ORACLE

Oracle® Database
SQL Reference

10g Release 1 (10.1)
Part No. B10759-01

December 2003

Oracle Database SQL Reference 10g Release 1 (10.1)

Part No. B10759-01

Copyright © 1996, 2003 Oracle Corporation. All rights reserved.
Primary Authors: Diana Lorentz, Joan Gregoire

Contributors: Sundeep Abraham, Angela Amor, Rick Anderson, Vikas Arora, Hermann Baer, Cathy
Baird, Anand Baldalker, Cailein Barclay, Ruth Baylis, Eric Belden, Paula Bingham, Tolga Bozkaya, Mark
Callaghan, Thomas Chang, Dinesh Das, Souri Das, Jay Davison, Mark Dilman, Mike Feng, Ray Guzman,
John Haydu, Wei Hu, Ken Jacobs, Bob Jenkins, Vishy Karra, Thomas Keefe, Jonathan Klein, Vasudha
Krishnaswamy, Goutam Kulkarni, Poojan Kumar, Bill Lee, Geoff Lee, Yunrui Li, Likuo Lin, Peter Linsley,
Rich Long, Catherine Luu, Qianrong Ma, Vineet Marwah, Susan Mavris, Steve McGee, Michael Moeller,
Tony Morales, Ari Mozes, Gopal Mulagund, Sujatha Muthulingam, Muthu Olaggapan, Ananth
Raghavan, Jack Raitto, Anitha Ramarao, Siva Ravada, Viv Schupmann, Shrikanth Shankar, Vikram
Shukla, Bipul Sinha, Mike Stewart, Sankar Subramanian, Seema Sundara, Andreas Sundquist, Hal
Takahara, Ashish Thusoo, Rama Vissapragada, Steve Wertheimer, Andy Witkowski, Daniel Wong, Min
Xiao, Aravind Yalamanchi, Wanli Yang, Qin Yu, Tim Yu, Fred Zemke, Weiran Zhang

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle7, Oracle8, Oracle8i, Oracle9i, Oracle Store, PL/SQL,
Pro*C/C++, Pro*COBOL, SQL*Plus, and iSQL*Plus are trademarks or registered trademarks of Oracle
Corporation. Other names may be trademarks of their respective owners.

Contents

Send US YOUTr COMMENTS ..ottt xxiii
PIEIACE. ...t XXV
F N B Lo [T=1 o ot USSP XXV
OFQANTZATION ...t b et bbbtk bbb b b e bbbt b et bt sttt XXV
Related DOCUMENTALIONo.couiiiiicieiese ettt ettt nn s XXVii
(70] V=T o1 o o LSS S RS XXVili
Documentation ACCESSIDIITY ..o e XXXIi
What's New in the SQL REfEIENCE? ... XXXiii
Oracle Database 10g New Features in the SQL Reference..........ccoovevvivvvnieneieneneneieeeeenens XXXiii

1 Introduction to Oracle SQL

HISTONY OF SQL .. bbbt bbbttt se bt sb bbbt s bt nbene s 1-1
1@]I =g [F- U SRR 1-2

[(oA T @] IRV AV Lo g SRR 1-2

Common Language for All Relational Databases...........ccccovviviiiineiine e 1-3
RECENT ENNANCEIMENTS ...ttt bbbttt e e ens 1-3
(N[0 g 15y 2= U gL F= Vo IS @ SRR 1-4
=10 BT V=T 1 1-5
LeXICAl CONVENTIONS ..ottt sttt ettt ettt et e se et e seebesbesesbe e aaeneas 1-5
l e lo] SRS 0] o] oo o AT P USSP 1-5

2

Basic Elements of Oracle SQL

DALALYPES ..ottt ettt 2-1
Oracle BUilt-in DAtAtYPESccvcviiiiiisesisise ettt st a e ene e snesnenne s 2-7
CHAR DAEALYPE ...ttt ettt nb e e nne e 2-10
NCHAR DAALYE ...t 2-11
NVARCHARZ DAtAtY Pooiveririeesieiieiieseestesiesieetesteestesseessesssessesseessssseesssssesssessesssessenns 2-11
VARCHAR2 DAALYPE ..veiiveieieiieie ittt sttt sttt sttt sttt st sbenesnne 2-12
VARCHAR DAALYPE ...oeviiiiiiieieiieeeee e 2-12
NUMBER DAALYPE ..ocuveieieieiierie e st see st e e te e esteste e sesseeeesseensesseeseesseesenssesssnssenss 2-12
SCale aNd PreCiSIONc.ooiiiiiiiireee e et ane 2-13
NEJATIVE SCAIE ... 2-14
Scale Greater than PreCiSion ... e 2-14
F1oating-PoiNt NUIMDEIS ..ottt sre s 2-14
BINARY _FLOAT .ottt ettt ettt sttt nentenes 2-15
BINARY_DOUBLE......c.coiiiiitiiieist sttt 2-15
NUMEFIC PrECEABNCE ...ttt bbb 2-17
DATE DAALYIE ...c.voveiiiciieiiseicetn et 2-20
USING JUIIAN DAYS ..c.viviieiesicee et et ne e sneane s 2-23
TIMESTAMP DAtAtyPE ...cvovviviieiiiieiiiieisieesies ettt snne 2-23
TIMESTAMP WITH TIME ZONE DatatyPeccccecvrveivriiirieiieisieisessesise s 2-24
TIMESTAMP WITH LOCAL TIME ZONE Datatypeccccocverrennenseneeneenieeniene 2-25
INTERVAL YEAR TO MONTH DatatyPecccecvriririeinieinieisecseeseese s 2-26
INTERVAL DAY TO SECOND DatatyPeccoveerieieriiirieisieiseisiessesssesseesseessesesaens 2-26
Datetime/ZInterval ArithmetiC ... e 2-27
Support for Daylight Saving TIMES ..o s 2-29
Datetime and Interval EXamPIe. ..o 2-30
RAW and LONG RAW DaAtatyPeScceeerverieieieiereesesiestesteseessesseseessessessesesssssessesessens 2-30
BFILE DAIALYE ...ccueiiieeieiiieie ettt sttt bbbt n e nbe e nn e nne s 2-35
BLOB DAALYPEcoeciiiiiiiiiiiiiiitisie sttt e et 2-36
(OO I - - 1Y/ ¢ -SSR 2-36
NCLOB DAALYEeeeueiitieieiieeiee sttt sttt sb e sbe s bt nsesseesbesbeeseesseenrenneens 2-36
RESTFICIEA ROWIASoeiiiiiie e et ne et ene 2-37
EXEENAEA ROWIAS ..ottt et e ebe e 2-37
Compatibility and MIQrationc.ocoiiiiii s 2-38
UROWID DALY ...c.ooiiviiriiiiiiiiriirente sttt sne 2-38

ANSI, DB2, and SQL/DS DALAtYPESoouerueiiiiieiieieeeiesiesie sttt sne e 2-39

USEF-DETINEA TYPES ...ttt b b n bbbttt 2-41
L@ o1 A 54 0TSO 2-41
REFS ittt R R R bRt R et R ettt 2-42
WAITAYS .ottt e bbbt b bRt R bR e ettt are 2-42
NESTEA TADIES ...ttt 2-42

Oracle-SUPPIIEA TYPES ..ot bbb ettt eb bbb 2-43

AANY TYPES ittt ettt 2-43
SYSLANYTYPE ...ttt bbb et 2-44
SYSIANYDATA ettt b ettt et et ettt ettt ettt st rerenrne 2-44
SY S ANYDATASET ..ottt b ettt ettt st te sttt nesberenaens 2-44

DL 1Y o TSP PRSP 2-44
DAY I/ oL SOOI SRTPPRPRPN 2-44
URI DAEALYPES ..ottt 2-45
(01 | = o (o] VA - Tod 1 Vo - S 2-46

SPALIAL TYPIES .ttt b bbbttt b bbbttt h b e bt bbb 2-47
SDO_GEOMETRY ..ottt sttt st ettt ettt st be sttt ne s b renaens 2-47
SDO_GEORASTER ..ottt sttt 2-47

Y [=To T =T Y/ o= SO TOUR PR PSPPI 2-48
(@27 7 AN [o USRS 2-48
L0] T o =T TSR SSSR 2-48
ORDIMAQESIGNALULIEocvieeiecieeie ettt sre et saeeaesaeestesraesaesreesrenreens 2-48
L@ 2] AV T =T o TSRS 2-48
ORDIDOC ...ttt bR R R e r ettt nre s 2-49
Y I 111 g To = PSSR 2-49
3 I ©o] Lo SO URO RS RSORPRPP 2-49
Y L= Vo =10 0] o] SO 2-49
] I O0] (0] g = 1153 oo = o 0 ISR 2-49
SI_POSIHONAICOION ...ttt ettt b et 2-49
0] = LU | PSSR 2-49
ST FRATUIELIST ...eieiiii ettt et et esae et e s e e stesraesre s e e srenreens 2-49

EXPreSSiON FIITEE TYPE ..ottt bbbt 2-50
Dt] (=TS1S] [PP 2-50

Datatype CompariSON RUIES ..o 2-50

NUMEFIC VAIUBS ...ttt sttt st sttt st e et e b e et e nesbeneas 2-50

(D E (I Y£=1 1 =TS 2-51

Character STFNG VAIUESc..cciiiiiiiece ettt ene e 2-51
] [lo] L @ =T Ut 11 SR 2-52
(O] o =Tod AV 2= L1 1= USSR 2-54
Varrays and NesSted TabIES ..o s 2-54
DAta CONVEISION ..iiiiiiiieiiiti ettt bbbttt sttt bbb b nne 2-54
Implicit and Explicit Data CONVEISIONccociiiiiiiine e 2-55
IMPLICit Data CONVEISIONccviuiiiiiiieiiieisiesiee bbb 2-55
Implicit Data Conversion EXamMPIESccoiviiiiiiieie s 2-57
EXPIICit Data CONVEISIONcciiiiiiiiiiiiieieie ettt bttt sttt ebe bbb 2-58
(L (=T - | SR U RSP TRTO 2-60
TEXE LITEIALS .ovieieieeiete ettt bbbttt 2-61
NUMEFIC LITEIAIS ..ottt bbb ettt be bbb 2-62
INTEGET LITEIAISoveieieiiiiiti bbb 2-63
NUMBER and Floating-Point LiteralS..........ccccoeveiieiiiiciisese e 2-63
INTEIVAL LITEIAIS ... bbb bbb et b e 2-65
INTERVAL YEAR TO MONTH ..ottt 2-66
INTERVAL DAY TO SECOND ..ottt 2-67
FOIMAt IMOAEIS ... bbb bbb ettt ettt ebe e 2-70
Number FOrmat MOEISoooiiie e e e 2-71
Number FOrmat EIBMENTSccoocoiiiiiiiee i 2-71
Datetime FOrmat MOAEIS ..o 2-75
Datetime FOrmat EIBMENTS ..ottt 2-76
Uppercase Letters in Date Format EIemMeNntscccccocvvivveviniencvcicicece e 2-76
Punctuation and Character Literals in Datetime Format Models 2-76
Datetime Format Elements and Globalization SUPPOITccccceriiiniieneieneieneee 2-81

ISO Standard Date FOrmat EIEMENtS ..o 2-81
The RR Datetime Format EIEMENTccoooiiiiiiii e 2-81

RR Datetime FOrmat EXampPIesccoeiiiiiiinicese s 2-82
Datetime Format Element SUFFIXESccooeiiieiiiiiiie e 2-83
Format Model MOGITIEESocuiiiiiieie e e 2-83
Format Model EXamMPIES.........coociiiiiiiiies e 2-84
String-to-Date CONVEISION RUIESccciiiiiieccce e 2-87
XML FOrmMAat MOGE ... bbb bbbt 2-88
INUIIS oot et e e be et e e be e be e he e s beeseesteeseesbeesbesbeesbeeteebeeaeenaeeneesteaneas 2-89

vi

NUIS IN SQL FUNCLIONS ..ottt st b e be e nne e nreanees 2-90

Nulls with Comparison CONAITIONScoiieiiiiiieiie e 2-90
NUIIS TN CONITIONS ..eoviiiiie bbbt r e sb et et sbe e 2-90
100010 010 0 [=] o | ST TP P PO P TR O PP URTRPTRON 2-91
Comments Within SQL StatemMeNtScooeiiiiiee e 2-91
Comments 0N SChEMA ODJECESoiviieieiciceee e re e ane s 2-93
HINTS ettt b ke b e bt bR b bt e b st ne bt b e b b e 2-93
Database ODJECEScuiiiiiiii bbb 2-105
3ol 0= 0 - WO 1= £ RSP P 2-106
[N\ [o] g 1ol o =] o 0 F= W @] 1= i< SO 2-106
Schema Object Names and QUAlITIEISccoiiiiiiiiiii e 2-107
Schema Object Naming RUIEScccviiiiiiccece e 2-107
Schema Object Naming EXamMPIES ..o 2-111
Schema Object Naming GUIAEIINESccviiiiiiiiic s 2-111
Syntax for Schema Objects and Parts in SQL Statements..........cccocvevvevereiereseieeieee e 2-112
How Oracle Database Resolves Schema Object Referencescccecevvevieiievncieincnnnn, 2-113
Referring to Objects in Other SChEMAS ..o 2-114
Referring to Objects in Remote Databasesccccoveveviiviicirin s 2-114
Creating Database LINKS ..ot s 2-115
Database LINK NAIMES ...t 2-115
Username and PaSSWOIA ..o 2-116
Database CONNECE STFINGcoieiieiicie e ere e 2-116
Referring to Database LINKS ... 2-116
Referring to Partitioned Tables and INAEXEScccveviiviicierie e 2-117
Referring to Object Type Attributes and Methods ..., 2-119
Pseudocolumns
Hierarchical Query PSEUAOCOIUMNSc.ociiiiiiieiece et 3-1
CONNECT _BY_ISCYCLE ..ottt sttt 3-2
CONNECT_BY_ISLEAF ...ttt sttt sttt ettt 3-2
LEWEL ottt bbbkt R bR bRt R ettt ettt nnenen 3-3
SequenCe PSEUAOCOIUMINSc.iiiiiiiiiite bbbttt 3-4
Where to Use SEQUENCE VAIUEScccocviiiriirieieicieie ettt et snesne s 3-4
HOW t0 USE SEQUENCE VAIUEScceiiiiiiiiiiie ettt 3-5
Version QUEry PSEUAOCOIUIMINSoociiiiiiiieiee ettt 3-7

Vii

viii

OBUIECT _VALUE ...ttt b bbb bbbttt bbb 3-8
ORA_ROWSCN ..ottt 3-8
ROWID ..ot bbbt bbb £ bbbt bbbt bbbt b et b bt 3-9
ROWNUDM ..ttt £ b b £ bbbt E bbb e e e b e b bt et e b b e bt bbbt et et 3-10
XIMILDATA et E et R et R Rt 3-11
Operators
WA oo 10| G @ I @ 0 1= | (o] =TS 4-1
Unary and BiNAry OPEIATOIScccoeiiiiiiieieiieiesie sttt sttt be bbb e e 4-2
OPEIAtOr PrECEAEICEcuiiiiieiiieeiitet ettt bbb bbbt b et n bt e 4-2
WA AT 4] g =] ol @ o =T = (o] S 4-3
CONCALENATION OPEIALONiitiitiiteititete ettt b ettt sb bbb e et et e bt et e s bt ebeebenbesben 4-4
Hierarchical QUEIY OPEIALOrSooiiuiiiiiiiiieii ettt 4-6
PRIOR .t 4-6
CONNECT_BY_ROOT ..ottt bbbt eb bbbt nas 4-6
SEE OPEIALONS ...ttt er b b ne ettt 4-6
YU AT @ o T] - o] S 4-7
MULTISET EXCEPT .ottt 4-8
MULTISET INTERSECT ..ottt sttt 4-9
MULTISET UNION ..ot 4-10
USEr-DefiNed OPEIALOISociiiiiiiiieitisie ettt bbb e e ettt b e sbe e 4-11
Expressions
ADOUL SQL EXPIESSIONS ..ottt sttt ettt sb e b b bbbt e b et e s e et et e et e sbe b e 5-2
STMPIE EXPIESSTONS ...ttt ettt b et r et b bbbt ab e ene e 5-3
COMPOUN EXPIESSIONSocvviviiiiiieiiiiiesiesiesieseteaeeeres e s e steseste e tesaestestestessensesaeseeneesessessessessessessens 5-5
CASE EXPIESSIONS ..ottt sttt ettt b e bbb bbbt e b e st e ae e bt et e bt ebeebenbe b 5-5
CURSOR EXPIESSIONSuitiiiteiiiteiete ekttt sttt sttt ss et sb ettt eb et eb et ab e st bbbt nb bt sb b e sbebeabeseabe e ene e 5-8
DAtetime EXPIESSIONScveiiieiieiie e sese st ste e st e e et sae e e e esestessesbesbestessessesteseensenseseeneenensesseanens 5-10
FUNCEION EXPIESSIONS ...ttt sttt b e bbb b et et e et et e b et ebe e 5-12
INTENVAL EXPIESSIONS ..eiiiiiiiitiiete ettt b bbbt e bbbt bbbt eb et b et ebe e ene e 5-12
(@] o] =T Ao oI o d 0] £ XS] Lo o [SRS 5-13
Scalar SUDQUETY EXPIrESSIONSciiiiiiiiiiieieie ettt ettt b e 5-14
IMOAET EXPIESSIONS ...ttt ettt bbbt b bbbt e bbbttt nn s 5-15

Type CONSLIUCTOr EXPIrESSIONSccuiiiiiiiiiiieiieieie ettt ettt sbe e 5-16

Variable EXPIESSIONSccoiiiiiiiiiiiitiiite ettt bbbttt 5-18
D =TT T T I 1] £ 5-19
Conditions
ADOUL SQL CONAITIONScviieiicie ettt sttt et e s be e s beesbesbeeebesaeesbesreesbeeseesbeesbesreens 6-2
CONAITION PrECEABNCEcuiiiitiieie ettt bbb bbbttt ettt ettt be b e 6-4
ComPAriSON CONAITIONSiiiiiiriiiiti bbbt bbbt b ettt 6-4
Simple Comparison CONAITIONSccccveiiieieieee et sre e 6-6
Group ComparisSoN CONAITIONSccoiviiiiiiie et 6-8
FIoating-PoiNt CONITIONSciiiiiiiiieci bbbt 6-9
[oTo T o1 I @Xo] o Lo [4 o] g IS 6-10
Rt Lo [0] g T [1 To] 1T PSSR 6-11
N T8] | I @0 o Vo [1 To] o ISP 6-12
(070 3] oToTUT T I @o] o Vo [o] o 1] SRS 6-12
EQUALS _PATH ..ottt bbbt sttt et sb et sb e s e et e e ebe e abe e nbe e 6-13
o S 15 TP PRP PSSRSO 6-14
OO 6-14
3N] i OSSPSR 6-17
ST AN N 2SR TRST 6-18
IS EIMIPTY ittt bbb bbb bbbttt 6-19
IS @ T 1Y OSSPSR 6-20
ST o 4 S N RS 6-21
LT ettt bbb e R bR bbbt R Rt be e bt b et r et nr e 6-22
IMEIMBER ..ottt ettt b bbbt b et b ettt be g b et ettt 6-26
REGEXP_LIKEcoiitititetitetste ettt ettt be bttt sttt et e sb et e sa et e sbes e st e s e ebe e abe e ere e 6-27
SUBMULTISET oottt bbbttt sttt bt bbbt bt ntenes 6-29
UNDER _PATH oottt bbb ettt sb et e st et e st e s e et e s e ebe e ebe e sbe e 6-30
Functions
1@ T I U [Tod £] o -SSR 7-1
SINGIE-ROW FUNCLIONScuiiiiiiiiiiiiest et bbb 7-3
NUMEFIC FUNCLIONS ..ottt bbbttt 7-3
Character Functions Returning Character Valuescccocoveiieveiieiisie s 7-4
Character Functions Returning Number Values ... 7-5

Datetime FUNCLIONS ...o..viiiieeic ettt et st e s st bee s et e s s s ba e e s sb b e e s sbee e s sareas 7-5

CONVEISION FUNCLIONSiiiiiiiiiiieiieieeiee ettt st sttt ne bbbt e e 7-6
COllECTION FUNCLIONS.cviiiiiiiiiiiii bbbttt 7-7
Miscellaneous Single-ROW FUNCLIONSccocviiiiicicicc et 7-7
AGOregate FUNCLIONS ..ottt b ettt et 7-9
ANAIYEIC FUNCLIONS ..ottt sttt n e e eneeneerenneanens 7-11
Object ReferenCe FUNCLIONScccocviiieie sttt sre e e 7-17
Yoo [=Y I U T Tod A [o] o 1< TSROSO 7-18
Alphabetical Listing of SQL FUNCLIONS........ccccviiiicisecese e anen 7-18
N 2 1 PSPPSR 7-18
N O 1 TSP TRPR 7-19
ADD _IMONTHS bbbttt bbbt bbb bbb b et et e benes 7-20
N1 O 1 OSSPSR 7-21
F NS O 1 1S I SRS 7-21
ASTIN bbb Rt R R bR R R e Rt b Rt e bbbttt enes 7-22
N AN PO STPSRPRRR 7-23
F N AN A TSRS 7-24
AV G e h b bR Rt R AR AR R AR R R e b e bbb b b et enen 7-25
BFILENAIME ...ttt sttt ettt be bt 7-26
BIN_TO NUM ..ottt bbbt b et s et s et sttt e be b re b rennns 7-27
BITAND .otttk bbb bbbt bbbt b et b et r et 7-28
CARDINALITY ittt st st b et b et b ettt e bt et s ettt seebe st ere st sennene 7-30
O N SRS 7-30
L3 OO OSSR TSR P 7-34
CHARTOROWID ..ottt sttt sttt ettt sttt bbb 7-34
L0 o | SRS 7-35
COALESCE ... et bbb bbbt bRt bbb et b e 7-37
L0 I I OSSOSO 7-39
(00 1Y, | =@ 1] SRS 7-39
CONC AT ettt et ekt b et b e s b bt s b e bt e b e Rt s b e st e b et e b et ekt ekt e ket et e s e e be st ebe st benrne 7-40
CONVERT ittt ettt ettt b e b e e b e b e b e s s b e s e e ket e be e e bt e b e e e be st e b e st ete st ere st rennne 7-41
(01 @ 1 SRS 7-43
CORR ettt b ekttt e bbb bR bR bRt R bRt b e et et r e r e 7-45
(10 o o TSROSO URS PRSP 7-46

COSH bbb e b e bR R e h R R bR E bt h et bt ettt 7-48
COUNT et R Rt E e R Rttt r et n e 7-49
COVAR_PORP ..ttt bbb bbb bbb bbbt 7-51
COVARL_SAIMP bbbttt bbbt b bbbt b ettt e 7-53
CUMIEL_DIST ittt n ettt 7-54
CURRENT_DATE .ottt bbbt bbbttt 7-56
CURRENT_TIMESTAIMP ..ottt 7-57
GV Rt 7-59
DBTIMEZONE ..ottt bbbttt b et 7-60
DECODE ...ttt bbb bbb h b bRt bbbt b e 7-61
DECOMPOSE ...ttt r bttt R et 7-63
DENSE_RANK .ottt bbbttt bbb bbbt b bt n b 7-64
DEPTH et b bbb b b E bbb bbb Rt Rt bbbt b e 7-66
DIEREF .ottt 7-67
DIUIMP bbb bbb bbbt E b b E R bbbt b et 7-68
EMPTY_BLOB, EMPTY_CLOBiiiiiiiicitrieeneene ettt 7-69
EXISTSINODE ...ttt n et 7-70
B X P bR bRt E R bbb bbbt 7-71
EXTRACT (AtELIME) ..ooeiiiiieiiitiieti ettt ettt se bt et sb bbb an e b 7-72
EXTRACT (XIMIL) ottt 7-74
EXTRACTVALUE ..ottt bbbttt 7-75
IR S T etttk b bbb h bbb e b e R e bt e bbbt bbb bbb e re e 7-76
FIRST_VALUE ..ottt 7-79
FLOOR ettt bbb E bbb R bbbt b et 7-80
FROM_TZ .ot bbbt bt b bbb bbbt bbb bt eb bt e bt er e ane e 7-81
GREATEST oottt R ettt n et 7-82
GROUPL_ID ..ttt b et b bbbttt 7-83
GROUPING .. bbbt bt b bbb bt b s bbbt bbbt bbbttt nn s 7-84
GROUPING_ID ..ottt 7-85
HEXTORAW ..ottt bbbt b b e bbb bbbt b bbbt 7-87
INTTCARP bbbt b b bbb bbb bbbt bbbttt 7-87
INSSTR iRt R R R 7-88
ITERATION_NUMBERciiiiiiiiiiieiee ettt 7-90
LA G bR R R bR E R R e Rt Rt bbbt bbb e 7-92

Xi

Xii

LAST DAY ooovveoooreeeeeeeeeseeeeeesseseesesseesssssssessseesssssssssssssessssessssessssssssesssseeesssssssssssessssesssssesssssssennes 7-94
LAST VALUE ..coooeeeoeeeeeeeeeoeseseeeseeeeeeseeseeese s sseseees s sessseeeseees s sesssseessesesssessssseeeen 7-95
17N o SO 7-97
LEAST oeeeeeeeeeeesoseeeeeeeeesessesesseses s eeseese e e s e e st s e s e eee e 7-98
LENGTH ooovvveeeoooeeeee e eeeeeeesseeeees e eseseessse e s sseseessse e essseees e eees e esesseeeseseseseeessseeeen 7-99
LN oo eeeeesess e sttt er e 7-100
LININVL. «oeeeeeeeeeeooo e eesseessse s sss e s s e e st e se e eeeseessssseenenns 7-101
LOCALTIMESTAMP ..o eeeeeeeeeeeeseees e eeseeeeseseses s sssseeessees s essssseesseeesesessesseess 7-102
10 L TSSO 7-103
10 VY] = = 00O 7-104
LPAD ..o eeeeeeess ettt 7-105
LTRIM eeeoeveeeeoeoe e eeeeeeeeseeeeeses e ssseesses e eseseeses s e ssss e eeesessesssseeesseeeesesessssseeenes 7-106
IMIAKE_REF ..vooooooeeeeeeeeeeeeeeossoeessseessessseesssseees e ssssssessssesseessessssesssseessesssssssssesseeesssesessssseeenes 7-107
IVIAX .o eeeeeeeese e eeeseeesee e es e e e ettt 7-108
Y 1= 1 N OO 7-110
IVIIN oo eeeeeeoesse e ee s ettt r e 7-112
IVIOD ..o eee e ee ettt 7-113
MONTHS_BETWEEN .ovvcccovteeereeeeeeeeeesseseeesseesseseseesesssssesssssssseessseseesssssssssseeessesssssssessssseeesesos 7-114
INANWL eoooeeeeeesooeeee e eesseessseeees e esseessese e ss s ee e s s st e e ssse e eeeeesesssssseenes 7-115
NCHR oo eeeseeese e es oo e e e st se s eee e eseseen 7-116
NEW_TIIVIE oovoooooooeeeeeseeeeeeeosseeeeseseeesesseeesseseees s sseseesesesssses s sssseesss e sssesssseseeesseeesssssessesseeenes 7-117
NEXT DAY oovvoooorreeeeeseeseeeessssessssesssessssesssseesssessssssssessssesseessessssessssseessesssssssssesseessssssesssssseenes 7-118
NLS_CHARSET DECL_LEN ..oooooovveceeoeeeesseeeeeeeeeesesessssseesesssseessssessssesssssssesssessssssssessssseeesss 7-119
TSI u V- =11 = s | o YOO 7-120
NLS_CHARSET NAME w..coooieeeeeeeeeeeeoeesseesseesseseseessesssssssssssssesssssseessesssssssssessssssssssesssssseenes 7-120
NLS_INITCAP ... eeeeeeeeeeeeee e eeeseeeeseees e sseseeseeees e ss et s sssseeesesesesesessesseess 7-121
TSI 0 VY. = = SO 7-123
IR0 EOO OO 7-123
NLS_UPPER .ooocoooereeeneeeeeeeeeeseeeesesseessssseesseseees e ssssseesesesss s eesssseesseseesssesessssseesseesssesesssssee s 7-126
NTILE oo eeeeeeeesseeseseseeseseessseeeess e eseeesseseees s ess e s s et e s e seseeeseeeeesesessssseeenes 7-127
NULLIF oo oveeeeeooooeeeee e eeeeeessseeess s ssseessese e ss s ee e ess e s sssssense e eeesesesssssseenenns 7-128
NUMTODSINTERVAL w....cooemerieeeeeeeeeeesseeesseeeseeeeeesesessssesesssssseeessssssssessssssseessssesssssessssseesss 7-129
NUMTOYMINTERVAL ...ccoooeeeeeeeeeeeeeeeseeesssessesseeeseessssssssssssseesssseessssssssssssessesesssssessssseeensos 7-130
INIVL oot eeeeeesesse e e e e e ettt e r e 7-131

ORA _HASH et h et b e bbb bbb e b bt et et n et ne et e e e 7-134
PATH et b bbbt R e b et et bbb 7-135
PERCENT _RANK ..ottt sttt sttt sttt sttt ettt st be s b ne st enenbens 7-136
PERCENTILE_CONT ..ottt sttt eb ettt st sa et e e et et e s eneeneeneenas 7-138
PERCENTILE_DISC ...ttt bbbttt bbb 7-141
POWER ...ttt st b et b et btttk ekt E et b et b bbb R b re b renbne 7-143
POWERMULTISET ..ottt ettt b bbb bt sa ettt et e s e neeneeneens 7-144
POWERMULTISET_BY_CARDINALITY i 7-145
PRESENTININY L.ttt sttt bbbttt et st e bt e b st e b e s b esesbenenbene 7-146
PRESENTV .ottt ettt sttt ettt b e b e bt bt e b e e bt e b e e be b sb e b et et enteneeneeneenenns 7-148
PREWVIOUS ... bbbt b ettt bbbt bbb bbb 7-149
L AN N1 SO 7-151
RATIO_TO _REPORT .ttt ettt b bbbt st sa et e e et e s e eneeneeneens 7-154
RAWTOHEX ..ot b et b et ettt et bbb b e s bbb ne b 7-155
RAWTONHEX ...ttt sttt sttt ettt ettt et st ese s b esenbenenbene 7-155
R e bt et bR e bt £ oA e R £ e R e Rt Rt Rt Re R e Ee R e et e Re e e ntereereeneenenrs 7-156
REFTOHEX ..ottt e b bbb ekttt ettt bbb bt b ne b 7-157
REGEXP_INSTR ..ottt sttt sttt ettt sttt sttt sttt ne b e nnns 7-158
REGEXP_REPLACE ...ttt ettt b ettt sttt b b s et et eneeneeneenenns 7-161
REGEXP_SUBSTR ..ottt sttt sttt ettt 7-164
REGR_ (Linear Regression) FUNCLIONScccccvviiiiiiiecieese et 7-166
REMAUINDER ...ttt ettt b ettt b e b e b sb et et et et eneeneeneeneers 7-175
REPLAGCE ..ottt ettt st b e bbbt ekt b etk ekt ekttt b e bbb 7-176
ROUND (NUIMDBDEE) ettt st s te e te e e te et e ene e 7-177
ROUND (AEE) .veeeitiieie ittt sttt sttt st et e st et besbe st sa et et et eneeneeneeneenenns 7-178
ROW_NUMBER ..ottt bbbttt bbbt bbb 7-179
ROWIDTOGCHAR ..ottt ettt ettt sttt sttt et st be st r et nenbens 7-180
ROWIDTONGCHAR ...ttt b bbb b te e et e s e e neeneeneenas 7-181
RPAD .. E e bRt Re e b e Rt bt bbb e b b re b 7-182
RTRIM Lttt b e bRt b et b et et e ettt e e e b et e bt ebe st ete s b erenberenbns 7-183
SCN_TO _TIMESTAMP ...ttt s b et st sb b st et et e st e neeneereere e 7-184
SESSIONTIMEZONE ...ttt ettt ettt sb e b e be b et se et e 7-185
] TSRS PRORSPRSN 7-186
1S L] N PSR RPRTRPR 7-187

