFILE);
end if;
/O *|
A LR TP OpeN - - - */
/O *|

/* Open clobl for READs and clob2 for WRI TES */
DBVS_LOB. OPEN(cl obl, DBMS_LOB. LOB_READONLY) ;
DBVS_LOB. OPEN(cl ob2, DBMS_LOB. LOB_READWRI TE) ;

/5 *|
A LR E T Reading froma LOB --------------------mmm--- */
/2 *|

DBMS_QUTPUT. PUT_LINE(' storage limt : ' ||

dbrs_| ob. get _storage limt(clobl));

DBMS_QUTPUT. PUT_LI NE(' chunk size : ' || dbns_| ob. getchunksi ze(cl obl));
[obl enl := DBMS_LOB. GETLENGTH(¢l obl);

DBMS_QUTPUT. PUT_LINE('length : ' || |oblenl);

DBMS_LOB. READ(cl obl1, buflen, 1, buf);

DBMS_QUTPUT. PUT_LINE('read : LOB data : ' || buf);

DBMS_QUTPUT. PUT_LI NE(' New buflen : ' || buflen);

DBMS_QUTPUT. PUT_LI NE(' substr : ' || dbms_| ob. substr(clobl, 30, 1));

DBVS_QUTPUT. PUT_LINE("instr : ' ||
DBMS _LOB. I NSTR(cl obl, 'review of the document', 1,

/O * |
A LR T Mdifying a LOB ---------mmmmmmmieei oo */
/O * |

DBMS_LOB. WRI TE(¢l ob2, buflen, 10, buf);
DBVS_LOB. WRI TEAPPEND(cl ob2, buflen, buf);
buflen := 10;

DBMS_LOB. ERASE(¢l ob2, buflen, 10);
DBVS_LOB. TRI M ¢l ob2, 50);

8-9

ORACLE

Chapter 8
PL/SQL API for LOBs

[* Print the LOB just nodified */

buflen := 32760;

DBMS_LOB. READ(cl ob2, buflen, 1, buf);

DBMS_QUTPUT. PUT_LINE('read : LOB data : ' || buf);
DBMS_QUTPUT. PUT_LI NE(' New buflen : ' || buflen);

[* Error because clobl is open in READ node */
-- DBMS_LOB.WRI TE(cl obl, buflen, 10, buf);

2
*/

A LT Qperations involving 2 locators ---------------------
*/

2
*/

retval := DBMS_LOB. COWPARE(cl obl, clob2, 100, 1, 1);
if (retval <0) then
DBVS_QUTPUT. PUT_LINE(" clobl is smaller');
elsif (retval = 0) then
DBMS_QUTPUT. PUT_LI NE(' both cl obs are equal');
el se
DBMS_QUTPUT. PUT_LINE(' clobl is larger');
end if;

DBMS_QUTPUT. PUT_LI NE(' | ength before append: ' ||
DBMS_LOB. GETLENGTH(cl 0b2));

DBVMS_LOB. APPEND(cl ob2, cl obl);

DBMS_QUTPUT. PUT_LINE(' I ength after append: ' ||
DBMS_LOB. GETLENGTH(cl 0b2));

DBMS_QUTPUT. PUT_LINE(" ----------- LOB COPY operation --------);
DBMS_LOB. COPY(cl ob2, clobl, |oblenl, 100, 1);
DBMS_QUTPUT. PUT_LINE(' I ength after copy: ' ||

DBMS_LOB. GETLENGTH(cl 0b2));

K e e e e eieaieeas
*|

A LT TR Convert CLOBto a BLOB ------------mmmmmmmmoo
*|

K o e e ieeieeas
*/

DBVS_LOB. CREATETEMPORARY(bl obl, false);

dst := 1;

src .= 1;

amt :=5;

DBVS_LOB. CONVERTTOBLOB(bl ob1, clob2, ant, dst, src,
DBMS_LOB. DEFAULT_CSI D,

 ang, warn);
DBMS_QUTPUT. PUT_LI NE(' Source of fset returned "|] src) ;
DBMS_QUTPUT. PUT_LI NE(' Destination offset returned ' || dst) ;

DBVS_QUTPUT. PUT_LI NE(" Length of CLOB "
dbns_| ob. getl ength(cl ob2)) ;
DBVS_QUTPUT. PUT_LI NE(" Length of BLOB "

8-10

ORACLE

Chapter 8
PL/SQL API for LOBs

dbns_| ob. getl engt h(bl obl)) ;

DBMS_QUTPUT. PUT_LI NE(" Warning returned " |] warn);

DBMS_QUTPUT. PUT_LI NE(' OUTPUT BLOB contents ="' || rawt ohex(blobl));

/* __ */

A LR PR Convert BLOBto a CLOB ---------------------- */

/* __ */

DBVS_LOB. CREATETEMPORARY(cl ob3, false);

dst := 1,

src := 1,

am = 4,

DBMS_LOB. CONVERTTOCLOB(¢l ob3, bl obl, ant, dst, src, DBMS_LOB. DEFAULT_CSI D,
 ang, warn);

DBMS_QUTPUT. PUT_LI NE(' Source of fset returned "|] src) ;

DBMS_QUTPUT. PUT_LI NE(" Destination offset returned ' || dst) ;

DBMS_OUTPUT. PUT_LINE(' Length of BLOB "

DBMS_LOB. GETLENGTH(bl ob1))

DBMS_OUTPUT. PUT_LINE(' Length of CLOB "

DBMS_LOB. GETLENGTH(¢l 0b3))

DBMS_QUTPUT. PUT_LI NE(" Warning returned " |] warn);

DBMS_QUTPUT. PUT_LI NE(' I NPUT BLOB contents = ' || rawt ohex(blobl));
DBMS_QUTPUT. PUT_LI NE(" OUTPUT CLOB contents ="' || clob3);
/O *|
A LR TP C0SE -----mmm s */
/5 * |
DBVS_QUTPUT. PUT_LI NE(" ------------- CLOSE --------------- ")

DBVS_LOB. CLOSE(cl 0b2) ;

if (DBM5_LOB.ISOPEN(clobl) = 1) then
DBMS_LOB. CLOSE(¢l obl) ;

END if;

COWM T;

END;

Example 8-2 PL/SQL APIs for SecureFile specific operations
conn pni pm

-- alter the table to make | ob storage as securefile

-- assune tabl espace ths 1 is ASSM

alter table print_nedia nove

| ob(ad_conposite) store as securefile (deduplicate conpress tabl espace
ths 1)

| ob(ad_sourcetext) store as securefile (conpress tablespace ths 1)
lob(ad finaltext) store as securefile (conpress tablespace ths 1)

| ob(ad_phot 0) store as securefile (tablespace ths_1);

SET SERVEROUTPUT ON

DECLARE
cl obl CLOB;

8-11

ORACLE

Chapter 8
PL/SQL API for LOBs

bl obl BLOB;
result Bl NARY | NTEGER;
/[* --- variables for setcontenttype, getcontenttype ----*/

get _nedi a_type VARCHAR2(1128) ;
set _nedi a_type VARCHAR2(1128) ;

[* --- variables for delta operations -------- */
amount | NTEGER;

of f set | NTECGER;

buffer VARCHAR2(30) ;

r eadbuf VARCHAR2(50) ;

read_ant | NTEGER;

src_of fset | NTEGER;

dest of f set | NTEGER;

amount _ol d | NTEGER;

BEG N

-- fetch clob, blob val ues

SELECT ad_sourcetext, ad_conposite
INTO clobl, blobl

FROM print_nedia

WHERE product _id = 2056 FOR UPDATE;

/2 * |
A T TR Get Options ------mmmmmimi e *|
/2 * |

-- check whether conpress option is enabl ed
result := DBMS_LOB. GETOPTI ONS(cl obl, DBMS_LOB. OPT_COWPRESS);
DBMS_QUTPUT. PUT_LI NE(" Get conpress option on ad_sourcetext: '||result);

-- check whether conpress + deduplicate is enabl ed
result := DBMS_LOB. GETOPTI ONS(bl obl, DBMS_LOB. OPT_DEDUPLI CATE +
DBMS_LOB. OPT_COMPRESS) ;
DBMS_QUTPUT. PUT_LI NE(" Get conpress + deduplicate option on
ad_conposite: '||result);

/2 *
A LT R Set OptionNs --------mmmmmi e *|
/2 * |

-- turn off conpression
DBMS_LOB. SETOPTI ONS(¢l ob1, DBMsS_LOB. OPT_COWPRESS,
DBMS_LOB. COVPRESS_OFF) ;
-- getoptions should be 0 now
result := DBMS_LOB. GETOPTI ONS(cl obl, DBMS_LOB. OPT_COWPRESS);
DBMS_QUTPUT. PUT_LI NE(" Conpress option on clobl: '||result);

-- turn off deduplication
DBVS_LOB. SETOPTI ONS(bl ob1, DBMS_LOB. OPT_DEDUPLI CATE,
DBMS_LOB. DEDUPLI CATE_COFF) ;
-- getoptions should be 0 now
result := DBMS_LOB. GETOPTI ONS(bl obl, DBMS_LOB. OPT_DEDUPLI CATE);
DBMS_QUTPUT. PUT_LI NE(' Dedupl i cate option on blobl: '||result);

/2 * |
A L CGetcontenttype, Setcontenttype ----------------------- *|
8-12

ORACLE

Chapter 8
PL/SQL API for LOBs

-- get contenttype -- should be null as content type is not set yet
DBMS_QUTPUT. PUT_LI NE(CHR(10) || ' cl obl contenttype: " ||

dbns_| ob. get contenttype(cl obl));

set_media_type := "text/plain';
DBMS_LOB. SETCONTENTTYPE(cl obl, set nedia_type);

DBMS_QUTPUT. PUT_LI NE(" C obl contenttype: ' ||

dbns_| ob. get contenttype(cl obl));

-- setcontenttype for blob
DBMS_QUTPUT. PUT_LI NE(' bl obl contenttype: ' ||

dbns_| ob. get cont entt ype(bl obl));

set _media_type := 'photo/jpeg";
DBMS_LOB. SETCONTENTTYPE(bl ob1, set nedia_type);

get _media_type := DBMS_LOB. GETCONTENTTYPE(bl ob1);

DBMS_QUTPUT. PUT_LI NE(' Bl obl contenttype: ' || get_nedia_type);

/* __ */

A T TR Fragnment Qperations ----------------------- *|

A LT Print Before Fragment QOperations -------------- *|
read_ant := 40;

DBMS_LOB. READ(cl obl, read_ant, 1, readbuf);

DBMS_QUTPUT. PUT_LI NE(CHR(10) || ' Cl obl before fragment insert: '|| readbuf);

DBMS_OUTPUT. PUT_LI NE(CHR(10)

I
|| Length of clobl before fragnent operations:
|| dbms_lob. getlength(clobl));

A LR Fragnent Delete ------------m-mmmmmmnmnnnnn *|
amount = 100;
of fset := 10;

DBMS_LOB. FRAGVENT_DELETE(cl obl, anount, offset);

A LR Fragnment Insert -----------mmmmmmmmmnnnnn *|
amount = 29;

of f set = 1

buffer = "#Verify lob Delta operations#;

DBMS_LOB. FRAGVENT | NSERT(¢l obl, anount, offset, buffer);

A LT TR Fragment Move ---------mmmmmmmmmiieae oo *|
amount = 29,

src_of f set = 100;

dest _offset := 1;

-- fragnent nove
DBMS_LOB. FRAGVENT _MOVE(cl obl, amount, src_offset, dest_offset);

A TR R Fragnment Replace -------------------------- *|
amount = 25;

amount _old := 29;

of f set = 100;

buffer = '$Verify fragnent replace$';

DBMS_LOB. FRAGVENT_REPLACE(cl ob1, ampunt _ol d, amount, offset,buffer);

8-13

Chapter 8
JDBC API for LOBs

COW T;
A LT Verify After Fragnent Operations -------------- *|
read_ant := 40;
DBMS _LOB. READ(cl obl, read_ant, 1, readbuf);
DBMS_QUTPUT. PUT_LI NE(CHR(10)||' Clobl after delta insert: '|| readbuf);
DBMS_QUTPUT. PUT_LI NE(CHR(10) | | ' Length of clobl after fragnment
operations: '|| dbms_| ob. getlength(clobl));
EXCEPTI ON

VWHEN OTHERS THEN
DBMS_QUTPUT. PUT_LI NE(sqgl errm;
END;
/

8.3 JDBC API for LOBs

ORACLE

JDBC supports standard Java interfaces j ava. sql . O ob and j ava. sql . Bl ob for CLOBs
and BLOBs respectively.

In JDBC, you do not deal with locators but instead use methods and properties in the
Java APIs to perform operations on LOBs.

When BLOB and CLOB objects are retrieved as a part of an Resul t Set , these objects
represent LOB locators of the currently selected row. If the current row changes due to
a move operation, for example, rset . next (), then the retrieved locator still refers to
the original LOB row. You must call get BLOB(), get CLOB(), or get BFI LE() on the

Resul t Set each time a move operation is made depending on whether the instance is
a BLOB, CLOB or BFI LE.

See Also:

Working with LOBs and BFILES

Prefetching of LOB Data

When using the JDBC client, the number of server round trips can be reduced by
prefetching part of the data and metadata (length and chunk size) along with the LOB
locator during the fetch. This applies to persistent LOBs, temporary LOBs, and BFI LEs.
For small to medium sized LOBs, Oracle recommends setting the prefetch length such
that about majority of your LOBs are smaller than the prefetch size.

LOB prefetch size can be set at the session level, and can be overwritten at the
statement or the column level. The prefetch size values can be:

* -1to disable prefetching
* 0to enable prefetching for metadata only

* any value greater than 0 which represents the number of bytes for BLOBs and
characters for CLOBs, to be prefetched along with the locator during fetch
operations.

8-14

ORACLE

Chapter 8
JDBC API for LOBs

Use prop. set Property to set the prefetch size for the session. The default session prefetch
size is 32k for the JDBC Thin Driver.

prop. set Property("oracle.jdbc. def aul t LobPrefetchSi ze", "64000");

You can overwrite the session level default prefetch size at the statement level as follows:

((Oracl eStatement)stnt). set LobPrefetchSi ze(100000);

You can use the following code snippet to fetch the prefetch size of a statement:

int pf = ((OracleStatenent)stnt). getLobPrefetchSize() ;

You can overwrite the session level default prefetch size at the column level as follows:

((Oracl eStatement)stnt). defi neCol umType(1l, O acleTypes.CLOB, /

| obPr ef et chSi ze/

32000) ;

¢ Note:

About Prefetching LOB Data

Table 8-3 JDBC methods for LOBs
'

Category

Function / Procedure

Description

Miscellaneous

empty_| ob()

Creates an empty LOB

i sSecureFile()

Finds out if the BLOB or CLOB
locator is a SecureFile

Open/Close open() Open a LOB
i sOpen() Check if a LOB is open
cl ose() Close the LOB
Read Operations I engt h() Get the length of the LOB

get ChunkSi ze()

Get the optimum read/write size

get Bytes()

Read data from the BLOB
starting at the specified offset

get Bi narySt rean()

Streams the BLOB as a binary
stream

get Chars() Read data from the CLOB
starting at the specified offset
get Charact er Streamn() Streams the CLOB as a

character stream

get Asci i Stream()

Streams the CLOB as an ASCII
stream

get SubString()

Return part of the LOB value
starting at the specified offset

8-15

ORACLE

Table 8-3 (Cont.) JIDBC methods for LOBs

Chapter 8
JDBC API for LOBs

Category Function | Procedure Description
posi tion() Return the matching position of a
pattern in a LOB
Modify Operations set Bytes() Write data to the BLOB at a

specified offset

set Bi narySt ream()

Sets a binary stream that can be
used to write to the BLOB value

setString()

Write data to the CLOB at a
specified offset

set Charact er Streamn()

Sets a character stream that can
be used to write to the CLOB
value

set Ascii Stream()

Sets an ASCII stream that can
be used to write to the CLOB
value

truncate()

Trim the LOB value to the
specified shorter length

Operations involving multiple dst =src

locators

Assign LOB locator src to LOB
locator dst

Example 8-3 JDBC API for LOBs

static void jdbc_|l ob_apis() throws Exception {

Systemout. println("Persistent LOBs Test in JDBC "+ TYPE);

try(
Connection con = get Connection();
St at ement stmt = con.createStatenent();
)
{
Resul t Set rs = null;
Cob c1 = null;
Cob c2 = null;
Reader in = null;
I ong pos =0
I ong len =0

rs = stnt.executeQuery("sel ect ad_sourcetext fromprint_media where

product _id = 1");
rs.next();
cl = rs.getCLOB(1);
OracleCob c11 = (Oracl ed ob) c1;

rs.close();

/2
*/

A R R R R R Sanity Checking -----
*/

/2

8-16

Chapter 8
JDBC API for LOBs

*/
if (cll.isSecureFile())
Systemout.printIn("Cl is a Securefile LOB");
el se
Systemout.printIn("Cl is a Basicfile LOB");

/5 *|
A LR T T Open/ A 0Se ---------mmmi s */
/5 *|
A LR T T Opening @ CLOB -------------mmmmmmmaa o */

c11. open(Lar geChj ect AccessMde. MODE_READONLY) ;

A LT Det erm ning Whether a CLOB Is Cpen ---------------- */
if (cll.isQpen())

Systemout.printIn("Cl1l is open!");
el se

Systemout.printIn("Cll is not open");

A LR T T Cosing a CLOB --------------mmmmmmaaa o */
cll.close();

% o e * |
A R TR TP Reading froma LOB ------------------mnmmmmn-- */
/5 * |
A LR T Get CLOB Length -------mmmmmmmaaaaa oo */

len = cl.length();
Systemout.printin("CLOB | ength =

+ len);

A LR T Reading CLOB Data ----------------------- */
char[] readBuffer = new char[6];

in = cl. getCharacterStream);

in.read(readBuffer,0,5);

in.close();

String | obContent = new String(readBuffer);

Systemout.printin("Buffer with LOB contents: " + |obContent);

A LR TP Substr of a CLOB ----------------mmmmmm - */
String subs = cl.getSubString(2, 5);

Systemout.println("LOB substring: " + subs);

A LR TP Search for a pattern ------------ommn-n-- */
pos = cl.position("aaa", 1);
Systemout.printin("Pattern matched at position =" + pos);

/O *|
A LT TP Mdifying a LOB ---------mmmmmmmieeaeao oo */
/O *|

rs = stnt.executeQuery("sel ect ad_sourcetext fromprint_media where
product _id = 1 for update");
rs.next();

ORACLE 8-17

Chapter 8
OCI API for LOBs

c2 =rs.getCob(1);
OracleC ob c¢22 = (Oracl ed ob) c2;

A LR R Witetoa CLOB --------------------mmmm - -
*/
c22. open(Lar geChj ect AccessMbde. MODE_READWRI TE) ;
c2.setString(3,"mdified");
String nmsubs = c2.getSubString(1, 15);
Systemout.printlin("Mdified LOB substring: " + nsubs);
A LR R Truncate a CLOB ----------------------------
*/
c2.truncate(20);
len = c2.1ength();
Systemout.printin("Truncated LOB len =" + len);
c22.close();
}
}

8.4 OCI API for LOBs

ORACLE

Oracle Call Interface (OCI) LOB functions enable you to access and make changes to
LOBs in C.

¢ See Also:
LOB and BFILE Operations

Prefetching LOB Data in OCI

When using the OCI client, the number of server round trips can be reduced by
prefetching part of the data and metadata (length and chunk size) along with the LOB
locator during the fetch. This applies to persistent LOBs, temporary LOBs, and BFI LEs.
For small to medium sized LOBs, Oracle recommends setting the prefetch length such
that about majority of your LOBs are smaller than the prefetch size.

LOB prefetch size can be set at the session level, and can be overwritten at the
statement or the column level.

Use the OCl Att r Set () function to set the prefetch size for the session. The default
session prefetch size is 0.

default | obprefetch_size = 32000;
OCl AttrSet (aut hp, OCI_HTYPE SESSI ON, &default | obprefetch_size , 0,
OCl _ATTR DEFAULT_LOBPREFETCH SI ZE, errhp));

You can overwrite the session level default prefetch size at the column level. For this,
you should first set the column level attribute OCl _ATTR LOBPREFETCH LENGTHto TRUE
and then set the column level prefetch size attribute OCI _ATTR LOBPREFETCH_SI ZE in

8-18

ORACLE

Chapter 8
OCI API for LOBs

the define handle to override the session level default lob prefetch size. The following code
shippet demonstrates how to set the prefetch size at session level:

prefetch_l ength = TRUE
status = OCl AttrSet (defhp, OCI_HTYPE DEFINE, &prefetch_|length, O,
OCl _ATTR_LOBPREFETCH_LENGTH, errhp);

| pf _size = 32000;
OCl Attr Set (def hp, OCI _HTYPE DEFINE, &l pf_size, sizeof(ub4),
OCl _ATTR_LOBPREFETCH S| ZE, errhp);

You can use the following code snippet to get the prefetch size of a define:

ub4 get | pf_size = 0;
OCl Attr Get (def hp, OCI_HTYPE DEFI NE, &get | pf _si ze,
0, OCl _ATTR_LOBPREFETCH SI ZE, errhp);

¢ See Also:

User Session Handle Attributes

Fixed-width and Varying-width Character Set Rules for OCI

In OCI, for fixed-width client-side character sets, the following rules apply:

e (CLOBs and NCLOBs: of f set and amount parameters are always in characters
e BLOBs and BFI LEs: of f set and amount parameters are always in bytes

The following rules apply only to varying-width client-side character sets:

- Offset parameter:

Regardless of whether the client-side character set is varying-width, the offset parameter
is always as follows:

— CLOBs and NCLOBs: in characters
— BLOBs and BFI LEs: in bytes
* Amount parameter:
The amount parameter is always as follows:
— When referring to a server-side LOB: in characters
— When referring to a client-side buffer: in bytes
* OCILobGetLength2():

Regardless of whether the client-side character set is varying-width, the output length is
as follows:

— CLOBs and NCLGBs: in characters
— BLOBs and BFI LEs: in bytes
* OCILobRead2():
With client-side character set of varying-width, CLOBs and NCLOBs:

8-19

ORACLE

Chapter 8
OCI API for LOBs

— Input amount is in characters. Input amount refers to the number of
characters to read from the server-side CLOB or NCLCB.

— Output amount is in bytes. Output amount indicates how many bytes were
read into the buffer buf p.

* OCILobWrite2(): With client-side character set of varying-width, CLOBs and

NCLOBs:

— Input amount is in bytes. The input amount refers to the number of bytes of
data in the input buffer buf p.

— Output amount is in characters. The output amount refers to the number of
characters written into the server-side CLOB or NCLCB.

Amount Operation for OCILob Operations: For operations such as
COCl LobCopy2(), OCl LobEr ase2(), OCl LobLoadFr onFi | e2(), and OCl LobTri n2(),
the amount parameter is in characters for CLOBs and NCLOBs irrespective of the
client-side character set because all these operations refer to the amount of LOB

data on the server.

¢ See Also:

Overview of Globalization Support

Amount Parameter

When using the OCl LobRead2() and OCl LobW i te2() functions, in order to read or
write the entire LOB. you can set the input anount parameter as follows:

Table 8-4 Special Amount Parameter Setting to Read/Write the entire LOB

OCILobRead2

OCILobWrite2

pi ece = OCl _ONE _PI ECE

Set amount to UBSMAXVAL to
read the entire LOB

Streaming with Polling

Set amount to 0 to read entire
data in a loop

Set amount to 0 to continue
writing buffer size amount until
OCl _LAST_PI ECE

Streaming with Callback

Set amount 0 to ensure that
the callback is called until the
entire data is read

Set amount to 0 to ensure that
the callback is called until

OCl _LAST Pl ECE is returned
by the callback

Table 8-5 OCI Attributes on the OCILobLocator

ATTRIBUTE

OCIAttrSet

OCIAttrGet

0Cl_ATTR_LOBENPTY

Sets the descriptor to be
empty LOB

N/A

OCl _ATTR _LOB_REMOTE N/A set to TRUE if the lob locator is
from a remote database, set to
FALSE otherwise

OCl _ATTR LOB TYPE N/A holds the LOB type (CLOB /
BLOB / BFILE)

8-20

Chapter 8
OCI API for LOBs

Table 8-5 (Cont.) OCI Attributes on the OCILobLocator
|

ATTRIBUTE OCIAttrSet OCIAttrGet

OCl _ATTR LOB_I' S VALUE N/A set to TRUE if it is from a value
LOB, otherwiseFALSE

OCl _ATTR LOB_ IS READONL N/A set to TRUE if it is a read-only

Y

LOB, otherwise FALSE

OCl _ATTR_LOBPREFETCH_LE

NGTH

When set to TRUE the attribute
will enable prefetching and will
prefetch the LOB length and
the chunk size while
performing select operation of
LOB locator

set to TRUE if prefetching is
turned on for the locator.

OCl_ATTR_LOBPREFETCH_S|

ZE

Overrides the default prefetch
size for LOBs. Has a
prerequisite of the

OCl _ATTR _LOBPREFETCH _LE
NGTH attribute to be set to
TRUE.

Returns the prefetch size of
the locator.

Table 8-6 OCI Functions for LOBs
|

Category Function/Procedure Description

Sanity Checking OCl LobLocat orlslnit() Checks whether a LOB locator is
initialized.

Open/Close CCl LobOpen() Open a LOB

CCl Lobl sOpen()

Check if a LOB is open

OCl Lobd ose()

Close the LOB

Read Operations

CCl LobGet Lengt h2()

Get the length of the LOB

CCl LobGet St orageLim t ()

Get the LOB storage limit for the
database configuration

OCl LobGet ChunkSi ze()

Get the optimum read / write size

OCl LobRead2()

Read data from the LOB starting
at the specified offset

OCl LobAr r ayRead()

Reads data using multiple
locators in one round trip.

OCl LobChar Set 1 d()

Returns the character set ID of a
LOB.

CCl LobChar Set For m()

Returns the character set form of
a LOB.

Modify Operations

OCl LobWite2()

Write data to the LOB at a
specified offset

OCl LobArrayWite()

Writes data using multiple
locators in one round trip.

CCl LobW i t eAppend?2()

Write data to the end of the LOB

CCl LobEr ase2()

Erase part of a LOB, starting at a
specified offset

OCl LobTri n2()

Trim the LOB value to the
specified shorter length

ORACLE

8-21

ORACLE

Table 8-6 (Cont.) OCI Functions for LOBs

Chapter 8
OCI API for LOBs

Category Function/Procedure

Description

Operations involving multiple
locators

CCl Lobl sEqual ()

Checks whether two LOB
locators refer to the same LOB.

OCl LobAppend()

Append a LOB value to another
LOB

OCl LobCopy2()

Copy all or part of a LOB to
another LOB

OCl LobLocat or Assi gn()

Assign one LOB to another

OCl LobLoadFr onFi | e2()

Load BFI LE data into a LOB

Operations specific to
SecureFiles

OCl LObGet Opt i ons()

Returns options (deduplication,
compression, encryption) for
SecureFiles.

OCl LbSet Opti ons()

Sets LOB features (deduplication
and compression) for
SecureFiles

OCl LobGet Cont ent Type()

Gets the content string for a
SecureFiles

OCl LobSet Cont ent Type()

Sets a content string in a
SecureFiles

Example 8-4 OCI API for LOBs

/* Define SQL statenments to be used in program */
#define LOB_NUM QUERI ES 2

static text *selstmt[LOB_NUM QUERI ES] = {

(text *) "select ad_sourcetext fromprint_media where product _id

1", [+ 0 */

(text *) "select ad_sourcetext fromprint_media where product _id

2 for update",
};

sword run_query(ub4 index, ub2 dty)
{

QCl LobLocat or *c1 = (OCl LobLocator *)0;
QCl LobLocat or *c2 = (OCl LobLocator *)0;
OCl St nt *st nt hp;

QOCl Defi ne *defnlp = (OCl Define *) 0;
QOCl Defi ne *defn2p = (OCl Define *) 0;
OCl Bi nd *bndpl = (OCIBind *) 0;
OCl Bi nd *bndp2 = (OCIBind *) 0;
ub8 | obl en;

ubl | buf[128];

ubl inbuf[9] = "nodified";
ubl i nbuf _len = 8;

ub8 am = 15;

ub8 bant = 0;

ub4 csize = 0;

8-22

ORACLE

Chapter 8
OCI API for LOBs

ub8 slimt = 0;
bool ean flag = FALSE;
bool ean bool val = TRUE;
ub4 id=10;

CHECK_ERROR (OCl Handl eAl l oc((dvoid *) envhp, (dvoid **) &stnthp,
OCl _HTYPE_STMI, (size_t) 0, (dvoid **) 0));

/************** AI | Ocate deSCI'I ptors ***********************/

CHECK_ERROR (OCI DescriptorAlloc((dvoid *) envhp, (dvoid **) &cl,
(ub4)OCl _DTYPE_FI LE, (size_t) O,
(dvoid **) 0));

CHECK_ERROR (OCI DescriptorAlloc((dvoid *) envhp, (dvoid **) &c2,
(ub4)OCl _DTYPE_FI LE, (size_t) O,

/********** Execute Sel stm[o] to get Cl ***********************/
CHECK_ERROR (OCI St nt Prepare(stnthp, errhp, selstnt[0],

(ub4) strlen((char *) selstnt[0]),

(ub4) OCI _NTV_SYNTAX, (ub4) OCl _DEFAULT));

CHECK_ERROR (OCI Def i neByPos(stnt hp, &defnlp, errhp, (ub4) 1, (dvoid *) &cl,
(sbh4) -1, SQLT_CLOB, (dvoid *) 0, (ub2 *) O,
(ub2 *)0, (ub4) OCl _DEFAULT));

CHECK_ERROR (OCI St nt Execut e(svchp, stnthp, errhp, (ub4) 1, (ub4) O,
(CONST OCI Snapshot *) NULL, (COCl Snapshot *)

NULL,

OCl _DEFAULT));

/********** Execute Sel Stm[l] to get C2 **********************/
CHECK_ERROR (OCl St nt Prepare(stnthp, errhp, selstnt[1],

(ub4) strlen((char *) selstnt[1]),

(ub4) OCI _NTV_SYNTAX, (ub4) OCl _DEFAULT));

CHECK_ERROR (OCI Def i neByPos(stnt hp, &defnlp, errhp, (ub4) 1, (dvoid *) &c2,
(sbh4) -1, SQLT_CLOB, (dvoid *) 0, (ub2 *) O,
(ub2 *)0, (ub4) OCI _DEFAULT));

CHECK_ERROR (OCI St nt Execut e(svchp, stnthp, errhp, (ub4) 1, (ub4) O,
(CONST OCI Snapshot *) NULL, (OCl Snapshot *)

NULL,

OCl _DEFAULT));
/~k __ */
A L EEEE R Sanity Checking ----------------mmmmmmmannn *|
/~k __ */
CHECK_ERROR (OCl LobLocator | sl nit(envhp, errhp, (COCl LobLocator *) c1,
&bool val));

i f (boolval)

printf("LOB locator is initialized!' \n");
el se

8-23

Chapter 8
OCI API for LOBs

printf("LOB locator is NOT initialized \n");

/2 * |
A LR LT Open/ A 0Se ---------mmmm s */
/2 * |
A LR LT Opening @ CLOB -----------mmmmmmiae e o - */

CHECK_ERROR (OCl LobOpen(svchp, errhp, c1, (ubl)OCl _LOB READONLY));
printf("QOC LobOpen: Works\n");

A e Det ermi ning Whether a CLOB Is Open --------------- *|
CHECK_ERROR (OCI Lobl sCpen(svchp, errhp, cl, &boolval));

printf("QOC Lobl sCpen: %\n", (boolval)?"TRUE": "FALSE");

A LR Cosing @a LOB --------mmmmmmmmmaia oo *|
CHECK_ERROR (OCl Lobd ose(svchp, errhp, cl));
printf("OC LobC ose: Works\n");

/2 * |
A LR E T LOB Read Qperations ------------------o----- */
/2 * |

printf("OC LobFileCpen: Works\n");

A R LR Getting the Length of a LOB ---------mmmmommn-- */
CHECK_ERROR (OCl LobGet Lengt h2(svchp, errhp, c1, & oblen));
printf("OC LobGetLength2: loblen: % \n", |oblen);

A LR Getting the Storage Limt of a LOB ------------- */
CHECK_ERROR (OCl LobGet St orageLi mit(svchp, errhp, c1, &slimt));
printf("OC LobGetStoragelLinit: storage limt: 9%d \n", slinit);

A LT Getting the Chunk Size of a LOB ----------------- */
CHECK_ERROR (OCl LobGet ChunkSi ze(svchp, errhp, cl, &csize));
printf("OC LobGet ChunkSi ze: storage limt: % \n", csize);

A LR Reading LOB Data ------------------------ *|
CHECK_ERROR (OCl LobRead2(svchp, errhp, cl1, &ant,
NULL, (oraub8)1, | buf,
(oraub8)si zeof (1 buf), OCI _ONE_PI ECE ,
(dvoi d*) 0,
NULL, (ub2)0, (ubl)SQCS IMPLICIT));
printf("OC LobRead2: buf: %*s ant: % u\n", ant, |buf, ant);

2 */
A LR R Mdifying @ LOB ---------mmmmmmmiae oo *|
2 */
A L EEEE R Witing Data to LOB ----------cmmmmmmmnonnn *|
am = 8§;

CHECK_ERROR (OCl LobWite2(svchp, errhp, c2, &bant, &nt, 1,
(dvoid *) inbuf, (ub8)inbuf len, OCl_ONE PIECE, (dvoid
*) 0'
(OCl Cal | backLobWite2)0,
(ub2) 0, (ubl) SQCS IMPLICIT));

ORACLE 8-24

Chapter 8
OCI API for LOBs

A LR EE T Wite Append to a LOB -----------nmmmmnmnn- */
/* Append 8 characters */
am = 8§;

CHECK_ERROR (OCl LobW it eAppend2(svchp, errhp, c2, &bant, &ant,
(dvoid *) inbuf, (ub8)inbuf len, OCl_ONE PIECE, (dvoid *)O,
(OCl Cal | backLobWite2)0,
(ub2) 0, (ubl) SQCS IMPLICIT));

A LR EE R T Erase part of LOB contents ---------------- */
/* Erase 5 characters */
ant = 5;

CHECK_ERROR (OCl LobEr ase2(svchp, errhp, c2, &nt, 2));

A LR LT Trima LOB -----------mmmmmmee e e - - */
amt = 1000;

CHECK_ERROR (OCl LobTri n2(svchp, errhp, c2, ant));

printf("OC LobTrin2 Works! \n");

/2 * |
A LT Qperations involving 2 locators -------------------- */
/2 * |
A R TR T Check Equality of LOB locators ------------------- */

CHECK_ERROR (OClI Lobl sEqual (envhp, cl1, c2, &boolval))
printf("QOC Lobl skqual %\n", (boolval)?"TRUE":"FALSE");

A R TR T Append contents of a LOB to another LOB ---------- */
CHECK_ERROR(CCl LobAppend(svchp, errhp, c2, cl));
printf("OC LobAppend: Works! \n");

A LR LOB Copy ---------mmmmmmmmm e */

/* Copy 10 characters fromoffset 1 of source to offset 2 of destination*/
CHECK_ERROR (OCl LobCopy2(svchp, errhp, c2, cl1, 10, 2, 1));

printf("OC LobCopy2: Works! \n");

A LT T LOB Locator ASSign --------------mmmmmmaaao s *|
CHECK_ERROR (OCl LobLocat or Assi gn(svchp, errhp, cl, &c2));

printf("OC LobLocator Assign: Wrks! \n");

/* Free the LOB descriptors which were allocated */

OCl Descri ptorFree((dvoid *) cl1, (ub4) SQT_CLOB);

OCl Descri ptorFree((dvoid *) c2, (ub4) SQT_CLOB);

CHECK_ERROR (OCl Handl eFree((dvoid *) stnthp, OCl _HTYPE_STMI));

ORACLE 8-25

Chapter 8
OCI API for LOBs

8.4.1 Efficiently Reading LOB Data in OCI

ORACLE

This section describes how to read the contents of a LOB into a buffer.

Streaming Read in OCI

The most efficient way to read large amounts of LOB data is to use OCl LobRead2()
with the streaming mechanism enabled using polling or callback. To do so, specify the
starting point of the read using the of f set parameter as follows:

ub8 char_ant
ub8 byte_ant
ub4 offset = 100

0;
0;
0;

CCl LobRead2(svchp, errhp, locp, &yte anm, &char_ant, offset, bufp, bufl,
OCl _ONE_PIECE, 0, 0, 0, 0);

When using polling mode, be sure to look at the value of the byt e_ant parameter after
each OCl LobRead?2() call to see how many bytes were read into the buffer because the
buffer may not be entirely full.

When using callbacks, the | enp parameter, which is input to the callback, indicates
how many bytes are filled in the buffer. Be sure to check the | enp parameter during
your callback processing because the entire buffer may not be filled with data.

¢ See Also:

Oracle Call Interface Programmer's Guide

LOB Array Read

This section describes how to read LOB data for multiple locators in one round trip,
using OCl LobAr rayRead() .

For an OCI application example, assume that the program has a prepared SQL
statement such as:

SELECT | obl FROM | ob_t abl e;

where | obl is the LOB column and | ob_array is an array of define variables
corresponding to a LOB column:

CCl LobLocat or * | ob_array[10];

for (i=0; i<10, i++) [* initialize array of locators */
lob_array[i] = OClDescriptorAloc(..., OCl _DIYPE_LOB, ...);
CCl DefineByPos(..., 1, (dvoid *) lob_array, ... SQT_CLOB, ...);

/* Execute the statement with iters = 10 to do an array fetch of 10 locators. */
OCl St nt Execute (<service context>, <statenent handle> <error handl e>,
10, [* iters */

8-26

ORACLE

0, /* row of fset */

NULL, /* snapshot IN */
NULL, /* snapshot out */

OCl _DEFAULT /* node */)

ub4 array_iter = 10;
char *bufp[10];
oraub8 bufl[10];
oraub8 char_ant p[10]
oraub8 of fset[10]

for (i=0; i<10; i++4)

1

{
bufp[i] = (char *)malloc(1000);
bufI[i] = 1000;
offset[i] =1
char_antp[i] = 1000; /* Single byte fixed width char set. */
}
/* Read the 1st 1000 characters for all 10 locators in one
* round trip. Note that offset and ampunt need not be
* same for all the locators. */
OCl LobArrayRead(<service context>, <error handl e>
&array_iter, [* array size */
| ob_array, /* array of locators */
NULL, [* array of byte amounts */
char _ant p, /* array of char anounts */
of fset, [* array of offsets */
(void **)bufp, /* array of read buffers */
bufl, /* array of buffer lengths */
OCl _ONE_PI ECE, [/* piece information */
NULL, /* cal | back context */
NULL, /* call back function */
0, [* character set ID- default */
SQLCS_IMPLICIT);/* character set form*/
for (i=0; i<10; i++4)
{
[* Fill bufp[i] buffers with data to be witten */
strncpy (bufp[i], "Test Data------ ", 15);
bufI[i] = 1000;
offset[i] = 50;
char_anmtp[i] =15; /* Single byte fixed width char set. */

}

/* Wite the 15 characters fromoffset 50 to all 10
* |ocators in one round trip. Note that offset and
* ampunt need not be sane for all the locators. */

*/

OCl LobArrayWite(<service context>, <error handl e>
size */

&array_iter, /* array
| ob_array, /* array
NULL, /* array
char_antp, /* array
of f set, /* array

(voi d **)bufp, /* array

of
of
of
of
of

| ocators */
byte amounts */
char amounts */
of fsets */
read buffers */

Chapter 8
OCI API for LOBs

8-27

ORACLE

Chapter 8
OCI API for LOBs

buf, I* array of buffer lengths */

OCl _ONE_PIECE, [/* piece information */

NULL, /* cal | back context */

NULL, /* cal |l back function */

0 /* character set ID - default */

SQLCS_IMPLICIT);/* character set form?*/

LOB Array Read with Streaming

LOB array APIs can be used to read/write LOB data in multiple pieces. This can be
done by using polling method or a callback function.Here data is read/written in
multiple pieces sequentially for the array of locators. For polling, the APl would return
to the application after reading/writing each piece with the array_i t er parameter
(OUT) indicating the index of the locator for which data is read/written. With a callback,
the function is called after reading/writing each piece with array_iter as IN parameter.

Note that:

* ltis possible to read/write data for a few of the locators in one piece and read/write
data for other locators in multiple pieces. Data is read/written in one piece for
locators which have sufficient buffer lengths to accommodate the whole data to be
read/written.

* Your application can use different amount value and buffer lengths for each
locator.

* Your application can pass zero as the amount value for one or more locators
indicating pure streaming for those locators. In the case of reading, LOB data is
read to the end for those locators. For writing, data is written until OCl _LAST Pl ECE
is specified for those locators.

LOB Array Read with Callback

The following example reads 10Kbytes of data for each of 10 locators with 1Kbyte
buffer size. Each locator needs 10 pieces to read all the data. The callback function is
called 100 (10*10) times to return the pieces sequentially.

/* Fetch the |ocators */

ub4 array_iter = 10;
char *buf p[10];

oraub8 bufl[10];

oraub8 char_ant p[10];
oraub8 of fset[10];
sword st;

for (i=0; i<10; i++)

{

bufp[i] = (char *)malloc(1000);

bufI[i] = 1000;

of fset[i] = 1,

char_anmtp[i] = 10000; /* Single byte fixed width char set. */
}

st = OCl LobArrayRead(<service context> <error handl e>,

&array_iter, /* array size */
| ob_array, /* array of locators */

NULL, /* array of byte anounts */
char _ant p, I* array of char amounts */
of f set, /* array of offsets */

8-28

Chapter 8
OCI API for LOBs

(void **)bufp, /* array of read buffers */
buf, I* array of buffer lengths */
OCl _FIRST_PIECE, [/* piece information */
ctx, /* cal |l back context */
cbk_read_| ob, /* call back function */
0 [* character set ID - default */

SQLCS IMPLICIT);

/* Callback function for LOB array read. */
sh4 cbk_read_| ob(dvoid *ctxp, ub4 array_iter, CONST dvoid *bufxp, oraub8 |en,
ubl piece, dvoid **changed_bufpp, oraub8 *changed_| enp)

{
static ub4 piece_count = 0;
pi ece_count ++;
switch (piece)
{
case OCl _LAST_PI ECE:
/*--- buffer processing code goes here ---*/
(void) printf("callback read the % th piece(last piece) for %lth [ocator \n\n",
pi ece_count, array_iter);
pi ece_count = 0;
break;
case OCl _FI RST_PI ECE:
/*--- buffer processing code goes here ---*/
(void) printf("callback read the 1st piece for %lth |ocator\n",
array_iter);
/* --Optional code to set changed_bufpp and changed_lenp if the buffer needs
to be changed dynanically --*/
break;
case OCl _NEXT_PI ECE:
/*--- buffer processing code goes here ---*/
(void) printf("callback read the % th piece for %lth |ocator\n",
pi ece_count, array_iter);
/* --Optional code to set changed_bufpp and changed_lenp if the buffer
must be changed dynamically --*/
break;
defaul t:
(void) printf("callback read error: unkown piece = %l.\n", piece);
return OCl _ERROR
}
return OCl _CONTI NUE;

LOB Array Read in Polling Mode

The following example reads 10Kbytes of data for each of 10 locators with 1Kbyte buffer size.
Each locator needs 10 pieces to read the complete data. OCl LobAr r ayRead() must be called
100 (10*10) times to fetch all the data.First we call OCl LobArr ayRead() with OCI _FI RST_PI ECE
as pi ece parameter. This call returns the first 1K piece for the first locator.Next

CCl LobArrayRead() is called in a loop until the application finishes reading all the pieces for
the locators and returns OCl _SUCCESS. In this example it loops 99 times returning the pieces
for the locators sequentially.

/* Fetch the locators */

/* array_iter paranmeter indicates the nunber of locators in the array read.
* It is an IN parameter for the 1st call in polling and is ignored as IN

* paraneter for subsequent calls. As OUT parameter it indicates the |ocator
* index for which the piece is read.

ORACLE 8-29

ORACLE

*/

ub4 array_iter =10
char *bufp[10];
oraub8 bufl[10];
oraub8 char_ant p[10]
oraub8 of fset[10]
sword st;

for (i=0; i<10; i++)

Chapter 8
OCI API for LOBs

{

bufp[i] = (char *)malloc(1000);

bufI[i] = 1000;

of fset[i] = 1,

char_antp[i] = 10000; /* Single byte fixed width char set. */
}
st = OCl LobArrayRead(<service context>, <error handl e>

&array_iter, /[* array size */
|ob_array, /* array of locators */

NULL, [* array of byte anmounts */
char_antp, /* array of char amounts */
of f set, [* array of offsets */

(void **)bufp, /* array of read buffers */
bufl, /* array of buffer lengths */
OCl _FIRST_PI ECE, /* piece information */
NULL, /* cal | back context */
NULL, /* cal |l back function */
0 /* character set ID -

/* First piece for the first locator is read here

, default */
SQLCS_IMPLICIT); /* character set form?*/

* buf p[0] => Buffer pointer into which data is read
* char_antp[0] => Nunmber of characters read in current buffer
*/
Vhile (st == OCl _NEED DATA)
{
st = OCl LobArrayRead(<service context>, <error handl e>
&array_iter, /* array size */
lob_array, /* array of locators */
NULL, /* array of byte anounts */
char_antp, /* array of char amounts */
of fset, /* array of offsets */
(voi d **)bufp, /* array of read buffers */
bufl, I* array of buffer lengths */
OCl _NEXT_PI ECE, /* piece information */
NULL, /* cal | back context */
NULL, /* cal |l back function */
0, /* character set ID- default */
SQLCS_IMPLICIT)
[* array_iter returns the index of the current array elenent for which
* data is read. for exanple, aray_iter = 1 inplies first locator
* array_iter = 2 inplies second |locator and so on
*
* |ob_array[array_iter - 1]=> Lob locator for which data is read
* bufp[array_iter - 1] => Buffer pointer into which data is read
* char_antp[array_iter - 1] => Nunber of characters read in current

buf f er

8-30

Chapter 8
OCI API for LOBs

*/

/* Consume the data here */

}

8.4.2 Efficiently Writing LOB Data in OCI

ORACLE

This section describes how to write the contents of a buffer to a LOB.

Streaming Write in OCI

The most efficient way to write large amounts of LOB data is to use OCl LobW it e2() with the
streaming mechanism enabled, and using polling or a callback. If you know how much data is
written to the LOB, then specify that amount when calling OCl LobW i t e2() . This ensures that
LOB data on the disk is contiguous. Apart from being spatially efficient, the contiguous
structure of the LOB data makes reads and writes in subsequent operations faster.

LOB Array Write with Callback

The following example writes 10Kbytes of data for each of 10 locators with a 1K buffer size. A
total of 100 pieces must be written (10 pieces for each locator). The first piece is provided by
the OCl LobArrayWite() call. The callback function is called 99 times to get the data for
subsequent pieces to be written.

/* Fetch the locators */

ub4 array_iter = 10;
char *buf p[10];
oraub8 bufl[10];

oraub8 char _ant p[10];
oraub8 of fset[10];
sword st;

for (i=0; i<10; i++)

{
bufp[i] = (char *)malloc(1000);
buf I[i] = 1000;
offset[i] = 1,
char_antp[i] = 10000; /* Single byte fixed width char set. */
}
st = OCILobArrayWrite(<service context> <error handl e>,
&array_iter, /* array size */
| ob_array, /* array of locators */
NULL, /* array of byte amounts */
char_antp, /* array of char amounts */
of f set, /* array of offsets */
(void **)bufp, /* array of wite buffers */
bufl, /* array of buffer lengths */
OCI_FIRST_PIECE, /* piece information */
ctx, /* cal | back context */
cbk_wite_|lob /* call back function */
0 /* character set ID- default */

SQLCS_IMPLICIT);

8-31

ORACLE

Chapter 8
OCI API for LOBs

/* Call back function for LOB array wite. */

sh4 cbk_wite_lob(dvoid *ctxp, ub4 array_iter, dvoid *bufxp, oraub8 *Ienp,
ubl *piecep, ubl *changed_bufpp, oraub8 *changed_| enp)

{

static ub4 piece_count = 0;

pi ece_count ++;

printf (" %lth piece witten for %dth locator \n\n", piece_count, array_iter);

[*-- code to fill bufxp with data goes here. *lenp should reflect the size and
* should be less than or equal to MAXBUFLEN -- */

[* --Optional code to set changed_bufpp and changed_lenp if the buffer nust

* be changed dynamically --*/

if (this is the last data buffer for current |ocator)
*pi ecep = OCI_LAST_PIECE;
else if (thisis the first data buffer for the next |ocator)
*pi ecep = OCI_FIRST_PIECE;
pi ece_count = 0;
el se
*pi ecep = OCI_NEXT_PIECE;

return OCl _CONTI NUE;
}

LOB Array Write in Polling Mode

The following example writes 10Kbytes of data for each of 10 locators with a 1K buffer
size. OCl LobArrayWite() has to be called 100 (10 times 10) times to write all the data.
The function is used in a similar manner to OCl LobWite2().

/* Fetch the locators */

/* array_iter parameter indicates the nunber of locators in the array read.

* |t is an IN paraneter for the 1st call in polling and is ignored as IN

* paraneter for subsequent calls. As an OUT paraneter it indicates the locator
* index for which the piece is witten.

*/

ub4 array_iter = 10;
char *bufp[10];

oraub8 bufl[10];

oraub8 char _ant p[10];
oraub8 of fset[10];
sword st;

int i, i

for (i=0; i<10; i++4)

{
bufp[i] = (char *)malloc(1000);
buf I [i] = 1000;
/* Fill bufp here. */
offset[i] = 1;
char_antp[i] = 10000; /* Single byte fixed width char set. */
}
for (i =1; i <=10; i++4)
{

8-32

Chapter 8
OCI API for LOBs

[* Fill up bufp[i-1] here. The first piece for ith locator would be witten from
buf p[i-1] */
st = OCILobArrayWrite(<service context>, <error handl e>
&array_iter, [* array size */
lob_array, [/* array of locators */
NULL, /* array of byte amounts */
char_antp, /* array of char ampunts */
of fset, /* array of offsets */
(voi d **)bufp, [* array of wite buffers */
bufl, /* array of buffer lengths */
OCl _FIRST_PI ECE, /* piece information */
NULL, /* cal | back context */
NULL, /* cal | back function */
0, [* character set ID- default */
SQLCS_IMPLICIT); /* character set form?*/
for (j =2,) <10; j++)
{
[* Fill up bufp[i-1] here. The jth piece for ith locator would be witten from
buf p[i-1] */
st = OCILobArrayWrite(<service context>, <error handl e>
&array_iter, /* array size */
| ob_array, /* array of locators */
NULL, /* array of byte anounts */
char _ant p, I* array of char amounts */
of f set, /* array of offsets */
(void **)bufp, /* array of wite buffers */
buf !, I* array of buffer lengths */
OCI_NEXT_PIECE, /* piece information */
NULL, /* cal | back context */
NULL, /* call back function */
0, /* character set ID- default */
SQLCS_I MPLICI T)
[* array_iter returns the index of the current array elenent for which
* data is being witten. for exanple, aray_iter = 1 inplies first |ocator
* array_iter = 2 inplies second locator and so on. Here i = array_iter
*
* |ob_array[array_iter - 1] => Lob locator for which data is witten
* bufp[array_iter - 1] => Buffer pointer fromwhich data is witten
* char_anmtp[array_iter - 1] => Nunber of characters witten in
* the piece just witten
*/
}
[* Fill up bufp[i-1] here. The last piece for ith [ocator would be witten from
bufp[i -1] */
st = OClLobArrayWite(<service context> <error handl e>
&array_iter, /* array size */
| ob_array, /* array of locators */
NULL, /* array of byte anounts */
char _ant p, I* array of char amounts */
of f set, /* array of offsets */
(void **)bufp, /* array of wite buffers */
buf, I* array of buffer lengths */
OCI_LAST PIECE, /* piece information */
NULL, /* cal | back context */
NULL, /* cal | back function */

ORACLE

8-33

Chapter 8
ODP.NET API for LOBs

0, /* character set ID - default */
SQLCS IMPLICIT);

8.5 ODP.NET API for LOBs

ORACLE

Oracle Data Provider for .NET (ODP.NET) is an ADO.NET provider for the Oracle
Database.

ODP.NET offers fast and reliable access to Oracle data and features from any .NET
Core or .NET Framework application. ODP.NET also uses and inherits classes and
interfaces available in the Microsoft .NET Class Library. The ODP.NET supports the
following LOBs as native data types with .NET: BLOB, CLOB, NCLOB, and BFI LE.

See Also:

e LOB Support
e Obtaining LOB Data

Table 8-7 ODP.NET methods in OracleClob and OracleBlob classes
]

Category Function/Procedure Description
Open/Close Begi nChunkWite Open a LOB
EndChunkWite Close a LOB
I sl nChunkW it eMode Check if a LOB is open
Read Operations Length Get the length of the LOB
Opt i munChunkSi ze Get the optimum read/write
size
Val ue Returns the entire LOB data

as a string for CLOB and a
byte array for BLOB

Read Read data from the LOB
starting at the specified offset
Sear ch Return the matching position
of a pattern in a LOB using
I NSTR
Modify Operations Wite Write data to the LOB at a
specified offset
Erase Erase part of a LOB, starting
at a specified offset
Set Lengt h Trim the LOB value to the
specified shorter length
Operations involving multiple Conpar e Compare all or part of the
locators value of two LOBs
| sEqual Check if two LOBs point to the

same LOB data

8-34

Chapter 8
OCCI API for LOBs

Table 8-7 (Cont.) ODP.NET methods in OracleClob and OracleBlob classes

___|
Category Function/Procedure Description

Append Append a LOB value to
another LOB, or append a
byte array, string, or character
array to an existing LOB

CopyTo Copy all or part of a LOB to
another LOB
d one Assign LOB locator Sr ¢ to

LOB locator dst

8.6 OCCI API for LOBs

OCCI provides a seamless interface to manipulate objects of user-defined types as C++
class instances.

Oracle C++ Call Interface (OCCI) is a C++ API for manipulating data in an Oracle database.
OCCiI is organized as an easy-to-use set of C++ classes that enable a C++ program to
connect to a database, run SQL statements, insert/update values in database tables, retrieve
results of a query, run stored procedures in the database, and access metadata of database
schema objects.

Oracle C++ Call Interface (OCCI) is designed so that you can use OCIl and OCCI together to
build applications.

The OCCI API provides the following advantages over JDBC and ODBC:

* OCCI encompasses more Oracle functionality than JDBC. OCCI provides all the
functionality of OCI that JDBC does not provide.

* OCCI provides compiled performance. With compiled programs, the source code is
written as close to the computer as possible. Because JDBC is an interpreted API, it
cannot provide the performance of a compiled API. With an interpreted program,
performance degrades as each line of code must be interpreted individually into code that
is close to the computer.

* OCCI provides memory management with smart pointers. You do not have to be
concerned about managing memory for OCCI objects. This results in robust higher
performance application code.

* Navigational access of OCCI enables you to intuitively access objects and call methods.
Changes to objects persist without writing corresponding SQL statements. If you use the
client side cache, then the navigational interface performs better than the object interface.

* With respect to ODBC, the OCCI API is simpler to use. Because ODBC is built on the C
language, OCCI has all the advantages C++ provides over C. Moreover, ODBC has a
reputation as being difficult to learn. The OCCI, by contrast, is designed for ease of use.

You can use OCCI to perform random and piecewise operations on LOBs, which means that
you specify the offset or amount of the operation to read or write a part of the LOB value.

OCCI provides these classes that allow you to use different types of LOB instances as
objects in your C++ application:

e ob class to access and modify data stored in persistent CLOBs and NCLOBs

ORACLE 8-35

ORACLE

Chapter 8
OCCI API for LOBs

» Bl ob class to access and modify data stored in persistent BLOBs

¢ See Also:

Syntax information on these classes and details on OCCI in general is
available in theOracle C++ Call Interface Programmer's Guide.

Clob Class

The Clob driver implements a CLOB object using an SQL LOB locator. This means that
a CLOB object contains a logical pointer to the SQL CLOB data rather than the data
itself.

The CLOB interface provides methods for getting the length of an SQL CLOB value, for
materializing a CLOB value on the client, and getting a substring. Methods in the
Resul t Set and St at enent interfaces such as get 0 ob() and set d ob() allow you to
access SQL CLOB values.

Blob Class

Methods in the Resul t Set and St at enent interfaces, such as get Bl ob() and

set Bl ob(), allow you to access SQL BLOB values. The Bl ob interface provides
methods for getting the length of a SQL BLOB value, for materializing a BLOB value on
the client, and for extracting a part of the BLOB.

Fixed-Width Character Set Rules

In OCCI, for fixed-width client-side character sets, these rules apply:

e (O ob: offset and amount parameters are always in characters

» Bl ob: offset and amount parameters are always in bytes

The following rules apply only to varying-width client-side character sets:

» Offset parameter: Regardless of whether the client-side character set is varying-
width, the offset parameter is always as follows:

— Cob():in characters
— Blob():in bytes
* Amount parameter: The amount parameter is always as indicated:
— Cob:in characters, when referring to a server-side LOB
— Bl ob: in bytes, when referring to a client-side buffer

* length(): Regardless of whether the client-side character set is varying-width, the
output length is as follows:

— Cob.length():in characters
— Blob.length():in bytes

e Clob.read() and Blob.read(): With client-side character set of varying-width,
CLOBs and NCLOBs:

— Input amount is in characters. Input amount refers to the number of
characters to read from the server-side CLOB or NCLOB.

8-36

ORACLE

Chapter 8
OCCI API for LOBs

— Output amount is in bytes. Output amount indicates how many bytes were read into

the OCCI buffer parameter, buf f er .

e Clob.write() and Blob.write(): With client-side character set of varying-width, CLOBs and

NCLOBs:

— Input amount is in bytes. Input amount refers to the number of bytes of data in the

OCCI input buffer, buffer.

— Output amount is in characters. Output amount refers to the number of characters

written into the server-side CLOB or NCLOB.

* Amount Parameter for Other OCCI Operations: For the OCCI LOB operations
C ob. copy(), O ob. erase(),dob.trin() irrespective of the client-side character set,
the amount parameter is in characters for CLOBs and NCLOBs. All these operations refer to

the amount of LOB data on the server.

¢ See also:

Oracle Database Globalization Support Guide

Table 8-8 OCCI Methods for LOBs

Category Function/Procedure Description

Sanity Checking Clob/Blob.islnitialized Checks whether a LOB locator is
initialized.

Open/Close C ob/ Bl oh. Open() Open a LOB

Q ob/ Bl oh. i sOpen()

Check if a LOB is open

C ob/ Bl obh. d ose()

Close the LOB

Read Operations Bl ob/ C ob. | engt h()

Get the length of the LOB

Bl ob/ O ob. get ChunkSi ze()

Get the optimum read or write
size

Bl ob/ O ob. read()

Read data from the LOB starting
at the specified offset

C ob. get Char Set I d()

Return the character set ID of a
LOB

Q ob. get Char Set For m()

Return the character set form of
a LOB.

Modify Operations Bl ob/ Cl ob. write()

Write data to the LOB at a
specified offset

Bl ob/ d ob.trim)

Trim the LOB value to the
specified shorter length

Operations involving multiple C ob/ Bl ob. operator ==
locators and !=

Checks whether two LOB
locators refer to the same LOB.

Bl ob/ O ob. append()

Append a LOB value to another
LOB

Bl ob/ O ob. copy()

Copy all or part of a LOB to
another LOB, or load from a
BFILE into a LOB

C ob/ Bl ob. operator =

Assign one LOB to another

8-37

Chapter 8
Pro*C/C++ and Pro*COBOL API for LOBs

Table 8-8 (Cont.) OCCI Methods for LOBs
]

Category Function/Procedure Description
Operations specific to securefiles Bl ob/ O ob. get Opt i ons() Returns options (deduplication,
compression, encryption) for
SecureFiles.
Bl ob/ O ob. set Opt i ons() Sets LOB features (deduplication
and compression) for
SecureFiles
Bl ob/ Gets the content string for a
C ob. get Cont ent Type() SecureFiles
Bl ob/ Sets a content string in a
C ob. set Cont ent Type() SecureFiles

8.7 Pro*C/C++ and Pro*COBOL API for LOBs

This section describes the mapping of Pro*C/C++ and Pro*COBOL locators to locator
pointers to access a LOB value.

Embedded SQL statements enable you to access data stored in BLOBs, CLOBs, and
NCLOBs.

¢ See Also:

Pro*C/C++ Programmer's Guide and Pro*COBOL Programmer's Guide for
detailed documentation, including syntax, host variables, host variable types
and example code.

Unlike locators in PL/SQL, locators in Pro*C/C++ and Pro*COBOL are mapped to
locator pointers which are then used to refer to the LOB value. To successfully
complete an embedded SQL LOB statement you must do the following:

1. Provide an allocated input locator pointer that represents a LOB that exists in the
database tablespaces or external file system before you run the statement.

2. SELECT a LOB locator into a LOB locator pointer variable.

3. Use this variable in the embedded SQL LOB statement to access and manipulate
the LOB value.

Table 8-9 Pro*C/C++ and Pro*COBOL Embedded SQL Statements for LOBs
|

Category Function/Procedure Description
Open/Close OPEN Open a LOB
DESCRI BE[| SOPEN]| Check is a LOB is open
CLOSE Close the LOB
Read Operations DESCRI BE[LENGTH| Get the length of the LOB
DESCRI BE[CHUNKSI ZE] Get the optimum read or write
size

ORACLE 8-38

ORACLE

Chapter 8
Pro*C/C++ and Pro*COBOL API for LOBs

Table 8-9 (Cont.) Pro*C/C++ and Pro*COBOL Embedded SQL Statements for

LOBs
|
Category Function/Procedure Description
READ Read data from the LOB
starting at a specified offset
Modify Operations WRI TE Write data to the LOB at a
specified offset
V\RI TE APPEND Write data to the end of the
LOB
ERASE Erase part of a LOB, starting
at a specified offset
TRI M Trim the LOB value to the
specified shorter length
Operations involving multiple ~ APPEND Append a LOB value to
locators another LOB
coPY Copy all or part of a LOB to
another LOB
ASSI GN Assign one LOB to another
LOAD FROM FI LE Load BFI LE data into a LOB

8-39

Distributed LOBs

This section describes the ways in which you can work with LOB data in remote tables.

¢ See Also:
Sharding with LOBs

9.1 Working with Remote LOBs in SQL and PL/SQL

This section describes the SQL and PL/SQL functions that are supported on remote LOBs.
SQL Functions

All the SQL built-in functions and user-defined functions that are supported on local LOBs
and BFILEs, are also supported on remote LOBs and BFILEs, as long as the final value
returned by the nested functions is not a LOB type. This includes functions for remote
persistent and temporary LOBs and for BFILES.

Most of the examples in the following sections use pri nt _nedi a table. Following is the
structure of the table:

ORACLE 9-1

Chapter 9
Working with Remote LOBs in SQL and PL/SQL

PRINT_MEDIA Table

| Column name] [Column Type J
product_id NUMBER (6)
ad_id NUMBER (6)
ad_composite BLOB
ad_sourcetext CLOB
ad_finaltext CLOB
ad_fltextn NCLOB
ad_textdocs_ntab NESTED TABLE
ad_photo BLOB
ad_graphic BFILE
ad_header USER DEFINED TYPE
press_release LONG

Built-in SQL functions, which are executed on a remote site, can be part of any SQL
statement, like SELECT, | NSERT, UPDATE, and DELETE. For example:

SELECT LENGTH(ad_sourcetext) FROM print_medi a@enote site -- CLOB
SELECT LENGTH(ad_fltextn) FROM print_nedi a@enote_site; -- NCLOB
SELECT LENGTH(ad_conposite) FROM print_nedi a@enote site; -- BLOB
SELECT product _id fromprint_nedi a@enote_site WHERE

LENGTH(ad_sourcetext) > 3;

UPDATE print_nedia@enote site SET product _id = 2 WHERE

LENGTH(ad_sourcetext) > 3;

SELECT TO CHAR(foo@bs2(...)) FROM dual @bs2;
-- where foo@bhs2 returns a tenporary LOB

ORACLE

9-2

ORACLE

Chapter 9
Working with Remote LOBs in SQL and PL/SQL

PL/SQL functions

Built-in and user-defined PL/SQL functions that are executed on the remote site and operate
on remote LOBs and BFILEs are allowed, as long as the final value returned by nested
functions is not a LOB.

SELECT product _id FROM print_nedi a@bs2 WHERE foo@bs2(ad_sourcetext, 'aa')
> 0;
-- foo is a user-define function returning a NUMBER

DELETE FROM print _nedi a@bs2 WHERE DBMS_LOB. GETLENGTH@bs2(ad_graphic) = 0;

Restrictions on Remote User Defined Functions
The SQL and PL/SQL functions fall under the following non-comprehensive list of categories:

* SQL functions that are not supported on LOBs
The SQL functions like the DECODE function, which are not supported for LOBs, are not
supported on remote LOBs as well.

e Functions that accept exactly one LOB argument (where all the other arguments are of
non-LOB data types) and does not return a LOB
The functions, like the LENGTH function, are supported. For example:

SELECT LENGTH(ad_conposite) FROM print_medi a@enote_site;

SELECT LENGTH(ad_header. | ogo) FROM print_nedi a@enote_site; -- LOB in
obj ect

SELECT product _id fromprint_nedi a@enote_site WHERE

LENGTH(ad_sourcetext) > 3;

¢ Functions that return a LOB

These functions may return the original LOB or produce a temporary LOB. These
functions can be performed on the remote site, as long as the result returned to the local
site is not a LOB.

— Functions returning a temporary LOB are: REPLACE, SUBSTR, CONCAT, ||, TRIM LTRIM
RTRIM LOVER, UPPER, NLS_LOWER, NLS_UPPER, LPAD, and RPAD.

— Functions returning the original LOB locator are: NVL, DECODE, and CASE.
For example, the following statements are supported:
SELECT TO CHAR(CONCAT(ad_sourcetext, ad_sourcetext)) FROM

print_media@enote_site;
SELECT TO CHAR(SUBSTR(ad_fltextnfs, 1, 3)) FROMprint_medi a@enote_site;

But the following statements are not supported:

SELECT CONCAT(ad_sourcetext, ad_sourcetext) FROM print_nedi a@enote_site;
SELECT SUBSTR(ad_sourcetext, 1, 3) FROM print_nedi a@enote_site;

* Functions that take in more than one LOB argument:

These are: | NSTR, LI KE, REPLACE, CONCAT, ||, SUBSTR, TRIM LTRI M RTRI M LPAD, and RPAD.
All these functions are relevant only for CLOBs and NCLOBs.

9-3

Chapter 9
Using the Data Interface on Remote LOBs

These functions are supported only if all the LOB arguments are in the same
dbl i nk, and the value returned is not a LOB. For example, the following is
supported:

SELECT TO CHAR(CONCAT(ad_sourcetext, ad_sourcetext)) FROM
print_media@enote_site; -- CLOB

SELECT TO CHAR(CONCAT(ad_fltextn, ad_fltextn)) FROM
print_media@enote_site; -- NCLOB

But the following is not supported

SELECT TO CHAR(CONCAT(a. ad_sourcetext, b.ad_sourcetext)) FROM
print_medi a@bl a, print_medi a@b2 b WHERE a. product _id =
b. product _i d;

e PLSQL functions operating on LOBs:
A function in one dbl i nk cannot operate on LOB data in another dblink. For
example, the following statement is not supported:

SELECT a. product _id FROM print _nedi a@bsl a, print_nmedi a@bs2 b
HERE
CONTAI NS@lbs1(b. ad_sourcetext, "aa') >0;

e Multiple LOBs in a query block:
One query block cannot contain tables and functions at different dbl i nks. For
example, the following statement is not supported

SELECT a. product _id FROM print _nedi a@bs2 a, print_nmedi a@bs3 b
VWHERE CONTAI NS@lbs2(a. ad_sourcetext, 'aa') > 0 AND
foo@bs3(b. ad_sourcetext) > 0;

-- foo is a user-defined function in dbs3

9.2 Using the Data Interface on Remote LOBs

ORACLE

The data interface enables you to bind and define a CHARACTER buffer for a CLOB
column and a RAWbuffer for a BLOB column. This interface is supported for remote LOB
columns too.

The advantage of using the data interface over using LOB locators is that it makes
only one round-trip to the remote server to fetch the LOB data. If used in as part of an
array bind or define, it will use only one round-trip for the entire array operation.

The examples discussed in the book use the pri nt _nedi a table created in the
following two schemas: dbs1 and dbs2. The CLOB column of the pri nt _nedi a table
used in the examples shown is ad_fi nal t ext . The examples provided for PL/SQL,
OCI, and Java in the following sections use binds and defines for this one column, but
multiple columns can also be accessed. Following is the functionality supported:

* You can bind and define a CLOB as VARCHAR2 or LONG, and a BLOB as a RAWor a
LONG or a RAW

» Array binds and defines are supported.

9-4

Chapter 9
Using the Data Interface on Remote LOBs

- PL/SQL
- JDBC
- OcCl

. Remote LOBs

PL/SQL

This section describes how to use the remote data interface with LOBs in PL/SQL.

The data interface only supports data of size less than 32KB in PL/SQL. The following
shippet shows a PL/SQL example:

If ad_finaltext were a BLOB column instead of a CLOB, my_ad has to be of type RAW. If the
LOB is greater than 32KB - 1 in size, then PL/SQL raises a truncation error and the contents
of the buffer are undefined.

JDBC

This section demonstrates how to use the remote data interface with LOBs in JDBC.
The following code snippets work with all JDBC drivers:

Bind:

This is for the non-streaming mode:

Note: Oracle supports the non-streaming mode for strings of size up to 2 GB. However, the
memory size of your computer may be a limiting factor.

For the streaming mode, the same code as the preceding works, except that the setString()
statement is replaced by one of the following:

Note: You can use the streaming interface to insert Gigabyte sized character and binary data
into a LOB column.

Here, LabeledReader() and LabeledAsciilnputStream() produce character and ASCII streams
respectively. If ad_finaltext were a BLOB column instead of a CLOB, then the preceding
example works if the bind is of type RAW:

Here, LabeledInputStream() produces a binary stream.
Define:
For non-streaming mode:

Note: If the LOB size is greater than 32767 bytes, the data is truncated and no error is
thrown.

For streaming mode:

Note: Specifying the datatype as LONGVARCHAR lets you select the entire LOB. If the
define type is set as VARCHAR instead of LONGVARCHAR, the data will be truncated at
32k.

If ad_finaltext were a BLOB column instead of a CLOB, then the preceding examples work if
the define is of type LONGVARBINARY:

OCI

This section demonstrates how to use the remote data interface with LOBs in OCI.

ORACLE 9-5

Chapter 9
Working with Remote Locators

The data interface only supports data of size less than 2 gigabytes (the maximum
value possible of a variable declared as sb4) for OCI. The following pseudocode can
be enhanced to be a part of an OCI program:

For a BLOB column, you must use the SQLT_BIN type. For example, if you define the
ad_finaltext column as a BLOB column instead of a CLOB column, then you must bind
and define the column data using the SQLT_BIN type. If the LOB is greater than 2GB -
1 bytes in size, then OCI raises a truncation error and the contents of the buffer are
undefined.

Remote LOBs

This section discusses the restrictions on the usage of Data Interface on Remote
LOBs.

Certain syntax is not supported for remote LOBs.

See Also:

e Oracle Database JDBC Developer's Guide

* Data Interface for LOBs

9.3 Working with Remote Locators

ORACLE

You can select a persistent LOB locator from a remote table into a local variable and
this can be done in any programmatic interface like PL/SQL, JDBC or OCI. The
remote columns can be of type BLOB, CLOB or NCLOB.

The following SQL statement is the basis for all the examples with remote LOB locator
in this chapter.

CREATE TABLE lob_tab (c1 NUMBER c2 CLOB);

In the following example, the table | ob_t ab (with columns c2 of type CLOB and c1 of
type number) defined in the remote database is accessible using database link db2
and a local CLOB variable | ob_var 1.

SELECT c2 INTO I ob_varl FROM | ob_tab@b2 WHERE c1=1;
SELECT c2 INTO | ob_varl FROM | ob_tab@b2 WHERE c1=1 for update;

In PL/SQL, the function dbns_I ob. i srenot e can be used to check if a particular LOB
belongs to a remote table. Similarly, in OCl , you can use the OCI _ATTR_LOB_REMOTE
attribute of OCl LobLocat or to check if a particular LOB belongs to a remote table. For
example,

| F(dbrs_| ob. i srenote(lob_varl)) THEN
dbns_out put. put _line(‘LOB locator is renote)
ENDI F;

9-6

Chapter 9
Working with Remote Locators

¢ See Also:

« |ISREMOTE Function
e OCI_ATTR_LOB REMOTE Attribute

9.3.1 Using Local and Remote Locators as Bind with Queries and DML on
Remote Tables

ORACLE

This section discusses the bind values for queries and DML statements.

For the Queries and DMLs (I NSERT, UPDATE, DELETE) with bind values, the following four
cases are possible. The first case involves local tables and locators and is the standard LOB
functionality, while the other three cases are part of the distributed LOBs functionality and
have restrictions listed at the end of this section.

* Local table with local locator as bind value.

* Local table with remote locator as bind value

* Remote table with local locator as bind value

* Remote table with remote locator as bind value

Queries of the following form which use remote lob locator as bind value are supported:

SELECT nane FROM | ob_tab@b2 WHERE | ength(cl)=length(:1ob_vl);

In the above query, ¢l is an LOB column and | ob_v1 is a remote locator.

DMLs of the following forms using a remote LOB locator will be supported. Here, the bind
values can be local or remote persistent LOB locators.

UPDATE | ob_tab@b2 SET cl=:10b_v1;
INSERT into |ob_tab@b2 VALUES (:1, :2);
You can pass a remote locator to most built-in SQL functions such as LENGTH, | NSTR,

SUBSTR, and UPPER. For example:

Var | obl CLCB;
BEG N
SELECT c¢2 INTO | obl FROM | ob_tab@b2 WHERE c1=1;
END,
/
SELECT LENGTH(:|obl) FROV DUAL;

< Note:

DMLs with r et ur ni ng clause are not supported on remote tables for both scalar
and LOB columns.

9-7

Chapter 9
Working with Remote Locators

9.3.2 Using Remote Locator

ORACLE

This section demonstrates the usage of remote locator in PL/SQL and with OCILOB
API with examples.

- PL/SQL
- OCILOB API

PL/SQL

A remote locator can be passed as a parameter to built in PL/SQL functions like
LENGTH, INSTR, SUBSTR, UPPER and so on which accepts LOB as input. For
example,DECLARE substr_data VARCHAR2(4000); remote_loc CLOB; BEGIN
SELECT c2 into remote_loc FROM lob_tab@db2 WHERE c1=1; substr_data :=
substr(remote_loc, position, length) END;

All DBMS_LOB APIs other than the APIs targeted for BFILES support operations on
remote LOB locators.

The following example shows how to pass remote locator as input to dbms_lob
operations.

DECLARE
lob CLOB;
buf VARCHAR2(120) := 'TST';
ant NUMBER(2);
l en NUMBER(2);
BEG N
ant :=30;
SELECT c2 INTO | ob FROM | ob_t ab@b2 WHERE c1=3 FOR UPDATE;
DBMS_LOB. WRI TE(I ob, ant, 1, buf);
ant :=30;
DBVS_LOB. READ(| ob, ant, 1, buf);
len : = DBMS_LOB. GETLENGTH(| ob);
DBMS_QUTPUT. PUT_LI NE(buf);
DBMS_QUTPUT. PUT_LI NE(ant);
DBMS_OUTPUT. PUT_LI NE(' get length output ="' || len);
END;
/

OCILOB API

Most OCILOB APIs support operations on remote LOB locators. The following list of
OCILOB functions returns an error when a remote LOB locator is passed to them:

OClLobLocatorAssignOCILobArrayRead()OCILobArrayWrite()OClLobLoadFromFile2()
The following example shows how to pass a remote locator to OCILOB API.

voi d sel ect_read_remote_| ob()
{
text *select_sql = (text *)"SELECT c2 |ob_tab@bsl where cl=1";
ub4 antp = 10;
ub4 nbytes = 0;
ub4 | obl en=0;
COCl LobLocat or * one_| ob;

9-8

Chapter 9
Working with Remote Locators

text strbuf[40];

[* initialize single |ocator */

COCl Descri ptor Al | oc(envhp, (dvoid **) &one_| ob,
(ub4) OCI _DTYPE_LOB,
(size_t) 0, (dvoid **) 0)

OCl Stnt Prepare(stnthp, errhp, select_sql, (ub4)strlen((char*)select_sql),
(ub4) OCl _NTV_SYNTAX, (ub4) OCl DEFAULT):

OCl Def i neByPos(stnthp, &defp, errhp, (ub4) 1,
(dvoid *) &one_l ob,
(sh4) -1,
(ub2) SQT_CLOB,
(dvoid *) 0, (ub2 *) 0,
(ub2 *) 0, (ub4) OCI _DEFAULT));

/* fetch the remote locator into the local variable one_lob */
OCl St nt Execut e(svchp, stnthp, errhp, 1, 0, (OCl Snapshot *)O,
(OCl Snapshot *)0, OCl _DEFAULT);

/* CGet the length of the remote LOB */
COCl LobGet Lengt h(svchp, errhp,
(OCl LobLocator *) one_lob, (ub4 *)& oblen)

printf("LOB length = %\n", |oblen);
menmset ((voi d*)strbuf, (int)'\0", (size_t)40);

| * Read the data fromthe remote LOB */

OCl LobRead(svchp, errhp, one_lob, &antp,
(ub4) 1, (dvoid *) strbuf, (ub4)& nbytes, (dvoid *)O,
(OCl Cal | backLobRead) 0,
(ub2) 0, (ubl) SQLCS_IMPLICIT));

printf("LOB content = %\n", strbuf);

¢ See Also:
OCI Programmer’s Guide, for the complete list of OCl LOB APIs

9.3.3 Restrictions when using remote LOB locators

ORACLE

Remote LOB locators have the following restrictions:

* You cannot select a remote temporary LOB locator into a local variable using the SELECT
statement. For example,

select substr(c2, 3, 1) fromlob_tab@b2 where cl=1
The preceding query returns an error.

* Remote LOB functionality is not supported for Index Organized tables (I0T). An attempt
to get a locator from a remote 10T table will result in an error.

9-9

ORACLE

Chapter 9
Working with Remote Locators

Both the local database and the remote database have to be of Database release
12.2 or higher version.

With distributed LOBs functionality, the tables that you use in the f r omclause or
wher e clause should be collocated on the same database. If you use emote
locators as bind variables in the wher e clauses, then they should belong to the
same remote database. You cannot have one locator from one database (say,
DB1) and another locator from another database (say, DB2) to be used as bind
variables.

Collocated tables or locators use the same database link. It is possible to have two
different DB Links pointing to the same database. In the following example, both
dbl i nk1 and dbl i nk2 point to the same remote database, but with different
authentication methods. Oracle Database does not support such operations.

I NSERT into tabl@lblinkl SELECT * fromtab2@iblink2;

Any DBM5_LOB or OCl Lob APIs that accept two locators must obtain both the LOB
locators through the same database link. Operations, as specified in the following
example, are not supported:

SELECT ad_sourcetext I NTO cl obl FROM print _nedi a@bl WHERE
product _id = 10011;

SELECT ad_sourcetext |1 NTO cl ob2 FROM print _nedi a@b2 WHERE
product _id = 10011;

DBMS_LOB. COPY(cl obl, clob2, Iength(clob2));

Bind values should be of the same LOB type as the column LOB type. For
example, you must bind NCLOB locators to NCLOB columns and CLOB locators to
CLOB columns. Implicit conversion between NCLOB and CLOB types is not supported
in case of remote LOBs.

DML statements with Array Binds are not supported when the bind operation
involves a remote locator, or if the table involved is a remote table.

You cannot select a BFI LE column from a remote table into a local variable.

9-10

Performance Guidelines

ORACLE

This section discusses performance guidelines for applications that use LOB data types.

10.1 LOB Performance Guidelines

This section provides performance guidelines while using LOBs through Data Interface or
LOB APIs.

LOBs can be accessed using the Data Interface or through the LOB APIs.

10.1.1 AlI'LOBs

Learn about the guidelines to achieve good performance while using LOBSs in this section.

The following guidelines will help you get the the best performance when using LOBs, and
minimize the number of round trips to the server:

e To minimize 1/O:

Read and write data at block boundaries. This optimizes 1/0O in many ways, e.g., by
minimizing UNDO generation. For temporary LOBs and securefile LOBs, usable data
area of the tablespace block size is returned by the following APIs:

DBMS_LOB. GETCHUNKSI ZE in PLSQL, and OCl LobGet ChunkSi ze() in OCI. When writing
in a loop, design your code so that one write call writes everything that needs to go in
a database block, thus ensuring that consecutive writes don't write to the same block.

Read and write large pieces of data at a time.

The 2 recommendations above can be combined by reading and writing in large
whole number multiples of database block size returned by the
DBMS_LOB. GETCHUNKSI ZE/ OCI LobGet ChunkSi ze() API.

e To minimize the number of round trips to the server:

If you know the maximum size of your lob data, and you intend to read or write the
entire LOB, use the Data Interface as outlined below. You can allocate the entire size
of lob as a single buffer, or use piecewise / callback mechanisms.

* For read operations, define the LOB as character/binary type using the
OCl Def i neByPos() function in OCI and the Def i neCol umType() function in
JDBC.

* For write operations, bind the LOB as character/binary type using the
OCl Bi ndByPos() function in OCI and the set String() or setBytes() methods in
JDBC.

Otherwise, use the LOB APIs as follows:

10-1

Chapter 10
LOB Performance Guidelines

* Use LOB prefetching for reads. Define the LOB prefetch size such that it
can accommodate majority of the LOB values in the column.

* Use piecewise or callback mechanism while using OCl LobRead2 or
CCl LobW i t e2 operations to minimize the roundtrips to the server.

¢ See Also:

Data Interface for Persistent LOBs

10.1.2 Performance Guidelines While Using Persistent LOBS

In addition to the performance guidelines applicable to all LOBs described earlier, here
are some performace guidelines while using persistent LOBs.

Maximize writing to a single LOB in consecutive calls within a transaction.
Frequently switching across LOBs or having interleaving DML statements prevent
caching from reaching its maximum efficiency.

Avoid taking savepoints or commiting too frequently. This neutralizes the
advantage of caching while writing.

Note:

Oracle recommends Securefile LOBs for storing persistent LOBs, hence this
chapter focuses only on Securefile storage. All mentions of "LOBs" in the
persistent LOB context is for Securefile LOBs unless otherwise mentioned.

10.1.3 Temporary LOBs

In addition to the performance guidelines applicable to all LOBs described earlier,
following are some guidelines for using temporary LOBSs:

ORACLE

Temporary LOBs reside in the PGA memory or the temporary tablespace,
depending on the size. Please ensure that you have a large enough PGA memory
and temporary tablespace for the temporary LOBs used by your application.

Use a separate temporary tablespace for temporary LOB storage instead of the
default system tablespace. This avoids device contention when copying data from
persistent LOBs to temporary LOBs.

If you use SQL or PL/SQL semantics for LOBs in your applications, then many
temporary LOBs are created silently. Ensure that PGA memory and temporary
tablespace for storing these temporary LOBs is large enough for your applications.
In particular, these temporary LOBs are silently created when you use the
following:

— SQL functions on LOBs
— PL/SQL built-in character functions on LOBs
— Variable assignments from VARCHAR2/RAWto CLOBS/BL(Bs, respectively.

10-2

ORACLE

Chapter 10
LOB Performance Guidelines

— Perform a LONG-to-LOB migration
Free up temporary LOBs returned from SQL queries and PL/SQL programs

In PL/SQL, C (OCI), Java and other programmatic interfaces, SQL query results or
PL/SQL program executions return temporary LOBs for operation/function calls on LOBs.
For example:

SELECT substr(CLOB_Col umm, 4001, 32000) FROM ...
If the query is executed in PL/SQL, then the returned temporary LOBs are automatically

freed at the end of a PL/SQL program block. You can also explicitly free the temporary
LOBs at any time. In OCI and Java, the returned temporary LOB must be explicitly freed.

Without proper deallocation of the temporary LOBs returned from SQL queries, you may
observe performance degradation.

In PL/SQL, use NOCOPY to pass temporary LOB parameters by reference whenever
possible.

¢ See Also:

Oracle Database PL/SQL Language Referencefor more information on passing
parameters by reference and parameter aliasing

Temporary LOBs created with the CACHE parameter set to true move through the buffer
cache and avoid the disk access.

Oracle provides v$t enpor ary_| obs view to monitor the use of temporary LOBs across all
open sessions. Here is an example:

SQL> select * from v$tenporary_| obs;

SI'D CACHE_LOBS NOCACHE_LOBS ABSTRACT_LOBS CONID

141 2 3 4 0
146 0 0 1 0
148 0 0 1 0

Following is the interpretation of output:
— The SIDcolumn is the session ID.

— The CACHE_LOBS column shows that session 141 currently has 2 temporary lobs in the
temporary tablespace with CACHE turned on.

— The NOCACHE_LOBS column shows that session 141 currently has 3 temporary lobs in
the temporary tablespace with CACHE turned off.

— The ABSTRACT_LOBS column shows that session 141 currently has 4 temporary lobs in
the PGA memory.

— The CON_I D column is the pluggable database container ID.

For optimal performance, temporary LOBs use reference on read, copy on write
semantics. When a temporary LOB locator is assigned to another locator, the physical
LOB data is not copied. Subsequent READ operations using either of the LOB locators
refer to the same physical LOB data. On the first WRITE operation after the assignment,

10-3

ORACLE

Chapter 10
LOB Performance Guidelines

the physical LOB data is copied in order to preserve LOB value semantics, that is,
to ensure that each locator points to a unique LOB value.

In PL/SQL, reference on read, copy on write semantics are illustrated as follows:

LOCATORL BLOB;
LOCATOR? BLOB;
DBVS_LOB. CREATETEMPORARY (LOCATORL, TRUE, DBMS_LOB. SESSI ON) ;

-- LOB data is not copied in this assignnent operation:
LOCATOR2 : = LOCATOR;

-- These read operations refer to the sane physical LOB copy:
DBVS_LOB. READ(LOCATCRL, ...);

DBMS_LOB. GETLENGTH(LOCATOR2, ...);

-- A physical copy of the LOB data is made on WRI TE:
DBMS_LOB. WRI TE(LOCATOR2, ...);

In OCI, to ensure value semantics of LOB locators and data,

CCl LobLocat or Assi gn() is used to copy temporary LOB locators and the LOB
Data. OCl LobLocat or Assi gn() does not make a round trip to the server. The
physical temporary LOB copy is made when LOB updates happen in the same
round trip as the LOB update API as illustrated in the following:

COCl LobLocat or *LOCI;
COCl LobLocat or *LOC2;
COCl LobCreat eTenmporary(... LOCL, ... TRUE, OCl _DURATI ON_SESSI ON);

/* No round-trip is incurred in the following call. */
CCl LobLocat or Assign(... LOCL, LOC2);

/* Read operations refer to the same physical LOB copy. */
CCl LobRead2(... LOCL ...)

/* One round-trip is incurred to make a new copy of the
* LOB data and to wite to the new LOB copy.

*/

CCl LobWite2(... LOCL ...)

/* LOC2 does not see the same LOB data as LOCL. */
CCl LobRead2(... LOC2 ...)

If LOB value semantics are not intended, then you can use C pointer assignment
so that both locators point to the same data as illustrated in the following code
shippet:

COCl LobLocat or *LOCI;
COCl LobLocat or *LOC2;
CCl LobCreat eTenmporary(... LOCL, ... TRUE, OCl _DURATI ON_SESSI ON);

/* Pointer is copied. LOCL and LOC2 refer to the same LOB data. */
LOC2 = LOCL,

/* Wite to LOC2. */
CCl LobWite2(...LOC2...)

/* LOCLl sees the change made to LOC2. */
COCl LobRead2(...LOCL. ..)

10-4

Chapter 10
Moving Data to LOBs in a Threaded Environment

* Use OCI_OBJECT mode for temporary LOBs

To improve the performance of temporary LOBs on LOB assignment, use OCl _OBJECT
mode for OCl LobLocat or Assi gn() . In OCl _OBJECT mode, the database tries to minimize
the number of deep copies to be done. Hence, after CCl LobLocat or Assi gn() is done on
a source temporary LOB in OCl _OBJECT mode, the source and the destination locators
point to the same LOB until any modification is made through either LOB locator.

10.2 Moving Data to LOBs in a Threaded Environment

Learn about the recommended procedure to follow while moving data to LOBSs in this section.

There are two possible procedures that you can use to move data to LOBSs in a threaded
environment, one of which should be avoided.

Recommended Procedure

The recommended procedure is as follows:

1. | NSERT an empty LOB, RETURNI NGthe LOB locator.

2. Move data into the LOB using this locator.

3. COW T. This releases the ROW locks and makes the LOB data persistent.

Alternatively, you can use Data Interface to insert character data or raw data directly for the
LOB columns or LOB attributes.

Procedure to Avoid

The following sequence requires a new connection when using a threaded environment,
adversely affects performance, and is not recommended:

1. Create an empty (non-NULL) LOB

2. Perform | NSERT using the empty LOB

3. SELECT- FOR- UPDATE of the row just entered

4. Move data into the LOB

5. COW T. This releases the ROWlocks and makes the LOB data persistent.

10.3 LOB Access Statistics

ORACLE

Three session-level statistics specific to LOBs are available to users: LOB reads, LOB writes,
and LOB writes unaligned.

Session statistics are accessible through the VEMYSTAT, V$SESSTAT, and V$SYSSTAT dynamic
performance views. To query these views, the user must be granted the privileges
SELECT_CATALOG ROLE, SELECT ON SYS. V_$MYSTAT view, and SELECT ON SYS. V_$STATNAME
view.

LOB reads is defined as the number of LOB API read operations performed in the session/
system. A single LOB API read may correspond to multiple physical/logical disk block reads.

LOB writes is defined as the number of LOB API write operations performed in the session/
system. A single LOB API write may correspond to multiple physical/logical disk block writes.

10-5

ORACLE

Chapter 10
LOB Access Statistics

LOB writes unaligned is defined as the number of LOB API write operations whose
start offset or buffer size is not aligned to the LOB block boundary. Writes aligned to
block boundaries are the most efficient write operations. The usable LOB block size of
a LOB is available through the LOB API (for example, using PL/SQL, by

DBMS_LOB. GETCHUNKSI ZE()).

It is important to note that session statistics are aggregated across operations to all
LOBs accessed in a session; the statistics are not separated or categorized by objects
(that is, table, column, segment, object numbers, and so on). Oracle recommends that
you reconnect to the database for each demonstration to clear the VEMYSTAT. This
enables you to see how the lob statistics change for the specific operation you are
testing, without the potentially obscuring effect of past LOB operations within the same
session.

¢ See also:

Oracle Database Reference, appendix E, "Statistics Descriptions”

This example demonstrates how LOB session statistics are updated as the user
performs read or write operations on LOBs.

rem
rem Set up the user
rem

CONNECT / AS SYSDBA,

SET ECHO ON,

GRANT SELECT_CATALOG ROLE TO pm

GRANT SELECT ON sys.v_$nystat TO pm
GRANT SELECT ON sys.v_$statnane TO pm

rem
remCreate a sinplified view for statistics queries
rem

CONNECT pm pm
SET ECHO ON;

DROP VI EW nyl obst at s;
CREATE VI EW nyl obst at s
AS
SELECT SUBSTR(n. nane, 1, 20) nane,
m val ue val ue
FROM v$nystat m
v§statnane n
WHERE mstatistic# = n.statistic#
AND n. name LIKE 'l 0b% ;

rem
remCreate a test table
rem
DROP TABLE t;
CREATE TABLE t (i NUMBER ¢ CLOB)
| ob(c) STORE AS (DI SABLE STORAGE | N ROW:

rem

10-6

ORACLE

Chapter 10
LOB Access Statistics

rem Popul ate sone data

rem

rem This should result in unaligned wites, one for
rem each row | ob popul at ed.

rem

CONNECT pmf pm

SELECT * FROM nyl obst ats;

INSERT INTO t VALUES (1, 'a');

I NSERT INTOt VALUES (2, rpad('a',4000,'a"));
COWMT;

SELECT * FROM nyl obst ats;

rem
remCet the lob Iength

rem

rem Conputing | ob I ength does not read |ob data, no change
remin read/wite stats.

rem

CONNECT pnl pm

SELECT * FROM nyl obst ats;
SELECT LENGTH(c) FROMt;
SELECT * FROM nyl obst ats;

rem
rem Read the | obs

rem

rem Lob reads are performed, one for each lob in the table.
rem

CONNECT pnl pm

SELECT * FROM nyl obst ats;
SELECT * FROM t;

SELECT * FROM nyl obst ats;

rem
rem Read and mani pul ate the | obs (through tenporary | obs)

rem

rem The use of conplex operators |ike "substr()" results in
remthe inplicit creation and use of tenporary |obs. operations
remon tenporary |obs also update |ob statistics.

rem

CONNECT pnl pm

SELECT * FROM nyl obst ats;

SELECT substr(c, length(c), 1) FROMt;
SELECT substr(c, 1, 1) FROMt;

SELECT * FROM nyl obst ats;

rem
rem Perform sone aligned overwites

rem

remOnly lob wite statistics are updated because both the
rembyte offset of the wite, and the size of the buffer
rembeing witten are aligned on the |ob block size.

rem

CONNECT pnl pm

SELECT * FROM nyl obst ats;
DECLARE

10-7

ORACLE

Chapter 10
LOB Access Statistics

| oc CLCB;
buf LONG,
chunk NUMBER;
BEG N
SELECT ¢ INTOloc FROMt WHERE i =1
FOR UPDATE;

chunk := DBMS_LOB. GETCHUNKSI ZE(| oc) ;
chunk = chunk * floor(32767/chunk); /* integer multiple of chunk */
buf ;= rpad('b', chunk, 'b");

- aligned buffer length and of f set
DBMS_LOB. WRI TE(| oc, chunk, 1, buf);
DBMS_LOB. WRI TE(l oc, chunk, 1+chunk, buf);
COWM T;

END;

/

SELECT * FROM nyl obst ats;

rem
rem Perform some unal i gned overwites

rem

remBoth lob wite and lob unaligned wite statistics are

rem updat ed because either one or both of the wite byte offset
remand buffer size are unaligned with the |ob's chunksize.
rem

CONNECT pnl pm
SELECT * FROM nyl obst ats;
DECLARE
| oc CLOB;
buf LONG
BEG N
SELECT ¢ INTOloc FROMt WHERE i =1
FOR UPDATE;

buf := rpad('b', DBMS_LOB. GETCHUNKSI ZE(l oc), 'b'):

- unaligned buffer Iength
DBMVS_LOB. WRI TE(| oc, DBMS_LOB. GETCHUNKSI ZE(1 oc)-1, 1, buf);

- unaligned start offset
DBVS_LOB. WRI TE(| oc, DBMS_LOB. GETCHUNKSI ZE(1 oc), 2, buf):

- unaligned buffer Iength and start offset
DBVS_LOB. WRI TE(| oc, DBMB_LOB. GETCHUNKSI ZE(1 oc)-1, 2, buf);

COWM T;
END;
/
SELECT * FROM nyl obst ats;
DROP TABLE t;
DROP VI EW nyl obst at s;

CONNECT / AS SYSDBA
REVOKE SELECT CATALOG ROLE FROM pm

REVOKE SELECT ON sys.v_$nystat FROM pm
REVOKE SELECT ON sys.v_$stat name FROM pm

QUIT,

10-8

Persistent LOBs: Advanced DDL

This chapter describes advanced LOB DDL features to make your application more scalable.

" Note:

Unless otherwise stated, all features in this chapter apply to both SecureFile and
Basicfile LOBs. However, Oracle strongly recommends SecureFiles for storing and
managing LOBs.

11.1 Creating a New LOB Column

You can provide the LOB storage characteristics when creating a LOB column using the
CREATE TABLE statement or the ALTER TABLE ADD COLUWN statement.

For most users, default values for these storage characteristics are sufficient. However, if you
want to fine-tune LOB storage, then consider the guidelines discussed in this section.

When defining LOBs in a table, you can explicitly indicate the tablespace and storage
characteristics for each persistent LOB column. It is common to use separate tablespaces for
large LOBs. SecureFiles is the default storage for LOBs, so the SECUREFI LE keyword is
optional, but is shown for clarity in the following example. The example assumes that
TABLESPACE | obt bs1 is managed with ASSM, because SecureFile LOBs can only be created
in tablespaces managed with Automatic Segment Space Management (ASSM).:

CREATE TABLE | obtabl (n NUMBER, c¢ CLOB)
lob (c) STORE AS SECUREFI LE sfsegnane
(TABLESPACE | obt bs1
ENABLE STORAGE | N ROW
CACHE LOGGE NG
RETENTI ON AUTO
COVPRESS
STORAGE (MAXEXTENTS 5)

)

To create a BasicFiles LOB, replace the SECUREFI LE keyword with the BASI CFI LE keyword in
the preceding example, and remove the COVPRESS keyword, which is specific to SecureFiles.

The data dictionary views USER_LOBS, ALL_LOBS, and DBA_LOBS provide information specific to
a LOB column.

ORACLE 11-1

Chapter 11
Creating a New LOB Column

< Note:

Oracle recommends Securefile LOBs for storing persistent LOBs, so this
chapter focuses only on Securefile storage. All mentions of LOBs in the
persistent LOB context is for Securefile LOBs, unless mentioned otherwise.

Note:

There are no tablespace or storage characteristics that you can specify for
BFI LEs as they are not stored in the database.

Assigning a LOB Data Segment Name

As shown in the previous example, specifying a name for the LOB data segment
(sf segnane in the example) makes for a much more intuitive working environment.
When querying the LOB data dictionary views USER_LOBS, ALL_LOBS, and DBA_LCBS,
you see the LOB data segment that you chose instead of system-generated names.

11.1.1 CREATE TABLE BNF

The CREATE TABLE statement works with LOB storage using parameters that are
specific to SecureFiles, BasicFiles LOB storage, or both.

The following is the syntax for CREATE TABLE in Backus Naur (BNF) notation, parts of
which have been simplified to keep the focus on LOB-specific parameters.

¢ See Also:

e Oracle Database SQL Language Reference
Example 11-1 BNF for CREATE TABLE

CREATE ... TABLE [schema.]table ...;
<colum_definition> ::= colum [datatype]...
<datatype> ::= ... | BLOB| CLOB | NCLOB | BFILE |

<col um_properties> ::= | LOB storage clause |
LOB partition_storage |...
<LOB_storage_cl ause> :: =
LOB
{ (LOB.item[, LOBitem]...)
STORE AS [SECUREFILE | BASICFILE] (LOB_storage paraneters)
| (LOB_item
STORE AS [SECUREFILE | BASI CFI LE]

ORACLE 11-2

Chapter 11
Creating a New LOB Column

{ LOB_segname (LOB_storage_paraneters)
| LOB_ segnane
| (LOB_storage_paraneters)
}
}
<LOB storage_paraneters> ::=
{ TABLESPACE t abl espace
| { LOB parameters [storage_clause]

}

| storage_clause
}
[TABLESPACE tabl espace
| { LOB parameters [storage_clause]
}
|
<LOB paraneters> ::=
[{ ENABLE | DI SABLE } STORAGE I N ROW
| CHUNK i nteger
| PCTVERSI ON i nt eger
| RETENTION [{ MAX | MN integer | AUTO| NONE }]
| FREEPOOLS i nt eger
| LOB deduplicate_clause
| LOB _conpression_clause
| LOB encryption_clause
| { CACHE | NOCACHE | CACHE READS } [logging_clause] } }
]
<LOB retention _clause> ::=
{RETENTION [MAX | MN integer | AUTO | NONE]}
<LOB deduplicate _clause> ::=
{ DEDUPLI CATE
| KEEP_DUPLI CATES
}
<LOB_conpression_cl ause> ::=
{ COWRESS [HGH | MEDIUM | LOW]
| NOCOWPRESS
}
<LOB encryption_clause> ::=
{ ENCRYPT [USING "encrypt _algorithm]
[1 DENTI FI ED BY password]
| DECRYPT
}
<LOB partition_storage> ::=
{PARTITION partition
{ LOB_storage clause | varray_col properties }...
[(SUBPARTI TI ON subpartition
{ LOB partitioning storage | varray_col properties }...

——

<LOB partitioning_storage> ::=

{LOB (LOB_item) STORE AS [BASICFILE | SECUREFI LE]

[LOB segnanme [(TABLESPACE tabl espace | TABLESPACE SET tabl espace_set)]
(TABLESPACE tabl espace | TABLESPACE SET tabl espace_set)

I
]
}

ORACLE 11-3

Chapter 11
Creating a New LOB Column

11.1.2 ENABLE or DISABLE STORAGE IN ROW

LOB columns store locators that reference the location of the actual LOB value. This
section describes how to enable or disable storage in a table row.

Actual LOB values are stored either in the table row (inline) or outside of the table row
(out-of-line), depending on the column properties you specify when you create the
table, and depending the size of the LOB. The ENABLE | DI SABLE STORAGE | N ROW
clause is used to indicate whether the LOB should be stored inline (in the row) or out-
of-line. The default is ENABLE STORAGE | N RONbecause it provides a performance
benefit for small LOBs.

ENABLE STORAGE IN ROW

If ENABLE STORAGE | N ROWis set, the maximum amount of LOB data stored in the row
is 4000 bytes. This includes the control information and the LOB value.

If the LOB is stored | N ROW

» Exadata pushdown is enabled for LOBSs, including when using securefile
compression and encryption.

* In-Memory is enabled for LOBs without securefile compression and encryption.

LOBs larger than approximately 4000 bytes are stored out-of-line. However, the
control information is still stored in the row, thus enabling us to read the out-of-line
LOB data faster.

DISABLE STORAGE IN ROW

In some cases DI SABLE STORAGE | N ROWis a better choice. This is because storing the
LOB in the row increases the size of the row. This impacts performance if you are
doing a lot of base table processing, such as full table scans, multi-row accesses
(range scans), or many UPDATE/ SELECT to columns other than the LOB columns.

11.1.3 CACHE, NOCACHE, and CACHE READS

This section discusses the guidelines to follow while creating tables that contain LOBs.

Use the cache options according to the guidelines in the following table:

Table 11-1 Using CACHE, NOCACHE, and CACHE READS Options
]

Cache Mode Frequency of Read Buffer Cache Behavior

NOCACHE (default) Once or occasionally LOB values are never brought
into the buffer cache.

CACHE READS Frequently LOB values are brought into

the buffer cache only during
read operations and not during
write operations.

ORACLE 11-4

Chapter 11
Creating a New LOB Column

Table 11-1 (Cont.) Using CACHE, NOCACHE, and CACHE READS Options

___|
Cache Mode Frequency of Read Buffer Cache Behavior

CACHE Read the LOB soon after write LOB pages are placed in the
buffer cache during both read
and write operations. For
storing semi-structured data
consider turning on CACHE
option.

Caution:

If your application frequently writes to LOBSs, then using the CACHE option can
potentially age other non-LOB pages out of the buffer cache prematurely.

11.1.4 LOGGING and FILESYSTEM_LIKE_LOGGING

You can apply the LOGE NG parameter to LOBs in the same manner as you apply it for other
table operations.

The default value of this parameter is LOGE NG. For SecureFiles, the
FI LESYSTEM LI KE_LOGA NG parameter is equivalent to the NOLOGE NG option.

If you set the LOGE NG option, then Oracle Database determines the most efficient way to
generate the REDO and UNDO logs for the change. Oracle recommends that you keep the
LOGA NG parameter turned on.

The FI LESYSTEM LI KE_LOGGE NG or the NOLOGE NG option is useful for bulk loads and inserts.
When loading data into the LOB, if you do not care about the REDOlogs and can restart a
failed load, then set the LOB data segment storage characteristics to

FI LESYSTEM LI KE_LOGGE NG. This provides good performance for the initial load of data. Once
you have completed loading data, Oracle recommends that you use the ALTER TABLE
statement to modify the LOB storage characteristics for the LOB data segment for normal
LOB operations. For example, set the cache option to CACHE or CACHE READS, along with the
LOGA NG option.

¢ See Also:

Precedence of FORCE LOGGING Settings for more information about overriding
the logging behavior at the database level

Note:

For BasicFiles, specifying the CACHE NOLOGAE NG option results in an error.

ORACLE 11-5

Chapter 11
Creating a New LOB Column

11.1.5 The RETENTION Parameter

ORACLE

The RETENTI ON parameter for SecureFile LOBs specifies how the database manages
the old versions of the LOB data blocks.

Unlike other data types, the old versions of the LOB data blocks for SecureFile LOBs
are stored in the LOB segment itself and are used to support consistent read
operations. Without the corresponding old versions of the LOB data blocks, reading of
a LOB at an earlier SCN may fail with ORA- 1555. Set the RETENTI ON parameter as per
the following guidelines:

Table 11-2 RETENTION parameter behavior

|
RETENTION Parameter value Behavior

MAX Allows the old versions of the LOB data blocks
to fill the entire LOB segment. This minimizes
the likelihood of an ORA- 1555, if space usage
is not a concern. With this setting, the old
versions of the LOB data blocks may cause
the LOB segment to grow. If you do not set the
MAXSI ZE attribute, then MAX behaves like
AUTO.

MN Limits the retention of old versions of the LOB
data blocks to n seconds. With this setting, you
must also specify the retention duration in
number of seconds as n. The old versions of
the LOB data blocks may also cause the LOB
segment to grow.

AUTO Oracle Database manages the space as
efficiently as possible, weighing both time and
space needs.

NONE Set this value if no old version of the LOB data
blocks is required for consistent read
purposes. This is the most efficient setting in
terms of space utilization.

not set (sets to DEFAULT) Uses the UNDO_RETENTI ON setting can be set
dynamically or manually. If the
UNDO_RETENTI ON parameter is set to a
positive value, then it is equivalent to setting
the RETENTI ON parameter to M N with the
same value for retention duration. If the
UNDO_RETENTI ON parameter is set to zero (0),
then it is equivalent to setting the RETENTI ON
parameter to NONE.

The SHRI NK feature for SecureFile LOBs partially deletes old versions of the LOB data
blocks to free extents, regardless of the RETENTI ON parameter setting. Therefore, it is
recommended to have the SHRI NK feature only when the RETENTI ON parameter is set to
NONE.

The following SQL code snippet helps you determine the RETENTI ON parameter for a
LOB segment.

SELECT RETENTI ON_TYPE, RETENTI ON_VALUE FROM USER LOBs WHERE ... ;

11-6

Chapter 11
Creating a New LOB Column

11.1.6 SecureFiles Compression, Deduplication, and Encryption

ORACLE

This section discusses the features supported by SecureFiles in addition to those supported
by BasicFiles.

SecureFiles LOB storage supports the following three features that are not available with the
BasicFiles LOB storage option:

e Compression
e Deduplication
e Encryption

Oracle recommends that you enable compression, deduplication, and encryption through the
CREATE TABLE statement.

Caution:

Enabling table or column level compression or encryption does not compress or
encrypt the LOB data. To compress or encrypt the LOB data, use SecureFiles
compression or encryption by specifying it in the LOB_st or age_cl ause.

" Note:

You can enable the compression, deduplication, and encryption features using the
ALTER TABLE statement. However, if you enable these features using the ALTER
TABLE statement, then all the data in the SecureFiles LOB storage is read, modified,
and written. This can cause the database to lock the table during a potentially
lengthy operation. There are online capabilities in the ALTER TABLE statement that
can help you avoid this issue.

Advanced LOB Compression

Advanced LOB Compression transparently analyzes and compresses SecureFiles LOB data
to save disk space and improve performance.

License Requirement: You must have a license for the Oracle Advanced Compression Option
to implement Advanced LOB Compression.

Consider the following issues when using the CREATE TABLE statement with Advanced LOB
Compression:

e Advanced LOB Compression is performed on the server and enables random reads and
writes to LOB data. Compression utilities on the client, like ut| _conpress, cannot provide
random access.

* Advanced LOB Compression does not enable table or index compression. Conversely,
table and index compression do not enable Advanced LOB Compression.

 The LON MEDI UM and HI GH options provide varying degrees of compression. The higher
the compression, the higher the latency incurred. The Hl GH setting incurs more work, but
compresses the data better. The default is MEDI UM

11-7

ORACLE

Chapter 11
Creating a New LOB Column

The LONcompression option uses an extremely lightweight compression algorithm
that removes the majority of the CPU cost that is typical with file compression.
Compressed SecureFiles LOBs at the LOVlevel provide a very efficient choice for
SecureFiles LOB storage. SecureFiles LOBs compressed at LONgenerally
consume less CPU time and less storage than BasicFiles LOBs, and typically help
the application run faster because of a reduction in disk I/O.

* Compression can be specified at the partition level. The CREATE TABLE
| ob_st orage_cl ause enables specification of compression for partitioned tables
on a per-partition basis.

e The DBM5S_LOB. SETOPTI ONS procedure can enable and disable compression on
individual SecureFiles LOBs.

The following examples demonstrate how to issue CREATE TABLE statements for
specific compression scenarios:

Example 11-2 Creating a SecureFiles LOB Column with LOW Compression

CREATE TABLE t1 (a CLOB)

LOB(a) STORE AS SECUREFI LE(
COVPRESS LOW

CACHE

NOLOGG NG

)i

Example 11-3 Creating a SecureFiles LOB Column with MEDIUM (default)
Compression

CREATE TABLE t1 (a CLOB)
LOB(a) STORE AS SECUREFI LE (
COVPRESS
CACHE
NOLOGA NG

);
Example 11-4 Creating a SecureFiles LOB Column with HIGH Compression

CREATE TABLE t1 (a CLOB)
LOB(a) STORE AS SECUREFI LE (
COVPRESS HI GH
CACHE

)
Example 11-5 Creating a SecureFiles LOB Column with Disabled Compression

CREATE TABLE t1 (a CLOB)
LOB(a) STORE AS SECUREFILE (
NOCOVPRESS
CACHE

)

Example 11-6 Creating a SecureFiles LOB Column with Compression on One
Partition

CREATE TABLE t1 (REG ON VARCHAR2(20), a BLOB)
LOB(a) STORE AS SECUREFI LE (
CACHE
)

PARTI TI ON BY LI ST (REG ON) (

PARTI TI ON p1 VALUES ('x', 'y')
LOB(a) STORE AS SECUREFI LE (

11-8

ORACLE

Chapter 11
Creating a New LOB Column

COVPRESS

)
PARTI TI ON p2 VALUES (DEFAULT)

);
Advanced LOB Deduplication

Advanced LOB Deduplication enables Oracle Database to automatically detect duplicate
LOB data within a LOB column or partition, and conserve space by storing only one copy of
the data.

License Requirement: You must have a license for the Oracle Advanced Compression Option
to implement Advanced LOB Deduplication.

Consider these issues when using CREATE TABLE and Advanced LOB Deduplication.

e |dentical LOBs are good candidates for deduplication. Copy operations can avoid data
duplication by enabling deduplication.

e Duplicate detection happens within a LOB segment. Duplicate detection does not span
partitions or subpartitions for partitioned and subpartitioned LOB columns.

» Deduplication can be specified at a partition level. The CREATE TABLE
| ob_st orage_cl ause enables specification for partitioned tables on a per-partition basis.

e The DBMS_LOB. SETOPTI ONS procedure can enable or disable deduplication on individual
LOBs.