Xiii

Xiv

SINH ooovvvveeereseee e eeeeeesses e e seeeesse e e e e s e e et e e e e st 7-188
Y101 N 2] =3 oo 7-189
Y0] =3 IO OO 7-190
STATS_BINOMIAL_TEST ovvvvveeoeeereeseseeseesseeesesesssssssssssssesssssssssssssssssssssssssesssesssssssesssesssseeen 7-191
STATS_CROSSTABoooreeieeeeeeeeeeeseeseeseesessseeeseseesssseeessssseseseeessss e sssseeeesseeeeseessssseeee s eeeeseeee 7-193
STATS_F_TEST ooovvveeeeooereeesseesseeseeesseeessessesssssseeseseessssessessssesssseesess s ssssseesseseessssssssssseesseeseseeee 7-194
STATS_KS_ TEST covvvveeeorrmeeeeeeeseesseeessseessessesssssssssesessssssssssssesssseessssssssssssessssssesssessssssseesssesseseeen 7-196
Y LY] =S 7-197
STATS_IMW_TEST ovvveooreeeeeeeeeeeeeseeessesesssssessssseesseseessssesssssssesssssessssssesssssesssesseessessssssseesssessesseee 7-198
STATS_ONE_WAY _ANOVA ...oooooooeeeoeseeseeeeeeesseessseesssssssesssessssesssssssssssssssessssessssssesssesssseeen 7-200
STATS_ T TEST_* ooooeeeeeeeeeeseeeeeeeeeoeseeeses s essseeeseeeees s ssssseses e se s ssssee e ssseeee e 7-202

STATS T _TEST_ONE oovvveeeeoeeeeeeeeeeeeesseeessoesessesssssesseessesesssssssssssssessssssssssssssssseesseeesesssees 7-203

STATS_ T _TEST_PAIRED oooooooooeoeeeeeeeseeeeosoeesessesssssssseesssssesssssesssssssesssssssssssssssssseesseeesssssees 7-203

STATS_T_TEST_INDEP and STATS_T_TEST_INDEPU ...coovvvveeeeieeeeeerseeeeeeeeeersesesenee 7-204
STATS_WSR_TEST ovocooreeeeeeeeeeeeseeesseeeesessessssseeeseseessssssssssssesssssessssssessssseesssseessssssssssseesssessesseee 7-206
STDDEV oooooreeeeeeeeeeeeeoseeeeeseeeesessssessseeese e s s sssseses s sesseee e es s e ssss s e s 7-207
Sy o) 51V 10)= T 7-208
STDDEV_SAMP .ooovoeeeooeeeeeeeeeeeeeeeessseesee s sssseeeseeess e ssssessseess s e sesseeeseeseseesssssseene s eeseseeees 7-210
SUBSTR. wvvvovorteeeeeesseeseessssseessseesssssseesssseesssseesessssseseseesseeesesssseses e se e e sesseesee e eseseesssssseeneeeseseeees 7-212
SUM oo e ettt 7-213
SYS_CONNECT_BY_PATH .ooovvvooooreeeeeseeseeeeeeosesesssssesssssssesssssssssssssssssessssssessssssssssseesesessssseen 7-215
SYS_CONTEXT oeovvveeeeeeeoeeesseessesseeesssseessessesssssssessseessseessessssessseeesesesesssssssesseeeesssessssssseesseeseseeees 7-216
SYS_DBURIGENoovocoereeeeeeeeeeeeeeosseeeseeseeesssseeeseseessseeesessssesssesesssseesssssseessssessssessssseeeeseesseeeee 7-221
SYS_EXTRACT _UTC oooreeeeeeeeeeeeooeeeesessessesseeoseesssssesssssssessseessssssesssssessseseessssesssssseeseeesesseee 7-222
SYS_GUID woorreeeeeeeeeeeeeeeeeee e s eesseeessseee e eseseeses s s e s es s e esss e 7-223
SYS_TYPEID oo eeeeeeeeeeeee s e eseeeese e sssseses s sssseee e ssssssee e 7-224
NI - < T OO 7-225
SYS_ XIMLGEN eovoveeeeoeeee e eeeeeessseeese e s s sssesses e s ssssesss e eesesssssssseeseeeeseseessssseeeneeeseseeees 7-226
SN2 0 Y- 1 =IO 7-227
SYSTIMESTAMPoooocooeeeeeeeeeeeeeeosseeeeseseeseesseeeseesssssessessssessseeeess s sesseesseeesseesssssseeeeeeseseeees 7-228
TAN oo eeeeeeee e e 22ttt e 7-229
TANH oo eeseeese e s e e st e e 7-229
TIMESTAMP_TO_SCN eeoiioovvvveeooeeeeeseeeeeseeeeeesseesssesessesseessessessessesssssseesseseessssessssseeeeesesseseeee 7-230
TO_BINARY_DOUBLE .coroovvoveeooeeeeseeeeesseeeesseessssesessssssessessesssssesssssssessssessssssssssssssssssesssseeen 7-231

TO_BINARY_FLOAT .o e 7-233

TO_CHAR (CRATACTET) ..ottt bbbttt 7-234
TO _CHAR (AtELIME) .ovivciiciie sttt st tesn e e e e eneeneeresneanens 7-235
TO_CHAR (NUIMDBEI) ittt ettt e be et e s aeestesneestesnaeseeaneens 7-237
TO _CLOB ..ottt bbb s bRt R et s b e bbbt R bRttt n et et s 7-239
TO _DATE ettt bbbt bbb bbb R bR bR R e Rt b ettt nes 7-240
TO _DSINTERWVALL ..ottt ettt ettt bbb e bttt s et en et n e benes 7-241
L T 0] SRR ORSRRR 7-242
TO_MULTI_BYTE .ottt bbbttt sttt nes 7-243
TO_NCHAR (CRAFACLET) ..ocviciiiciieest ettt ettt e re e tesaeestesneesressaesreaneens 7-244
TO_NCHAR (AELIME) ..ovviiiiiiiiiiiiiicieisisses ettt bbbt e st st seasenes 7-245
TO_NCHAR (NUMDBEK) oottt n e e e e eneereaneenens 7-246
LI 2 1 1 X SRR 7-247
TO _NUMBERcoict ettt s et s et s st et e s e bt b e s e se b s et en et en e tenes 7-247
TO_SINGLE_BYTE .ottt bbbttt bttt benes 7-248
TO_TIMESTAIMP .ottt ettt ekt et b et b b e st st n et s et n e benes 7-249
TO _TIMESTAMP_TZ ..ottt ettt b e b b s bt en et naatenes 7-250
TO_YMINTERVAL .ottt bbb bbbt bbb 7-252
TRANSLATE ...ttt ettt ettt st s et e st s ket et bt e b e s e s et e s et en et neabenes 7-253
TRANSLATE ... USINGooiiiiiiitcesise ettt ettt nenen 7-254
LR {7 2 OSSOSO 7-256
LIRSS 7-257
TRUNC (NUIMDEE) ettt b bbbt et b et nb ettt 7-258
LR L\ O (o I =) SOOI 7-259
LA @ L T = LTRSS 7-260
L1 1 0 OSSO 7-261
UNISTR et e b bbb st b et be ek ekt ekt et e b et s b b s b be b b bne 7-261
UPDATEXIML ottt st s b e bbbtk ettt st et st et bbb ene b nennne 7-262
L8] OSSO 7-264
USER et bbb bbbt b e bbbt b e b 7-264
USERENY ..ttt et s b et b et bt btk ek ettt ettt e b st e be st e s e b renbns 7-265
WALLUE ..ottt b et a ettt h e bRt bR bR b e R e bRt R bRt Rt a R et n et s 7-267
VAR _POP bbbt b bbb bt R bR bR bbbttt nes 7-268
VAR _SAMP .ottt R bbbt b et E bbbt ne e 7-269
VARIANCE ..ot ettt et s et e s e bRt e s et e s s b e e e b e b e b et e b e s e se b st st en et en e tenes 7-271

XV

XVi

WIDTH _BUCKET oottt et e ae e be et e s be st e et e besr et et et e s ensereene e 7-273
XIMILAGG ..ottt sttt ettt s e s e Re Rt e b e Rt e R e e R e Ee s R e st e R e et e e e et e Rt n e neeneerenren 7-275
XIMLCOLATTVAL ottt et bt et et e s be st e s be s be st et e ste st et eseeseeneerears 7-277
XIMILCONCAT .ottt ettt ettt b et et e et et e st e b e st e st easebeebesbeebeebesbesbesbeste st entesbessenserearas 7-278
XIMLELEMENT ...ttt ettt ettt st e st b e et e e na et ensenaeneenenrenrn 7-279
XIMLFOREST ..ottt ettt sttt h et e st s e ebe e b e et e e be et e s beste st et e ste st enteseeseeneeneatas 7-282
XMLSEQUENG Eottt ettt ettt st e e be s be st e beste st et e st e s ensereanas 7-283
XIMLTRANSFORM ...ttt ettt sttt ettt e e e e s en e e s e eneenenrennes 7-285
ROUND and TRUNC Date FUNCLIONSccoiiiiiieie et sve e ste e sre e sie e 7-286
User-Defined FUNCLIONSc.oiiiie ettt ettt be s ae e be e sreeneeseeaneen 7-287
o =T =0 LU Y1 (=TSSP 7-289
NPT gL o =Yoo =T o USSR 7-289
NaMING CONVENTIONS ..ot 7-290

Common SQL DDL Clauses

Al1OCALE_EXTENT _CIAUSEocviiieieiciiie et ettt s e b e bt benbesaen 8-2
CONSEIFAINT ..o b bbbt bt btk ek et e s e et e nb et e nbe b e sbebeaberenbeneas 8-5
deallocate _UNUSEA CIAUSEc.coviieiece ettt te et esra e b e nre e 8-35
FIlE_SPECITICATION ..ottt et b et b et b e ebe e b 8-37
CoTo o 1T TR - U= RSP PSSSPRN 8-47
PAFAIIEL_CTAUSE ... bbb bbb e ettt ebe e 8-51
physical_attribDULES_CIAUSEccooiiiiiii e 8-54
LY o= Vo T=T o] - T L] S 8-58

SQL Queries and Subqueries

About QUENIES aNd SUDQUETIESooveeiiccecce e sre s 9-1
Creating SIMPIE QUETIES ..ot bbbttt b et e bt ebesbe b b 9-2
HierarchiCal QUETIESoiiiieie ettt sttt s et et besbe st neas 9-3
Hierarchical QUEINY EXAMPIESccoiviieieieiiceese ettt sne e 9-6
The UNION [ALL], INTERSECT, MINUS OPEratorsccccoceiirririineiseiseseseseseseeesasneseenes 9-9
SOrting QUETY RESUITS ..ot 9-12
JOINS b bR b e b e R R bRt b e e b b e b et et e 9-13
JOIN CONAITIONS ..ot b b b bbb ettt besb b 9-13
BEQUIJOINS <.t bbbt bt bbbttt ettt b 9-14

10

11

Y= L (o T 1R 9-14

CarteSIiaN PrOOUCESoiiiiiiiiiiieie ettt sttt st e e s e s e neenestesbesaens 9-14
INNET JOINS vttt b et b et b et b et ekt ettt et ne et et nr e 9-14
L@ 181 (=] g o] [o 1 SO U TP P YOO STRRPRUPURPRTRN 9-15
ANTHOINS .ot bbbt btk e ekt e ekt e ekt bbbt bt b e n e ne e 9-17
R3-SR 9-17
USING SUDQUETTES ...t b bbb b bbbt b e bbbt e 9-17
Unnesting of Nested SUDQUETIESciiiiiiiiiiieeese e 9-19
Selecting from the DUAL Table ...t 9-19
(D TR (] 10N =Te @ U LT o TSR 9-20
SQL Statements: ALTER CLUSTER to ALTER JAVA
TyPeS OF SQL STATEMENTSoiiiiiiieiere bbbttt ettt sbe e 10-1
Data Definition Language (DDL) STAteMENTScccoceiiiriiiriirieiniee et 10-2
Data Manipulation Language (DML) Statementscccccccvvvvivvienininsesenereseeesese e 10-3
Transaction CoNtrol STATEMENTS ..o 10-3
SeSSION CONLIOl STAEMENTSociiiiieiieie ettt ne e sne s 10-4
System Control SLAtEMENTcccoiiiiee e nre s 10-4
Embedded SQL STAEMENTScc.ccviciicice ettt sre e sre s 10-4
How the SQL Statement Chapters are Organizedc.ccooeireinenienseneeee e 10-4
ALTER CLUSTER ..ottt bbbttt 10-6
ALTER DATABASE ...ttt bbbttt sttt bbbt nenaens 10-11
ALTER DIMENSION ..ottt ettt sttt bbb b saens 10-62
ALTER DISKGROUP ...ttt bbbttt en et benes 10-67
ALTER FUNGCTION .ottt ettt sttt bbb s snns 10-84
ALTER INDEX ..ottt bbbt b bttt sttt be bbb ne b nenaens 10-88
ALTER INDEXTYPE ..ottt ettt sttt ettt ettt et et e 10-112
ALTER JAVA ottt ettt ettt s bbb e bt bbbt bRttt n ettt 10-115
SQL Statements: ALTER MATERIALIZED VIEW to ALTER SYSTEM
ALTER MATERIALIZED VIEW ..ottt sttt sttt 11-2
ALTER MATERIALIZED VIEW LOGcocooiiiicieiieises ettt 11-21
ALTER OPERATOR ..ottt bbbttt sttt 11-29
ALTER QUTLINE .ottt bttt snns 11-33
ALTER PACKAGE ..ottt sttt b e b ne s aens 11-35

XVii

12

13

14

Xviii

ALTER PROCEDUREooviicece ettt ettt bbbttt s r et et aeneenaene e 11-40
ALTER PROFILE ..ottt ettt et sttt et be st ettt eentereeaens 11-44
ALTER RESOURCE COST ..ottt e a e te ettt sne st sne e naeneenaanenns 11-48
ALTER ROLE ..ottt ettt e b e et et e st e st et e e et et e e e e eneetaene e 11-51
ALTER ROLLBACK SEGIMENToooiiiiiii ettt sttt sttt ra e 11-53
ALTER SEQUENQCE ..ottt sttt sa st be sttt sttt nn e e s aenaenaenenns 11-57
ALTER SESSION .ottt ettt e te et e be b et e s be st e st e bese et enbe e e e enseteene e 11-59
Initialization Parameters and ALTER SESSIONc.ccocoiiiiiciiiiciecceseese e 11-66
Session Parameters and ALTER SESSIONcoooiiiiiccecece e eneas 11-70
ALTER SYSTEM ..ottt sttt ettt s be et e be st e st et e et et e e e eneetaene e 11-79
Initialization Parameters and ALTER SYSTEM ... 11-95
System Parameters and ALTER SYSTEM ..o 11-109
Shared SErver PArameterS ...t snee s 11-109
SQL Statements: ALTER TABLE to ALTER TABLESPACE
ALTER TABLE ..ottt b e he et et et e b e st et st e st et e s e et e st eseeneereetasreanea 12-2
ALTER TABLESPACE ...ttt ettt st ettt ettt et reeneebeebe b 12-105
SQL Statements: ALTER TRIGGER to COMMIT
ALTER TRIGGER ...ttt ettt st sttt sttt sttt eeneebesaeaneas 13-2
N I I I S 13-7
ALTER USER ..ottt ettt ettt be e be et e be st e st e besr et et e e e e eneeteene e 13-24
ALTER VIEW ..ottt ettt sttt ettt ae e be b e s be s be et e be st et et et et enteteeae e 13-33
N N A I 27 SRS 13-36
ASSOCIATE STATISTICS ..ottt sttt et eeneeraeae e 13-50
AUDIIT ottt ettt et e et e st esbeseeteebeeaeebeebesbeebe et e sbese et enb et eneeneereere e 13-54
L I SRS 13-68
COMMENT oottt h e b e e be et e e beebeabesbesbesbesbesbe st et et e see s ensesseneeneetenrs 13-73
COMMIT e ettt et e e teebe et e e be e be et e s be st e sbesbe st et e besee s ensessenseneatearas 13-76
SQL Statements: CREATE CLUSTER to CREATE JAVA
CREATE CLUSTER ...ttt ettt ettt bbb bttt et et e et ensereeneebeebe et e 14-2
CREATE CONTEXT oottt sttt e et a et te st stestesbesaeste st saente e sae s enseneeneananrennes 14-11
CREATE CONTROLFILEccoi ittt sttt sttt nnenaere e 14-14

15

16

CREATE DATABASE ... s 14-22

CREATE DATABASE LINK ..ot e 14-39
CREATE DIMENSION ..ot 14-45
CREATE DIRECTORY ..ottt e e 14-52
CREATE DISKGROUPR ..ottt e 14-55
CREATE FUNGCTION ..ot ene e 14-61
CREATE INDEX ..o e e 14-75
CREATE INDEXTYPE ..o 14-105
CREATE JAVA ettt ettt r e r e nne e nrne 14-109
SQL Statements: CREATE LIBRARY to CREATE SPFILE
CREATE LIBRARY .ottt 15-2
CREATE MATERIALIZED VIEW ..ot 15-5
CREATE MATERIALIZED VIEW LOGccciiiiiiieces e 15-33
CREATE OPERATOR ..ottt ene e 15-42
CREATE OUTLINE ..o e 15-46
CREATE PACKAGE ...t et 15-50
CREATE PACKAGE BODY ..ottt 15-55
CREATE PFILE ..o e e 15-60
CREATE PROCEDURE ...ttt 15-62
CREATE PROFILE ..ottt ene e 15-69
CREATE ROLE ... e e 15-77
CREATE ROLLBACK SEGMENT ..ottt 15-81
CREATE SCHEMA ...t ettt en e ene e 15-85
CREATE SEQUENCEooiii e s 15-88
CREATE SPFILE ..o et 15-93
SQL Statements: CREATE SYNONYM to CREATE TRIGGER
CREATE SYNONYM oot ettt sne s 16-2
CREATE TABLE .o 16-7
CREATE TABLESPACE ... e e 16-80
CREATE TRIGGER ... e 16-100

Xix

17

18

XX

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT
CREATE TYPE .ottt 17-3
CREATE TYPE BODY ..ottt 17-26
CREATE USER ..ottt 17-32
CREATE VIEW ..ottt st 17-40
DELETE oottt s 17-55
DISASSOCIATE STATISTICS ..ottt 17-64
DROP CLUSTER ..ottt 17-67
DROP CONTEXT oottt bbb 17-69
DROP DATABASEoovuiiiieeisiee ettt bbb 17-70
DROP DATABASE LINK ..ottt 17-71
DROP DIMENSION ...ttt 17-73
DROP DIRECTORY ..ottt 17-75
DROP DISKGROUP ...ttt 17-76
DROP FUNCTION ..ottt 17-78
DROP INDEX ..ottt bbbt bbb 17-80
DROP INDEXTYPE ...ttt sttt 17-82
DROP JAVA ..ottt 17-84
DROP LIBRARY ..ocoiviitiiiieiiee sttt s bbbt bbb 17-86
DROP MATERIALIZED VIEW........ooiiiieieieieeeieteses s 17-87
DROP MATERIALIZED VIEW LOGcooiiiiiiieisieies e 17-90
DROP OPERATORooviiiiiieisiie ettt 17-92
DROP OUTLINE ..oooiieicce ettt st 17-94
DROP PACKAGE ..ottt 17-95
DROP PROCEDUREcoooiiiiiiiiiiesie ittt s 17-97
DROP PROFILEovtiiiieieiectcee ettt 17-99
DROP ROLE ...ttt 17-100
DROP ROLLBACK SEGMENTooiiiiiiiieiseiese e 17-102
SQL Statements: DROP SEQUENCE to ROLLBACK
DROP SEQUENCEcoouiiiiicieie ettt 18-3
DROP SYNONYM ...oooiiiiiiiisiieie ettt 18-5
DROP TABLE ..ottt bbb 18-7
DROP TABLESPACEcovoiiteiiiteiee ettt 18-11
DROP TRIGGERoouiiiiieeee ettt 18-15

19

DROP TYPE .o s 18-16

DROP TYPE BODY ..ottt 18-19
DIROP USER ..ottt 18-21
DROP VIEW ..ottt 18-23
EXPLATIN PLAN ..ottt 18-25
FLASHBACK DATABASEcoooiiiitiriisiissesasssssssssssssssssssssssssssasssssssssssasssssssssssasssassssssssasssns 18-30
FLASHBACK TABLE ...ttt 18-33
GRAINT ot 18-40
INSERT oottt 18-65
LOCK TABLE ...ttt 18-85
IMIERGE ...ttt 18-89
INOAUD T 1.ttt 18-94
PURGE ..ottt 18-99
RENAIIE ..ottt 18-102
REVOKE ...ttt stttk 18-104
ROLLBACK .ottt 18-115
SQL Statements: SAVEPOINT to UPDATE

SAVEPOINT .ottt 19-2
SELECT oottt sttt 19-4
SET CONSTRAINTIS] wooevveereirmessnessresessesssesssesssesssssssasssesssssssasssasssssssssssasssssssssssesssasssnssssnns 19-61
SET ROLE .ottt 19-63
SET TRANSACTION ..ottt 19-66
TRUNGCATE ..ottt 55885888 19-70
UPDATE oottt 19-75
How to Read Syntax Diagrams

GraphiC SYNTAX DIAGIAIMScuiiiiiiiiiiie ettt bbbt b b e b bt et b et beebesbesbesbennes A-1
Required Keywords and PArametersccocciieireiniiiniesesie e A-3
Optional Keywords and PAarametersccccciveiriiiiieiinsesieseeseseseeseeieseesesssease e ssessessesseses A-4
SYNTAX LLOOPS ..ttt b et et b e bt e bbb e bt s bbbt e nhe e nneas A-4
MUITIPAIT DIAGIAIMS ..ottt b bbbt b et b et bbbt bt A-5
(D=L o T R T @ o =Tt S A-5

XXi

B Oracle and Standard SQL
YN N] IS 7 U g o F= o E RO B-2
ISO STANAITS ... vt bbbttt ettt et B-3
Oracle Compliance To Core SQL:2003.......cccoiiiiiiiiiieinese st B-4
Oracle Support for Optional Features of SQL/Foundation:2003ccccccovieviviiininnnnene B-11
Oracle Compliance with SQLZCLI2003.........cccciiiiiieiireereeeee e B-17
Oracle Compliance with SQL/PSM:2003........cccoiiiiiiriiieieieeeeeese et B-17
Oracle Compliance with SQL/MED:2003.........cccccoiiiiriireinieiseesiees s B-17
Oracle Compliance with SQLZXML:2003cccooiviiieririerieieee e se e B-17
Oracle Compliance With FIPS 127-2ccoooiiiiiiiiie e e B-19
Oracle Extensions to Standard SQL ..o e e B-21
(1T 1o Tod (T g T=1 S U o] o Lo] o A B-21
C Oracle Regular Expression Support
Multilingual Regular EXPression SYNTAXccccooeverirererenieieiess e sie s sse s seessesseaeneens C-1
Regular Expression Operator Multilingual Enhancementsccoccooininncienencicicee C-4
D Oracle Database Reserved Words
E Examples
UsSIiNg EXIENSIDIE TNAEXING ..cvviiviiiicecce ettt te e s eeaesra e eesreens E-1
UsiNg XML iN SQL STAEMENTScooviiiiiiieiiteiee ettt E-11
Index

XXii

Send Us Your Comments

Oracle Database SQL Reference, 10g Release 1 (10.1)
Part No. B10759-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the title and
part number of the documentation and the chapter, section, and page number (if available). You can
send comments to us in the following ways:

Electronic mail: infodev_us@oracle.com

FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
Postal service:

Oracle Corporation

Oracle Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op1l

Redwood Shores, CA 94065

US.A.

If you would like a reply, please give your name, address, telephone number, and (optionally) your
electronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

XXii

XXiV

Preface

This reference contains a complete description of the Structured Query Language
(SQL) used to manage information in an Oracle Database. Oracle SQL is a superset
of the American National Standards Institute (ANSI) and the International
Standards Organization (ISO) SQL:1999 standard.

This preface contains these topics:

Audience

Audience

Organization

Related Documentation
Conventions

Documentation Accessibility

The Oracle Database SQL Reference is intended for all users of Oracle SQL.

Organization

This reference is divided into the following parts:

Chapter 1, "Introduction to Oracle SQL"

This chapter discusses the history of SQL and describes the advantages of using it
to access relational databases.

XXV

XXVi

Chapter 2, "Basic Elements of Oracle SQL"

This chapter describes the basic building blocks of an Oracle Database and of
Oracle SQL.

Chapter 3, "Pseudocolumns”
This chapter describes Oracle SQL pseudocolumns.

Chapter 4, "Operators"
This chapter describes Oracle SQL operators.

Chapter 5, "Expressions”
This chapter describes Oracle SQL expressions.

Chapter 6, "Conditions"
This chapter describes Oracle SQL conditions.

Chapter 7, "Functions"
This chapter describes how to use built-in Oracle SQL functions.

Chapter 8, "Common SQL DDL Clauses”

This chapter describes a number of DDL clauses that are frequently used in many
top-level SQL statements.

Chapter 9, "SQL Queries and Subqueries”
This chapter describes the different types of SQL queries.

Chapter 10 Through Chapter 19
These chapters list and describe all Oracle SQL statements in alphabetical order.

Appendix A, "How to Read Syntax Diagrams"
This appendix describes how to read the syntax diagrams in this reference.

Appendix B, "Oracle and Standard SQL"
This appendix describes Oracle Database compliance with ANSI and ISO standards.

Appendix C, "Oracle Regular Expression Support”

This appendix describes Oracle Database compliance with the POSIX regular
expression standard and to the Unicode Regular Expression Guidelines of the
Unicode Consortium.

Appendix D, "Oracle Database Reserved Words"
This appendix lists words that are reserved for internal use by Oracle Database.

Appendix E, "Examples"

This appendix provides extended examples that use multiple SQL statements and
are therefore not appropriate for any single section of the reference.

Structural Changes in the SQL Reference in Oracle Database 10g Release 1
The section on pseudocolumns, formerly part of Chapter 2, is now a separate
chapter: Chapter 3, "Pseudocolumns".

The section CREATE TEMPORARY TABL ESPACE has been combined with the section
CREATE TABLESPACE on page 16-80, because temporary tablespaces are a form of
tablespace.

Related Documentation
For more information, see these Oracle resources:

« PL/SQL User's Guide and Reference for information on PL/SQL, the procedural
language extension to Oracle SQL

« Pro*C/C++ Programmer’s Guide, Oracle SQL*Module for Ada Programmer’s Guide,
and the Pro*COBOL Programmer’s Guide for detailed descriptions of Oracle
embedded SQL

Many of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle Database. Refer to Oracle
Database Sample Schemas for information on how these schemas were created and
how you can use them yourself.

Printed documentation is available for sale in the Oracle Store at

http://oracl estore. oracl e. conf

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

XXVil

http://otn.oracl e. com menber shi p/
If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracl e. com docunent ati on/

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

« Conventions in Text

« Conventions in Code Examples

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in index-organized table.
a glossary, or both.

Italics Italic typeface indicates book titles or Oracle Database Concepts

emphasis. Ensure that the recovery catalog and target

database do not reside on the same disk.

UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUVBER
nonospace elements supplied by the system. Such column.
(fixed-w dth) elementsinclude parameters, privileges, .
f ont datatypes, RMAN keywords, SQL EOAL(J;IESE gsﬁnzjsntge database by using the
keywords, SQL*Plus or utility commands, '
packages and methods, as well as Query the TABLE_NAME column in the USER _

system-supplied column names, database TABLES data dictionary view.

?(l):)ljsgts and structures, usernames, and Use the DBVE_STATS.GENERATE_STATS
' procedure.

XXViii

Convention Meaning Example
| ower case Lowercase monospace typeface indicates Enter sql pl us to open SQL*Plus.
nonospace executables, filenames, directory names,

(fixed-wi dth)
f ont

| ower case
italic
nonospace
(fixed-w dth)
f ont

and sample user-supplied elements. Such The password is specified in the or apwd file.

elements include computer and database Back up the datafiles and control files in the
names, net service names, and connect / di sk1/ or acl e/ dbs directory.
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values. Set the QUERY_REWRI TE_ENABLED
initialization parameter tot r ue.

The depart nment _i d, depar t ment _nane,
and | ocati on_i d columns are in the
hr . depart nent s table.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase. Connect as oe user.

Enter these elements as shown. The JRepUti | class implements these

methods.

Lowercase italic monospace font You can specify the par al | el _cl ause.
represents placeholders or variables.
P P Run Uol d_r el ease. SQL where ol d_

r el ease refers to the release you installed
prior to upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT usernanme FROM dba_users WHERE usernanme = 'M GRATE ;

The following table describes typographic conventions used in code examples and
provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional DECI MAL (digits [, precision])
items. Do not enter the brackets.

{} Braces enclose two or more items, one of { ENABLE | DI SABLE}

which is required. Do not enter the
braces.

A vertical bar represents a choice of two { ENABLE | DI SABLE}

or more options within brackets or braces. [COWPRESS | NOCOVPRESS]
Enter one of the options. Do not enter the

vertical bar.

XXiX

Convention Meaning Example
Horizontal ellipsis points indicate either:
. That we have omitted parts of the CREATE TABLE ... AS subquery;
code that are not directly related to
the examp|e SELECT col1, col2, ... , coln FROM
enpl oyees;

Other notation

Italics

UPPERCASE

| ower case

« That you can repeat a portion of the
code

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

Italicized text indicates placeholders or
variables for which you must supply
particular values.

Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SQL> SELECT NAME FROM V$DATAFI LE;
NAME

[fsl/dbs/tbs_01. dbf
[fsl/dbs/thbs_02. dbf

[fsl/dbs/tbs_09. dbf
9 rows sel ected.

NUMBER(11, 2) ;
CONSTANT NUMBER(4) : = 3;

acct bal
acct

CONNECT SYSTEM syst em password
DB _NAME = dat abase name

SELECT | ast _name, enployee_id FROM
enpl oyees;

SELECT * FROM USER TABLES;

DROP TABLE hr. enpl oyees;

SELECT | ast_name, enployee_id FROM
enpl oyees;
sql plus hr/hr

CREATE USER nj ones | DENTI FI ED BY ty3M;

XXX

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

http:// ww. oracl e. com accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

XXXi

XXX

What's New in the SQL Reference?

This section describes new features of Oracle Database 10g and provides pointers to
additional information.

For information on features that were new in earlier versions of Oracle Database,
please refer to the documentation for the earlier release.

Oracle Database 10g New Features in the SQL Reference

The following datatypes are new in this release:

The binary floating-point datatypes BINARY_FLOAT on page 2-15 and
BINARY_DOUBLE on page 2-15

The spatial datatype SDO_GEORASTER on page 2-47

The interMedia datatype SI_Stilllmage on page 2-49 and six related Still Image
object types

The following top-level SQL statements are new or enhanced in this release:

A number of new top-level SQL statements have been added to support
Automatic Storage Management:

— CREATE DISKGROUP on page 14-55
— ALTER DISKGROUP on page 10-67
— DROP DISKGROUP on page 17-76

In addition, the following statements have added syntax in support of
Automatic Storage Management:

XXXiii

XXXIV

file_specification subclauses, dat afi | e_t enpfil e_spec andredo_I| og_
fil e_spec, let you specify Automatic Storage Management files in the
form of ASM_filename on page 8-40, as well as file system files

CREATE CONTROLFILE on page 14-14 lets you specify Automatic Storage
Management files as well as file system files

CREATE TABLESPACE on page 16-80 lets you create a tablespace within an
Automatic Storage Management disk group using the "DATAFILE |
TEMPFILE Clause" on page 16-86

CREATE DATABASE on page 14-22 has new syntax that let you create a default
permanent tablespace for the database.