The following examples demonstrate how to issue CREATE TABLE statements for specific
deduplication scenarios:

Example 11-7 Creating a SecureFiles LOB Column with Deduplication

CREATE TABLE t1 (a CLOB)
LOB(a) STORE AS SECUREFILE (
DEDUPLI CATE
CACHE

)s
Example 11-8 Creating a SecureFiles LOB Column with Disabled Deduplication

CREATE TABLE t1 (a CLOB)
LOB(a) STORE AS SECUREFILE (
KEEP_DUPLI CATES
CACHE

)

Example 11-9 Creating a SecureFiles LOB Column with Deduplication on One
Partition

CREATE TABLE t1 (REG ON VARCHAR2(20), a BLOB)
LOB(a) STORE AS SECUREFI LE (
CACHE
)
PARTI TI ON BY LI ST (REG ON) (
PARTI TION p1 VALUES ('x', 'y')
LOB(a) STORE AS SECUREFI LE (
DEDUPLI CATE
)
PARTI TI ON p2 VALUES (DEFAULT)

11-9

ORACLE

Chapter 11
Creating a New LOB Column

Example 11-10 Creating a SecureFiles LOB column with Deduplication
Disabled on One Partition

CREATE TABLE t1 (REG ON VARCHAR2(20), |D NUMBER a BLOB)
LOB(a) STORE AS SECUREFI LE (
DEDUPLI| CATE
CACHE

)
PARTI TI ON BY RANGE (REG ON)

SUBPARTI TI ON BY HASH(I D) SUBPARTI TIONS 2 (

PARTI TI ON p1 VALUES LESS THAN (51)
| ob(a) STORE AS a_t2 pl
(SUBPARTI TION t2_pl_s1 lob(a) STORE AS a_t2_pl_sl,
SUBPARTI TION t2_pl1_s2 | ob(a) STORE AS a_t2_pl_s2),

PARTI TI ON p2 VALUES LESS THAN (MAXVALUE)
| ob(a) STORE AS a_t2_p2 (KEEP_DUPLI CATES)
(SUBPARTI TION t2_p2_s1 lob(a) STORE AS a_t2_p2_sl,
SUBPARTI TION t2_p2_s2 | ob(a) STORE AS a_t2_p2_s2)

)
SecureFiles Encryption

SecureFiles Encryption introduces a new encryption facility for LOBs. The data is
encrypted using Transparent Data Encryption (TDE), which allows the data to be
stored securely, and still allows for random read and write access.

License Requirement: You must have a license for the Oracle Advanced Security
Option to implement SecureFiles Encryption.

Consider the following issues when using CREATE TABLE statement with SecureFiles
Encryption:

» Securefile Encryption encrypts the data stored in the SecureFile LOB column,
irrespective of whether the data is stored in-row or out-of-line in the LOB segment.
Note that table or column level encryption will not encrypt the data stored out-of-
line in the LOB segment.

e SecureFile Encryption relies on a wallet, or Hardware Security Model (HSM), to
hold the encryption key. The wallet setup is the same as that described for
Transparent Data Encryption (TDE) and Tablespace Encryption, so complete that
before using SecureFile encryption.

See Also:

"Oracle Database Advanced Security Guide for information about
creating and using Oracle wallet with TDE.

e The encrypt_al gorit hmindicates the name of the encryption algorithm. Valid
algorithms are: AES192 (default), AES128, and AES256.

* The column encryption key is derived from PASSWORD, if specified.
* The default for LOB encryption is SALT. NO SALT is not supported.

e SecureFile Encryption is only supported at the table level on a per-column basis,
and not at the per-partition level. Hence all partitions within a LOB column are
encrypted.

e DECRYPT keeps the LOBs in clear text.

11-10

Chapter 11
Creating a New LOB Column

» Key management controls the ability to encrypt or decrypt.

» TDE is not supported by the traditional i nport and export utilities or by transportable-
tablespace-based export . Use the Data Pump expdb and i npdb utilities with encrypted
columns instead.

The following examples demonstrate how to issue CREATE TABLE statements for specific
encryption scenarios:

Example 11-11 Creating a SecureFiles LOB Column with a Specific Encryption
Algorithm

CREATE TABLE t1 (a CLOB ENCRYPT USI NG ' AES128')
LOB(a) STORE AS SECUREFI LE (
CACHE

)
Example 11-12 Creating a SecureFiles LOB column with encryption for all partitions

CREATE TABLE t1 (REG ON VARCHAR2(20), a BLOB)
LOB(a) STORE AS SECUREFI LE (
ENCRYPT USI NG ' AES128'
NOCACHE
FI LESYSTEM LI KE_LOGG NG
)
PARTI TI ON BY LI ST (REG ON) (
PARTI TION p1 VALUES ('X', 'Yy'),
PARTI TI ON p2 VALUES (DEFAULT)

)

Example 11-13 Creating a SecureFiles LOB Column with Encryption Based on a
Password Key

CREATE TABLE t1 (a CLOB ENCRYPT | DENTI FI ED BY f00)
LOB(a) STORE AS SECUREFILE (
CACHE

)
The following example has the same result because the encryption option can be set in the

LOB_encryption_cl ause section of the statement:

CREATE TABLE t1 (a CLOB)
LOB(a) STORE AS SECUREFILE (
CACHE
ENCRYPT
| DENTI FI ED BY f o0

);
Example 11-14 Creating a SecureFiles LOB Column with Disabled Encryption

CREATE TABLE t1 (a CLOB)
LOB(a) STORE AS SECUREFI LE (
CACHE DECRYPT
)

11.1.7 BasicFile Specific Parameters

This section discusses the storage parameters specific to BasicFiles.

The following storage parameters are specific to BasicFiles:

ORACLE 11-11

ORACLE

Chapter 11
Creating a New LOB Column

Caution:

Oracle strongly recommends that you use SecureFile LOBs for all your LOB
needs.

PCTVERSION

When a BasicFiles LOB is modified, a new version of the BasicFiles LOB page is
produced in order to support consistent read operations of prior versions of the
BasicFiles LOB value. The PCTVERSI ON parameter is the percentage of all used
BasicFiles LOB data space that can be occupied by old versions of BasicFiles LOB
data pages. As soon as old versions of BasicFiles LOB data pages start to occupy
more than the PCTVERSI ON amount of used BasicFiles LOB space, Oracle Database
tries to reclaim the old versions and reuse them. The PCTVERSI ON parameter has the
following preset values:

e Default: 10%
e Minimum: 0
e Maximum: 100

If your application requires several BasicFiles LOB updates that are concurrent with
heavy reads of BasicFiles LOB columns, then consider using a higher value for the
PCTVERSI ON parameter, such as 20%. If persistent BasicFiles LOB instances in your
application are created and written just once and are primarily read-only afterward,
then updates are infrequent. In this case, consider using a lower value for the
PCTVERSI ON parameter, such as 5% or lower. If existing BasicFiles LOBs are known to
be read-only, then you can safely set the PCTVERSI ON parameter to 0% because there
will never be any pages needed for old versions of data.

Note:

The PCTVERSI ON parameter and the RETENTI ON parameter are mutually
exclusive for BasicFiles LOBs, that is, you can specify either the PCTVERSI ON
parameter or the RETENTI ON parameter, but not both.

CHUNK

A chunk is one or more Oracle blocks. You can specify the chunk size for the
BasicFiles LOB when creating the table that contains the LOB. This corresponds to the
data size used by Oracle Database when accessing or modifying the LOB value. Part
of the chunk is used to store system-related information and the rest stores the LOB
value. The APIs that you use to retrieve the chunk size, return the amount of space
used in the LOB chunk to store the LOB value. You can use the following APIs to
retrieve the chunk size:

e The DBMS_LOB. GETCHUNKSI ZE procedure in PL/SQL
e The OCl LobGet ChunkSi ze() function in OCI

Once you specify the value of the CHUNK parameter (when the LOB column is created),
you cannot change it without moving the LOB. You can set the CHUNK parameter to the
data size most frequently accessed or written. It is more efficient to access LOBs in big
chunks. If you explicitly specify storage characteristics for the LOB, then make sure

11-12

Chapter 11
Creating a New LOB Column

that you set the | NIl TI AL parameter and the NEXT parameter for the LOB data segment
storage to a size that is larger than the CHUNK size.

For SecureFiles, the CHUNK size is an advisory size and is provided for backward compatibility
purposes.

FREEPOOLS

Specifies the number of FREELI ST groups for BasicFiles LOBs, if the database is in automatic
undo mode. Under Release 12c compatibility, this parameter is ignored when SecureFiles
LOBs are created.

FREELISTS or FREELIST GROUPS

Specifies the number of process freelists or freelist groups, respectively, allocated to the
segment; NULL for partitioned tables. Under Release 12¢ compatibility, these parameters are
ignored when SecureFiles LOBs are created.

11.1.8 Restriction on First Extent of a LOB Segment

This section discusses the first extent requirements on SecureFiles and BasicFiles.

First Extent of a SecureFile LOB Segment

A SecureFile LOB segment can only be created in Locally Managed Tablespace with
Automatic Segment Space Management (ASSM). The number of blocks required in the first
extent depends on the release. Before 21c, the first extent requires at least 16 blocks. After
21c, the number is 32 if the compatible parameter is greater than or equal to 20.1.0.0.0.
Segments created in the previous release will continue to work in the new release. However,
they will not be automatically upgraded.

The actual size of the first extent depends on the database block_size. If the tablespace is
configured to use uniform extent, the extent must be bigger than the aforementioned number.
For example, with bl ock_si ze = 8k, the uniform extent size must be at least 128K pre-21c,
or 256K on 21c with compatible parameter set. If the tablespace is configured to use uniform
extent that is less than this number, the LOB segment creation will fail.

First Extent of a BasicFile LOB Segment

A BasicFile LOB segment can be created in Dictionary Managed or Locally Managed
Tablespaces. The segment requires at least 3 blocks in the first extent. This translates into
different extent sizes based on the database block_size. If the tablespace is configured to use
uniform extent that contains fewer than 3 blocks, the LOB segment creation will fail.

11.1.9 Summary of CREATE TABLE LOB Storage Parameters for
Securefile LOBs

ORACLE

The table in this section summarizes the parameters of the CREATE TABLE statement that
relate to Securefile LOB storage.

11-13

ORACLE

Chapter 11
Creating a New LOB Column

Table 11-3 Parameters of CREATE TABLE Statement Related to LOBs
]

Parameter Description

SECUREFI LE Specifies SecureFiles LOBs storage.
Starting with Oracle Database 12c, the SecureFiles LOB
storage type, specified by the parameter SECUREFI LE, is the
default.
A SecureFiles LOB can only be created in a tablespace
managed with Automatic Segment Space Management
(ASSM).

BASI CFI LE Specifies BasicFiles LOB storage, the original architecture for
LOBs.
You must explicitly specify the parameter BASI CFl LE to use
the BasicFiles LOB storage type.
For BasicFiles LOBs, specifying any of the SecureFiles LOB
options results in an error.

RETENTI ON Specifies the retention policy for storing old versions of LOB
data to support consistent read. Possible values are: MAX|
M N, AUTO and NONE.

MAXSI ZE Specifies the upper limit of storage space that a LOB may

CACHE, NOCACHE, CACHE
READS

LOGGE NG NOLOGAE NG, or
FI LESYSTEM LI KE_LOGG NG

COVPRESS or NOCOMPRESS

DEDUPLI CATE or
KEEP_DUPL| CATES

use.

If this amount of space is consumed, new LOB data blocks
are taken from the pool of old versions of LOB data blocks as
needed, regardless of time requirements.

Specifies when the LOB data in brought into the buffer cache.
e NOCACHE: Never brought into buffer cache.

« CACHE READS: Only during reads.

e CACHE: During reads and writes.

The default is NOCACHE.

Specifies whether to generate REDO and UNDO for changes

to the LOB:

« LOGE NG Generate REDO and UNDO for the change

e FILESYSTEM LI KE_LOGG NG NOLOGG NG Log only the
metadata.

The default is LOGE NG

The COVPRESS option turns on Advanced LOB Compression,
and NOCOVPRESS turns it off.

The default is NOCOVPRESS.

The DEDUPLI CATE option enables Advanced LOB
Deduplication; it specifies that SecureFiles LOB data that is
identical in two or more rows in a LOB column, partition or
subpartition must share the same data blocks. The database
combines SecureFiles LOBs with identical content into a
single copy, reducing storage and simplifying storage
management. The opposite of this option is

KEEP_DUPLI CATES.

The default is KEEP_DUPLI CATES.

11-14

Chapter 11
Altering an Existing LOB Column

Table 11-3 (Cont.) Parameters of CREATE TABLE Statement Related to LOBs

Parameter Description

ENCRYPT or DECRYPT The ENCRYPT option turns on SecureFiles Encryption, and
encrypts all SecureFiles LOB data using Oracle Transparent
Data Encryption (TDE). The DECRYPT options turns off
SecureFiles Encryption.

The default is DECRYPT.

11.2 Altering an Existing LOB Column

You can use the ALTER TABLE statement to change the storage characteristics of a LOB
column.

11.2.1 ALTER TABLE BNF

ORACLE

This section has the syntax for ALTER TABLE in Backus Naur (BNF) notation, parts of which
have been simplified to keep the focus on LOB-specific parameters.

" See Also:

ALTER TABLE for more information on usage of ALTER TABLE statement.

ALTER TABLE [schema.]table ... [... | colum_clauses |
nmove_tabl e clause] ...;

<colum_clauses> ::= ... | nmodify_LOB storage_clause ...

<modi fy LOB storage clause> ::= MODIFY LOB (LOB item
(nodify LOB parameters)

<nmodi fy_LOB paranmeters> ::=
{ storage_cl ause
| PCTVERSI ON i nt eger
| FREEPOQOLS i nt eger
| REBU LD FREEPOOLS
| LOB_ retention_clause
| LOB deduplicate_clause
| LOB_conpression_clause
| { ENCRYPT encryption_spec | DECRYPT }
| { CACHE
| { NOCACHE | CACHE READS } [|ogging_clause]
| allocate _extent clause
| shrink_clause
| deallocate_unused clause
}.

<nove_table clause> ::= MOVE ...[... | LOB_storage _clause | ...]

<LOB storage_clause> ::=

11-15

ORACLE

Chapter 11
Altering an Existing LOB Column

LOB
{ (LOB_item[, LOBitem]...)
STORE AS [SECUREFILE | BASICFILE] (LOB_storage_paraneters)
| (LOB_item
STORE AS [SECUREFILE | BASI CFI LE]
{ LOB_segname (LOB_storage_paraneters)
| LOB_ segnane
| (LOB_storage_paraneters)
}
}

<LOB storage_paraneters> ::=

{ TABLESPACE t abl espace

| { LOB parameters [storage_clause]
}

| storage_clause

}
[TABLESPACE tabl espace
| { LOB parameters [storage_clause]

}

l...

<LOB paraneters> ::=
[{ ENABLE | DI SABLE } STORAGE IN ROW

| CHUNK i nteger

| PCTVERSI ON i nt eger

| RETENTION[{ MAX | MN integer | AUTO| NONE }]

| FREEPOOLS i nt eger

| LOB deduplicate_clause

| LOB _conpression_clause

| LOB encryption_clause

| { CACHE | NOCACHE | CACHE READS } [logging_clause] } }
]

<LOB retention _clause> ::=
{RETENTION [MAX | M N integer | AUTO| NONE]}

<LOB deduplicate _clause> ::=
{ DEDUPLI CATE
| KEEP_DUPLI CATES

}

<LOB_conpression_cl ause> ::=
{ COPRESS [HHGH | MEDIUM | LOW]
| NOCOWPRESS

}

<LOB encryption_clause> ::=
{ ENCRYPT [USING "encrypt _algorithm]
[1 DENTI FI ED BY password]
| DECRYPT

}

11-16

Chapter 11
Altering an Existing LOB Column

11.2.2 ALTER TABLE MODIFY vs ALTER TABLE MOVE LOB

This section compares the storage characteristics while using ALTER TABLE MCDI FY and
ALTER TABLE MOVE LOB.

There are two kinds of changes to existing storage characteristics:

1. Some changes to storage characteristics merely apply to the way the data is accessed
and do not require moving the entire existing LOB data. For such changes, use the ALTER
TABLE MODI FY LOB syntax, which uses the nodi fy LOB st orage_cl ause from the ALTER
TABLE BNF. Examples of changes that do not require moving the entire existing LOB data
are: RETENTI ON, PCTVERSI ON, CACHE, NOCACHELOGGE NG, NOLOGG NG, or STORAGE settings,
shrinking the space used by the LOB data, and deallocating unused segments.

¢ See Also:
ALTER TABLE

2. Some changes to storage characteristics require changes to the way the data is stored,
hence requiring movement of the entire existing LOB data. For such changes use the
ALTER TABLE MOVE LOB syntax instead of the ALTER TABLE MODI FY LOB syntax because
the former performs parallel operations on SecureFiles LOBs columns, making it a
resource-efficient approach. The ALTER TABLE MOVE LOB syntax can process any
arbitrary LOB storage clause represented by the LOB_st orage_cl ause in the ALTER TABLE
BNF, and will move the LOB data to a nhew location.

Examples of changes that require moving the entire existing LOB data are: TABLESPACE,
ENABLE/ DI SABLE STORAGE | N ROW CHUNK, COVPRESSI ON, DEDUPLI CATI ON and ENCRYPTI ON
settings.

As an alternative to ALTER TABLE MOVE LOB, you can use online redefinition to enable one
or more of these features. As with ALTER TABLE, online redefinition of SecureFiles LOB
columns can be executed in parallel.

¢ See Also:

« ALTER TABLE for more information about ALTER TABLE statement.

e DBMS_REDEFINITION for more information about DBMS_REDEFI NI TI ON
package.

11.2.3 ALTER TABLE SecureFiles LOB Features

This section discusses the features of SecureFile LOBs that work with the ALTER TABLE
statement.

11.2.3.1 ALTER TABLE with Advanced LOB Compression

When used with the ALTER TABLE statement, advanced LOB compression syntax alters the
compression mode of the LOB column. The examples in this section demonstrate how to
issue ALTER TABLE statements for specific compression scenarios.

ORACLE 11-17

Chapter 11
Altering an Existing LOB Column

Example: Altering a SecureFiles LOB Column to Enable LOW Compression

ALTER TABLE t1 MOVE LOB(a) STORE AS SECUREFI LE(COVPRESS LOW

Example: Altering a SecureFiles LOB Column to Disable Compression

ALTER TABLE t1 MOVE LOB(a) STORE AS SECUREFI LE(NOCOVPRESS)

Example: Altering a SecureFiles LOB Column to Enable HIGH Compression

ALTER TABLE t1 MOVE LOB(a) STORE AS SECUREFI LE(COWPRESS H GH);

Example: Altering a SecureFiles LOB Column to Enable Compression on One partition

ALTER TABLE t1 MOVE PARTITI ON pl LOB(a) STORE AS SECUREFI LE(COMPRESS
H GH) ;

11.2.3.2 ALTER TABLE with Advanced LOB Deduplication

When used with the ALTER TABLE statement, advanced LOB deduplication syntax
alters the deduplication mode of the LOB column. The examples in this section
demonstrate how to issue ALTER TABLE statements for specific deduplication
scenarios.

Example: Altering a SecureFiles LOB Column to Disable Deduplication

ALTER TABLE t1 MOVE LOB(a) STORE AS SECUREFI LE(KEEP_DUPLI CATES);

Example: Altering a SecureFiles LOB Column to Enable Deduplication

ALTER TABLE t1 MOVE LOB(a) STORE AS SECUREFI LE(DEDUPLI CATE);

Example: Altering a SecureFiles LOB Column to Enable Deduplication on One
Partition

ALTER TABLE t1 MOVE PARTITION pl LOB(a) STORE AS
SECUREFI LE(DEDUPLI CATE) ;

11.2.3.3 ALTER TABLE with SecureFiles Encryption

ORACLE

The examples in this section demonstrate how to issue ALTER TABLE statements for
to enable SecureFiles encryption.

Consider the following points when using the ALTER TABLE statement with SecureFiles
Encryption:

e The ALTER TABLE statement enables and disables SecureFiles Encryption. Using
the REKEY option with the ALTER TABLE statement also enables you to encrypt LOB
columns with a new key or algorithm.

* The DECRYPT option converts encrypted columns to clear text form.

11-18

Chapter 11
Creating an Index on LOB Column

¢ See Also:
'CREATE TABLE' Usage Notes for SecureFiles Encryption

Following examples demonstrate how to issue ALTER TABLE statements for specific
encryption scenarios:

Example: Altering a SecureFiles LOB Column by Encrypting Based on AES256 encryption

ALTER TABLE t1 MOVE LOB(a) STORE AS SECUREFI LE(ENCRYPT USI NG ' AES256') ;

Example: Altering a SecureFiles LOB Column by Encrypting Based on a Password Key

ALTER TABLE t1 MOVE LOB(a)
STORE AS SECUREFI LE(ENCRYPT USI NG ' AES256' | DENTI FI ED BY fo00);

Example: Altering a SecureFiles LOB Column by Regenerating the Encryption key
ALTER TABLE t1 REKEY USI NG ' AES256' ;

11.3 Creating an Index on LOB Column

The contents of a LOB are often specific to the application, so an index on the LOB column
will usually deal with application logic. You can create a function-based or a domain index on
a LOB column to improve the performance of queries accessing data stored in LOB columns.
You cannot build a B-tree or bitmap index on a LOB column.

Function-based and domain indexes are automatically updated when a DML operation is
performed on the LOB column, or when a LOB is updated using an API like DBMS_LOB.

You can use the LOB Open/Close API to defer index maintenance to after a bunch of write
operations. Opening a LOB in read-write mode defers any index maintenance on the LOB
column until you close the LOB. This is useful when you do not want the database to perform
index maintenance every time you write to the LOB. This technique can improve the
performance of your application if you are doing several write operations on the LOB while it
is open. Any index on the LOB column is not valid until you explicitly close the LOB.

¢ See Also:

Before You Begin

11.3.1 Function-Based Indexing on LOB Columns

ORACLE

A function-based index is an index built on an expression. It extends your indexing
capabilities beyond indexing on a column. A function-based index increases the variety of
ways in which you can access data.

¢ See Also:

When to Use Function-Based Indexes

11-19

Chapter 11
Creating an Index on LOB Column

The following example demonstrates the creation of a function-based index on a LOB
column using a SQL function:

-- Function-Based Index using a SQ function
CREATE | NDEX ad_sourcetext idx_sql ON
print_media(to_char(substr(ad sourcetext,1,10)));

The following example demonstrates the creation of a function-based index on a LOB
column using a PL/SQL function:

-- Function-Based Index using a PL/SQ function

-- LOB can be an input but cannot be the return type of hte function
CREATE OR REPLACE FUNCTI ON Ret 1st 2Char (CLobl nput CLOB) RETURN CHAR
DETERMNISTIC IS

Fi rst 2Char CHAR(2) ;
NoCf Char | NTEGER ;
BEG N
NoOf Char := 2 ;
DBMS _LOB. Read(CLobl nput, NoOfChar, 1, First2Char) ;
RETURN First2Char ;
END ;

/

CREATE | NDEX ad_sourcetext i dx_plsqgl on
print_medi a(Ret 1st 2Char (ad_sourcetext));

11.3.2 Domain Indexing on LOB Columns

ORACLE

Indexes created by using Extensible Indexing interfaces are known as Domain
indexes.

The database provides extensible indexing interfaces, a feature which enables you to
define new index types as required. This is based on the concept of cooperative
indexing where a data cartridge and the database build and maintain indexes for data
types such as text and spatial.

The cartridge is responsible for defining the index structure, maintaining the index
content during load and update operations, and searching the index during query
processing. The index structure can be stored in Oracle as heap-organized, or an
index-organized table, or externally as an operating system file.

To support this structure, the database provides an indextype. The purpose of an
indextype is to enable efficient search and retrieval functions for complex domains
such as text, spatial, image, and OLAP by means of a data cartridge. An indextype is
analogous to the sorted or bit-mapped index types that are built-in within the Oracle
Server. The difference is that an indextype is implemented by the data cartridge
developer, whereas the Oracle kernel implements built-in indexes. Once a new
indextype has been implemented by a data cartridge developer, end users of the data
cartridge can use it just as they would built-in index types.

When the database system handles the physical storage of domain indexes, data
cartridges:

11-20

Chapter 11
Creating an Index on LOB Column

» Define the format and content of an index. This enables cartridges to define an index
structure that can accommodate a complex data object. For instance, an inverted index
for text documents or a quad-tree for spatial features.

e Build, delete, and update a domain index. The cartridge handles building and maintaining
the index structures.

* Access and interpret the content of an index. This capability enables the data cartridge to
become an integral component of query processing. That is, the content-related clauses
for database queries are handled by the data cartridge.

By supporting domain indexes, the database significantly reduces the effort needed to
develop high-performance solutions that access complex data types such as LOBs.

See Also:

Oracle Database Data Cartridge Developer's Guide

11.3.2.1 Extensible Optimizer

Extensible Optmizer enables collection of statistics on user-defined functions and domain
indexes.

The SQL optimizer cannot collect statistics over LOB columns nor can it estimate the cost
and selectivity of predicates involving LOB columns. Instead, the Extensible Optimizer
functionality allows authors of user-defined functions and domain indexes to create statistics
collection, selectivity, and cost functions. This information is used by the optimizer in choosing
a query plan. The cost-based optimizer is thus extended to use the user-supplied information.

The Extensible Indexing interfaces enable you to define new operators, indextypes, and
domain indexes. For such user-defined operators and domain indexes, the Extensible
Optimizer interfaces allows users to control the three main components used by the optimizer
to select an execution plan: statistics, selectivity, and cost. This allows the cartridge developer
to tune the Extensible Optimizer for efficient execution of queries involving predicates or
indexes over complex data types such as LOBs.

¢ See Also:

Extensible Optimizer

11.3.2.2 Text Indexes on LOB Columns

ORACLE

If the contents of your LOB column correspond to that of a document type, users are allowed
to index such a column using Oracle Text indexes.

For example, consider the following table DOCUMENT _TABLE storing text-based documents on a
CLOB column:

CREATE TABLE docunent _table (
docno NUMBER,
docunment CLOB);

11-21

Chapter 11
LOBs in Partitioned Tables

You can index the contents of the DOCUMENT column with one of the Oracle Text
indexing options to speed up text-based queries. The following example will create a
SEARCH index used for text-search queries over the DOCUMENT column.

CREATE | NDEX docunent _i ndex ON docunent table (docurment) | NDEXTYPE | S
CTXSYS. CONTEXT;

CREATE SEARCH | NDEX docunment _i ndex ON document _tabl e (docunent);

Note:

You can create an Oracle Text index on other formats as well. Examples of
other formats include PDF, JSON, or XML.

¢ See Also:

Creating Oracle Text Indexes

11.4 LOBs in Partitioned Tables

ORACLE

Partitioning can simplify the manageability of large database objects. This section
discusses various aspects of LOBs in partitioned tables.

Very large tables and indexes can be decomposed into smaller and more manageable
pieces called partitions, which are entirely transparent to an application. You can
partition tables that contain LOB columns. All partitioning schemes supported by
Oracle are fully supported on LOBs.

¢ See Also:

Partitions_ Views_ and Other Schema Objects
Partitioning for All Databases

LOBs can take advantage of all of the benefits of partitioning including the following:

e LOB segments can be spread between several tablespaces to balance 1/O load
and to make backup and recovery more manageable.

e LOBs in a partitioned table become easier to maintain.

e LOBs can be partitioned into logical groups to speed up operations on LOBs that
are accessed as a group.

The following section describes some of the ways you can manipulate LOBs in
partitioned tables.

11-22

Chapter 11
LOBs in Partitioned Tables

11.4.1 Partitioning a Table Containing LOB Columns

All partitioning schemes supported by Oracle are fully supported on LOBs.This section
discusses the partitioning of tables with LOB columns.

You can partition a table containing LOB columns using any of the following techniques:

e When the table is created using the PARTI TI ON BY ... clause of the CREATE TABLE
statement.

e Adding a partition to an existing table using the ALTER TABLE ... ADD PARTI Tl ON clause.

The data dictionary views USER_LOB_PARTI TI ONS, ALL_LOB_PARTI TI ONS and
DBA_LOB_PARTI TI ONS provide partition specific information for a LOB column.

Example 11-15 A partitioned table with LOB columns:

CREATE TABLE print_nedia

(product_id NUMBER(6) ,
ad_id NUMBER(6) ,
ad_sour cet ext CLOB)

LOB (ad_sourcetext) STORE AS SECUREFI LE (TABLESPACE ths_2)
PARTI TI ON BY RANGE(product i d)
(PARTI TION P1 VALUES LESS THAN (1000)

LOB (ad_sourcetext) STORE AS BASI CFl LE (TABLESPACE ths 1),
PARTI TI ON P2 VALUES LESS THAN (2000)

LOB (ad_sourcetext) STORE AS (TABLESPACE ths_2 COWPRESS H GH),
PARTI TI ON P3 VALUES LESS THAN (3000));

¢ See Also:

Summary of CREATE TABLE LOB Storage Parameters for Securefile LOBs

11.4.2 Default LOB Storage Attributes

ORACLE

This section discusses the default LOB storage attributes.

In the above example, the default storage attribute for LOB column ad_sour cet ext is
mentioned as "STORE AS SECUREFI LE (TABLESPACE t bs_2)". This means that if no LOB
storage clause is provided for any partition, this default will be used. In this example, partition
P3 uses tablespace t bs_2 since no LOB storage is specified. Similarly, SECUREFI LE is the
default storage and is used by partitions P2 and P3, but partition P1 overrides it to specify
BasicFile storage.

The dictionary views USER_PART _LOBS, ALL_PART _LOBS and DBA PART _LOBS provide
information on default LOB storage options for a LOB column in a table.

The table level default LOB storage attribute can be changed, as shown in the example
below:

ALTER TABLE print_medi a MODI FY DEFAULT ATTRIBUTES LOB (ad_sourcet ext)
(TABLESPACE tbs_1);

11-23

Chapter 11
LOBs in Partitioned Tables

The change in the default attribute will not affect the existing partitions. Any new
partitions created without LOB storage clause will inherit the default values for that
column.

11.4.3 Partition Maintenance Operation

ORACLE

This section discusses maintenance operations on partitioned tables with LOB
columns.

All partitioning maintenance operations are supported with LOB columns. Here are
some examples:

Example 11-16 Adding Partition containing LOBs

ALTER TABLE print_medi a ADD PARTI TI ON P4 VALUES LESS THAN (4000)
LOB (ad_sourcetext) STORE AS SECUREFI LE(TABLESPACE tbs_2);

Example 11-17 Modifying Partition Containing LOBs

ALTER TABLE print_nedia MODI FY PARTI TION P3 LOB(ad_sourcet ext)
(RETENTI ON AUTO) ;

Example 11-18 Moving Partition Containing LOBs

ALTER TABLE print_nedia MOVE PARTI TION P1 LOB(ad_sourcet ext)
STORE AS (TABLESPACE tbs_3 COVWPRESS LOW;

The example above moves a LOB patrtition into a different tablespace, which can be

useful if the tablespace is no longer large enough to hold the partition. Move partition
can also be used to perform other operations that require moving the LOB data, such
as performing a COVPRESS operation on the LOB, or changing the ENABLE / DI SABLE

STORAGE | N ROWoption.

Example 11-19 Splitting Partitions Containing LOBs

You can split a partition containing LOBSs into two using the ALTER TABLE ... SPLIT
PARTI TI ON clause. Doing so permits you to place one or both new partitions in a new
tablespace. For example:

ALTER TABLE print_media SPLIT PARTITION P1 AT(500) into

(PARTI TI ON P1A LOB(ad_sourcet ext) STORE AS (TABLESPACE tbs_1),

PARTI TI ON P1B LOB(ad_sour cetext) STORE AS (TABLESPACE tbs_2)) UPDATE
| NDEXES;

Example 11-20 Merging Partitions Containing LOBs

Merging partitions is useful for reclaiming unused partition space. For example:

ALTER TABLE print_medi a MERGE PARTI TI ONS P1A, P1B | NTO PARTI TI ON P1;

11-24

Chapter 11
LOBs in Index Organized Tables

Example 11-21 Exchange Partition containing LOB column with nhon-partitioned table

Exchanging partitions with a table that has partitioned LOB columns using the ALTER

TABLE ... EXCHANGE PARTI Tl ON clause. Exchange partition is a powerful tool to change new
data / partitions to a newer storage format without the costly operation of migrating old data.
You can exchange partition with LOB data having different storage option, e.g. partition p1 of
BasicFile data in Example 11-15 can be exchanged with non-partitioned table with LOB
column stored in SecureFile Compressed form:

CREATE TABLE print _nedi a_nonpart
(product _id NUVBER(6),
ad_i d NUMBER(6),
ad_sourcetext CLOB)
LOB (ad_sourcetext) STORE AS SECUREFI LE (COWPRESS HI GH);

ALTER TABLE print_media EXCHANGE PARTI TI ON p1 W TH TABLE
print_medi a_nonpart;

11.4.4 Creating an Index on a Table Containing Partitioned LOB Columns

To improve the performance of queries, you can create local or global indexes on partitioned
LOB columns.

Only function-based and domain indexes are supported on LOB columns. Other types of
indexes, such as unique indexes are not supported with LOBs.

For example:

CREATE | NDEX ad_sourcetext _idx_sql on print_nedia
(to_char(substr(ad_sourcetext,1,10)))
GLOBAL;

CREATE | NDEX ad_sourcetext _idx_sqgl on print_nedia
(to_char(substr(ad_sourcetext,1,10)))
LOCAL;

11.5 LOBs in Index Organized Tables

ORACLE

Index Organized Tables (I0Ts) support LOB and BFILE columns.

For the most part, SQL DDL, DML, and piecewise operations on LOBs in I0OTs produce the
same results as those for normal tables. The only exception is the default semantics of LOBs
during creation. The main differences are:

» Tablespace Mapping: By default, or unless specified otherwise, the LOB data and index
segments are created in the tablespace in which the primary key index segments of the
index organized table are created.

* Inline as Compared to Out-of-Line Storage: By default, all LOBs in an index organized
table created without an overflow segment are stored out of line. In other words, if an
index organized table is created without an overflow segment, then the LOBs in this table
have their default storage attributes as DI SABLE STORAGE | N ROV If you forcibly try to
specify an ENABLE STORAGE | N ROWclause for such LOBSs, then SQL raises an error.

11-25

ORACLE

Chapter 11
LOBs in Index Organized Tables

On the other hand, if an overflow segment has been specified, then LOBSs in index
organized tables exactly mimic their semantics in conventional tables.

Example of Index Organized Table (I0T) with LOB Columns
Consider the following example:

CREATE TABLE iotlob_tab (¢l I NTEGER PRIMARY KEY, c2 BLOB, c¢3 CLOB, c4
VARCHAR?(20))
ORGANI ZATI ON | NDEX
TABLESPACE i ot ts
PCTFREE 10 PCTUSED 10 | NI TRANS 1 MAXTRANS 1 STORAGE (I NI TIAL 4K)
PCTTHRESHOLD 50 | NCLUDI NG ¢2
OVERFLOW
TABLESPACE ioto_ts
PCTFREE 10 PCTUSED 10 | NI TRANS 1 MAXTRANS 1 STORAGE (INITIAL 8K) LOB (c2)
STORE AS | obseg (TABLESPACE | ob_ts DI SABLE STORAGE I N ROW
CHUNK 16384 PCTVERSI ON 10 CACHE STORAGE (INITIAL 2M
I NDEX | obi dx_c1 (TABLESPACE | obi dx_ts STORAGE (I NI TIAL

4K)));

Executing these statements results in the creation of an index organized table
i ot | ob_t ab with the following elements:

* A primary key index segment in the tablespaceiot _ts,
* An overflow data segment in tablespace ioto_ts

e Columns starting from column C3 being explicitly stored in the overflow data
segment

e BLOB (column C2) data segments in the tablespace | ob_t s

e BLOB (column C2) index segments in the tablespace | obi dx_ts

e CLOB (column C3) data segments in the tablespaceiot _ts

e CLOB (column C3) index segments in the tablespaceiot _ts

e CLOB (column C3) stored in line by virtue of the IOT having an overflow segment

e BLOB (column C2) explicitly forced to be stored out of line

Note:

If no overflow had been specified, then both C2 and C3 would have been
stored out of line by default.

LOBs in Partitioned Index-Organized Tables
LOB columns and attributes can be stored in partitioned index-organized tables.

Index-organized tables can have LOBs stored as follows; however, partition
maintenance operations, such as MOVE, SPLI T, and MERGE are not supported with:

* VARRAY data types stored as LOB data types.
» Abstract data types with LOB attributes.
* Nested tables with LOB types.

11-26

Chapter 11
LOBs in Index Organized Tables

Restrictions on Index Organized Tables with LOB Columns

The ALTER TABLE MOVE operation cannot be performed on an index organized table with a
LOB column in parallel. Instead, use the NOPARALLEL clause to move the LOB column for
such tables. For example:

ALTER TABLE t1 MOVE LOB(a) STORE AS (<tabl espace users>) NOPARALLEL:

ORACLE 11-27

Advanced Design Considerations

This section discusses the design considerations for more advanced application development
issues.

12.1 Read-Consistent Locators

Oracle Database provides the same read consistency mechanisms for LOBs as for all other
database reads and updates of scalar quantities.

Read consistency has some special applications to LOB locators that you must understand.
The following sections discuss read consistency and include examples which should be
looked at in relationship to each other.

¢ See Also:

e Oracle Database Concepts for general information about read consistency

12.1.1 A Selected Locator Becomes a Read-Consistent Locator

ORACLE

A read-consistent locator contains the snapshot environment as of the point in time of the
SELECT operation.

A selected locator, regardless of the existence of the FOR UPDATE clause, becomes a read-
consistent locator, and remains a read-consistent locator until the LOB value is updated
through that locator.

This has some complex implications. Suppose you have created a read-consistent locator
(L1) by way of a SELECT operation. In reading the value of the persistent LOB through L1, note
the following:

¢ The LOB is read as of the point in time of the SELECT statement even if the SELECT
statement includes a FOR UPDATE.

« If the LOB value is updated through a different locator (L2) in the same transaction, then
L1 does not see the L2 updates.

e L1 does not see committed updates made to the LOB through another transaction.

» If the read-consistent locator L1 is copied to another locator L2 (for example, by a PL/SQL
assignment of two locator variables — L2: = L1), then L2 becomes a read-consistent
locator along with L1 and any data read is read as of the point in time of the SELECT for
L1.

You can use the existence of multiple locators to access different transformations of the LOB
value. However, in doing so, you must keep track of the different values accessed by different
locators.

12-1

Chapter 12
Read-Consistent Locators

12.1.2 Example of Updating LOBs and Read-Consistency

Read-consistent locators provide the same LOB value regardless of when the SELECT
occurs. The following example demonstrates the relationship between read-
consistency and UPDATE operation.

Using the print _nmedi a table and PL/SQL, three CLOB instances are created as
potential locators: cl ob_sel ect ed, cl ob_updat e, and cl ob_copi ed.

Observe these progressions in the code, from times t 1 through t 6:

At the time of the first SELECT | NTO (at t 1), the value in ad_sour cet ext is
associated with the locator cl ob_sel ect ed.

In the second operation (at t 2), the value in ad_sour cet ext is associated with the
locator cl ob_updat ed. Because there has been no change in the value of
ad_sourcetext betweentl1 andt 2, both cl ob_sel ect ed and cl ob_updat ed are
read-consistent locators that effectively have the same value even though they
reflect snapshots taken at different moments in time.

The third operation (at t 3) copies the value in cl ob_sel ect ed to cl ob_copi ed. At
this juncture, all three locators see the same value. The example demonstrates
this with a series of DBM5_LOB.READ() calls.

At time t 4, the program uses DBMS_LOB.WRI TE() to alter the value in cl ob_updat ed,
and a DBV5_LOB.READ() reveals a new value.

However, a DBM5_LOB.READ() of the value through cl ob_sel ect ed (at t5) reveals
that it is a read-consistent locator, continuing to refer to the same value as of the
time of its SELECT.

Likewise, a DBMS_LOB.READ() of the value through cl ob_copi ed (at t 6) reveals that
it is a read-consistent locator, continuing to refer to the same value as
cl ob_sel ect ed.

Example 12-1

I NSERT | NTO print_medi a VALUES (2056, 20020, EMPTY_BLOB(),

"abcd', EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL);

COWM T;
DECLARE
num var | NTEGER,
cl ob_sel ected CLGCB;
cl ob_updat ed CLGCB;
cl ob_copi ed CLOB;
read_amount | NTEGER;
read_of f set | NTEGER;
write_amount | NTEGER,
wite_offset | NTEGER;
buf f er VARCHAR2(20) ;
BEG N
-- At tinme tl:

ORACLE

SELECT ad_sourcetext |NTO cl ob_sel ect ed
FROM Print _nedia
VWHERE ad_i d = 20020;

-- A tine t2:

12-2

Chapter 12
Read-Consistent Locators

SELECT ad_sourcetext |NTO cl ob_updat ed
FROM Print _nedia
WHERE ad_i d = 20020
FOR UPDATE;

-- At tine t3:

cl ob_copied := clob_sel ected;

-- After the assignment, both the clob_copied and the

-- clob_sel ected have the same snapshot as of the point in tine
-- of the SELECT into clob_sel ected

-- Reading fromthe clob_sel ected and the cl ob_copi ed does
-- return the sane LOB val ue. clob_updated al so sees the sane
-- LOB value as of its select:

read_amount := 10;

read_offset := 1;

DBVMS_LOB. READ(cl ob_sel ected, read_anount, read_offset, buffer);
DBVMS_QUTPUT. PUT_LI NE(' cl ob_sel ected value: ' || buffer);

-- Produces the output 'abcd'

read_amount := 10;

DBVMS_LOB. READ(cl ob_copi ed, read_anount, read_offset, buffer);
DBMS_OUTPUT. PUT_LI NE(' cl ob_copi ed value: ' || buffer);

-- Produces the output 'abcd'

read_amount := 10;

DBVMS_LOB. READ(cl ob_updat ed, read_amount, read_offset, buffer);
DBVMS_QUTPUT. PUT_LI NE(' ¢l ob_updated value: ' || buffer);

-- Produces the output 'abcd'

-- At tine t4:
write_anount :
wite_offset :
buffer :="efg";

DBVS_LOB. WRI TE(cl ob_updated, wite_amunt, wite_offset, buffer);

3,
5;

read_amount := 10;

DBVMS_LOB. READ(¢l ob_updat ed, read_amount, read_offset, buffer);
DBVMS_QUTPUT. PUT_LI NE(' ¢l ob_updated value: ' || buffer);

-- Produces the output 'abcdefg'

-- At tine t5:

read_amount := 10;

DBVMS_LOB. READ(cl ob_sel ected, read_anount, read_offset, buffer);
DBMS_QUTPUT. PUT_LI NE(' cl ob_sel ected value: ' || buffer);

-- Produces the output 'abcd'

-- At tine té:

read_amount := 10;

DBVMS_LOB. READ(cl ob_copi ed, read_anount, read_offset, buffer);
DBMS_OUTPUT. PUT_LI NE(' cl ob_copi ed value: ' || buffer);

-- Produces the output 'abcd'

END;
/

12.1.3 Example of Updating LOBs Through Updated Locators

Learn about updating LOBs through Locators in this section.

ORACLE 12-3

Chapter 12
Read-Consistent Locators

When you update the value of the persistent LOB through the LOB locator (L1), L1 is
updated to contain the current snapshot environment.

This snapshot is as of the time after the operation was completed on the LOB value
through locator L1. L1 is then termed an updated locator. This operation enables you to
see your own changes to the LOB value on the next read through the same locator, L1.

Note:

The snapshot environment in the locator is not updated if the locator is used
to merely read the LOB value. It is only updated when you modify the LOB
value through the locator using the PL/SQL DBVM5_LOB package or the OCI
LOB APIs.

Any committed updates made by a different transaction are seen by L1 only if your
transaction is a read-committed transaction and if you use L1 to update the LOB value
after the other transaction committed.

< Note:

When you update a persistent LOB value, the modification is always made to
the most current LOB value.

Updating the value of the persistent LOB through any of the available methods, such
as OCI LOB APIs or PL/SQL DBVS_LOB package, updates the LOB value and then
reselects the locator that refers to the new LOB value.

" Note:

Once you have selected out a LOB locator by whatever means, you can read
from the locator but not write into it.

Note that updating the LOB value through SQL is merely an UPDATE
statement. It is up to you to do the reselect of the LOB locator or use the
RETURNI NG clause in the UPDATE statement so that the locator can see the
changes made by the UPDATE statement. Unless you reselect the LOB locator
or use the RETURNI NG clause, you may think you are reading the latest value
when this is not the case. For this reason you should avoid mixing SQL DML
with OCI and DBMS_L OB piecewise operations.

¢ See Also:
Oracle Database PL/SQL Language Reference

ORACLE 12-4

Chapter 12
Read-Consistent Locators

12.1.4 Example of Updating a LOB Using SQL DML and DBMS_LOB

Using the pri nt _medi a table in the following example, a CLOB locator is created as
cl ob_sel ect ed.

ORACLE

Note the following progressions in the example, from times t 1 through t 3:

At the time of the first SELECT | NTO (at t 1), the value in ad_sour cet ext is associated with

the locator cl ob_sel ect ed.

In the second operation (at t 2), the value in ad_sour cet ext is modified through the SQL
UPDATE statement, without affecting the cl ob_sel ect ed locator. The locator still sees the
value of the LOB as of the point in time of the original SELECT. In other words, the locator
does not see the update made using the SQL UPDATE statement. This is illustrated by the

subsequent DBVS_LOB.READ() call.

The third operation (at t 3) re-selects the LOB value into the locator cl ob_sel ect ed. The
locator is thus updated with the latest snapshot environment which allows the locator to
see the change made by the previous SQL UPDATE statement. Therefore, in the next
DBMS_LOB.READ(), an error is returned because the LOB value is empty, that is, it does not

contain any data.

I NSERT | NTO Print_media VALUES (3247, 20010, EMPTY_BLOB(),

"abcd', EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL);

COWM T;
DECLARE
num var | NTEGER;
cl ob_sel ected CLOB;
read_amount | NTEGER;
read_of f set | NTEGER;
buf f er VARCHAR2(20) ;
BEG N
-- A tine t1:

SELECT ad_sourcetext | NTO clob_sel ected
FROM Print _nedi a
WHERE ad_id = 20010;

read_amount :
read_offset :
dbns_| ob. read(cl ob_sel ected, read_anount, read_offset, buffer);
dbns_out put. put _Iine(' clob_selected value: ' || buffer);

-- Produces the output 'abcd

0;

1

=1
=1

-- At tine t2:

UPDATE Print_media SET ad_sourcetext = enpty_clob()
WHERE ad_id = 20010;

-- although the nmost current LOB value is now enpty,

-- clob_selected still sees the LOB value as of the point

-- in time of the SELECT

read_amount := 10;
dbns_| ob. read(cl ob_sel ected, read_anount, read_offset, buffer);
dbns_out put. put _Iine(' clob_selected value: ' || buffer);

-- Produces the output 'abcd

12-5

Chapter 12
Read-Consistent Locators

-- At tine t3:

SELECT ad_sourcetext |NTO cl ob_sel ected FROM Print_nedi a WHERE
ad_id = 20010;

-- the SELECT allows clob_selected to see the most current

-- LOB val ue

read_amount := 10;

dbns_| ob. read(cl ob_sel ected, read_anount, read_offset, buffer);
-- ERROR ORA-01403: no data found

END;

/

12.1.5 Example of Using One Locator to Update the Same LOB Value

ORACLE

You may avoid many pitfalls if you use only one locator to update a given LOB value.
Learn about it in this section.

" Note:

Avoid updating the same LOB with different locators.

In the following example, using table pri nt _nedi a, two CLOBs are created as potential
locators: cl ob_updat ed and cl ob_copi ed.

Note these progressions in the example at times t1 through t5:

e At the time of the first SELECT | NTO(at t 1), the value in ad_sour cet ext is
associated with the locator ¢l ob_updat ed.

* The second operation (at time t 2) copies the value in cl ob_updat ed to
cl ob_copi ed. At this time, both locators see the same value. The example
demonstrates this with a series of DBM5_LOB.READ() calls.

* Attimet 3, the program uses DBVM5S_LOB.WRI TE() to alter the value in cl ob_updat ed,
and a DBM5_LOB. READ() reveals a new value.

* However, a DBVM5_LOB.READ() of the value through cl ob_copi ed (at time t 4)
reveals that it still sees the value of the LOB as of the point in time of the
assignment from cl ob_updat ed (at t 2).

* Itis not until cl ob_updat ed is assigned to cl ob_copi ed (t 5) that cl ob_copi ed sees
the modification made by cl ob_updat ed.

I NSERT | NTO PRI NT_NMEDI A VALUES (2049, 20030, ENPTY_BLOB(),
"abcd', EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL);

COWM T;

DECLARE
num var | NTEGER;
cl ob_updat ed CLOB;
cl ob_copi ed CLOB;
read_amount | NTEGER;
read_of f set | NTEGER;
write_anount | NTEGER;
wite of fset | NTEGER;
buf fer VARCHAR2(20) ;

12-6

Chapter 12
Read-Consistent Locators

BEG N

-- A tine tl:
SELECT ad_sourcetext | NTO cl ob_updated FROM PRI NT_MEDI A
WHERE ad_id = 20030
FOR UPDATE;

-- At tine t2:
cl ob_copi ed : = cl ob_updat ed;
-- after the assign, clob_copied and cl ob_updated see the same

-- LOB val ue

read_amount := 10;

read_offset := 1;

dbns_| ob. read(cl ob_updat ed, read_amount, read_offset, buffer);
dbns_out put. put _Iine(' clob_updated value: ' || buffer);

-- Produces the output 'abcd'

read_amount := 10;
dbns_| ob. read(cl ob_copi ed, read_amount, read_offset, buffer);
dbns_out put. put _Iine('clob_copied value: ' || buffer);

-- Produces the output 'abcd'

-- At tine t3:

write_anount :

wite_offset :

buffer :="efg";

dbns_| ob. wite(clob_updated, wite_amount, wite_offset,
buffer);

3,
5;

read_amount := 10;

dbns_| ob. read(cl ob_updat ed, read_amount, read_offset, buffer);
dbns_out put. put _Iine(' clob_updated value: ' || buffer);

-- Produces the output 'abcdefg'

-- At tine t4:

read_amount := 10;

dbns_| ob. read(cl ob_copi ed, read_amount, read_offset, buffer);
dbns_out put. put _Iine('clob_copied value: ' || buffer);

-- Produces the output 'abcd'

-- At tine t5:
cl ob_copi ed : = cl ob_updat ed;

read_amount := 10;
dbns_| ob. read(cl ob_copi ed, read_amount, read_offset, buffer);
dbns_out put. put _Iine('clob_copied value: ' || buffer);

-- Produces the output 'abcdefg'
END;
/

12.1.6 Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind
Variable

Learn about updating a LOB with a PL/SQL bind variable in this section.

ORACLE 12-7

ORACLE

Chapter 12
Read-Consistent Locators

When a LOB locator is used as the source to update another persistent LOB (as in a
SQL | NSERT or UPDATE statement, the DBMS_LOB.COPY routine, and so on), the snapshot
environment in the source LOB locator determines the LOB value that is used as the
source.

If the source locator (for example L1) is a read-consistent locator, then the LOB value
as of the time of the SELECT of L1 is used. If the source locator (for example L2) is an
updated locator, then the LOB value associated with the L2 snapshot environment at
the time of the operation is used.

In the following example, three CLOBs are created as potential locators:
cl ob_sel ect ed, clob_updated, and clob_copied.

Note these progressions in the example at times t 1 through t 5:

e Atthe time of the first SELECT | NTO(at t 1), the value in ad_sour cet ext is
associated with the locator cl ob_updat ed.

e The second operation (at t 2) copies the value in cl ob_updat ed to cl ob_copi ed. At
this juncture, both locators see the same value.

e Then (att 3), the program uses DBM5_LOB.WRI TE() to alter the value in
cl ob_updat ed, and a DBM5_LOB.READ() reveals a new value.

* However, a DBM5S_LOB.READ() of the value through cl ob_copi ed (at t 4) reveals that
cl ob_copi ed does not see the change made by cl ob_updat ed.

* Therefore (att5), when cl ob_copi ed is used as the source for the value of the
| NSERT statement, the value associated with cl ob_copi ed (for example, without
the new changes made by cl ob_updat ed) is inserted. This is demonstrated by the
subsequent DBMS_LOB.READ() of the value just inserted.

I NSERT | NTO PRI NT_MEDI A VALUES (2056, 20020, EMPTY_BLOB(),
"abcd', EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL);

COWM T;
DECLARE
num var | NTEGER,
cl ob_sel ect ed CLOB;
cl ob_updat ed CLOB;
cl ob_copi ed CLOB;
read_amount | NTEGER;
read_of f set | NTEGER;
write_amount | NTEGER,
wite_offset | NTEGER;
buf f er VARCHAR2(20) ;
BEG N
-- A tine t1:

SELECT ad_sourcetext | NTO cl ob_updated FROM PRI NT_MEDI A
WHERE ad_i d = 20020

FOR UPDATE;
read_amount := 10;
read_offset := 1;
dbns_| ob. read(cl ob_updat ed, read_amount, read_offset, buffer);
dbns_out put. put _Iine(' cl ob_updated value: ' || buffer);

-- Produces the output 'abcd'

-- A tine t2:

12-8

Chapter 12
Read-Consistent Locators

cl ob_copi ed : = cl ob_updat ed;

-- At tine t3:
write_anount := 3;
wite offset :=5;

buffer :="efg";
dbns_| ob. wite(clob_updated, wite_amount, wite_offset, buffer);

read_amount := 10;
dbns_| ob. read(cl ob_updat ed, read_amount, read_offset, buffer);
dbns_out put. put _Iine(' clob_updated value: ' || buffer);

-- Produces the output 'abcdefg'
-- note that clob_copied does not see the wite made before
-- ¢l ob_updat ed

-- At tine t4:

read_amount := 10;

dbns_| ob. read(cl ob_copi ed, read_amount, read_offset, buffer);
dbns_out put. put _Iine('clob_copied value: ' || buffer);

-- Produces the output 'abcd'

-- At tine t5:
-- the insert uses clob_copied view of the LOB val ue which does
-- not include clob_updated changes
I NSERT | NTO PRI NT_MEDI A VALUES (2056, 20022, EMPTY_BLOB(),
cl ob_copi ed, EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL)
RETURNI NG ad_sour cetext | NTO cl ob_sel ect ed;

read_amount := 10;
dbns_| ob. read(cl ob_sel ected, read_anount, read_offset, buffer);
dbns_out put. put _Iine('clob_selected value: ' || buffer);

-- Produces the output 'abcd'

END;

/

12.1.7 Example of Deleting a LOB Using Locator

Learn about deleting a LOB with a PL/SQL bind variable in this section.

ORACLE

The following example illustrates that LOB content through a locator selected at a given point
of time is available even though the LOB is deleted in the same transaction.

In the following example, using table print _medi a, two CLOBSs are created as potential
locators:cl ob_sel ect ed and cl ob_copi ed.

Note these progressions in the example at times t 1 through t 3:

At the time of the first SELECT | NTO (at t 1), the value inad_sour cet ext for ad_i d value
20020 is associated with the locator cl ob_sel ect ed. The value in ad_sour cet ext for
ad_i d value 20021 is associated with the locator cl ob_copi ed.

The second operation (at t 2) deletes the row with ad_i d value 20020. However, a
DBVS_LOB. READ() of the value through cl ob_sel ect ed (att 1) reveals that it is a read-
consistent locator, continuing to refer to the same value as of the time of its SELECT.

The third operation (at t 3), copies the LOB data read through cl ob_sel ect ed into the
LOB cl ob_copi ed. DBM5S_LOB. READ() of the value through cl ob_sel ect ed and

12-9

ORACLE

Chapter 12
Read-Consistent Locators

cl ob_copi ed are now the same and refer to the same value as of the time of
SELECT of cl ob_sel ect ed.

I NSERT | NTO PRI NT_MEDI A VALUES (2056, 20020, EMPTY_BLOB(),
"abcd', EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL);

I NSERT | NTO PRI NT_MEDI A VALUES (2057, 20021, EMPTY_BLOB(),
"cdef', EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL);

DECLARE
cl ob_sel ected CLOB;
cl ob_copi ed CLOB;
buf fer VARCHAR2(20);

read_amount | NTEGER : = 20;

read_of fset INTEGER : = 1;
BEG N

-- At tine tl:

SELECT ad_sourcetext |NTO clob_sel ected
FROM PRI NT_MEDI A
WHERE ad_id = 20020
FOR UPDATE;

SELECT ad_sourcetext | NTO cl ob_copi ed
FROM PRI NT_MEDI A
WHERE ad_id = 20021
FOR UPDATE;

dbns_| ob. read(cl ob_sel ected, read_anount, read_offset,buffer);
dbns_out put. put _|ine(buffer);
-- Produces the output 'abcd'

dbns_| ob. read(cl ob_copi ed, read_anount, read_offset, buffer);
dbns_out put. put _|ine(buffer);
-- Produces the output 'cdef’

-- At tine t2: Delete the CLOB associated with clob_selected
DELETE FROM PRI NT_MEDI A WHERE ad_i d = 20020;

dbns_| ob. read(cl ob_sel ected, read_anount, read_offset,buffer);
dbns_out put. put _|ine(buffer);
-- Produces the output 'abcd'

-- At tine t3:

-- Copy using clob_sel ected

dbns_| ob. copy(cl ob_copi ed, clob_sel ected, 4000, 1, 1);
dbns_| ob. read(cl ob_copi ed, read_anmount, read_offset, buffer);
dbns_out put. put _|ine(buffer);

-- Produces the output 'abcd'

END;
/

12-10

Chapter 12
LOB Locators and Transaction Boundaries

12.1.8 Ensuring Read Consistency

12.21LOB

This script in this section can be used to ensure that hot backups can be taken of tables that
have NOLOGG NG or FI LESYSTEM LI KE_LOGE NG LOBs and have a known recovery point
without read inconsistencies.

ALTER DATABASE FORCE LOGE NG
SELECT CHECKPO NT_CHANGE# FROM V$DATABASE, --Start SCN

SCN (System Change Number) is a stamp that defines a version of the database at the time
that a transaction is committed.

Perform the backup.

Run the next script:

ALTER SYSTEM CHECKPO NT GLOBAL;
SELECT CHECKPO NT_CHANGE# FROM V$DATABASE; --End SCN
ALTER DATABASE NO FORCE LOGAE NG

Back up the archive logs generated by the database. At the minimum, archive logs between
start SCN and end SCN (including both SCN points) must be backed up.

To restore to a point with no read inconsistency, restore to end SCN as your incomplete
recovery point. If recovery is done to an SCN after end SCN, there can be read inconsistency
in the NOLOGE NG LOBs.

For SecureFiles, if a read inconsistency is found during media recovery, the database treats
the inconsistent blocks as holes and fills BLOBs with 0's and CLOBs with fill characters.

Locators and Transaction Boundaries

LOB locators can be used in both transactions as well as transaction IDs.

See Also:

Locator Interface for LOBs for more information about LOB locators

12.2.1 About LOB Locators and Transaction Boundaries

ORACLE

Learn about LOB locators and transaction boundaries in this section.
Note the following regarding LOB locators and transactions:

» Locators contain transaction IDs when:

You Begin the Transaction, Then Select Locator: If you begin a transaction and
subsequently select a locator, then the locator contains the transaction ID. Note that you
can implicitly be in a transaction without explicitly beginning one. For example, SELECT...
FOR UPDATE implicitly begins a transaction. In such a case, the locator contains a
transaction ID.

e Locators Do Not Contain Transaction IDs When...

12-11

Chapter 12
LOB Locators and Transaction Boundaries

— You are Outside the Transaction, Then Select Locator: By contrast, if you
select a locator outside of a transaction, then the locator does not contain a
transaction ID.

— When Selected Prior to DML Statement Execution: A transaction ID is not
assigned until the first DML statement executes. Therefore, locators that are
selected prior to such a DML statement do not contain a transaction ID.

12.2.2 Read and Write Operations on a LOB Using Locators

You can always read LOB data using the locator irrespective of whether or not the
locator contains a transaction ID. Learn about various aspects of it in this section.

e Cannot Write Using Locator:

If the locator contains a transaction ID, then you cannot write to the LOB outside of
that particular transaction.

e Can Write Using Locator:

If the locator does not contain a transaction 1D, then you can write to the LOB after
beginning a transaction either explicitly or implicitly.

e Cannot Read or Write Using Locator With Serializable Transactions:

If the locator contains a transaction ID of an older transaction, and the current
transaction is serializable, then you cannot read or write using that locator.

e Can Read, Not Write Using Locator With Non-Serializable Transactions:

If the transaction is non-serializable, then you can read, but not write outside of
that transaction.

The examples Selecting the Locator Outside of the Transaction Boundary, Selecting
the Locator Within a Transaction Boundary, LOB Locators Cannot Span Transactions,
and Example of Locator Not Spanning a Transaction show the relationship between
locators and non-serializable transactions

12.2.3 Selecting the Locator Outside of the Transaction Boundary

ORACLE

This section has two scenarios that describe techniques for using locators in non-
serializable transactions when the locator is selected outside of a transaction.

First Scenario:

1. Select the locator with no current transaction. At this point, the locator does not
contain a transaction id.

Begin the transaction.

Use the locator to read data from the LOB.
Commit or rollback the transaction.

Use the locator to read data from the LOB.

Begin a transaction. The locator does not contain a transaction id.

N o g & w0 D

Use the locator to write data to the LOB. This operation is valid because the
locator did not contain a transaction id prior to the write. After this call, the locator
contains a transaction id.

12-12

Chapter 12
LOB Locators and Transaction Boundaries

Second Scenario:

1.

@ N o o

Select the locator with no current transaction. At this point, the locator does not contain a
transaction id.

Begin the transaction. The locator does not contain a transaction id.
Use the locator to read data from the LOB. The locator does not contain a transaction id.

Use the locator to write data to the LOB. This operation is valid because the locator did
not contain a transaction id prior to the write. After this call, the locator contains a
transaction id. You can continue to read from or write to the LOB.

Commit or rollback the transaction. The locator continues to contain the transaction id.
Use the locator to read data from the LOB. This is a valid operation.
Begin a transaction. The locator contains the previous transaction id.

Use the locator to write data to the LOB. This write operation fails because the locator
does not contain the transaction id that matches the current transaction.

12.2.4 Selecting the Locator Within a Transaction Boundary

This section has two scenarios that describe techniques for using locators in non-serializable
transactions when the locator is selected within a transaction.

ORACLE

First Scenario:

1.

4.

Select the locator within a transaction. At this point, the locator contains the transaction
id.
Begin the transaction. The locator contains the previous transaction id.

Use the locator to read data from the LOB. This operation is valid even though the
transaction id in the locator does not match the current transaction.

See Also:

"Read-Consistent Locators" for more information about using the locator to read
LOB data.

Use the locator to write data to the LOB. This operation fails because the transaction id in
the locator does not match the current transaction.

Second Scenario:

Begin a transaction.

Select the locator. The locator contains the transaction id because it was selected within
a transaction.

Use the locator to read from or write to the LOB. These operations are valid.
Commit or rollback the transaction. The locator continues to contain the transaction id.

Use the locator to read data from the LOB. This operation is valid even though there is a
transaction id in the locator and the transaction was previously committed or rolled back.

12-13

Chapter 12
LOB Locators and Transaction Boundaries

6. Use the locator to write data to the LOB. This operation fails because the
transaction id in the locator is for a transaction that was previously committed or
rolled back.

12.2.5 LOB Locators Cannot Span Transactions

LOB locators that are used to write data cannot span transactions. However, the
locator can be used to read the LOB value unless you are in a serializable transaction.

Modifying a persistent LOB value through the LOB locator using DBMS_LOB, OCI, or
SQL | NSERT or UPDATE statements changes the locator from a read-consistent locator
to an updated locator.

The | NSERT or UPDATE statement automatically starts a transaction and locks the row.
Once this has occurred, the locator cannot be used outside the current transaction to
modify the LOB value. In other words, LOB locators that are used to write data cannot
span transactions. However, the locator can be used to read the LOB value unless you
are in a serializable transaction.

In the following code example, a CLOB locator called cl ob_updat ed is created and
following operations are performed:

e Atthe time of the first SELECT | NTO (at t1), the value in ad_sour cet ext is
associated with the locator cl ob_updat ed.

* The second operation (at t2), uses the DBM5_LOB.WRI TE function to alter the value
in ¢l ob_updat ed, and a DBVS_LOB.READ reveals a new value.

 The commit statement (at t3) ends the current transaction.

e Therefore (at t4), the subsequent DBM5_LOB.V\RI TE operation fails because the
cl ob_updat ed locator refers to a different (already committed) transaction. This is
noted by the error returned. You must re-select the LOB locator before using it in
further DBMS_LOB (and OCI) modify operations.

12.2.6 Example of Locator Not Spanning a Transaction

ORACLE

The example of locator not spanning a transaction uses the pri nt _nedi a table.

I NSERT | NTO PRI NT_MEDI A VALUES (2056, 20010, EMPTY_BLOB(),
"abcd', EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL);

COWMT;
DECLARE
num var | NTEGER;
cl ob_updat ed CLCB;
read_amount | NTEGER;
read_of f set | NTEGER,;
write_anount | NTEGER;
write of fset | NTEGER;
buf fer VARCHAR2(20) ;
BEG N
- At time tl
SELECT ad_sour cet ext
I NTO cl ob_updat ed
FROM PRI NT_MEDI A
WHERE ad_id = 20010

12-14

Chapter 12
LOBs in the Object Cache

FOR UPDATE;

read_amount := 10;

read_offset := 1;

dbns_| ob. read(cl ob_updat ed, read_amount, read_offset, buffer);
dbns_out put. put _Iine(' clob_updated value: ' || buffer);

- This produces the output 'abcd'

- At time t2:

wite_amunt := 3;

wite_ offset :=5;

buffer :="efg";

dbns_| ob. wite(clob_updated, wite_amount, wite_offset, buffer);
read_amount := 10;

dbns_| ob. read(cl ob_updat ed, read_amount, read_offset, buffer);
dbns_out put. put _Iine(' clob_updated value: ' || buffer);

- This produces the output 'abcdefg'

- At tinme t3:
COW T,
- A tinme t4

dbns_| ob. write(clob_updated , wite_amunt, wite_offset, buffer);
- ERROR: ORA-22990: LOB |l ocators cannot span transactions

END;

/

12.3 LOBs in the Object Cache

ORACLE

When you copy one object to another in the object cache with a LOB locator attribute, only
the LOB locator is copied.

This means that the LOB attribute in these two different objects contain exactly the same
locator that refers to one and the same LOB value. Only when you flush the target LOB, a
separate physical copy of the LOB value is made, which is distinct from the source LOB
value.

¢ See Also:

Example of Updating LOBs and Read-Consistency for a description of what version
of the LOB value is seen by each object if a write operation is performed through
one of the locators.

Therefore, in cases where you want to modify the LOB that was the target of the copy, you
must flush the target object, refresh the target object, and then write to the LOB through the
locator attribute.

Consider the following object cache issues for LOB and BFILE attributes:

e Persistent LOB attributes: Creating an object in the object cache, sets the LOB attribute
to empty.

When you create an object in the object cache that contains a persistent LOB attribute,
the LOB attribute is implicitly set to empty. You may not use this empty LOB locator to
write data to the LOB. You must first flush the object, thereby inserting a row into the
table and creating an empty LOB, that is, a LOB with zero (0) length. Once you refresh

12-15

Chapter 12
Guidelines for Creating Terabyte sized LOBs

the object in the object cache, using the OCl _PI N_LATEST function, the real LOB
locator is read into the attribute, and you can then call the OCI LOB APIs to write
data to the LOB.

e BFI LE attributes: Creating an object in the object cache, sets the BFI LE attribute to
NULL.

When creating an object with a BFI LE attribute, the BFI LE is set to NULL. You must
update it with a valid DI RECTORY object name and file name before reading from
the BFI LE.

12.4 Guidelines for Creating Terabyte sized LOBs

To create terabyte LOBs in supported environments, use the following guidelines to
make use of all available space in the tablespace for LOB storage.

* Single Data File Size Restrictions:

There are restrictions on the size of a single data file for each operating system.
Hence, add more data files to the tablespace when the LOB grows larger than the
maximum allowed file size of the operating system on which your Oracle Database
runs.

e Set MAXEXTENTS to a Suitable Value or UNLIMITED:

The MAXEXTENTS parameter limits the number of extents allowed for the LOB
column. A large number of extents are created incrementally as the LOB size
grows. Therefore, the parameter should be set to a value that is large enough to
hold all the LOBs for the column. Alternatively, you could set it to UNLI M TED.

* Use a Large Extent Size:

For every new extent created, Oracle generates undo information for the header
and other metadata for the extent. If the number of extents is large, then the
rollback segment can be saturated. To get around this, choose a large extent size,
say 100 megabytes, to reduce the frequency of extent creation, or commit the
transaction more often to reuse the space in the rollback segment.

12.4.1 Creating a Tablespace and Table to Store Terabyte LOBs

ORACLE

The following example illustrates how to create a tablespace and table to store
terabyte LOBs.

CREATE TABLESPACE | obt bs1 DATAFI LE ' /your/own/ data/directory/lobtbs_1.dat’
SIZE 2000M REUSE ONLI NE NOLOGG NG DEFAULT STORAGE (MAXEXTENTS UNLI M TED);
ALTER TABLESPACE | obt bs1 ADD DATAFI LE
"/your/own/data/directory/lobtbhs_2.dat' SIZE 2000M REUSE;

CREATE TABLE print _nedi a_backup
(product _id NUMBER(6),
ad_i d NUMBER(6),
ad_conposite BLOB,
ad_sourcetext CLOB,
ad finaltext CLOB,
ad fltextn NCLOB,
ad_textdocs_ntab textdoc_tab,
ad_phot o BLOB,
ad_graphi c BLOB,
ad_header adheader _typ)

12-16

Chapter 12
Guidelines for Creating Terabyte sized LOBs

NESTED TABLE ad_t ext docs_ntab STORE AS textdocs_nest edt ab5
LOB(ad_sourcetext) STORE AS (TABLESPACE | obt bsl CHUNK 32768 PCTVERSI ON 0
NOCACHE NOLOGG NG
STORAGE(INITIAL 1000M NEXT 1000M MAXEXTENTS
UNLIMITED)) ;

ORACLE 12-17

Managing LOBs: Database Administration

You must perform various administrative tasks to set up, maintain, and use a database that
contains LOBs.

" Note:

LOBs are not supported when the Container Database root and Pluggable
Databases are in different character sets. For more information, refer to Relocating
a PDB Using CREATE PLUGGABLE DATABASE.

13.4 LOB Migration with Data Pump

See Migrating LOBs with Data Pump.

13.1 Initialization Parameter for SecureFiles LOBs

As a database administrator, you can configure the conditions that control or allow creation of
SecureFiles LOBs or BasicFiles LOBs. Typically, you set up the DB_SECUREFI LE parameter in
theinit. ora file for this purpose.

The DB_SECUREFI LE initialization parameter is dynamic and can be modified with the ALTER
SYSTEMstatement in the following way:

ALTER SYSTEM SET DB_SECUREFI LE = ' ALWAYS' ;

The valid values for this parameter are described in the following table:

Value Description

NEVER Prevents SecureFiles LOBs from being created. If
NEVER is specified, then any LOBs that are
specified as SecureFiles LOBs are created as
BasicFiles LOBs. If storage options are not
specified, then the BasicFiles LOB defaults are
used. All SecureFiles LOB-specific storage options
and features such as compress, encrypt, and
deduplicate throw an exception.

| GNORE Always create BasicFile LOBs, and ignore any
errors that the SecureFile LOB options might
cause. If | GNORE is specified, then the
SECUREFI LE keyword and all SecureFiles LOB
options are ignored.

PERM TTED Allows SecureFiles LOBs to be created, if

specified by users. Otherwise, BasicFiles LOBs
are created.

ORACLE 13-1

Chapter 13
Database Character Set Considerations

Value Description

PREFERRED(def aul t) Attempts to create a SecureFiles LOB unless
BasicFiles LOB is explicitly specified for the LOB
or the parent LOB (if the LOB is in a partition or
sub-partition).

ALVWAYS Attempts to create SecureFiles LOBs, but creates
any LOBs not in ASSMtablespaces as BasicFiles
LOBs, unless the SECUREFI LE parameter is
explicitly specified. Any BasicFiles LOB storage
options specified are ignored, and the SecureFiles
LOB defaults are used for all storage options not
specified.

FORCE Attempts to create all LOBs as SecureFiles LOBs
even if users specify BASI CFI LE. This option is
not recommended. Instead, PREFERRED or
ALVWAYS should be used.

13.2 Database Character Set Considerations

The database character set cannot be changed from a single-byte to a multibyte
character set if there are populated user-defined CLOB columns in the database tables.

The national character set cannot be changed between AL16UTF16 and UTFS8 if there
are populated user-defined NCLOB columns in the database tables.

¢ See Also:

Choosing a Character Set

13.3 Database Utilities for Loading Data into LOBS

Certain utilities are recommended for bulk loading data into LOB columns as part of
the database set up or maintenance tasks.

The following utilities are recommended for bulk loading data into LOB columns as
part of database setup or maintenance tasks:

e SQL*Loader
e External Tables

e Oracle Data Pump

13.3.1 Loading LOBs with SQL*Loader

Learn about conventional and direct-path loads, when Oracle recommends that you
use direct-path loads, and what rules and guidelines you should follow to avoid issues.

There are two options for loading large object (LOB) data:

A conventional path load executes SQL | NSERT statements to populate tables in an
Oracle Database.

ORACLE 13-2

Chapter 13
Database Utilities for Loading Data into LOBs

A direct-path load eliminates much of the Oracle Database overhead by formatting Oracle
data blocks, and writing the data blocks directly to the database files. Additionally, a direct-
path load does not compete with other users for database resources, so it can usually load
data at near disk speed. Be aware that there are also other restrictions, security, and backup
implications for direct path loads, which you should review.

For each of these options of loading large object data (LOBS), you can use the following
techniques to load data into LOBs:

e Loading LOB data from primary data files.

When you load data from a primary data file, the data for the LOB column is part of the
record in the file that you are loading.

e Loading LOB data from a secondary data file using LOB files.

When you load data from a secondary data file, the data for a LOB columnis in a
different file from the primary data file. Instead of the data itself, the primary data file
contains information about the location of the content of the LOB data in other files.

Recommendations for Using SQL*Loader to Load LOBs

Oracle recommends that you keep the following guidelines and rules in mind when loading
LOBs using SQL*Loader:

* Tables that you want to load must already exist in the database. SQL*Loader never
creates tables. It loads existing tables that either contain data, or are empty.

* When you load data from LOB files, specify the maximum length of the field
corresponding to a LOB-type column. If the maximum length is specified, then
SQL*Loader uses this length as a hint to help optimize memory usage. You should
ensure that the maximum length you specify does not underestimate the true maximum
length.

* If you use conventional path loads, then be aware that failure to load a particular LOB
does not result in the rejection of the record containing that LOB; instead, the record ends
up containing an empty LOB.

» If you use direct-path loads, then be aware that loading LOBs can take up substantial
memory. If the message SQL*Loader 700 (out of nenory) appears when loading LOBS,
then internal code is probably batching up more rows in each load call than can be
supported by your operating system and process memory. One way to work around this
problem is to use the ROAS option to read a smaller number of rows in each data save.

Only use direct path loads to load XML documents that are known to be valid into
XMLtype columns that are stored as CLOBS. Direct path load does not validate the
format of XML documents as the are loaded as CLOBSs.

With direct-path loads, errors can be critical. In direct-path loads, the LOB could be
empty or truncated. LOBs are sent in pieces to the server for loading. If there is an error,
then the LOB piece with the error is discarded and the rest of that LOB is not loaded. As
a result, if the entire LOB with the error is contained in the first piece, then that LOB
column is either empty or truncated.

You can also use the Direct Path API to load LOBs.

Privileges Required for Using SQL*Loader to Load LOBs
The following privileges are required for using SQL*Loader to load LOBs:

* You must have | NSERT privileges on the table that you want to load.

ORACLE 13-3

ORACLE

Chapter 13
Database Utilities for Loading Data into LOBs

* You must have DELETE privileges on the table that you want to load, if you want to
use the REPLACE or TRUNCATE option to empty out the old data before loading the
new data in its place.

Example 13-1 Loading LOB from a primary data file using Delimited Fields

Review this example to see how to load LOB data in delimited fields. Note the callouts
"1"and "2" in bold:

Control File Contents

LOAD DATA
I NFI LE 'sanple.dat' "str '|'"
I NTO TABLE person_tabl e
FI ELDS TERM NATED BY ',
(name CHAR(25) ,
1 "RESUME' CHAR(507) ENCLOSED BY '<startlob> AND '<endl ob>")

Data File (sanpl e. dat)

Julia Nayer, <startl ob> Julia Nayer

500 Exanpl e Parkway

j nayer @xanpl e.com . . . <end| ob>
2 |Bruce Ernst,

" Note:

The callouts, in bold, to the left of the example correspond to the following
notes:

1. <startl ob> and <endl ob> are the enclosure strings. With the default
byte-length semantics, the maximum length for a LOB that can be read
using CHAR(507) is 507 bytes. If character-length semantics were used,
then the maximum would be 507 characters. For more information, refer
to character-length semantics.

2. Ifthe record separator ' |' had been placed right after <endl ob> and
followed with the newline character, then the newline would have been
interpreted as part of the next record. An alternative would be to make
the newline part of the record separator (for example,' |\ n' or, in
hexadecimal notation, X' 7COA).

Example 13-2 Loading a LOB from secondary data file, using Delimited Fields:
In this example, note the callout "1" in bold:

Control File Contents

LOAD DATA

I NFI LE ' sanpl e. dat"’

I NTO TABLE person_table

FI ELDS TERM NATED BY ',
(name CHAR(20) ,

13-4

Chapter 13
Database Utilities for Loading Data into LOBs

1 "RESUME' LOBFILE(CONSTANT 'jgresume') CHAR(2000)
TERM NATED BY " <endl ob>\ n")

Data File (sample.dat)

Johny Quest,
Speed Racer,

Secondary Data File (jgresume.txt)

Johny Quest

500 Oracl e Parkway
<endl ob>
Speed Racer

400 Oracl e Parkway
<endl ob>

< Note:
The callout, in bold, to the left of the example corresponds to the following note:

1. Because a maximum length of 2000 is specified for CHAR, SQL*Loader knows
what to expect as the maximum length of the field, which can result in memory
usage optimization. If you choose to specify a maximum length, then you
should be sure not to underestimate its value. The TERM NATED BY clause
specifies the string that terminates the LOBs. Alternatively, you can use the
ENCLOSED BY clause. The ENCLOSED BY clause allows a bit more flexibility with
the relative positioning of the LOBs in the LOBFI LE, because the LOBs in the
LOBFI LE do not need to be sequential.

Related Topics
» Oracle Call Interface Direct Path Load Interface

e Loading Objects, LOBs, and Collections with SQL*Loader

13.3.2 Loading BFILEs with SQL*Loader

This section describes how to load data from files in the file system into a BFI LE column using
SQL*Loader.

ORACLE 13-5

ORACLE

Chapter 13
Database Utilities for Loading Data into LOBs

< Note:

e The BFI LE data type stores unstructured binary data in operating system
files outside the database. A BFI LE column or attribute stores a file
locator that points to a server-side external file containing the data.

e A particular file to be loaded as a BFI LE does not have to actually exist at
the time of loading. SQL*Loader assumes that the necessary DI RECTORY
objects have been created.

¢ See Also:

DIRECTORY Obijects for more information

A control file field corresponding to a BFI LE column consists of the column name
followed by the BFI LE directive.

The BFI LE directive takes as arguments a DI RECTORY object name followed by a BFI LE
name. Both of these can be provided as string constants, or they can be dynamically
sourced through some other field.

¢ See Also:

Oracle Database Utilities for details on SQL*Loader syntax

The following two examples illustrate the loading of BFI LEs.

Note:
You need to set up the following data structures for certain examples to work:
CONNECT pnl pm

CREATE OR REPLACE DI RECTORY adgr aphi c_photo as '/tnp';
CREATE OR REPLACE DI RECTORY adgraphic_dir as '/tnp';

In the following example, only the file name is specified dynamically. The directory
name, adgr aphi ¢_phot o, is in quotation marks. Therefore, the string is used as is, and
is not capitalized.

Control file:

LOAD DATA

I NFI LE sanpl e9. dat

I NTO TABLE Print_nedia

FI ELDS TERM NATED BY ',

(product _id | NTEGER EXTERNAL(6),

13-6

13.3.3 Loading LOBs with External Tables

13.3.3.1 Overview of LOBs and External Tables

ORACLE

FileName FILLER CHAR(30),

ad_graphi ¢ BFI LE(CONSTANT "adgr aphi ¢_phot 0",

Data file:

007, nodem 2268.] pg,
008, noni tor_3060. | pg,
009, keyboard_2056.] pg,

Chapter 13
Database Utilities for Loading Data into LOBs

Fi | eNare))

In the following example, the BFI LE and the DI RECTCRY objects are specified dynamically.

Control file:

LOAD DATA

I NFI LE sanpl e10. dat

| NTO TABLE Print_media

FI ELDS TERM NATED BY ','

(
product _id | NTEGER EXTERNAL(6),
ad_graphi ¢ BFILE (DirNanme, FileNane),
Fil eNane FILLER CHAR(30),
DirName FILLER CHAR(30)

)

Data file:

007, noni t or _3060. j pg, ADGRAPHI C_PHOTQ,
008, modem 2268. j pg, ADGRAPH C_PHOTO,
009, keyboar d_2056. j pg, ADGRAPHI C DI R,

External tables are particularly useful for loading large numbers of records from a single file,

so that each record appears in its own row in the table.

¢ Note:

Loading LOBs with External Tables

Learn the benefits of using external tables with your database to read and write data, and to

understand how to create them.

External tables enable you to treat the contents of external files as if they are rows in a table
in your Oracle Database. After you create an external table, you can then use SQL
statements to read rows from the external table, and insert them into another table.

To perform these operations, Oracle Database uses one of the following access drivers:

e The ORACLE_LOADER access driver reads text files and other file formats, similar to SQL

Loader.

* The ORACLE DATAPUMP access driver creates binary files that store data returned by a
query. It also returns rows from files in binary format.

When you create an external table, you specify column and data types for the external table.
The access driver has a list of columns in the data file, and maps the contents of the field in

13-7

ORACLE

Chapter 13
Database Utilities for Loading Data into LOBs

the data file to the column with the same name in the external table. The access driver
takes care of finding the fields in the data source, and converting these fields to the
appropriate data type for the corresponding column in the external table. After you
create an external table, you can load the target table by using an | NSERT AS SELECT
statement.

One of the advantages of using external tables to load data over SQL Loader is that
external tables can load data in parallel. The easiest way to do this is to specify the
PARALLEL clause as part of CREATE TABLE for both the external table and the target
table.

Example 13-3

This example creates a table, CANDI DATE, that can be loaded by an external table.
When it is loaded, it then creates an external table, CANDI DATE_XT. Next, it executes an
| NSERT statement to load the table. The | NSERT statement includes the +APPEND hint,
which uses direct load to insert the rows into the table CANDI DATES. The PARALLEL
parameter tells SQL that the tables can be accessed in parallel.

The PARALLEL parameter setting specifies that there can be four (4) parallel query
processes reading from CANDI DATE_XT, and four parallel processes inserting into
CANDI DATE. Note that LOBs that are stored as BASI CFI LE cannot be loaded in parallel.
You can only load SECUREFI LE LOBS in parallel. The variable addi ti onal - ext er nal -

t abl e-i nf o indicates where additional external table information can be inserted.

CREATE TABLE CANDI DATES

(candidate_id NUMBER,
first_nane VARCHAR2(15) ,
| ast _name VARCHAR2(20) ,
resune CLGOB,
pi cture BLOB

) PARALLEL 4;

CREATE TABLE CANDI DATE_XT

(candidate_id NUMBER,
first_nane VARCHAR2(15) ,
| ast _name VARCHAR2(20) ,
resune CLOB,
picture BLOB

) PARALLEL 4;

ORGANI ZATI ON EXTERNAL additional -external -tabl e-i nfo PARALLEL 4;

13-8

Chapter 13
BFILEs Management

I NSERT /*+APPEND*/ | NTO CANDI DATE SELECT * FROM CANDI DATE_XT;

File Locations for External Tables Created By Access Drivers

All files created or read by ORACLE_LOADER and ORACLE_DATAPUMP reside in directories pointed
to by directory objects. Either the DBA or a user with the CREATE DI RECTORY privilege can
create a directory object that maps a new to a path on the file system. These users can grant
READ, \RI TE or EXECUTE privileges on the created directory object to other users. A user
granted READ privilege on a directory object can use external tables to read files from
directory for the directory object. Similarly, a user with WRI TE privilege on a directory object
can use external tables to write files to the directory for the directory object.

Example 13-4 Creating Directory Object

The following example shows how to create a directory object and grant READ and Rl TE
access to user HR:

create directory HR DIR as /usr/hr/files/exttab;

grant read, wite on directory HR DIR to HR

" Note:

When using external tables in an Oracle Real Application Clusters (Oracle RAC)
environment, you must make sure that the directory pointed to by the directory
object maps to a directory that is accessible from all nodes.

13.5 BFILES Management

This section describes various administrative tasks to manage databases that contain
BFI LEs.

13.5.1 Guidelines for DIRECTORY Usage

ORACLE

Learn about the guidelines for efficient management of DI RECTORY objects.

The main goal of the DI RECTCRY feature is to enable a simple, flexible, non-intrusive, yet
secure mechanism for the DBA to manage access to large files in the server file system. But
to realize this goal, it is very important that the DBA follow these guidelines when using

DI RECTORY objects:

e Do not map a DI RECTORY object to a data file directory. A DI RECTORY object should not be
mapped to physical directories that contain Oracle data files, control files, log files, and
other system files. Tampering with these files (accidental or otherwise) could corrupt the
database or the server operating system.

e Only the DBA should have system privileges. The system privileges such as CREATE ANY
DI RECTORY or DROP ANY DI RECTORY(granted to the DBA initially) should be used carefully
and not granted to other users indiscriminately. In most cases, only the database
administrator should have these privileges.

13-9

Chapter 13
BFILEs Management

» Use caution when granting the DIRECTORY privilege. Privileges on DI RECTORY
objects should be granted to different users carefully. The same holds for the use
of the W TH GRANT OPTI ON clause when granting privileges to users.

* Do not drop or replace DI RECTORY objects when database is in operation. If this
were to happen, then operations from all sessions on all files associated with this
DI RECTORY object fail. Further, if a DROP or REPLACE command is executed before
these files could be successfully closed, then the references to these files are lost
in the programs, and system resources associated with these files are not be
released until the session(s) is shut down.

The only recourse left to PL/SQL users, for example, is to either run a program
block that calls DBMS_LOB.FI LECLOSEALL and restart their file operations, or exit
their sessions altogether. Hence, it is imperative that you use these commands
with prudence, and preferably during maintenance downtimes.

» Use caution when revoking a user's privilege on DI RECTCRY objects. Revoking a
user's privilege on a DI RECTORY object using the REVOKE statement causes all
subsequent operations on dependent files from the user's session to fail. The user
must either re-acquire the privileges to close the file, or run a FI LECLOSEALL in the
session and restart the file operations.

In general, using DI RECTORY objects for managing file access is an extension of system
administration work at the operating system level. With some planning, files can be
logically organized into suitable directories that have READ privileges for the Oracle
process.

DI RECTORY objects can be created with READ privileges that map to these physical
directories, and specific database users granted access to these directories.

¢ See Also:

Security on Directory Objects

13.5.2 Rules for Using Directory Objects and BFILES

You can create a directory object or BFI LE objects if these conditions are met.

When you create a directory object or BFI LE objects, ensure that the following
conditions are met:

* The operating system file must not be a symbolic or hard link.

» The operating system directory path named in the Oracle DIRECTORY object
must be an existing operating system directory path.

» The operating system directory path named in the Oracle DIRECTORY object
should not contain any symbolic links in its components.

13.5.3 Setting Maximum Number of Open BFILES

ORACLE

Only limited number of BFI LEs can be open simultaneously in each session. Learn to
define this number in this section.

The initialization parameter, SESSI ON_MAX_CPEN_FI LES, defines an upper limit on the
number of simultaneously open files in a session.

13-10

Chapter 13
Managing LOB Signatures

The default value for this parameter is 10. Using this default, you can open a maximum of 10
files at the same time in each session. To alter this limit, the database administrator must
change the parameter value in the i ni t. or a file. For example:

SESSI ON_MAX_OPEN_FI LES=20

If the number of unclosed files reaches the SESSI ON_MAX_OPEN_FI LES value, then you cannot
open additional files in the session. To close all open files, use the DBMS_LOB. FI LECLOSEALL
call.

¢ See Also:
DIRECTORY Objects

13.6 Managing LOB Signatures

ORACLE

This section describes how to configure LOB signatures.

You can configure signature-based security for large object (LOB) locators using the
LOB_SI GNATURE_ENABLE initialization parameter.

* To enable signature, set the LOB_SI GNATURE_ENABLE initialization parameter atinit. or a,
or using the following ALTER SYSTEMcommand. Also ensure that you have set the
compatibility to 12.2.0.2 or above.

ALTER SYSTEM SET LOB_SI GNATURE_ENABLE = [TRUE| FALSE];
e The following ALTER statement helps to encrypt, re-key, and delete the signature keys.
ALTER DATABASE DI CTI ONARY [ENCRYPT| REKEY| DELETE] CREDENTI ALS;

For more information, refer to the Oracle Database Security Guide.

" See Also:

Oracle Database Security Guide

13-11

Migrating Columns to SecureFile LOBs

Oracle recommends that you migrate your existing columns that use the LONG or LONG
RAW datatype or BasicFile LOB storage to the SecureFile LOB storage. This chapter covers
various techniques to help with this migration.

" Note:

All discussions in this chapter are valid for migrating the LONG datatype to CLOB or
NCLOB, and the LONG RAWdatatype to BLOB. Most of the text in this chapter talks just
about the LONG datatype for brevity.

14.1 Migration Considerations

This section discusses various factors to be considered while migrating LOB data types or
storage.

Space requirements

Most migration techniques copy the contents of the table into a new space, and free the old
space at the end of the operation. This temporarily doubles the space requirements. If space
is limited, then you can perform the BasicFile to SecureFile migration one partition at a time.

Preventing Generation of REDO Data When Migrating

Migrating LONG datatype or BasicFiles LOB columns to SecureFile generates redo data, which
can slow down the performance during the migration.

Redo changes for a column being converted to SecureFiles LOB are logged only if the
storage characteristics of the LOB column indicate LOGE NG. The logging setting (LOGE NG or
NOLOGA NG) for the LOB column is inherited from the tablespace in which the LOB is created.

You can prevent redo space generation during migration to SecureFiles LOB by following the
following steps:

1. Specify the NOLOGGING storage parameter for any new SecureFiles LOB columns.
2. Turn LOGGING on when the migration is complete.

3. Make a backup of the tablespaces containing the table and the LOB column.

14.2 Migration Methods

ORACLE

This section describes various methods you can use to migrate LONG or BasicFile LOB data
to SecureFile storage.

14-1

Chapter 14
Migration Methods

14.2.1 Migrating LOBs with Online Redefinition

ORACLE

Online redefinition is the recommended method for migrating LONG or BasicFile LOB
data to SecureFile storage. While online redefinition for LONG to LOB migration must
be performed at the table level, BasicFile to SecureFile migration can be performed at
the table or partition level.

Online Redefintion Advantages

* No need not take the table or partition offline

e Can be done in parallel.
To set up parallel execution of online redefinition, run:

ALTER SESSI ON FORCE PARALLEL DM.;

Online Redefinition Disadvantages

» Additional storage equal to the entire table or partition required and all LOB
segments must be available

e Global indexes must be rebuilt

Example 14-1 Online Redefinition for Migrating Tables from BasicFiles LOB
storage to SecureFile LOB storage

REM Grant privileges required for online redefinition.
GRANT EXECUTE ON DBMS_REDEFI NI TI ON TO pm

GRANT ALTER ANY TABLE TO pm

GRANT DROP ANY TABLE TO pm

GRANT LOCK ANY TABLE TO pm

GRANT CREATE ANY TABLE TO pm

GRANT SELECT ANY TABLE TO pm

REM Privileges required to performcloning of dependent objects.
GRANT CREATE ANY TRI GGER TO pm

GRANT CREATE ANY | NDEX TO pm

CONNECT pm pm

-- This forces the online redefinition to execute in parallel
ALTER SESSION FORCE parallel dml;

DROP TABLE cust;
CREATE TABLE cust (c_id NUMBER PRI MARY KEY,
c_zip NUMBER
c_nanme VARCHAR(30) DEFAULT NULL,
c_lob CLOB
);
I NSERT | NTO cust VALUES(1, 94065, 'hhh', "ttt');
-- Creating InterimTable
-- There is no requirement to specify constraints because they are
-- copied over fromthe original table.
CREATE TABLE cust _int(c_id NUVMBER NOT NULL,
c_zip NUMBER
c_nanme VARCHAR(30) DEFAULT NULL,
c_lob CLOB

14-2

Chapter 14
Migration Methods

) LOB(c_|l ob) STORE AS SECUREFI LE (NOCACHE FI LESYSTEM LI KE_LOGG NG ;
DECLARE
col _mappi ng VARCHAR2(1000);
BEG N
-- map all the colums in the interimtable to the original table
col _mapping :=
‘c_idc_id, '|]
'c_zip c_zip, '
'Cc_name c_nane, |
"c_lob c_lob';
DBVS_REDEFI NI TI ON. START_REDEF_TABLE(' pmi, 'cust', 'cust_int', col _mapping);
END;
/
DECLARE
error_count pls_integer := 0;
BEG N
DBVS_REDEFI NI TI ON. COPY_TABLE_DEPENDENTS(' pm, 'cust', 'cust_int',
1, TRUE, TRUE, TRUE, FALSE, error_count);
DBMS_QUTPUT. PUT_LINE("errors :="' || TO_CHAR(error_count));
END;
/
EXEC DBMS_REDEFI NI TI ON. FI Nl SH_ REDEF_TABLE(' pmi, 'cust', 'cust_int');
-- Drop the interimtable
DROP TABLE cust _int;
DESC cust;
-- The following insert statement fails. This illustrates
-- that the primary key constraint on the c_id colum is
-- preserved after mgration.
I NSERT I NTO cust VALUES(1, 94065, 'hhh', "ttt');
SELECT * FROM cust;

' |

Example 14-2 Online Redefinition for Migrating Tables from the LONG datatype to a
SecureFile LOB

The steps for LONGto LOB migration are:

* Create an empty interim table. This table holds the migrated data when the redefinition
process is done. In the interim table:

— Define a CLOB or NCLOB column for each LONG column in the original table that you are
migrating.

— Define a BLOB column for each LONG RAWcolumn in the original table that you are
migrating.

» Start the redefinition process. To do so, call DBMS_REDEFI NI TI ON. START_REDEF_TABLE and
pass the column mapping using the TO LOB operator as follows:

DBMS_REDEFI NI TI ON. START_REDEF_TABLE(
' schena_nane',
"original _table',
"interimtable',
"TO_LOB(long_col _name) lob_col _name*,
"options_flag',
"orderby cols');

ORACLE 14-3

ORACLE

Chapter 14
Migration Methods

where | ong_col _nane is the name of the LONG or LONG RAWcolumn that you are
converting in the original table and | ob_col _narme is the name of the LOB column
in the interim table. This LOB column holds the converted data.

o Call the DBVS_REDEFI NI TI ON. COPY_TABLE_DEPENDENTS procedure as described in
the related documentation.

e Call the DBM5S_REDEFI NI TI ON. FI NIl SH REDEF_TABLE procedure as described in the
related documentation.

The following example demonstrates online redefinition for LONG to LOB migration.

REM Grant privileges required for online redefinition.
CGRANT execute ON DBMS_REDEFI NI TION TO pm

GRANT ALTER ANY TABLE TO pm

GRANT DROP ANY TABLE TO pm

GRANT LOCK ANY TABLE TO pm

GRANT CREATE ANY TABLE TO pm

GRANT SELECT ANY TABLE TO pm

REM Privileges required to performcloning of dependent objects.
GRANT CREATE ANY TRI GGER TO pm
GRANT CREATE ANY | NDEX TO pm

CONNECT pm pm

-- This forces the online redefinition to execute in paralle
ALTER SESSION FORCE parallel dml;

DROP TABLE cust;
CREATE TABLE cust(c_id NUMBER PRI MARY KEY,
c_zip NUMBER,
c_name VARCHAR(30) DEFAULT NULL,
c_long LONG
);
I NSERT I NTO cust VALUES(1, 94065, 'hhh', "ttt');

-- Creating InterimTable

-- There is no requirement to specify constraints because they are
-- copied over fromthe original table.

CREATE TABLE cust _int(c_id NUMBER NOT NULL,

c_zip NUMBER,
c_nanme VARCHAR(30) DEFAULT NULL,
c_long CLOB
);
DECLARE
col _mappi ng VARCHAR2(1000) ;
BEG N

-- map all the colums in the interimtable to the original table
col _mapping : =

‘c_id c_id , "]
‘c_zip czip, "||
'Cc_narme c_name, '||

"to_lob(c_long) c_long';

14-4

Chapter 14
Migration Methods

DBVS_REDEFI NI TI ON. START_REDEF_TABLE(' pmi, 'cust', 'cust_int', col _mapping);
END;
/

DECLARE
error_count PLS I NTEGER : = 0;
BEG N
DBMS_REDEFI NI TI ON. COPY_TABLE DEPENDENTS(' pmi, ‘'cust', 'cust_int',
1, true, true, true, false,
error_count);

DBMS_QUTPUT. PUT_LINE("errors :="' || to_char(error_count));
END;
/
EXEC DBMS_REDEFI NI TI ON. FI Nl SH_ REDEF_TABLE(' pnmi, 'cust', 'cust_int');

-- Drop the interimtable
DROP TABLE cust _int;

DESC cust;

-- The following insert statement fails. This illustrates
-- that the primary key constraint on the c_id colum is
-- preserved after mgration.

I NSERT I NTO cust VALUES(1, 94065, 'hhh', "ttt');

SELECT * FROM cust;

14.2.2 Migrating LOBs with Data Pump

ORACLE

Oracle Data Pump can either recreate tables as they are in your source database, or recreate
LOB columns as SecureFile LOBs.

When Oracle Data Pump recreates tables, by default, it recreates them as they existed in the
source database. Therefore, if a LOB column was a BasicFiles LOB in the source database,
Oracle Data Pump attempts to recreate it as a BasicFile LOB in the imported database.
However, you can force creation of LOBs as SecureFile LOBs in the recreated tables by
using a TRANSFORM parameter for the command line, or by using a LOB_STORAGE parameter for
the DBMS_DATAPUMP and DBMS_METADATA packages.

Example:

i mpdp system manager directory=dpunp_dir schenmas=l obuser dunpfil e=l obuser.dnmp
transfornel ob_st orage: securefile

Note:

The transform name is not valid in transportable import.

14-5

Chapter 14
Other Considerations While Migrating LONG Columns to LOBs

¢ See Also:

TRANSFORM for using TRANSFORM parameter to convert to SecureFile
LOBs

Restrictions on Migrating LOBs with Data Pump

You can't use SecureFile LOBs in non-ASSM tablespace. If the source database
contains LOB columns in a tablespace that does not support ASSM, then you'll see an
error message when you use Oracle Data Dump to recreate the tables using the
securefile clause for LOB columns.

To import non-ASSM tables with LOB columns, run another import for these tables
without using TRANSFORM=LOB_STORAGE: SECUREFI LE.

Example:

i mpdp system manager directory=dpunp_dir schenmas=l obuser
dunpfil e=l obuser. dnp

14.3 Other Considerations While Migrating LONG Columns

to LOBS

This section describes some more considerations when migrating LONG columns to
LOBs.

14.3.1 Migrating Applications from LONGs to LOBs

ORACLE

Most APls that work with LONG data types in the PL/SQL, JDBC and OCI environments
are enhanced to also work with LOB data types.

These APIs are collectively referred to as the data interface for LOBs. Among other
things, the data interface provides the following benefits:

e Changes needed are minimal in PL/SQL, JDBC and OCI applications that use
tables with columns converted from LONG to LOB data types.

* You can work with LOB data types in your application without having to deal with
LOB locators.

¢ See Also:

* Data Interface for LOBs for details on JDBC and OCI APIs included in
the data interface.

e SQL Semantics and LOBs for details on SQL syntax supported for LOB
data types.

e PL/SQL Semantics for LOBs for details on PL/SQL syntax supported for
LOB data types.

14-6

ORACLE

Chapter 14
Other Considerations While Migrating LONG Columns to LOBs

< Note:
You can use various techniques to do either of the following:
e Convert columns of type LONG to either CLOB or NCLOB columns

e Convert columns of type LONG RAWto BLOB type columns

Unless otherwise noted, discussions in this chapter regarding LONG to LOB
conversions apply to both of these data type conversions.

However, there are differences between LONG and LOB data types that may impact your
application migration plans or require you to modify your application.

Identify Application Rewrite Using utldtree.sq|l

When you migrate your table from LONGto LOB column types, certain parts of your PL/SQL
application may require rewriting. You can use the utility, r dbrs/ adni n/ ut | dtree. sql , to
determine which parts.

The ut | dtree. sql utility enables you to recursively see all objects that are dependent on a
given object. For example, you can see all objects which depend on a table with a LONG
column. You can only see objects for which you have permission.

Instructions on how to use ut| dtree. sql are documented in the file itself. Also,
utldtree.sqgl is only needed for PL/SQL. For SQL and OCI, you have no requirement to
change your applications.

SQL Differences

* Indexes: LONG and LOB data types only support domain and functional indexes.

— Any domain index on a LONG column must be dropped before converting the LONG
column to LOB column. This index may be manually recreated after the migration.

— Any function-based index on a LONG column is unusable during the conversion
process and must be rebuilt after converting. Application code that uses function-
based indexing should work without modification after the rebuild.

To rebuild an index after converting, use the following steps:

1. Select the index from your original table as follows:

SELECT i ndex_name FROM user indexes WHERE tabl e_nane=' LONG TAB';

Note:

The table name must be capitalized in this query.
2. For each selected index, use the command:
ALTER | NDEX <i ndex> REBUI LD

» Constraints: The only constraint allowed on LONG columns are NULL and NOT NULL. All
constraints of the LONG columns are maintained for the new LOB columns. To alter the

14-7

Chapter 14
Other Considerations While Migrating LONG Columns to LOBs

constraints for these columns, or alter any other columns or properties of this
table, you have to do so in a subsequent ALTER TABLE statement.

» Default Values: If you do not specify a default value, then the default value for the
LONG column becomes the default value of the LOB column.

» Triggers: Most of the existing triggers on your table are still usable. However, you
cannot have LOB columns in the UPDATE CF list of an AFTER UPDATE OF trigger. For
example, the following create trigger statement is not valid:

CREATE TABLE t (1 obcol CLOB);
CREATE TRIGGER trig AFTER UPDATE OF lobcol ONt ...;

LONG columns are allowed in such triggers. So, you must drop the AFTER UPDATE
OF triggers on any LONG columns before migrating to LOBs.

e Clustered tables: LOB columns are not allowed in clustered tables, whereas LONGs
are allowed. If a table is a part of a cluster, then any LONG or LONG RAWcolumn
cannot be changed to a LOB column.

Empty LOBs Compared to NULL and Zero Length LONGs

A LOB column can hold an empty LOB. An empty LOB is a LOB locator that is fully
initialized, but not populated with data. Because LONG data types do not use locators,
the empty concept does not apply to LONG data types.

Both LOB column values and LONG column values, inserted with an initial value of NULL
or an empty string literal, have a NULL value. Therefore, application code that uses
NULL or zero-length values in a LONG column functions exactly the same after you
convert the column to a LOB type column.

In contrast, a LOB initialized to empty has a non-NULL value as illustrated in the
following example:

CREATE TABLE | ong_tab(id NUMBER |ong_col LONG;
CREATE TABLE | ob_tab(id NUMBER, |ob_col CLOB);

REM A zero length string inserts a NULL into the LONG col um:
I NSERT INTO | ong_tab values(1, '');

REM A zero length string inserts a NULL into the LOB col um:
I NSERT INTO | ob_tab values(1, '");

REM Inserting an enpty LOB inserts a non-NULL val ue:
I NSERT INTO | ob_tab val ues(1, enpty clob());

DROP TABLE | ong_t ab;
DROP TABLE | ob_t ab;

ORACLE 14-8

ORACLE

Chapter 14
Other Considerations While Migrating LONG Columns to LOBs

Overloading with Anchored Types

For applications using anchored types, some overloaded variables resolve to different targets
during the conversion to LOBs. For example, given the procedure p overloaded with
specifications 1 and 2:

procedure p(l long) is ...; -- (specification 1)
procedure p(c clob) is ...; -- (specification 2)

and the procedure call:

decl are
var |ongtab.longcol % ype;
BEG N

p(var);

END;

Prior to migrating from LONG to LOB columns, this call would resolve to specification 1. Once
| ongt ab is migrated to LOB columns this call resolves to specification 2. Note that this would
also be true if the parameter type in specification 1 were a CHAR, VARCHAR2, RAW LONG RAW

If you have migrated you tables from LONG columns to LOB columns, then you must manually
examine your applications and determine whether overloaded procedures must be changed.

Some applications that included overloaded procedures with LOB arguments before
migrating may still break. This includes applications that do not use LONG anchored types. For
example, given the following specifications (1 and 2) and procedure call for procedure p:

procedure p(n nunber) is ...; -- (1)
procedure p(c clob) is ...; -- (2)
p('123"); -- procedure call

Before migrating, the only conversion allowed was CHAR to NUMBER, so specification 1 would
be chosen. After migrating, both conversions are allowed, so the call is ambiguous and raises
an overloading error.

Some Implicit Conversions Are Not Supported for LOB Data Types

PL/SQL permits implicit conversion from NUVBER, DATE, ROV | D, Bl NARY_| NTEGER, and
PLS | NTEGER data types to a LONG, however, implicit conversion from these data types to a
LOB is not allowed.

If your application uses these implicit conversions, then you have to explicitly convert these
types using the TO_CHAR operator for character data or the TO_ RAWoperator for binary data.
For example, if your application has an assignment operation such as:

number _var :=long var; -- The RHSis a LOB variable after converting.

14-9

Chapter 14
Other Considerations While Migrating LONG Columns to LOBs

then you must modify your code as follows:

number _var := TO CHAR(| ong_var);
-- Assunming that long var is of type CLOB after conversion

The following conversions are not supported for LOB types:

e BLOBto VARCHAR?, CHAR, or LONG

* CLOBto RAWor LONG RAW

This applies to all operations where implicit conversion takes place. For example if you
have a SELECT statement in your application as follows:

SELECT | ong_raw col utm | NTO ny_varchar 2 VARI ABLE FROM ny_t abl e

and | ong_raw _col unn is a BLOB after converting your table, then the SELECT statement
produces an error. To make this conversion work, you must use the TO_RAWoperator to
explicitly convert the BLOB to a RAWas follows:

SELECT TO RAW I ong_raw_col utrm) | NTO ny_var char2 VAR ABLE FROM ny_t abl e

The same holds for selecting a CLOB into a RAWvariable, or for assignments of CLOB to
RAWand BLOB to VARCHAR2.

14.3.2 Alternate Methods for LOB Migration

ORACLE

Online Redefinition is the preferred way for migrating LONG data types to LOBs.
However, if keeping the application online during the migration is not your primary
concern, then you can also use one of the following ways to migrate LONG data to
LOBs.

¢ See Also:

Migration Considerations

Using ALTER TABLE to Convert LONG Columns to LOB Columns

You can use the ALTER TABLE statement in SQL to convert a LONG column to a LOB
column.

To do so, use the following syntax:

ALTER TABLE [<schena>.] <t abl e_nane>
MODI FY (<long_column_name> { CLOB | BLOB | NCLOB }
[DEFAULT <default value>]) [LOB storage cl ause];

For example, if you had a table that was created as follows:

CREATE TABLE Long_tab (id NUMBER, |ong_col LONG);

14-10

ORACLE

Chapter 14
Other Considerations While Migrating LONG Columns to LOBs

then you can change the column | ong_col in table Long_t ab to data type CLOB using
following ALTER TABLE statement:

ALTER TABLE Long tab MODIFY (long_col CLOB);

Note:

The ALTER TABLE statement copies the contents of the table into a new space, and
frees the old space at the end of the operation. This temporarily doubles the space
requirements.

Note that when using the ALTER TABLE statement to convert a LONG column to a LOB column,
only the following options are allowed:

e DEFAULT option, which enables you to specify a default value for the LOB column.

e The LOB storage_cl ause, which enables you to specify the LOB storage characteristics
for the converted column. This clause can be specified in the MODI FY clause.

Other ALTER TABLE options are not allowed when converting a LONG column to a LOB type
column.

Copying a LONG to a LOB Column Using the TO_LOB Operator

You can use the CREATE TABLE AS SELECT statement or the | NSERT AS SELECT statement with
the TO_LOB operator to copy data from a LONG column to a CLOB or NCLOB column, or from a
LONG RAWcolumn to a BLOB column. For example, if you have a table with a LONG column that
was created as follows:

CREATE TABLE Long_tab (id NUMBER, [ong_col LONG;

then you can do the following to copy the column to a LOB column:

CREATE TABLE Lob_tab (id NUMBER clob _col CLOB);
I NSERT I NTO Lob_tab SELECT id, TO LOB(long_col) FROM | ong_tab;
COWM T,

If the | NSERT statement returns an error because of lack of undo space, then you can
incrementally migrate LONG data to the LOB column using the WHERE clause. After you ensure
that the data is accurately copied, you can drop the original table and create a view or
synonym for the new table using one of the following sequences:

DROP TABLE Long_t ab;
CREATE VI EW Long_tab (id, long_col) AS SELECT * from Lob_t ab;

or

DROP TABLE Long_t ab;
CREATE SYNONYM Long tab FOR Lob_tab;

14-11

ORACLE

Chapter 14
Other Considerations While Migrating LONG Columns to LOBs

This series of operations is equivalent to changing the data type of the column
Long_col of table Long_t ab from LONGto CLOB. With this technique, you have to re-
create any constraints, triggers, grants, and indexes on the new table.

Use of the TO_LOB operator is subject to the following limitations:

* You can use TO LOBto copy data to a LOB column, but not to a LOB attribute of an
object type.

* You cannot use TO LOB with a remote table. For example, the following statements
do not work:

I NSERT I NTO tbl@iblink (lob_col) SELECT TO LOB(long_col) FROMtb2;
I NSERT INTO tbl (lob_col) SELECT TO LOB(long_col) FROMtb2@ibli nk;
CREATE TABLE tbhl AS SELECT TO LOB(Iong_col) FROM tbh2@ibli nk;

* You cannot use the TO LOB operator in the CREATE TABLE AS SELECT statement to
convert a LONG or LONG RAWcolumn to a LOB column when creating an index
organized table.

To work around this limitation, create the index organized table, and then do an
| NSERT AS SELECT of the LONG or LONG RAWcolumn using the TO_LOB operator.

* You cannot use TO_LOB inside any PL/SQL block.

14-12

Introducing the Database File System

This chapter describes the Database File System in details.

15.1 Why a Database File System?

Conceptually, a database file system is a file system interface placed on top of files and
directories that are stored in database tables.

Applications commonly use the standard SQL data types, BLOBs and CLOBs, to store and
retrieve files in the Oracle Database, files such as medical images, invoice images,
documents, videos, and other files. Oracle Database provides much better security,
availability, robustness, transactional capability, and scalability than traditional file systems.
Files stored in the database along with relational data are automatically backed up,
synchronized to the disaster recovery site using Data Guard, and recovered together.

Database File System (DBFS) is a feature of Oracle Database that makes it easier for users
to access and manage files stored in the database. With this interface, access to files in the
database is no longer limited to programs specifically written to use BLOB and CLOB
programmatic interfaces. Files in the database can now be transparently accessed using any
operating system (OS) program that acts on files. For example, ETL (extraction,
transformation, and loading) tools can transparently store staging files in the database and
file-based applications can benefit from database features such as Maximum Availability
Architecture (MAA) without any changes to the applications.

15.2 What Is Database File System (DBFS)?

Database File System (DBFS) creates a standard file system interface using a server and
clients.

15.2.1 About DBFS

DBFS is similar to NFS in that it provides a shared network file system that looks like a local
file system and has both a server component and a client component.

At the core of DBFS is the DBFS Content API, a PL/SQL interface in the Oracle Database. It
connects to the DBFS Content SPI, a programmatic interface which allows for the support of
different types of storage.