ALTER DATABASE on page 10-11 has new syntax that lets you:

Specify multiple temporary tablespaces (a tablespace group) as the
database default temporary tablespaces

Assign or reassign a tablespace as the database default permanent
tablespace (using the DEFAULT TABLESPACE clause)

Reset the target recovery incarnation for the database from the current
incarnation to the prior incarnation

Begin backup of all the datafiles in the database
Enable block change tracking for incremental backups of the database

Update both global and local partitioned indexes as part of table partition
maintenance operations

Revert the entire database, or some tablespaces of the database, to an earlier
version

Control the relationship between primary databases and logical and
physical standby databases

Assign or reassign a tablespace as the default permanent tablespace for the
database

Add a logfile or enable a redo log thread by specifying an instance name
rather than a thread number

Instruct Oracle Database to compress archivelog files prior to transmission
to a remote site or storage to disk

ALTER MATERIALIZED VIEW LOG on page 11-21:

— Has a new FORCE clause that lets you specify the addition of attributes that
the materialized view log already has without causing Oracle to return an
error

— Lets you instruct Oracle Database to record a sequence value in the
materialized view log

ALTER SYSTEM on page 11-79 has new syntax that lets you flush the buffer
cache of the system global area (SGA).

ALTER TABLE on page 12-2 has new syntax that lets you manually compact the
table segment, adjust the high water mark, and free the recuperated space.

ALTER TYPE on page 13-7 has new syntax that lets you modify varrays and
nested tables of scalar types.

ALTER TABLESPACE on page 12-105 has new syntax that lets you:
— Rename the tablespace

— Guarantee that unexpired undo data will be preserved, even at the expense
of ongoing transactions that require undo segment space

CREATE DATABASE on page 14-22 has new syntax that lets you:
— Specify datafiles for the new SYSAUX system tablespace

— Specify a bigfile tablespace as the default for the database and override the
default for undo and default temporary tablespaces as well. A bigfile
tablespace contains a single datafile that can be up to 4@B in size.

— Create a default permanent tablespace for the database.

CREATE DIMENSION on page 14-45 and ALTER DIMENSION on page 10-62
have new syntax that lets you assign a name to a dimension attribute that is
different from the level name.

CREATE INDEX on page 14-75 and ALTER INDEX on page 10-88 have new
syntax that lets you create and maintain global hash-partitioned indexes.

CREATE INDEXTYPE on page 14-105 and ALTER INDEXTYPE on page 10-112
have new syntax that supports array inserts using the ODClIndexInsert
method.

CREATE MATERIALIZED VIEW on page 15-5 and ALTER MATERIALIZED
VIEW on page 11-2 have new syntax that enhances refresh operations.

XXXV

XXXVI

CREATE OPERATOR on page 15-42 and ALTER OPERATOR on page 11-29
have new syntax that lets you pass column information to the functional
implementation of the operator.

CREATE TABLESPACE on page 16-80 has new syntax that lets you create a
bigfile tablespace. Such a tablespace contains a single datafile that can contain
up to 2% or 4G blocks, resulting in a datafile of up to 128 terabytes (TB).
CREATE DATABASE on page 14-22 has related syntax that lets you specify a
bigfile tablespace as the default, undo, and default temporary tablespace for the
database.

CREATE TABLESPACE on page 16-80 and ALTER TABLESPACE on
page 12-105 have new syntax that lets you assign or reassign a temporary
tablespace to a tablespace group.

CREATE USER on page 17-32 and ALTER USER on page 13-24 have new syntax
that lets you specify multiple temporary tablespaces (a tablespace group) to a
user.

DROP TABLE on page 18-7 has a new PURCE clause that lets you drop the table
without moving it to the recycle bin.

FLASHBACK DATABASE on page 18-30 is a new statement that lets you revert
the entire database to an earlier version.

FLASHBACK TABLE on page 18-33 is a new statement that lets you revert one
or more tables to an earlier system change number (SCN) or timestamp or
retrieve a table that was dropped.

MERGE on page 18-89 has new syntax that lets you:
— Specify either the update operation or the insert operation, or both
— Delete rows from the target table during the update operation

PURGE on page 18-99 is a new SQL statement that lets you permanently
remove previously dropped objects from the recycle bin and release the space
that was associated with them.

SELECT on page 19-4 has new syntax that lets you:

— Issue a versions query, which returns all incarnations of the rows returned
by the query within a specified SCN or time range.

— Perform a query on a partitioned outer join. The new syntax supports data
densification, the process of querying sparse data along a particular
dimension of data and returning rows that otherwise would have been
omitted from the data returned by the query.

— View the results of a query as a multidimensional array and perform
interrow calculations.

The following clauses are modified in this release:

In the physical_attributes_clause on page 8-54, the MAXTRANS parameter has been
deprecated.

The name of the dat a_segnent _conpr essi on clause has been changed to
t abl e_conpr essi on for semantic clarity. The functionality has not changed.
This clause appears in a number of SQL statements. For example, see CREATE
TABLE table_compression on page 16-33.

The following built-in functions are new in this release:

A new aggregate function COLLECT on page 7-39

A new category of collection functions lets you manipulate nested tables and
varrays. The collection functions are:

— CARDINALITY on page 7-30

— POWERMULTISET on page 7-144

- POWERMULTISET_BY_CARDINALITY on page 7-145
— SET on page 7-186

A new category of model functions are for use in interrow calculations and are
valid only in the nodel _cl ause of a query. The model functions are:

— CVon page 7-59

— PRESENTNNYV on page 7-146

— PRESENTV on page 7-148

— PREVIOUS on page 7-149

Functions to manipulate binary floating-point numbers:
- TO_BINARY_DOUBLE on page 7-231

— TO_BINARY_FLOAT on page 7-233

— NANVL on page 7-115

— REMAINDER on page 7-175

ORA_HASH on page 7-134

XXXVii

XXXViii

« The regular expression functions REGEXP_INSTR on page 7-158, REGEXP_
REPLACE on page 7-161, and REGEXP_SUBSTR on page 7-164. The Oracle
Database implementation of regular expression support is discussed in
Appendix C, "Oracle Regular Expression Support".

« A new set of aggregate functions to support statistical analysis of data:
— Caorrelation functions CORR_* on page 7-45
- MEDIAN on page 7-110
— STATS_BINOMIAL_TEST
— STATS_CROSSTAB
- STATS_F_TEST
- STATS_KS_TEST
- STATS_MODE
- STATS_MW._TEST
- STATS_ONE_WAY_ANOVA
— T-test functions STATS T_TEST *
- STATS_WSR_TEST
The following SQL operators are new or enhanced in this release:

« Equality and inequality operators (= and <>) can be used to compare nested
tables and varrays.

« The hierarchical operator: CONNECT_BY_ROOT on page 4-6

« The multiset operators: MULTISET EXCEPT on page 4-8, MULTISET
INTERSECT on page 4-9, and MULTISET UNION on page 4-10

The following pseudocolumns are new in this release:

« The hierarchical pseudo columns: CONNECT_BY_ISLEAF on page 3-2 and
CONNECT_BY_ISCYCLE on page 3-2

« The "Version Query Pseudocolumns” on page 3-7 let you extract information
about the rows returned by a version query.

« The pseudocolumn ORA_ROWSCN on page 3-8 lets you obtain the system
change number of the most recent operation on a table.

The following conditions are new in this release:

« The [NOT] I Nconditions, formerly referred to as "membership condition”, are
now documented as "l N conditions" to distinguish them from the new MEMBER
conditions (see IN on page 6-14)

« The "Floating-Point Conditions" (I S[NOT] NANand | S[NOT] | NFI NI TE) on
page 6-9

« IS ASET on page 6-17

« IS ANY on page 6-18

« ISEMPTY on page 6-19

« ISPRESENT on page 6-21

« MEMBER on page 6-26

« REGEXP_LIKE on page 6-27

« SUBMULTISET on page 6-29

The following miscellaneous features are added:

« New locale-independent format elements have been added to the tables in
"Format Models" on page 2-70.

« Oracle Database now performs implicit conversion between CLOB and NCLOB
data.

= You can now specify a LOB column in the UPDATE OF clause when creating an
update DML trigger.

XXXIX

xl

1

Introduction to Oracle SQL

Structured Query Language (SQL) is the set of statements with which all programs
and users access data in an Oracle database. Application programs and Oracle tools
often allow users access to the database without using SQL directly, but these
applications in turn must use SQL when executing the user's request. This chapter
provides background information on SQL as used by most database systems.

This chapter contains these topics:
« History of SQL

« SQL Standards

« Recent Enhancements

« Nonstandard SQL

« Recursive SQL

« Lexical Conventions

« Tools Support

History of SQL

Dr. E. F. Codd published the paper, "A Relational Model of Data for Large Shared
Data Banks", in June 1970 in the Association of Computer Machinery (ACM)
journal, Communications of the ACM. Codd's model is now accepted as the definitive
model for relational database management systems (RDBMS). The language,
Structured English Query Language (SEQUEL) was developed by IBM Corporation,
Inc., to use Codd's model. SEQUEL later became SQL (still pronounced "sequel"). In
1979, Relational Software, Inc. (now Oracle) introduced the first commercially
available implementation of SQL. Today, SQL is accepted as the standard RDBMS
language.

Introduction to Oracle SQL 1-1

SQL Standards

SQL Standards

Oracle strives to comply with industry-accepted standards and participates actively
in SQL standards committees. Industry-accepted committees are the American
National Standards Institute (ANSI) and the International Standards Organization
(1SO), which is affiliated with the International Electrotechnical Commission (IEC).
Both ANSI and the ISO/IEC have accepted SQL as the standard language for
relational databases. When a new SQL standard is simultaneously published by
these organizations, the names of the standards conform to conventions used by the
organization, but the standards are technically identical.

The latest SQL standard was adopted in July 1999 and is often called SQL:99. The
formal names of this standard are:

« ANSI X3.135-1999, "Database Language SQL", Parts 1 ("Framework"), 2
("Foundation"), and 5 ("Bindings")

« ISO/IEC 9075:1999, "Database Language SQL", Parts 1 ("Framework"), 2
("Foundation"), and 5 ("Bindings")

See Also: Appendix B, "Oracle and Standard SQL" for a detailed
description of Oracle Database conformance to the SQL:99
standards

At this writing, the next edition of SQL (ISO/IEC 9075:2003) is in the process of final
approval as an International Standard, with adoption expected in the final quarter
of 2003.

How SQL Works

The strengths of SQL provide benefits for all types of users, including application
programmers, database administrators, managers, and end users. Technically
speaking, SQL is a data sublanguage. The purpose of SQL is to provide an interface
to a relational database such as Oracle Database, and all SQL statements are
instructions to the database. In this SQL differs from general-purpose programming
languages like C and BASIC. Among the features of SQL are the following:

« It processes sets of data as groups rather than as individual units.
« It provides automatic navigation to the data.

« It uses statements that are complex and powerful individually, and that
therefore stand alone. Flow-control statements were not part of SQL originally,
but they are found in the recently accepted optional part of SQL, ISO/IEC

1-2 SQL Reference

Recent Enhancements

9075-5: 1996. Flow-control statements are commonly known as "persistent
stored modules" (PSM), and the PL/SQL extension to Oracle SQL is similar to
PSM.

SQL lets you work with data at the logical level. You need to be concerned with the
implementation details only when you want to manipulate the data. For example,
to retrieve a set of rows from a table, you define a condition used to filter the rows.
All rows satisfying the condition are retrieved in a single step and can be passed as
a unit to the user, to another SQL statement, or to an application. You need not deal
with the rows one by one, nor do you have to worry about how they are physically
stored or retrieved. All SQL statements use the optimizer, a part of Oracle Database
that determines the most efficient means of accessing the specified data. Oracle also
provides techniques that you can use to make the optimizer perform its job better.

SQL provides statements for a variety of tasks, including:
« Querying data

« Inserting, updating, and deleting rows in a table

« Creating, replacing, altering, and dropping objects

« Controlling access to the database and its objects

« Guaranteeing database consistency and integrity

SQL unifies all of the preceding tasks in one consistent language.

Common Language for All Relational Databases

All major relational database management systems support SQL, so you can
transfer all skills you have gained with SQL from one database to another. In
addition, all programs written in SQL are portable. They can often be moved from
one database to another with very little modification.

Recent Enhancements

The Oracle Database SQL engine is the underpinning of all Oracle Database
applications. Oracle SQL continually evolves to meet the growing demands of
database applications and to support emerging computing architectures, APIs, and
network protocols.

In addition to traditional structured data, SQL is capable of storing, retrieving, and
processing more complex data:

Introduction to Oracle SQL 1-3

Nonstandard SQL

« Object types, collection types, and REF types provide support for complex
structured data. A number of standard-compliant multiset operators are now
supported for the nested table collection type.

« Large objects (LOBs) provide support for both character and binary
unstructured data. A single LOB reach a size of 8 to 128 terabytes, depending on
database block size.

« The XMLType datatype provides support for semistructured XML data.
Native support of standards-based capabilities includes the following features:

« Native regular expression support lets you perform pattern searches on and
manipulate loosely formatted, free-form text within the database.

« Native floating-point datatypes based on the IEEE754 standard improve the
floating-point processing common in XML and Java standards and reduce the
storage space required for numeric data.

« Built-in SQL aggregate and analytic functions facilitate access to and
manipulation of data in data warehouses and data marts.

Ongoing enhancements in Oracle SQL will continue to provide comprehensive
support for the development of versatile, scalable, high-performance database
applications.

Nonstandard SQL

Oracle provides extensions to the standard SQL database language with integrity
enhancement. The Federal Information Processing Standard for SQL (FIPS 127-2)
requires vendors to supply a method for identifying SQL statements that use such
extensions. You can identify or flag Oracle extensions in interactive SQL, the Oracle
precompilers, or SQL*Module by using the FIPS flagger.

If you are concerned with the portability of your applications to other
implementations of SQL, then use the FIPS flagger.

See Also:

« FLAGGER on page 11-71 for information on enabling FIPS
flagging with the FLAGGER session parameter

« "Oracle Support for Optional Features of
SQL/Foundation:2003" on page B-11

1-4 SQL Reference

Tools Support

Recursive SQL

When you issue a data definition language (DDL) statement, Oracle Database
implicitly issues recursive SQL statements that modify data dictionary information.
Users need not be concerned with the recursive SQL internally performed by Oracle
Database.

Lexical Conventions

The following lexical conventions for issuing SQL statements apply specifically to
the Oracle Database implementation of SQL, but are generally acceptable in other
SQL implementations.

When you issue a SQL statement, you can include one or more tabs, carriage
returns, spaces, or comments anywhere a space occurs within the definition of the
statement. Thus, Oracle Database evaluates the following two statements in the
same manner:

SELECT | ast _name, sal ary*12, MONTHS_BETWEEN(hi re_dat e, SYSDATE)
FROM enpl oyees;

SELECT | ast _nane,
salary * 12,
MONTHS_BETVEEN(hire_date, SYSDATE)
FROM enpl oyees;

Case is insignificant in reserved words, keywords, identifiers and parameters.
However, case is significant in text literals and quoted names. Please refer to "Text
Literals" on page 2-61 for a syntax description of text literals.

Tools Support
Oracle provides a number of utilities to facilitate your SQL development process:

« SQL*Plus is an interactive and batch query tool that is installed with every
Oracle Database server or client installation. It has a command-line user
interface and a web-based user interface called iSQL*Plus.

« Oracle JDeveloper is a multiple-platform integrated development environment
supporting the complete lifecycle of development for Java, Web services, and
SQL. It provides a graphical interface for executing and tuning SQL statements
and a visual schema diagrammer (database modeler). It also supports editing,
compiling, and debugging PL/SQL applications.

Introduction to Oracle SQL 1-5

Tools Support

« Oracle HTML DB is a hosted environment for developing and deploying
database-related Web applications. SQL Workshop is a component of Oracle
HTML DB that lets you view and manage database objects from a Web browser.
SQL Workshop offers quick access to a SQL command processor and a SQL
script repository.

See Also: SQL*Plus User's Guide and Reference and Oracle HTML
DB User's Guide for more information on these products

The Oracle Call Interface and Oracle precompilers let you embed standard SQL
statements within a procedure programming language.

« The Oracle Call Interface (OCI) lets you embed SQL statements in C programs.

« The Oracle precompilers, Pro*C/C++ and Pro*COBOL, interpret embedded
SQL statements and translate them into statements that can be understood by
C/C++ and COBOL compilers, respectively.

See Also: Oracle C++ Call Interface Programmer's Guide,
Pro*COBOL Programmer's Guide, and Oracle Call Interface
Programmer's Guide for additional information on the embedded
SQL statements allowed in each product

Most (but not all) Oracle tools also support all features of Oracle SQL. This reference
describes the complete functionality of SQL. If the Oracle tool that you are using
does not support this complete functionality, then you can find a discussion of the
restrictions in the manual describing the tool, such as SQL*Plus User"s Guide and
Reference.

1-6 SQL Reference

2

Datatypes

Basic Elements of Oracle SQL

This chapter contains reference information on the basic elements of Oracle SQL.
These elements are the simplest building blocks of SQL statements. Therefore,
before using the statements described in Chapter 10 through Chapter 19, you
should familiarize yourself with the concepts covered in this chapter.

This chapter contains these sections:

« Datatypes

« Literals

« Format Models

« Nulls

« Comments

« Database Objects

« Schema Object Names and Qualifiers

« Syntax for Schema Objects and Parts in SQL Statements

Each value manipulated by Oracle Database has a datatype. The datatype of a value
associates a fixed set of properties with the value. These properties cause Oracle to
treat values of one datatype differently from values of another. For example, you
can add values of NUMBER datatype, but not values of RAWdatatype.

When you create a table or cluster, you must specify a datatype for each of its
columns. When you create a procedure or stored function, you must specify a
datatype for each of its arguments. These datatypes define the domain of values
that each column can contain or each argument can have. For example, DATE

Basic Elements of Oracle SQL 2-1

Datatypes

columns cannot accept the value February 29 (except for a leap year) or the values 2
or 'SHOE'. Each value subsequently placed in a column assumes the datatype of the
column. For example, if you insert' 01- JAN- 98' into a DATE column, then Oracle
treats the ' 01- JAN- 98" character string as a DATE value after verifying that it
translates to a valid date.

Oracle Database provides a number of built-in datatypes as well as several
categories for user-defined types that can be used as datatypes. The syntax of Oracle
datatypes appears in the diagrams that follow. The text of this section is divided
into the following sections:

« Oracle Built-in Datatypes

« ANSI, DB2, and SQL/DS Datatypes
« User-Defined Types

« Oracle-Supplied Types

« Datatype Comparison Rules

« Data Conversion

The Oracle precompilers recognize other datatypes in embedded SQL programs.
These datatypes are called external datatypes and are associated with host
variables. Do not confuse built-in datatypes and user-defined types with external
datatypes. For information on external datatypes, including how Oracle converts
between them and built-in datatypes or user-defined types, see Pro*xCOBOL
Programmer*s Guide, and Pro*C/C++ Programmer*s Guide.

datatypes::=

Oracle_buiIt_in_datatypes%

ANSl_supported_datatypes}

user_defined_types

Oracle_supplied_types

2-2 SQL Reference

Datatypes

Oracle_built_in_datatypes::=

character_datatypes

I

number_datatypes

—(Iong_and_raw_datatypes)—

datetime_datatypes

large_object_datatypes

rowid_datatypes

ll

For descriptions of the Oracle built-in datatypes, please refer to "Oracle Built-in

Datatypes” on page 2-7.

character_datatypes::=

{E=)

size %

CHAR

{E=)

CHAR

~ o@—— L
-| NCHAR

number_datatypes::=

i
;

!

NUMBER

BINARY_FLOAT

BINARY_DOUBLE

Basic Elements of Oracle SQL 2-3

Datatypes

long_and_raw_datatypes::=

IS .
FO@0

datetime_datatypes::=

,1 DATE
LOCAL

f@{fractional_seconds_precision)% WITH H TIME [+ ZONE
-| TIMESTAMP
® ®
-| INTERVAL |->| YEAR } ﬁ| TO |->| MONTH

o o Ie@—(fractional_seconds_precisionm
INTERVAL DAY TO H SECOND

large_object_datatypes::=

rowid_datatypes::=

ROWID

D@0 [

UROWID

The ANSI-supported datatypes appear in the figure that follows. "ANSI, DB2, and
SQL/DS Datatypes" on page 2-39 discusses the mapping of ANSI-supported
datatypes to Oracle built-in datatypes.

2-4 SQL Reference

Datatypes

ANSI_supported_datatypes::=

[VARYING |
,| CHARACTER ﬁ-_\

scale
DECIMAL

DEC

INT
(O(sze) (D)
—| FLOAT

—| DOUBLE |—>| PRECISION |

|
\| REAL
Oracle_supplied_types::=

expression_filter_type

i

For a description of the expressi on_filter _type, please refer to "Expression
Filter Type" on page 2-50. Other Oracle-supplied types follow:

Basic Elements of Oracle SQL 2-5

Datatypes

any_types::=

SYS.AnyData

SYS.AnyDataSet

i

For descriptions of the Any types, please refer to "Any Types" on page 2-43.
XML_types::.=

XMLType

Bl

URIType

For descriptions of the XML types, please refer to "XML Types" on page 2-44.
spatial_types::=

SDO_Geometry

I

SDO_GeoRaster

For descriptions of the spatial types, please refer to "Spatial Types" on page 2-47.
media_types::=

ORDAudio
ORDImage

ORDVideo

}

il

C,S
=
=
QD
[{=}
@D
o
k=3
@D
(@]
8
=
=
=}
D
N

ORDDoc

OrdimageSignature

2-6 SQL Reference

Datatypes

still_image_object_types::=

—

SI_Stilllmage
SI_AverageColor

SI_PositionalColor

SI_Texture

SI_FeatureList

SI_Color

i

SI_ColorHistogram |H—

For descriptions of the media types, please refer to "Media Types" on page 2-48.

Oracle Built-in Datatypes

The table that follows summarizes Oracle built-in datatypes. The codes listed for
the datatypes are used internally by Oracle Database. The datatype code of a
column or object attribute is returned by the DUMP function.

Table 2-1

Built-In Datatype Summary

Code

Built_in Datatype

Description

1

VARCHAR2(si ze
[BYTE | CHAR])

NVARCHAR2(si ze)

NUMBER(p, s)

Variable-length character string having maximum
length si ze bytes or characters. Maximum si ze is 4000
bytes or characters, and minimum is 1 byte or 1
character. You must specify si ze for VARCHAR2.

BYTE indicates that the column will have byte length
semantics; CHAR indicates that the column will have
character semantics.

Variable-length character string having maximum
length si ze characters. Maximum si ze is determined
by the national character set definition, with an upper
limit of 4000 bytes. You must specify si ze for
NVARCHAR2.

Number having precision p and scale s. The precision p
can range from 1 to 38. The scale s can range from -84 to
127.

Basic Elements of Oracle SQL 2-7

Datatypes

Table 2-1 (Cont.) Built-In Datatype Summary

Code

Built_in Datatype

Description

8

12

21

22

180

181

231

182

183

2-8 SQL Reference

LONG

DATE

Bl NARY_FLCAT

Bl NARY_DOUBLE

TI MESTAMP
(fractional _
seconds_pr eci si on)

TI MESTAMP
(fractional _
seconds_pr eci si on)
W THTI ME ZONE

TI MESTAVP
(fractional _
seconds_pr eci si on)
W THLOCAL Tl ME
ZONE

| NTERVAL YEAR
(year _precision)TO
MONTH

| NTERVAL DAY (day_
preci sion) TO
SECOND

(fractional _
seconds_pr eci si on)

Character data of variable length up to 2 gigabytes, or
2% -1 bytes.

Valid date range from January 1, 4712 BC to December
31, 9999 AD.

32-bit floating point number. This datatype requires 5
bytes, including the length byte.

64-bit floating point number. This datatype requires 9
bytes, including the length byte.

Year, month, and day values of date, as well as hour,
minute, and second values of time, where

fracti onal _seconds_preci si on is the number of
digits in the fractional part of the SECOND datetime
field. Accepted values of f ract i onal _seconds_
preci si on are 0to9. The default is 6.

All values of TI MESTAMP as well as time zone
displacement value, where f ract i onal _seconds_
pr eci si on is the number of digits in the fractional part
of the SECOND datetime field. Accepted values are 0to 9.
The default is 6.

All values of TI MESTAMP W THTI ME ZONE, with the
following exceptions:

. Data is normalized to the database time zone when
it is stored in the database.

« When the data is retrieved, users see the data in the
session time zone.

Stores a period of time in years and months, where
year _pr eci si on is the number of digits in the YEAR
datetime field. Accepted values are 0 to 9. The default is
2.

Stores a period of time in days, hours, minutes, and
seconds, where

« day_preci si on is the maximum number of digits
in the DAY datetime field. Accepted values are 0 to
9. The default is 2.

« fractional _seconds_precisionisthe
number of digits in the fractional part of the
SECOND field. Accepted values are 0 to 9. The
default is 6.

Datatypes

Table 2-1 (Cont.) Built-In Datatype Summary

Code

Built_in Datatype

Description

23

24
69

208

96

96

112

112

113

114

RAW(si ze)

LONG RAW
ROW D

UROW D [(si ze)]

CHAR(si ze [BYTE |
CHAR])

NCHAR(si ze)

CLOB

NCLOB

BLOB

BFI LE

Raw binary data of length si ze bytes. Maximum si ze
is 2000 bytes. You must specify si ze for a RAWvalue.

Raw binary data of variable length up to 2 gigabytes.

Base 64 string representing the unique address of a row
in its table. This datatype is primarily for values
returned by the ROW D pseudocolumn.

Base 64 string representing the logical address of a row
of an index-organized table. The optional si ze is the
size of a column of type UROW D. The maximum size
and default is 4000 bytes.

Fixed-length character data of length si ze bytes.
Maximum si ze is 2000 bytes or characters. Default and
minimum si ze is 1 byte.

BYTE and CHAR have the same semantics as for
VARCHAR2.

Fixed-length character data of length si ze characters.
Maximum si ze is determined by the national character
set definition, with an upper limit of 2000 bytes. Default
and minimum si ze is 1 character.

A character large object containing single-byte or
multibyte characters. Both fixed-width and
variable-width character sets are supported, both using
the database character set. Maximum size is (4 gigabytes
- 1) * (database block size).

A character large object containing Unicode characters.
Both fixed-width and variable-width character sets are
supported, both using the database national character
set. Maximum size is (4 gigabytes - 1) * (database block
size). Stores national character set data.

A binary large object. Maximum size is (4 gigabytes - 1)
* (database block size).

Contains a locator to a large binary file stored outside
the database. Enables byte stream 1/0 access to external
LOBs residing on the database server. Maximum size is
4 gigabytes.

Basic Elements of Oracle SQL 2-9

Datatypes

Character Datatypes

Character datatypes store character (alphanumeric) data, which are words and
free-form text, in the database character set or national character set. They are less
restrictive than other datatypes and consequently have fewer properties. For
example, character columns can store all alphanumeric values, but NUVBER
columns can store only numeric values.

Character data is stored in strings with byte values corresponding to one of the
character sets, such as 7-bit ASCII or EBCDIC, specified when the database was
created. Oracle Database supports both single-byte and multibyte character sets.

These datatypes are used for character data:
« CHAR Datatype

« NCHAR Datatype

« NVARCHAR?2 Datatype

« VARCHAR?2 Datatype

CHAR Datatype

The CHAR datatype specifies a fixed-length character string. Oracle ensures that all
values stored in a CHAR column have the length specified by si ze. If you insert a
value that is shorter than the column length, then Oracle blank-pads the value to
column length. If you try to insert a value that is too long for the column, then
Oracle returns an error.

The default length for a CHAR column is 1 byte and the maximum allowed is 2000
bytes. A 1-byte string can be inserted into a CHAR(10) column, but the string is
blank-padded to 10 bytes before it is stored.

When you create a table with a CHAR column, by default you supply the column
length in bytes. The BYTE qualifier is the same as the default. If you use the CHAR
qualifier, for example CHAR(10 CHAR), then you supply the column length in
characters. A character is technically a code point of the database character set. Its
size can range from 1 byte to 4 bytes, depending on the database character set. The
BYTE and CHAR qualifiers override the semantics specified by the NLS LENGTH
SEMANTI CS parameter, which has a default of byte semantics. For performance
reasons, Oracle recommends that you use the NLS_LENGTH_SEMANTI CS parameter
to set length semantics and that you use the BYTE and CHAR qualifiers only when
necessary to override the parameter.

2-10 SQL Reference

Datatypes

To ensure proper data conversion between databases with different character sets,
you must ensure that CHAR data consists of well-formed strings. See Oracle Database
Globalization Support Guide for more information on character set support.

See Also: "Datatype Comparison Rules" on page 2-50 for
information on comparison semantics

NCHAR Datatype

The NCHAR datatype is a Unicode-only datatype. When you create a table with an
NCHAR column, you define the column length in characters. You define the national
character set when you create your database.

The maximum length of a column is determined by the national character set
definition. Width specifications of character datatype NCHAR refer to the number of
characters. The maximum column size allowed is 2000 bytes.

If you insert a value that is shorter than the column length, then Oracle blank-pads
the value to column length. You cannot insert a CHAR value into an NCHAR column,
nor can you insert an NCHAR value into a CHAR column.

The following example compares the t r ansl at ed_descr i pti on column of the
pm product descri pti ons table with a national character set string:

SELECT transl ated_description FROM product _descri ptions
WHERE transl ated_nanme = N LCD Mnitor 11/PM;

Please refer to Oracle Database Globalization Support Guide for information on
Unicode datatype support.

NVARCHAR?2 Datatype

The NVARCHAR?2 datatype is a Unicode-only datatype. When you create a table with
an NVARCHAR2 column, you supply the maximum number of characters it can hold.
Oracle subsequently stores each value in the column exactly as you specify it,
provided the value does not exceed the maximum length of the column.

The maximum length of the column is determined by the national character set
definition. Width specifications of character datatype NVARCHAR? refer to the
number of characters. The maximum column size allowed is 4000 bytes. Please refer
to Oracle Database Globalization Support Guide for information on Unicode datatype
support.

Basic Elements of Oracle SQL 2-11

Datatypes

VARCHAR?2 Datatype

The VARCHARZ datatype specifies a variable-length character string. When you
create a VARCHAR2 column, you supply the maximum number of bytes or
characters of data that it can hold. Oracle subsequently stores each value in the
column exactly as you specify it, provided the value does not exceed the column's
maximum length of the column. If you try to insert a value that exceeds the
specified length, then Oracle returns an error.

You must specify a maximum length for a VARCHARZ2 column. This maximum must
be at least 1 byte, although the actual string stored is permitted to be a zero-length
string (" '). You can use the CHAR qualifier, for example VARCHAR2 (10 CHAR), to
give the maximum length in characters instead of bytes. A character is technically a
code point of the database character set. CHAR and BYTE qualifiers override the
setting of the NLS_LENGTH_SEMANTI CS parameter, which has a default of bytes.
For performance reasons, Oracle recommends that you use the NLS_LENGTH _
SEMANTI CS parameter to set length semantics and that you use the BYTE and CHAR
qualifiers only when necessary to override the parameter. The maximum length of
VARCHARZ data is 4000 bytes. Oracle compares VARCHAR2 values using nonpadded
comparison semantics.

To ensure proper data conversion between databases with different character sets,
you must ensure that VARCHARZ2 data consists of well-formed strings. See Oracle
Database Globalization Support Guide for more information on character set support.

See Also: "Datatype Comparison Rules" on page 2-50 for
information on comparison semantics

VARCHAR Datatype

The VARCHAR datatype is currently synonymous with the VARCHAR2 datatype.
Oracle recommends that you use VARCHAR? rather than VARCHAR. In future
releases, VARCHAR might be defined as a separate datatype used for variable-length
character strings compared with different comparison semantics.

Numeric Datatypes

The Oracle Database numeric datatypes store positive and negative fixed and
floating-point numbers, zero, infinity, and values that are the undefined result of an
operation (that is, is "not a number" or NAN).

NUMBER Datatype

The NUMBER datatype stores zero as well as positive and negative fixed numbers
with absolute values from 1.0 x 10 to (but not including) 1.0 x 10'%. If you specify

2-12 SQL Reference

Datatypes

an arithmetic expression whose value has an absolute value greater than or equal to
1.0 x 10*?®, then Oracle returns an error. Each NUVBER value requires from 1 to 22
bytes.

Specify a fixed-point number using the following form:
NUMBER(p, S)

where:

= pisthe precision, or the total number of digits. Oracle guarantees the
portability of numbers with precision of up to 38 digits.

« S isthe scale, or the number of digits to the right of the decimal point. The scale
can range from -84 to 127.