At the programming level, the client calls the DBFS Content API to perform a specific
function, such as delete a file. The DBFS Content API del et ef i | e function then calls the
DBFS Content SPI to perform that function.

ORACLE 15-1

Chapter 15
What Is Database File System (DBFS)?

Figure 15-1 Database File System (DBFS)

ocCl
LOB
Interface
A
Java
LOB
. DBFS Interface
Fiastnen | | commana | | 2558
Line Interface ;
Interface Client Client PII:/SBQL
* * Interface
/1/1 ‘DBFS
Links
1

DBFS Content API —p %
"~ 00000
DBFS Content SPI R

S T

DBFS DBFS i User
SecureFile Hierarchical| : Defined
Store Store i Store |

i —
= |
¥ o

15.2.2 DBFS Server

An implementation of a file system in the database is called a DBFS content store, for
example, the DBFS SecureFiles Store. A DBFS content store allows each database
user to create one or more file systems that can be mounted by clients. Each file
system has its own dedicated tables that hold the file system content. In DBFS, the file
server is the Oracle Database.

At the core of DBFS is the DBFS Content API, a PL/SQL interface in the Oracle
Database. It connects to the DBFS Content Store Provider Interface, a programmatic
interface which allows for the support of different types of storage.

Following are the different types of stores supported by the DBFS Content SPI:

» DBFS SecureFiles Store: A DBFS content store that uses a table with a
SecureFiles LOB column to store the file system data. It implements POSIX-like
file system capabilities.

- DBFS Hierarchical Store: A DBFS content store that allows files to be written to
any tape storage units supported by Oracle Recovery Manager (RMAN) or to a
cloud storage system.

» User-defined Store: A content store defined by the user. This allows users to
program their own filesystems inside Oracle Database without writing any OS
code.

ORACLE 15-2

Chapter 15
What Is Database File System (DBFS)?

¢ See Also:

e Creating Your Own DBFS Store
 DBFS Content API
e DBFS Hierarchical Store

15.2.3 DBFS Client Access Methods

Learn about various methods to access DBFS in this section.

ORACLE

The Database File System offers several access methods.

PL/SQL Client Interface

Database applications can access files in the DBFS store directly, through the DBFS
Content API PL/SQL interface. The PL/SQL interface allows database transactions and
read consistency to span relational and file data.

DBFS Client Command-Line Interface

A client command-line interface named dbfs_cl i ent runs on each file system client
computer. dbf s_cl i ent allows users to copy files in and out of the database from any
host on the network. It implements simple file system commands such as list and copy in
a manner that is similar to shell utilities | s and cp. The command interface creates a
direct connection to the database without requiring an OS mount of DBFS.

File System Mount Interface

On Linux and Solaris, the dbfs_cl i ent also includes a mount interface that uses the
Filesystem in User Space (FUSE) kernel module to implement a file-system mount point
with transparent access to the files stored in the database. This does not require any
changes to the Linux or Solaris kernels. It receives standard file system calls from the
FUSE kernel module and translates them into OCI calls to the PL/SQL procedures in the
DBFS content store.

DBFS Links

DBFS Links, Database File System Links, are references from SecureFiles LOB locators
to files stored outside the database.

DBFS Links can be used to migrate SecureFiles from existing tables to other storage.

" See Also:

e Using DBFS
e DBFS Mounting Interface (Linux and Solaris Only)
e Database File System Links for information about using DBFS Links

e PL/SQL Packages for LOBs and DBFS for lists of useful DBVMS_LOB constants
and methods

15-3

DBFS SecureFiles Store

There are certain procedures for setting up and using a DBFS SecureFiles Store.

16.1 Setting Up a SecureFiles Store

This section shows how to set up a SecureFiles Store.

16.1.1 About Managing Permissions

You must be a non-SYS database user for all operational access to the Content API and
stores.

Do not use SYS or SYSTEMusers or SYSDBA or SYSOPER system privileges. For better security
and separation of duty, only allow specific trusted users to access DBFS Content API.

You must grant each user the DBFS_ROLE role. Otherwise, the user is not authorized to use
the DBFS Content API. A user with suitable administrative privileges (or SYSDBA) can grant
the role to additional users as needed.

The CREATEFI LESYSTEMprocedure auto-commits before and after its execution (like a DDL).
The method CREATESTORE is a wrapper around CREATEFI LESYSTEM

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for DBV5S_DBFS_SFS
syntax details

16.1.2 Creating or Setting Permissions

You must grant the DBFS_RCLE role to any user that needs to use the DBFS content API.
1. Create or determine DBFS Content API target users.
This example uses this user and password: sf s_deno/ passwor d

At minimum, this database user must have the CREATE SESSI ON, CREATE RESOURCE, and
CREATE VI EWprivileges.

2. Grant the DBFS_ROLE role to the user.

CONNECT / as sysdba
GRANT dbfs_role TO sfs_deno;

This sets up the DBFS Content API for any database user who has the DBFS_RCLE role.

ORACLE 16-1

16.1.3 Creating a SecureFiles File System Store

ORACLE

Chapter 16
Setting Up a SecureFiles Store

The CREATEFI LESYSTEMprocedure auto-commits before and after its execution (like a
DDL). The method CREATESTORE is a wrapper around CREATEFI LESYSTEM

To create a SecureFiles File System Store:

1.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for

DBMS_DBFS_SFS syntax details

Create a Store:

connect sfs_deno/ <passwor d>
DECLARE
BEG N
DBMS_DBFS_SFS. CREATEFI LESYSTEM
store_nane => 'FS1',
tbl _name => 'T1',
tbl _tbs => null,
use_bf => fal se
);
END;
/

where:

e store_nane is a case-sensitive, user-unique name.

e tbl _nane is a valid table name, created in the current schema.

e tbhl _ths is avalid ASSM tablespace name for SecureFile Store used for the
store table and its dependent segments, such as indexes, LOBs, or nested
tables. The default is NULL and specifies a tablespace of the current schema.

* use_bf specifies that BasicFiles LOBs should be used, if true, and if f al se it

should be ASSM tablespace.

< Note:

CREATEFI LESYSTEM

Register the Store.

CONNECT sfs_deno
Enter password: password
DECLARE

The CREATEFI LESYSTEM procedure auto-commits before and after its
execution (like a DDL). The method CREATESTORE is a wrapper around

16-2

Chapter 16
Setting Up a SecureFiles Store

BEG N
DBVS_DBFS CONTENT. REG STERSTORE(
store_nane => 'FSl',

provi der _nane => 'secure_file_store',
provi der _package => ' dbms_dbfs_sfs'

);
COWM T;
END;

where:

e store_nane is SecureFiles Store FS1, which uses table SFS_DEMO. T1.

e provi der_nane is ignored.

e provider_package is DBMS_DBFS_SFS, for SecureFiles Store reference provider.

This operation associates the SecureFiles Store FS1 with the DBMS_DBFS_SFS provider.
3. Mount the store.

CONNECT sfs_denp
Enter password: password

DECLARE
BEG N
DBVS_DBFS_CONTENT. MOUNTSTORE(
store_nane => 'FS1',
st ore_nmount = 'mtl'
);
COWMT;
END;
/
where:

e store_nane is the name of the store we want to mount. In this case the SFS store is
FS1, which is already created and uses table SFS_DEMO, T1.

e store_nount is the mount point.

4. [Optional] To see the results of the preceding steps, you can use the following
statements.

» To verify SecureFiles Store tables and file systems:

SELECT * FROM TABLE(DBMS_DBFS_SFS. LI STTABLES) ;
SELECT * FROM TABLE(DBMS_DBFS_SFS. LI STFI LESYSTEMS) ;

* To verify ContentAPI Stores and mounts:

SELECT * FROM TABLE(DBMS_DBFS_CONTENT. LI STSTORES) ;
SELECT * FROM TABLE(DBVMS_DBFS_CONTENT. LI STMOUNTS) ;

ORACLE 16-3

Chapter 16
Setting Up a SecureFiles Store

» To verify SecureFiles Store features:

var fsif NUMBER,
exec :fslf := DBVMS_DBFS_CONTENT. GETFEATURESBYNAME(' FS1');
select * from tabl e(DBMS_DBFS_CONTENT. DECODEFEATURES(: f s1f)) ;

» To verify resource and property views:

SELECT * FROM DBFS_CONTENT;
SELECT * FROM DBFS_CONTENT_PROPERTI ES;

16.1.4 Accessing SecureFiles Store

You should never directly access tables that hold data for a SecureFiles Store file
systems.

This is the correct way to access the file systems.

» For procedural operations: Use the DBFS Content API (DBVS_DBFS_CONTENT
methods).

e For SQL operations: Use the resource and property views (DBFS_CONTENT and
DBFS_CONTENT _PROPERTI ES).

16.1.5 Reinitializing SecureFiles Store File Systems

You can truncate and re-initialize tables associated with an SecureFiles Store.

e Use the procedure | NI TFS() .

The procedure executes like a DDL, auto-committing before and after its
execution.

The following example uses file system FS1 and table SFS DEMO.T1, which is
associated with the SecureFiles Store st ore_nane.

CONNECT sfs_deno;
Enter password: password
EXEC DBVS_DBFS_SFS. | NI TFS(store_name => 'FS1');

16.1.6 Comparison of SecureFiles LOBs to BasicFiles LOBs

ORACLE

SecureFiles LOBs are only available in Oracle Database 11g Release 1 and higher.
They are not available in earlier releases.

You must use BasicFiles LOB storage for LOB storage in tablespaces that are not
managed with Automatic Segment Space Management (ASSM).

Compatibility must be at least 11.1.0.0 to use SecureFiles LOBs.
Additionally, you need to specify the following in DBVMS_DBFS_SFS. CREATEFI LESYSTEM

* To use SecureFiles LOBs (the default), specify use_bf => fal se.

e To use BasicFiles LOBs, specify use_bf => true.

16-4

Chapter 16
Using a DBFS SecureFiles Store File System

16.2 Using a DBFS SecureFiles Store File System

The DBFS Content API provides methods to access and manage a SecureFiles Store file
system.

16.2.1 DBFS Content APl Working Example

You can create new file and directory elements to populate a SecureFiles Store file system.

If you have executed the steps in "Setting Up a SecureFiles Store", set the DBFS Content
API permissions, created at least one SecureFiles Store reference file system, and mounted
it under the mount point / mt 1, then you can create a new file and directory elements as
demonstrated in Example 16-1.

Example 16-1 Working with DBFS Content API

CONNECT tj ones
Enter password: <password>

DECLARE
ret | NTEGER;
b BLOB;
str VARCHAR2(1000) := "' || chr(10) ||
"#include <stdio.h> || chr(10) ||
|| chr(10) ||
"int main(int argc, char** argv)' || chr(10) ||
{1 chr(10) ||
(void) printf("hello world\n");" || chr(10) ||
RETURN 0;" || chr(10) ||
"}l chr(10) ||
properties DBMS_DBFS_CONTENT. PROPERTI ES T;
BEG N
properties(' posix: node') := DBMS_DBFS CONTENT. propNunber (16777) ;
dr wxr - Xr - x
properties(' posix:uid) := DBVMS_DBFS_CONTENT. propNunber(0);
properties(' posix:gid) := DBVMS_DBFS_ CONTENT. propNunber(0);
DBMS_DBFS_CONTENT. creat eDi rect or y(
"/mt 1/ FSL',

properties);

properties(' posix: node') := DBMS_DBFS CONTENT. propNunber (33188);
STWIr--F-- --
DBMS_DBFS_CONTENT. creat eFi | e(
"/ mt 1/ FS1/ hello.c',
properties,
b);

DBVS LOB. writeappend(b, length(str), utl _raw cast to raw(str));
COWM T,

END;

/

ORACLE 16-5

Chapter 16
Using a DBFS SecureFiles Store File System

SHOW ERRCRS;
-- verify newy created directory and file

SELECT pat hname, pathtype, length(filedata),
utl _raw cast_to_varchar2(fil edata)
FROM dbfs_cont ent
VWHERE pat hname LI KE '/ mt 1/ FS1%
ORDER BY pat hnarre;

The file system can be populated and accessed from PL/SQL with
DBMS_DBFS_CONTENT. The file system can be accessed read-only from SQL using the
dbfs_content and dbfs_content properties views.

The file system can also be populated and accessed using regular file system APIs
and UNIX utilities when mounted using FUSE, or by the standalone dbfs_cl i ent tool
(in environments where FUSE is either unavailable or not set up).

¢ See Also:
DBFS Client Access Methods

16.2.2 Dropping SecureFiles Store File Systems

ORACLE

You can use the unnount St or e method to drop SecureFiles Store file systems.

This method removes all stores referring to the file system from the metadata tables,
and drops the underlying file system table. The procedure executes like a DDL, auto-
committing before and after its execution.

1. Unmount the store.

CONNECT sfs_deno/ <passwor d>

DECLARE
BEG N
DBMS_DBFS_CONTENT. UNMOUNTSTORE(
store_nane =>"'FS1',
st ore_nount = 'mtl";
)
COWM T;
END;
/
where:

e store_nane is FS1, a case-sensitive unique username.
e store_nount is the mount point.
2. Unregister the stores.

CONNECT sfs_deno/ <passwor d>
EXEC DBMS_DBFS_CONTENT. UNREG STERSTORE(st ore_nanme => 'FS1');
COWM T;

where st or e_nane is SecureFiles Store FS1, which uses table SFS_DEMO. T1.

16-6

Chapter 16
About DBFS SecureFiles Store Package, DBMS_DBFS_SFS

3. Drop the store.

CONNECT sfs_deno/ <passwor d>;
EXEC DBVS_DBFS SFS. DROPFI LESYSTEM store_name => 'FS1'):
COWM T;

where st ore_nane is SecureFiles Store FS1, which uses table SFS_DEMO. T1.

16.3 About DBFS SecureFiles Store Package,
DBMS DBFS_SFS

The SecureFiles Store provider is a default implementation of the DBFS Content API (and is
a standard example of a store provider that conforms to the Provider SPI) .

To use the DBM5S_DBFS_SFS package, you must be granted the DBFS_RCLE role.

The SecureFiles Store provider is a default implementation of the DBFS Content API (and is
a standard example of a store provider that conforms to the Provider SPI) . This enables
existing applications to easily add PL/SQL provider implementations and provide access
through the DBFS Content API without changing their schemas or their business logic.

" See Also:

e See Oracle Database PL/SQL Packages and Types Reference for more
information about the DBM5S_DBFS_SFS package.

e Creating Your Own DBFS Store and Oracle Database PL/SQL Packages and
Types Reference for more information about the Provider SPI defined in
DBMS_DBFS_CONTENT_SPI .

e Introduction to Large Objects and SecureFiles for advanced features of
SecureFiles LOBs.

16.4 Database File System (DBFS)— POSIX File Locking

ORACLE

Starting from Oracle Database 12c¢ Release 2(12.2), Oracle supports the Database File
system POSI X File locking feature.

The DBFS provides file locking support for the following types of applications:

» PCSI X applications using DBFS_CLI ENT (in mount mode) as a front-end interface to DBFS.

See Also:

DBFS Client Access Methods

* Applications using PL/ SQ. as an interface to DBFS.

16-7

Chapter 16
Database File System (DBFS)— POSIX File Locking

< Note:

Oracle supports only Full-file locks in DBFS. Full-file lock implies locking the
entire file from byte zero offset to the end of file.

16.4.1 About Advisory Locking

Advisory locking is a file locking mechanism that locks the file for a single process.

File locking mechanism cannot independently enforce any form of locking and requires
support from the participating processes. For example, if a process P1 hasawite
lock on file F1, the locking API or the operating system does not perform any action to
prevent any other process P2 from issuing a read or wri t e system call on the file F1.
This behavior of file locking mechanism is also applicable to other file system
operations. The processes that are involved (in file locking mechanism) must follow a
lock or unlock protocol provided in a suitable API form by the user-level library. File
locking semantics are guaranteed to work as per POSIX standards.

16.4.2 About Mandatory Locking

Mandatory locking is a file locking mechanism that takes support from participating
processes.

Mandatory locking is an enforced locking scheme that does not rely on the
participating processes to cooperate and/or follow the locking API. For example, if a
process P1 has taken awri t e lock on file F1 and if a different process P2 attempts to
issue a read/w it e system call (or any other file system operation) on file F1 , the
request is blocked because the concerned file is exclusively locked by process P1.

16.4.3 File Locking Support

ORACLE

Enabling the file locking mechanism helps applications to block files for various file
system operations.

The fentl (), [ockf (), and fl ock() system calls in UNI X and LI NUX provide file locking
support. These system calls enable applications to use the file locking facility through
dbfs_cl i ent - FUSE callback interface. File Locks provided by fcnt | () are widely
known as POSIX file locks and the file locks provided by f | ock() are known as BSD
file locks. The semantics and behavior of POSIX and BSD file locks differ from each
other. The locks placed on the same file through fcnt | () and fl ock() are orthogonal
to each other. The semantics of file locking functionality designed and implemented in
DBFS is similar to POSIX file locks. In DBFS, semantics of file locks placed through
flock() system call will be similar to POSIX file locks (such as fcntl ()) and not BSD
file locks. | ockf () is a library call that is implemented as a wrapper over fcnt | ()
system call on most of the UNIX systems, and hence, it provides POSIX file locking
semantics. In DBFS, file locks placed through fcntl (), fl ock(), and | ockf () system-
calls provide same kind of behavior and semantics of POSIX file locks.

" Note:

BSD file locking semantics are not supported.

16-8

Chapter 16
Database File System (DBFS)— POSIX File Locking

16.4.4 Compatibility and Migration Factors of Database Filesystem—File

Locking

The Database Filesystem File Locking feature does not impact the compatibility of DBFS and
SFS store provider with RDBVS.

DBFS_CLI ENT is a standalone OCI Client and uses OCl calls and DBMS_FUSE API .

" Note:
This feature will be compatible with Or aSDK/ RSF .

16.4.5 Examples of Database File System—File Locking

ORACLE

These examples illustrate the advisory locking and the locking functions available on UNI X
based systems.

The following example uses two running processes — Process A and Process B.
Example 16-2 No locking

Process A opens file:

file_desc = open(“/path/to/file”, O RDONLY);
/* Reads data into bufffers */

read(fd, bufl, sizeof(buf));

read(fd, buf2, sizeof(buf));
close(file_desc);

Subjected to OS scheduling, process B can enter any time and issue aw it e system call
affecting the integrity of file data.

Example 16-3 Advisory locking used but process B does not follow the protocol

Process A opens file:

file_desc = open(“/path/to/file”, O RDONLY);
ret = AcquirelLock(file_desc, RD LOCK);
if(ret)
{

read(fd, bufl, sizeof(buf));

read(fd, buf2, sizeof(buf));

Rel easelLock(file_desc);

close(file_desc);

Subjected to OS scheduling, process B can come in any time and still issue aw it e system
call ignoring that process A already holds a r ead lock.

16-9

Chapter 16
Database File System (DBFS)— POSIX File Locking

Process B opens file:

file_descl = open(“/path/to/file”, O WRONLY);
wite(file_descl, buf, sizeof(buf));
close(file_descl);

The above code is executed and leads to inconsistent data in the file.
Example 16-4 Advisory locking used and processes are following the protocol

Process A opens file:

file_desc = open(“/path/to/file”, O RDONLY);
ret = AcquireLock(file_desc, RD LOCK);
if(ret)
{

read(fd, bufl, sizeof(buf));

read(fd, buf2, sizeof(buf));

Rel easelLock(file_desc);

close(file_desc);

Process B opens file:

file descl = open(“/path/to/file”, O WRONLY);
ret = AcquirelLock(file_descl, WR LOCK);
/* The above call will take care of checking the existence of a |ock */
if(ret)
{
wite(file_descl, buf, sizeof(buf));
Rel easelLock(file descl);
} close(file_descl);

Process B follows the lock API and this APl makes sure that the process does not
wri t e to the file without acquiring a lock.

16.4.6 DBFS Locking Behavior

ORACLE

This section describes the DBFS locking behavior.
The DBFS File Locking feature exhibits the following behaviors:

* File locks in DBFS are implemented with idempotent functions. If a process issues
“N”read or wite lock calls on the same file, only the first call will have an effect,
and the subsequent “N-1" calls will be treated as redundant and returns No
Operation (NOOP).

» File can be unlocked exactly once. If a process issues “N” unl ock calls on the
same file, only the first call will have an effect, and the subsequent “N-1" calls will
be treated as redundant and returns NOOP.

e Lock conversion is supported only from read to wri t e. If a process P holds a r ead
lock on file F (and P is the only process holding the r ead lock), then awr i t e lock
request by P on file F will convert the r ead lock to excl usi ve/wri t e lock.

16-10

Chapter 16
Database File System (DBFS)— POSIX File Locking

16.4.7 Scheduling File Locks

DBFS File Locking feature supports lock scheduling.

This facility is implemented purely on the DBFS client side. Lock request scheduling is
required when client application uses blocking call semantics in their fcnt! (), | ockf (), and
flock() calls.

There are two types of scheduling:

* Greedy Scheduling
» Fair Scheduling

Oracle provides the following command line option to switch the scheduling behavior.

Mount -0 | ock_sched option = | ock _sched option Val ue;

Table 16-1 lock_sched option Value Description
]

Value Description
1 Sets the scheduling type to Greedy Scheduling. (Default)
2 Sets the scheduling type to Fair Scheduling.

< Note:

Lock Request Scheduling works only on per DBFS_CLI ENT mount basis. For
example, lock requests are not scheduled across multiple mounts of the same file
system.

16.4.7.1 Greedy Scheduling

ORACLE

In this scheduling technique, the file lock requests does not follow any guaranteed order.

" Note:
This is the default scheduling option provided by DBFS CLI ENT.

If a file Fis read locked by process P1, and if processes P2 and P3 submit blockingwrite
lock requests on file F, the processes P2 and P3 will be blocked (using a form of spin lock)
and made to wait for its turn to acquire the lock. During the wait, if a process P4 submits a
read lock request (blocking call or a non-blocking call) on file F, P4 will be granted the r ead
lock even if there are two processes (P2 and P3) waiting to acquire the wri t e lock. Once both
P1 and P4 release their respective r ead locks, one of P2 and P3 will succeed in acquiring the
lock. But, the order in which processes P2 and P3 acquire the lock is not determined. It is
possible that process P2 would have requested first, but the process P3’s request might get
unblocked and acquire the lock and the process P2 must wait for P3 to release the lock.

16-11

Chapter 16
Database File System (DBFS)— POSIX File Locking

16.4.7.2 Fair Scheduling

ORACLE

The fair scheduling technique is implemented using a queuing mechanism on per file
basis.

For example, if a file F is read locked by process P1, and processes P2 and P3 submit
blocking write lock requests on file F, these two processes will be blocked (using a
form of spin lock) and will wait to acquire the lock. The requests will be queued in the
order received by the DBFS client. If a process P4 submits a read lock request
(blocking call or a non-blocking call) on file F, this request will be queued even though
a read lock can be granted to this process.

DBFS Client ensures that after P1 releases its read lock, the order in which lock
requests are honored is P2->P3 -> P4.

This implies that P2 will be the first one to get the lock. Once P2 releases its lock, P3
will get the lock and so on.

16-12

Using DBFS

The DBFS File System implementation includes creating and accessing the file system and
managing it.

17.6 Dropping a File System

You can drop a file system by running DBFS_DROP_FI LESYSTEM SQL.

Caution:

When you drop a file system, it deletes all the files and associated metadata. You
won't be able to access the files.

1. Log in to the database instance:
$ sql plus dbfs_user/ @b_server
2. Enter the following command:
@ORACLE_HOME/ r dbrs/ admi n/ dbf s_drop_fil esystemsqgl file_system name

When you drop a file system, it deletes all the files and associated metadata. You won't be
able to access the files. If you want to access the file system after dropping a DBFS, you can
restore the file system from a database backup or file system backup.

Depending on the backup policy in your organization, you may have a database backup or
file system backup. To restore from a database backup, you'll have to restore the entire
database and then use the restored file system. To restore the file system from a file system
backup, create a new DBFS and restore the file system from the file system backup.

17.1 Installing DBFS

ORACLE

DBFS is a part of the Oracle Database installation.
$ORACLE_HOMVE/ r dbns/ adni n contains these DBFS utility packages:

* Content API (CAPI)
e SecureFiles Store (SFS)
$ORACLE_HOVE/ bi n contains:

« dbfs_client executable
$ORACLE_HOVE/ r dbns/ adni n contains:

e SQL (. pl b extension) scripts for the content store

17-1

Chapter 17
Creating a DBFS File System

17.2 Creating a DBFS File System

You can create a partitioned or non-partitioned DBFS File system.

For both partitioned and non-partitioned DBFS, you can specify one or more of the
following storage properties to specify how your files are stored in DBFS: compression
and deduplication.

For example, you can configure DBFS as a compressed file system with partitioning.
At the time of creating a DBFS file system, you must specify the set of features that
you want to enable for the file system.

After creating a DBFS, you can track the usage of the DBFS. If you want to change the
storage properties of the DBFS, you can reorganize the DBFS. You can update the
metadata of the DBFS by changing the values for parameters, such as dedupl i cat e,
conpress, and partition. For example, you may have created a DBFS to store all the
files in the compressed format. If you want to change this property, you can reorganize
the DBFS.

17.2.1 About the Create File System Command

ORACLE

Use this command to quickly create, register, and mount a file system.

Syntax

$ sql plus @bfs_create_filesystemsql tablespace_nane file_system nanme
[conmpress-high | conpress-nedium | conpress-|low | noconpress]
[deduplicate | nodeduplicate]
[partition | non-partition | partition-by-itemane | partition-by-guid |
partition-by-pat h]

Where the mandatory parameters are:

e tabl espace_nane is the tablespace in which you want to create a file system.
- file_system nane is the unique name of the file system that you want to create.
The optional parameters are:

» conpress: when you use this option DBFS compresses the files, and then stores
the files. Use this option to reduce the storage space consumed by the files. Note
that it takes more time to read and write to compressed files as the files have to be
decompressed before you can read or write to the file.

You can specify one of the following options: conpr ess, conpr ess- hi gh, conpr ess-
medi um conpr ess- | ow. When you specify conpr ess or conpr ess- nedi um the
compression level is medium.

Generally, the compression level conpr ess- | ow performs best and still provides a
good compression ratio. Compression levels conpr ess- hi gh and conpr ess-

medi umprovide significantly better compression ratios, but compression times can
be correspondingly longer. Oracle recommends using NONE or LOW when write
performance is critical, such as when files in the DBFS store are updated
frequently. If space is critical and the best possible compression ratio is desired,
use conpr ess- hi gh or conpr ess- nedi um Files are compressed as they are paged
out of the cache into the staging area. Therefore, compression also benefits by
storing smaller files in the staging area and effectively increasing the total
available capacity of the staging area.

17-2

Chapter 17
Creating a DBFS File System

If you don't specify any option to compress the files, noconpr ess is the default value.

e dedupl i cat e: when you use this option, DBFS maintains a single copy of the file to save

storage space even if you have multiple copies of the file in different folders. Let's
consider that 100 users in an e-commerce company require access to the postal zip
codes. Using deduplication, even if all 100 users store the file in different folders, the
DBFS maintains a single copy of the file that contains the postal ZIP codes and the DBFS
doesn't store multiple copies of the file. The reduction of duplication saves space. If user
A updates the file containing postal zip codes, the updated file is stored as a separate
copy in the DBFS. The next time user A wants to access the file, user A is pointed to the
updated copy of the file while the remaining users are still pointed to the original file. Note
that it takes more time to update and write to the DBFS when you use the deduplicate
option.

nodedupl i cat e is the default value.

e partition: use this option to create a partitioned file system, and then specify any one of

the following values as the hash key.

— partitionandpartition-by-itemane: uses the item name as the partition key.
The item name is the last component in the path name. Use this option to partition
files based on the last component in the file path. For example, if / di rect ory1/
subdirectory2/fil enane. txt is the entire path, then fi | enane. t xt is the last
component in the path and fi | ename. t xt is used as the partition key. If you use the
partition option, then the file system is partitioned using the item name as the
partition key.

— partition-by-guid: uses the globally unique identifier (GUID) assigned to the file by
DBFS as the partition key. DBFS assigns a GUID to each file. Use this option to
partition the files based on the internally-generated GUID.

— partition-by-path: uses the entire path of the file as the partition key. For example,
if the file is / di rect oryl/ subdi rect ory2/fil enanme. t xt, then the entire /
directoryl/subdirectory2/filename.txt is considered as the partition key.

If you specify only the partition option, then it defaults to partiti on- by-itemane,
where item name refers to the name of the file or directory.

Using the @bfs_create fil esystem sql command, you can create a file system with the
options described in this section. If you want to specify additional options while creating the
file system, you can use the DBMS_DBFS_SFS. CREATEFI LESYSTEM procedure.

¢ See Also:

e CREATEFILESYSTEM Procedure in PL/SQL Packages and Types Reference.

* Persistent LOBs and Creating a Partitioned File System for more information
about the features of SecureFiles LOBs.

17.2.2 Privileges Required to Create a DBFS File System

ORACLE

Database users must certain privileges to create a file system.

Following is the minimum set of privileges required for a database user to create a file
system:

* CRANT CONNECT

17-3

Chapter 17
Creating a DBFS File System

. CREATE SESSI ON
« RESOURCE, CREATE TABLE
- CREATE PROCEDURE

. DBFS ROLE

17.2.3 Creating a Non-Partitioned File System

You can create a file system by running DBFS_CREATE_FI LESYSTEM SQL while logged in
as a user with DBFS administrator privileges.

Before you begin, ensure that you create the file system in an ASSM tablespace to
support SecureFile store. For information about creating an ASSM tablespace, see
Creating a SecureFiles File System Store.

To create a non-partitioned file system:

1. Log in to the database instance as a user with DBFS administrator privileges.
$ sql plus dbfs_user/ @b_server

2. Enter the following command to create the file system.
Syntax

@ ORACLE_HOVE/ r dbrs/ admi n/ dbfs_create_fil esystem sql tabl espace_nane
file_systemname
[conpress-high | conpress-medium| conpress-low | noconpress]
[deduplicate | nodeduplicate]
non-partition

Example

For example, to create a file system called st agi ng_ar ea in an existing ASSM
tablespace dbfs_t bspc:

$ sql plus dbfs_user/db_server
@ORACLE_HOMVE/ r dbns/ admi n/ dbf s_create_fil esystem sql
dbfs_tbspc staging_area noconpress nodeduplicate non-partition

17.2.4 Creating a Partitioned File System

ORACLE

Files in DBFS are hash partitioned. Partitioning creates multiple physical segments in
the database, and files are distributed randomly in these partitions.

You can create a partitioned file system by running DBFS_CREATE_FI LESYSTEMSQL while
logged in as a user with DBFS administrator privileges.

The tablespace in which you create the file system should be an ASSM tablespace to
support Securefile store. Before you begin, ensure that you create the file system in an
ASSM tablespace to support SecureFile store. For information about creating an
ASSM tablespace, see Creating a SecureFiles File System Store.

1. Log in to the database instance:
$ sql plus dbfs_user/ @b_server

2. Enter one of the following commands to create the file system based on your
requirement.

Syntax

17-4

Chapter 17
Creating a DBFS File System

@ORACLE_HOME/ r dbns/ admi n/ dbf s_create_fil esystem advanced. sql tabl espace_nane
file_systemname [conpress-high | conpress-medium| conpress-low |
noconpr ess]
[deduplicate | nodeduplicate]
[partition | partition-by-itemame | partition-by-guid | partition-by-path]

Examples

* For example, to create a partitioned file system called st agi ng_ar ea in an existing
ASSM tablespace dbfs_t bspc:

$ sql plus dbfs_user/ @b_server
@ORACLE_HOVE/ r dbns/ admi n/ dbfs_create_fil esystem advanced. sql dbfs_t bspc
stagi ng_area noconpress nodeduplicate partition

* For example, to create a partitioned file system called st agi ng_ar ea in an existing
ASSM tablespace dbf s_t bspc with the storage properties compress and deduplicate.

$ sql plus dbfs_user/ @b_server
@ORACLE_HOVE/ r dbns/ admi n/ dbfs_create_fil esystem advanced. sql dbfs_tbspc
stagi ng_area conpress-nedi um deduplicate partition

17.2.5 Enabling Advanced SecureFiles LOB Features for DBFS

ORACLE

Using the @bfs _create fil esystem sql command, you can create a partitioned or non-
partitioned file system with the compression and deduplicate options. If you want to specify
additional options while creating the file system, use the DBMS_DBFS_SFS. CREATEFI LESYSTEM
procedure.

For information about all the additional options that you can use with the
DBVS_DBFS_SFS. CREATEFI LESYSTEMprocedure, see CREATEFILESYSTEM Procedure in
PL/SQL Packages and Types Reference.

Use the @lbfs_create_fil esystem sgl command to quickly create, register, and mount a file
system. When you use the DBMS_DBFS_SFS. CREATEFI LESYSTEMprocedure to enable additional
options while creating a file system, you must additionally run commands to register and
mount the file system that you create.

Let's use the DBMS_DBFS_SFS. CREATEFI LESYSTEMprocedure to create a file system with the
encryption option.

Before you begin, ensure that you have created a wallet with the encryption key. See
Administer Key Management in SQL Language Reference.

To create a file system with the encryption option:
1. Run the following command.

Syntax

exec

dbrms_dbfs_sfs. createFil esysten(' store_name',thl tbhs=>'tabl espace_nanme', do_
encrypt=> true | false,encryption=> encryption_type, do_dedup=> true

fal se,do_conpress=>true | false);

For reference information about the command options, see CREATEFILESYSTEM

Procedure in PL/SQL Packages and Types Reference.

Example

17-5

Chapter 17
Accessing DBFS File System

For example, to create a file system in Test 3 store in the t est _f s1 tablespace with
the default encryption, compression, and deduplicate options:

exec dbns_dbfs_sfs.createFilesysten('test_fsl', tbl_tbs=> Test3',
do_encrypt=>true, encryption=>dbnms_dbfs_sfs. ENCRYPTI ON_DEFAULT,
do_dedup=>true, do_conpress=>true);

The file system is created with the option you have specified.
Run the following command to register the file system that you have created.
Syntax

dbns_dbfs_content.registerStore(store_name => 'fil esystem nane',
provi der _name => 'posix', provi der_package => 'dbns_dbfs_sfs') ;

Example

For example, run the following command to register the t est _fs1 file system.

dbrms_dbfs_content.registerStore(store_name => "test _fsl',
provi der _name => 'posix', provider_package => 'dbms_dbfs_sfs') ;

Run the following command to mount the file system that you have created.

Syntax

dbns_dbfs_content.mount Store(store _nane => 'filesystem nane',
store _mount => 'filesystemnnane');

Example

For example, run the following command to mount the t est _f s1 file system.

dbns_dbfs_content.mount Store(store_name => "test fsl', store_mount
=> 'test fsl');

17.3 Accessing DBFS File System

This section describes the various interfaces through which you can access the DBFS
File System.

17.3.1 DBFS Client Prerequisites

The DBFS File System client side application, which is named dbfs_cl i ent, runs on
each system that will access to DBFS.

ORACLE

The prerequisites for the DBFS File System Client, dbfs_cl i ent, are:

The dbfs_cli ent host must have the Oracle client libraries installed.

The dbfs_client can be used as a direct RDBMS client using the DBFS
Command Interface on Linux, Linux.X64, Solaris, Solaris64, AlX, HPUX and
Windows platforms.

17-6

Chapter 17
Accessing DBFS File System

 The dbfs_client can only be used as a mount client on Linux, Linux.X64, and Solaris 11
platforms. The dbfs_cl i ent host must have the FUSE Linux package or the Solaris
I'i bf use package installed.

" See Also:

DBFS Mounting Interface (Linux and Solaris Only) for further details.

The DBFS client command-line interface allows you to perform many pre-defined commands,
such as copy files in and out of the DBFS filesystem from any host on the network.

The command-line interface has slightly better performance than the DBFS client mount
interface because it does not mount the file system, thus bypassing the user space file
system. However, it is not transparent to applications.

The DBFS client mount interface allows DBFS to be mounted through a file system mount
point thus providing transparent access to files stored in DBFS with generic file system
operations.

To run DBFS commands, specify - - command to the DBFS client.

17.3.2 Multiple Mount Points on DBFS Client

Starting from Oracle Database Release 21c, a single Database File System (DBFS) client
instance can mount multiple DBFS, owned by different database users across different
database instances.

To enable access to multiple database users, the DBFS client has to manage multiple mount
points. Each mount point enables one database user to access DBFS.

When the DBFS client provides access to a single database user through a single mount
point, it is termed as Single User Mount Version (SUMV) mode and when the DBFS client
provides access to multiple database users through multiple mount points, it is termed as
Multi User Mount Version (MUMV) mode.

You can start a DBFS client in either of these modes. However, once you start the client in
any mode, you cannot switch to the other mode without restarting the client. If a DBFS client
is started in the MUMV mode, then the client creates a pseudo file system called Manager
File System (MFS), which acts as an interface between the OS user and the DBFS client.

You can start the MUMV mode in two variants, one that can mount DBFS across multiple
container databases or one that can mount only DBFS belonging to different pluggable
databases of a single container database. The MUMYV variant that mounts DBFS from
multiple databases is termed as the Cross-Database variant and the one that mounts DBFS
for multiple PDBs of a single container database as the CDB variant. Both the variants are
started by specifying only the MFS mount points during start up. The DBFS mounts are
added by setting extended attributes on the MFS mount point.

17.3.2.1 MUMV for CDB Variant

ORACLE

The CDB variant of the Multi User Mount Version (MUMV) mode manages the mount points
of Database File System (DBFS) that belong to different pluggable databases (PDBs) of a
single container database (CDB).

Remember the following points while working with the CDB variant of the MUMV mode:

17-7

Chapter 17
Accessing DBFS File System

* The DBFS client, managing multiple DBFS mount points of a single container,
should be provided with the credentials to connect to a common user of the CDB
at CDB$ROOT. The DBFS to be mounted, should be created in or exported to this
common user in the PDBs.

e A mount point must be specified for the DBFS in every PDB in the given container.
The DBFS client connects to the CDB$ROOT, using common user credentials, and
then switches to the required PDB to access the DBFS through the specified
mount point.

17.3.2.2 MUMV for Cross-Database Variant

The Cross-Database variant of the Multi User Mount Version (MUMV) mode manages
mount points for Database File System (DBFS) in multiple databases.

Remember the following points while working with the Cross-Database variant of the
MUMYV mode:

« The DBFS client must have the credentials of a database user on each database
to manage the respective DBFS mount points.

* A DBFS mount point must be specified for each database user and a DBFS must
be created in their respective schemas.

17.3.3 Manager File System

The Manager File System is the interface between the OS user and the DBFS Client.
The OS user can communicate with the Client through limited File System commands.

The Manager File System (MFS) is enabled only in the Multi User Mount Version
(MUMV) mode. It treats the various mount points managed by the DBFS Client as
files. The MFS provides an easy interface for the OS users to manage multiple mount
points.

The MFS does not create or store files on the disk. Only a limited file system
operations are allowed on the MFS mount point.

No OS user can create files or directories under the MFS.

17.3.3.1 Adding a DBFS Mount Point

ORACLE

You can add DBFS mount points by specifying extended attributes on the MFS mount
points.

< Note:

The MUMV mode works only in wallet mode, even if you do not specify the -
o wal | et option. As there is no way to provide passwords in the DBFS
commend-line interface, you must add all the credentials required by the
DBFS client in the wallet.

While using a CDB variant of the MUMV mode, add the mount points for each of the
PDB in the CDB by setting the extended attribute on the / mt/ nf s directory,
where / mt / nf s is the MFS mount point.

17-8

ORACLE

Chapter 17
Accessing DBFS File System

Defining the Mount Points in a CDB Variant

Perform the following steps to define the mount points in a CDB variant of the MUMV mode:

1.

Start the DBFS client to connect to the common user at the CDB$ROOT, specifying the MFS
mount point and the wallet alias at the start up:

% dbfs client -0 nfs_munt=/mt/nfs -0 cdb=inst_cdb

Where, / mt/ nf s is the MFS mount point. It can be any empty directory of your choice.
i nst _cdb is the alias insert into the wallet that can connect to the common user in
CDB$ROCT.

Add a DBFS mount point by setting an extended attribute in the following way:

%setfattr -n mount_pdb -v " pdbl /mt/npl" /mt/nfs/

Where:

e nount _pdb is the name of the extended attribute to mount a DBFS mount point in
CDB variant

e pdbl is the name of the PDB in the particular CDB, which is pointed to by i nst _cdb

e/ mt/npl is the mount directory, where the DBFS present in the common user in the
PDB pdb1, should be mounted

* /mt/nfs is the MFS mount directory that was used during the start up of the
dbfs_client command

(Optional) Add more DBFS mount points by setting the same extended attribute with
different arguments in the following way:

%setfattr -n mount_pdb -v " pdb2 /mt/mp2" /mt/nfs
%setfattr -n nmount_pdb -v " pdb3 /mt/mp3" /mt/nfs

Where, pdb2 and pdb3 are the actual names of the PDBs in the container.

Defining the Mount Points in a Cross-Database Variant

Perform the following steps to define the mount points in a Cross-Database variant of the
MUMYV mode:

1.

Start the DBFS client in MUMV Cross-Database variant by specifying the MFS mount
point at the start up in the following way:

% dbfs client -0 nfs_nount=/mt/nfs

Where, / mt/ nf s is the MFS mount point. It can be any empty directory of your choice

Add a DBFS mount point by setting an extended attribute in the following way:

%setfattr -n mount -v " instl /mt/npl" /mt/nfs/

Where,

17-9

Chapter 17
Accessing DBFS File System

* mount is the name of the extended attribute to mount a DBFS mount in Cross-
Database variant

e instlisthe wallet alias that connects to the DB user, for which DBFS needs
to be mounted

e/ mt/nplis the mount directory, where the DBFS should be mounted

[/ mt/nfs isthe MFS mount directory that was used during the start up of the
dbfs_client command

3. (Optional) Add more DBFS mount points by setting the same extended attribute
with different arguments in the following way:

%setfattr -n mount -v "inst2 /mt/np2" /mt/nfs/
%setfattr -n mount -v "inst3 /mt/nmp3" /mt/nfs/

Where, i nst 2 and i nst 3 are aliases that must exist in the wallet. The DBFS client
must have the credentials to connect to the user in the database and they should
have at least one DBFS created in their schema.

17.3.3.2 Listing DBFS Mount Points

Each DBFS mount point has a corresponding file under the MFS directory, / mt / nf s.
So, you can use the standard Linux command | s to list the DBFS mount points.

The following code snippet shows how to list all the DBFS mount points:

%ls -1 /mt/nfs

The content of each file under the / mt/ nf s directory, provides details about the
parameters used in the corresponding mount point.

The MFS is a read-only file system. You cannot create any file or directory within it
using any application, apart from the DBFS Client. Anything that appears as a file or a
directory under the MFS, is defined by the DBFS Client.

17.3.3.3 Unmounting a DBFS Mount Point

The procedure to unmount a DBFS mount point is the same for both the CDB variant
and the Cross-Database variant of the MUMV mode.

You must unmount a mount point using the FUSE executable file, f user mount . The
following code snippet shows how to drop a DBFS mount point:

% fusermount —u /mt/npl

17.3.3.4 Configuration Parameters of DBFS Client

ORACLE

All configuration parameters of DBFS client in Single User Mount Version (SUMV)
mode can also be used with the DBFS client in Multi User Mount Version (MUMV)
mode at the time of start up.

All the command-line options passed to the DBFS client in the MUMV mode are
inherited by all the DBFS mount points that may be added later. For example, for the

17-10

Chapter 17
Accessing DBFS File System

following dbfs_cl i ent command, the DBFS mounted at the / mt / np1l mount point
automatically inherits the spool _max value as 32 and the nax_t hreads val ue as 16:

% dbfs client -0 nfs_munt=/mt/nfs -0 spool max=32 -0 max_t hreads=16
%setfattr -n mount -v "instl /mt/mpl" /mt/nfs

If you want to configure a mount point differently than the DBFS client, then use the setfattr
command in the following way:

% sefattr -n mount -v "inst2 /mt/np2 -o trace file=/tnp/
clnt.trc,trace_level =1" /mt/nfs

The preceding command enables only the trace for the DBFS client at the / rmt / np2 mount
point, but does not inherit the spool _max and max_t hr eads arguments that were specified at
the time of start up. The values specified with the set f attr command overwrite the values
specified during start up.

17.3.3.5 Diagnosability of DBFS Client

Starting from Oracle Database Release 21c, the DBFS Client writes an alert file in the client
trace directory of the configured Automatic Diagnostic Repository (ADR) base.

The alert files are generated for every instance of the DBFS client and can be found under
the cl i ent s/ DBFS/ DBFS/ t r ace directory of the ADR base. The file name is of the format
dbfs_alert_<client_pid>trc.

The alert file is different from the trace file. It is always enabled and only important activities of
the DBFS clients are written to the alert file.

17.3.4 DBFS Client Command-Line Interface Operations

The DBFS client command-line interface allows you to directly access files stored in DBFS.

17.3.4.1 About the DBFS Client Command-Line Interface

ORACLE

The DBFS client command-line interface allows you to perform many pre-defined commands,
such as copy files in and out of the DBFS filesystem from any host on the network.

The command-line interface has slightly better performance than the DBFS client mount
interface because it does not mount the file system, thus bypassing the user space file
system. However, it is not transparent to applications.

The DBFS client mount interface allows DBFS to be mounted through a file system mount
point thus providing transparent access to files stored in DBFS with generic file system
operations.

To run DBFS commands, specify - - command to the DBFS client.

All DBFS content store paths , in command-line interface ,must be preceded by dbfs: .This is
an example: dbf s: / stagi ng_areal/ fil el. All database path names specified must be
absolute paths.

dbfs_client db_user@b_server--comand comrand [switches] [argunents]

17-11

Chapter 17
Accessing DBFS File System

where:

e command is the executable command, such as|s, cp, nkdir, orrm

e switches are specific for each command.

e argunents are file names or directory names, and are specific for each command.

Note that dbfs_client returns a nonzero value in case of failure.

17.3.4.2 Listing a Directory

You can use the | s command to list the contents of a directory.
Use this syntax:

dbfs_client db_user@b_server --command Is [swi tches] target

where

e target is the listed directory.
e switches is any combination of the following:

— -ashows all files, including *. "and ". . ".

— -1 shows the long listing format: name of each file, the file type, permissions,
and size.

— - Rlists subdirectories recursively.
For example:

$ dbfs_client ETLUser @BConnectString --command Is dbfs:/staging_area/dirl

or

$ dbfs_client ETLUser @BConnectString --command |s -1 -a -R dbfs:/staging_area/dirl

17.3.4.3 Copying Files and Directories

ORACLE

You can use the cp command to copy files or directories from the source location to
the destination location.

The cp command also supports recursive copy of directories.

dbfs_client db_user @b _server --command cp [switches] source destination
where:

e source is the source location.

e destination is the destination location.

e switches is either - Ror -r, the options to recursively copy all source contents into
the destination directory.

The following example copies the contents of the local directory, 01- 01- 10- dunp
recursively into a directory in DBFS:

$ dbfs_client ETLUser @BConnect String --command cp -R 01-01-10-dunp dbfs:/stagi ng_areal

The following example copies the file hel | 0. t xt from DBFS to a local file H . t xt :

$ dbfs_client ETLUser @BConnect String --command cp dbfs:/staging_areal/hello.txt Hi.txt

17-12

Chapter 17
Accessing DBFS File System

17.3.4.4 Removing Files and Directories

You can use the command r mto delete a file or directory.

The command r malso supports recursive delete of directories.
dbfs_client db_user@b_server --conmmand rm[switches] target
where:

e target is the listed directory.
e switches is either -Ror -r, the options to recursively delete all contents.
For example:

$ dbfs_client ETLUser @BConnect String --command rm dbfs:/stagi ng_areal/srcdir/hello.txt

or

$ dbfs_client ETLUser @BConnectString --command rm-R dbfs:/staging_area/dirl

17.3.5 DBFS Mounting Interface (Linux and Solaris Only)

You can mount DBFS using the dbfs_cl i ent in Linux and Solaris only.

The instructions indicate the different requirements for the Linux and Solaris platforms.

17.3.5.1 Installing FUSE on Solaris 11 SRU7 and Later

You can use dbfs_cl i ent as a mount client in Solaris 11 SRU7 and later, if you install FUSE
Install FUSE to use dbfs_cl i ent as a mount client in Solaris 11 SRU7 and later.

e Run the following package as r oot .

pkg install |ibfuse

17.3.5.2 Solaris-Specific Privileges

On Solaris, the user must have the Solaris privilege PRI V_SYS_MOUNT to perform mount and
unmount operations on DBFS filesystems.

Give the user the Solaris privilege PRI V_SYS_MOUNT .

1. Edit/etc/user_attr.
2. Add or modify the user entry (assuming the user is Oracle) as follows:

oracle::::type=nornal ; proj ect =gr oup. dba; def aul t pri v=basi c, priv_sys_nount;;auth
s=sol aris.snf.*

17.3.5.3 About the Mount Command for Solaris and Linux

The dbfs_cl i ent mount command for Solaris and Linux uses specific syntax.

Syntax:

dbfs_client db_user@b_server [-0 option_1 -0 option_2 ...] nount_point

ORACLE 17-13

Chapter 17
Accessing DBFS File System

where the mandatory parameters are:

db_user is the name of the database user who owns the DBFS content store file
system.

db_server is a valid connect string to the Oracle Database server, such as
hrdb_host: 1521/ hr servi ce or an alias specified in the t nsnanes. or a.

mount _poi nt is the path where the Database File System is mounted. Note that all
file systems owned by the database user are visible at the mount point.

The options are:

di rect _i o: To bypass the OS page cache and provide improved performance for
large files. Programs in the file system cannot be executed with this option. Oracle
recommends this option when DBFS is used as an ETL staging area.

wal | et : To run the DBFS client in the background. The Wallet must be configured
to get its credentials.

fail over: To fail over the DBFS client to surviving database instances without
data loss. Expect some performance cost on writes, especially for small files.

al | ow _root : To allow the root user to access the filesystem. You must set the
user _al | ow_ot her parameter in the / et ¢/ f use. conf configuration file.

al | ow_ot her: To allow other users to access the filesystem. You must set the
user _al | ow ot her parameter in the / et ¢/ f use. conf configuration file.

rw. To mount the filesystem as read-write. This is the default setting.
r o: To mount the filesystem as read-only. Files cannot be modified.
trace_l evel =n sets the trace level. Trace levels are:

— 1 DEBUG

— 2 INFO

— 3 WARNING

— 4 ERROR The default tracing level. It outputs diagnostic information only when
an error happens. It is recommended that this tracing level is always enabled.

5 CRITICAL

trace_fil e=STR Specifies the tracing log file, where STR can be either a
file_name or sysl og.

trace_size=trcfil e_size: Specifies size of the trace file in MB. By default,
dbfs_client rotates tracing output between two 10MB files. Specifying 0 for
trace_si ze sets the maximum size of the trace file to unlimited.

17.3.5.4 Mounting a File System with a Wallet

You can mount a file system with a wallet after configuring various environment
variables.

ORACLE

You must first configure the LD_LI BRARY_PATH, ORACLE_HOME environment variables and
sqgl net. ora correctly before mounting a file system with a wallet.

1.

Login as admin user.

17-14

Chapter 17
Accessing DBFS File System

2. Mount the DBFS store. (Oracle recommends that you do not perform this step as root
user.)

% dbfs_client @dbfsdb -0 wallet,rw user,direct_io /mt/dbfs

3. [Optional] To test if the previous step was successful, as admin user, list the dbf s
directory.

$Is /mt/tdbfs

Using the wallet option runs the dbfs_cli ent in the background

¢ See Also:
Using Oracle Wallet with DBFS Client

17.3.5.5 Mounting a File System with Password at Command Prompt

You must enter a password at the command prompt to mount a file system using
dbfs client.

e Execute the following command at the command prompt and provide the password:

$ dbfs_client ETLUser @BConnect String /mt/dbfs
password: XXXXXXX

The dbfs_client runs in the foreground after the password is provided at the command
prompt.

17.3.5.6 Unmounting a File System

In Linux, you can run f user mount to unmount file systems.

. Linux
e Solaris
Linux

To run fusermount in Linux, do the following:

Solaris
In Solaris, you can run umount to unmount file systems.

17.3.5.7 Mounting DBFS Through fstab Utility for Linux

In Linux, you can configure f st ab utility to use dbfs_cl i ent to mount a DBFS filesystem.

To mount DBFS through / et ¢/ f st ab, you must use Oracle Wallet for authentication.

ORACLE 17-15

Chapter 17
Accessing DBFS File System

Login as r oot user.
Change the user and group of dbfs_cl i ent to user root and group f use.
chown root.fuse $ORACLE_HOVE/ bi n/ dbfs_cli ent

Set the set ui d bit on dbf s_cl i ent and restrict execut e privileges to the user and
group only.

chmod u+rwxs, g+rx-w, o-rwx dbfs_client

Create a symbolic link to dbf s_cl i ent in/sbhin as "nount. dbfs".

$ In -s $ORACLE_HOVE/ bi n/ dbfs_client /shin/mount.dbfs

Create a new Linux group called "f use".

Add the Linux user that is running the DBFS Client to the f use group.
Add the following line to / et ¢/ f st ab:

/ sbi n/ mount . dbf s#db_user @b_server mount_point fuse rw, user, noauto 0 0

For example:
/ sbi n/ mount . dbf s#/ @BConnect String /mt/dbfs fuse rw, user, noauto 0 0

The Linux user can mount the DBFS file system using the standard Linux nount
command. For example:

$ nount /mmt/dbfs

Note that FUSE does not currently support aut omount .

17.3.5.8 Mounting DBFS Through the vfstab Utility for Solaris

On Solaris, file systems are commonly configured using the vf st ab utility.

ORACLE

1.

Create a mount shell script mount _dbf s. sh to use to start dbfs_cl i ent. All the
environment variables that are required for Oracle RDBMS must be exported.
These environment variables include TNS_ADM N, ORACLE_HOME, and

LD_LI BRARY_PATH. For example:

#1'/bi n/ ksh

export TNS_ADM N=/ export/hone/ or acl e/ dbf s/t nsadni n

export ORACLE_HOME=/ export/home/ oracl e/ 11. 2. 0/ dbhone_1

export DBFS_USER=dbfs_user

export DBFS_PASSWD=/t np/ passwd. f

export DBFS_DB_CONN=dbfs_db

export O=$ORACLE_HOME

export LD LI BRARY_PATH=$Q |i b: $Q' rdbns/lib:/usr/lib:/lib:$LD LI BRARY_PATH
export NOHUP_LOG=/t np/ dbf s. nohup

(nohup $ORACLE_HOWE/ bi n/ dbfs_client $DBFS_USER@DBFS_DB CONN < $DBFS_PASSWD
2>81 &) &

Add an entry for DBFS to / et ¢/ vf st ab. Specify the nount _dbf s. sh script for the
devi ce_to_nount . Specify uvf s for the FS_t ype. Specify no f or rount _at _boot .
Specify mount options as needed. For example:

[usr/1ocal /bin/mount _dbfs.sh - /mt/dbfs uvfs - no rw all ow ot her

User can mount the DBFS file system using the standard Solaris mount command.
For example:

17-16

Chapter 17
Accessing DBFS File System

$ mount /mt/dbfs

4. User can unmount the DBFS file system using the standard Solaris umount command.
For example:

$ unount /mt/dbfs

17.3.5.9 Restrictions on Mounted File Systems

DBFS supports most file system operations with exceptions.
The exceptions are:

e ioctl

* range locking (file locking is supported)

e asynchronous I/O through | i bai o

e O_DI RECT file opens

* hard links

e other special file modes

Memory-mapped files are supported except in shared-writable mode. For performance
reasons, DBFS does not update the file access time every time file data or the file data
attributes are read.

You cannot run programs which user Memory mapped files from a DBFS-mounted file system
if the di rect _i o option is specified.

Oracle does not support exporting DBFS file systems using NFS or Samba.

17.3.5.10 Restrictions on Types of Files Stored at DBFS Mount Points

DBFS should be avoided in scenarios that can cause a file operation on the DBFS files
resulting in more data to be written back to the DBFS.