Specify an integer using the following form:
NUMBER(p)

This represents a fixed-point number with precision p and scale 0 and is equivalent
to NUMBER(p, 0) .

Specify a floating-point number using the following form:
NUMBER

The absence of precision and scale designators specifies the maximum range and
precision for an Oracle number.

See Also: "Floating-Point Numbers" on page 2-14

Scale and Precision Specify the scale and precision of a fixed-point number column
for extra integrity checking on input. Specifying scale and precision does not force
all values to a fixed length. If a value exceeds the precision, then Oracle returns an
error. If a value exceeds the scale, then Oracle rounds it.

Table 2-2 show how Oracle stores data using different precisions and scales.

Table 2-2 Storage of Scale and Precision

Actual Data Specified As Stored As
7456123.89 NUMBER 7456123.89
7456123.89 NUMBER(9) 7456124

7456123.89 NUMBER(9, 2) 7456123.89

Basic Elements of Oracle SQL 2-13

Datatypes

Table 2-2 (Cont.) Storage of Scale and Precision

Actual Data Specified As Stored As
7456123.89 NUMBER(9, 1) 7456123.9
7456123.89 NUVBER(6) exceeds precision
7456123.89 NUVBER(7, - 2) 7456100
7456123.89 NUMBER(7, 2) exceeds precision

Negative Scale If the scale is negative, then the actual data is rounded to the
specified number of places to the left of the decimal point. For example, a
specification of (10,-2) means to round to hundreds.

Scale Greater than Precision You can specify a scale that is greater than precision,
although it is uncommon. In this case, the precision specifies the maximum number
of digits to the right of the decimal point. As with all number datatypes, if the value
exceeds the precision, then Oracle returns an error message. If the value exceeds the
scale, then Oracle rounds the value. For example, a column defined as

NUMBER(4, 5) requires a zero for the first digit after the decimal point and rounds
all values past the fifth digit after the decimal point. Table 2-3 show the effects of a
scale greater than precision:

Table 2-3 Scale Greater Than Precision

Actual Data Specified As Stored As
.01234 NUVBER(4, 5) .01234
.00012 NUMBER(4, 5) .00012
.000127 NUMBER(4, 5) .00013
.0000012 NUMBER(2, 7) .0000012
.00000123 NUMBER(2, 7) .0000012

Floating-Point Numbers

Floating-point numbers can have a decimal point anywhere from the first to the last
digit or can have no decimal point at all. An exponent may optionally be used
following the number to increase the range (for example, 1.777 e?9). A scale value is
not applicable to floating-point numbers, because the number of digits that can
appear after the decimal point is not restricted.

2-14 SQL Reference

Datatypes

Binary floating-point numbers differ from NUMBER in the way the values are stored
internally by Oracle Database. Values are stored using decimal precision for
NUMBER. All literals that are within the range and precision supported by NUVBER
are stored exactly as NUMBER. Literals are stored exactly because literals are
expressed using decimal precision (the digits 0 through 9). Binary floating-point
numbers are stored using binary precision (the digits 0 and 1). Such a storage
scheme cannot represent all values using decimal precision exactly. Frequently, the
error that occurs when converting a value from decimal to binary precision is
undone when the value is converted back from binary to decimal precision. The
literal 0.1 is such an example.

Oracle Database provides two numeric datatypes exclusively for floating-point
numbers:

BINARY_FLOAT BI NARY_FLOAT is a 32-bit, single-precision floating-point number
datatype. Each Bl NARY_FLOAT value requires 5 bytes, including a length byte.

BINARY_DOUBLE BI NARY_DOUBLE is a 64-bit, double-precision floating-point
number datatype. Each Bl NARY _DOUBLE value requires 9 bytes, including a length
byte.

In a NUMBER column, floating point numbers have decimal precision. In a Bl NARY _
FLOAT or Bl NARY_DOUBLE column, floating-point numbers have binary precision.
The binary floating-point numbers support the special values infinity and NaN (not
a number).

You can specify floating-point numbers within the limits listed in Table 2-4 on
page 2-15. The format for specifying floating-point numbers is defined in "Numeric
Literals" on page 2-62.

Table 2-4 Floating Point Number Limits

Value Binary-Float Binary-Double
Maximum finite value 1.79e308 3.4e38
Minimum finite value -1.79e308 -3.4e38
Smallest positive value 2.3e-308 1.2e-38
Smallest negative value -2.3e-308 -1.2e-38

Oracle Database also supports the ANSI datatype FLQOAT. You can specify this
datatype using one of these syntactic forms:

FLOAT

Basic Elements of Oracle SQL 2-15

Datatypes

FLOAT(n)

The number n indicates the number of bits of precision that the value can store. The
value for n can range from 1 to 126. To convert from binary to decimal precision,
multiply n by 0.30103. To convert from decimal to binary precision, multiply the
decimal precision by 3.32193. The maximum of 126 digits of binary precision is
roughly equivalent to 38 digits of decimal precision.

IEEE754 Conformance The Oracle implementation of floating-point datatypes
conforms substantially with the Institute of Electrical and Electronics Engineers
(IEEE) Standard for Binary Floating-Point Arithmetic, IEEE Standard 754-1985
(IEEE754). The new datatypes conform to IEEE754 in the following areas:

« The SQL function SQRT implements square root. See SQRT on page 7-190.

« The SQL function REMAI NDER implements remainder. See REMAINDER on
page 7-175.

« Arithmetic operators conform. See "Arithmetic Operators" on page 4-3.

« Comparison operators conform, except for comparisons with NaN. Oracle
orders NaN greatest with respect to all other values, and evaluates NaN equal to
NaN. See "Floating-Point Conditions" on page 6-9.

« Conversion operators conform. See "Conversion Functions" on page 7-6.
« The default rounding mode is supported.
« The default exception handling mode is supported.

« The special values | NF, -1 NF, and NaN are supported. See "Floating-Point
Conditions" on page 6-9.

« Rounding of Bl NARY_FLOAT and Bl NARY_DOUBLE values to integer-valued
Bl NARY_FLCQAT and Bl NARY_DOUBLE values is provided by the SQL functions
ROUND, TRUNC, CEI L, and FLOOR.

« Rounding of Bl NARY_FLOAT/BI NARY_DOUBLE to decimal and decimal to
Bl NARY_FLQAT/BI NARY_DOUBLE is provided by the SQL functions TO_CHAR,
TO_NUMBER, TO_NCHAR, TO_BI NARY_FLQAT, TO _BI NARY_DOUBLE, and CAST.

The new datatypes do not conform to IEEE754 in the following areas:
« -0iscoerced to +0.

« Comparison with NaN is not supported.

2-16 SQL Reference

Datatypes

LONG Datatype

« All NaNvalues are coerced to either Bl NARY_FLOAT_NANor Bl NARY_DOUBLE
NAN.

« Non-default rounding modes are not supported.

« Non-default exception handling mode are not supported.

Numeric Precedence

Numeric precedence determines, for operations that support numeric datatypes,
the datatype Oracle uses if the arguments to the operation have different datatypes.
Bl NARY_DQOUBLE has the highest numeric precedence, followed by Bl NARY _
FLOAT, and finally by NUMBER. Therefore, in any operation on multiple numeric
values:

« If any of the operands is Bl NARY_DQOUBLE, then Oracle attempts to convert all
the operands implicitly to Bl NARY_DOUBLE before performing the operation.

« If none of the operands is Bl NARY_DOUBLE but any of the operands is
Bl NARY_FLQAT, then Oracle attempts to convert all the operands implicitly to
Bl NARY_FL QAT before performing the operation.

« Otherwise, Oracle attempts to convert all the operands to NUMBER before
performing the operation.

If any implicit conversion is needed and fails, then the operation fails. Table 2-11,
" Implicit Type Conversion Matrix" on page 2-55 for more information on implicit
conversion.

In the context of other datatypes, numeric datatypes have lower precedence than
the datetime/interval datatypes and higher precedence than character and all other
datatypes.

LONGcolumns store variable-length character strings containing up to 2 gigabytes
-1, or 2%-1 bytes. LONG columns have many of the characteristics of VARCHAR2
columns. You can use LONGcolumns to store long text strings. The length of LONG
values may be limited by the memory available on your computer.

Do not create tables with LONGcolumns. Use LOB columns (CLOB, NCLOB, BLOB)
instead. LONG columns are supported only for backward compatibility.

Oracle also recommends that you convert existing LONGcolumns to LOB columns.
LOB columns are subject to far fewer restrictions than LONG columns. Further, LOB
functionality is enhanced in every release, whereas LONGfunctionality has been
static for several releases. See the nodi fy_col _properti es clause of ALTER

Basic Elements of Oracle SQL 2-17

Datatypes

TABLE on page 12-2 and TO_LOB on page 7-242 for more information on
converting LONGcolumns to LOB.

You can reference LONGcolumns in SQL statements in these places:
« SELECT lists

« SET clauses of UPDATE statements

« VALUES clauses of | NSERT statements

The use of LONGvalues is subject to these restrictions:

« Atable can contain only one LONGcolumn.

= You cannot create an object type with a LONGattribute.

« LONGcolumns cannot appear in WHERE clauses or in integrity constraints
(except that they can appear in NULL and NOT NULL constraints).

« LONGcolumns cannot be indexed.
« LONGdata cannot be specified in regular expressions.
« A stored function cannot return a LONGvalue.

« You can declare a variable or argument of a PL/SQL program unit using the
LONGdatatype. However, you cannot then call the program unit from SQL.

« Within a single SQL statement, all LONG columns, updated tables, and locked
tables must be located on the same database.

« LONGand LONGRAWcolumns cannot be used in distributed SQL statements and
cannot be replicated.

« Ifatable has both LONGand LOB columns, then you cannot bind more than
4000 bytes of data to both the LONGand LOB columns in the same SQL
statement. However, you can bind more than 4000 bytes of data to either the
LONGor the LOB column.

In addition, LONG columns cannot appear in these parts of SQL statements:

« GROUP BY clauses, ORDER BY clauses, or CONNECT BY clauses or with the
DI STI NCT operator in SELECT statements

« The UNI QUE operator of a SELECT statement
« The column list of a CREATE CLUSTER statement
« The CLUSTERclause of a CREATE MATERI ALI ZED VI EWstatement

« SQL built-in functions, expressions, or conditions

2-18 SQL Reference

Datatypes

« SELECT lists of queries containing GROUP BY clauses

« SELECT lists of subqueries or queries combined by the UNI ON, | NTERSECT, or
M NUS set operators

« SELECT lists of CREATE TABLE ... AS SELECT statements

« ALTERTABLE ... MOVE statements

« SELECT lists in subqueries in | NSERT statements

Triggers can use the LONG datatype in the following manner:

« A SQL statement within a trigger can insert data into a LONGcolumn.

« If data from a LONGcolumn can be converted to a constrained datatype (such as
CHAR and VARCHAR2), then a LONG column can be referenced in a SQL
statement within a trigger.

« Variables in triggers cannot be declared using the LONG datatype.
» :NEWand :OLD cannot be used with LONGcolumns.

You can use Oracle Call Interface functions to retrieve a portion of a LONGvalue
from the database.

See Also: Oracle Call Interface Programmer*s Guide

Datetime and Interval Datatypes

The datetime datatypes are DATE, TI MESTAMP, TI MESTAMP W THTI ME ZONE, and
TI MESTAMP W THLOCAL TI ME ZONE. Values of datetime datatypes are sometimes
called "datetimes". The interval datatypes are | NTERVAL YEAR TOMONTH and

| NTERVAL DAY TO SECOND. Values of interval datatypes are sometimes called
intervals.

Both datetimes and intervals are made up of fields. The values of these fields
determine the value of the datatype. Table 2-5 lists the datetime fields and their
possible values for datetimes and intervals.

To avoid unexpected results in your DML operations on datetime data, you can
verify the database and session time zones by querying the built-in SQL functions
DBTI MEZONE and SESSI ONTI MEZONE. If the time zones have not been set
manually, Oracle Database uses the operating system time zone by default. If the
operating system time zone is not a valid Oracle time zone, then Oracle uses UTC as
the default value.

Basic Elements of Oracle SQL 2-19

Datatypes

Table 2-5 Datetime Fields and Values

Datetime Field

Valid Values for Datetime

Valid Values for INTERVAL

YEAR -4712 to 9999 (excluding year 0) Any positive or negative
integer
MONTH 0lto12 Oto 11
DAY 01 to 31 (limited by the values of MONTHand YEAR, Any positive or negative
according to the rules of the current NLS calendar integer
parameter)
HOUR 00 to 23 0to 23
M NUTE 00to 59 0to59
SECOND 00 to 59.9(n), where 9(n) is the precision of time 0 to 59.9(n), where 9(n) is

fractional seconds. The 9(n) portion is not

applicable for DATE.

the precision of interval
fractional seconds

TI MEZONE_HOUR

-12 to 14 (This range accommodates daylight
saving time changes.) Not applicable for DATE or

TI MESTAMP.

Not applicable

TI MEZONE_M NUTE
(See note at end of table)

00 to 59. Not applicable for DATE or TI MESTAMP.

Not applicable

TI MEZONE_REG ON

Query the TZNANME column of the V$TI MEZONE_
NAMES data dictionary view. Not applicable for
DATE or TI MESTAMP. For a complete listing of all
timezone regions, refer to Oracle Database

Globalization Support Guide.

Not applicable

TI MEZONE_ABBR

Query the TZABBREV column of the
V$TI MEZONE_NAMES data dictionary view. Not
applicable for DATE or TI MESTANP.

Not applicable

Note: TI MEZONE_HOUR and TI MEZONE_M NUTE are specified together and
interpreted as an entity in the format + | - hh:mm, with values ranging from -12:59 to
+14:00. Please refer to Oracle Data Provider for .NET Developer’s Guide for information

on specifying time zone values for that API.

DATE Datatype

The DATE datatype stores date and time information. Although date and time
information can be represented in both character and number datatypes, the DATE
datatype has special associated properties. For each DATE value, Oracle stores the
following information: century, year, month, date, hour, minute, and second.

2-20 SQL Reference

Datatypes

You can specify a date value as a literal, or you can convert a character or numeric
value to a date value with the TO_DATE function. To specify a date as a literal, you
must use the Gregorian calendar. You can specify an ANSI date literal, as shown in
this example:

DATE ' 1998- 12- 25'

The ANSI date literal contains no time portion, and must be specified in exactly this
format ('YYYY- MMt DD). Alternatively you can specify an Oracle date value, as in
the following example:

TO DATE(' 98- DEC-25 17:30"," YY-MON-DD HH24: M ')

The default date format for an Oracle date value is specified by the initialization
parameter NLS_DATE_FCRMAT. This example date format includes a two-digit
number for the day of the month, an abbreviation of the month name, the last two
digits of the year, and a 24-hour time designation.

Oracle automatically converts character values that are in the default date format
into date values when they are used in date expressions.

If you specify a date value without a time component, then the default time is
midnight (00:00:00 or 12:00:00 for 24-hour and 12-hour clock time, respectively). If
you specify a date value without a date, then the default date is the first day of the
current month.

Oracle DATE columns always contain both the date and time fields. Therefore, if you
qguery a DATE column, then you must either specify the time field in your query or
ensure that the time fields in the DATE column are set to midnight. Otherwise,
Oracle may not return the query results you expect. You can use the TRUNC (date)
function to set the time field to midnight, or you can include a greater-than or
less-than condition in the query instead of an equality or inequality condition.

Here are some examples that assume a table my_t abl e with a number column
r ow_numand a DATE column dat ecol :

I NSERT | NTO ny_tabl e VALUES (1, SYSDATE);
I NSERT | NTO ny_tabl e VALUES (2, TRUNC(SYSDATE));

SELECT * FROM ny_t abl e;

ROW NUM DATECCL

Basic Elements of Oracle SQL 2-21

Datatypes

SELECT * FROM ny_tabl e
WHERE dat ecol = TO DATE(' 03- OCT-02',' DD- MON-YY');

ROW NUM DATECCL

2 03-QCT-02

SELECT * FROM ny_tabl e
WHERE dat ecol > TO DATE(' 02- OCT-02', ' DD- MON-YY');

ROW NUM DATECCL

3- OCT-02
3- OCT-02

o O

If you know that the time fields of your DATE column are set to midnight, then you
can query your DATE column as shown in the immediately preceding example, or
by using the DATE literal:

SELECT * FROM ny_t abl e WHERE dat ecol = DATE ' 2002- 10-03';

However, if the DATE column contains values other than midnight, then you must
filter out the time fields in the query to get the correct result. For example:

SELECT * FROM ny_t abl e WHERE TRUNC(dat ecol) = DATE ' 2002- 10- 03" ;

Oracle applies the TRUNC function to each row in the query, so performance is better
if you ensure the midnight value of the time fields in your data. To ensure that the

time fields are set to midnight, use one of the following methods during inserts and
updates:

« Use the TO DATE function to mask out the time fields:
I NSERT | NTO ny_t abl e VALUES
(3, TO DATE(' 3- OCT-2002',' DD- MON- YYYY'));
« Use the DATE literal:
I NSERT | NTO ny_tabl e VALUES (4, '03-OCT-02');

« Use the TRUNC function:
I NSERT I NTO ny_tabl e VALUES (5, TRUNC(SYSDATE)):

The date function SYSDATE returns the current system date and time. The function
CURRENT _DATE returns the current session date. For information on SYSDATE, the

2-22 SQL Reference

Datatypes

TO _* datetime functions, and the default date format, see "Datetime Functions" on
page 7-5.

Using Julian Days A Julian day number is the number of days since January 1, 4712
BC. Julian days allow continuous dating from a common reference. You can use the
date format model "J" with date functions TO_DATE and TO_CHARto convert
between Oracle DATE values and their Julian equivalents.

Note: Oracle Database uses the astronomical system of calculating
Julian days, in which the year 4713 BC is specified as -4712. The
historical system of calculating Julian days, in contrast, specifies
4713 BC as -4713. If you are comparing Oracle Julian days with
values calculated using the historical system, then take care to
allow for the 365-day difference in BC dates. For more information,
see http://aa.usno.navy.mil/faq/docs/millennium.html.

Example This statement returns the Julian equivalent of January 1, 1997:

SELECT TO CHAR(TO DATE(' 01-01-1997', 'MM DD YYYY'),'J")
FROM DUAL,;

2450450

See Also: "Selecting from the DUAL Table" for a description of
the DUAL table

TIMESTAMP Datatype

The TI MESTAMP datatype is an extension of the DATE datatype. It stores the year,
month, and day of the DATE datatype, plus hour, minute, and second values. This
datatype is useful for storing precise time values. Specify the TI MESTAMP datatype
as follows:

TI MESTAMP [(fractional _seconds_precision)]

where fracti onal _seconds_preci si on optionally specifies the number of
digits Oracle stores in the fractional part of the SECOND datetime field. When you
create a column of this datatype, the value can be a number in the range 0 to 9. The
default is 6. When you specify TI MESTAMP as a literal, the fract i onal _
seconds_pr eci si on value can be any number of digits up to 9, as follows:

Basic Elements of Oracle SQL 2-23

Datatypes

TI MESTAMP' 1997-01- 31 09: 26: 50. 124"

See Also: TO_TIMESTAMP on page 7-249 for information on
converting character data to TI MESTAMP data

TIMESTAMP WITH TIME ZONE Datatype

TI MESTAMP W THTI ME ZONE is a variant of TI MESTAMP that includes a time zone
offset in its value. The time zone offset is the difference (in hours and minutes)
between local time and UTC (Coordinated Universal Time—formerly Greenwich
Mean Time). This datatype is useful for collecting and evaluating date information
across geographic regions.

Specify the TI MESTAMP W THTI ME ZONE datatype as follows:

TI MESTAMP [(fractional _seconds_precision)] WTH TI ME ZONE

where fracti onal _seconds_pr eci si on optionally specifies the number of
digits Oracle stores in the fractional part of the SECOND datetime field. When you
create a column of this datatype, the value can be a number in the range 0 to 9. The
default is 6. When you specify TI MESTAMP W THTI ME ZONE as a literal, the

fractional _seconds_preci si on value can be any number of digits up to 9.
For example:

TI MESTAMP ' 1997-01- 31 09: 26: 56. 66 +02: 00'
Two TI MESTAMP W THTI ME ZONE values are considered identical if they represent

the same instant in UTC, regardless of the TI ME ZONE offsets stored in the data. For
example,

TI MESTAMP ' 1999- 04- 15 8:00: 00 -8: 00'

is the same as

TI MESTAWP ' 1999-04-15 11:00:00 -5:00'

That is, 8:00 a.m. Pacific Standard Time is the same as 11:00 a.m. Eastern Standard
Time.

You can replace the UTC offset with the TZR (time zone region) format element. For
example, the following example has the same value as the preceding example:

TI MESTAWP ' 1999- 04-15 8:00: 00 US/ Pacific'

To eliminate the ambiguity of boundary cases when the daylight saving time
switches, use both the TZRand a corresponding TZD format element. The following

2-24 SQL Reference

Datatypes

example ensures that the preceding example will return a daylight saving time
value:

TI MESTAMP ' 1999- 10- 29 01:30: 00 US/ Pacific PDT'

If you do not add the TZD format element, and the datetime value is ambiguous,
then Oracle returns an error if you have the ERROR_ON_OVERLAP_TI ME session
parameter set to TRUE. If that parameter is set to FALSE, then Oracle interprets the
ambiguous datetime as standard time.

Oracle time zone data is derived from the public domain information available at
ftp://elsie.nci.nih.gov/pub/. Oracle time zone data may not reflect the most recent
data available at this site.

See Also:

» Oracle Database Globalization Support Guide for more information
on Oracle time zone data

« "Support for Daylight Saving Times" on page 2-29 and
Table 2-16, " Datetime Format Elements" on page 2-77 for
information on daylight saving support

« TO_TIMESTAMP_TZ on page 7-250 for information on
converting character data to TI| MESTAMP W THTI ME ZONE data

« ALTER SESSION on page 11-59 for information on the ERROR _
ON_OVERLAP_TI ME session parameter

TIMESTAMP WITH LOCAL TIME ZONE Datatype

TI MESTAMP W THLOCAL TI ME ZONE is another variant of TI MESTAMP that
includes a time zone offset in its value. It differs from TI MESTAMP W THTI ME
ZONE in that data stored in the database is normalized to the database time zone,
and the time zone offset is not stored as part of the column data. When a user
retrieves the data, Oracle returns it in the user's local session time zone. The time
zone offset is the difference (in hours and minutes) between local time and UTC
(Coordinated Universal Time—formerly Greenwich Mean Time). This datatype is
useful for displaying date information in the time zone of the client system in a
two-tier application.

Specify the TI MESTAMP W THLCOCAL Tl ME ZONE datatype as follows:
TI MESTAWP [(fractional _seconds_precision)] WTH LOCAL TI ME ZONE

Basic Elements of Oracle SQL 2-25

Datatypes

where fracti onal _seconds_pr eci si on optionally specifies the number of
digits Oracle stores in the fractional part of the SECOND datetime field. When you
create a column of this datatype, the value can be a number in the range 0 to 9. The
default is 6.

There is no literal for TI MESTAMP W THLOCAL Tl ME ZONE.

Oracle time zone data is derived from the public domain information available at
ftp://elsie.nci.nih.gov/pub/. Oracle time zone data may not reflect the most recent
data available at this site.

See Also:

« Oracle Database Globalization Support Guide for more information
on Oracle time zone data

« Oracle Database Application Developer's Guide - Fundamentals for
examples of using this datatype and CAST on page 7-30 for
information on converting character data to TI MESTAMP W TH
LOCAL Tl ME ZONE

INTERVAL YEAR TO MONTH Datatype

| NTERVAL YEAR TOMONTH stores a period of time using the YEAR and MONTH
datetime fields. This datatype is useful for representing the precise difference
between two datetime values.

Specify | NTERVAL YEAR TOMONTH as follows:

| NTERVAL YEAR [(year _precision)] TO MONTH

where year _pr eci si on is the number of digits in the YEAR datetime field. The
default value of year _pr eci si onis 2.

You have a great deal of flexibility when specifying interval values as literals. Please
refer to "Interval Literals" on page 2-65 for detailed information on specify interval
values as literals.

INTERVAL DAY TO SECOND Datatype

| NTERVAL DAY TOSECOND stores a period of time in terms of days, hours, minutes,
and seconds. This datatype is useful for representing the difference between two
datetime values when only the year and month values are significant.

Specify this datatype as follows:
I NTERVAL DAY [(day_precision)]

2-26 SQL Reference

Datatypes

TO SECOND [(fractional _seconds_precision)]

where

« day_precision isthe number of digits in the DAY datetime field. Accepted
values are 0 to 9. The default is 2.

« fractional _seconds_precision isthe number of digits in the fractional
part of the SECOND datetime field. Accepted values are 0 to 9. The default is 6.

You have a great deal of flexibility when specifying interval values as literals. Please
refer to "Interval Literals" on page 2-65 for detailed information on specify interval
values as literals.

Datetime/Interval Arithmetic

You can perform a number of arithmetic operations on date (DATE), timestamp
(TI MESTAMP, TI MESTAMP W THTI ME ZONE, and TI MESTAMP W TH LOCAL TI ME
ZONE) and interval (I NTERVAL DAY TOSECOND and | NTERVAL YEAR TOMONTH)
data. Oracle calculates the results based on the following rules:

« You can use NUMBER constants in arithmetic operations on date and timestamp
values, but not interval values. Oracle internally converts timestamp values to
date values and interprets NUMBER constants in arithmetic datetime and
interval expressions as numbers of days. For example, SYSDATE + 1 is
tomorrow. SYSDATE - 7 is one week ago. SYSDATE + (10/1440) is ten minutes
from now. Subtracting the hi r edat e column of the sample table enpl oyees
from SYSDATE returns the number of days since each employee was hired. You
cannot multiply or divide date or timestamp values.

« Oracle implicitly converts Bl NARY _FLQOAT and Bl NARY_DOUBLE operands to
NUMBER.

« Each DATE value contains a time component, and the result of many date
operations include a fraction. This fraction means a portion of one day. For
example, 1.5 days is 36 hours. These fractions are also returned by Oracle
built-in functions for common operations on DATE data. For example, the
MONTHS _BETWEEN function returns the number of months between two dates.
The fractional portion of the result represents that portion of a 31-day month.

« If one operand is a DATE value or a numeric value (neither of which contains
time zone or fractional seconds components), then:

— Oracle implicitly converts the other operand to DATE data. (The exception is
multiplication of a numeric value times an interval, which returns an
interval.)

Basic Elements of Oracle SQL 2-27

Datatypes

— If the other operand has a time zone value, then Oracle uses the session
time zone in the returned value.

— If the other operand has a fractional seconds value, then the fractional
seconds value is lost.

« When you pass a timestamp, interval, or numeric value to a built-in function
that was designed only for the DATE datatype, Oracle implicitly converts the
non-DATE value to a DATE value. Please refer to "Datetime Functions" on
page 7-5 for information on which functions cause implicit conversion to DATE.

« Oracle performs all timestamp arithmetic in UTC time. For TI MESTAMP W TH
LOCAL Tl ME ZONE, Oracle converts the datetime value from the database time
zone to UTC and converts back to the database time zone after performing the
arithmetic. For TI MESTAMP W THTI ME ZONE, the datetime value is always in
UTC, so no conversion is necessary.

Table 2-6 is a matrix of datetime arithmetic operations. Dashes represent operations
that are not supported.

Table 2-6 Matrix of Datetime Arithmetic

Operand & Operator DATE TIMESTAMP INTERVAL Numeric

DATE

+ -- -- DATE DATE
DATE DATE DATE DATE

* - - - - - - - -

TIMESTAMP

+ -- -- TI NESTAMP - -

| NTERVAL | NTERVAL TI MESTAMP Tl MESTAMP

*

INTERVAL

+ DATE TI MESTAMP | NTERVAL --

-- -- | NTERVAL --

* -- -- -- | NTERVAL

2-28 SQL Reference

Datatypes

Table 2-6 (Cont.) Matrix of Datetime Arithmetic

Operand & Operator DATE TIMESTAMP INTERVAL Numeric

/ -- -- -- | NTERVAL
Numeric

+ DATE DATE -- NA

* -- -- | NTERVAL NA

/ -- -- -- NA

Examples You can add an interval value expression to a start time. Consider the
sample table oe. or der s with a column or der _dat e. The following statement
adds 30 days to the value of the or der _dat e column:

SELECT order_id, order_date + | NTERVAL ' 30" DAY FROM orders;

Support for Daylight Saving Times

Oracle Database automatically determines, for any given time zone region, whether
daylight saving is in effect and returns local time values accordingly. The datetime
value is sufficient for Oracle to determine whether daylight saving time is in effect
for a given region in all cases except boundary cases. A boundary case occurs
during the period when daylight saving goes into or comes out of effect. For
example, in the US-Pacific region, when daylight saving goes into effect, the time
changes from 2:00 a.m. to 3:00 a.m. The one hour interval between 2 and 3 a.m. does
not exist. When daylight saving goes out of effect, the time changes from 2:00 a.m.
back to 1:00 a.m., and the one-hour interval between 1 and 2 a.m. is repeated.

To resolve these boundary cases, Oracle uses the TZRand TZD format elements, as
described in Table 2-16. TZR represents the time zone region in datetime input
strings. Examples are 'Aust ral i a/ Nor t h','UTC, and 'Si ngapor e'. TZDrepresents
an abbreviated form of the time zone region with daylight saving information.
Examples are 'PST' for US/Pacific standard time and 'PDT" for US/Pacific daylight
time. To see a listing of valid values for the TZRand TZD format elements, query the
TZNAME and TZABBREV columns of the V$TI MEZONE_NAMES dynamic
performance view.

Timezone region names are needed by the daylight saving feature. The region
names are stored in two time zone files. The default time zone file is a small file
containing only the most common time zones to maximize performance. If your
time zone is not in the default file, then you will not have daylight saving support

Basic Elements of Oracle SQL 2-29

Datatypes

until you provide a path to the complete (larger) file by way of the ORA_TZFI LE
environment variable. Please refer to Oracle Database Administrator's Guide for more
information about setting the ORA_TZFI LE environment variable. For a complete
listing of the timezone region names in both files, please refer to Oracle Database
Globalization Support Guide.

Oracle time zone data is derived from the public domain information available at
ftp://elsie.nci.nih.gov/pub/. Oracle time zone data may not reflect the most recent
data available at this site.

See Also:

« "Datetime Format Models" on page 2-75 for information on the
format elements and the session parameter ERROR_ON _
OVERLAP_TIME on page 11-71.

« Oracle Database Globalization Support Guide for more information
on Oracle time zone data

» Oracle Database Reference for information on the dynamic
performance views

Datetime and Interval Example
The following example shows how to declare some datetime and interval datatypes.

CREATE TABLE tine_table (

start_time TI MESTAWP,
duration_1 I NTERVAL DAY (6) TO SECOND (5),
duration_2 I NTERVAL YEAR TO MONTH) ;

Thestart _ti me column is of type TI MESTAMP. The implicit fractional seconds
precision of TI MESTAMP is 6.

The dur ati on_1 column is of type | NTERVAL DAY TO SECOND. The maximum
number of digits in field DAY is 6 and the maximum number of digits in the
fractional second is 5. The maximum number of digits in all other datetime fields is
2.

The dur ati on_2 column is of type | NTERVAL YEAR TOMONTH. The maximum
number of digits of the value in each field (YEAR and MONTH) is 2.

RAW and LONG RAW Datatypes

The RAWand LONG RAWdatatypes store data that is not to be interpreted (that is, not
explicitly converted when moving data between different systems) by Oracle

2-30 SQL Reference

Datatypes

Database. These datatypes are intended for binary data or byte strings. For
example, you can use LONG RAWto store graphics, sound, documents, or arrays of
binary data, for which the interpretation is dependent on the use.

Oracle strongly recommends that you convert LONG RAWcolumns to binary LOB
(BLOB) columns. LOB columns are subject to far fewer restrictions than LONG
columns. See TO_LOB on page 7-242 for more information.

RAWIs a variable-length datatype like VARCHAR2, except that Oracle Net (which
connects user sessions to the instance) and the Import and Export utilities do not
perform character conversion when transmitting RAWor LONG RAWdata. In contrast,
Oracle Net and Import/Export automatically convert CHAR, VARCHAR2, and LONG
data from the database character set to the user session character set (which you can
set with the NLS_LANGUAGE parameter of the ALTER SESSI ON statement), if the
two character sets are different.

When Oracle automatically converts RAWor LONG RAWdata to and from CHAR data,
the binary data is represented in hexadecimal form, with one hexadecimal character
representing every four bits of RAWdata. For example, one byte of RAWdata with
bits 11001011 is displayed and entered as CB.

Large Object (LOB) Datatypes

The built-in LOB datatypes BLOB, CLOB, and NCLOB (stored internally) and BFI LE
(stored externally) can store large and unstructured data such as text, image, video,
and spatial data. BLOB, CLOB, and NCLOB data can be up to (4 gigabytes -1) *
(database block size) in size. BFI LE data can be up to 4 gigabytes in size.

When creating a table, you can optionally specify different tablespace and storage
characteristics for LOB columns or LOB object attributes from those specified for the
table.

LOB columns contain LOB locators that can refer to in-line (in the database) or
out-of-line (outside the database) LOB values. Selecting a LOB from a table actually
returns the LOB locator and not the entire LOB value. The DBMS_L OB package and
Oracle Call Interface (OCI) operations on LOBs are performed through these
locators.

LOBs are similar to LONGand LONG RAWtypes, but differ in the following ways:
« LOBs can be attributes of an object type (user-defined datatype).

« The LOB locator is stored in the table column, either with or without the actual
LOB value. BLOB, NCLOB, and CLOB values can be stored in separate
tablespaces. BFI LE data is stored in an external file on the server.

Basic Elements of Oracle SQL 2-31

Datatypes

When you access a LOB column, the locator is returned.

A LOB can be up to (4 gigabytes - 1)*(database block size) in size. BFI LE
maximum size is operating system dependent but cannot exceed 4 gigabytes.

LOBs permit efficient, random, piece-wise access to and manipulation of data.
You can define more than one LOB column in a table.

With the exception of NCLOB, you can define one or more LOB attributes in an
object.

You can declare LOB bind variables.
You can select LOB columns and LOB attributes.

You can insert a new row or update an existing row that contains one or more
LOB columns or an object with one or more LOB attributes. In update
operations, you can set the internal LOB value to NULL, empty, or replace the
entire LOB with data. You can set the BFI LE to NULL or make it point to a
different file.

You can update a LOB row-column intersection or a LOB attribute with another
LOB row-column intersection or LOB attribute.

You can delete a row containing a LOB column or LOB attribute and thereby
also delete the LOB value. For BFILEs, the actual operating system file is not
deleted.

You can access and populate rows of an in-line LOB column (a LOB column stored
in the database) simply by issuing an | NSERT or UPDATE statement. However, to
access and populate a LOB attribute that is part of an object type, you must first
initialize the LOB attribute using the EMPTY_CLOB or EMPTY_BLOB function. You
can then select the empty LOB attribute and populate it using the DBMS_L OB
package or some other appropriate interface.

Restrictions on LOB Columns LOB columns are subject to the following
restrictions:

2-32 SQL Reference

You cannot specify a LOB as a primary key column.

Distributed LOBs are not supported. Therefore, you cannot use a remote locator
in SELECT or WHERE clauses of queries or in functions of the DBVM5_LOB
package.

The following syntax is not supported for LOBs:
SELECT | obcol FROMtablel@enote_site;

Datatypes

I NSERT I NTO | obt abl e SELECT typel.lobattr FROM
tablel@enote site;
SELECT DBMS_LOB. getl ength(lobcol) FROM tabl el@enote_site;

However, you can use a remote locator in others parts of queries that reference
LOBs. The following syntax is supported on remote LOB columns:

CREATE TABLE t AS SELECT * FROM tablel@enote_site;

I NSERT INTOt SELECT * FROMtablel@enote_site;

UPDATE t SET | obcol = (SELECT | obcol FROMtablel@enote_site);
I NSERT INTO tabl el@enote site ...

UPDATE tabl el@enote_site ...

DELETE FROM tabl el@enote_site ...

For the first three types of statement, which contain subqueries, only standalone
LOB columns are allowed in the select list. SQL functions or DBMS_LOB APIs on
LOBs are not supported. For example, the following statement is supported:

CREATE TABLE AS SELECT cl ob_col FROM tab@ibs2;

However, the following statement is not supported:
CREATE TABLE AS SELECT dbns_| ob. substr(clob_col) fromtab@bs2;

Clusters cannot contain LOBs, either as key or non-key columns.

The following data structures are supported only as temporary instances. You
cannot store these instances in database tables:

— Varray of any LOB type

— Varray of any type containing a LOB type, such as an ADT with a LOB
attribute.

You cannot specify LOB columns in the ORDER BY clause of a query, or in the
GROUP BY clause of a query or in an aggregate function.

You cannot specify a LOB column in a SELECT... DI STI NCT or SELECT...

UNI QUE statement or in a join. However, you can specify a LOB attribute of an
object type column in a SELECT... DI STI NCT statement or in a query that uses
the UNI ONor M NUS set operator if the column's object type has a MAP or ORDER
function defined on it.

You cannot specify LOB columns in ANALYZE... COVPUTE or ANALYZE...
ESTI MATE statements.

Basic Elements of Oracle SQL 2-33

Datatypes

The first (I NI TI AL) extent of a LOB segment must contain at least three
database blocks.

When creating an UPDATE DML trigger, you cannot specify a LOB column in
the UPDATE OF clause.

You cannot specify a LOB column as part of an index key. However, you can
specify a LOB column in the function of a function-based index or in the
indextype specification of a domain index. In addition, Oracle Text lets you
define an index on a CLOB column.

In an | NSERT or UPDATE operation, you can bind data of any size to a LOB
column, but you cannot bind data to a LOB attribute of an object type. In an

| NSERT... AS SELECT operation, you can bind up to 4000 bytes of data to LOB
columns.

If a table has both LONGand LOB columns, you cannot bind more than 4000
bytes of data to both the LONGand LOB columns in the same SQL statement.
However, you can bind more than 4000 bytes of data to either the LONGor the
LOB column.

Note: For atable on which you have defined a DML trigger, if you
use OCI functions or DBVS_L OB routines to change the value of a
LOB column or the LOB attribute of an object type column, Oracle
does not fire the DML trigger.

See Also:

« Oracle Database Application Developer's Guide - Large Objects for
more information about LOBs, including details about
migrating from LONGto LOB, the CACHE READS setting,
restrictions on the first extent of a LOB segment, and LOBs in
partitioned index-organized tables.

« EMPTY_BLOB, EMPTY_CLOB on page 7-69

« "Oracle-Supplied Types" on page 2-43 for alternative ways of
storing image, audio, video, and spatial data

The following example shows how the sample table pm pri nt _medi a was
created. (This example assumes the existence of the t ext doc_t ab object table,
which is nested table in the pri nt _medi a table.)

CREATE TABLE print_nedi a

2-34 SQL Reference

Datatypes

(product _id NUMBER(6)

, ad_id NUVBER(6)

, ad_conposite BLOB

, ad_sour cet ext CLOB

, ad_finaltext CLoB

, ad_fltextn NCLOB

, ad_textdocs _ntab textdoc_tab
, ad_photo BLOB

, ad_graphic BFI LE

, ad_header adheader _typ

) NESTED TABLE ad_t extdocs_ntab STORE AS textdocs_nest edt ab;

See Also:

« PL/SQL Packages and Types Reference and Oracle Call Interface
Programmer's Guide for more information about these interfaces
and LOBs

« thenodify col properties clause of ALTER TABLE on
page 12-2 and TO_LOB on page 7-242 for more information on
converting LONG columns to LOB columns

BFILE Datatype

The BFI LE datatype enables access to binary file LOBs that are stored in file
systems outside Oracle Database. A BFI LE column or attribute stores a BFI LE
locator, which serves as a pointer to a binary file on the server file system. The
locator maintains the directory name and the filename.

You can change the filename and path of a BFI LE without affecting the base table
by using the BFI LENAME function. Please refer to BFILENAME on page 7-26 for
more information on this built-in SQL function.

Binary file LOBs do not participate in transactions and are not recoverable. Rather,
the underlying operating system provides file integrity and durability. The
maximum file size supported is 4 gigabytes.

The database administrator must ensure that the external file exists and that Oracle
processes have operating system read permissions on the file.

The BFI LE datatype enables read-only support of large binary files. You cannot
modify or replicate such a file. Oracle provides APIs to access file data. The primary
interfaces that you use to access file data are the DBM5S_LOB package and the Oracle
Call Interface (OCI).

Basic Elements of Oracle SQL 2-35

Datatypes

See Also: Oracle Database Application Developer®s Guide - Large
Objects and Oracle Call Interface Programmer’s Guide for more
information about LOBs and CREATE DIRECTORY on page 14-52

BLOB Datatype

The BLOB datatype stores unstructured binary large objects. BLOB objects can be
thought of as bitstreams with no character set semantics. BLOB objects can store up
to (4 gigabytes-1) * (database block size) of binary data.

BL OB objects have full transactional support. Changes made through SQL, the
DBMS_L OB package, or the Oracle Call Interface (OCI) participate fully in the
transaction. BLOB value manipulations can be committed and rolled back. However,
you cannot save a BLOB locator in a PL/SQL or OCI variable in one transaction and
then use it in another transaction or session.

CLOB Datatype

The CLOB datatype stores single-byte and multibyte character data. Both
fixed-width and variable-width character sets are supported, and both use the
database character set. CLOB objects can store up to (4 gigabytes-1) * (database block
size) of character data.

CLOB objects have full transactional support. Changes made through SQL, the
DBMS_L OB package, or the Oracle Call Interface (OCI) participate fully in the
transaction. CLOB value manipulations can be committed and rolled back. However,
you cannot save a CLOB locator in a PL/SQL or OCI variable in one transaction and
then use it in another transaction or session.

NCLOB Datatype

The NCLOB datatype stores Unicode data. Both fixed-width and variable-width
character sets are supported, and both use the national character set. NCLOB objects
can store up to (4 gigabytes-1) * (database block size) of character text data.

NCL OB objects have full transactional support. Changes made through SQL, the
DBMS_LOB package, or the OCI participate fully in the transaction. NCLOB value
manipulations can be committed and rolled back. However, you cannot save an
NCLOB locator in a PL/SQL or OCI variable in one transaction and then use it in
another transaction or session.

See Also: Oracle Database Globalization Support Guide for
information on Unicode datatype support

2-36 SQL Reference

Datatypes

ROWID Datatype
Each row in the database has an address. You can examine a row address by
guerying the pseudocolumn ROW D. Values of this pseudocolumn are strings
representing the address of each row. These strings have the datatype RON D. You
can also create tables and clusters that contain actual columns having the RON D
datatype. Oracle Database does not guarantee that the values of such columns are
valid rowids. Please refer to Chapter 3, "Pseudocolumns” for more information on
the ROW D pseudocolumn.

Restricted Rowids

Beginning with Oracle8, Oracle SQL incorporated an extended format for rowids to
efficiently support partitioned tables and indexes and tablespace-relative data block
addresses (DBAs) without ambiguity.

Character values representing rowids in Oracle7 and earlier releases are called
restricted rowids. Their format is as follows:

bl ock.row. file

where:

« bl ock is a hexadecimal string identifying the data block of the datafile
containing the row. The length of this string depends on your operating system.

« rowis a four-digit hexadecimal string identifying the row in the data block. The
first row of the block has a digit of 0.

« fil eisahexadecimal string identifying the database file containing the row.
The first datafile has the number 1. The length of this string depends on your
operating system.

Extended Rowids

The extended ROW D datatype stored in a user column includes the data in the
restricted rowid plus a data object number. The data object number is an
identification number assigned to every database segment. You can retrieve the data
object number from the data dictionary views USER_OBJECTS, DBA OBJECTS, and
ALL_OBJECTS. Obijects that share the same segment (clustered tables in the same
cluster, for example) have the same object number.

Extended rowids are stored as base 64 values that can contain the characters A-Z,
a-z, 0-9, and the plus sign (+) and forward slash (/). Extended rowids are not
available directly. You can use a supplied package, DBM5_ROW D, to interpret
extended rowid contents. The package functions extract and provide information

Basic Elements of Oracle SQL 2-37

Datatypes

that would be available directly from a restricted rowid as well as information
specific to extended rowids.

See Also: PL/SQL Packages and Types Reference for information on
the functions available with the DBMS_ROW D package and how to
use them

Compatibility and Migration
The restricted form of a rowid is still supported in this release for backward
compatibility, but all tables return rowids in the extended format.

See Also: Oracle Database Upgrade Guide for information regarding
compatibility and migration issues

UROWID Datatype

Each row in a database has an address. However, the rows of some tables have
addresses that are not physical or permanent or were not generated by Oracle
Database. For example, the row addresses of index-organized tables are stored in
index leaves, which can move. Rowids of foreign tables (such as DB2 tables
accessed through a gateway) are not standard Oracle rowids.

Oracle uses universal rowids (urowids) to store the addresses of index-organized
and foreign tables. Index-organized tables have logical urowids and foreign tables
have foreign urowids. Both types of urowid are stored in the ROA D pseudocolumn
(as are the physical rowids of heap-organized tables).

Oracle creates logical rowids based on the primary key of the table. The logical
rowids do not change as long as the primary key does not change. The RON D
pseudocolumn of an index-organized table has a datatype of URON D. You can
access this pseudocolumn as you would the RON D pseudocolumn of a
heap-organized table (that is, using a SELECT ... RON D statement). If you wish t o
store the rowids of an index-organized table, then you can define a column of type
UROW D for the table and retrieve the value of the ROW D pseudocolumn into that
column.

Note: Heap-organized tables have physical rowids. Oracle does
not recommend that you specify a column of datatype UROW D for
a heap-organized table.

2-38 SQL Reference

Datatypes

See Also: Oracle Database Concepts for more information on
universal rowids and "ROWID Datatype" on page 2-37 for a
discussion of the address of database rows

ANSI, DB2, and SQL/DS Datatypes

SQL statements that create tables and clusters can also use ANSI datatypes and
datatypes from the IBM products SQL/DS and DB2. Oracle recognizes the ANSI or
IBM datatype name that differs from the Oracle Database datatype name, records it
as the name of the datatype of the column, and then stores the column data in an
Oracle datatype based on the conversions shown in the tables that follow.

Table 2-7 ANSI Datatypes Converted to Oracle Datatypes

ANSI SQL Datatype ANSI SQL Datatype Notes
CHARACTER(N) CHAR(Nn)

CHAR(N)

CHARACTER VARYING(n) VARCHAR(N)

CHAR VARYING(n)

NATIONAL CHARACTER(n) NCHAR(n)

NATIONAL CHAR(n)

NCHAR(n)

NATIONAL CHARACTER NVARCHAR2(n)
VARYING(n)

NATIONAL CHAR VARYING(n)
NCHAR VARYING(n)

Basic Elements of Oracle SQL 2-39

Datatypes

Table 2-7 (Cont.) ANSI Datatypes Converted to Oracle Datatypes

ANSI SQL Datatype

ANSI SQL Datatype

Notes

NUMERIC(p,s) NUMBER(p,s)

DECIMAL(p,s)®

INTEGER NUMBER(38)

INT
SMALLINT

FLOAT(b)® NUMBER
DOUBLE PRECISION®

REAL®

aThe NUMBERIC and DECIMAL datatypes can
specify only fixed-point numbers. For those
datatypes, s defaults to 0.

bThe FLOAT datatype is a floating-point
number with a binary precision b. The default
precision for this datatypes is 126 binary, or 38
decimal.

“The DOUBLE PRECISION datatype is a
floating-point number with binary precision
126.

9The REAL datatype is a floating-point number
with a binary precision of 63, or 18 decimal.

Table 2-8 SQL/DS and DB2 Datatypes Converted to Oracle Datatypes

SQL/DS or DB2 Datatype

Oracle Datatype

CHARACTER(n) CHAR(n)
VARCHAR(n) VARCHAR(n)
LONG VARCHAR(n) LONG

DECI MAL(p, s) (Note 1) NUVBER(p, s)
| NTEGER NUVBER(38)
SMALLI NT

FLOAT(b) (Note 2) NUVBER

Note 1: The DECI MAL datatype can specify only fixed-point numbers. For this

datatype, s defaults to 0.

Note 2: The FLOAT datatype is a floating-point number with a binary precision b.
The default precision for this datatype is 126 binary or 38 decimal.

2-40 SQL Reference

Datatypes

Do not define columns with the following SQL/DS and DB2 datatypes, because
they have no corresponding Oracle datatype:

« GRAPH C

« LONGVARGRAPHI C
« VARGRAPHI C

- TIME

Note that data of type Tl ME can also be expressed as Oracle datetime data.

See Also: Datatypes in Oracle Database SQL Reference

User-Defined Types

User-defined datatypes use Oracle built-in datatypes and other user-defined
datatypes as the building blocks of object types that model the structure and
behavior of data in applications. The sections that follow describe the various
categories of user-defined types.

See Also:

« Oracle Database Concepts for information about Oracle built-in
datatypes

« CREATE TYPE on page 17-3 and the CREATE TYPE BODY on
page 17-26 for information about creating user-defined types

« Oracle Database Application Developer's Guide - Fundamentals for
information about using user-defined types

Object Types

Object types are abstractions of the real-world entities, such as purchase orders, that
application programs deal with. An object type is a schema object with three kinds
of components:

« A name, which identifies the object type uniquely within that schema

« Attributes, which are built-in types or other user-defined types. Attributes
model the structure of the real-world entity.

« Methods, which are functions or procedures written in PL/SQL and stored in
the database, or written in a language like C or Java and stored externally.
Methods implement operations the application can perform on the real-world
entity.

Basic Elements of Oracle SQL 2-41

Datatypes

REFs

An object identifier (OID) uniquely identifies an object and enables you to
reference the object from other objects or from relational tables. A datatype category
called REF represents such references. A REF is a container for an object identifier.
REFs are pointers to objects.

When a REF value points to a nonexistent object, the REF is said to be "dangling". A
dangling REF is different from a null REF. To determine whether a REF is dangling
or not, use the condition | S [NOT] DANGLI NG. For example, given object view oc_
or der s in the sample schema oe, the column cust orrer _r ef is of type REF to
type cust oner _t yp, which has an attribute cust _enai | :

SELECT o. cust onmer _ref. cust_eni |
FROM oc_orders o
WHERE o. cust onmer _ref 1S NOT DANGLI NG

Varrays

An array is an ordered set of data elements. All elements of a given array are of the
same datatype. Each element has an index, which is a number corresponding to the
position of the element in the array.

The number of elements in an array is the size of the array. Oracle arrays are of
variable size, which is why they are called varrays. You must specify a maximum
size when you declare the varray.

When you declare a varray, it does not allocate space. It defines a type, which you
can use as:

« The datatype of a column of a relational table
« An object type attribute
« APL/SQL variable, parameter, or function return type

Oracle normally stores an array object either in line (that is, as part of the row data)
or out of line (in a LOB), depending on its size. However, if you specify separate
storage characteristics for a varray, then Oracle stores it out of line, regardless of its
size. Please refer to the varray_col_properties of CREATE TABLE on page 16-44 for
more information about varray storage.

Nested Tables

A nested table type models an unordered set of elements. The elements may be
built-in types or user-defined types. You can view a nested table as a single-column

2-42 SQL Reference

Datatypes

table or, if the nested table is an object type, as a multicolumn table, with a column
for each attribute of the object type.

A nested table definition does not allocate space. It defines a type, which you can
use to declare:

« The datatype of a column of a relational table
« An object type attribute
« APL/SQL variable, parameter, or function return type

When a nested table appears as the type of a column in a relational table or as an
attribute of the underlying object type of an object table, Oracle stores all of the
nested table data in a single table, which it associates with the enclosing relational
or object table.

Oracle-Supplied Types

Any Types

Oracle provides SQL-based interfaces for defining new types when the built-in or
ANSI-supported types are not sufficient. The behavior for these types can be
implemented in C/C++, Java, or PL/ SQL. Oracle Database automatically provides
the low-level infrastructure services needed for input-output, heterogeneous
client-side access for new datatypes, and optimizations for data transfers between
the application and the database.

These interfaces can be used to build user-defined (or object) types and are also
used by Oracle to create some commonly useful datatypes. Several such datatypes
are supplied with the server, and they serve both broad horizontal application areas
(for example, the Any types) and specific vertical ones (for example, the spatial

types).

The Oracle-supplied types, along with cross-references to the documentation of
their implementation and use, are described in the following sections:

« Any Types
« XML Types
« Spatial Types
« Media Types

The Any types provide highly flexible modeling of procedure parameters and table
columns where the actual type is not known. These datatypes let you dynamically

Basic Elements of Oracle SQL 2-43

Datatypes

XML Types

encapsulate and access type descriptions, data instances, and sets of data instances
of any other SQL type. These types have OCIl and PL/SQL interfaces for
construction and access.

SYS.ANYTYPE

This type can contain a type description of any named SQL type or unnamed
transient type.

SYS.ANYDATA

This type contains an instance of a given type, with data, plus a description of the
type. ANYDATA can be used as a table column datatype and lets you store
heterogeneous values in a single column. The values can be of SQL built-in types as
well as user-defined types.

SYS.ANYDATASET

This type contains a description of a given type plus a set of data instances of that
type. ANYDATASET can be used as a procedure parameter datatype where such
flexibility is needed. The values of the data instances can be of SQL built-in types as
well as user-defined types.

See Also: PL/SQL Packages and Types Reference for information on
the AnyType, AnyDat a, and AnyDat aSet types

Extensible Markup Language (XML) is a standard format developed by the World
Wide Web Consortium (W3C) for representing structured and unstructured data on
the World Wide Web. Universal resource identifiers (URIs) identify resources such
as Web pages anywhere on the Web. Oracle provides types to handle XML and URI
data, as well as a class of URIs called DBURI Ref s to access data stored within the
database itself. It also provides a new set of types to store and access both external
and internal URIs from within the database.

XMLType

This Oracle-supplied type can be used to store and query XML data in the database.
XM.Type has member functions you can use to access, extract, and query the XML
data using XPath expressions. XPath is another standard developed by the W3C
committee to traverse XML documents. Oracle XML Ty pe functions support many

2-44 SQL Reference

Datatypes

W3C XPath expressions. Oracle also provides a set of SQL functions and PL/SQL
packages to create XMLType values from existing relational or object-relational data.

XM_Type is a system-defined type, so you can use it as an argument of a function or
as the datatype of a table or view column. You can also create tables and views of
XM_Type. When you create an XM_LType column in a table, you can choose to store
the XML data in a CLOB column or object relationally.

You can also register the schema (using the DBM5_XM_SCHEMA package) and create
a table or column conforming to the registered schema. In this case Oracle stores the
XML data in underlying object-relational columns by default, but you can specify
storage in a CLOB column even for schema-based data.

Queries and DML on XM.Ty pe columns operate the same regardless of the storage
mechanism.

See Also: Oracle XML DB Developer's Guide

URI Datatypes

Oracle supplies a family of URI types—URI Type, DBURI Type, XDBURI Type, and
HTTPURI Ty pe—which are related by an inheritance hierarchy. URl Type is an
object type and the others are subtypes of URI Type. Since URI Type is the
supertype, you can create columns of this type and store DBURI Type or

HTTPURI Type type instances in this column.

HTTPURIType You can use HTTPURI Type to store URLS to external Web pages or
to files. Oracle accesses these files using HTTP (Hypertext Transfer Protocol).

XDBURIType You can use XDBURI Type to expose documents in the XML database
hierarchy as URIs that can be embedded in any URI Type column in a table. The
XDBURI Type consists of a URL, which comprises the hierarchical name of the XML
document to which it refers and an optional fragment representing the XPath
syntax. The fragment is separated from the URL part by a pound sign (#). The
following lines are examples of XDBURI Type:

/ hone/ oe/ docl. xm
/' hore/ oe/ docl. xm #/ or der s/ order _i tem

DBURIType DBURI Type can be used to store DBURI Ref s, which reference data
inside the database. Storing DBURI Ref s lets you reference data stored inside or
outside the database and access the data consistently.

DBURI Ref s use an XPath-like representation to reference data inside the database.
If you imagine the database as an XML tree, then you would see the tables, rows,

Basic Elements of Oracle SQL 2-45

Datatypes

and columns as elements in the XML document. For example, the sample human
resources user hr would see the following XML tree:

<HR>
<EMPLOYEES>
<ROV
<EMPLOYEE_| D>205</ EMPLOYEE_| D>
<LAST_NAME>H ggi ns</ LAST_NAME>
<SALARY>12000</ SALARY>
. <I-- other colums -->
</ ROW
. <l-- other rows -->
</ EMPLOYEES>
<l-- other tables..-->
</ HR>
<l-- other user schemas on which you have some privilege on..-->

The DBURI Ref is an XPath expression over this virtual XML document. So to
reference the SALARY value in the EMPLOYEES table for the employee with
employee number 205, we can write a DBURI Ref as,

| HR/ EMPLOYEES/ ROW EMPLOYEE_| D=205] / SALARY

Using this model, you can reference data stored in CLOB columns or other columns
and expose them as URLSs to the external world.

URIFactory Package

Oracle also provides the URI Fact or y package, which can create and return
instances of the various subtypes of the URI Types. The package analyzes the URL
string, identifies the type of URL (HTTP, DBURI , and so on), and creates an instance
of the subtype. To create a DBURI instance, the URL must start with the prefix

/ or adb. For example, URI Fact ory. get URI (' / or adb/ HR/ EMPLOYEES')
would create a DBURI Type instance and

URI Factory.get Uri (' /sys/schenma') would create an XDBURI Type instance.

2-46 SQL Reference

Datatypes

Spatial Types

See Also:

« Oracle Database Application Developer*s Guide - Object-Relational
Features for general information on object types and type
inheritance

« Oracle XML Developer*s Kit Programmer*s Guide for more
information about these supplied types and their
implementation

« Oracle Streams Advanced Queuing User’s Guide and Reference for
information about using XM_Ty pe with Oracle Advanced
Queuing

Oracle Spatial is designed to make spatial data management easier and more
natural to users of location-enabled applications, geographic information system
(GIS) applications, and geoimaging applications. Once the spatial data is stored in
an Oracle database, you can easily manipulate, retrieve, and relate it to all the other
data stored in the database. The following datatypes are not available unless you
have installed Oracle Spatial.

SDO_GEOMETRY

The geometric description of a spatial object is stored in a single row, in a single
column of object type SDO_GEQVETRY in a user-defined table. Any table that has a
column of type SDO_GEQVETRY must have another column, or set of columns, that
defines a unique primary key for that table. Tables of this sort are sometimes called
geometry tables.

The SDO_GEQOVETRY object type has the following definition:
CREATE TYPE SDO GEOMVETRY AS OBJECT (

SDO_GTYPE NUMBER
SDO _SRI D NUMBER
SDO_POI NT SDO_POI NT_TYPE,

SDO ELEM INFO SDO ELEM | NFO_ARRAY,
SDO_ORDI NATES ~ SDO_ORDI NATE_ARRAY) ;

SDO_GEORASTER

In the GeoRaster object-relational model, a raster grid or image object is stored in a
single row, in a single column of object type SDO_GEORASTER in a user-defined
table. Tables of this sort are called GeoRaster tables.

Basic Elements of Oracle SQL 2-47

Datatypes

Media Types

The SDO_GEORASTER object type has the following definition:

CREATE TYPE SDO_GEORASTER AS OBJECT (
rasterType NUMBER,
spati al Ext ent SDO_GEQVETRY,
rast erDat aTabl e VARCHAR2(32),
rasterl D NUMBER,
met adat a XM.Type) ;

See Also: Oracle Spatial User's Guide and Reference and Oracle
Spatial GeoRaster for information on the full implementation of the
spatial datatypes and guidelines for using them

Oracle interMedia uses object types, similar to Java or C++ classes, to describe
multimedia data. An instance of these object types consists of attributes, including
metadata and the media data, and methods. The interMedia datatypes are created in
the CRDSYS schema. Public synonyms exist for all the datatypes, so you can access
them without specifying the schema name.

See Also: Oracle interMedia Reference for information on the
implementation of these types and guidelines for using them

ORDAudio
The ORDAUDI Oobiject type supports the storage and management of audio data.

ORDImage
The ORDI VAGE object type supports the storage and management of image data.

ORDImageSignature

The ORDI mageSi gnat ur e object type supports a compact representation of the
color, texture, and shape information of image data.

ORDVideo
The ORDVI DEOobject type supports the storage and management of video data.

2-48 SQL Reference

Datatypes

ORDDoc

The ORDDOC object type supports storage and management of any type of media
data, including audio, image and video data. Use this type when you want all
media to be stored in a single column.

The following datatypes provide compliance with the ISO-1EC 13249-5 Still Image
standard, commonly referred to as SQL/MM Stillimage.

SI_Stilllmage

The SI _Still | mage object type represents digital images with inherent image
characteristics such as height, width, and format.

SI_Color
The SI _Col or object type encapsulates color values.

SI_AverageColor

The SI _Aver ageCol or object type represents a feature that characterizes an image
by its average color.

SI_ColorHistogram

The SI _Col or Hi st ogr amobject type represents a feature that characterizes an
image by the relative frequencies of the colors exhibited by samples of the raw
image.

S|_PositionalColor

Given an image divided into n by mrectangles, the SI _Posi ti onal Col or object
type represents the feature that characterizes an image by the n by mmost
significant colors of the rectangles.

S| Texture

The SI _Text ur e object type represents a feature that characterizes an image by the
size of repeating items (coarseness), brightness variations (contrast), and
predominant direction (directionality).

S| _FeatureList

The Sl _Feat ur eLi st object type is a list containing up to four of the image
features represented by the preceding object types (Sl _Aver ageCol or, Sl _

Basic Elements of Oracle SQL 2-49

Datatype Comparison Rules

Col or Hi st ogram SI _Posi ti onal Col or,and SI _Text ur e), where each
feature is associated with a feature weight.

Expression Filter Type

The Oracle Expression Filter allows application developers to manage and evaluate
conditional expressions that describe users' interests in data. The Expression Filter
includes the following datatype:

Expression

Expression Filter uses a virtual datatype called Expr essi on to manage and
evaluate conditional expressions as data in database tables. The Expression Filter
creates a column of Expr essi on datatype from a VARCHAR2 column by assigning
an attribute set to the column. This assignment enables a data constraint that
ensures the validity of expressions stored in the column.

You can define conditions using the EVALUATE operator on an Expr essi on
datatype to evaluate the expressions stored in a column for some data. If you are
using Enterprise Edition, then you can also define an Expression Filter index on a
column of Expr essi on datatype to process queries using the EVALUATE operator.

See Also: Oracle Database Application Developer's Guide - Expression
Filter for more information on the Expression Filter

Datatype Comparison Rules

This section describes how Oracle Database compares values of each datatype.

Numeric Values

A larger value is considered greater than a smaller one. All negative numbers are
less than zero and all positive numbers. Thus, -1 is less than 100; -100 is less than -1.

The floating-point value NaN (not a number) is greater than any other numeric
value and is equal to itself.

See Also: "Numeric Precedence" on page 2-17 and "Floating-Point
Numbers" on page 2-14 for more information on comparison
semantics

2-50 SQL Reference

Datatype Comparison Rules

Date Values

A later date is considered greater than an earlier one. For example, the date
equivalent of '29-MAR-1997" is less than that of '05-JAN-1998" and '05-JAN-1998
1:35pm’ is greater than '05-JAN-1998 10:09am’.

Character String Values
Character values are compared using one of these comparison rules:

« Blank-padded comparison semantics
« Nonpadded comparison semantics

The following sections explain these comparison semantics.

Blank-Padded Comparison Semantics If the two values have different lengths,
then Oracle first adds blanks to the end of the shorter one so their lengths are equal.
Oracle then compares the values character by character up to the first character that
differs. The value with the greater character in the first differing position is
considered greater. If two values have no differing characters, then they are
considered equal. This rule means that two values are equal if they differ only in the
number of trailing blanks. Oracle uses blank-padded comparison semantics only
when both values in the comparison are either expressions of datatype CHAR,
NCHAR, text literals, or values returned by the USER function.