The following scenarios are not exhaustive but provide examples of operations that can make
the DBFS and the database interdependent and hence should be avoided:

* Sample Scenario 1: DBFS is the destination for the trace files generated by the same
database that is hosting the DBFS.
For example: The act of writing the trace file into the DBFS could generate more trace
data to be written back into DBFS.

* Sample Scenario 2: The trail file of a database replication is in a DBFS and the DBFS is
in the SAME database that is being replicated.
For example: The act of writing into the trail by the replication process generates redo.
This redo could feed back into the replication.

» Sample Scenario 3: DBFS is the destination of any database files of the same database.
For example: The data files, control files, redo log files could make the DBFS and the
database inter dependent.

17.3.6 File System Security Model

The database manages security in DBFS. It does not use the operating system security
model.

ORACLE 17-17

Chapter 17
Accessing DBFS File System

17.3.6.1 About the File System Security Model

DBFS operates under a security model where all file systems created by a user are
private to that user, by default.

Oracle recommends maintaining this model. Because operating system users and
Oracle Database users are different, it is possible to allow multiple operating system
users to mount a single DBFS filesystem. These mounts may potentially have different
mount options and permissions. For example, OS user 1 may mount a DBFS
filesystem as READ ONLY, and OS user 2 may mount it as READ WRI TE. However, Oracle
Database views both users as having the same privileges because they would be
accessing the filesystem as the same database user.

Access to a database file system requires a database login as a database user with
privileges on the tables that underlie the file system.The database administrator grants
access to a file system to database users, and different database users may have
different READ or UPDATE privileges to the file system. The database administrator has
access to all files stored in the DBFS file system.

On each client computer, access to a DBFS mount point is limited to the operating
system user that mounts the file system. This, however, does not limit the number of
users who can access the DBFS file system, because many users may separately
mount the same DBFS file system.

DBFS only performs database privilege checking. Linux performs operating system
file-level permission checking when a DBFS file system is mounted. DBFS does not
perform this check either when using the command interface or when using the
PL/SQL interface directly.

17.3.6.2 Enabling Shared Root Access

As an operating system user who mounts the file system, you can allow root access to
the file system by specifying the al | ow_r oot option.

This option requires that the / et ¢/ f use. conf file contain the user _al | ow ot her field,
as demonstrated in Example 17-1.

Example 17-1 Enabling Root Access for Other Users

Allow users to specify the "allow root' nount option.
user _al | ow_ot her

17.3.6.3 About DBFS Access Among Multiple Database Users

ORACLE

DBFS allows multiple users to share a subset of the filesystem state.

A Single filesystem may be accessed by multiple database users. For example, the
database user that owns the filesystem may be a privileged user and sharing its user
credentials may pose a security risk. To mitigate this, DBFS allows multiple database
users to share a subset of the filesystem state.

While DBFS registrations and mounts made through the DBFS Content API are
private to each user, the underlying filesystem and the tables on which they rely may
be shared across users. After this is done, the individual filesystems may be
independently mounted and used by different database users, either through SQL/
PLSQL, or through dbfs_client.

17-18

Chapter 17
Accessing DBFS File System

17.3.6.4 Establishing DBFS Access Sharing Across Multiple Database Users

Learn about sharing access of DBFS to multiple database users in this section.

ORACLE

In the following example, user user 1 is able to modify the filesystem, and user user 2 can see
these changes. Here, user 1 is the database user that creates a filesystem, and user 2 is the
database user that eventually uses dbfs_cl i ent to mount and access the filesystem. Both
user 1 and user 2 must have the DBFS_RCLE privilege.

1.

Connect as the user who creates the filesystem.

sys@ank as sysdba> connect userl
Connect ed.

Create the filesystem user 1_FS, register the store, and mount it as user1_nt.

user 1@ ank> exec dbns_dbfs_sfs. createFil esysten(' userl FS);

user 1@ ank> exec dbns_dbfs_content.registerStore(' userl_FS, 'posix',

' DBMS_DBFS_SFS');

user 1@ ank> exec dbns_dbfs_content. nount Store('userl FS, 'userl mt');
user1@ank> commi t;

[Optional] You may check that the previous step has completed successfully by viewing
all mounts.

user1@ank> sel ect * fromtabl e(dbms_dbfs_content.|istMunts);

STORE_NAME | STORE | D| PROVI DER_NANE

RN DR K6 | PROA DERLI D{ PROV DERVERSI O\ | STORE FETURES
soean A SR S
STORE_MOLAT

GomE T

userl_FS | 1362968596| posi x
" DBMS_DBFS_SFS' | 3350646887|0.5.0 | 12714135 141867344
user1l mt

01- FEB- 10 09. 44. 25. 357858 PM

DBMS_DBFS_CONTENT_PROPERTI ES_T(
DBVMS_DBFS_CONTENT_PROPERTY_T(' principal', (null), 9),
DBVS_DBFS_CONTENT_PROPERTY_T(' owner', (null), 9),
DBVMS_DBFS_CONTENT_PROPERTY_T('acl', (null), 9),
DBVS_DBFS_CONTENT_PROPERTY_T(' asof', (null), 187),
DBVMS_DBFS_CONTENT_PROPERTY_T('read_only', '0', 2))

[Optional] Connect as the user who will use the dbfs_client.

user 1@ ank> connect user?2
Connect ed.

[Optional] Note that user 2 cannot see user 1's DBFS state, as he has no mounts.
user2@ank> select * fromtabl e(dbns_dbfs_content.listMunts);

While connected as user 1, export filesystem user 1_FS for access to any user with
DBFS_ROLE privilege.

17-19

ORACLE

10.

Chapter 17
Accessing DBFS File System

user 1@ ank> exec dbns_dbfs_sfs. exportFilesysten('userl FS');
user1@ank> commit;

Connect as the user who will use the dbfs_client.

user 1@ ank> connect user?2
Connect ed.

As user 2, view all available tables.

user2@ank> sel ect * fromtable(dbns_dbfs_sfs.|istTables);

SCHEMA_NANE | TABLE_NAVE | PTABLE_NAVE
___________________________ |___________________________|___________________
VERSI ON#

-------------------------------- CREATED

FORMATTED

user 1 | SFS$_FST 11 | SFS$_FSTP_11
0.5.0

01- FEB- 10 09. 43.53. 497856 PM

01- FEB- 10 09. 43.53. 497856 PM

(nul)

As user 2, register and mount the store, but do not re-create the user1_FS
filesystem.

user 2@ ank> exec dbms_dbfs_sfs. registerFil esysten
‘user2_FS, 'userl', 'SFS$_FST_11');

user 2@ ank> exec dbms_dbfs_content. regi sterStore(
"user2_FS, 'posix', 'DBMS_DBFS_SFS');

user 2@ ank> exec dbns_dbfs_cont ent. nount St or e(
‘user2_FS', 'user2_mt');

user2@ank> comit;

[Optional] As user 2, you may check that the previous step has completed
successfully by viewing all mounts.

user2@ank> sel ect * fromtabl e(dbms_dbfs_content.|istMunts);

STORE_NAME | STORE_| D| PROVI DER_NANE
PRONDER PG | PROVIDERLI | PROVIDER VERSI N | STOREFEATLRES
soean e e A
STORE NOAT

Goaes T

user2_FS | 1362968596| posi x
" DBVS_DBFS_SFS' | 3350646887|0.5.0 | 12714135 141867344
user1l mt

01- FEB- 10 09. 46. 16. 013046 PM
DBVS_DBFS_CONTENT _PROPERTI ES_T
DBVS_DBFS_CONTENT PROPERTY T
DBVS_DBFS_CONTENT PROPERTY T
DBVS_DBFS_CONTENT PROPERTY T

"principal’, (null), 9),
"owner', (null), 9),
"acl', (null), 9),

—— — —

17-20

ORACLE

Chapter 17

Accessing DBFS File System

DBVS_DBFS_CONTENT PROPERTY T('asof', (null), 187),
DBVS_DBFS_CONTENT _PROPERTY T('read only', '0', 2))

11. [Optional] List path names for user 2 and user 1. Note that another mount, user 2_mt , for
store user 2_FS, is available for user 2. However, the underlying filesystem data is the

12.

13.

14.

same for user 2 as for user 1.

user2@ ank> sel ect pathnane from dbfs_content;

PATHNAVE

[user2_mt
[user2_mt/.sfs/tools
[user2_mt/. sfs/snapshots
/user2_mt/.sfs/content
/user2_mt/.sfs/attributes
[user2_mt /. sfs/ RECYCLE
[user2_mt/.sfs

user 2@ ank> connect userl
Connect ed.

user 1@ ank> sel ect pathnane from dbfs_content;

PATHNAVE

[user1_mt

/userl _mt/.sfs/tools
[user1l_mt/.sfs/snapshots
/userl_mt/.sfs/content
/userl _mt/.sfs/attributes
/userl_mt/.sfs/RECYCLE
/userl mt/.sfs

In filesystem user 1_FS, user 1 creates file xxx.

user 1@ ank> decl are

data bl ob;
properties dbns_dbfs content.properties t;
begin

properties(' posix:mde') :=
dbns_dbfs_content. propNunber (33188) ;

dbns_dbfs_content.createFile(' /userl mt/xxx', properties

=> properties, content => data);
end;
/

[Optional] Write to file xxx, created in the previous step.

user 1@ ank> var buf varchar?2(100);

user1@ank> exec :buf := "hello world";

user 1@ ank> exec dbms_| ob. writ eappend(:data, |ength(:buf),
utl _raw. cast_to_raw :buf));

user1@ank> comit;

[Optional] Show that file xxx exists, and contains the appended data.

user 1@ ank> sel ect pathnane, utl _raw cast_to_varchar2(filedata)
from dbfs_content where filedata is not null;

17-21

Chapter 17
Accessing DBFS File System

PATHNAME

[user1_mt/xxx
hello world

15. User user 2 sees the same file in their own DBFS-specific path name and mount
prefix.

user 1@ ank> connect user2
Connect ed.

user2@ ank> sel ect pathnane, utl_raw cast_to_varchar2(filedata) from
dbfs_content where filedata is not null;

PATHNAVE

[user2_mt/ xxx
hello world

After the export and register pairing completes, both users behave as equals with
regard to their usage of the underlying tables. The export Fi | esyst en() procedure
manages the necessary grants for access to the same data, which is shared between
schemas. After user 1 calls export Fi | esysten(), filesystem access may be granted to
any user with DBFS_ROLE. Note that a different role can be specified to

exportFil esystem

Subsequently, user 2 may create a new DBFS filesystem that shares the same
underlying storage as the user 1_FS filesystem, by invoking
dbns_dbfs_sfs.registerFilesysten(), dbms_dbfs _sfs.registerStore(), and
drmbs_dbf s_sfs. nount St ore() procedure calls.

When multiple database users share a filesystem, they must ensure that all database
users unregister their interest in the filesystem before the owner (here, user 1) drops
the filesystem.

Oracle does not recommend that you run the DBFS as r oot .

17.3.7 HTTP, WebDAV, and FTP Access to DBFS

Components that enable HTTP, WebDAV, and FTP access to DBFS over the Internet
use various XML DB server protocols.

17.3.7.1 Internet Access to DBFS Through XDB

ORACLE

To provide database users who have DBFS authentication with a hierarchical file
system-like view of registered and mounted DBFS stores, stores are displayed under
the path / dbf s.

The / dbf s folder is a virtual folder because the resources in its subtree are stored in
DBFS stores, not the XDB repository. XDB issues a dbms_dbfs_content. list()

17-22

Chapter 17
Accessing DBFS File System

command for the root path name "/ " (with invoker rights) and receives a list of store access
points as subfolders in the / dbf s folder. The list is comparable to st ore_nmount parameters
passed to dbrms_dbfs_cont ent. mount Store(). FTP and WebDAV users can navigate to
these stores, while HTTP and HTTPS users access URLSs from browsers.

Note that features implemented by the XDB repository, such as repository events, resource
configurations, and ACLs, are not available for the / dbf s folder.

DBFS Content API for guidelines on DBFS store creation, registration, deregistration, mount,
unmount and deletion

17.3.7.2 Web Distributed Authoring and Versioning (WebDAV) Access

WebDAV is an IETF standard protocol that provides users with a file-system-like interface to
a repository over the Internet.

WebDAV server folders are typically accessed through Web Folders on Microsoft Windows
(2000/NT/XP/Vista/7, and so on). You can access a resource using its fully qualified name,
for example, / dbf s/ sfsl1/dirl/filel.txt, where sfsl isthe name of a DBFS store.

You need to set up WebDAV on Windows to access the DBFS filesystem.

¢ See Also:
Oracle XML DB Developer's Guide

The user authentication required to access the DBFS virtual folder is the same as for the
XDB repository.

When a WebDAV client connects to a WebDAV server for the first time, the user is typically
prompted for a username and password, which the client uses for all subsequent requests.
From a protocol point-of-view, every request contains authentication information, which XDB
uses to authenticate the user as a valid database user. If the user does not exist, the client
does not get access to the DBFS store or the XDB repository. Upon successful
authentication, the database user becomes the current user in the session.

XDB supports both basic authentication and digest authentication. For security reasons, it is
highly recommended that HTTPS transport be used if basic authentication is enabled.

17.3.7.3 FTP Access to DBFS

FTP access to DBFS uses the standard FTP clients found on most Unix-based distributions.
FTP is a file transfer mechanism built on client-server architecture with separate control and
data connections.

FTP users are authenticated as database users. The protocol, as outlined in RFC 959, uses
clear text user name and password for authentication. Therefore, FTP is not a secure
protocol.

The following commands are supported for DBFS:

e USER: Authentication username
e PASS: Authentication password

* OWD: Change working directory

ORACLE 17-23

Chapter 17
Maintaining DBFS

* CDUP: Change to Parent directory

e QU T: Disconnect

» PORT: Specifies an address and port to which the server should connect
e PASV: Enter passive mode

» TYPE: Sets the transfer mode, such as, ASCII or Binary

* RETR Transfer a copy of the file

e STOR Accept the data and store the data as a file at the server site

* RNFR Rename From

* RNTOG Rename To

* DELE: Delete file

* RMVD: Remove directory

e MKD: Make a directory

e PWD: Print working directory

e LI ST: Listing of a file or directory. Default is current directory.

e NLST: Returns file names in a directory

e HELP: Usage document

e SYST: Return system type

* FEAT: Gets the feature list implemented by the server

e NOOP: No operation (used for keep-alives)

» EPRT: Extended address (IPv6) and port to which the server should connect

e EPSV: Enter extended passive mode (IPv6)

17.3.7.4 HTTP Access to DBFS

Users have read-only access through HTTP/HTTPS protocols.

Users point their browsers to a DBFS store using the XDB HTTP server with a URL
such as htt ps://host nane: port/ dbf s/ sfsl where sfslis a DBFS store name.

17.4 Maintaining DBFS

DBFS administration includes tools that perform diagnostics, manage failover, perform
backup, and so on.

17.4.1 Using Oracle Wallet with DBFS Client

Learn about using Oracle Wallet in this section.

An Oracle Wallet allows the DBFS client to mount a DBFS store without requiring the
user to enter a password.

ORACLE 17-24

Chapter 17
Maintaining DBFS

¢ See Also:

Oracle Database Enterprise User Security Administrator's Guide for more
information about creation and management of wallets

1. Create a directory for the wallet. For example:

mkdi r $ORACLE_HOVE/ or acl e/ wal | et
2. Create an auto-login wallet.

mkstore -w| $ORACLE_HOWE oracle/wall et -create
3. Add the wallet location in the client's sql net . or a file:

WALLET_LOCATI ON = (SOURCE = (METHOD = FILE) (METHOD DATA = (DI RECTORY =
$ORACLE_HOMVE/ oracl e/ val l et)))

4. Add the following parameter in the client's sqgl net . or a file:
SQLNET. WALLET_OVERRI DE = TRUE
5. Create credentials:

nkstore -wl wallet_location -createCredential db_connect_string usernane password

For example:

mkstore -w| $ORACLE_HOVE/ oracl e/ wal | et -createCredential DBConnectString scott
password

6. Add the connection alias to your t nsnames. or a file.
7. Usedbfs_client with Oracle Wallet.
For example:

$ dbfs_client -o wallet /@BConnectString /mt/dbfs

17.4.2 DBFS Diagnostics

ORACLE

The dbfs_cl i ent program supports multiple levels of tracing to help diagnose problems.

The dbfs_cl i ent can either output traces to a file or to / var/ | og/ messages using the sysl og
daemon on Linux.

When you trace to a file, the dbf s_cl i ent program keeps two trace files on disk.
dbfs_client, rotates the trace files automatically, and limits disk usage to 10 MB.

By default, tracing is turned off except for critical messages which are always logged
to/var/l og/ messages.

If dbf s_cl i ent cannot connect to the Oracle Database, enable tracing using the trace_| evel
and trace_fil e options. Tracing prints additional messages to log file for easier debugging.

DBFS uses Oracle Database for storing files. Sometimes Oracle server issues are
propagated to dbfs_client as errors. If there is a dbfs_client error, please view the Oracle
server logs to see if that is the root cause.

17-25

Chapter 17
Maintaining DBFS

17.4.3 Preventing Data Loss During Failover Events

The dbf s_cl i ent program can failover to one of the other existing database instances
if one of the database instances in an Oracle RAC cluster fails.

For dbf s_cl i ent failover to work correctly, you must modify the Oracle database
service and specify failover parameters. Run the DBMS_SERVI CE. MODI FY_SERVI CE
procedure to modify the service as shown Example 17-2

Example 17-2 Enabling DBFS Client Failover Events

exec DBMS_SERVI CE. MODI FY_SERVI CE(servi ce_name => 'service_nane',
ag_ha_notifications => true,
failover_nethod => 'BASIC ,
failover_type => ' SELECT',
failover _retries => 180,
failover_delay => 1);

Once you have completed the prerequisite, you can prevent data loss during a failover
of the DBFS connection after a failure of the back-end Oracle database instance. In
this case, cached writes may be lost if the client loses the connection. However, back-
end failover to other Oracle RAC instances or standby databases does not cause lost
writes.

e Specify the -0 fail over mount option:

$ dbfs_client database_user @atabase_server -o failover /mt/dbfs

17.4.4 Bypassing Client-Side Write Caching

The sharing and caching semantics for dbf s_cl i ent are similar to NFS in using the
close-to-open cache consistency behavior.

This allows multiple copies of dbf s_cl i ent to access the same shared file system.
The default mode caches writes on the client and flushes them after a timeout or after
the user closes the file. Also, writes to a file only appear to clients that open the file
after the writer closed the file.

You can bypass client-side write caching.

e Specify O SYNC when the file is opened.

To force writes in the cache to disk call f sync.

17.4.5 Backing up DBFS

You have two alternatives for backing up DBFS.

You can back up the tables that underlie the file system at the database level or use a
file system backup utility, such as Oracle Secure Backup, through a mount point.

Topics:

17.4.5.1 DBFS Backup at the Database Level

An advantage of backing up the tables at the database level is that the files in the file
system are always consistent with the relational data in the database.

ORACLE 17-26

Chapter 17
Shrinking and Reorganizing DBFS Filesystems

A full restore and recover of the database also fully restores and recovers the file system with
no data loss. During a point-in-time recovery of the database, the files are recovered to the
specified time. As usual with database backup, modifications that occur during the backup do
not affect the consistency of a restore. The entire restored file system is always consistent
with respect to a specified time stamp.

17.4.5.2 DBFS Backup Through a File System Utility

The advantage of backing up the file system using a file system backup utility is that
individual files can be restored from backup more easily.

Any changes made to the restored files after the last backup are lost.

Specify the al | ow_r oot mount option if backups are scheduled using the Oracle Secure
Backup Administrative Server.

17.4.6 Small File Performance of DBFS

Like any shared file system, the performance of DBFS for small files lags the performance of
a local file system.

Each file data or metadata operation in DBFS must go through the FUSE user mode file
system and then be forwarded across the network to the database. Therefore, each operation
that is not cached on the client takes a few milliseconds to run in DBFS.

For operations that involve an input/output (10) to disk, the time delay overhead is masked by
the wait for the disk 10. Naturally, larger I0s have a lower percentage overhead than smaller
I0s. The network overhead is more noticeable for operations that do not issue a disk 10.

When you compare the operations on a few small files with a local file system, the overhead
is not noticeable, but operations that affect thousands of small files incur a much more
noticeable overhead. For example, listing a single directory or looking at a single file produce
near instantaneous response, while searching across a directory tree with many thousands of
files results in a larger relative overhead. Oracle recommends di rect _i o option in
dbfs_client for optimal performance for reads and writes.

17.5 Shrinking and Reorganizing DBFS Filesystems

DBFS uses Online File system Reorganization to shrink itself, enabling the release of
allocated space back to the containing tablespace.

17.5.1 About Changing DBFS File Systems

ORACLE

DBFS file systems, like other database segments, grow dynamically with the addition or
enlargement of files and directories.

Growth occurs with the allocation of space from the tablespace that holds the DBFS file
system to the various segments that make up the file system.

However, even if files and directories in the DBFS file system are deleted, the allocated
space is not released back to the containing tablespace, but continues to exist and be
available for other DBFS entities. A process called Online Filesystem Reorganization solves
this problem by shrinking the DBFS Filesystem.

17-27

Chapter 17
Shrinking and Reorganizing DBFS Filesystems

The DBFS Online Filesystem Reorganization utility internally uses the Oracle
Database online redefinition facility, with the original file system and a temporary
placeholder corresponding to the base and interim objects in the online redefinition
model.

" See Also:

Oracle Database Administrator's Guide for further information about online
redefinition

17.5.2 Advantages of Online Filesystem Reorganization

DBFS Online Filesystem Reorganization is a powerful data movement facility with
these certain advantages.

These are:

* Itis online: When reorganization is taking place, the filesystem remains fully
available for read and write operations for all applications.

* It can reorganize the structure: The underlying physical structure and
organization of the DBFS filesystem can be changed in many ways, such as:

— A non-partitioned filesystem can be converted to a partitioned filesystem and
vice-versa.

— Special SecureFiles LOB properties can be selectively enabled or disabled in
any combination, including the compression, encryption, and deduplication
properties.

— The data in the filesystem can be moved across tablespaces or within the
same tablespace.

* It can reorganize multiple filesystems concurrently: Multiple different
filesystems can be reorganized at the same time, if no temporary filesystems have
the same name and the tablespaces have enough free space, typically, twice the
space requirement for each filesystem being reorganized.

17.5.3 Determining Availability of Online Filesystem Reorganization

ORACLE

DBFS for Oracle Database 12¢ and later supports online filesystem reorganization.
Some earlier versions also support the facility.

To determine if your version does, query for a specific function in the DBFS PL/SQL
packages, as shown below:

e Query for a specific function in the DBFS PL/SQL packages.

$ sqlplus / as sysdba

SELECT * FROM dba_procedures

WHERE owner = 'SYS
and obj ect _name = ' DBMS_DBFS_SFS
and procedure_nane = ' REORGANI ZEFS' ;

If this query returns a single row similar to the one in this output, the DBFS installation
supports Online Filesystem Reorganization. If the query does not return any rows,

17-28

Chapter 17
Shrinking and Reorganizing DBFS Filesystems

then the DBFS installation should either be upgraded or requires a patch for bug-10051996.

OBJECT | D| SUBPROGRAM | D| OVERLOAD | OBJECT TYPE |AGG PIP

oeeeelee FERCESRteE R CCCLLIEEEEEERRTTLLETEI |- |-
| MPLTYPEOANER

PAR| | NT| DET| AUTHI D
s R R EEEEEREEEEEE

DBMVS_DBFS_SFS
REORGANI ZEFS

11424| 52| (nul 1) | PACKAGE | NO | NO
(null)
(null)
NO | NO | NO | CURRENT USER

17.5.4 Required Permissions for Online Filesystem Reorganization

Database users must have the following set of privileges for Online Filesystem
Reorganizaton.

Users must have these privileges:
e ALTER ANY TABLE

* DRCP ANY TABLE

e LOCK ANY TABLE

* CREATE ANY TABLE

e SELECT ANY TABLE

* REDEFI NE ANY TABLE

* CREATE ANY TRI GGER

* CREATE ANY | NDEX

* CREATE TABLE

* CREATE MATERI ALI ZED VI EW
° CREATE TRI GGER

ORACLE 17-29

Chapter 17
Shrinking and Reorganizing DBFS Filesystems

17.5.5 Invoking Online Filesystem Reorganization

You can perform an Online Filesystem Reorganization by creating a temporary DBFS
filesystem.

Note:

Ensure that you don't create the temporary DBFS filesystem in the SYS
schema. DBFS Online Filesystem Reorganization will not work if you create
the temporary DBFS filesystem in the SYS schema.

1. Create a temporary DBFS filesystem with the desired new organization and
structure: including the desired target tablespace (which may be the same
tablespace as the filesystem being reorganized), desired target SecureFiles LOB
storage properties (compression, encryption, or deduplication), and so on.

2. Invoke the PL/SQL procedure to reorganize the DBFS filesystem using the newly-
created temporary filesystem for data movement.

3. Once the reorganization procedure completes, drop the temporary filesystem.

The example below reorganizes DBFS filesystem FS1 in tablespace TS1 into a new
tablespace TS2, using a temporary filesystem named TMP_FS, where all filesystems
belong to database user dbf s_user:

$ cd $ORACLE_HOVE/ r dbns/ adni n
$ sql plus dbfs_user/***

@bfs_create_filesystem TS2 TMP_FS

EXEC DBVS_DBFS_SFS. REORGANI ZEFS(' FS1', ' TMP_FS');
@bfs_drop_filesystem TMP_FS

QT

where:

e TMP_FS can have any valid name. It is intended as a temporary placeholder and
can be dropped (as shown in the example above) or retained as a fully
materialized point-in-time snapshot of the original filesystem.

e FSl is the original filesystem and is unaffected by the attempted reorganization. It
remains usable for all DBFS operations, including SQL, PL/SQL, and dbfs_cl i ent
mounts and commandline, during the reorganization. At the end of the
reorganization, FS1 has the new structure and organization used to create TMP_FS
and vice versa (TMP_FS will have the structure and organization originally used for
FS1). If the reorganization fails for any reason, DBFS attempts to clean up the
internal state of FS1.

» TS2 needs enough space to accommodate all active (non-deleted) files and
directories in FS1.

e TSl needs at least twice the amount of space being used by FS1 if the filesystem is
moved within the same tablespace as part of a shrink.

ORACLE 17-30

DBFS Hierarchical Store

The DBFS Hierarchical Store and related store wallet management work together to store
less frequently used data.

18.1 About the Hierarchical Store Package DBMS_DBFS HS

The Oracle DBFS Hierarchical Store package (DBMS_DBFS_HS) is a store provider for
DBVMS_DBFS_CONTENT that supports hierarchical storage for DBFS content.

The package stores content in external storage devices like tape and Amazon S3 web
service, and associated metadata (or properties) in the database. The DBFS HS may cache
frequently accessed content in database tables to improve performance.

The DBM5_DBFS_HS package provides you the ability to use tape as a storage tier when
implementing Information Lifecycle Management (ILM) for database tables or content. The
data on tape or Amazon S3 is part of the Oracle Database and all standard APIs can access
it, but only through the database.

DBVMS_DBFS_HS has additional interfaces needed to manage the external storage device and
the cache associated with each store.

To use the package DBMS_DBFS_HS, you must be granted the DBFS_ROLE role.

18.2 Setting up the Store

You can create, register, and mount a hierarchical Store.

18.2.1 Creating, Registering, and Mounting the Store

Setting up a hierarchical file system store requires creating, registering, and mounting the
store.

Creating, registering, and mounting the store.

1. Call CREATESTORE.

¢ See Also:

CREATESTORE Procedure for more information on CREATESTORE procedure.

" Note:

You create a wallet with the credentials of the Amazon S3 accounts if Amazon
S3is used as the external storage.

ORACLE 18-1

Chapter 18
Using the Hierarchical Store

2. Set mandatory and optional properties using DBM5_DBFS_HS. SETSTOREPROPERTY.

¢ See Also:

SETSTOREPROPERTY Procedure for more information on
SETSTOREPRCPERTY procedure.

3. Register the store using DBMS_DBFS CONTENT. REG STERSTORE.

¢ See Also:

REGISTERSTORE Procedure for more information on REG STERSTORE
procedure.

4. Mount the store using DBMS_DBFS CONTENT. MOUNTSTORE.

" See Also:

MOUNTSTORE Procedure for more information on MOUNTSTORE
procedure.

18.3 Using the Hierarchical Store

You can use the Hierarchical Store as an independent file system or as an archive
solution for SecureFile LOBs.

18.3.1 Using Hierarchical Store as a File System

Use the DBMS_DBFS_CONTENT package to create, update, read, and delete file system
entries in the store.

¢ See Also:
DBFS Content API

18.3.2 Using Hierarchical Store as an Archive Solution For
SecureFiles LOBs

Use the DBMS_LOB package to archive SecureFiles LOBs in a tape or an S3 store.

The DBM5S_LOB package archives SecureFiles LOBs in a tape or an S3 store. Use the
following method to free space in the cache or to force cache resident contents to be
written to an external storage device:

DBMS_DBFS_HS. st or ePush(st ore_nane) ;

ORACLE 18-2

Chapter 18
Using the Hierarchical Store

18.3.3 Dropping a Hierarchical Store

You can drop a hierarchical store.
To drop a hierarchical store, call:

DBVS_DBFS _HS. dropSt ore(store_nane, opt_flags);

18.3.4 Compression to Use with the Hierarchical Store

The DBFS hierarchical store can store its files in compressed forms.

The DBFS hierarchical store has the ability to store its files in compressed form using the
SETPROPERTY method and the property PROPNAME_COMPRESSLVL to specify the compression
level.

Valid values are:

° PROPVAL_COWPLVL_NONE: No compression

* PROPVAL_COWPLVL_LON LOWNcompression

e PROPVAL_COWPLVL_MEDI UM MEDI UMcompression
e PROPVAL_COWPLVL_HI GH: H GH compression

Generally, the compression level LOVperforms best and still provides a good compression
ratio. Compression levels MEDI UMand H GH provide significantly better compression ratios, but
compression times can be correspondingly longer. Oracle recommends using NONE or LONV
when write performance is critical, such as when files in the DBFS HS store are updated
frequently. If space is critical and the best possible compression ratio is desired, use MEDI UM
or H GH.

Files are compressed as they are paged out of the cache into the staging area (before they
are subsequently pushed into the back end tape or S3 storage). Therefore, compression also
benefits by storing smaller files in the staging area and effectively increasing the total
available capacity of the staging area.

18.3.5 Program Example Using Tape

ORACLE

This example program configures and uses a tape store.

In the example, you must substitute valid values in some places, as indicated by <...>, for the
program to run successfully.

See Also:

Oracle Database PL/SQL Packages and Types Reference DBVMS_DBFS HS
documentation for complete details about the methods and their parameters

Rem Exanpl e to configure and use a Tape store.

Rem

Rem hsuser shoul d be a valid database user who has been granted
Remthe role dbfs_role.

18-3

ORACLE

Chapter 18
Using the Hierarchical Store

connect hsuser/ hsuser

Rem The fol | owing bl ock sets up a STORETYPE TAPE store with
Rem DBVMS_DBFS_HS acting as the store provider.

decl are

storename varchar2(32) ;

t bl nane varchar2(30) ;

t bsnane varchar2(30) ;

| ob_cache_quota nunber := 0.8 ;
cachesz nunber ;

ots nunber ;

begin

cachesz := 50 * 1048576 ;

ots := 1048576 ;

storename : = 'tapestorel0' ;
tbl nane : = 'tapethl 10" ;
tbsnane := '<TBS_3>' ; -- Substitute a valid tablespace nane

-- Create the store.
-- Here thsname is the tablespace used for the store,
-- thlnane is the table holding all the store entities,
-- cachesz is the space used by the store to cache content
-- in the tabl espace,
-- lob_cache_quota is the fraction of cachesz allocated
-- to level-1 cache and
-- ots is mininumanmount of content that is accumul ated
-- in level-2 cache before being stored on tape
dbns_dbfs_hs. creat eSt or e(

st orenane,

dbms_dbf s_hs. STORETYPE_TAPE,

tbl name, tbsnane, cachesz,

| ob_cache_quota, ots) ;

dbms_dbf s_hs. set st oreproperty(
st or enane,
dbms_dbf s_hs. PROPNAVE_SBTLI BRARY,
' <ORACLE_HOVE/ wor k/ | i bobkuni g. so>') ;
-- Substitute your ORACLE HOME path

dbns_dbf s_hs. set st oreproperty(

st orenane,
dbns_dbf s_hs. PROPNAVE_MEDI APOQOL,
'<0>'") ; -- Substitute valid value

dbns_dbf s_hs. set st oreproperty(
st orenane,
dbns_dbf s_hs. PROPNAVE_COVPRESSLEVEL,
"NONE')

-- Please refer to DBMS_DBFS_CONTENT docunentation
-- for details about this nethod
dbns_dbfs_content. registerstore(

st orenane,

"t apeprvder10',

"dbns_dbfs_hs') ;

-- Please refer to DBMS_DBFS_CONTENT docunentation

-- for details about this nethod

dbns_dbfs_content. nountstore(storenane, 'tapemt10') ;
end ;

18-4

ORACLE

/

Rem The fol | owi ng code bl ock does file operations
Rem usi ng DBMS_DBFS_CONTENT on the store configured
Remin the previous code bl ock

connect hsuser/ hsuser

decl are
path varchar2(256) ;
pat h_pre varchar2(256) ;
mount _poi nt varchar2(32) ;
store_nane varchar2(32) ;
propl dbns_dbfs_content _properties_t ;
prop2 dbns_dbfs_content _properties_t ;
mycontent blob := enpty_blob() ;
buf fer varchar2(1050) ;
rawbuf raw(1050) ;
outcontent blob := enpty_blob() ;
itentype integer ;
pflag integer ;
filecnt integer ;
iter integer ;
of fset integer ;
raw en integer ;

begin
mount _point :="'/tapemt 10'
store_nane := 'tapestorell’
path_pre := nount_point ||'/file'

-- W create 10 enpty files in the follow ng I oop
filecnt :=0 ;
| oop
exit when filecnt = 10 ;
path := path_pre || to_char(filecnt) ;
mycontent := enpty_blob() ;
propl := null ;

- Please refer to DBVS_DBFS_CONTENT docunentation
- for details about this nethod
dbns_dbfs_content. createFil e(

path, propl, nycontent) ; -- Create the file
comit ;
filecnt := filecnt + 1 ;
end | oop ;

-- W populate the newy created files with content

-- in the follow ng | oop

pflag := dbnms_dbfs_content.prop_data +
dbns_dbfs_content.prop_std +
dbns_dbfs_content. prop_opt

buffer :="Oracle provides an integrated managenent '

"solution for managi ng Oracl e database with '

'a unique top-down application managenent '
"approach. Wth new sel f-nmanaging '
"capabilities, Oracle elimnates tine-'
'consuming, error-prone admnistrative '

Chapter 18
Using the Hierarchical Store

18-5

ORACLE

'tasks, so database adnministrators can '
"focus on strategic business objectives '
"instead of performance and availability '
"fire drills. Oacle Managenment Packs for '

' Dat abase provide signifiCant cost and tine-'

"saving capabilities for managing Oracle '

' Dat abases. |ndependent studies denmonstrate '

"that Oracle Database is 40 percent easier '
"to manage over DB2 and 38 percent over '

'SQ Server.';
rawobuf := utl_raw cast_to_rawbuffer) ;
raw en := utl _raw | ength(rawbuf) ;
offset :=1;
filecnt :=0 ;
| oop

exit when filecnt = 10 ;
path := path_pre || to_char(filecnt) ;
propl := null;

-- Append buffer to file
-- Please refer to DBVMS_DBFS CONTENT docunentation
-- for details about this method
dbms_dbf s_cont ent . put pat h(
path, propl, raw en,
of fset, rawbuf) ;

commt ;
filecnt := filecnt + 1 ;
end | oop ;

-- Cear out level 1 cache
dbms_dbf s_hs. fl ushCache(store_name) ;
comit ;

-- Do wite operation on even-nunbered files.
-- Do read operation on odd-nunmbered files.
filecnt :=0 ;
| oop
exit when filecnt = 10;
path := path_pre || to_char(filecnt) ;
if mod(filecnt, 2) = 0 then
-- Get witable file
-- Please refer to DBMS_DBFS_CONTENT docunentation
-- for details about this method
dbms_dbf s_cont ent . get Pat h(
path, prop2, outcontent, itentype,
pflag, null, true) ;

buffer := "'Agile businesses want to be able to '

"qui ckly adopt new technol ogi es, whether '

‘operating systems, servers, or '
"software, to help themstay ahead of

"the conpetition. However, change often '
"introduces a period of instability into'

"mssion-critical IT systems. Oracle '
"Real Application Testing-with Oracle '

' Dat abase 11g Enterprise Edition-allows '

" busi nesses to quickly adopt new'
"technol ogies while elinmnating the '
"risks associated with change. Oracle '

Chapter 18
Using the Hierarchical Store

18-6

"Real Application Testing conbines a ' |
"workl oad capture and replay feature ' |
"with an SQ performance anal yzer to ' |
"hel p you test changes against real-life '|]
"wor kl oads, and then hel ps you fine-tune '||
"the changes before putting theminto' |
"production. Oracle Real Application' [
"Testing supports ol der versions of ' |
"Oracl e Database, so custoners running ' ||
"Oracl e Database 9i and Oracle Database ' ||
"10g can use it to accelerate their ' [
' dat abase upgrades.

rawbuf
raw en :

utl _raw cast_to_rawbuffer) ;
utl _raw. | engt h(rawbuf) ;

- Mdify file content
- Please refer to DBVS_DBFS_CONTENT document ati on
- for details about this method
dbns_l ob. write(outcontent, raw en, 10, rawbuf);
comit ;

el se
- Read the file
- Please refer to DBVS_DBFS_CONTENT document ati on
- for details about this method
dbms_dbf s_cont ent . get Pat h(

path, prop2, outcontent, itentype, pflag) ;
end if ;
filecnt :=filecnt + 1 ;
end | oop ;

-- Delete the first 2 files
filecnt := 0;

| oop
exit when filecnt = 2 ;
path := path_pre || to_char(filecnt) ;
- Delete file
- Please refer to DBVMS_DBFS_CONTENT docunentation
- for details about this nethod
dbms_dbf s_content. del eteFi | e(path) ;
comit ;
filecnt :=filecnt + 1 ;
end | oop ;

-- Mve content staged in database to the tape store
dbns_dbfs_hs. st orePush(store_nanme) ;
comit ;

end ;
/

18.3.6 Program Example Using Amazon S3

This example program configures and uses an Amazon S3 store.

Chapter 18
Using the Hierarchical Store

Valid values must be substituted in some places, indicated by <...>, for the program to run

successfully.

ORACLE

18-7

Chapter 18
Using the Hierarchical Store

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference DBVMS_DBFS HS
documentation for complete details about the methods and their parameters

Rem Exanpl e to configure and use an Amazon S3 store.

Rem

Rem hsuser shoul d be a valid database user who has been granted
Remthe role dbfs_role.

connect hsuser/ hsuser

Rem The fol | owing bl ock sets up a STORETYPE_AMAZONS3 store with
Rem DBMS_DBFS_HS acting as the store provider.

decl are

storenanme varchar2(32) ;

t bl nane varchar2(30) ;

tbsnane varchar2(30) ;

| ob_cache_quota nunber := 0.8 ;
cachesz nunber ;

ots nunber ;

begin

cachesz := 50 * 1048576 ;

ots := 1048576 ;

storenane : = 's3storell ;
tbl name := 's3tbhl 10" ;
tbsnane := '<TBS_ 3> ; -- Substitute a valid tabl espace name

-- Create the store.
-- Here tbsname is the tabl espace used for the store,
-- tblnane is the table holding all the store entities,
-- cachesz is the space used by the store to cache content
-- in the tabl espace,
-- lob_cache_quota is the fraction of cachesz allocated
-- to level-1 cache and
-- ots is mninmmanount of content that is accunul ated
-~ in level-2 cache before being stored in AmazonS3
dbrs_dbfs_hs. creat eStor e(

st or enanme,

dbrs_dbf s_hs. STORETYPE_AMAZONSS3,

t bl nane, tbsnane, cachesz,

| ob_cache_quota, ots) ;

dbrs_dbf s_hs. set st oreproperty(storenane,
dbrs_dbf s_hs. PROPNAVE_SBTLI BRARY,
' <ORACLE_HOVE/ wor k/ | i bosbws11. s0>");
-- Substitute your ORACLE HOME path

dbrs_dbf s_hs. set st oreproperty(
st or enane,
dbns_dbfs_hs. PROPNAMVE_S3HOST,
' s3. amazonaws. com) ;

dbrs_dbf s_hs. set st oreproperty(
st or enane,
dbrs_dbf s_hs. PROPNAME_BUCKET,
" oras3bucket 10') ;

ORACLE 18-8

ORACLE

Chapter 18
Using the Hierarchical Store

dbms_dbf s_hs. set st oreproperty(
st or enane,
dbns_dbf s_hs. PROPNAME_WALLET,
* LOCATI ON=f i | e <ORACLE._HOVE>/ wor k/ wi t CREDENTI AL_ALI AS=a_key')
-- Substitute your ORACLE HOME path

dbns_dbf s_hs. set st oreproperty(

st or enane,
dbns_dbf s_hs. PROPNAVE_LI CENSEI D,
" KXXXXXXXXXXXXXXXX>') ; -- Substitute a valid SBT license id

dbns_dbf s_hs. set st oreproperty(
st orenane,
dbns_dbf s_hs. PROPNAVE_HTTPPROXY,
"<http://ww proxy. myconpany. com 80/ >') ;
-- Substitute valid value. If a proxy is not used,
-- then this property need not be set.

dbns_dbf s_hs. set st oreproperty(
st orenane,
dbns_dbf s_hs. PROPNAVE_COVPRESSLEVEL,
"NONE')

dbns_dbf s_hs. creat ebucket (st orename) ;

-- Please refer to DBMS_DBFS_CONTENT docunentation
-- for details about this nethod
dbns_dbfs_content. registerstore(

st orenane,

"s3prvder 10",

"dbns_dbfs_hs') ;

-- Please refer to DBMS_DBFS_CONTENT docunentation
-- for details about this nethod
dbns_dbf s_cont ent. nount st or e(
st orenane,
's3mt 10') ;
end ;
/

Rem The fol I owi ng code bl ock does file operations
Rem usi ng DBMS_DBFS_CONTENT on the store configured
Remin the previous code bl ock

connect hsuser/ hsuser

decl are

path varchar2(256) ;

pat h_pre varchar2(256) ;

mount _poi nt varchar2(32) ;

store_nane varchar2(32) ;

propl dbnms_dbfs_content _properties_t ;
prop2 dbns_dbfs_content _properties_t ;
mycontent blob := enpty_blob() ;

buf fer varchar2(1050) ;

rawbuf raw(1050) ;

outcontent blob := enpty_blob() ;
itentype integer ;

pflag integer ;

filecnt integer ;

18-9

ORACLE

Chapter 18
Using the Hierarchical Store

iter integer ;
of fset integer ;
raw en integer ;

begin
mount _point :="'/s3mt10" ;
store_name := 's3storell ;
path_pre := mount_point ||'/file" ;

-- W create 10 enpty files in the follow ng | oop
filecnt :=0 ;
| oop
exit when filecnt = 10 ;
path := path_pre || to_char(filecnt) ;
mycontent := enpty_blob() ;
propl := null ;

-- Please refer to DBVMS_DBFS CONTENT docunentation
-- for details about this nethod
dbns_dbfs_content. createFil e(

path, propl, nycontent) ; -- Create the file
comit ;
filecnt := filecnt + 1 ;
end | oop ;

-- W populate the newy created files with content

-- in the follow ng | oop

pflag := dbns_dbfs_content.prop_data +
dbns_dbfs_content.prop_std +
dbns_dbfs_content.prop_opt ;

buffer :="'GOracle provides an integrated managenent '
"solution for managi ng Oracl e database with '
"a unique top-down application managenent ' |
"approach. Wth new sel f-managing ' |
"capabilities, Oracle elininates time-' |
'consuming, error-prone admnistrative ' |
'tasks, so database adm nistrators can ' |
I
I
I
I

"focus on strategic business objectives '
"instead of performance and availability '
"fire drills. Oacle Managenment Packs for '

' Dat abase provide signifiCant cost and tine-'
"saving capabilities for managing Oracle '

' Dat abases. |ndependent studies denmonstrate '
"that Oracle Database is 40 percent easier '
"to manage over DB2 and 38 percent over '

"SQ Server.';
rawobuf := utl_raw cast_to_raw(buffer) ;
raw en := utl_raw | ength(rawbuf) ;
offset :=1;
filecnt :=0 ;
| oop

exit when filecnt = 10 ;
path := path_pre || to_char(filecnt) ;
propl := null;

-- Append buffer to file

-- Please refer to DBVMS_DBFS CONTENT docunentation
-- for details about this nethod

18-10

ORACLE

dbms_dbf s_cont ent . put pat h(
path, propl, raw en,
of fset, rawbuf) ;

commt ;

filecnt := filecnt + 1 ;
end | oop ;
-- Cear out level 1 cache

dbns_dbfs_hs. fl ushCache(store_nane) ;

commt ;

-- Do wite operation on even-nunbered files.
-- Do read operation on odd-nunmbered files.

filecnt := 0 ;
| oop
exit when fi

| ecnt = 10;

path := path_pre || to_char(filecnt) ;
if mod(filecnt, 2) = 0 then

-- Get wri
-- Pl ease

table file
refer to DBVS_DBFS_CONTENT docunentation

-- for details about this method

dbns_dbfs_

cont ent . get Pat h(

path, prop2, outcontent, itentype,
pflag, null, true) ;

buffer :=

rawbuf
raw en :

-- Mdify
-- Pl ease

"Agil e businesses want to be able to ' |
"qui ckly adopt new technol ogies, whether '|[]
'operating systems, servers, or ' |
"software, to help themstay ahead of ' [
"the conpetition. However, change often ' ||
"introduces a period of instability into '|]
"mission-critical IT systems. Oracle ' [
"Real Application Testing-with Oracle ' |
' Dat abase 11g Enterprise Edition-allows ' ||
"busi nesses to quickly adopt new' [
"technol ogies while elinmnating the ' [
"risks associated with change. Oracle ' |
"Real Application Testing conbines a ' |
"workl oad capture and replay feature ' |
"with an SQ. performance anal yzer to ' |
"hel p you test changes against real-life '|]
"wor kl oads, and then hel ps you fine-tune '||
"the changes before putting theminto' |
"production. Oracle Real Application' [
"Testing supports ol der versions of ' |
"Oracl e Database, so custoners running ' ||
"Oracl e Database 9i and Oracle Database ' ||
"10g can use it to accelerate their ' [
' dat abase upgrades. ';

utl _raw cast_to_raw(buffer) ;
utl _raw. | engt h(rawbuf) ;

file content
refer to DBVS_DBFS_CONTENT docunentation

-- for details about this method
dbns_l ob. write(outcontent, raw en, 10, rawbuf);

comit ;
el se

-- Read the file

Chapter 18
Using the Hierarchical Store

18-11

Chapter 18
The DBMS_DBFS_HS Package

- Please refer to DBVS_DBFS_CONTENT document ati on
- for details about this method
dbms_dbf s_cont ent . get Pat h(
path, prop2, outcontent, itentype, pflag) ;
end if ;
filecnt :=filecnt + 1 ;
end | oop ;

-- Delete the first 2 files
filecnt := 0;

| oop
exit when filecnt = 2 ;
path := path_pre || to_char(filecnt) ;
- Delete file
- Please refer to DBVMS_DBFS_CONTENT docurnentation
- for details about this nethod
dbms_dbf s_content. del eteFi | e(path) ;
comit ;
filecnt :=filecnt + 1 ;
end | oop ;

-- Mve content staged in database to Amazon S3 store
dbns_dbfs_hs. st orePush(store_nanme) ;
comit ;

end ;
/

18.4 The DBMS_DBFS_HS Package

The DBM5_DBFS_HS package is a service provider that enables use of tape or Amazon
S3 Web service as storage for data.

18.4.1 Constants for DBMS_DBFS_HS Package

The DBMS_DBFS HS PL/SQL package constants are very detailed.

¢ See Also:

See Oracle Database PL/SQL Packages and Types Reference for details of
constants used by DBMS_DBFS HS PL/SQL package

18.4.2 Methods for DBMS _DBFS_HS Package

There are many methods in the DBMS_DBFS_HSpackage.
Table 18-1 summarizes the DBVMS_DBFS_HS PL/SQL package methods.

ORACLE 18-12

ORACLE

¢ See Also:

Chapter 18
Views for DBFS Hierarchical Store

Oracle Database PL/SQL Packages and Types Reference

Table 18-1 Methods of the DBMS_DBFS_HS PL/SQL Packages
]

Method

Description

CLEANUPUNUSEDBACKUPFI LES

CREATEBUCKET

CREATESTCRE

DEREGSTORECOMMAND

DROPSTCRE

FLUSHCACHE

CETSTOREPRCPERTY

RECONFI GCACHE

REG STERSTORECOMMAND

SENDCOMVAND

SETSTOREPROPERTY

STOREPUSH

Removes files that are created on the external storage device if they
have no current content.

Oracle Database PL/SQL Packages and Types Reference

Creates an AWS bucket, for use with the STORETYPE_AMAZONS store.
Oracle Database PL/SQL Packages and Types Reference

Creates a DBFS HS store.

Oracle Database PL/SQL Packages and Types Reference

Removes a command (message) that was associated with a store.
Oracle Database PL/SQL Packages and Types Reference

Deletes a previously created DBFS HS store.

Oracle Database PL/SQL Packages and Types Reference

Flushes out level 1 cache to level 2 cache, increasing space in level 1.
Oracle Database PL/SQL Packages and Types Reference

Retrieves the values of a property of a store in the database.

Oracle Database PL/SQL Packages and Types Reference

Reconfigures the parameters of the database cache used by the
store.

Oracle Database PL/SQL Packages and Types Reference
Registers commands (messages) for a store so they are sent to the
Media Manager of an external storage device.

Oracle Database PL/SQL Packages and Types Reference .

Sends a command (message) to the Media Manager of an external
storage device.

Oracle Database PL/SQL Packages and Types Reference

Associates name/value properties with a registered Hierarchical
Store.

Oracle Database PL/SQL Packages and Types Reference
Pushes locally cached data to an archive store.
Oracle Database PL/SQL Packages and Types Reference

18.5 Views for DBFS Hierarchical Store

The DBFS Hierarchical Stores have several types of views.

18-13

Chapter 18
Views for DBFS Hierarchical Store

¢ See Also:

Oracle Database Reference for the columns and data types of these views

18.5.1 DBA Views

There are several views available for DBFS Hierarchical Store.

Following are the views available for DBFS Hierarchical Store:

DBA_DBFS_HS
This view shows all Database File System (DBFS) hierarchical stores
DBA DBFS HS PROPERTI ES

This view shows modifiable properties of all Database File System (DBFS)
hierarchical stores.

DBA_DBFS_HS_FI XED_PROPERTI ES

This view shows non-modifiable properties of all Database File System (DBFS)
hierarchical stores.

DBA_DBFS_HS_COVMANDS

This view shows all the registered store commands for all Database File System
(DBFES) hierarchical stores.

18.5.2 User Views

There are several views available for the DBFS Hierarchical Store.

ORACLE

USER DBFS_HS

This view shows all Database File System (DBFS) hierarchical stores owned by
the current user.

USER_DBFS_HS_PROPERTI ES

This view shows modifiable properties of all Database File System (DBFS)
hierarchical stores owned by current user.

USER_DBFS_HS_FI XED_PROPERTI ES

This view shows non-modifiable properties of all Database File System (DBFS)
hierarchical stores owned by current user.

USER DBFS_HS_COMVANDS

This view shows all the registered store commands for all Database File system
(DBFS) hierarchical stores owned by current user.

USER DBFS_HS_FI LES

This view shows files in the Database File System (DBFS) hierarchical store
owned by the current user and their location on the backend device.

18-14

Database File System Links

Database File System Links enable storing SecureFiles LOBs in a different location than
usual.

19.1 About Database File System Links

DBFS Links allows storing SecureFiles LOBs transparently in a location separate from the
segment where the LOB is normally stored. Instead, you store a link to the LOB in the
segment.

The link in the segment must reference a path that uses DBFS Content API to locate the LOB
when accessed. This means that the LOB could be stored on another file system, on a tape
system, in the cloud, or any other location that can be accessed using DBFS Content API.

When a user or application tries to access a SecureFiles LOB that has been stored outside
the segment using a DBFS Link, the behavior can vary depending on the attempted operation
and the characteristics of the DBFS store that holds the LOB:

e Read:

If the LOB is not already cached in a local area in the database, then it can be read
directly from the DBFS content store that holds it, if the content store allows streaming
access based on the setting of the PROPNAMVE_STREAMABLE parameter. If the content store
does not allow streaming access, then the entire LOB will first be read into a local area in
the database, where it will be stored for a period of time for future access.

Write:

If the LOB is not already cached in a local area in the database, then it will first be read
into the database, modified as needed, and then written back to the DBFS content store
defined in the DBFS Link for the LOB in question.

* Delete:

When a SecureFiles LOB that is stored through a DBFS Link is deleted, the DBFS Link is
deleted from the table, but the LOB itself is NOT deleted from the DBFS content store. Or
it is more complex, based on the characteristics/settings, of the DBFS content store in
guestion.

DBFS Links enable the use of SecureFiles LOBs to implement Hierarchical Storage
Management (HSM) in conjunction with the DBFS Hierarchical Store (DBFS HS). HSM is a
process by which the database moves rarely used or unused data from faster, more
expensive, and smaller storage to slower, cheaper, and higher capacity storage.

ORACLE 19-1

Chapter 19
Ways to Create Database File System Links

Figure 19-1 Database File System Link

SecureFiles LOB column

[

DBFS Link | /table1/lob1
v

Content
API

/table1 |
— 1
Cloud
Ry 0

‘ ~

| Ll L

~

@

19.2 Ways to Create Database File System Links

Database File System Links require the creation of a Database File System through
the use of the DBFS Content package, DBMS_DBFS_CONTENT.

Oracle provides several methods for creating a DBFS Link:

Move SecureFiles LOB data into a specified DBFS pathname and store the
reference to the new location in the LOB.

Call DBMS_LOB. MOVE_TO DBFS_LI NK() with LOB and DBFS path name arguments,
and the system creates the specified DBFS HSM Store if it does not exist, copies
data from the SecureFiles LOB into the specified DBFS HSM Store, removes data

from the SecureFiles LOB, and stores the file path name for subsequent access
through this LOB.

Copy or create a reference to an existing file.

Call DBMS_LOB. COPY_DBFS_LI NK() to copy a link from an existing DBFS Link. If
there is any data in the destination SecureFiles LOB, the system removes this

ORACLE 19-2

Chapter 19
Database File System Links Copy

data and stores a copy of the reference to the link in the destination SecureFiles LOB.

e Call DBMS_LOB. SET_DBFS_LI NK(), which assumes that the data for the link is stored in the
specified DBFS path name.

The system removes data in the specified SecureFiles LOB and stores the link to the
DBFS path name.

Creating a DBFS Link impacts which operations may be performed and how. Any DBVS LOB
operations that modify the contents of a LOB will throw an exception if the underlying LOB
has been moved into a DBFS Link. The application must explicitly replace the DBFS Link with
a LOB by calling DBMS_LOB. COPY_FROM LI NK() before making these calls.

When it is completed, the application can move the updated LOB back to DBFS using
DBVS_LOB. MOVE_TO DBFS LI NK(), if needed. Other DBM5_LOB operations that existed before
Oracle Database 11g Release 2 work transparently if the DBFS Link is in a file system that
supports streaming. Note that these operations falil if streaming is either not supported or
disabled.

If the DBFS Link file is modified through DBFS interfaces directly, the change is reflected in
subsequent reads of the SecureFiles LOB. If the file is deleted through DBFS interfaces, then
an exception occurs on subsequent reads.

For the database, it is also possible that a DBA may not want to store all of the data stored in
a SecureFiles LOB HSM during export and import. Oracle has the ability to export and import
only the Database File System Links. The links are fully qualified identifiers that provide
access to the stored data, when entered into a SecureFiles LOB or registered on a
SecureFiles LOB in a different database. This ability to export and import a link is similar to
the common file system functionality of symbolic links.