Nonpadded Comparison Semantics Oracle compares two values character by
character up to the first character that differs. The value with the greater character
in that position is considered greater. If two values of different length are identical
up to the end of the shorter one, then the longer value is considered greater. If two
values of equal length have no differing characters, then the values are considered
equal. Oracle uses nonpadded comparison semantics whenever one or both values
in the comparison have the datatype VARCHAR2 or NVARCHAR?2.

The results of comparing two character values using different comparison
semantics may vary. The table that follows shows the results of comparing five pairs
of character values using each comparison semantic. Usually, the results of
blank-padded and nonpadded comparisons are the same. The last comparison in
the table illustrates the differences between the blank-padded and nonpadded
comparison semantics.

Basic Elements of Oracle SQL 2-51

Datatype Comparison Rules

Blank-Padded Nonpadded
‘ac' > 'ab' ‘ac' > 'ab'
‘ab' > "a'’ ‘ab' >'a '
"ab' > 'a' "ab' > 'a'
"ab' = "ab’ "ab' = "ab’
"a =ral "a >'a'

Single Characters

Oracle compares single characters according to their numeric values in the database
character set. One character is greater than another if it has a greater numeric value
than the other in the character set. Oracle considers blanks to be less than any
character, which is true in most character sets.

These are some common character sets:

« 7-bit ASCII (American Standard Code for Information Interchange)
« EBCDIC Code (Extended Binary Coded Decimal Interchange Code)
« 1SO 885971 (International Standards Organization)

« JEUC Japan Extended UNIX

Portions of the ASCII and EBCDIC character sets appear in Table 2-9 and

Table 2-10. Uppercase and lowercase letters are not equivalent. The numeric values
for the characters of a character set may not match the linguistic sequence for a
particular language.

Table 2-9 ASCII Character Set

Symbol Decimal value Symbol Decimal value
bl ank 32 59
! 33 < 60
" 34 = 61
35 > 62
$ 36 ? 63
% 37 @ 64
& 38 A-Z 65- 90

2-52 SQL Reference

Datatype Comparison Rules

Table 2-9 (Cont.) ASCII Character Set

Symbol Decimal value Symbol Decimal value

' 39 [91

(40 \ 92

) 41] 93

* 42 A 94

+ 43 _ 95

, 44 : 96

- 45 a-z 97-122
46 { 123

/ 47 | 124

0-9 48-57 } 125
58 ~ 126

Table 2-10 EBCDIC Character Set

Symbol Decimal value Symbol Decimal value
bl ank 64 % 108
¢ 74 _ 109
75 > 110
< 76 ? 111
(77 : 122
+ 78 # 123
| 79 @ 124
& 80 ' 125
! 90 = 126
$ 91 " 127
* 92 a-i 129- 137
) 93 i-r 145- 153
; 94 S-z 162- 169

Basic Elements of Oracle SQL 2-53

Datatype Comparison Rules

Table 2-10 (Cont.) EBCDIC Character Set

Symbol Decimal value Symbol Decimal value
¥ 95 Al 193- 201
- 96 J-R 209- 217
/ 97 Sz 226- 233

Object Values

Object values are compared using one of two comparison functions: MAP and
ORDER. Both functions compare object type instances, but they are quite different
from one another. These functions must be specified as part of any object type that
will be compared with other object types.

See Also: CREATE TYPE on page 17-3 for a description of MAP
and ORDER methods and the values they return

Varrays and Nested Tables

You cannot compare varrays. Comparison of nested tables is described in
"Comparison Conditions" on page 6-4.

Datatype Precedence Oracle uses datatype precedence to determine implicit
datatype conversion, which is discussed in the section that follows. Oracle
datatypes take the following precedence:

Data Conversion

Datetime and interval datatypes
Bl NARY_DCUBLE

Bl NARY_FLOAT

NUMBER

Character datatypes

All other built-in datatypes

Generally an expression cannot contain values of different datatypes. For example,
an expression cannot multiply 5 by 10 and then add 'JAMES'. However, Oracle
supports both implicit and explicit conversion of values from one datatype to
another.

2-54 SQL Reference

Datatype Comparison Rules

Implicit and Explicit Data Conversion

Oracle recommends that you specify explicit conversions, rather than rely on
implicit or automatic conversions, for these reasons:

SQL statements are easier to understand when you use explicit datatype
conversion functions.

Implicit datatype conversion can have a negative impact on performance,
especially if the datatype of a column value is converted to that of a constant

rather than the other way around.

Implicit conversion depends on the context in which it occurs and may not
work the same way in every case. For example, implicit conversion from a
datetime value to a VARCHAR2 value may return an unexpected year depending
on the value of the NLS_DATE_FORMAT parameter.

Algorithms for implicit conversion are subject to change across software
releases and among Oracle products. Behavior of explicit conversions is more
predictable.

Implicit Data Conversion

Oracle Database automatically converts a value from one datatype to another when
such a conversion makes sense. Table 2-11 is a matrix of Oracle implicit
conversions. The table shows all possible conversions, without regard to the
direction of the conversion or the context in which it is made. The rules governing
these details follow the table.

Table 2-11 Implicit Type Conversion Matrix
4
= o
o))
I\ 44 - | o]
= £ £d « o 4
I x 0 Ez Y oz 7 o @
$ g £ £ pows 2 2 2 2 =z 2 38 8 S
T < @) > S % E) P z o < o] hr h @)
o S pd Z g o Z pd o o - [x) o) pd
CHAR — X X X X — — —
VARCHAR2 X — X X X X — —
DATE X X X — — — — — —
DATETIME/ X X X — — — — — —
INTERVAL
LONG X X X X X X — X — X
NUMBER X — — — — — —

Basic Elements of Oracle SQL 2-55

Datatype Comparison Rules

Table 2-11 (Cont.) Implicit Type Conversion Matrix

r
Z)
o) 2
N o — e O
@ < g :El x LLI DI
< T
x = < > > o
c £ 3 gz whf 2 £ %5 ¢ 5 % 8 8 8
T < O <>(£ K E o) z Zz o) < 0 2 |)
Q =z P o 0o = =z m om | o a4 Q m =z
RAW X X — _— - x T — — x T
ROWID X X — — —_ — — — — — — i —
CLOB X X X — T X X —x
BLOB - - - - - - - - - - X = = = -
NCHAR X X — X X X X X X X X X — — X
NVARCHAR2 X X X — X X X X X X X X — — X
NCLOB X X X — - — — — X — —_ X _ _
BINARY_ X X X — — X — X —_ — — — — —
FLOAT
BINARY_ X X X X — — X X — — — — — i —
DOUBLE

The following rules govern the direction in which Oracle Database makes implicit
datatype conversions:

« During | NSERT and UPDATE operations, Oracle converts the value to the
datatype of the affected column.

« During SELECT FROMoperations, Oracle converts the data from the column to
the type of the target variable.

« When comparing a character value with a numeric value, Oracle converts the
character data to a numeric value.

« Conversions between character values or NUMBER values and floating-point
number values can be inexact, because the character types and NUVBER use
decimal precision to represent the numeric value, and the floating-point
numbers use binary precision.

« Conversions from Bl NARY_FLOAT to Bl NARY_DOUBLE are exact.

« Conversions from Bl NARY_DOUBLE to Bl NARY_FLQAT are inexact if the
Bl NARY_DOUBLE value uses more bits of precision that supported by the
Bl NARY_FLOAT.

2-56 SQL Reference

Datatype Comparison Rules

When comparing a character value with a DATE value, Oracle converts the
character data to DATE.

When you use a SQL function or operator with an argument of a datatype other
than the one it accepts, Oracle converts the argument to the accepted datatype.

When making assignments, Oracle converts the value on the right side of the
equal sign (=) to the datatype of the target of the assignment on the left side.

During concatenation operations, Oracle converts from noncharacter datatypes
to CHAR or NCHAR.

During arithmetic operations on and comparisons between character and
noncharacter datatypes, Oracle converts from any character datatype to a
numeric, date, or rowid, as appropriate. In arithmetic operations between
CHAR/VARCHAR2 and NCHAR/NVARCHAR2, Oracle converts to a NUVBER.

Comparisons between CHAR and VARCHARZ2 and between NCHAR and
NVARCHAR2 types may entail different character sets. The default direction of
conversion in such cases is from the database character set to the national
character set. Table 2-12 shows the direction of implicit conversions between
different character types.

Most SQL character functions are enabled to accept CLOBs as parameters, and
Oracle performs implicit conversions between CLOB and character types.
Therefore, functions that are not yet enabled for CLOBs can accept CLOBs
through implicit conversion. In such cases, Oracle converts the CLOBs to CHAR
or VARCHARZ before the function is invoked. If the CLOB is larger than 4000
bytes, then Oracle converts only the first 4000 bytes to CHAR.

Table 2-12 Conversion Direction of Different Character Types

to CHAR to VARCHAR2 to NCHAR to NVARCHAR2
from CHAR — VARCHAR2 NCHAR NVARCHAR2
from VARCHAR2 VARCHAR2 — NVARCHAR2 NVARCHAR2
from NCHAR NCHAR NCHAR — NVARCHAR2

from NVARCHAR2 NVARCHAR2 NVARCHAR2 NVARCHAR2 —

Implicit Data Conversion Examples

Text Literal Example The text literal '10' has datatype CHAR. Oracle implicitly
converts it to the NUMBER datatype if it appears in a numeric expression as in the
following statement:

Basic Elements of Oracle SQL 2-57

Datatype Comparison Rules

SELECT salary + '10'
FROM enpl oyees;

Character and Number Values Example When a condition compares a character
value and a NUMBER value, Oracle implicitly converts the character value to a
NUMBER value, rather than converting the NUMBER value to a character value. In the
following statement, Oracle implicitly converts '200' to 200:

SELECT | ast _name
FROM enpl oyees
VHERE enpl oyee_id = '200";

Date Example In the following statement, Oracle implicitly converts '03- MAR- 97'
to a DATE value using the default date format 'DD- MON- YY"

SELECT | ast _name
FROM enpl oyees
VWHERE hire_date = '03- MAR-97';

Rowid Example In the following statement, Oracle implicitly converts the text
literal 'AAAFYMAAFAAAAFGAAH to a rowid value. (Rowids are unique within a
database, so to use this example you must know an actual rowid in your database.)

SELECT | ast_name
FROM enpl oyees
VWHERE RON D = ' AAAFd1AAFAAAABSAAH ;

Explicit Data Conversion

You can explicitly specify datatype conversions using SQL conversion functions.
Table 2-13 shows SQL functions that explicitly convert a value from one datatype to
another.

You cannot specify LONGand LONG RAWvalues in cases in which Oracle can
perform implicit datatype conversion. For example, LONGand LONG RAWvalues
cannot appear in expressions with functions or operators. Please refer to "LONG
Datatype" on page 2-17 for information on the limitations on LONGand LONG RAW
datatypes.

2-58 SQL Reference

Datatype Comparison Rules

Table 2-13 Explicit Type Conversions

r
- =
< m
3) 2
— -
o & o o) Q 4 5
P < w IS Ia) . <§(Z_ > >
< - I @ = _ = J m x x
< L XO = TR = 2z o} g <
T O < =) 8 2 <4 o o 9 o o P Zz
O x 5 < 4 QO © o x I Z2 o O m m
2 $S 2 ° o E ° e 29 og ° °
from CHAR, TO_CHAR TO_ TO_DATE HEXTORAW CHARTO= — TO CLOB TO_ TO_
VARCHAR?2, (char.) NUMBER TO TI MESTAMP ROW D TO NCLOB Bl NARY_ Bl NARY_
NCHAR, TO NCHAR - - FLOAT DOUBLE
NVARCHAR2 (char.) TO_
. TI MESTAVP_TZ
TO_
YM NTERVAL
TO_
DSI NTERVAL
fromNUMBER TO_CHAR — TO _DATE — — — — TO_ TO_
(nuber) narons oI B
TO_NCHAR | NTERVAL
(nunber) NUMTODS-
| NTERVAL
from Datetime/ TO_CHAR — — — — — — — —
Interval (date)
TO_NCHAR
(datetinme)
from RAW RAWI OHEX — — — — — TO BLOB — —
RAWI ONHEX
from ROWID ROW DTOCHAR — — — — — — — —
from LONG / — — — — — — TO LOB — —
LONG RAW
from CLOB, TO_CHAR — — — — — TO CLOB — —
NCLOB, BLOB TO_NCHAR TO NCLOB

Basic Elements of Oracle SQL 2-59

Literals

Table 2-13 (Cont.) Explicit Type Conversions

Y
o g o
o} o 3
| |
o & x 3 9 N 9
;X < u g a - <§(=z > >
X < - I o0 = _ 2 09 g o x (04
< T O s ° ® 2 z Zz o < <
I O <) T > 4 O o 9 B} Z z
ocx &L < z QO o o x I Z o ©° m o
2 £ 2 I g E 2 229 29°oa 2 2
fromCLOB, TO_CHAR — — — — — ToCOoms — —
NCLOB,BLOB 1 NCHAR TO NCLOB
from BINARY_ TO_CHAR TO_ — — — - — TO_ TO.
FLOAT (char.) NUMBER BI NARY_ Bl NARY_
TO NCHAR FLOAT DOUBLE
(char.)
from BINARY_ TO_CHAR TO — — — - — TO_ TO_
DOUBLE (char.) NUMBER BI NARY_ Bl NARY_
TO NCHAR FLOAT DOUBLE
(char.)
See Also: "Conversion Functions" on page 7-6 for details on all of
the explicit conversion functions
Literals

The terms literal and constant value are synonymous and refer to a fixed data
value. For example, JACK', 'BLUE ISLAND', and '101" are all character literals; 5001
is a numeric literal. Character literals are enclosed in single quotation marks so that
Oracle can distinguish them from schema object names.

This section contains these topics:
« Text Literals

« Integer Literals

« Numeric Literals

« Interval Literals

Many SQL statements and functions require you to specify character and numeric
literal values. You can also specify literals as part of expressions and conditions. You
can specify character literals with the 't ext ' notation, national character literals
with the N' t ext' notation, and numeric literals with the i nt eger, or nunber

2-60 SQL Reference

Literals

Text Literals

notation, depending on the context of the literal. The syntactic forms of these
notations appear in the sections that follow.

To specify a datetime or interval datatype as a literal, you must take into account
any optional precisions included in the datatypes. Examples of specifying datetime
and interval datatypes as literals are provided in the relevant sections of
"Datatypes" on page 2-1.

Text specifies a text or character literal. You must use this notation to specify values
whenever ' t ext' or char appear in expressions, conditions, SQL functions, and
SQL statements in other parts of this reference. This reference uses the terms text
literal and character literal interchangeably.

The syntax of text is as follows:

text::=

quote_delimiter

where

= Nor n specifies the literal using the national character set. Text entered using
this notation is translated into the national character set by Oracle when used.

In the top branch of the syntax:

« C isany member of the user's character set. A single quotation mark (") within
the literal must be preceded by an escape character. To represent one single
guotation mark within a literal, enter two single quotation marks.

« ''are two single quotation marks that begin and end text literals.
In the bottom branch of the syntax:

« Qor g indicates that the alternative quoting mechanism will be used. This
mechanism allows a wide range of delimiters for the text string.

« The outermost are two single quotation marks that precede and follow,
respectively, the opening and closing quot e_del i niter.

Basic Elements of Oracle SQL 2-61

Literals

« C isany member of the user's character set. You can include quotation marks (")
in the text literal made up of ¢ characters. You can also include the quot e_
del i m ter,aslong as it is not immediately followed by a single quotation
mark.

« quote_delimter isany single- or multibyte character except space, tab, and
return. The quot e_del i m t er can be a single quotation mark. However, if the
guot e_del i m t er appears in the text literal itself, ensure that it is not
immediately followed by a single quotation mark.

If the opening quot e_del imi ter isoneof [, {, <, or (, then the closing
guot e_del i m t er must be the corresponding],}, >, or). In all other cases,
the opening and closing quot e_del i m t er must be the same character.

Text literals have properties of both the CHAR and VARCHAR2 datatypes:

« Within expressions and conditions, Oracle treats text literals as though they
have the datatype CHAR by comparing them using blank-padded comparison
semantics.

« Atext literal can have a maximum length of 4000 bytes.
Here are some valid text literals:

"Hell o'

" ORACLE. dbs'
"Jackie''s raincoat'
' 09- MAR- 98'

N nchar literal'

Here are some valid text literals using the alternative quoting mechanism:

q' ! name LIKE ' %DBMS_ %6 !

q' < So," she said, 'It's finished.">'

q' { SELECT * FROM enpl oyees WHERE | ast_nane = 'Snith';}’
ng'i Y1234 i’

g "nane like '"['""'

See Also: "Blank-Padded Comparison Semantics" on page 2-51

Numeric Literals

Use numeric literal notation to specify fixed and floating-point numbers.

2-62 SQL Reference

Literals

Integer Literals

You must use the integer notation to specify an integer whenever i nt eger appears
in expressions, conditions, SQL functions, and SQL statements described in other
parts of this reference.

The syntax of i nt eger is as follows:

integer::=

where di git isoneof0,1,2,3,4,5,6,7,8,9.
An integer can store a maximum of 38 digits of precision.
Here are some valid integers:

7
+255

NUMBER and Floating-Point Literals

You must use the number or floating-point notation to specify values whenever
nunber or n appears in expressions, conditions, SQL functions, and SQL
statements in other parts of this reference.

The syntax of nunber is as follows:

number::=

(G O[]
o ¥

2N

Basic Elements of Oracle SQL 2-63

Literals

where

« +or-indicates a positive or negative value. If you omit the sign, then a positive
value is the default.

« digitisoneof0,1,23,4,56,7,80r09.

« e orE indicates that the number is specified in scientific notation. The digits
after the E specify the exponent. The exponent can range from -130 to 125.

« forFindicates that the number is a 32-bit binary floating point number (of type
Bl NARY_FLQAT).

« dor D indicates that the number is a 64-bit binary floating point number (of
type Bl NARY_DOUBLE)

If you omit f or F and d or D, then the number is of type NUVBER.

The suffixes f (F) and d (D) are supported only in floating-point number literals,
not in character strings that are to be converted to NUMBER. That is, if Oracle is
expecting a NUMBER and it encounters the string ' 9' , then it converts the string
to the number 9. However, if Oracle encounters the string ' 9f ' |, then
conversion fails and an error is returned.

A number of type NUVBER can store a maximum of 38 digits of precision. If the
literal requires more precision than provided by NUMBER, Bl NARY_FLQAT, or

Bl NARY_DOUBLE, then Oracle truncates the value. If the range of the literal exceeds
the range supported by NUVBER, Bl NARY_FLOAT, or Bl NARY_DOUBLE, then Oracle
raises an error.

If you have established a decimal character other than a period (.) with the
initialization parameter NLS_NUMERI C_CHARACTERS, then you must specify
numeric literals with ' t ext ' notation. In these cases, Oracle automatically converts
the text literal to a numeric value.

Note: You cannot use this notation for floating-point number
literals.

For example, if the NLS_NUMERI C_CHARACTERS parameter specifies a decimal
character of comma, specify the number 5.123 as follows:

'5,123

See Also: ALTER SESSION on page 11-59 and Oracle Database
Reference

2-64 SQL Reference

Literals

Here are some valid NUVBER literals:

25

+6. 34
0.5
25e- 03
-1

Here are some valid floating-point number literals:

25f

+6. 34F
0.5d
-1D

You can also use the following supplied floating-point literals in situations where a
value cannot be expressed as a numeric literal:

Literal Meaning Example

bi nary_fl oat _nan A value of type SELECT COUNT(*)
Bl NARY_FLOAT for FROM enpl oyees

which the condition WHERE TO Bl NARY_FLOAT(commi ssi on_pct)

| SNANs true I'S NOT NAN
bi nary_f 1l oat _ Single-precision SELECT COUNT(*)
infinity positive infinity FROM enpl oyees
VWHERE sal ary < BI NARY_FLOAT_I NFINITY;
bi nary_doubl e_nan A value of type SELECT COUNT(*)

Bl NARY_DOUBLEfor FROM enpl oyees
which the condition \WERE TO BI NARY_DOUBLE(conmi ssi on_pct)

| SNANis true I'S NOT NAN
bi nary_doubl e_ Double-precision SELECT COUNT(*)
infinity positive infinity FROM enpl oyees

VWHERE sal ary < BI NARY_FLOAT_I NFI NI TY;

Interval Literals

An interval literal specifies a period of time. You can specify these differences in
terms of years and months, or in terms of days, hours, minutes, and seconds. Oracle
Database supports two types of interval literals, YEAR TOMONTHand DAY TO
SECOND. Each type contains a leading field and may contain a trailing field. The
leading field defines the basic unit of date or time being measured. The trailing field
defines the smallest increment of the basic unit being considered. For example, a

Basic Elements of Oracle SQL 2-65

Literals

YEAR TOMONTH interval considers an interval of years to the nearest month. A DAY
TOM NUTE interval considers an interval of days to the nearest minute.

If you have date data in numeric form, then you can use the NUMTOYM NTERVAL or
NUMTIODSI NTERVAL conversion function to convert the numeric data into interval
values.

Interval literals are used primarily with analytic functions.
See Also: "Analytic Functions" on page 7-11,

NUMTODSINTERVAL on page 7-129, NUMTOYMINTERVAL on
page 7-130, and Oracle Data Warehousing Guide

INTERVAL YEAR TO MONTH
Specify YEAR TOMONTH interval literals using the following syntax:

interval_year_to_month::=

integer
o G DA AVGS

where

« ‘'integer [-integer]"' specifiesinteger values for the leading and optional
trailing field of the literal. If the leading field is YEAR and the trailing field is
MONTH, then the range of integer values for the month field is 0 to 11.

« preci sion isthe maximum number of digits in the leading field. The valid
range of the leading field precision is 0 to 9 and its default value is 2.

Restriction on the Leading Field If you specify a trailing field, it must be less
significant than the leading field. For example, | NTERVAL '0- 1' MONTHTO YEAR is
not valid.

The following | NTERVAL YEAR TOMONTH literal indicates an interval of 123 years, 2
months:

I NTERVAL ' 123-2' YEAR(3) TO MONTH

2-66 SQL Reference

Literals

Examples of the other forms of the literal follow, including some abbreviated

versions:

Form of Interval Literal

Interpretation

I NTERVAL ' 123-2' YEAR(3) TO MONTH

An interval of 123 years, 2 months. You must
specify the leading field precision if it is
greater than the default of 2 digits.

I NTERVAL ' 123' YEAR(3)

An interval of 123 years 0 months.

| NTERVAL ' 300' NONTH(3)

An interval of 300 months.

I NTERVAL ' 4" YEAR

Maps to | NTERVAL ' 4-0'
MONTH and indicates 4 years.

YEAR TO

I NTERVAL ' 50" MONTH

Mapsto | NTERVAL ' 4-2' YEAR TO
MONTH and indicates 50 months or 4 years 2
months.

I NTERVAL ' 123" YEAR

Returns an error, because the default
precision is 2, and '123" has 3 digits.

You can add or subtract one | NTERVAL YEAR TOMONTH literal to or from another to
yield another | NTERVAL YEAR TOMONTH literal. For example:

I NTERVAL '5-3'" YEAR TO MONTH + | NTERVAL' 20' MONTH =

INTERVAL ' 6-11' YEAR TO MONTH

INTERVAL DAY TO SECOND

Specify DAY TOSECOND interval literals using the following syntax:

Basic Elements of Oracle SQL 2-67

Literals

interval_day_to_second::=

i=Yam)

f@{fractionaI_seconds_precisionh
A }>(leading_precision) %

SECOND

MINUTE

ﬁ@{fractional_seconds_precisionm

SECOND

where

« i nteger specifies the number of days. If this value contains more digits than
the number specified by the leading precision, then Oracle returns an error.

« tinme_expr specifies atimeinthe formatHH : M [: SS[.n]]] or
M [:SS[.n]] or SS[. n], where n specifies the fractional part of a second. If n
contains more digits than the number specified by f ract i onal _seconds_
pr eci si on, then n is rounded to the number of digits specified by the
fracti onal _seconds_preci si on value. You can specify t i me_expr
following an integer and a space only if the leading field is DAY.

« | eadi ng_preci sion is the number of digits in the leading field. Accepted
values are 0 to 9. The default is 2.

« fractional _seconds_preci si on isthe number of digits in the fractional
part of the SECOND datetime field. Accepted values are 1 to 9. The default is 6.

2-68 SQL Reference

Literals

Restriction on the Leading Field: If you specify a trailing field, it must be less
significant than the leading field. For example, | NTERVAL M NUTE TODAY is not
valid. As a result of this restriction, if SECOND is the leading field, the interval literal
cannot have any trailing field.

The valid range of values for the trailing field are as follows:
« HOUR Oto23

= MNUTE 0to 59

« SECOND: 0 to 59.999999999

Examples of the various forms of | NTERVAL DAY TO SECOND literals follow,
including some abbreviated versions:

Form of Interval Literal Interpretation
I NTERVAL '4 5:12:10.222' DAY TO 4 days, 5 hours, 12 minutes, 10 seconds, and
SECOND(3) 222 thousandths of a second.

INTERVAL '4 5:12' DAY TO M NUTE 4days, 5 hours and 12 minutes.
I NTERVAL ' 400 5' DAY(3) TO HOUR 400 days 5 hours.

I NTERVAL ' 400" DAY(3) 400 days.

I NTERVAL ' 11:12:10.2222222" HOUR 11 hours, 12 minutes, and 10.2222222
TO SECOND(7) seconds.

I NTERVAL ' 11: 20" HOUR TO M NUTE 11 hours and 20 minutes.
I NTERVAL ' 10' HOUR 10 hours.

I NTERVAL ' 10: 22" M NUTE TO SECOND 10 minutes 22 seconds.

I NTERVAL ' 10" M NUTE 10 minutes.

| NTERVAL ' 4' DAY 4 days.

I NTERVAL ' 25" HOUR 25 hours.

I NTERVAL ' 40' M NUTE 40 minutes.

I NTERVAL ' 120" HOUR(3) 120 hours

I NTERVAL ' 30.12345' SECOND(2, 4) 30.1235 seconds. The fractional second
'12345' is rounded to '1235' because the
precision is 4.

You can add or subtract one DAY TO SECOND interval literal from another DAY TO
SECOND literal. For example.

Basic Elements of Oracle SQL 2-69

Format Models

I NTERVAL' 20" DAY - | NTERVAL' 240" HOUR = | NTERVAL' 10- 0" DAY TO SECOND

Format Models

A format model is a character literal that describes the format of datetime or
numeric data stored in a character string. A format model does not change the
internal representation of the value in the database. When you convert a character
string into a date or number, a format model determines how Oracle Database
interprets the string. In SQL statements, you can use a format model as an argument
of the TO_CHAR and TO_DATE functions to specify:

= The format for Oracle to use to return a value from the database

« The format for a value you have specified for Oracle to store in the database
For example,

« The datetime format model for the string '17: 45: 29" is '"HH24: M : SS'.

« The datetime format model for the string '11- Nov- 1999"is 'DD- Mon- YYYY".
« The number format model for the string '$2, 304. 25'is '$9, 999. 99'.

For lists of number and datetime format model elements, see Table 2-14, " Number
Format Elements" on page 2-72 and Table 2-16, " Datetime Format Elements" on
page 2-77.

The values of some formats are determined by the value of initialization
parameters. For such formats, you can specify the characters returned by these
format elements implicitly using the initialization parameter NLS_TERRI TORY. You
can change the default date format for your session with the ALTER SESSI ON
statement.

See Also:

« ALTER SESSION on page 11-59 for information on changing
the values of these parameters and Format Model Examples on
page 2-84 for examples of using format models

« TO_CHAR (datetime) on page 7-235, TO_CHAR (number) on
page 7-237, and TO_DATE on page 7-240

« Oracle Database Reference and Oracle Database Globalization
Support Guide for information on these parameters

This remainder of this section describes how to use:

2-70 SQL Reference

Format Models

« Number Format Models
« Datetime Format Models

« Format Model Modifiers

Number Format Models
You can use number format models in the following functions:

« Inthe TO CHAR function to translate a value of NUVBER, Bl NARY_FLQOAT, or
Bl NARY_DOUBLE datatype to VARCHAR2 datatype

« Inthe TO NUMBER function to translate a value of CHAR or VARCHAR2 datatype
to NUMBER datatype

« Inthe TO Bl NARY_FLOAT and TO Bl NARY_DOUBLE functions to translate
CHAR and VARCHARZ expressions to Bl NARY_FLQOAT or Bl NARY_DOUBLE
values

All number format models cause the number to be rounded to the specified number
of significant digits. If a value has more significant digits to the left of the decimal
place than are specified in the format, then pound signs (#) replace the value. This
event typically occurs when you are using TO_CHAR with a restrictive number
format string, causing a rounding operation.

« If a positive NUMBER value is extremely large and cannot be represented in the
specified format, then the infinity sign (~) replaces the value. Likewise, if a
negative NUMBER value is extremely small and cannot be represented by the
specified format, then the negative infinity sign replaces the value (-~).

« IfaBI NARY_FLOAT or Bl NARY_DOUBLE value is converted to CHAR or NCHAR,
and the input is either infinity or NaN (not a number), then Oracle always
returns the pound signs to replace the value.

Number Format Elements

A number format model is composed of one or more number format elements. The
tables that follow list the elements of a number format model and provide some
examples.

Negative return values automatically contain a leading negative sign and positive
values automatically contain a leading space unless the format model contains the
M, S, or PR format element.

Basic Elements of Oracle SQL 2-71

Format Models

Table 2-14 Number Format Elements

Element Example

Description

, (comma) 9, 999

Returns a comma in the specified position. You can specify multiple commas in a
number format model.

Restrictions:
« A comma element cannot begin a number format model.

« A comma cannot appear to the right of a decimal character or period in a
number format model.

. (period) 99. 99

Returns a decimal point, which is a period (.) in the specified position.

Restriction: You can specify only one period in a number format model.

$ $9999 Returns value with a leading dollar sign.
0 0999 Returns leading zeros.
9990 Returns trailing zeros.

9 9999 Returns value with the specified number of digits with a leading space if positive
or with a leading minus if negative.

Leading zeros are blank, except for a zero value, which returns a zero for the
integer part of the fixed-point number.

B B9999 Returns blanks for the integer part of a fixed-point number when the integer part
is zero (regardless of zeros in the format model).

C C999 Returns in the specified position the ISO currency symbol (the current value of
the NLS_| SO _CURRENCY parameter).

D 99D99 Returns in the specified position the decimal character, which is the current value
of the NLS_NUMERI C_CHARACTER parameter. The default is a period (.).
Restriction: You can specify only one decimal character in a number format
model.

EEEE 9. 9EEEE Returns a value using in scientific notation.

G 999 Returns in the specified position the group separator (the current value of the
NLS_NUMERI C_CHARACTER parameter). You can specify multiple group
separators in a number format model.

Restriction: A group separator cannot appear to the right of a decimal character
or period in a number format model.

L L999 Returns in the specified position the local currency symbol (the current value of

the NLS_CURRENCY parameter).

2-72 SQL Reference

Format Models

Table 2-14 (Cont.) Number Format Elements

Element

Example

Description

Ml

9999M

Returns negative value with a trailing minus sign (-).
Returns positive value with a trailing blank.

Restriction: The MI format element can appear only in the last position of a
number format model.

PR

9999PR

Returns negative value in <angle brackets>.
Returns positive value with a leading and trailing blank.

Restriction: The PR format element can appear only in the last position of a
number format model.

RN
m

RN
rn

Returns a value as Roman numerals in uppercase.
Returns a value as Roman numerals in lowercase.
Value can be an integer between 1 and 3999.

$9999

9999S

Returns negative value with a leading minus sign (-).
Returns positive value with a leading plus sign (+).
Returns negative value with a trailing minus sign (-).
Returns positive value with a trailing plus sign (+).

Restriction: The S format element can appear only in the first or last position of a
number format model.

™

™

The text minimum number format model returns (in decimal output) the
smallest number of characters possible. This element is case insensitive.

The default is TM9, which returns the number in fixed notation unless the output
exceeds 64 characters. If the output exceeds 64 characters, then Oracle Database
automatically returns the number in scientific notation.

Restrictions:
« You cannot precede this element with any other element.

« You can follow this element only with one 9 or one E (or €), but not with any
combination of these. The following statement returns an error:

= SELECT TO CHAR(1234, 'TMde') FROM DUAL;

Basic Elements of Oracle SQL 2-73

Format Models

Table 2-14 (Cont.) Number Format Elements

Element Example Description

U U9999 Returns in the specified position the Euro (or other) dual currency symbol (the
current value of the NLS_DUAL_ CURRENCY parameter).

\4 999Vv99 Returns a value multiplied by 10" (and if necessary, round it up), where n is the
number of 9's after the V.

X XXXX Returns the hexadecimal value of the specified number of digits. If the specified

XXXX number is not an integer, then Oracle Database rounds it to an integer.

Restrictions:

« This element accepts only positive values or 0. Negative values return an
error.

=« You can precede this element only with 0 (which returns leading zeroes) or
FM. Any other elements return an error. If you specify neither 0 nor FM with
X, then the return always has 1 leading blank.

Table 2-15 shows the results of the following query for different values of nunber
and' fnt':
SELECT TO CHAR(nunber, 'fnt')

FROM DUAL;

Table 2-15 Results of Number Conversions

number fmt’ Result
-1234567890 9999999999S ' 1234567890-"
0 99. 99 ' . 00'
+0.1 99. 99 ' .10’
-0.2 99. 99 Y- 20
0 90. 99 ' 0.00
+0. 1 90. 99 ' 0.10
-0.2 90. 99 ' -0.20
0 9999 ' 0'
1 9999 ' 1
0 B9999 ' '
1 B9999 ' 1

2-74 SQL Reference

Format Models

Table 2-15 (Cont.) Results of Number Conversions

number fmt’ Result
0 B90. 99
+123. 456 999. 999 123. 456"
-123. 456 999. 999 '-123. 456"
+123. 456 FMB99. 009 ' 123. 456'
+123. 456 9. 9EEEE 1. 2E+02'
+1E+123 9. 9EEEE 1. 0E+123'
+123. 456 FMB. OEEEE "1. 2E+02"
+123. 45 FMB99. 009 ' 123. 45’
+123.0 FMR99. 009 '123. 00’
+123. 45 L999. 99 ' $123. 45
+123. 45 FML999. 99 ' $123. 45’
+1234567890 9999999999S ' 1234567890+

Datetime Format Models

You can use datetime format models in the following functions:

« Inthe TO * datetime functions to translate a character value that is in a format
other than the default format into a datetime value. (The TO_* datetime
functions are TO_CHAR, TO_DATE, TO_TI MESTAMP, TO_TI MESTAMP_TZ, TO_

YM NTERVAL, and TO_DSI NTERVAL.)

« Inthe TO CHAR function to translate a datetime value that is in a format other
than the default format into a string (for example, to print the date from an

application)

The total length of a datetime format model cannot exceed 22 characters.

The default datetime formats are specified either explicitly with the initialization

parameter NLS DATE_FORMAT or implicitly with the initialization parameter NLS
TERRI TORY. You can change the default datetime formats for your session with the
ALTER SESSI ON statement.

See Also:

ALTER SESSION on page 11-59 and Oracle Database

Globalization Support Guide for information on the NLS parameters

Basic Elements of Oracle SQL 2-75

Format Models

Datetime Format Elements

A datetime format model is composed of one or more datetime format elements as
listed in Table 2-16, " Datetime Format Elements" on page 2-77.

« For input format models, format items cannot appear twice, and format items
that represent similar information cannot be combined. For example, you
cannot use 'SYYYY' and 'BC' in the same format string.

= Some of the datetime format elements cannot be used in the TO_* datetime
functions, as noted in Table 2-16.

« The following datetime format elements can be used in timestamp and interval
format models, but not in the original DATE format model: FF, TZD, TZH, TZM
and TZR

« Many datetime format elements are blank padded to a specific length. Please
refer to the format model modifier FM on page 2-84 for more information.

Uppercase Letters in Date Format Elements Capitalization in a spelled-out word,
abbreviation, or Roman numeral follows capitalization in the corresponding format
element. For example, the date format model 'DAY' produces capitalized words like
'MONDAY'; 'Day' produces 'Monday'; and 'day' produces ‘'monday".

Punctuation and Character Literals in Datetime Format Models You can include these
characters in a date format model:

« Punctuation such as hyphens, slashes, commas, periods, and colons

« Character literals, enclosed in double quotation marks

These characters appear in the return value in the same location as they appear in
the format model.

2-76 SQL Reference

Format Models

Table 2-16 Datetime Format Elements

Specify in TO_*

datetime
Element functions?? Meaning
- Yes Punctuation and quoted text is reproduced in the result.
/
"text"
AD Yes AD indicator with or without periods.
A D
AM Yes Meridian indicator with or without periods.
AM
BC Yes BC indicator with or without periods.
B.C.
cC No Century.
ScC « Ifthe last 2 digits of a 4-digit year are between 01 and 99 (inclusive),
then the century is one greater than the first 2 digits of that year.
« Ifthe last 2 digits of a 4-digit year are 00, then the century is the same
as the first 2 digits of that year.
For example, 2002 returns 21; 2000 returns 20.
D Yes Day of week (1-7).
DAY Yes Name of day, padded with blanks to length of 9 characters.
DD Yes Day of month (1-31).
DDD Yes Day of year (1-366).
DL Yes Returns a value in the long date format, which is an extention of Oracle

Database's DATE format (the current value of the NLS_DATE_FORVAT
parameter). Makes the appearance of the date components (day name,
month number, and so forth) depend on the NLS_TERRI TORY and NLS_
LANGUAGE parameters. For example, in the AMERI CAN_AMERI CA locale,
this is equivalent to specifying the format ' f nDay, Mont h dd, yyyy'.In
the GERVAN_GERVANY locale, it is equivalent to specifying the format
'fnDay, dd. Month yyyy"

Restriction: You can specify this format only with the TS element,
separated by white space.

Basic Elements of Oracle SQL 2-77

Format Models

Table 2-16 (Cont.) Datetime Format Elements

Specify in TO_*
datetime

Element functions?? Meaning

DS Yes Returns a value in the short date format. Makes the appearance of the date
components (day name, month number, and so forth) depend on the NLS_
TERRI TORY and NLS_LANGUAGE parameters. For example, in the
AVMERI CAN_AMERI CA locale, this is equivalent to specifying the format
'MM DDY RRRR. In the ENGLI SH_UNI TED_KI NGDOMlocale, it is equivalent
to specifying the format 'DOY MM RRRR.

Restriction: You can specify this format only with the TS element,
separated by white space.

DY Yes Abbreviated name of day.

E No Abbreviated era name (Japanese Imperial, ROC Official, and Thai Buddha
calendars).

EE No Full era name (Japanese Imperial, ROC Official, and Thai Buddha
calendars).

FF[1..9] Yes Fractional seconds; no radix character is printed (use the X format element
to add the radix character). Use the numbers 1 to 9 after FF to specify the
number of digits in the fractional second portion of the datetime value
returned. If you do not specify a digit, then Oracle Database uses the
precision specified for the datetime datatype or the datatype's default
precision.

Examples: ' HH: M : SS. FF'
SELECT TO _CHAR(SYSTI MESTAMP, 'SS. FF3') from dual;

FM Yes Returns a value with no leading or trailing blanks.

See Also: Additional discussion on this format model modifier in the
Oracle Database SQL Reference

FX Yes Requires exact matching between the character data and the format model.
See Also: Additional discussion on this format model modifier in the
Oracle Database SQL Reference

HH Yes Hour of day (1-12).

HH12 No Hour of day (1-12).

HH24 Yes Hour of day (0-23).

W No Week of year (1-52 or 1-53) based on the ISO standard.

2-78 SQL Reference

Format Models

Table 2-16 (Cont.) Datetime Format Elements

Specify in TO_*
datetime

Element functions?? Meaning

I'YY No Last 3, 2, or 1 digit(s) of ISO year.

Iy

I

I YYY No 4-digit year based on the ISO standard.

J Yes Julian day; the number of days since January 1, 4712 BC. Number specified
with J must be integers.

M Yes Minute (0-59).

W Yes Month (01-12; January = 01).

MON Yes Abbreviated name of month.

MONTH Yes Name of month, padded with blanks to length of 9 characters.

PM No Meridian indicator with or without periods.

P.M

Q No Quarter of year (1, 2, 3, 4; January - March = 1).

RM Yes Roman numeral month (I-XII; January = I).

RR Yes Lets you store 20th century dates in the 21st century using only two digits.
See Also: Additional discussion on RR datetime format element in the
Oracle Database SQL Reference

RRRR Yes Round year. Accepts either 4-digit or 2-digit input. If 2-digit, provides the
same return as RR. If you do not want this functionality, then enter the
4-digit year.

SS Yes Second (0-59).

SSSSS Yes Seconds past midnight (0-86399).

TS Yes Returns a value in the short time format. Makes the appearance of the time

components (hour, minutes, and so forth) depend on the NLS_TERRI TORY
and NLS_LANGUAGCE initialization parameters.

Restriction: You can specify this format only with the DL or DS element,
separated by white space.

Basic Elements of Oracle SQL 2-79

Format Models

Table 2-16 (Cont.) Datetime Format Elements

Specify in TO_*
datetime

Element functions?? Meaning

TZD Yes Daylight savings information. The TZD value is an abbreviated time zone
string with daylight savings information. It must correspond with the
region specified in TZR.
Example: PST (for US/Pacific standard time); PDT (for US/Pacific daylight
time).

TZH Yes Time zone hour. (See TZMformat element.)
Example:' HH: M : SS. FFTZH: TZM .

TZM Yes Time zone minute. (See TZH format element.)
Example:' HH: M : SS. FFTZH: TZM .

TZR Yes Time zone region information. The value must be one of the time zone
regions supported in the database.
Example: US/Pacific

VW No Week of year (1-53) where week 1 starts on the first day of the year and
continues to the seventh day of the year.

W No Week of month (1-5) where week 1 starts on the first day of the month and
ends on the seventh.

X Yes Local radix character.
Example: ' HH: M : SSXFF' .

Y, YYY Yes Year with comma in this position.

YEAR No Year, spelled out; S prefixes BC dates with a minus sign (-).

SYEAR

YYYY Yes 4-digit year; S prefixes BC dates with a minus sign.

SYYYY

YYY Yes Last 3, 2, or 1 digit(s) of year.

YY

Y

Oracle returns an error if an alphanumeric character is found in the date string
where a punctuation character is found in the format string. For example, the
following format string returns an error:

TO_CHAR (TO DATE(' 0297',' M YY'), ' MM YY')

2-80 SQL Reference

Format Models

Datetime Format Elements and Globalization Support

The functionality of some datetime format elements depends on the country and
language in which you are using Oracle Database. For example, these datetime
format elements return spelled values:

« MONTH
« MON

« DAY

« DY

« BCorADorB.C.or AD.
« AMorPMor AMorPM.

The language in which these values are returned is specified either explicitly with
the initialization parameter NLS_DATE_LANGUAGE or implicitly with the
initialization parameter NLS_LANGUAGE. The values returned by the YEAR and
SYEAR datetime format elements are always in English.

The datetime format element D returns the number of the day of the week (1-7). The
day of the week that is numbered 1 is specified implicitly by the initialization
parameter NLS_TERRI TORY.

See Also: Oracle Database Reference and Oracle Database
Globalization Support Guide for information on globalization support
initialization parameters

ISO Standard Date Format Elements

Oracle calculates the values returned by the datetime format elements IYYY, IYY, 1Y,
I, and IW according to the ISO standard. For information on the differences between
these values and those returned by the datetime format elements YYYY, YYY, YY, Y,
and WW, see the discussion of globalization support in Oracle Database Globalization
Support Guide.

The RR Datetime Format Element

The RR datetime format element is similar to the YY datetime format element, but it
provides additional flexibility for storing date values in other centuries. The RR
datetime format element lets you store 20th century dates in the 21st century by
specifying only the last two digits of the year.

Basic Elements of Oracle SQL 2-81

Format Models

If you use the TO_DATE function with the YY datetime format element, then the
year returned always has the same first 2 digits as the current year. If you use the RR
datetime format element instead, then the century of the return value varies
according to the specified two-digit year and the last two digits of the current year.

That is:
« If the specified two-digit year is 00 to 49, then

— If the last two digits of the current year are 00 to 49, then the returned year
has the same first two digits as the current year.

— If the last two digits of the current year are 50 to 99, then the first 2 digits of
the returned year are 1 greater than the first 2 digits of the current year.

« If the specified two-digit year is 50 to 99, then

— If the last two digits of the current year are 00 to 49, then the first 2 digits of
the returned year are 1 less than the first 2 digits of the current year.

— If the last two digits of the current year are 50 to 99, then the returned year
has the same first two digits as the current year.

The following examples demonstrate the behavior of the RR datetime format
element.

RR Datetime Format Examples
Assume these queries are issued between 1950 and 1999:

SELECT TO CHAR(TO _DATE(' 27-CCT-98', 'DD-MONRR) ,'YYYY') "Year"
FROM DUAL,;

Year

1998

SELECT TO CHAR(TO DATE(' 27-OCT-17', 'DD-MON-RR) ," YYYY') "Year"
FROM DUAL;

Year

2017

Now assume these queries are issued between 2000 and 2049:

SELECT TO CHAR(TO DATE(' 27-OCT-98', 'DD-MON-RR) ,' YYYY') "Year"
FROM DUAL;

2-82 SQL Reference

Format Models

Year
1998
SELECT TO CHAR(TO DATE(' 27-COCT-17', 'DD-MON-RR) ,'YYYY') "Year"
FROM DUAL;
Year
2017
Note that the queries return the same values regardless of whether they are issued
before or after the year 2000. The RR datetime format element lets you write SQL

statements that will return the same values from years whose first two digits are
different.

Datetime Format Element Suffixes
Table 2-17 lists suffixes that can be added to datetime format elements:

Table 2-17 Date Format Element Suffixes

Suffix Meaning Example Element Example Value
TH Ordinal Number DDTH 4TH

SP Spelled Number DDSP FOUR

SPTH or THSP Spelled, ordinal number DDSPTH FOURTH

Notes:

« When you add one of these suffixes to a datetime format element, the return value
is always in English.

« Datetime suffixes are valid only to format output. You cannot use them to insert a
date into the database.

Format Model Modifiers

The FMand FX modifiers, used in format models in the TO_CHAR function, control
blank padding and exact format checking.

A modifier can appear in a format model more than once. In such a case, each
subsequent occurrence toggles the effects of the modifier. Its effects are enabled for
the portion of the model following its first occurrence, and then disabled for the

Basic Elements of Oracle SQL 2-83

Format Models

portion following its second, and then reenabled for the portion following its third,
and so on.

FM Fill mode. Oracle uses blank characters to fill format elements to a constant
width equal to the largest element for the relevant format model in the current
session language. For example, when NLS LANGUAGE is AMERI CAN, the largest
element for MONTH is SEPTEMBER, so all values of the MONTH format element are
padded to 9 display characters. This modifier suppresses blank padding in the
return value of the TO_CHAR function:

« Inadatetime format element of a TO_CHAR function, this modifier suppresses
blanks in subsequent character elements (such as MONTH) and suppresses
leading zeroes for subsequent number elements (such as M) in a date format
model. Without FM the result of a character element is always right padded
with blanks to a fixed length, and leading zeroes are always returned for a
number element. With FM which suppresses blank padding, the length of the
return value may vary.

« Inanumber format element of a TO_CHAR function, this modifier suppresses
blanks added to the left of the number, so that the result is left-justified in the
output buffer. Without FM the result is always right-justified in the buffer,
resulting in blank-padding to the left of the number.

FX Format exact. This modifier specifies exact matching for the character
argument and datetime format model of a TO_DATE function:

« Punctuation and quoted text in the character argument must exactly match
(except for case) the corresponding parts of the format model.

« The character argument cannot have extra blanks. Without FX, Oracle ignores
extra blanks.

« Numeric data in the character argument must have the same number of digits
as the corresponding element in the format model. Without FX, numbers in the
character argument can omit leading zeroes.

When FXis enabled, you can disable this check for leading zeroes by using the
FMmodifier as well.

If any portion of the character argument violates any of these conditions, then
Oracle returns an error message.

Format Model Examples
The following statement uses a date format model to return a character expression:

2-84 SQL Reference

Format Models

SELECT TO CHAR(SYSDATE, 'fnDDTH)||' of '||TO CHAR
(SYSDATE, ' fmMbnth')[|", ' || TO CHAR(SYSDATE, ' YYYY') "Ides"
FROM DUAL;

3RD of April, 1998

The preceding statement also uses the FMmodifier. If FMis omitted, then the month
is blank-padded to nine characters:

SELECT TO CHAR(SYSDATE, 'DDTH)||' of '||
TO _CHAR(SYSDATE, 'Month')||', ']
TO CHAR(SYSDATE, ' YYYY') "Ides"
FROM DUAL;

03RD of April , 1998
The following statement places a single quotation mark in the return value by using
a date format model that includes two consecutive single quotation marks:

SELECT TO CHAR(SYSDATE, 'fnDay')||'''s Special' "Menu"
FROM DUAL;

Tuesday' s Speci al
Two consecutive single quotation marks can be used for the same purpose within a
character literal in a format model.

Table 2-18 shows whether the following statement meets the matching conditions
for different values of char and 'f nt ' using FX (the table named t abl e has a
column dat e_col unn of datatype DATE):

UPDATE t abl e
SET date_colum = TO DATE(char, "fnt');

Basic Elements of Oracle SQL 2-85

Format Models

Table 2-18 Matching Character Data and Format Models with the FX Format Model

Modifier
char 'fmt’ Match or Error?

"15/ JAN /1998 ' DD- MON- YYYY' Mat ch

15! JAN %/ 1998’ ' DD- MON- YYYY' Error
'15/ JAN/ 1998' ' FXDD- MON- YYYY' Error
' 15- JAN- 1998' ' FXDD- MON- YYYY' Mat ch
"1- JAN- 1998' ' FXDD- MON- YYYY' Error
' 01- JAN- 1998’ ' FXDD- MON- YYYY' Mat ch
'1- JAN- 1998’ " FXFMDD- MON- YYYY' Mat ch

Format of Return Values: Examples You can use a format model to specify the
format for Oracle to use to return values from the database to you.

The following statement selects the salaries of the employees in Department 80 and
uses the TO_CHAR function to convert these salaries into character values with the
format specified by the number format model '$99, 990. 99'

SELECT | ast _nanme enpl oyee, TO CHAR(sal ary, '$99, 990.99")
FROM enpl oyees
WHERE departnent _id = 80;

Because of this format model, Oracle returns salaries with leading dollar signs,
commas every three digits, and two decimal places.

The following statement selects the date on which each employee from Department
20 was hired and uses the TO_CHAR function to convert these dates to character
strings with the format specified by the date format model 'f mivbnt h DD, YYYY"

SELECT | ast _name enpl oyee,
TO CHAR(hire_date,' fmvbnth DD, YYYY') hiredate
FROM enpl oyees
VWHERE departnent _id = 20;

With this format model, Oracle returns the hire dates without blank padding (as
specified by f nm), two digits for the day, and the century included in the year.

See Also: "Format Model Modifiers" on page 2-83 for a
description of the f mformat element

2-86 SQL Reference

Format Models

Supplying the Correct Format Model: Examples When you insert or update a
column value, the datatype of the value that you specify must correspond to the
column datatype of the column. You can use format models to specify the format of
a value that you are converting from one datatype to another datatype required for
a column.

For example, a value that you insert into a DATE column must be a value of the
DATE datatype or a character string in the default date format (Oracle implicitly
converts character strings in the default date format to the DATE datatype). If the
value is in another format, then you must use the TO_DATE function to convert the
value to the DATE datatype. You must also use a format model to specify the format
of the character string.

The following statement updates Hunol d' s hire date using the TO_DATE function
with the format mask 'YYYY MM DD' to convert the character string '1998 05 20' to
a DATE value:

UPDATE enpl oyees
SET hire_date = TO DATE(' 1998 05 20',' YYYY MM DD)
VWHERE | ast _name = 'Hunol d';

String-to-Date Conversion Rules

The following additional formatting rules apply when converting string values to
date values (unless you have used the FX or FXFMmodifiers in the format model to
control exact format checking):

« You can omit punctuation included in the format string from the date string if
all the digits of the numerical format elements, including leading zeros, are
specified. In other words, specify 02 and not 2 for two-digit format elements
such as MM, DD, and YY.

« You can omit time fields found at the end of a format string from the date
string.

« If amatch fails between a datetime format element and the corresponding
characters in the date string, then Oracle attempts alternative format elements,
as shown in Table 2-19.

Table 2-19 Oracle Format Matching

Additional Format
Elements to Try in Place of
Original Format Element the Original

"M "MON and ' MONTH

Basic Elements of Oracle SQL 2-87

Format Models

Table 2-19 (Cont.) Oracle Format Matching

Additional Format
Elements to Try in Place of
Original Format Element the Original

" MON " MONTH

" MONTH " MON'

"YY' "YYYY'

'RR ' RRRR
XML Format Model

The SYS_XM_GEN function returns an instance of type XM_LType containing an XML
document. Oracle provides the XMLFor mat object, which lets you format the
output of the SYS XM_GEN function.

Table 2-20 lists and describes the attributes of the XMLFor mat object. The function
that implements this type follows the table.
See Also:

« SYS_XMLGEN on page 7-226 for information on the SYS_
XMLGEN function

« Oracle XML API Reference and Oracle XML Developer*s Kit
Programmer*s Guide for more information on the
implementation of the XMLFor mat object and its use

2-88 SQL Reference

Nulls

Table 2-20 Attributes of the XMLFormat Object

Attribute Datatype Purpose

encl Tag VARCHAR2(100) The name of the enclosing tag for the result of the SYS_XM_GEN
function. If the input to the function is a column name, the default
is the column name. Otherwise the default is RON When
schemaType is set to USE_G VEN_SCHEMA, this attribute also
gives the name of the XMLSchema element.

schemaType VARCHAR2(100) The type of schema generation for the output document. Valid
values are 'NO_SCHEMA' and 'USE_G VEN_SCHEMA'. The default is
'NO_SCHEMA'.

schemaNane VARCHAR2(4000) The name of the target schema Oracle uses if the value of the

schemaType is 'USE_G VEN_SCHEMA' If you specify
schemaNane, then Oracle uses the enclosing tag as the element
name.

processi ngl ns VARCHAR2(4000) User-provided processing instructions, which are appended to the
top of the function output before the element.

The function that implements the XMLFor mat object follows:

STATI C FUNCTI ON cr eat eFor mat (
encl Tag I N varchar2 := ' ROASET',
schemaType IN varchar2 :="'NO SCHEMA',
schemaNanme | N varchar2 := null,
processinglns IN varchar2 := null) RETURN XM.GenFor nat Type
determnistic parallel_enable,
MEMBER PROCEDURE genSchenm (spec I N varchar2),
MEMBER PROCEDURE set SchemaNane(schemaNane | N varchar2),
MEMBER PROCEDURE set Encl osi ngEl ement Nane(encl Tag | N varchar 2),
MEMBER PROCEDURE set Processinglns(pi I N varchar?2),
CONSTRUCTOR FUNCTI ON XM_GenFor mat Type (
encl Tag I N varchar2 : = ' ROMSET",
schemaType IN varchar2 := ' NO SCHEMA',
schemaName | N varchar2 := null,
processinglns IN varchar2 := null) RETURN SELF AS RESULT
deterninistic parallel_enable,

Nulls

If a column in a row has no value, then the column is said to be null, or to contain
null. Nulls can appear in columns of any datatype that are not restricted by NOT

Basic Elements of Oracle SQL 2-89

Nulls

NULL or PRI MARY KEY integrity constraints. Use a null when the actual value is not
known or when a value would not be meaningful.

Do not use null to represent a value of zero, because they are not equivalent.

Note: Oracle Database currently treats a character value with a
length of zero as null. However, this may not continue to be true in
future releases, and Oracle recommends that you do not treat
empty strings the same as nulls.

Any arithmetic expression containing a null always evaluates to null. For example,
null added to 10 is null. In fact, all operators (except concatenation) return null
when given a null operand.

Nulls in SQL Functions

All scalar functions (except REPLACE, NVL, and CONCAT) return null when given a
null argument. You can use the NVL function to return a value when a null occurs.
For example, the expression NVL(commi ssi on_pct, 0) returns 0 if conmi ssi on_
pct is null or the value of conmi ssi on_pct ifitis not null.

Most aggregate functions ignore nulls. For example, consider a query that averages
the five values 1000, null, null, null, and 2000. Such a query ignores the nulls and
calculates the average to be (1000+2000)/2 = 1500.

Nulls with Comparison Conditions

To test for nulls, use only the comparison conditions | SNULL and | S NOT NULL. If
you use any other condition with nulls and the result depends on the value of the
null, then the result is UNKNOWN. Because null represents a lack of data, a null
cannot be equal or unequal to any value or to another null. However, Oracle
considers two nulls to be equal when evaluating a DECODE function. Please refer to
DECODE on page 7-61 for syntax and additional information.

Oracle also considers two nulls to be equal if they appear in compound keys. That
is, Oracle considers identical two compound keys containing nulls if all the
non-null components of the keys are equal.

Nulls in Conditions

A condition that evaluates to UNKNOMN acts almost like FALSE. For example, a
SELECT statement with a condition in the WHERE clause that evaluates to UNKNOAN

2-90 SQL Reference

Comments

returns no rows. However, a condition evaluating to UNKNOWN differs from FALSE
in that further operations on an UNKNOWN condition evaluation will evaluate to
UNKNOWN. Thus, NOT FALSE evaluates to TRUE, but NOT UNKNOWN evaluates to
UNKNOWN.

Table 2-21 shows examples of various evaluations involving nulls in conditions. If
the conditions evaluating to UNKNOWN were used in a WHERE clause of a SELECT
statement, then no rows would be returned for that query.

Table 2-21 Conditions Containing Nulls

Condition Value of A Evaluation
a |I'S NULL 10 FALSE
a |'S NOT NULL 10 TRUE
a |I'S NULL NULL TRUE
a |I'S NOT NULL NULL FALSE
a = NULL 10 UNKNOWN
a !'= NULL 10 UNKNOWN
a = NULL NULL UNKNOWN
a !'= NULL NULL UNKNOWN
a =10 NULL UNKNOWN
a!=10 NULL UNKNOWN

For the truth tables showing the results of logical conditions containing nulls, see
Table 6-5 on page 6-10, Table 6-6 on page 6-10, and Table 6-7 on page 6-11.

Comments

You can associate comments with SQL statements and schema objects.

Comments Within SQL Statements

Comments can make your application easier for you to read and maintain. For
example, you can include a comment in a statement that describes the purpose of
the statement within your application. With the exception of hints, comments
within SQL statements do not affect the statement execution. Please refer to "Hints"
on page 2-93 on using this particular form of comment.

Basic Elements of Oracle SQL 2-91

Comments

A comment can appear between any keywords, parameters, or punctuation marks
in a statement. You can include a comment in a statement in two ways:

« Begin the comment with a slash and an asterisk (/*). Proceed with the text of
the comment. This text can span multiple lines. End the comment with an
asterisk and a slash (*/). The opening and terminating characters need not be
separated from the text by a space or a line break.

« Begin the comment with -- (two hyphens). Proceed with the text of the
comment. This text cannot extend to a new line. End the comment with a line
break.

Some of the tools used to enter SQL have additional restrictions. For example, if you
are using SQL*Plus, by default you cannot have a blank line inside a multiline
comment. For more information, please refer to the documentation for the tool you
use as an interface to the database.

A SQL statement can contain multiple comments of both styles. The text of a
comment can contain any printable characters in your database character set.

Example These statements contain many comments:

SELECT | ast_name, salary + NVL(conm ssion_pct, 0),
job_id, e.departnent_id
/* Select all enployees whose conpensation is
greater than that of Pataballa.*/
FROM enpl oyees e, departnents d
/ *The DEPARTMENTS table is used to get the department name.*/
VHERE e. departnent _id = d.departnent _id
AND sal ary + NVL(commission_pct,0) > /* Subquery: */
(SELECT sal ary + NVL(conm ssion_pct, 0)
/* total conpensation is salar + commi ssion_pct */
FROM enpl oyees
WHERE | ast _name = 'Pataballa');

SELECT | ast _nane, -- select the name
salary + NVL(conm ssion_pct, 0),-- total conpensation
job_id, -- job
e.departnent _id -- and depart nent

FROM enpl oyees e, -- of all enployees

departnents d
VWHERE e. departnent _id = d.departnent _id

AND sal ary + NVL(commission_pct, 0) > -- whose conpensation
- is greater than
(SELECT sal ary + NVL(conmi ssion_pct,0) -- the conpensation

FROM enpl oyees

2-92 SQL Reference

Comments

VHERE | ast _name = 'Patabal | a') -- of Pataballa.

Comments on Schema Objects

Hints

You can associate a comment with a table, view, materialized view, or column using
the COMMENT command. Comments associated with schema objects are stored in the
data dictionary. Please refer to COMMENT on page 13-73 for a description of
comments.

You can use comments in a SQL statement to pass instructions, or hints, to the
Oracle Database optimizer. The optimizer uses these hints as suggestions for
choosing an execution plan for the statement.

A statement block can have only one comment containing hints, and that comment
must follow the SELECT, UPDATE, | NSERT, or DELETE keyword. The following
syntax shows hints contained in both styles of comments that Oracle supports
within a statement block.

{ DELETE]| | NSERT| SELECT| UPDATE} /*+ hint [text] [hint[text]]... */

or
{ DELETE]| | NSERT| SELECT| UPDATE} --+ hint [text] [hint[text]]...

where:

» DELETE, | NSERT, SELECT, or UPDATE is a DELETE, | NSERT, SELECT, or
UPDATE keyword that begins a statement block. Comments containing hints
can appear only after these keywords.

« +isaplussign that causes Oracle to interpret the comment as a list of hints. The
plus sign must follow immediately after the comment delimiter (no space is
permitted).

« hi nt is one of the hints discussed in this section. The space between the plus
sign and the hint is optional. If the comment contains multiple hints, then
separate the hints by at least one space.

« text isother commenting text that can be interspersed with the hints.

Oracle Database treats misspelled hints as regular comments and does not return an
error.

Basic Elements of Oracle SQL 2-93

Comments

Many hints can apply both to specific tables or indexes and more globally to tables
within a view or to columns that are part of indexes. The syntactic elements

t abl espec and i ndexspec define these global hints. For information on when to
use global hints and how Oracle interprets them, please refer to Oracle Database
Performance Tuning Guide.

tablespec::=
e}
(table >
indexspec::=

index
|
(column

Table 2-22 lists the hints by functional category and contains cross-references to its
syntax. (In HTML and PDF, the cross-references are hyperlinks.) An alphabetical
listing of the hints, including syntax, follows the table.