The newly imported link is only available as long as the source, the stored data, is available,
or until the first retrieval occurs on the imported system. The application is responsible for
stored data retention. If the application system removes data from the store that still has a
reference to it, the database throws an exception when the referencing SecureFiles LOB(S)
attempt to access the data. Oracle also supports continuing to keep the data in the database
after migration out to a DBFS store as a cached copy. It is up to the application to purge
these copies in compliance with its retention policies.

19.3 Database File System Links Copy

The API DBVS_LOB. COPY_DBFS LI NK(DSTLOB, SRCLOB, FLAGS) provides the ability to copy a
linked SecureFiles LOB.

sBy default, the LOB is not obtained from the DBFS HSM Store during this operation; this is a
copy-by-reference operation that exports the DBFS path name (at source side) and imports it
(at destination side). The f1 ags argument can dictate that the destination has a local copy in
the database and references the LOB data in the DBFS HSM Store.

19.4 The DBMS_LOB Package Used with DBFS

ORACLE

The DBM5_LOB package provides subprograms to operate on, or access and manipulate
specific parts of a LOB or complete LOBs.

The DBM5_LOB package applies to both SecureFiles LOB and BasicFiles LOB.

DBMS_LOB Constants Used with SecureFiles LOBs and DBFS and DBMS_LOB
Subprograms Used with SecureFiles LOBs and DBFS describe modifications made to the

19-3

Chapter 19
DBMS_LOB Constants Used with DBFS

DBMS_LOB constants and subprograms with the addition of SecureFiles LOB and
Database File System (DBFS).

¢ See Also:

e Oracle Database PL/SQL Packages and Types Reference for more
information about DBVS_LOB package

e Introducing the Database File System

19.5 DBMS LOB Constants Used with DBFS

Certain constants support DBFS link interfaces.

Table 19-1 lists constants that support DBFS Link interfaces.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for complete
information about constants used in the PL/SQL DBVS_LOB package

Table 19-1 DBMS_LOB Constants That Support DBFS Link Interfaces

___|
Constant Description

DBFS_LI NK_NEVER DBFS link state value

DBFS_LI NK_YES DBFS link state value

DBFS_LI NK_NO DBFS link state value

DBFS LI NK_CACHE Flag used by COPY_DBFS LI NK() and MOVE_DBFS LI NK() .

DBFS LI NK_NOCACHE Flag used by COPY_DBFS LI NK() and MOVE_DBFS LI NK() .

DBFS LI NK_PATH MAX_SI ZE The maximum length of DBFS path names; 1024.

CONTENTTYPE_MAX_SI ZE The maximum 1-byte ASCII characters for content type; 128.

19.6 DBMS_LOB Subprograms Used with DBFS

You should note that some changes have been made to the DBVMS_LOB subprograms
over time.

Table 19-2 summarizes changes made to PL/SQL package DBMS_LOB subprograms.

ORACLE 19-4

ORACLE

Chapter 19
DBMS_LOB Subprograms Used with DBFS

Be aware that some of the DBMS_LOB operations that existed before Oracle Database 11g
Release 2 throw an exception error if the LOB is a DBFS link. To remedy this problem, modify
your applications to explicitly replace the DBFS link with a LOB by calling the

DBMS_LOB. COPY_FROM LI NK procedure before they make these calls. When the call completes,
then the application can move the updated LOB back to DBFS using the

DBVS_LOB. MOVE_TO DBFS LI NK procedure, if necessary.

Other DBVMS_LOB operations that existed before Oracle Database 11g Release 2 work
transparently if the DBFS Link is in a file system that supports streaming. Note that these
operations fail if streaming is either not supported or disabled.

Table 19-2 DBMS_LOB Subprograms
- ___]

Subprogram Description
COPY_DBFS_LI NK Copies an existing DBFS link into a new LOB
See Also:
Oracle Database PL/SQL Packages
and Types Reference
COPY_FROM DBFS_LI NK Copies the specified LOB data from DBFS HSM Store into the
database

¢ See Also:

Oracle Database PL/SQL Packages
and Types Reference

DBFS_LI NK_GENERATE_PATHN Returns a unique file path name for creating a DBFS Link
AVE

¢ See Also:

Oracle Database PL/SQL Packages
and Types Reference

CGET_DBFS_LI NK Returns the DBFS path name for a LOB

See Also:

Oracle Database PL/SQL Packages
and Types Reference

19-5

Chapter 19
Copying a Linked LOB Between Tables

Table 19-2 (Cont.) DBMS_LOB Subprograms

Subprogram Description
CGET_DBFS_LI NK_STATE Returns the linking state of a LOB
¢ See Also:
Oracle Database PL/SQL Packages
and Types Reference
MOVE_TO _DBFS_LI NK Moves the specified LOB data from the database into DBFS HSM
Store
See Also:
Oracle Database PL/SQL Packages
and Types Reference
SET_DBFS_LI NK Links a LOB with a DBFS path name

¢ See Also:

Oracle Database PL/SQL Packages
and Types Reference

19.7 Copying a Linked LOB Between Tables

You can copy DBFS links from source tables to destination tables.

Use the following code to copy any DBFS Links that are stored in any SecureFiles
LOBs in the source table to the destination table.

CREATE TABLE ... AS SELECT (CTAS) and | NSERT TABLE ... AS SELECT (I TAS)

19.8 Online Redefinition and DBFS Links

Online redefinition copies any DBFS Links that are stored in any SecureFiles LOBs in
the table being redefined.

19.9 Transparent Read

DBFS Links can read from a linked SecureFiles LOB even if the data is not cached in
the database.

ORACLE 19-6

ORACLE

Chapter 19
Transparent Read

You can read data from the content store where the data is currently stored and stream that
data back to the user application as if it were being read from the SecureFiles LOB segment.
This allows seamless access to the DBFS Linked data without the prerequisite first call to
DBMS_LOB. COPY_FROM DBFS_LI NK() .

Whether or not transparent read is available for a particular SecureFiles LOB is determined
by the DBFS_CONTENT store where the data resides. This feature is always enabled for
DBFS_SFS stores, and by default for DBFS_HS stores. To disable transparent read for DBFS_HS
store, set the PROPNAME_STREAMABLE parameter to FALSE.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference

19-7

DBFS Content API

You can enable applications to use the Database File System (DBFS) in several different
programming environments.

20.1 Overview of DBFS Content API

You can enable applications to use DBFS using the DBFS Content API (DBMS_DBFS_CONTENT),
which is a client-side programmatic APl package. You can write applications in SQL, PL/SQL,
JDBC, OCI, and other programming environments.

The DBFS Content APl is a collection of methods that provide a file system-like abstraction. It
is backed by one or more DBFS Store Providers. The Content in the DBFS Content interface
refers to a file, including metadata, and it can either map to a SecureFiles LOB (and other
columns) in a table or be dynamically created by user-written plug-ins in Java or PL/SQL that
run inside the database. The plug-in form is referred to as a provider.

< Note:

The DBFS Content API includes the SecureFiles Store Provider, DBMS_DBFS_SFS, a
default implementation that enables applications that already use LOBs as columns
in their schema, to access the LOB columns as files.

¢ See Also:

DBFS SecureFiles Store

Examples of possible providers include:

» Packaged applications that want to expose data through files.

» Custom applications developers use to leverage the file system interface, such as an
application that stores medical images.

20.2 Stores and DBFS Content API

ORACLE

The DBFS Content API aggregates the path namespace of one or more stores into a single
unified namespace.

The first component of the path nhame is used to disambiguate the namespace and then
present it to client applications. This allows clients to access the underlying documents using

20-1

Chapter 20
Getting Started with DBMS_DBFS_CONTENT Package

either a full absolute path name represented by a single string, as shown in the
following code snippet:

/ st ore-name/ st or e- speci fi c- pat h- nane
The DBFS Content API then takes care of correctly dispatching various operations on
path names to the appropriate store provider .

Store providers must conform to the store provider interface (SPI) as declared by the
package DBMS_DBFS CONTENT SPI .

e Creating Your Own DBFS Store

e Oracle Database PL/SQL Packages and Types Reference for DBMS_DBFS_CONTENT
package syntax reference

20.3 Getting Started with DBMS_DBFS_CONTENT
Package

DBMS_DBFS_CONTENT is part of the Oracle Database, starting with Oracle Database 119
Release 2, and does not need to be installed.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information

20.3.1 DBFS Content API Role

Access to the content operational and administrative API (packages, types, tables, and
S0 on) is available through DBFS_ROLE.

The DBFS_ROLE can be granted to all users as needed.

20.3.2 Path Name Constants and Types

Path name constants are modeled after their SecureFiles LOBs store counterparts.

¢ See Also:
DBMS_DBFS_CONTENT Constants for path name constants and their types

20.3.3 Path Properties

Every path name in a store is associated with a set of properties.

ORACLE 20-2

Chapter 20
Getting Started with DBMS_DBFS_CONTENT Package

For simplicity and generality, each property is identified by a string name, has a string value
(possibly nul | if not set or undefined or unsupported by a specific store implementation), and
a value typecode, a numeric discriminant for the actual type of value held in the value string.

Coercing property values to strings has the advantage of making the various interfaces
uniform and compact (and can even simplify implementation of the underlying stores), but
has the potential for information loss during conversions to and from strings.

It is expected that clients and stores use well-defined database conventions for these
conversions and use the t ypecode field as appropriate.

PL/SQL types pat h_t and name_t are portable aliases for strings that can represent
pathnames and component names,

A typecode is a numeric value representing the true type of a string-coerced property value.
Simple scalar types (numbers, dates, timestamps, etc.) can be depended on by clients and
must be implemented by stores.

Since standard RDBMS typecodes are positive integers, the DBMS_DBFS_CONTENT interface
allows negative integers to represent client-defined types by negative typecodes. These
typecodes do not conflict with standard typecodes, are maintained persistently and returned
to the client as needed, but need not be interpreted by the DBFS content API or any
particular store. Portable client applications should not use user-defined typecodes as a back
door way of passing information to specific stores.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT constants and properties and the
DBVS_DBFS_CONTENT_PROPERTY_T package

20.3.4 Content IDs

Content IDs are unique identifiers that represent a path in the store.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT Content ID constants and properties

20.3.5 Path Name Types

ORACLE

Stores can store and provide access to eight types of entities.
The entities are:

 type_file

e type directory

e type link

* type_reference

20-3

Chapter 20
Getting Started with DBMS_DBFS_CONTENT Package

* type_scoket

e type character
e type_ block

o type_ fifo

Not all stores must implement all directories, links, or references.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT constants and path name types

20.3.6 Store Features

In order to provide a common programmatic interface to as many different types of
stores as possible, the DBFS Content API leaves some of the behavior of various
operations to individual store providers to define and implement.

The DBFS Content API remains rich and conducive to portable applications by
allowing different store providers (and different stores) to describe themselves as a
feature set. A feature set is a bit mask indicating the supported features and the ones
that are not supported.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
store features and constants

20.3.7 Lock Types

ORACLE

Stores that support locking should implement three types of locks.
The three types of locks are: | ock_read _only,lock wite only,lock read wite.

User locks (any of these types) can be associated with user-supplied | ock_dat a. The
store does not interpret the data, but client applications can use it for their own
purposes (for example, the user data could indicate the time at which the lock was
placed, and the client application might use this later to control its actions.

In the simplest locking model, a | ock_read_onl y prevents all explicit modifications to a
path name (but allows implicit modifications and changes to parent/child path names).
Alock_wite_only prevents all explicit reads to the path name, but allows implicit
reads and reads to parent/child path names. Al ock_read write allows both.

All locks are associated with a principal user who performs the locking operation;
stores that support locking are expected to preserve this information and use it to
perform read/write lock checking (see opt _| ocker).

20-4

Chapter 20
Getting Started with DBMS_DBFS_CONTENT Package

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the lock
types and constants.

20.3.8 Standard Properties

Standard properties are well-defined, mandatory properties associated with all content path
names, which all stores must support, in the manner described by the DBFS Content API.

Stores created against tables with a fixed schema may choose reasonable defaults for as
many of these properties as needed, and so on.

All standard properties informally use the st d namespace. Clients and stores should avoid
using this namespace to define their own properties to prevent conflicts in the future.

¢ See Also:

See Oracle Database PL/SQL Packages and Types Reference for details of the
standard properties and constants

20.3.9 Optional Properties

Optional properties are well-defined but non-mandatory properties associated with all content
path names that all stores are free to support (but only in the manner described by the DBFS
Content API).

Clients should be prepared to deal with stores that support none of the optional properties.

All optional properties informally use the opt namespace. Clients and stores must avoid using
this namespace to define their own properties to prevent conflicts in the future.

" See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the optional
properties and constants

20.3.10 User-Defined Properties

You can define your own properties for use in your application.

Ensure that the namespace prefixes do not conflict with each other or with the DBFS
standard or optional properties.

ORACLE 20-5

Chapter 20
Getting Started with DBMS_DBFS_CONTENT Package

20.3.11 Property Access Flags

DBFS Content API methods to get and set properties can use combinations of
property access flags to fetch properties from different namespaces in a single API
call.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
property access flags and constants

20.3.12 Exceptions

DBFS Content API operations can raise any one of the top-level exceptions.

Clients can program against these specific exceptions in their error handlers without
worrying about the specific store implementations of the underlying error signalling
code.

Store service providers, should try to trap and wrap any internal exceptions into one of
the exception types, as appropriate.

" See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
Exceptions

20.3.13 Property Bundles

ORACLE

Property bundles are discussed as property_t record type and properties_t.

e The property_t record type describes a single (value, typecode) property value
tuple; the property name is implied.

e properties_t isaname-indexed hash table of property tuples. The implicit hash-
table association between the index and the value allows the client to build up the
full dbrs_dbfs_content _property_t tuples for a properties_t.

There is an approximate correspondence between dbns_dbf s_content _property_t
and property_t. The former is a SQL object type that describes the full property tuple,
while the latter is a PL/SQL record type that describes only the property value
component.

There is an approximate correspondence between dbns_dbfs_content properties_t
and properties_t. The formeris a SQL nested table type, while the latter is a PL/SQL
hash table type.

Dynamic SQL calling conventions force the use of SQL types, but PL/SQL code may
be implemented more conveniently in terms of the hash-table types.

20-6

Chapter 20
Administrative and Query APIs

DBFS Content API provides convenient utility functions to convert between
dbns_dbfs_content _properties_t and properties_t.

The function DBMS_DBFS_CONTENT. PROPERTI EST2H converts a

DBVMS_DBFS CONTENT PROPERTI ES T value to an equivalent properties_t value, and the
function DBMS_DBFS_CONTENT. PROPERTI ESH2T converts a properties_t value to an equivalent
DBMS_DBFS_CONTENT_PROPERTI ES_T value.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
PROPERTY_T record type

20.3.14 Store Descriptors

Store descriptors are discussed as store_t and nount _t records.

e« Astore_t is arecord that describes a store registered with, and managed by the DBFS
Content API .

e Anount t is arecord that describes a store mount point and its properties.

Clients can query the DBFS Content API for the list of available stores, determine which store
handles accesses to a given path name, and determine the feature set for the store.

¢ See Also:

e Administrative and Query APls

e Oracle Database PL/SQL Packages and Types Reference for details of the
STORE_T record type

20.4 Administrative and Query APIs

ORACLE

Administrative clients and content providers are expected to register content stores with the
DBFS Content API. Additionally, administrative clients are expected to mount stores into the
top-level namespace of their choice.

The registration and unregistration of a store is separated from the mount and unmount of a
store because it is possible for the same store to be mounted multiple times at different
mount points (and this is under client control).

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for the summary of
DBMS_DBFS CONTENT package methods

20-7

Chapter 20
Administrative and Query APIs

20.4.1 Registering a Content Store

You can register a new store that is backed by a provider that uses the
provi der _package procedure as the store service provider.

The method of registration conforms to the DBMS_DBFS_CONTENT_SPI package
signature.

» Use the REG STERSTORE() procedure.

This method is designed for use by service providers after they have created a new
store. Store names must be unique.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
REG STERSTORE() method

20.4.2 Unregistering a Content Store

You can unregister a previously registered store, which invalidates all mount points
associated with it.

Once the store is unregistered, access to the store and its mount points is no longer
guaranteed, although a consistent read may provide a temporary illusion of continued
access.

* Use the UNREG STERSTORE() procedure.

If the i gnor e_unknown argument is t r ue, attempts to unregister unknown stores do not
raise an exception.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
UNREG STERSTORE() method

20.4.3 Mounting a Registered Store

ORACLE

You can mount a registered store and bind it to the mount point.
* Use the MOUNTSTORE() procedure.

After you mount the store, access to the path names in the form /st or e_nount /xyz is
redirected to st or e_nane and its content provider.

Store mount points must be unique, and a syntactically valid path name component
(that is, a name_t with no embedded /).

20-8

Chapter 20
Administrative and Query APIs

If you do not specify a mount point and therefore, it is nul | , the DBFS Content API attempts
to use the store name itself as the mount point name (subject to the uniqueness and syntactic
constraints).

The same store can be mounted multiple times, obviously at different mount points.

You can use mount properties to specify the DBFS Content API execution environment, that
is, the default values of the principal, owner, ACL, and asof , for a particular mount point. You
can also use mount properties to specify a read-only store.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
MOUNTSTORE() method

20.4.4 Unmounting a Previously Mounted Store

You can unmount a previously mounted store, either by name or by mount point.
Attempting to unmount a store by name unmounts all mount points associated with the store.

* Use the UNMOUNTSTORE() procedure.

Once unmounted, access to the store or mount-point is no longer guaranteed to work
although a consistent read may provide a temporary illusion of continued access. If the

i gnor e_unknown argument is t r ue, attempts to unmount unknown stores does not raise an
exception.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
UNMOUNTSTORE method

20.4.5 Listing all Available Stores and Their Features

You can list all the available stores.

The st ore_nount field of the returned records is set to nul | because mount points are
separate from stores themselves.

e Use the LI STSTORES() function.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
LI STSTORES Function

ORACLE 20-9

Chapter 20
Querying DBFS Content API Space Usage

20.4.6 Listing all Available Mount Points

You can list all available mount points, their backing stores, and the store features.
A single mount returns a single row, with the st ore_nount field set to nul | .

e Use the LI STMOUNTS() function.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
LI STMOUNTS() method

20.4.7 Looking Up Specific Stores and Their Features

You can look up the path name, store name, or mount point of a store.

e Use CGETSTOREBYXXX() or GETFEATUREBYXXX() functions.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT methods

20.5 Querying DBFS Content APl Space Usage

ORACLE

You can query file system space usage statistics.

Providers are expected to support this method for their stores and to make a best
effort determination of space usage, especially if the store consists of multiple tables,
indexes, LOBs, and so on.

* Use the SPACEUSAGE() method

where:

* bl ksi ze is the natural tablespace block size that holds the store; if multiple
tablespaces with different block sizes are used, any valid block size is acceptable.

e thytes is the total size of the store in bytes, and f byt es is the free or unused size
of the store in bytes. These values are computed over all segments that comprise
the store.

« nfile,ndir,nlink, andnref countthe number of currently available files,
directories, links, and references in the store.

Database objects can grow dynamically, so it is not easy to estimate the division
between free space and used space.

20-10

Chapter 20
DBFS Content API Session Defaults

A space usage query on the top level root directory returns a combined summary of the
space usage of all available distinct stores under it. If the same store is mounted multiple
times, it is counted only once.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
SPACEUSACGE() method

20.6 DBFS Content API Session Defaults

Normal client access to the DBFS Content API executes with an implicit context that consists
of certain objects.

e The principal invoking the current operation.
» The owner for all new elements created (implicitly or explicitly) by the current operation.
e The ACL for all new elements created (implicitly or explicitly) by the current operation.

* The ASOF timestamp at which the underlying read-only operation (or its read-only sub-
components) execute.

All of this information can be passed in explicitly through arguments to the various DBFS
Content API method calls, allowing the client fine-grained control over individual operations.

The DBFS Content API also allows clients to set session duration defaults for the context that
are automatically inherited by all operations for which the defaults are not explicitly
overridden.

All of the context defaults start out as nul | and can be cleared by setting them to nul | .

" See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT methods

20.7 DBFS Content API Interface Versioning

To allow for the DBFS Content API itself to evolve, an internal numeric API version increases
with each change to the public API.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
CETVERSI ON() method

ORACLE 20-11

Chapter 20
DBFS Content API Creation Operations

20.8 DBFS Content API Creation Operations

You must implement the provider SPI so that when clients invoke the DBFS Content
API, it causes the SPI to create directory, file, link, and reference elements (subject to
store feature support).

All of the creation methods require a valid path name and can optionally specify
properties to be associated with the path name as it is created. It is also possible for
clients to fetch back item properties after the creation completes, so that automatically
generated properties, such as st d_creati on_ti ne, are immediately available to
clients. The exact set of properties fetched back is controlled by the various pr op_xxx
bit masks in prop_fl ags.

Links and references require an additional path name associated with the primary path
name. File path names can optionally specify a BLOB value to initially populate the
underlying file content, and the provided BLOB may be any valid LOB, either temporary
or permanent. On creation, the underlying LOB is returned to the client if prop_dat a is
specified in prop_f | ags.

Non-directory path names require that their parent directory be created first. Directory
path names themselves can be recursively created. This means that the path name
hierarchy leading up to a directory can be created in one call.

Attempts to create paths that already exist produce an error, except for path names
that are soft-deleted. In these cases, the soft-deleted item is implicitly purged, and the
new item creation is attempted.

Stores and their providers that support contentlD-based access accept an explicit
store name and a NULL path to create a new content element. The contentID
generated for this element is available by means of the OPT_CONTENT_| D property. The
PROP_OPT property in the prop_f | ags parameter automatically implies contentlD-based
creation.

The newly created element may also have an internally generated path name if the
FEATURE LAZY_PATH property is not supported and this path is available by way of the
STD_CANONI CAL_PATH property.

Only file elements are candidates for content|D-based access.

¢ See Also:

e Oracle Database PL/SQL Packages and Types Reference for details of
the DBMS_DBFS_CONTENT() methods, DBMS_DBFS_CONTENT() Constants -
Optional Properties, and DBM5S_DBFS_CONTENT Constants - Standard
Properties

20.9 DBFS Content API Deletion Operations

You must implement the provider SPI so that when clients invoke the DBFS Content
API, it causes the SPI to delete directory, file, link, and reference elements (subject to
store feature support).

ORACLE 20-12

Chapter 20
DBFS Content API Path Get and Put Operations

By default, the deletions are permanent, and remove successfully deleted items on
transaction commit. However, repositories may also support soft-delete features. If requested
by the client, soft-deleted items are retained by the store. They are not, however, typically
visible in normal listings or searches. Soft-deleted items may be restored or explicitly purged.

Directory path names may be recursively deleted; the path name hierarchy below a directory
may be deleted in one call. Non-recursive deletions can be performed only on empty
directories. Recursive soft-deletions apply the soft-delete to all of the items being deleted.

Individual path names or all soft-deleted path names under a directory may be restored or
purged using the RESTOREXXX() and PURGEXXX() methods.

Providers that support filtering can use the provider filter to identify subsets of items to delete;
this makes most sense for bulk operations such as del et eDi rect ory(), RESTOREALL(), and
PURGEALL(), but all of the deletion-related operations accept a filter argument.

Stores and their providers that support contentlD-based access can also allow deleting file
items by specifying their contentlD.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT() methods

20.10 DBFS Content API Path Get and Put Operations

ORACLE

You can query existing path items or update them using simple GETXXX() and PUTXXX()
methods.

All path names allow their metadata to be read and modified. On completion of the call, the
client can request that specific properties be fetched through prop_f | ags.

File path names allow their data to be read and modified. On completion of the call, the client
can request a new BLOB locator through the prop_dat a bit masks in prop_f| ags; these may
be used to continue data access.

Files can also be read and written without using BLOB locators, by explicitly specifying logical
offsets, buffer amounts, and a suitably sized buffer.

Update accesses must specify the f or Updat e flag. Access to link path names may be
implicitly and internally dereferenced by stores, subject to feature support, if the der ef flag is
specified. Oracle does not recommend this practice because symbolic links are not
guaranteed to resolve.

The read method GETPATH() where f or Updat e is f al se accepts a valid asof timestamp
parameter that can be used by stores to implement flashback-style queries.

Mutating versions of the GETPATH() and the PUTPATH() methods do not support asof modes
of operation.

The DBFS Content API does not have an explicit COPY() operation because a copy is easily
implemented as a combination of a GETPATH() followed by a CREATEXXX() with appropriate
data or metadata transfer across the calls. This allows copies across stores, while an
internalized copy operation cannot provide this facility.

20-13

Chapter 20
DBFS Content APl Rename and Move Operations

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT methods

20.11 DBFS Content API Rename and Move Operations

You can rename or move path names, possibly across directory hierarchies and mount
points, but only within the same store.

Non-directory path names previously accessible by ol dPat h can be renamed as a
single item subsequently accessible by newPat h, assuming that newPat h does not
exist.

If newPat h exists and is not a directory, the rename implicitly deletes the existing item
before renaming ol dPat h. If newPat h exists and is a directory, ol dPat h is moved into
the target directory.

Directory path names previously accessible by ol dPat h can be renamed by moving
the directory and all of its children to newPat h (if it does not exist) or as children of
newPat h (if it exists and is a directory).

Because the semantics of rename and move is complex with respect to non-existent
or existent and non-directory or directory targets, clients may choose to implement
complex rename and move operations as sequences of simpler moves or copies.

Stores and their providers that support contentlD-based access and lazy path name
binding also support the Oracle Database PL/SQL Packages and Types Reference
SETPATH procedure that associates an existing contentID with a new "path".

" See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT. RENAMEPATH() methods

20.12 Directory Listings

ORACLE

Directory listings are handled several different ways.

e Alist_itemt is atuple of path name, component name, and type representing a
single element in a directory listing.

e Apath_itemt is atuple describing a store, mount qualified path in a content
store, with all standard and optional properties associated with it.

e Aprop_itemt is atuple describing a store, mount qualified path in a content
store, with all user-defined properties associated with it, expanded out into
individual tuples of name, value, and type.

20-14

Chapter 20
DBFS Content API Directory Navigation and Search

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of data
structures

20.13 DBFS Content API Directory Navigation and Search

Clients of the DBFS Content API can list or search the contents of directory path names, with
optional modes.

Optional Modes:

e searching recursively in sub-directories

e seeing soft-deleted items

« using flashback asof a provided timestamp

» filtering items in and out within the store based on list or search predicates.

The DBFS Content API currently only returns list items; clients explicitly use one of the
get Pat h() methods to access the properties or content associated with an item, as
appropriate.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT methods

20.14 DBFS Content API Locking Operations

DBFS Content API clients can apply user-level locks,depending on certain criteria.

Clients of the DBFS Content API can apply user-level locks to any valid path name, subject to
store feature support, associate the lock with user data, and subsequently unlock these path
names. The status of locked items is available through various optional properties.

If a store supports user-defined lock checking, it is responsible for ensuring that lock and
unlock operations are performed in a consistent manner.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBVMS_DBFS_CONTENT methods

20.15 DBFS Content API Access Checks

The DBFS Content API checks the access of specific path names by operations.

ORACLE 20-15

Chapter 20
DBFS Content API Abstract Operations

Function CHECKACCESS() checks if a given path name (pat h, pat ht ype, st or e_nane)
can be manipulated by an operation, such as the various op_xxx opcodes) by
princi pal , as described in "DBFS Content API Locking Operations”

This is a convenience function for the client; a store that supports access control still
internally performs these checks to guarantee security.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBVMS_DBFS_CONTENT methods

20.16 DBFS Content API Abstract Operations

All of the operations in the DBFS Content API are represented as abstract opcodes.

Clients can useopcodes to directly and explicitly invoke the CHECKACCESS() method
which verifies if a particular operation can be invoked by a given principal on a
particular path name.

An op_acl () is an implicit operation invoked during an op_create() or op_put () call,
which specifies a st d_acl property. The operation tests to see if the principal is
allowed to set or change the ACL of a store item.

op_del et e() represents the soft-deletion, purge, and restore operations.

The source and destination operations of a rename or move operation are separated,
although stores are free to unify these opcodes and to also treat a rename as a
combination of delete and create.

op_store is a catch-all category for miscellaneous store operations that do not fall
under any of the other operational APIs.

¢ See Also:

 DBFS Content API Access Checks

e Oracle Database PL/SQL Packages and Types Reference for more
information about DBMS_DBFS_CONTENT Constants - Operation Codes.

20.17 DBFS Content API Path Normalization

There is a process for performing API path normalization.
Function NORVALI ZEPATH() performs the following steps:

1. Verifies that the path name is absolute (starts with a /).
2. Collapses multiple consecutive / s into a single / .

3. Strips trailing / s.

ORACLE 20-16

Chapter 20
DBFS Content API Statistics Support

4. Breaks store-specific normalized path names into two components: the parent path name
and the trailing component name.

5. Breaks fully qualified normalized path names into three components: store name, parent
path name, and trailing component name.

Note that the root path / is special: its parent path name is also / , and its component name is
nul | . In fully qualified mode, it has a nul | store name unless a singleton mount has been
created, in which case the appropriate store name is returned.

The return value is always the completely normalized store-specific or fully qualified path
name.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT. RENAMEPATH() methods

20.18 DBFS Content API Statistics Support

DBFS provides support to reduce the expense of collecting DBFS Content API statistics.

DBFS Content API statistics are expensive to collect and maintain persistently. DBFS has
support for buffering statistics in memory for a maximum of f | ush_t i me centiseconds or a
maximum of f | ush_count operations, whichever limit is reached first), at which time the
buffers are implicitly flushed to disk.

Clients can also explicitly invoke a flush using f | ushSt at s. An implicit flush also occurs when
statistics collection is disabled.

set Stat s is used to enable and disable statistics collection; the client can optionally control
the flush settings by specifying non-nul | values for the time and count parameters.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBVS_DBFS_CONTENT methods

20.19 DBFS Content API Tracing Support

ORACLE

Any DBFS Content API user (both clients and providers) can use DBFS Content API tracing,
a generic tracing facility.

The DBFS Content API dispatcher itself uses the tracing facility.

Trace information is written to the foreground trace file, with varying levels of detail as
specified by the trace level arguments. The global trace level consists of two components:
severity and det ai | . These can be thought of as additive bit masks.

The severity component allows the separation of top-level as compared to low-level tracing
of different components, and allows the amount of tracing to be increased as needed. There

20-17

Chapter 20
Resource and Property Views

are no semantics associated with different levels, and users are free to set the trace
level at any severity they choose, although a good rule of thumb would be to use
severity 1 for top-level API entry and exit traces, severity 2 for internal operations, and
severity 3 or greater for very low-level traces.

The det ai | component controls how much additional information the trace reports with
each trace record: timestamps, short-stack, and so on.

" See Also:

Example 20-1 DBFS Content Tracing

function get Trace

return
procedure
trclv
function
sev
return
procedure
sev
msgo0
msgl
msg2
msg3
msg4
msg5
nmsg6
msg7
msg8
msg9
msgl10

i nteger;
set Trace(
in

t raceEnabl ed(
in

i nteger;

trace(
in
in
in
in
in
in
in
in
in
in
in
in

i nteger);

i nteger)

i nteger,
var char 2
var char
var char
var char
var char
var char
var char
var char
var char
var char
var char

20.20 Resource and Property Views

You can see descriptions of Content API structure and properties in certain views.

ORACLE

default "'
default "'
default "'
default "'
default "'
default "'
default "'
default "'
default "'
default "'

e Example 20-1 for more information about how to enable tracing using the
DBFS Content APIs.

e Oracle Database PL/SQL Packages and Types Reference for details of
the DBMS_DBFS_CONTENT methods

Certain views describe the structure and properties of Content API.

See Also:

e Oracle Database Reference for more information about DBFS_CONTENT
views

e Oracle Database Reference for more information about
DBFS_CONTENT _PROPERTI ES views

20-18

Creating Your Own DBFS Store

You can create your own DBFS Store using DBFS Content Store Provider Interface
(DBMS_DBFS_CONTENT_SPI) .

21.1 Overview of DBFS Store Creation and Use

In order to customize a DBFS store, you must implement the DBFS Content SPI
(DBMS_DBFS_CONTENT_SPI) . It is the basis for existing stores such as the DBFS SecureFiles
Store and the DBFS Hierarchical Store, as well as any user-defined DBFS stores that you
create.

Client-side applications, such the PL/SQL interface, invoke functions and procedures in the
DBFS Content API. The DBFS Content API then invokes corresponding subprograms in the
DBFS Content SPI to create stores and perform other related functions.

Once you create your DBFS store, you use it much the same way that you would a
SecureFiles Store.
¢ See Also:

« DBFS Content API
« DBFS SecureFiles Store

ORACLE 21-1

Chapter 21
DBFS Content Store Provider Interface (DBFS Content SPI)

Figure 21-1 Database File System (DBFS)

ocClI
LOB
Interface
A
Java
LOB
| f
File System DBFS DBFS nterface
Command
Mount Line Interface PL/SQL
Interface h Client PL/SQL
Client
LOB
* * Interface
\
¢ DBFS V¥
Links
DBFS Content API S N
DBFS Content SPI L Lo

DBFS DBFS i User !
SecureFile Hierarchical| : Defined !

Store Store . Store

Cloud
Storage

21.2 DBFS Content Store Provider Interface (DBFS Content

SPI)

ORACLE

The DBFS Content SPI (Store Provider Interface) is a specification only and has no
package body.

You must implement the package body in order to respond to calls from the DBFS
Content API. In other words, DBFS Content SPI is a collection of required program
specifications which you must implement using the method signatures and semantics
indicated.

21-2

Chapter 21
Creating a Custom Store Provider

You may add additional functions and procedures to the DBFS Content SPI package body as
needed. Your implementation may implement other methods and expose other interfaces, but
the DBFS Content API will not use these interfaces.

The DBFS Content SPI references various elements such as constants, types, and
exceptions defined by the DBFS Content API (package DBMS_DBFS_CONTENT).

Note that all path name references must be store-qualified, that is, the notion of mount points
and full absolute path names has been normalized and converted to store-qualified path
names by the DBFS Content API before it invokes any of the Provider SPI methods.

Because the DBFS Content API and SPI implementation is a one-to-many pluggable
architecture, the DBFS Content APl uses dynamic SQL to invoke methods in the SPI
implementation; this may lead to run time errors if your SPI implementation does not follow
the specification of SPI implementation given in this document.

There are no explicit initial or final methods to indicate when the DBFS Content API plugs
and unplugs a particular SPI implementation. SPI implementations must be able to auto-
initialize themselves at any SPI entry point.

" See Also:

e Oracle Database PL/SQL Packages and Types Reference for syntax of the
DBMS_DBFS CONTENT _SPI package

e See the file $ORACLE_HOVE/ r dbis/ admi n/ dbnscapi . sql for more information

21.3 Creating a Custom Store Provider

You can use this example store provider for DBFS, TaBleFileSystem Store Provider (“tbfs"),
as a skeleton for custom providers or as a learning tool, to become familiar with the DBFS
and its SPI.

This example store provider for DBFS, exposes a relational table containing a BLOB column
as a flat, non-hierarchical filesystem, that is, a collection of named files.

To use this example, it is assumed that you have installed the Oracle Database 12c¢ and are
familiar with DBFS concepts, and have installed and used dbfs_cl i ent and FUSE to mount
and access filesystems backed by the standard SFS store provider.

The TaBleFileSystem Store Provider ("tbfs") does not aim to be feature-rich or even
complete, it does however provide a sufficient demonstration of what it takes for users of
DBFS to write their own custom providers that expose their table(s) through dbfs_client to
traditional filesystem programs.

21.3.1 Installation and Setup

ORACLE

You will need certain files for installation and setup of the DBFS TaBleFileSystem Store
Provider ("tbfs").

The TBFS consists of the following SQL files:

t bfs. sql top-level driver script

21-3

Chapter 21
Creating a Custom Store Provider

thl.sql script to create a test user, tablespace, the table backing the filesystem,
and so on.

spec. sql the SPI specification of the tbfs

body. sql the SPI implementation of the tbfs

capi . sql DBFS register/mount script

To install the TBFS, just run t bf s. sql as SYSDBA, in the directory that contains all of
the above files. t bf s. sql will load the other SQL files in the proper sequence.

Ignoring any name conflicts, all of the SQL files should load without any compilation
errors. All SQL files should also load without any run time errors, depending on the
value of the "plsqgl_warnings" init.ora parameter, you may see various innocuous
warnings.

If there are any name conflicts (tablespace name TBFS, datafile name"tbfs.f', user
name TBFS, package name TBFS), the appropriate references in the various SQL
files must be changed consistently.

21.3.2 TBFS Use

Once the example store provider for DBFS, TaBleFileSystem Store Provider ("tbfs") is
installed, files can be added or removed in several different ways and other changes
can be made to the TBFS.

A dbfs_client connected as user TBFS will see a simple, non-hierarchical, filesystem
backed by an RDBMS table (TBFS.TBFST).

Files can be added or removed from this filesystem through SQL (that is, through DML
on the underlying table), through Unix utilities (mediated by dbfs_cl i ent), or through
PL/SQL (using the DBFS APIs).

Changes to the filesystem made through any of the access methods will be visible, in
a transactionally consistent manner (that is, at commit/rollback boundaries) to all of the
other access methods.

21.3.3 TBFS Internals

ORACLE

The TBFS is simple because its primary purpose is to serve as a teaching and
learning example.

However, the implementation shows the path towards a robust, production-quality
custom SPI that can plug into the DBFS, and expose existing relational data as Unix
filesystems.

The TBFS makes various simplifications in order to remain concise (however, these
should not be taken as inviolable limitations of DBFS or the SPI):

* The TBFS SPI package handles only a single table with a hard-coded name
(TBFS.TBFST). It is possible to use dynamic SQL and additional configuration
information to have a single SPI package support multiple tables, each as a
separate filesystem (or even to unify data in multiple tables into a single
filesystem).

e The TBFS does not support filesystem hierarchies; it imposes a flat namespace: a
collection of files, identified by a simple item name, under a virtual "/" root

21-4

Chapter 21
Creating a Custom Store Provider

directory. Implementing directory hierarchies is significantly more complex because it
requires the store provider to manage parent/child relationships in a consistent manner.

Moreover, existing relational data (the kind of data that TBFS is attempting to expose as
a filesystem) does not typically have inter-row relationships that form a natural directory/
file hierarchy.

» Because the TBFS supports only a flat namespace, most methods in the SPI are
unimplemented, and the method bodies raise a
dbns_dbf s_cont ent . unsupport ed_oper at i on exception. This exception is also a good
starting point for you to write your own custom SPI. You can start with a simple SPI
skeleton cloned from the DBVMS_DBFS_CONTENT_SPI package, default all method bodies to
ones that raise this exception, and subsequently fill in more realistic implementations
incrementally.

* The table underlying the TBFS is close to being the simplest possible structure (a key/
name column and a LOB column). This means that various properties used or expected
by DBFS and dbfs_cl i ent must be generated dynamically (the TBFS implementation
shows how this is done for the st d: gui d property).

Other properties (such as Unix-style timestamps) are not implemented at all. This still
allows a surprisingly functional filesystem to be implemented, but when you write your
own custom SPIs, you can easily incorporate support for additional DBFS properties by
expanding the structure of their underlying table(s) to include additional columns as
needed, or by using existing columns in their existing tables to provide the values for
these DBFS properties.

* The TBFS does not implement a rename/move method; adding support for this (a
suitable UPDATE statement in the r enanePat h method) is left as an exercise for the user.

* The TBFS example uses the string "tbfs" in multiple places (tablespace, datafile, user,
package, and even filesystem name). All these uses of "tbfs" belong in different
namespaces—identifying which namespace corresponds to a specific occurrence of the
string. "tbfs" in these examples is also a good learning exercise to make sure that the
DBFS concepts are clear in your mind.

21.3.4 Example Scripts

This section describes some example SQL scripts.

21.3.4.1 Driver Script

ORACLE

The TBFS.SQL script is the top level driver script.
The TBFS.SQL script:

set echo on;

@bl
@pec
@ody
@api

quit;

21-5

Chapter 21
Creating a Custom Store Provider

21.3.4.2 Creating a Test User, Tablespace and Table to Backup Filesystem

The TBL.SQL script creates a test user, a tablespace, the table that backs the
filesystem and so on.

The TBL.SQL script :

connect / as sysdba

create tablespace thfs datafile "tbfs.f' size 100m
reuse autoextend on
extent managenent | ocal
segment space nmanagement auto;

create user thfs identified by tbfs;
alter user tbfs default tabl espace tbfs;
grant connect, resource, dbfs_role to tbfs;

connect tbfs/tbfs;

drop table tbfst;
purge recycl ebin;

create table tbfst(
key var char 2(256)

primry key
check (instr(key, "/") =0),
data bl ob)
t abl espace tbfs
| ob(dat a)

store as securefile
(tabl espace tbfs);

grant select on tbfst to dbfs_role;
grant insert on tbhfst to dbfs_role;
grant delete on tbhfst to dbfs_role;
grant update on tbhfst to dbfs_role;

21.3.4.3 Providing SPI Specification

ORACLE

The spec. sql script provide the SPI specification of the tbfs.
The spec. sql script:

connect / as sysdba;

create or replace package thfs
authid current _user
as

Lookup store features (see dbns_dbfs_content.feature_XXX). Lookup
store id.

A store IDidentifies a provider-specific store, across
regi strations and mounts, but independent of changes to the store

E R S

21-6

ORACLE

Chapter 21
Creating a Custom Store Provider

* contents.

*

* |.e. changes to the store table(s) should be reflected in the

* store ID, but re-initialization of the same store table(s) should
* preserve the store ID.

*

* Providers should also return a "version" (either specific to a

* provider package, or to an individual store) based on a standard
* <a.b.c> naming convention (for <major> <ninor> and <patch>

* conponents).

*

*/

function get Feat ur es(

store_nanme in var char 2)
return integer;

function get Storel d(
store_nanme in var char 2)
return nunber;

function get Ver si on(
store_nanme in var char 2)
return varchar?2;

/*

* Lookup pathnanmes by (store_nane, std_guid) or (store_nount,

* std_guid) tuples.

*

* |f the underlying "std_guid" is found in the underlying store,
* this function returns the store-qualified pathnane.

*

* |f the "std_guid" is unknown, a "null" value is returned. Cients
* are expected to handle this as appropriate.

*

*/

function get Pat hBySt or el d(
store_nane in varchar 2,
guid in i nteger)
return varchar?2;

DBFS SPI: space usage.

Cients can query filesystem space usage statistics via the
"spaceUsage()" method. Providers are expected to support this
method for their stores (and to make a best effort determ nation
of space usage---esp. if the store consists of nultiple

tabl es/indexes/| obs, etc.).

"bl ksize" is the natural tablespace blocksize that holds the
store---if multiple tablespaces with different bl ocksizes are
used, any valid blocksize is acceptable.

"tbytes" is the total size of the store in bytes, and "fbytes" is
the free/unused size of the store in bytes. These val ues are

I S R R

21-7

ORACLE

S R R

pr

E I . R

.

Chapter 21
Creating a Custom Store Provider

conputed over all segments that conprise the store
“nfile", "ndir", "nlink", and "nref" count the nunber of
currently available files, directories, links, and references in
the store
Since database objects are dynamcally growable, it is not easy
to estimate the division between "free" space and "used" space
/
ocedure spaceUsage(
store_nane in var char 2
bl ksi ze out i nteger
tbytes out i nteger
fbytes out i nteger
nfile out i nteger,
ndi r out i nteger
nli nk out i nteger,
nr ef out i nteger)

DBFS SPI: notes on pathnanes.

Al pathnames used in the SPl are store-qualified, i.e. a 2-tuple
of the form (store_name, pathnanme) (where the pathname is rooted
wi thin the store namespace).

Stores/providers that support contentlD based access (see
"feature_content _id") also support a formof addressing that is
not based on pathnames. Items are identified by an explicit store
name, a "null" pathnane, and possibly a contentlD specified as a
paraneter or via the "opt_content_id" property.

Not all operations are supported with contentlD based access, and
applications should depend only on the sinplest create/delete
functionality being avail able.

DBFS SPI: creation operations

The SPI nust allow the DBFS APl to create directory, file, link
and reference el ements (subject to store feature support)

Al of the creation nethods require a valid pathnane (see the
speci al exenption for contentlD based access bel ow), and can
optionally specify properties to be associated with the pathname
as it is created. It is also possible for clients to fetch-back
itemproperties after the creation conpletes (so that
autonatically generated properties (e.g. "std_creation_tine") are
imrediately available to clients (the exact set of properties
fetched back is controlled by the various "prop_xxx" bitmasks in
"prop_flags").

21-8

ORACLE

O R I R

Chapter 21
Creating a Custom Store Provider

Links and references require an additional pathname to associate
with the primry pathname.

Fil e pathnanes can optionally specify a BLOB value to use to
initially populate the underlying file content (the provided BLOB
may be any valid lob: tenmporary or permanent). On creation, the
underlying lob is returned to the client (if "prop_data" is
specified in "prop_flags").

Non-directory pathnames require that their parent directory be
created first. Directory pathnames thensel ves can be recursively
created (i.e. the pathname hierarchy leading up to a directory
can be created in one call).

Attenpts to create paths that already exist is an error; the one
exception is pathnames that are "soft-del eted" (see bel ow for
del ete operations)---in these cases, the soft-deleted itemis
inplicitly purged, and the newitemcreation is attenpted.

Stores/providers that support contentlD based access accept an
explicit store nane and a "null" path to create a new el enent.
The content|D generated for this element is available via the
"opt _content _id" property (contentlD based creation automatically
inplies "prop_opt" in "prop_flags").

The newly created el enent may al so have an internally generated
pathname (if "feature_lazy _path" is not supported) and this path
is available via the "std_canonical _path" property.

Only file elements are candi dates for contentlD based access.

/

procedure createFile(

store_nane in varchar 2,

pat h in var char 2,

properties in out nocopy dbns_dbfs_content_properties_t,
cont ent in out nocopy blob,

prop_flags in i nt eger,

ctx in dbns_dbfs_content _context _t);

procedure createLink(

store_nane in varchar 2,

srcPat h in varchar 2,

dst Pat h in varchar 2,

properties in out nocopy dbns_dbfs_content_properties_t,
prop_flags in i nteger,

ctx in dbns_dbfs_content _context _t);

procedure createReference(

store_nane in varchar 2,

srcPat h in varchar 2,

dst Pat h in varchar 2,

properties in out nocopy dbns_dbfs_content_properties_t,
prop_flags in i nteger,

ctx in dbns_dbfs_content _context _t);

21-9

ORACLE

pr

I T A T T e I CEE N

pr

pr

Chapter 21
Creating a Custom Store Provider

ocedure createDirectory(
store_nane in varchar 2,
path in varchar 2,
properties in out nocopy dbns_dbfs_content_properties_t,
prop_flags in i nteger,
recurse in i nt eger,
ctx in dbns_dbfs_content _context _t);

DBFS SPI: del etion operations

The SPI nust allow the DBFS APl to delete directory, file, link,
and reference el ements (subject to store feature support).

By default, the deletions are "permanent” (get rid of the
successfully deleted itens on transaction commit), but stores may
al so support "soft-delete" features. If requested by the client,
soft-deleted itens are retained by the store (but not typically
visible in normal listings or searches).

Soft-deleted items can be "restore"d, or explicitly purged.

Directory pathnames can be recursively deleted (i.e. the pathnane
hi erarchy bel ow a directory can be deleted in one call).
Non-recursive del etions can be perforned only on enpty
directories. Recursive soft-deletions apply the soft-delete to
all of the itens being del eted.

I ndi vi dual pathnanes (or all soft-deleted pathnanes under a
directory) can be restored or purged via the restore and purge
met hods.

Providers that support filtering can use the provider "filter" to
identify subsets of itenms to delete---this makes nost sense for
bul k operations (deleteDirectory, restoreAl, purgeAl), but all
of the deletion-related operations accept a "filter" argunent.

Stores/providers that support contentlD based access can al so
allowfile itens to be deleted by specifying their contentlD.

/

ocedure deleteFile(
store_nane in varchar 2,
path in varchar 2,
filter in varchar 2,
soft_delete in i nteger,
ctx in dbns_dbfs_content _context _t);
ocedure del eteContent (
store_nane in varchar 2,
contentID in raw,
filter in varchar 2,
soft_delete in i nteger,

21-10

ORACLE

Chapter 21
Creating a Custom Store Provider

ctx in dbns_dbfs_content _context _t)
procedure deleteDirectory(

store_nane in var char 2

path in var char 2

filter in var char 2

soft_delete in i nteger

recurse in i nteger

ctx in dbns_dbfs_content _context _t)
procedure restorePath(

store_nane in var char 2

path in var char 2

filter in var char 2

ctx in dbns_dbfs_content _context _t)
procedure purgePat h(

store_nane in var char 2

path in var char 2

filter in var char 2

ctx in dbns_dbfs_content _context _t)
procedure restoreAll (

store_nane in var char 2

path in var char 2

filter in var char 2

ctx in dbns_dbfs_content _context _t)
procedure purgeAl l(

store_nane in var char 2

path in var char 2

filter in var char 2

ctx in dbns_dbfs_content _context _t)

R T e

DBFS SPI: path get/put operations

Existing path itens can be accessed (for query or for update) and
modi fied via sinple get/put methods

Al pathnanes allow their netadata (i.e. properties) to be
read/ nodi fied. On conmpletion of the call, the client can request
(via "prop_flags") specific properties to be fetched as well

File pathnanes allow their data (i.e. content) to be

read/ modified. On conpletion of the call, the client can request
(via the "prop_data" bitmaks in "prop_flags") a new BLOB | ocat or
that can be used to continue data access

Files can also be read/witten without using BLOB | ocators, by
explicitly specifying logical offsets/buffer-anmounts and a
suitably sized buffer

Updat e accesses must specify the "forUpdate" flag. Access to link
pat hnames can be inplicitly and internally deferenced by stores
(subject to feature support) if the "deref" flag is

speci fi ed---however, this is dangerous since synbolic links are
not al ways resol vabl e

21-11

ORACLE

Chapter 21
Creating a Custom Store Provider

The read nethods (i.e. "getPath" where "forUpdate" is "fal se"

al so accepts a valid "asof" tinestanp parameter that can be used
by stores to inplement "as of" style flashback queries. Mitating
versions of the "getPath" and the "putPath" nethods do not
support as-of nodes of operation.

"getPathNowai t" inplies a "forUpdate", and, if inplemented (see
"feature_nowait"), allows providers to return an exception
(ORA-54) rather than wait for row | ocks.

I T

/

procedure getPat h(

store_nane in varchar 2,

pat h in var char 2,

properties in out nocopy dbns_dbfs_content_properties_t,
cont ent out nocopy bl ob,

itemtype out i nteger,

prop_flags in i nt eger,

forUpdate in i nteger,

der ef in i nteger,

ctx in dbns_dbfs_content _context _t);

procedure getPat hNowai t (

store_nane in varchar 2,

pat h in var char 2,

properties in out nocopy dbns_dbfs_content_properties_t,
cont ent out nocopy bl ob,

itemtype out i nteger,

prop_flags in i nt eger,

der ef in i nteger,

ctx in dbns_dbfs_content _context _t);

procedure getPat h(

store_nane in varchar 2,

path in varchar 2,

properties in out nocopy dbns_dbfs_content_properties_t,
anmount in out nunber,

of f set in nunber,

buf fer out nocopy raw,

prop_flags in i nteger,

ctx in dbns_dbfs_content _context _t);

procedure getPat h(

store_nane in varchar 2,

pat h in var char 2,

properties in out nocopy dbns_dbfs_content_properties_t,
anount in out nunber,

of f set in nunber,

buffers out nocopy dbns_dbfs_content _raw t,
prop_flags in i nt eger,

ctx in dbns_dbfs_content _context _t);

procedure put Pat h(

store_nane in varchar 2,

pat h in var char 2,

properties in out nocopy dbns_dbfs_content_properties_t,
cont ent in out nocopy blob,

21-12

ORACLE

pr

pr

R T I . S T

pr

Chapter 21
Creating a Custom Store Provider

itemtype out i nteger,

prop_flags in i nt eger,

ctx in dbns_dbfs_content _context _t);
ocedure putPat h(

store_nane in varchar 2,

pat h in var char 2,

properties in out nocopy dbns_dbfs_content_properties_t,

anount in nunber,

of f set in nunber,

buf f er in raw,

prop_flags in i nt eger,

ctx in dbns_dbfs_content _context _t);
ocedure putPat h(

store_nane in varchar 2,

pat h in var char 2,

properties in out nocopy dbns_dbfs_content_properties_t,

witten out nunber,

of f set in nunber,

buffers in dbns_dbfs_content _raw t,

prop_flags in i nt eger,

ctx in dbns_dbfs_content _context _t);

DBFS SPI: renane/ nove operations.

Pat hnames can be renaned or noved, possibly across directory
hi erarchi es and mount-points, but within the sane store.

Non-di rectory pathnanes previously accessible via "ol dPath" are
renamed as a single itemsubsequently accessible via "newPath";
assum ng that "newPath" does not al ready exist.

If "newPath" exists and is not a directory, the renane inplicitly
del etes the existing itembefore renaming "ol dPath". If "newPath"
exists and is a directory, "oldPath" is noved into the target
directory.

Directory pathnames previously accessible via "ol dPath" are
renamed by noving the directory and all of its children to

"newPath" (if it does not already exist) or as children of

"newPath" (if it exists and is a directory).

Stores/providers that support contentlD based access and | azy
pat hname bi nding al so support the "setPath" method that
associates an existing "contentID' with a new "path".

/

ocedure renanePat h(
store_nane in varchar 2,
ol dPat h in varchar 2,
newPat h in varchar 2,
properties in out nocopy dbns_dbfs_content_properties_t,
ctx in dbns_dbfs_content _context _t);

21-13

Chapter 21
Creating a Custom Store Provider

procedure setPath(

store_nane in varchar 2,

contentID in raw,

pat h in var char 2,

properties in out nocopy dbns_dbfs_content_properties_t,
ctx in dbns_dbfs_content _context _t);

/*
* DBFS SPI: directory navigation and search.
*
* The DBFS APl can list or search the contents of directory
* pathnanes, optionally recursing into sub-directories, optionally
* seeing soft-deleted itenms, optionally using flashback "as of" a
* provided timestanp, and optionally filtering itenms in/out within
* the store based on |ist/search predicates.
*
*/
function list(
store_nane in varchar 2,
path in varchar 2,
filter in varchar 2,
recurse in i nteger,
ctx in dbns_dbfs_content _context _t)
return dbns_dbfs_content _list_itens_t
pi pel i ned;
function sear ch(
store_nane in varchar 2,
path in varchar 2,
filter in varchar 2,
recurse in i nteger,
ctx in dbns_dbfs_content _context _t)
return dbns_dbfs_content _list_itens_t
pi pel i ned;

/*
* DBFS SPI: |ocking operations.
*
* Cients of the DBFS APl can apply user-level locks to any valid
* pathnane (subject to store feature support), associate the |ock
* with user-data, and subsequently unlock these pathnanes.
*
* The status of locked items is available via various optional
* properties (see "opt_lock*" above).
*
*
* |t is the responsibility of the store (assuming it supports
* user-defined | ock checking) to ensure that |ock/unlock operations
* are perforned in a consistent nanner.
*
*/
procedure | ockPat h(
store_nane in var char 2,
path in varchar 2,

ORACLE 21-14

Chapter 21
Creating a Custom Store Provider

lock_type in i nteger,
lock _data in varchar 2,
ctx in dbns_dbfs_content _context _t);

procedure unl ockPat h(

store_nane in varchar 2,
path in varchar 2,
ctx in dbns_dbfs_content _context _t);

DBFS SPI: access checks.

Check if a given pathname (store_name, path, pathtype) can be
mani pul at ed by "operation (see the various
"dbns_dbfs_content. op_xxx" opcodes) by "principal".

This is a convenience function for the DBFS APl; a store that
supports access control still internally perforns these checks to
guarantee security.

T

/

function checkAccess(

store_nane in varchar 2,
path in varchar 2,
pat ht ype in i nteger,

operation in varchar 2,
princi pal in var char 2)

return integer;
end;
/
show errors;

create or replace public synonymthbfs
for sys.tbfs;

grant execute on thfs
to dbfs_role;

21.3.4.4 SPI Implementation of thfs

ORACLE

The body. sql script provides the SPI implementation of the tbfs.
The body. sql script:

connect / as sysdba;

create or replace package body thfs
as

Lookup store features (see dbns_dbfs_content.feature_XXX). Lookup
store id.

A store IDidentifies a provider-specific store, across
regi strations and mounts, but independent of changes to the store
contents.

E I I

21-15

ORACLE

Chapter 21
Creating a Custom Store Provider

*

* |.e. changes to the store table(s) should be reflected in the

* store ID, but re-initialization of the same store table(s) should
* preserve the store ID

*

* Providers should also return a "version" (either specific to a

* provider package, or to an individual store) based on a standard
* <a.b.c> naming convention (for <major> <ninor> and <patch>

* conponents).

*

*/

function get Feat ur es(
store_nanme in var char 2)
return integer
is
begi n
return dbns_dbfs_content.feature_| ocator
end;

function get Storel d(
store_nanme in var char 2)
return nunber
is
begi n
return 1;
end;

function get Ver si on(
store_nanme in var char 2)
return varchar?2

is
begi n
return '1.0.0'
end;
/*
* Lookup pathnanmes by (store_nane, std_guid) or (store_nount,
* std_guid) tuples.
*
* |f the underlying "std_guid" is found in the underlying store
* this function returns the store-qualified pathnane.
*
* |f the "std_guid" is unknown, a "null" value is returned. Cients
* are expected to handle this as appropriate
*
*/
function get Pat hBy St or el d(
store_nane in var char 2
guid in i nteger)
return varchar?2
is
begi n
rai se dbrms_dbfs_content. unsupported_operation
end;

21-16

ORACLE

R T I

Chapter 21
Creating a Custom Store Provider

DBFS SPI: space usage.

Cients can query filesystem space usage statistics via the
"spaceUsage()" method. Providers are expected to support this
method for their stores (and to make a best effort determ nation
of space usage---esp. if the store consists of nultiple

tabl es/indexes/| obs, etc.).

"bl ksize" is the natural tablespace blocksize that holds the
store---if multiple tablespaces with different bl ocksizes are
used, any valid blocksize is acceptable.

"tbytes" is the total size of the store in bytes, and "fbytes" is
the free/unused size of the store in bytes. These values are
conputed over all segments that conprise the store.

“nfile", "ndir", "nlink", and "nref" count the nunber of
currently available files, directories, links, and references in
the store.

Since database objects are dynamcally growable, it is not easy
to estimate the division between "free" space and "used" space.

/

procedure spaceUsage(
store_nane in varchar 2,
bl ksi ze out i nteger,
tbytes out i nt eger,
fbytes out i nt eger,
nfile out i nteger,
ndi r out i nteger,
nli nk out i nteger,
nr ef out i nteger)

is
nbl ks nunber ;

begi n

select count(*) into nfile
fromtbfs.tbfst;

ndir :=0;
nlink := 0;
nr ef = 0;

sel ect sum(bytes) into thytes
from user_segnents;
sel ect sum(bl ocks) into nblks
from user_segnents;
bl ksi ze : = thbytes/nblks;
fbytes :=0; /* change as needed */

end;

o

DBFS SPI: notes on pathnanes.
Al pathnames used in the SPl are store-qualified, i.e. a 2-tuple

of the form (store_name, pathnanme) (where the pathname is rooted
wi thin the store namespace).

21-17

ORACLE

I T

A . U R CHE N R R

Chapter 21
Creating a Custom Store Provider

Stores/providers that support contentlD based access (see
"feature_content _id") also support a formof addressing that is
not based on pathnames. Items are identified by an explicit store
name, a "null" pathnane, and possibly a contentID specified as a
paraneter or via the "opt_content_id" property.

Not all operations are supported with contentlD based access, and
applications should depend only on the sinplest create/delete
functionality being avail able.

DBFS SPI: creation operations

The SPI nust allow the DBFS APl to create directory, file, link
and reference elenments (subject to store feature support)

Al of the creation nethods require a valid pathnane (see the
speci al exenption for contentlD based access bel ow), and can
optionally specify properties to be associated with the pathname
as it is created. It is also possible for clients to fetch-back
itemproperties after the creation conpletes (so that
autonatical ly generated properties (e.g. "std_creation_tine") are
imrediately available to clients (the exact set of properties
fetched back is controlled by the various "prop_xxx" bitmasks in
"prop_flags").

Links and references require an additional pathname to associate
with the primary pathname.

Fil e pathnanes can optionally specify a BLOB value to use to
initially populate the underlying file content (the provided BLOB
may be any valid lob: tenmporary or permanent). On creation, the
underlying lob is returned to the client (if "prop_data" is
specified in "prop_flags")

Non-directory pathnames require that their parent directory be
created first. Directory pathnames thensel ves can be recursively
created (i.e. the pathname hierarchy leading up to a directory
can be created in one call).

Attenpts to create paths that already exist is an error; the one
exception is pathnames that are "soft-del eted" (see bel ow for

del ete operations)---in these cases, the soft-deleted itemis
inplicitly purged, and the newitemcreation is attenpted

Stores/providers that support contentlD based access accept an
explicit store nane and a "null" path to create a new el enent

The content|D generated for this element is available via the
"opt _content _id" property (contentlD based creation automatically
inplies "prop_opt" in "prop_flags")

The newy created el ement nay al so have an internally generated

21-18

ORACLE

O

/

procedure createFil g(
store_nane in varchar 2,
path in varchar 2,

Chapter 21
Creating a Custom Store Provider

pathname (if "feature_lazy _path" is not supported) and this path
is available via the "std_canonical _path" property.

Only file elements are candi dates for contentl D based access.

properties in out nocopy dbns_dbfs_content_properties_t,

cont ent in out nocopy blob,
prop_flags in i nt eger,

ctx in dbns_dbfs_content _context _t)

gui d nunber ;
begi n
if (path ="'/") then
rai se dbms_dbfs_content.invalid_path;
end if;

if content is null then
content := enpty_blob();
end if;

begi n

insert into tbfs.tbhfst values (substr(path,2), content)

returning data into content;
exception
when dup_val _on_i ndex then
rai se dbns_dbfs_content. path_exi sts;
end;

sel ect ora_hash(path) into guid fromdual;

properties := dbns_dbfs_content _properties_t(

dbns_dbfs_content _property_t(
"std:length',
to_char (dbns_| ob. getl engt h(content)),
dbns_t ypes. TYPECODE_NUMBER) ,

dbns_dbfs_content _property_t(
"std:guid',
to_char (guid),
dbms_t ypes. TYPECODE_NUMBER)) ;

end;

procedure createLink(

store_nane in varchar 2,
srcPat h in varchar 2,
dst Pat h in varchar 2,
properties in out nocopy dbns_dbfs_content_properties_t,
prop_flags in i nteger,
ctx in dbns_dbfs_content _context _t)
is
begi n

rai se dbrs_dbfs_content. unsupported_operati on;
end;

procedure createReference(
store_nane in varchar 2,
srcPat h in varchar 2,

21-19

ORACLE

Chapter 21
Creating a Custom Store Provider

dst Pat h in varchar 2,
properties in out nocopy dbns_dbfs_content_properties_t,
prop_flags in i nteger,
ctx in dbns_dbfs_content _context _t)
is
begi n
rai se dbrms_dbfs_content. unsupported_operati on;
end;

procedure createDirectory(

store_nane in varchar 2,
path in varchar 2,
properties in out nocopy dbns_dbfs_content_properties_t,
prop_flags in i nteger,
recurse in i nt eger,
ctx in dbns_dbfs_content _context _t)
is
begi n
rai se dbrs_dbfs_content. unsupported_operati on;
end;

DBFS SPI: del etion operations

The SPI nust allow the DBFS APl to delete directory, file, link,
and reference el ements (subject to store feature support).

By default, the deletions are "permanent” (get rid of the
successfully deleted itens on transaction commt), but stores may
al so support "soft-delete" features. If requested by the client,
soft-deleted itens are retained by the store (but not typically
visible in normal listings or searches).

Soft-deleted items can be "restore"d, or explicitly purged.

Directory pathnames can be recursively deleted (i.e. the pathnane
hi erarchy bel ow a directory can be deleted in one call).
Non-recursive del etions can be perforned only on enpty
directories. Recursive soft-deletions apply the soft-delete to
all of the itens being del eted.

I ndi vi dual pathnanes (or all soft-deleted pathnanes under a
directory) can be restored or purged via the restore and purge
met hods.

Providers that support filtering can use the provider "filter" to
identify subsets of itens to delete---this makes nost sense for
bul k operations (deleteDirectory, restoreAl, purgeAl), but all
of the deletion-related operations accept a "filter" argunent.

Stores/providers that support contentlD based access can al so
allowfile itens to be deleted by specifying their contentlD.

I T T R R R R R N

21-20

ORACLE

Chapter 21
Creating a Custom Store Provider

procedure deleteFile(

store_nane in varchar 2,
path in varchar 2,
filter in varchar 2,
soft_delete in i nteger,
ctx in dbns_dbfs_content _context _t)
is
begi n
if (path ='/") then
rai se dbms_dbfs_content.invalid_path;
end if;
if ((soft_delete <> 0) or
(filter is not null)) t hen
rai se dbns_dbfs_content. unsupported_operati on;
end if;
delete fromtbfs.tbhfst t
where ('/"' || t.key) = path;
if sqgl % owcount <> 1 then
rai se dbms_dbfs_content.invalid_path;
end if;
end;

procedure del et eCont ent (

store_nane in varchar 2,

contentID in raw,

filter in varchar 2,

soft_delete in i nt eger,

ctx in dbns_dbfs_content _context _t)
is
begi n

rai se dbrms_dbfs_content. unsupported_operati on;
end;

procedure deleteDirectory(

store_nane in varchar 2,

path in varchar 2,

filter in varchar 2,

soft_delete in i nt eger,

recurse in i nt eger,

ctx in dbns_dbfs_content _context _t)
is
begi n

rai se dbrs_dbfs_content. unsupported_operati on;
end;

procedure restorePath(

store_nane in varchar 2,

path in varchar 2,

filter in varchar 2,

ctx in dbns_dbfs_content _context _t)
is
begi n

rai se dbrs_dbfs_content. unsupported_operati on;
end;

procedure purgePat h(
store_nane in varchar 2,

21-21

ORACLE

Chapter 21
Creating a Custom Store Provider

path in varchar 2,

filter in varchar 2,

ctx in dbns_dbfs_content _context _t)
is
begi n

rai se dbrs_dbfs_content. unsupported_operati on;
end;

procedure restoreAll (

store_nane in varchar 2,

path in varchar 2,

filter in varchar 2,

ctx in dbns_dbfs_content _context _t)
is
begi n

rai se dbrms_dbfs_content. unsupported_operati on;
end;

procedure purgeAl l(

store_nane in varchar 2,
path in varchar 2,
filter in varchar 2,
ctx in dbns_dbfs_content _context _t)
is
begi n
rai se dbrs_dbfs_content. unsupported_operati on;
end;
/

DBFS SPI: path get/put operations.

Existing path itens can be accessed (for query or for update) and
modi fied via sinple get/put nethods.

Al pathnanmes allow their netadata (i.e. properties) to be
read/ nodi fied. On conmpletion of the call, the client can request
(via "prop_flags") specific properties to be fetched as well.

File pathnanes allow their data (i.e. content) to be

read/ modified. On conpletion of the call, the client can request
(via the "prop_data" bitmaks in "prop_flags") a new BLOB | ocat or
that can be used to continue data access.

Files can also be read/witten without using BLOB |ocators, by
explicitly specifying logical offsets/buffer-anmounts and a
suitably sized buffer.

Updat e accesses must specify the "forUpdate" flag. Access to link
pat hnames can be inplicitly and internally deferenced by stores
(subject to feature support) if the "deref" flag is

speci fi ed---however, this is dangerous since synbolic links are
not al ways resol vabl e.

The read nethods (i.e. "getPath" where "forUpdate" is "fal se"

al so accepts a valid "asof" tinestanp parameter that can be used
by stores to inplement "as of" style flashback queries. Mitating
versions of the "getPath" and the "putPath" nethods do not

T

21-22

Chapter 21
Creating a Custom Store Provider

support as-of nodes of operation.

"getPathNowai t" inplies a "forUpdate", and, if inplemented (see
"feature_nowait"), allows providers to return an exception
(ORA-54) rather than wait for row | ocks.

I . T

/

procedure getPat h(

store_nane in varchar 2,

pat h in var char 2,

properties in out nocopy dbns_dbfs_content_properties_t,

cont ent out nocopy bl ob,

itemtype out i nteger,

prop_flags in i nt eger,

forUpdate in i nt eger,

der ef in i nteger,

ctx in dbns_dbfs_content _context _t)
is

gui d nunber ;
begi n

if (deref <> 0) then
rai se dbns_dbfs_content. unsupported_operation;
end if;

sel ect ora_hash(path) into guid fromdual;
if (path ="'/") then

if (forUpdate <> 0) then
rai se dbns_dbfs_content. unsupported_operati on;

end if;
cont ent = null;
itemtype := dbns_dbfs_content.type_directory;

properties := dbns_dbfs_content _properties_t(
dbns_dbfs_content _property_t(

"std:guid',

to_char (guid),

dbns_t ypes. TYPECODE_NUMBER)) ;

return;
end if;

begi n
if (forUpdate <> 0) then
select t.data into content fromthbfs.tbfst t

where ('/" || t.key) = path
for update;
el se
select t.data into content fromthbfs.tbfst t
where ('/"' || t.key) = path;
end if;
exception

when no_data_found then
rai se dbms_dbfs_content.invalid_path;

end;
itemtype := dbrms_dbfs_content.type file;
properties := dbns_dbfs_content _properties_t(

dbns_dbfs_content _property_t(

ORACLE 21-23

Chapter 21
Creating a Custom Store Provider

"std:length',
to_char (dbns_| ob. getl engt h(content)),
dbns_t ypes. TYPECODE_NUMBER) ,
dbns_dbfs_content _property_t(
"std:guid',
to_char (guid),
dbns_t ypes. TYPECODE_NUMBER)) ;
end;

procedure getPat hNowai t (

store_nane in varchar 2,
path in varchar 2,
properties in out nocopy dbns_dbfs_content_properties_t,
cont ent out nocopy bl ob,
itemtype out i nteger,
prop_flags in i nt eger,
der ef in i nteger,
ctx in dbns_dbfs_content _context _t)
is
begi n
rai se dbrms_dbfs_content. unsupported_operati on;
end;

procedure getPat h(
store_nane in varchar 2,
path in varchar 2,
properties in out nocopy dbns_dbfs_content_properties_t,
anmount in out nunber,
of f set in nunber,
buf fer out nocopy raw,
prop_flags in i nteger,
ctx in dbns_dbfs_content _context _t)

cont ent bl ob;
gui d nunber ;
begi n
if (path ="'/") then
rai se dbns_dbfs_content. unsupported_operati on;
end if;

begi n
select t.data into content fromtbfs.tbfst t
where ('/" || t.key) = path;
exception
when no_data_found then
rai se dbms_dbfs_content.invalid_path;
end;

sel ect ora_hash(path) into guid fromdual;
dbns_| ob. read(content, anount, offset, buffer);

properties := dbns_dbfs_content _properties_t(

dbns_dbfs_content _property_t(
"std:length',
to_char (dbns_| ob. getl engt h(content)),
dbns_t ypes. TYPECODE_NUMBER) ,

dbns_dbfs_content _property_t(
"std:guid',
to_char (guid),
dbms_t ypes. TYPECODE_NUMBER)) ;

end;

ORACLE 21-24

ORACLE

Chapter 21
Creating a Custom Store Provider

procedure getPat h(

is
begi

end;

store_nane in varchar 2,

pat h in var char 2,

properties in out nocopy dbns_dbfs_content_properties_t,
anount in out nunber,

of f set in nunber,

buffers out nocopy dbns_dbfs_content _raw t,
prop_flags in i nt eger,

ctx in dbns_dbfs_content _context _t)

n

rai se dbrs_dbfs_content. unsupported_operati on;

procedure put Pat h(

begi

end;

store_nane in varchar 2,

pat h in var char 2,

properties in out nocopy dbns_dbfs_content_properties_t,
cont ent in out nocopy blob,

itemtype out i nteger,

prop_flags in i nt eger,

ctx in dbns_dbfs_content _context _t)
gui d nunber ;

n

if (path ='/") then
rai se dbns_dbfs_content. unsupported_operati on;
end if;

if content is null then
content := enpty_blob();
end if;

update thfs.tbfst t
set t.data = content
where ('/' || t.key) = path
returning t.data into content;

if sqgl % owcount <> 1 then
rai se dbms_dbfs_content.invalid_path;
end if;

sel ect ora_hash(path) into guid fromdual;

itemtype dbns_dbfs_content.type file;
properties := dbns_dbfs_content _properties_t(
dbns_dbfs_content _property_t(
"std:length',
to_char (dbns_| ob. getl engt h(content)),
dbns_t ypes. TYPECODE_NUMBER) ,
dbns_dbfs_content _property_t(
"std:guid',
to_char (guid),
dbns_t ypes. TYPECODE_NUMBER)) ;

procedure put Pat h(

store_nane in varchar 2,
path in varchar 2,
properties in out nocopy dbns_dbfs_content_properties_t,

21-25

ORACLE

beg

Chapter 21
Creating a Custom Store Provider

anmount in nunber,
of f set in nunber,
buf f er in raw,
prop_flags in i nt eger,
ctx in dbns_dbfs_content _context _t)
cont ent bl ob;
gui d nunber ;
in

if (path ="'/") then
rai se dbns_dbfs_content. unsupported_operati on;

end if;
begi n
select t.data into content fromthbfs.tbfst t
where ('/" || t.key) = path
for update;
exception

when no_data_found then
rai se dbms_dbfs_content.invalid_path;
end;

sel ect ora_hash(path) into guid fromdual;
dbns_| ob. wite(content, amount, offset, buffer);

properties := dbns_dbfs_content _properties_t(
dbns_dbfs_content _property_t(
"std:length',
to_char (dbns_| ob. getl engt h(content)),
dbns_t ypes. TYPECODE_NUMBER) ,
dbns_dbfs_content _property_t(
"std:guid',
to_char (guid),
dbns_t ypes. TYPECODE_NUMBER)) ;

end;

pro

is
beg

cedure putPat h(

store_nane in varchar 2,
pat h in var char 2,
properties in out nocopy dbns_dbfs_content_properties_t,
witten out nunber,
of f set in nunber,
buffers in dbns_dbfs_content _raw t,
prop_flags in i nt eger,
ctx in dbns_dbfs_content _context _t)
in

rai se dbrs_dbfs_content. unsupported_operati on;

end;

R R

DBFS SPI: renane/ nove operations.

Pat hnames can be renaned or noved, possibly across directory
hi erarchi es and mount-points, but within the sane store.

Non-di rectory pathnanes previously accessible via "ol dPath" are
renamed as a single itemsubsequently accessible via "newPath";

21-26

ORACLE

E . R

pr

is
be

en

pr

is
be

en

I S

fu

Chapter 21
Creating a Custom Store Provider

assum ng that "newPath" does not already exist.
If "newPath" exists and is not a directory, the renane inplicitly
del etes the existing itembefore renaming "ol dPath". If "newPath"
exists and is a directory, "oldPath" is nmoved into the target
directory.
Directory pathnames previously accessible via "ol dPath" are
renamed by noving the directory and all of its children to
"newPath" (if it does not already exist) or as children of
"newPath" (if it exists and is a directory).
Stores/providers that support contentlD based access and | azy
pat hname bi ndi ng al so support the "setPath" method that
associates an existing "contentID' with a new "path".
/
ocedure renanePat h(
store_nane in var char 2,
ol dPat h in varchar 2,
newPat h in varchar 2,
properties in out nocopy dbns_dbfs_content_properties_t,
ctx in dbns_dbfs_content _context _t)
gin
rai se dbrs_dbfs_content. unsupported_operati on;
d;
ocedure setPath(
store_nane in var char 2,
contentID in raw,
path in varchar 2,
properties in out nocopy dbns_dbfs_content_properties_t,
ctx in dbns_dbfs_content _context _t)
gin
rai se dbrms_dbfs_content. unsupported_operati on;
d;

DBFS SPI: directory navigation and search.
The DBFS APl can list or search the contents of directory
pat hnarmes, optionally recursing into sub-directories, optionally
seeing soft-deleted itens, optionally using flashback "as of" a
provided tinestanp, and optionally filtering items in/out within
the store based on |ist/search predicates.
/
nction list(
store_nane in var char 2,
path in varchar 2,
filter in varchar 2,
recurse in i nt eger,
ctx in dbns_dbfs_content _context _t)

21-27

ORACLE

Chapter 21
Creating a Custom Store Provider

return dbns_dbfs_content _list_itens_t

pi pel i ned
is
begi n
for rws in (select * fromtbfs.tbfst)
| oop
pi pe row(dbns_dbfs_content _list_itemt(
"I || rws.key, rws.key, dbns_dbfs_content.type file));
end | oop;
end;

function sear ch(

store_nane in var char 2,

path in varchar 2,

filter in varchar 2,

recurse in i nteger,

ctx in dbns_dbfs_content _context _t)

return dbns_dbfs_content _list_itens_t
pi pel i ned

is
begi n

rai se dbrms_dbfs_content. unsupported_operati on;
end;
/*
* DBFS SPI: |ocking operations.
*
* Cients of the DBFS APl can apply user-level locks to any valid
* pathnane (subject to store feature support), associate the |ock
* with user-data, and subsequently unlock these pathnanes.
*
* The status of locked items is available via various optional
* properties (see "opt_lock*" above).
*
*
* |t is the responsibility of the store (assuming it supports
* user-defined | ock checking) to ensure that |ock/unlock operations
* are perforned in a consistent nanner.
*
*

/

procedure | ockPat h(

store_nane in varchar 2,

path in varchar 2,

lock_type in i nteger,

lock _data in varchar 2,

ctx in dbns_dbfs_content _context _t)
is
begi n

rai se dbrs_dbfs_content. unsupported_operati on;
end;

procedure unl ockPat h(

store_nane in varchar 2,

path in varchar 2,

ctx in dbns_dbfs_content _context _t)
is
begi n

rai se dbrs_dbfs_content. unsupported_operati on;

21-28

Chapter 21
Creating a Custom Store Provider

end;

/*

* DBFS SPI: access checks.

*

* Check if a given pathname (store_name, path, pathtype) can be
* mani pul ated by "operation (see the various

* "dbrs_dbfs_content. op_xxx" opcodes) by "principal".

*

* This is a convenience function for the DBFS APl; a store that
* supports access control still internally perforns these checks to
* guarantee security.

*

*

/

function checkAccess(

store_nane in varchar 2,
path in varchar 2,
pat ht ype in i nteger,
operation in varchar 2,
princi pal in var char 2)
return integer

is

begi n
return 1;

end;

end;
/
show errors;

21.3.4.5 Registering and Mounting the DBFS

ORACLE

The capi . sql script registers and mounts the DBFS.

The capi . sql script:

connect thfs/thfs;

exec dbnms_dbfs_content.registerStore(' MP_TBFS', 'table', 'TBFS');

exec dbns_dbfs_content. mount Store(' MY_TBFS', singleton => true);
comit;

21-29

DBFS Access Using OFS

You can access Database File System(DBFS) using Oracle File Server(OFS) process. The
centralized server background process model of OFS allows multiple file systems to be
mounted and accessed using a limited set of server threads. It allows better resource sharing
and a linear scalability with new file server threads created on demand. Both memory and
CPU used by these threads are controlled through system wide parameters set in the
RDBMS instance.

When the newly created DBFS needs to be accessed across multiple nodes where there are
no Oracle Client Installation, OFS can be used to NFS mount the file system

(In the absence of an Oracle Client installation, you can use OFS to mount the newly created
DBFS to NFS and use it across multiple nodes.) All file system requests are served by
threads in the OFS background process.

22.1 OFS Configuration Parameters

The following table specifies all the parameters that enable NFS access in the database.

Table 22-1 OFS Configuration Parameters

Parameter Name Description

OFS_THREADS This parameter is used to set the number of OFS
worker threads to handle OFS requests.

Possible values:

e Aninteger value in the range of 2-128
* Default value is 4

22.1.1 OFS Client Interface

The OFS interface includes views and procedures that support OFS operations.

22.1.1.1 DBMS_FS Package

The DBM5S_FS package enables users to perform operations on Oracle file system (make,
mount, unmount and destroy) in the Oracle database.

" See Also:

Oracle Database PL/SQL Packages and Types Reference for more information
about Oracle OFS procedures.

ORACLE 22-1

Chapter 22
Accessing DBFS with an NFS Account

The following example illustrates the use of DBM5S_FS package.

BEG N
DBVS_FS. MAKE_ORACLE_FS (
fstype => "dbfs’',
f snane => "dbfs fsl',
mount _opti ons => ' TABLESPACE=dbfs_fs1 thspc');
END;
/
BEG N
DBMS_FS. MOUNT_ORACLE_FS (
fstype => "dbfs’',
f snane => "dbfs fsl',
mount _poi nt => '[oracl e/ dbf s/
testfs',
mount _opti ons => 'defaul t _pernissions, allow other, persist');
END;

/
[*FrxxFxxkxEAHEX Now you can access the file system Al the FS
Operat|0ns go here ***************/

BEG N
DBMS_FS. UNMOUNT_ORACLE_FS (
f snane => "dbfs fsl',
mount _poi nt => '[oracl e/ dbfs/testfs",
mount _opti ons => '"force');
END;
/
BEG N
DBMS_FS. DESTROY_ORACLE_FS (
fstype => "dbfs’',
f sname => "dbfs_fsl1');
END;
/
22.1.1.2 Views for OFS

The views that support OFS operations start with VSOFS .

" See Also:

Oracle Database Reference for the columns and data types of these views.

22.2 Accessing DBFS with an NFS Account

NFS is a widely used protocol to access any local file system across network. OFS
makes use of this protocol and enables access to any DBFS file system that is
mounted on the compute node.

ORACLE 22-2

Chapter 22
Accessing DBFS with an NFS Account

NFS enables the compute node to be accessible across all nodes that are authorized to
access the file system.

22.2.1 Prerequisites to Access Storage Through NFS Server

Learn about the prerequisites to access storage through NFS server.
Following are the prerequisites:

e DBFS file system must be created before using OFS.
e You should be able to mount the file systems exported by the database.

e NFS server must be configured with KERNEL module.

" Note:

The KERNEL module is supported through FUSE driver for Linux.

22.2.2 NFS Security

OFS uses the OS authentication model to authorize NFS client users. If the user is accessing
a local node (where the Oracle instance is running), the access to each file in the file system
is controlled through Unix Access Control List set for each object.

On Linux, OFS uses FUSE to receive file system requests from the OS kernel or NFS client.
This requires user _al | ow_ot her parameter to be setin /et ¢/ fuse. conf configuration file if
an OS user other than the r oot user and oracle user need to access the file system.

< Note:

Users can also be configured with an Oracle password to log into Oracle client tools
like SQL* Pl us to execute SQL statements.

If the network is not secure, the customer is advised to setup Kerberos to authenticate the
user using OS NFS.

" Note:

e The Kerberos authentication is available from NFS version 4 onwards. If the
OFS is exported via NFS version 3, then the authentication is performed using
AUTH_SYS.

* For local node, the authentication is performed using AUTH_SYS irrespective of
how the OFS is exported (NFS version 3 or NFS version 4).

ORACLE 22-3

Chapter 22
Accessing DBFS with an NFS Account

22.2.2.1 Kerberos

ORACLE

Kerberos uses encryption technology, Key Distribution Center(KDC), and an arbitrator
to perform secure authentication on open networks.

Kerberos is the widely used security mechanism that provides all three flavors of
security:

* Authentication
e Integrity check
e Privacy

Kerberos Infrastructure consists of Kerberos software, secured authentication servers,
centralized account and password store, and systems configured to authenticate
through the Kerberos protocol. The OS NFS server handles the complete
authentication and integrity checks by using kerberos principal name as the user
name. Once the authentication is performed, the requests passed to the Oracle kernel
are handled based on the user name passed through the VFS 1/O request.

Configuring Kerberos Server in Linux
The steps to configure Kerberos server in a Linux system is as follows:

1. Install Kerberos software in the Linux system.

2. Check if the daemons are running using the following commands.

[sbin/chkconfig krb5kdc on
/sbin/chkconfig kadnmin on

3. If the daemons are not running use the following commands to start the daemons
manually:

letc/rc.dlinit.d/krb5kdc start
/etc/rc.d/init.d/ kadm n start

4. Add user principal using the kadni n. | ocal command.

Example:

kadm n.local : addprinc <scott>

22-4

Comparing the LOB Interfaces

ORACLE

The following tables compare the eight LOB programmatic interfaces by listing their functions
and methods used to operate on LOBs. The tables are split in two only to accommodate alll

eight interfaces.

APIs for BLOBs and CLOBs

Table A-1 APIs for BLOBs and CLOBs (PL/SQL, JDBC, OCI, OCCI)
]

PL/SQL: DBMS_LOB

JDBC (Java)

OCI (Clocip.h)

OCCI (C++locciData.h)

(dbmslob.sql) interfaces classes: Clob and
java.sql.Clob and Blob
java.sql.Blob

CCl LobLocatorlslni islnitialized()
t()

| SSECUREFI LE i sSecureFile()

OPEN open() OCl LobOpen() Open()

| SOPEN i sQpen() CCl Lobl sOpen() i sQpen()

CLOSE cl ose() CCl Lobd ose() d ose()

CREATETEMPORARY createTenporary OCl LobCr eat eTenpor a

ry()
FREETEMPORARY freeTenporary OCl LobFr eeTenpor ar

y()
| STEMPORARY i sTenmporary CCl Lobl sTenpor ar y()
CGETLENGTH [engt h() OCl Get LobLengt h2() 1ength()

GET_STORAGE_LIMT

OCl LobGet St or ageLi m
it()

CGETCHUNKSI ZE get ChunkSi ze() OCl LobGet ChunkSi ze(get ChunkSi ze()
)
READ Bl ob: getBytes() Cci LobRead2() read()
get Bi narySt reant() CCl LobAr r ayRead()
Cl ob: get Chars()
get Char act er Strean(
) getAsciiStream()
SUBSTR get SubString
I NSTR position
COCl LobChar Set | d() get Char Set 1d()
(Cob only)
OCl LobChar Set For m() get Char Set Form
(Cob only)
VRI TE Bl ob: setBytes() CCl LobWite2() wite

set Bi naryStream.)

CCl LobArrayWite()

A-1

Appendix A

Table A-1 (Cont.) APIs for BLOBs and CLOBs (PL/SQL, JDBC, OCI, OCCI)

PL/SQL: DBMS LOB JDBC (Java) OCI (Clocip.h) OCCI (C++locciData.h)
(dbmslob.sql) interfaces classes: Clob and
java.sql.Clob and Blob

java.sql.Blob

Clob: setString()
set Char act er Strean(

)

VRl TEAPPEND use | engt h() and then COCl LobW it eAppend2(

put String() or)

put Byt es()
ERASE COCl LobEr ase2()
TRIM truncate() OCl LobTri n2() trim

equal CCl Lobl sEqual () Use operators

=/ |=

COVPARE Use DBVS_LOB
APPEND Use | engt h() and then OCl LobW it eAppend2(

put String() or)

put Byt es()
CoPY Use read and wite OClLobCopy2() copy()
Use operator := Use operator = COCl LobLocat or Assi g use operator =

n()
CONVERTTOBLOB
CONVERTTOCLOB
cl oseStrean()
CETOPTI ONS OCl LobGet Opti ons() get Options()
SETOPTI ONS COCl LobSet Opti ons() setOptions()
CGETCONTENTTYPE Cci LobGet Cont ent Typ get Cont ent Type()
e()

SETCONTENTTYPE Cci LobSet Cont ent Typ set Cont ent Type()

e()

FRAGVENT DELETE
FRAGVENT_| NSERT
FRAGVENT MOVE
FRAGVENT REPLACE

Table A-2 APIs for BLOB and CLOB (PL/SQL, .NET, Pro*C/C++, Pro COBOL)
|

PL/SQL: DBMS_LOB ODP.NET Classes: Pro*C/C++ and Pro*COBOL
(dbmslob.sql) OracleClob and OracleBlob

OPEN Begi nChunkWite OPEN

| SOPEN I sl nChunkW it eMbde DESCRI BE [| SOPEN]

CLOSE EndChunkWite CLCSE

CREATETEMPORARY Add() CREATE TEMPORARY
FREETEMPORARY Di spose() and C ose() FREE TEMPORARY

| STEMPORARY | sTenporary() DESCRI BE [| STEMPORARY]

ORACLE A-2

ORACLE

Appendix A

Table A-2 (Cont.) APIs for BLOB and CLOB (PL/SQL, .NET, Pro*C/C++, Pro

COBOL)

]
Pro*C/C++ and Pro*COBOL

PL/SQL: DBMS_LOB

ODP.NET Classes:

(dbmslob.sql) OracleClob and OracleBlob
CGETLENGTH Lengt h() DESCRI BE [LENGTH|
CETCHUNKSI ZE Opt i munChunkSi ze() DESCRI BE [CHUNKSI ZE]
READ Val ue Read READ
I NSTR Sear ch
VRI TE Wite VRI TE
VRl TEAPPEND Append VRl TE APPEND
ERASE Erase ERASE
TRIM Set Lengt h TRIM
| sEqual
COVPARE Conpare
APPEND Append APPEND
coPY CopyTo corY
Use operator := C one ASSI GN

APIs for BFILEs

Table A-3 APIs for BFILEs (PL/SQL, JDBC, OCI, OCCI)
L

PL/SQL: DBMS_LOB

JDBC (Java) interface

OClI (Clociap.h)

OCCI (C++locciData.h)

(dbmslob.sql) oracle.jdbc.OracleBfil class: Bfile
e
FI LEEXI STS fileExists Cci LobFil eExist() fileExists()
FI LEGETNAME getDirAlias, OCl LobFi | eGet Nane() getDirAias()getFil
get Name eNane()
SQL BFI LENAME SQ. BFI LENAME OCl LobFi | eSet Nanme() set Name()
oper at or oper at or
OPEN openFile OCl LobOpen() open()
| SOPEN i sFi | eQpen() CCl Lobl sOpen() i sQpen()
CLCSE closeFile CCl Lobd ose() cl ose()
FI LECLOSEALL Use DBMS_LOB OCl LobFi | ed oseAl | (
)
CGETLENGTH l ength OCl LobGet Lengt h2() 1 ength()
READ get Byt es() get Bi nary OCl LobRead() CCl LobA read
Stream() rrayRead()
SUBSTR get Bytes
I NSTR position

Use operator :=

Use operator =

OCl LobLocat or Assi g
n()

Use operator =

LOADCLOBFROMWFI LE
LOADBLOBFROWFI LE

QOCl LobLoadFronFil e
2()

Bl ob. copy() or
d ob. copy()

COVPARE

N/A

A-3

ORACLE

Appendix A

Table A-3 (Cont.) APIs for BFILEs (PL/SQL, JDBC, OCI, OCCI)
]

PL/SQL: DBMS_LOB JDBC (Java) interface OCI (Clociap.h) OCCI (C++locciData.h)
(dbmslob.sql) oracle.jdbc.OracleBfil class: Bfile

e
N A equal OCl Lobl sEqual () Use operators ==/!=

Table A-4 APIs for BFILEs (PL/SQL, ODP.NET, Pro*C/C++ and Pro*COBOL)
|

PL/SQL: DBMS_LOB ODP.NET Class: OracleBfile Pro*C/C++ and Pro*COBOL

(dbmslob.sql)

FI LEEXI STS Fi | eExists DESCRI BE [FI LEEXI STS]

FI LEGETNAME DirectoryName, Filename DESCRI BE [DI RECTCRY,
FI LENAME]

SQ. BFILENAME operator DirectoryName, Filename FILE SET

OPEN QpenFile OPEN

| SOPEN I sOpen() DESCRI BE [| SOPEN]

CLOSE CloseFile CLCSE

FI LECLOSEALL N/A FILE CLOSE ALL

CGETLENGTH Length DESCRI BE [LENGTH|

READ Val ue, Read READ

SUBSTR

I NSTR Sear ch

Use operator :=

LOADCLOBFROMWFI LE
LOADBLOBFROMWFI LE

COVPARE Conpare

N A | sEqual

A-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to Large Objects and SecureFiles
	1.1 Changes in Oracle Database
	1.1.1 Updates to Oracle Database Security 21c

	1.2 What Are Large Objects?
	1.3 Where Should We Use LOBs?
	1.4 LOB Classifications
	1.4.1 Large Object Data Types
	1.4.2 Types of LOBs
	1.4.3 LOBs in Object Data Types
	1.4.4 Oracle Data Types Stored in LOBs

	1.5 LOB Locator and LOB Value
	1.5.1 Using LOBs Without Locators
	1.5.2 Using LOBs with Locators

	1.6 LOB Restrictions
	1.7 How to Navigate This Book

	2 Persistent LOBs
	2.1 Creating a Table with LOB Columns
	2.2 Inserting and Updating LOB Values in Tables
	2.2.1 Inserting and Updating with a Buffer
	2.2.2 Inserting and Updating by Selecting a LOB From Another Table
	2.2.3 Inserting and Updating with a NULL or Empty LOB
	2.2.4 Inserting and Updating with a LOB Locator
	2.2.4.1 PL/SQL: Inserting a Row by Initializing a LOB Locator Bind Variable
	2.2.4.2 JDBC (Java): Inserting a Row by Initializing a LOB Locator Bind Variable
	2.2.4.3 OCI (C): Inserting a Row by Initializing a LOB Locator Bind Variable
	2.2.4.4 Pro*C/C++ (C/C++): Inserting a Row by Initializing a LOB Locator Bind Variable
	2.2.4.5 Pro*COBOL (COBOL): Inserting a Row by Initializing a LOB Locator Bind Variable

	2.3 Selecting LOB Values from Tables
	2.3.1 Selecting a LOB into a Character Buffer or a Raw Buffer
	2.3.2 Selecting a LOB into a LOB Variable for Read Operations
	2.3.3 Selecting a LOB into a LOB Variable for Write Operations

	2.4 Performing DML and Query Operations on LOBs in Nested Tables
	2.5 Performing Parallel DDL, Parallel DML (PDML), and Parallel Query (PQ) Operations on LOBs
	2.6 Sharding with LOBs

	3 Temporary LOBs
	3.1 Before You Begin
	3.1.1 Creating Temporary LOBs
	3.1.2 Handling Temporary LOBs on the Client Side

	3.2 Temporary LOB APIs in Different Programmatic Interfaces
	3.2.1 PL/SQL APIs for Temporary LOBs
	3.2.2 JDBC API for Temporary LOBs
	3.2.3 OCI APIs for Temporary LOBs
	3.2.4 ODP.NET API for Temporary LOBs
	3.2.5 Pro*C/C++ and Pro*COBOL APIs for Temporary LOBs

	4 BFILEs
	4.1 DIRECTORY Objects
	4.1.1 DIRECTORY Name Specification
	4.1.2 Security on Directory Objects

	4.2 BFILE Locators
	4.3 BFILE APIs
	4.3.1 Sanity Checking
	4.3.2 Opening and Closing a BFILE
	4.3.3 Reading from a BFILE
	4.3.4 Working with Multiple BFILE Locators

	4.4 BFILE APIs in Different Programmatic Interfaces
	4.4.1 PL/SQL APIs for BFILEs
	4.4.2 JDBC API for BFILEs
	4.4.3 OCI API for BFILEs
	4.4.4 ODP.NET API for BFILEs
	4.4.5 OCCI API for BFILEs
	4.4.6 Pro*C/C++ and Pro*COBOL API for BFILEs

	5 SQL Semantics for LOBs
	5.1 SQL Functions and Operators Supported for Use with LOBs
	5.2 Detailed Semantics of SQL Operations on LOBs
	5.2.1 Return Datatype for SQL Operations on LOBs
	5.2.2 NULL vs EMPTY LOB: Semantic Difference between LOBs and VARCHAR2
	5.2.3 WHERE Clause Usage with LOBs
	5.2.4 CLOBs and NCLOBs Do Not Follow Session Collation Settings
	5.2.5 Codepoint Semantics

	5.3 Restrictions on SQL Operations on LOBs

	6 PL/SQL Semantics for LOBs
	6.1 Implicit Conversion with LOBs
	6.1.1 Implicit Conversion Between CLOB and NCLOB Data Types in SQL
	6.1.2 Implicit Conversions Between CLOB and VARCHAR2
	6.1.3 Implicit Conversions Between BLOB and RAW
	6.1.4 Guidelines and Restrictions for Implicit Conversions with LOBs
	6.1.5 Detailed Examples for Implicit Conversions with LOBs

	6.2 Explicit Data Type Conversion Functions
	6.3 Temporary LOBs Created by SQL and PL/SQL Built-in Functions

	7 Data Interface for LOBs
	7.1 Overview of the Data Interface for LOBs
	7.2 Benefits of Using the Data Interface for LOBs
	7.3 Data Interface for LOBs in Java
	7.4 Data Interface for LOBs in OCI
	7.4.1 Binding a LOB in OCI
	7.4.2 Defining a LOB in OCI
	7.4.3 Multibyte Character Sets Used in OCI with the Data Interface for LOBs
	7.4.4 Getting LOB Length
	7.4.5 Using OCI Functions to Perform INSERT or UPDATE on LOB Columns
	7.4.5.1 Performing Simple INSERT or UPDATE Operations in One Piece
	7.4.5.2 Using Piecewise INSERT and UPDATE Operations with Polling
	7.4.5.3 Performing Piecewise INSERT and UPDATE Operations with Callback
	7.4.5.4 Performing Array INSERT and UPDATE Operations

	7.4.6 Using OCI Data Interface to Fetch LOB Data
	7.4.6.1 Performing Simple Fetch Operations in One Piece
	7.4.6.2 Performing a Piecewise Fetch with Polling
	7.4.6.3 Performing a Piecewise with Callback
	7.4.6.4 Performing an Array Fetch Operation

	7.4.7 PL/SQL and C Binds from OCI

	8 Locator Interface for LOBs
	8.1 Before You Begin
	8.1.1 Getting a LOB Locator
	8.1.2 LOB Open and Close Operations
	8.1.3 Read and Write at Chunk Boundaries
	8.1.4 Prefetching LOB Data and Length
	8.1.5 Determining Character Set ID
	8.1.6 LOB APIs

	8.2 PL/SQL API for LOBs
	8.3 JDBC API for LOBs
	8.4 OCI API for LOBs
	8.4.1 Efficiently Reading LOB Data in OCI
	8.4.2 Efficiently Writing LOB Data in OCI

	8.5 ODP.NET API for LOBs
	8.6 OCCI API for LOBs
	8.7 Pro*C/C++ and Pro*COBOL API for LOBs

	9 Distributed LOBs
	9.1 Working with Remote LOBs in SQL and PL/SQL
	9.2 Using the Data Interface on Remote LOBs
	9.3 Working with Remote Locators
	9.3.1 Using Local and Remote Locators as Bind with Queries and DML on Remote Tables
	9.3.2 Using Remote Locator
	9.3.3 Restrictions when using remote LOB locators

	10 Performance Guidelines
	10.1 LOB Performance Guidelines
	10.1.1 All LOBs
	10.1.2 Performance Guidelines While Using Persistent LOBs
	10.1.3 Temporary LOBs

	10.2 Moving Data to LOBs in a Threaded Environment
	10.3 LOB Access Statistics

	11 Persistent LOBs: Advanced DDL
	11.1 Creating a New LOB Column
	11.1.1 CREATE TABLE BNF
	11.1.2 ENABLE or DISABLE STORAGE IN ROW
	11.1.3 CACHE, NOCACHE, and CACHE READS
	11.1.4 LOGGING and FILESYSTEM_LIKE_LOGGING
	11.1.5 The RETENTION Parameter
	11.1.6 SecureFiles Compression, Deduplication, and Encryption
	11.1.7 BasicFile Specific Parameters
	11.1.8 Restriction on First Extent of a LOB Segment
	11.1.9 Summary of CREATE TABLE LOB Storage Parameters for Securefile LOBs

	11.2 Altering an Existing LOB Column
	11.2.1 ALTER TABLE BNF
	11.2.2 ALTER TABLE MODIFY vs ALTER TABLE MOVE LOB
	11.2.3 ALTER TABLE SecureFiles LOB Features
	11.2.3.1 ALTER TABLE with Advanced LOB Compression
	11.2.3.2 ALTER TABLE with Advanced LOB Deduplication
	11.2.3.3 ALTER TABLE with SecureFiles Encryption

	11.3 Creating an Index on LOB Column
	11.3.1 Function-Based Indexing on LOB Columns
	11.3.2 Domain Indexing on LOB Columns
	11.3.2.1 Extensible Optimizer
	11.3.2.2 Text Indexes on LOB Columns

	11.4 LOBs in Partitioned Tables
	11.4.1 Partitioning a Table Containing LOB Columns
	11.4.2 Default LOB Storage Attributes
	11.4.3 Partition Maintenance Operation
	11.4.4 Creating an Index on a Table Containing Partitioned LOB Columns

	11.5 LOBs in Index Organized Tables

	12 Advanced Design Considerations
	12.1 Read-Consistent Locators
	12.1.1 A Selected Locator Becomes a Read-Consistent Locator
	12.1.2 Example of Updating LOBs and Read-Consistency
	12.1.3 Example of Updating LOBs Through Updated Locators
	12.1.4 Example of Updating a LOB Using SQL DML and DBMS_LOB
	12.1.5 Example of Using One Locator to Update the Same LOB Value
	12.1.6 Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable
	12.1.7 Example of Deleting a LOB Using Locator
	12.1.8 Ensuring Read Consistency

	12.2 LOB Locators and Transaction Boundaries
	12.2.1 About LOB Locators and Transaction Boundaries
	12.2.2 Read and Write Operations on a LOB Using Locators
	12.2.3 Selecting the Locator Outside of the Transaction Boundary
	12.2.4 Selecting the Locator Within a Transaction Boundary
	12.2.5 LOB Locators Cannot Span Transactions
	12.2.6 Example of Locator Not Spanning a Transaction

	12.3 LOBs in the Object Cache
	12.4 Guidelines for Creating Terabyte sized LOBs
	12.4.1 Creating a Tablespace and Table to Store Terabyte LOBs

	13 Managing LOBs: Database Administration
	13.4 LOB Migration with Data Pump
	13.1 Initialization Parameter for SecureFiles LOBs
	13.2 Database Character Set Considerations
	13.3 Database Utilities for Loading Data into LOBs
	13.3.1 Loading LOBs with SQL*Loader
	13.3.2 Loading BFILEs with SQL*Loader
	13.3.3 Loading LOBs with External Tables
	13.3.3.1 Overview of LOBs and External Tables

	13.5 BFILEs Management
	13.5.1 Guidelines for DIRECTORY Usage
	13.5.2 Rules for Using Directory Objects and BFILEs
	13.5.3 Setting Maximum Number of Open BFILEs

	13.6 Managing LOB Signatures

	14 Migrating Columns to SecureFile LOBs
	14.1 Migration Considerations
	14.2 Migration Methods
	14.2.1 Migrating LOBs with Online Redefinition
	14.2.2 Migrating LOBs with Data Pump

	14.3 Other Considerations While Migrating LONG Columns to LOBs
	14.3.1 Migrating Applications from LONGs to LOBs
	14.3.2 Alternate Methods for LOB Migration

	15 Introducing the Database File System
	15.1 Why a Database File System?
	15.2 What Is Database File System (DBFS)?
	15.2.1 About DBFS
	15.2.2 DBFS Server
	15.2.3 DBFS Client Access Methods

	16 DBFS SecureFiles Store
	16.1 Setting Up a SecureFiles Store
	16.1.1 About Managing Permissions
	16.1.2 Creating or Setting Permissions
	16.1.3 Creating a SecureFiles File System Store
	16.1.4 Accessing SecureFiles Store
	16.1.5 Reinitializing SecureFiles Store File Systems
	16.1.6 Comparison of SecureFiles LOBs to BasicFiles LOBs

	16.2 Using a DBFS SecureFiles Store File System
	16.2.1 DBFS Content API Working Example
	16.2.2 Dropping SecureFiles Store File Systems

	16.3 About DBFS SecureFiles Store Package, DBMS_DBFS_SFS
	16.4 Database File System (DBFS)— POSIX File Locking
	16.4.1 About Advisory Locking
	16.4.2 About Mandatory Locking
	16.4.3 File Locking Support
	16.4.4 Compatibility and Migration Factors of Database Filesystem—File Locking
	16.4.5 Examples of Database File System—File Locking
	16.4.6 DBFS Locking Behavior
	16.4.7 Scheduling File Locks
	16.4.7.1 Greedy Scheduling
	16.4.7.2 Fair Scheduling

	17 Using DBFS
	17.6 Dropping a File System
	17.1 Installing DBFS
	17.2 Creating a DBFS File System
	17.2.1 About the Create File System Command
	17.2.2 Privileges Required to Create a DBFS File System
	17.2.3 Creating a Non-Partitioned File System
	17.2.4 Creating a Partitioned File System
	17.2.5 Enabling Advanced SecureFiles LOB Features for DBFS

	17.3 Accessing DBFS File System
	17.3.1 DBFS Client Prerequisites
	17.3.2 Multiple Mount Points on DBFS Client
	17.3.2.1 MUMV for CDB Variant
	17.3.2.2 MUMV for Cross-Database Variant

	17.3.3 Manager File System
	17.3.3.1 Adding a DBFS Mount Point
	17.3.3.2 Listing DBFS Mount Points
	17.3.3.3 Unmounting a DBFS Mount Point
	17.3.3.4 Configuration Parameters of DBFS Client
	17.3.3.5 Diagnosability of DBFS Client

	17.3.4 DBFS Client Command-Line Interface Operations
	17.3.4.1 About the DBFS Client Command-Line Interface
	17.3.4.2 Listing a Directory
	17.3.4.3 Copying Files and Directories
	17.3.4.4 Removing Files and Directories

	17.3.5 DBFS Mounting Interface (Linux and Solaris Only)
	17.3.5.1 Installing FUSE on Solaris 11 SRU7 and Later
	17.3.5.2 Solaris-Specific Privileges
	17.3.5.3 About the Mount Command for Solaris and Linux
	17.3.5.4 Mounting a File System with a Wallet
	17.3.5.5 Mounting a File System with Password at Command Prompt
	17.3.5.6 Unmounting a File System
	17.3.5.7 Mounting DBFS Through fstab Utility for Linux
	17.3.5.8 Mounting DBFS Through the vfstab Utility for Solaris
	17.3.5.9 Restrictions on Mounted File Systems
	17.3.5.10 Restrictions on Types of Files Stored at DBFS Mount Points

	17.3.6 File System Security Model
	17.3.6.1 About the File System Security Model
	17.3.6.2 Enabling Shared Root Access
	17.3.6.3 About DBFS Access Among Multiple Database Users
	17.3.6.4 Establishing DBFS Access Sharing Across Multiple Database Users

	17.3.7 HTTP, WebDAV, and FTP Access to DBFS
	17.3.7.1 Internet Access to DBFS Through XDB
	17.3.7.2 Web Distributed Authoring and Versioning (WebDAV) Access
	17.3.7.3 FTP Access to DBFS
	17.3.7.4 HTTP Access to DBFS

	17.4 Maintaining DBFS
	17.4.1 Using Oracle Wallet with DBFS Client
	17.4.2 DBFS Diagnostics
	17.4.3 Preventing Data Loss During Failover Events
	17.4.4 Bypassing Client-Side Write Caching
	17.4.5 Backing up DBFS
	17.4.5.1 DBFS Backup at the Database Level
	17.4.5.2 DBFS Backup Through a File System Utility

	17.4.6 Small File Performance of DBFS

	17.5 Shrinking and Reorganizing DBFS Filesystems
	17.5.1 About Changing DBFS File Systems
	17.5.2 Advantages of Online Filesystem Reorganization
	17.5.3 Determining Availability of Online Filesystem Reorganization
	17.5.4 Required Permissions for Online Filesystem Reorganization
	17.5.5 Invoking Online Filesystem Reorganization

	18 DBFS Hierarchical Store
	18.1 About the Hierarchical Store Package DBMS_DBFS_HS
	18.2 Setting up the Store
	18.2.1 Creating, Registering, and Mounting the Store

	18.3 Using the Hierarchical Store
	18.3.1 Using Hierarchical Store as a File System
	18.3.2 Using Hierarchical Store as an Archive Solution For SecureFiles LOBs
	18.3.3 Dropping a Hierarchical Store
	18.3.4 Compression to Use with the Hierarchical Store
	18.3.5 Program Example Using Tape
	18.3.6 Program Example Using Amazon S3

	18.4 The DBMS_DBFS_HS Package
	18.4.1 Constants for DBMS_DBFS_HS Package
	18.4.2 Methods for DBMS_DBFS_HS Package

	18.5 Views for DBFS Hierarchical Store
	18.5.1 DBA Views
	18.5.2 User Views

	19 Database File System Links
	19.1 About Database File System Links
	19.2 Ways to Create Database File System Links
	19.3 Database File System Links Copy
	19.4 The DBMS_LOB Package Used with DBFS
	19.5 DBMS_LOB Constants Used with DBFS
	19.6 DBMS_LOB Subprograms Used with DBFS
	19.7 Copying a Linked LOB Between Tables
	19.8 Online Redefinition and DBFS Links
	19.9 Transparent Read

	20 DBFS Content API
	20.1 Overview of DBFS Content API
	20.2 Stores and DBFS Content API
	20.3 Getting Started with DBMS_DBFS_CONTENT Package
	20.3.1 DBFS Content API Role
	20.3.2 Path Name Constants and Types
	20.3.3 Path Properties
	20.3.4 Content IDs
	20.3.5 Path Name Types
	20.3.6 Store Features
	20.3.7 Lock Types
	20.3.8 Standard Properties
	20.3.9 Optional Properties
	20.3.10 User-Defined Properties
	20.3.11 Property Access Flags
	20.3.12 Exceptions
	20.3.13 Property Bundles
	20.3.14 Store Descriptors

	20.4 Administrative and Query APIs
	20.4.1 Registering a Content Store
	20.4.2 Unregistering a Content Store
	20.4.3 Mounting a Registered Store
	20.4.4 Unmounting a Previously Mounted Store
	20.4.5 Listing all Available Stores and Their Features
	20.4.6 Listing all Available Mount Points
	20.4.7 Looking Up Specific Stores and Their Features

	20.5 Querying DBFS Content API Space Usage
	20.6 DBFS Content API Session Defaults
	20.7 DBFS Content API Interface Versioning
	20.8 DBFS Content API Creation Operations
	20.9 DBFS Content API Deletion Operations
	20.10 DBFS Content API Path Get and Put Operations
	20.11 DBFS Content API Rename and Move Operations
	20.12 Directory Listings
	20.13 DBFS Content API Directory Navigation and Search
	20.14 DBFS Content API Locking Operations
	20.15 DBFS Content API Access Checks
	20.16 DBFS Content API Abstract Operations
	20.17 DBFS Content API Path Normalization
	20.18 DBFS Content API Statistics Support
	20.19 DBFS Content API Tracing Support
	20.20 Resource and Property Views

	21 Creating Your Own DBFS Store
	21.1 Overview of DBFS Store Creation and Use
	21.2 DBFS Content Store Provider Interface (DBFS Content SPI)
	21.3 Creating a Custom Store Provider
	21.3.1 Installation and Setup
	21.3.2 TBFS Use
	21.3.3 TBFS Internals
	21.3.4 Example Scripts
	21.3.4.1 Driver Script
	21.3.4.2 Creating a Test User, Tablespace and Table to Backup Filesystem
	21.3.4.3 Providing SPI Specification
	21.3.4.4 SPI Implementation of tbfs
	21.3.4.5 Registering and Mounting the DBFS

	22 DBFS Access Using OFS
	22.1 OFS Configuration Parameters
	22.1.1 OFS Client Interface
	22.1.1.1 DBMS_FS Package
	22.1.1.2 Views for OFS

	22.2 Accessing DBFS with an NFS Account
	22.2.1 Prerequisites to Access Storage Through NFS Server
	22.2.2 NFS Security
	22.2.2.1 Kerberos

	A Comparing the LOB Interfaces