See Also: Oracle Database Performance Tuning Guide for more
information on using hints to optimize SQL statements and on
detailed information about using the t abl espec and i ndexspec
syntax

Table 2-22 Hints by Functional Category

Category Hint Name Link to Syntax

Optimization Goalsand ALL_RO\S all_rows_hint::= on page 2-97

Approaches FI RST_ROWS first_rows_hint::= on page 2-98
RULE rule_hint::= on page 2-104

2-94 SQL Reference

Comments

Table 2-22 (Cont.) Hints by Functional Category

Category Hint Name Link to Syntax
Access Path Hints CLUSTER cluster_hint::= on page 2-97
FULL full_hint::= on page 2-98
HASH hash_hint::= on page 2-98
I NDEX index_hint::= on page 2-98
NO_I NDEX no_index_hint::= on page 2-101
| NDEX_ASC index_asc_hint::= on page 2-99
| NDEX_DESC index_desc_hint::= on page 2-99
I NDEX_COVBI NE index_combine_hint::= on page 2-99
I NDEX JO N index_join_hint::= on page 2-99
| NDEX_FFS index_ffs_hint::= on page 2-99
| NDEX_SS index_ss_hint::= on page 2-99
| NDEX_SS_ASC index_ss_asc_hint::= on page 2-99
| NDEX_SS DESC index_ss_desc_hint::= on page 2-100
NO_| NDEX_FSS no_index_ffs_hint::= on page 2-101
NO_| NDEX_SS no_index_ss_hint::= on page 2-101
Join Order Hints ORDERED ordered_hint::= on page 2-103
LEADI NG leading_hint::= on page 2-100
Join Operation Hints USE_HASH use_hash_hint::= on page 2-105
NO_USE_HASH no_use_hash_hint::= on page 2-102
USE_MERGE use_merge_hint::= on page 2-105
NO_USE_MERGE no_use_merge_hint::= on page 2-103
USE NL use_nl_hint::= on page 2-105

USE_NL_W TH_I NDEX

NO_USE_NL

use_nl_with_index_hint::= on page 2-105

no_use_nl_hint::= on page 2-103

Basic Elements of Oracle SQL 2-95

Comments

Table 2-22 (Cont.) Hints by Functional Category

Category Hint Name

Link to Syntax

Parallel Execution Hints PARALLEL
NO_PARALLEL

PARALLEL_| NDEX
NO_PARALLEL_| NDEX

PQ_DI STRI BUTE

Query Transformation FACT
Hints NOFACT

NERGE
NO_MERGE
NO_EXPAND

REWRI TE
NO REVRI TE

UNNEST
NO_UNNEST

STAR_TRANSFORMATI ON
NO_STAR_TRANSFORVATI ON

NO_QUERY_TRANSFORAMTI ON
USE_CONCAT

2-96 SQL Reference

parallel_hint::= on page 2-103
no_parallel_hint::= on page 2-101
parallel_index_hint::= on page 2-103
no_parallel_index_hint::= on page 2-101
pg_distribute_hint::= on page 2-103
fact_hint::= on page 2-98

no_fact_hint::= on page 2-100
merge_hint::= on page 2-100
no_merge_hint::= on page 2-101
no_expand_hint::= on page 2-100
rewrite_hint::= on page 2-104
no_rewrite_hint::= on page 2-102
unnest_hint::= on page 2-105
no_unnest_hint::= on page 2-102
star_transformation_hint::= on page 2-104
no_star_transformation_hint::= on page 2-102
no_query_transformation_hint::=

use_concat_hint::= on page 2-105

Comments

Table 2-22 (Cont.) Hints by Functional Category

Category Hint Name Link to Syntax

Other Hints APPEND append_hint::= on page 2-97
NOAPPEND noappend_hint::= on page 2-100
CACHE cache_hint::= on page 2-97
NOCACHE nocache_hint::= on page 2-100
CURSOR_SHARI NG_EXACT cursor_sharing_exact_hint::= on page 2-98
DRI VI NG_SI TE driving_site_hint::= on page 2-98
DYNAM C_SAMPLI NG dynamic_sampling_hint::= on page 2-98
PUSH_PRED push_pred_hint::= on page 2-104
NO_PUSH_PRED no_push_pred_hint::= on page 2-102
PUSH_SUBQ push_subg_hint::= on page 2-104
NO_PUSH_SUBQ no_push_subg_hint::= on page 2-102
B_NAME gb_name::= on page 2-104

SPREAD_M N_ANALYSI S

spread_min_analysis_hint::= on page 2-104

all_rows_hint::=
™ @
append_hint::=

R (D

cache_hint::=

queryblock
R0 P @ oo

cluster_hint::=

queryblock
[OCEN D@

Basic Elements of Oracle SQL 2-97

Comments

cursor_sharing_exact_hint::=
—>®->| CURSOR_SHARING_EXACT |->@»

driving_site_hint::=

@ queryblock
(e STE L @ D>

dynamic_sampling_hint::=
(@)(aueniion

fact_hint::=

@ queryblock
AT (@O
first_ rows_hint::=

—>®->| FIRST_ROWS F@»{integer}»@e@»

full_hint::=

-queryblock
O oo

hash_hint::=

queryblock
- OO PN @00

index_hint::=

queryblock fW_\
PN @ L @

2-98 SQL Reference

Comments

index_asc_hint::=

queryblock fw
N @ L 50

index_combine_hint::=

® @
INDEX_COMBINE |5((« tablespec))
AT

index_desc_hint::=

® I G

index_ffs_hint::=

queryblock ﬁw\
AN oL

index_join_hint::=

queryblock ﬁw\
AN @ L2 0

index_ss_hint::=

queryblock ﬁw\
AN @ L\ @,

index_ss_asc_hint::=

® o)

Basic Elements of Oracle SQL 2-99

Comments

index_ss_desc_hint::=

® A

leading_hint::=
®
merge_hint::=

(@
tablespec

queryblock

noappend_hint::=

(P {oED (D)

nocache_hint::=

OF

@ queryblock
® < (@) (DD
no_expand_hint::=

O@@m D)

no_fact_hint::=

queryblock
- EEFAOL LN G 0.0

2-100 SQL Reference

Comments

no_index_hint::=

queryblock I—)—W—\
N @ L 50

no_index_ffs_hint::=

® G

no_index_ss_hint::=

® I (G

no_merge_hint::=

O
tablespec

queryblock

NO_MERGE

no_parallel_hint::=

OF

@ queryblock
™ (CEDI0OF

Restriction on NO_PARALLEL You cannot parallelize a query involving a nested
table.

no_parallel_index_hint::=

® e
—>®->| NO_PARALLEL_INDEX @ s tablespec) @@

Basic Elements of Oracle SQL 2-101

Comments

no_push_pred_hint::=

queryblock

(@)

tablespec

— :)->| NO_PUSH_PRED @->

no_push_subg_hint::=

O® O
— :)->| NO_PUSH_SUBQ @

no_rewrite_hint::=

O@@m D

no_query_transformation_hint::=

—>®->| NO_QUERY_TRANSFORMATION @

no_star_transformation_hint::=
o @ queryblock o
|
—>®->| NO_STAR_TRANSFORMATION | @

no_unnest_hint::=

O@@m D)

no_use _hash_hint::=

@ queryblock
@ =T ¢ (@D

2-102 SQL Reference

Comments

no_use_merge_hint::=

@ queryblock

no_use_nl_hint::=

queryblock

ordered_hint::=
@ @

parallel_hint::=

@
queryblock DEFAULT
N @2 Lo,

Oracle ignores parallel hints on a temporary table. Please refer to CREATE TABLE
on page 16-7 and Oracle Database Concepts for more information on parallel
execution.

parallel_index_hint::=

@ queryblock 'indexspec'
@ PARALLEL_INDEX |(((tablespec }

@D
DEFAULT

002
pqg_distribute_hint::=

@ queryblock
@ PQ_DISTRIBUTE [({tablespec)-(outer_distribution)—(inner_distribution)@@

Basic Elements of Oracle SQL 2-103

Comments

See Also: Oracle Database Performance Tuning Guide for the
permitted combinations of distributions for the outer and inner join
tables

push_pred_hint::=

queryblock

@ @)

tablespec

PUSH_PRED @

push_subqg_hint::=

clolcio

gb_name::=
rewrite_hint:;=

O (@0
rule_hint::=

R
spread_min_analysis_hint::=

—>®->| SPREAD_MIN_ANALYSIS |->@»

star_transformation_hint::=

O® ®
—>®->| STAR_TRANSFORMATION | @

2-104 SQL Reference

Database Objects

unnest_hint::=

D@D @)

use_concat_hint::=
O® O

use_hash_hint::=

queryblock

use_merge_hint::=

@ queryblock
T (@D

use_nl_hint::=

queryblock
EED0 PN) 00

use_nl_with_index_hint::=

-queryblock A W
—>®->| USE_NL_WITH_INDEX @ © s tablespec) @@

Database Objects

Oracle Database recognizes objects that are associated with a particular schema and
objects that are not associated with a particular schema, as described in the sections
that follow.

Basic Elements of Oracle SQL 2-105

Database Objects

Schema Objects

A schema is a collection of logical structures of data, or schema objects. A schema is
owned by a database user and has the same name as that user. Each user owns a
single schema. Schema objects can be created and manipulated with SQL and
include the following types of objects:

Clusters

Constraints

Database links

Database triggers
Dimensions

External procedure libraries
Index-organized tables
Indexes

Indextypes

Java classes, Java resources, Java sources
Materialized views
Materialized view logs
Object tables

Object types

Object views

Operators

Packages

Sequences

Stored functions, stored procedures
Synonyms

Tables

Views

Nonschema Objects

Other types of objects are also stored in the database and can be created and
manipulated with SQL but are not contained in a schema:

Contexts

Directories

Parameter files (PFI LEs) and server parameter files (SPFI LES)
Profiles

Roles

Rollback segments

Tablespaces

2-106 SQL Reference

Schema Object Names and Qualifiers

Users

In this reference, each type of object is briefly defined in Chapter 10 through
Chapter 19, in the section describing the statement that creates the database object.
These statements begin with the keyword CREATE. For example, for the definition
of a cluster, see CREATE CLUSTER on page 14-2.

See Also: Oracle Database Concepts for an overview of database
objects

You must provide names for most types of database objects when you create them.
These names must follow the rules listed in the following sections.

Schema Object Names and Qualifiers

Some schema objects are made up of parts that you can or must name, such as the
columns in a table or view, index and table partitions and subpartitions, integrity
constraints on a table, and objects that are stored within a package, including
procedures and stored functions. This section provides:

« Rules for naming schema objects and schema object location qualifiers

« Guidelines for naming schema objects and qualifiers

Schema Object Naming Rules

Every database object has a name. In a SQL statement, you represent the name of an
object with a quoted identifier or a nonquoted identifier.

« A quoted identifier begins and ends with double quotation marks (). If you
name a schema object using a quoted identifier, then you must use the double
guotation marks whenever you refer to that object.

« A nonquoted identifier is not surrounded by any punctuation.

You can use either quoted or nonquoted identifiers to name any database object,
with one exception: database links must be named with nonquoted identifiers. In
addition, Oracle strongly recommends that you not use quotation marks to make
usernames and passwords case sensitive. Please refer to CREATE USER on

page 17-32 for additional rules for naming users and passwords.

The following list of rules applies to both quoted and nonquoted identifiers unless
otherwise indicated:

Basic Elements of Oracle SQL 2-107

Schema Object Names and Qualifiers

2-108 SQL Reference

Names must be from 1 to 30 bytes long with these exceptions:
« Names of databases are limited to 8 bytes.
« Names of database links can be as long as 128 bytes.

Nonquoted identifiers cannot be Oracle Database reserved words. Quoted
identifiers can be reserved words, although this is not recommended.

Depending on the Oracle product you plan to use to access a database object,
names might be further restricted by other product-specific reserved words.

Note: The reserved word ROW Dis an exception to this rule. You
cannot use the uppercase word ROW Das a name, even in double
guotation marks. However, you can use the word with one or more
lower case letters (for example, "Rowi d" or "r owi d").

See Also:

« Appendix D, "Oracle Database Reserved Words" for a listing of
all Oracle Database reserved words

« The manual for a specific product, such as PL/SQL User's Guide
and Reference, for a list of the reserved words of that product

The Oracle SQL language contains other words that have special meanings.
These words include datatypes, function names, the dummy system table DUAL ,
and keywords (the uppercase words in SQL statements, such as DI MENSI ON,
SEGVENT, ALLOCATE, DI SABLE, and so forth). These words are not reserved.
However, Oracle uses them internally in specific ways. Therefore, if you use
these words as names for objects and object parts, then your SQL statements
may be more difficult to read and may lead to unpredictable results.

In particular, do not use words beginning with SYS_ as schema object names,
and do not use the names of SQL built-in functions for the names of schema
objects or user-defined functions.

See Also: "Datatypes" on page 2-1, "SQL Functions" on page 7-1,
and "Selecting from the DUAL Table" on page 9-19

You should use ASCII characters in database names, global database names,
and database link names, because ASCII characters provide optimal
compatibility across different platforms and operating systems.

Schema Object Names and Qualifiers

Note: Oracle recommends that user names and passwords be
encoded in ASCII or EBCDIC characters only, depending on your
platform. Please refer to Oracle Database Administrator's Guide for
more information about this recommendation.

Nonquoted identifiers must begin with an alphabetic character from your
database character set. Quoted identifiers can begin with any character.

Nonquoted identifiers can contain only alphanumeric characters from your
database character set and the underscore (), dollar sign ($), and pound sign
(#). Database links can also contain periods (.) and "at" signs (@). Oracle
strongly discourages you from using $ and # in nonquoted identifiers.

Quoted identifiers can contain any characters and punctuations marks as well
as spaces. However, neither quoted nor nonquoted identifiers can contain
double quotation marks.

Within a namespace, no two objects can have the same name.
The following schema objects share one namespace:

« Tables

« Views

« Sequences

« Private synonyms

« Stand-alone procedures

« Stand-alone stored functions

« Packages

« Materialized views

« User-defined types

Each of the following schema objects has its own namespace:
« Indexes

« Constraints

« Clusters

« Database triggers

Basic Elements of Oracle SQL 2-109

Schema Object Names and Qualifiers

« Private database links
« Dimensions

Because tables and views are in the same namespace, a table and a view in the
same schema cannot have the same name. However, tables and indexes are in
different namespaces. Therefore, a table and an index in the same schema can
have the same name.

Each schema in the database has its own namespaces for the objects it contains.
This means, for example, that two tables in different schemas are in different
namespaces and can have the same name.

Each of the following nonschema objects also has its own namespace:
« Userroles

« Public synonyms

« Public database links

« Tablespaces

« Profiles

« Parameter files (PFI LEs) and server parameter files (SPFI LES)

Because the objects in these namespaces are not contained in schemas, these
namespaces span the entire database.

8. Nonquoted identifiers are not case sensitive. Oracle interprets them as
uppercase. Quoted identifiers are case sensitive.

By enclosing names in double quotation marks, you can give the following
names to different objects in the same namespace:

enpl oyees

"enpl oyees"
" Enpl oyees"
" EMPLOYEES"

Note that Oracle interprets the following names the same, so they cannot be
used for different objects in the same namespace:

enpl oyees
EMPLOYEES
" EMPLOYEES"

2-110 SQL Reference

Schema Object Names and Qualifiers

9. Columns in the same table or view cannot have the same name. However,
columns in different tables or views can have the same name.

10. Procedures or functions contained in the same package can have the same
name, if their arguments are not of the same number and datatypes. Creating
multiple procedures or functions with the same name in the same package with
different arguments is called overloading the procedure or function.

Schema Object Naming Examples
The following examples are valid schema object names:

| ast _name

hor se

hr.hire_date

"EVEN THI S & THAT!"
a_very_long_and_val i d_name

All of these examples adhere to the rules listed in "Schema Object Naming Rules" on
page 2-107. The following example is not valid, because it exceeds 30 characters:
a_very_very_|long_and_valid_name

Although column aliases, table aliases, usernames, and passwords are not objects or

parts of objects, they must also follow these naming rules unless otherwise specified
in the rules themselves.

Schema Object Naming Guidelines
Here are several helpful guidelines for naming objects and their parts:
« Use full, descriptive, pronounceable names (or well-known abbreviations).
« Use consistent naming rules.
« Use the same name to describe the same entity or attribute across tables.

When naming objects, balance the objective of keeping names short and easy to use
with the objective of making names as descriptive as possible. When in doubt,
choose the more descriptive name, because the objects in the database may be used
by many people over a period of time. Your counterpart ten years from now may
have difficulty understanding a table column with a name like pndd instead of
paynment due_date.

Basic Elements of Oracle SQL 2-111

Syntax for Schema Objects and Parts in SQL Statements

Using consistent naming rules helps users understand the part that each table plays
in your application. One such rule might be to begin the names of all tables
belonging to the FI NANCE application with fi n_.

Use the same names to describe the same things across tables. For example, the
department number columns of the sample enpl oyees and depar t nent s tables
are both named depart nent _i d.

Syntax for Schema Objects and Parts in SQL Statements

This section tells you how to refer to schema objects and their parts in the context of
a SQL statement. This section shows you:

« The general syntax for referring to an object

« How Oracle resolves a reference to an object

« How to refer to objects in schemas other than your own

« How to refer to objects in remote databases

« How to refer to table and index partitions and subpartitions

The following diagram shows the general syntax for referring to an object or a part:

database_object_or_part::=
S
(object)

where:

« 0bj ect is the name of the object.

« schemn is the schema containing the object. The schema qualifier lets you refer
to an object in a schema other than your own. You must be granted privileges to
refer to objects in other schemas. If you omit schemmg, then Oracle assumes that
you are referring to an object in your own schema.

Only schema objects can be qualified with schema. Schema objects are shown
with list item 7 on page 2-109. Nonschema objects, also shown with list item 7,
cannot be qualified with schema because they are not schema objects. An
exception is public synonyms, which can optionally be qualified with

"PUBLI C". The quotation marks are required.

2-112 SQL Reference

Syntax for Schema Objects and Parts in SQL Statements

« part isa partof the object. This identifier lets you refer to a part of a schema
object, such as a column or a partition of a table. Not all types of objects have
parts.

« dbl i nk applies only when you are using the Oracle Database distributed
functionality. This is the name of the database containing the object. The
dbl i nk qualifier lets you refer to an object in a database other than your local
database. If you omit dbl i nk, then Oracle assumes that you are referring to an
object in your local database. Not all SQL statements allow you to access objects
on remote databases.

You can include spaces around the periods separating the components of the
reference to the object, but it is conventional to omit them.

How Oracle Database Resolves Schema Object References

When you refer to an object in a SQL statement, Oracle considers the context of the
SQL statement and locates the object in the appropriate namespace. After locating
the object, Oracle performs the operation specified by the statement on the object. If
the named object cannot be found in the appropriate namespace, then Oracle
returns an error.

The following example illustrates how Oracle resolves references to objects within
SQL statements. Consider this statement that adds a row of data to a table identified
by the name depart nent s:

I NSERT | NTO departments VALUES (
280, ' ENTERTAI NVENT_CLERK', 206, 1700);

Based on the context of the statement, Oracle determines that depar t ment s can be:
« Atable in your own schema

« Aview in your own schema

« A private synonym for a table or view

« A public synonym

Oracle always attempts to resolve an object reference within the namespaces in your
own schema before considering hamespaces outside your schema. In this example,
Oracle attempts to resolve the name depar t ment s as follows:

1. First, Oracle attempts to locate the object in the namespace in your own schema
containing tables, views, and private synonyms. If the object is a private
synonym, then Oracle locates the object for which the synonym stands. This

Basic Elements of Oracle SQL 2-113

Syntax for Schema Objects and Parts in SQL Statements

object could be in your own schema, another schema, or on another database.
The object could also be another synonym, in which case Oracle locates the
object for which this synonym stands.

2. If the object is in the namespace, then Oracle attempts to perform the statement
on the object. In this example, Oracle attempts to add the row of data to
depart ment s. If the object is not of the correct type for the statement, then
Oracle returns an error. In this example, depar t ment s must be a table, view, or
a private synonym resolving to a table or view. If depar t ment s is a sequence,
then Oracle returns an error.

3. If the object is not in any namespace searched in thus far, then Oracle searches
the namespace containing public synonyms. If the object is in that namespace,
then Oracle attempts to perform the statement on it. If the object is not of the
correct type for the statement, then Oracle returns an error. In this example, if
depart ment s is a public synonym for a sequence, then Oracle returns an error.

If a public synonym has any dependent tables or user-defined types, then you
cannot create an object with the same name as the synonym in the same schema as
the dependent objects.

If a synonym does not have any dependent tables or user-defined types, then you
can create an object with the same name in the same schema as the dependent
objects. Oracle invalidates any dependent objects and attempts to revalidate them
when they are next accessed.

Referring to Objects in Other Schemas

To refer to objects in schemas other than your own, prefix the object name with the
schema name:

schema. obj ect

For example, this statement drops the enpl oyees table in the sample schema hr :
DROP TABLE hr. enpl oyees

Referring to Objects in Remote Databases

To refer to objects in databases other than your local database, follow the object
name with the name of the database link to that database. A database link is a
schema object that causes Oracle to connect to a remote database to access an object
there. This section tells you:

« How to create database links

2-114 SQL Reference

Syntax for Schema Objects and Parts in SQL Statements

« How to use database links in your SQL statements

Creating Database Links

You create a database link with the statement CREATE DATABASE LINK on
page 14-39. The statement lets you specify this information about the database link:

« The name of the database link

« The database connect string to access the remote database

« The username and password to connect to the remote database

Oracle stores this information in the data dictionary.

Database Link Names When you create a database link, you must specify its name.

Database link names are different from names of other types of objects. They can be
as long as 128 bytes and can contain periods (.) and the "at" sign (@).

The name that you give to a database link must correspond to the name of the
database to which the database link refers and the location of that database in the
hierarchy of database names. The following syntax diagram shows the form of the
name of a database link:

dblink::=

O] (@) comect sescrpta
—(database)

where:

« dat abase should specify the nane portion of the global name of the remote
database to which the database link connects. This global name is stored in the
data dictionary of the remote database; you can see this name in the GLOBAL _
NANME data dictionary view.

« domai n should specify the donai n portion of the global name of the remote
database to which the database link connects. If you omit donai n from the
name of a database link, then Oracle qualifies the database link name with the
domain of your local database as it currently exists in the data dictionary.

« connect _descri ptor lets you further qualify a database link. Using connect
descriptors, you can create multiple database links to the same database. For
example, you can use connect descriptors to create multiple database links to

Basic Elements of Oracle SQL 2-115

Syntax for Schema Objects and Parts in SQL Statements

different instances of the Real Application Clusters that access the same
database.

The combination dat abase. domai n is sometimes called the service name.

See Also: Oracle Net Services Administrator's Guide

Username and Password Oracle uses the username and password to connect to the
remote database. The username and password for a database link are optional.

Database Connect String The database connect string is the specification used by
Oracle Net to access the remote database. For information on writing database
connect strings, see the Oracle Net documentation for your specific network
protocol. The database string for a database link is optional.

Referring to Database Links

Database links are available only if you are using Oracle distributed functionality.
When you issue a SQL statement that contains a database link, you can specify the
database link name in one of these forms:

« The complete database link name as stored in the data dictionary, including the
dat abase, domai n, and optional connect _descri pt or components.

« Thepartial database link name is the dat abase and optional connect _
descri pt or components, but not the dormai n component.

Oracle performs these tasks before connecting to the remote database:

1. If the database link name specified in the statement is partial, then Oracle
expands the name to contain the domain of the local database as found in the
global database name stored in the data dictionary. (You can see the current
global database name in the GLOBAL_ NAME data dictionary view.)

2. Oracle first searches for a private database link in your own schema with the
same name as the database link in the statement. Then, if necessary, it searches
for a public database link with the same name.

« Oracle always determines the username and password from the first
matching database link (either private or public). If the first matching
database link has an associated username and password, then Oracle uses
it. If it does not have an associated username and password, then Oracle
uses your current username and password.

« If the first matching database link has an associated database string, then
Oracle uses it. Otherwise Oracle searches for the next matching (public)

2-116 SQL Reference

Syntax for Schema Objects and Parts in SQL Statements

database link. If no matching database link is found, or if no matching link
has an associated database string, then Oracle returns an error.

3. Oracle uses the database string to access the remote database. After accessing
the remote database, if the value of the GLOBAL _NAMES parameter ist r ue,
then Oracle verifies that the dat abase. domai n portion of the database link
name matches the complete global name of the remote database. If this
condition is true, then Oracle proceeds with the connection, using the username
and password chosen in Step 2. If not, Oracle returns an error.

4. If the connection using the database string, username, and password is
successful, then Oracle attempts to access the specified object on the remote
database using the rules for resolving object references and referring to objects
in other schemas discussed earlier in this section.

You can disable the requirement that the dat abase. domai n portion of the
database link name must match the complete global name of the remote database
by setting to f al se the initialization parameter GLOBAL_NANES or the GLOBAL _
NANES parameter of the ALTER SYSTEMor ALTER SESSI ON statement.

See Also: Oracle Database Administrator's Guide for more
information on remote name resolution

Referring to Partitioned Tables and Indexes

Tables and indexes can be partitioned. When partitioned, these schema objects
consist of a number of parts called partitions, all of which have the same logical
attributes. For example, all partitions in a table share the same column and
constraint definitions, and all partitions in an index share the same index columns.

Partition-extended and subpartition-extended names let you perform some
partition-level and subpartition-level operations, such as deleting all rows from a
partition or subpartition, on only one partition or subpartition. Without extended
names, such operations would require that you specify a predicate (WHERE clause).
For range- and list-partitioned tables, trying to phrase a partition-level operation
with a predicate can be cumbersome, especially when the range partitioning key
uses more than one column. For hash partitions and subpartitions, using a predicate
is more difficult still, because these partitions and subpartitions are based on a
system-defined hash function.

Partition-extended names let you use partitions as if they were tables. An advantage
of this method, which is most useful for range-partitioned tables, is that you can
build partition-level access control mechanisms by granting (or revoking) privileges

Basic Elements of Oracle SQL 2-117

Syntax for Schema Objects and Parts in SQL Statements

on these views to (or from) other users or roles.To use a partition as a table, create a
view by selecting data from a single partition, and then use the view as a table.

You can specify partition-extended or subpartition-extended table names for the
following DML statements:

« DELETE
« | NSERT
« LOCKTABLE
« SELECT
« UPDATE

Note: For application portability and ANSI syntax compliance,
Oracle strongly recommends that you use views to insulate
applications from this Oracle proprietary extension.

Syntax The basic syntax for using partition-extended and subpartition-extended
table names is:

partition_extended_name::=

PARTITION @{partition
SUBPARTITION

@O (@),

Restrictions on Extended Names Currently, the use of partition-extended and
subpartition-extended table names has the following restrictions:

= No remote tables: A partition-extended or subpartition-extended table name
cannot contain a database link (dblink) or a synonym that translates to a table
with a dblink. To use remote partitions and subpartitions, create a view at the
remote site that uses the extended table name syntax and then refer to the
remote view.

« No synonyms: A partition or subpartition extension must be specified with a
base table. You cannot use synonyms, views, or any other objects.

2-118 SQL Reference

Syntax for Schema Objects and Parts in SQL Statements

Example In the following statement, sal es is a partitioned table with partition
sal es_ql_2000. You can create a view of the single partition sal es_ql1_ 2000,
and then use it as if it were a table. This example deletes rows from the partition.

CREATE VI EW QL_2000_sal es AS
SELECT * FROM sal es PARTI TION (SALES_ Q1 2000);

DELETE FROM QL_2000_sal es WHERE amount _sol d < 0;

Referring to Object Type Attributes and Methods

To refer to object type attributes or methods in a SQL statement, you must fully
gualify the reference with a table alias. Consider the following example from the
sample schema oe, which contains a type cust _addr ess_t yp and a table
cust onmer s with acust _addr ess column based on the cust _addr ess_t yp:

CREATE TYPE cust_address_typ
O D ' 82A4AF6A4CD1656DE034080020E0EE3D

AS OBJECT
(street_address VARCHAR2(40)
, postal _code VARCHAR2(10)
, City VARCHAR2(30)
, State_province VARCHAR2(10)
country_id CHAR(2)

/

CREATE TABLE cust omers
(customer_id NUVBER(6)
, cust_first_name VARCHAR2(20) CONSTRAINT cust _fname_nn NOT NULL
, cust_last_nane VARCHAR2(20) CONSTRAINT cust _| name_nn NOT NULL
, cust_address cust _address_typ

In a SQL statement, reference to the post al _code attribute must be fully qualified
using a table alias, as illustrated in the following example:

SELECT c. cust _address. postal _code FROM custoners c;

UPDATE custormers ¢ SET c.cust_address. postal _code = ' GUL3 BES'
WHERE c. cust _address.city = 'Fleet';

To reference a member method that does not accept arguments, you must provide
empty parentheses. For example, the sample schema oe contains an object table

Basic Elements of Oracle SQL 2-119

Syntax for Schema Objects and Parts in SQL Statements

cat egori es_t ab, based on cat al og_t yp, which contains the member function
get Cat al ogNane. In order to call this method in a SQL statement, you must
provide empty parentheses as shown in this example:

SELECT c. get Cat al ogNane() FROM categories_tab ¢
WHERE category_id = 90;

See Also: Oracle Database Concepts for more information on
user-defined datatypes

2-120 SQL Reference

3

Pseudocolumns

A pseudocolumn behaves like a table column, but is not actually stored in the table.
You can select from pseudocolumns, but you cannot insert, update, or delete their
values.

This chapter contains the following sections:

Hierarchical Query Pseudocolumns
Sequence Pseudocolumns

Version Query Pseudocolumns
OBJECT_ID

OBJECT_VALUE

ORA_ROWSCN

ROWID

ROWNUM

XMLDATA

Hierarchical Query Pseudocolumns

The hierarchical query pseudocolumns are valid only in hierarchical queries. The
hierarchical query pseudocolumns are:

CONNECT_BY_ISCYCLE
CONNECT_BY_ISLEAF
LEVEL

Pseudocolumns 3-1

Hierarchical Query Pseudocolumns

CONNECT BY ISCYCLE

The CONNECT_BY_| SCYCLE pseudocolumn returns 1 if the current row has a child
which is also its ancestor. Otherwise it returns 0.

You can specify CONNECT_BY_| SCYCLE only if you have specified the NOCYCLE
parameter of the CONNECT BY clause. NOCYCLE enables Oracle to return the results
of a query that would otherwise fail because of a CONNECT BY loop in the data.

See Also: "Hierarchical Queries" on page 9-3 for more
information about the NOCYCLE parameter and "Hierarchical
Query Examples" on page 9-6 for an example that uses the
CONNECT_BY_| SCYCLE pseudocolumn

CONNECT BY_ISLEAF

The CONNECT_BY_| SLEAF pseudocolumn returns 1 if the current row is a leaf of
the tree defined by the CONNECT BY condition. Otherwise it returns 0. This
information indicates whether a given row can be further expanded to show more
of the hierarchy.

CONNECT_BY_ISLEAF Example The following example shows the first three
levels of the hr . enpl oyees table, indicating for each row whether it is a leaf row
(indicated by 1 in the | sLeaf column) or whether it has child rows (indicated by 0
in the | sLeaf column):

SELECT | ast _name "Enpl oyee", CONNECT_BY_| SLEAF "I slLeaf",
LEVEL, SYS_CONNECT_BY_PATH(| ast_name, '/') "Path"
FROM enpl oyees
WHERE | evel <= 3 AND departnent_id = 80
START WTH | ast_name = 'King'
CONNECT BY PRI OR enpl oyee_id = manager _id AND LEVEL <= 4;

Enpl oyee | sLeaf LEVEL Path

Ki ng 1 1 /King

Russel | 0 2 |/ King/Russel |

Tucker 1 3 /King/ Russel | / Tucker
Bernstein 1 3 /King/Russel | / Bernstein
Hal | 1 3 /King/ Russel | / Hal |

d sen 1 3 /King/Russel | / O sen
Canbr aul t 1 3 /King/ Russel | / Canbraul t
Tuvaul t 1 3 /King/ Russel | / Tuvaul t
Partners 0 2 [King/Partners

Ki ng 1 3 [King/ Partners/King

3-2 SQL Reference

Hierarchical Query Pseudocolumns

LEVEL

Sully 1 3 /King/Partners/Sully
McEwen 1 3 [King/ Partners/ McEwen
Snmith 1 3 /King/Partners/Snith
Dor an 1 3 [King/ Partners/Doran
Sewal | 1 3 /King/ Partners/ Sewal |
Errazuriz 0 2 /King/Errazuriz

1 3 /King/ Errazuriz/ Vi shney

Vi shney

See Also: "Hierarchical Queries" on page 9-3 and SYS_
CONNECT_BY_PATH on page 7-215

For each row returned by a hierarchical query, the LEVEL pseudocolumn returns 1
for a root row, 2 for a child of a root, and so on. A root row is the highest row within
an inverted tree. A child row is any nonroot row. A parent row is any row that has
children. A leaf row is any row without children. Figure 3—-1 shows the nodes of an
inverted tree with their LEVEL values.

Figure 3—-1 Hierarchical Tree

Level 1 p"gr%tr/] ¢

Level 2 parent parent

v | Al AERES

Level 4 Shite child/ child/

To define a hierarchical relationship in a query, you must use the START W THand
CONNECT BY clauses.

See Also: "Hierarchical Queries" on page 9-3 for information on

hierarchical queries in general and "IN" on page 6-14 for restrictions
on using the LEVEL pseudocolumn

Pseudocolumns 3-3

Sequence Pseudocolumns

Sequence Pseudocolumns

A sequence is a schema object that can generate unique sequential values. These
values are often used for primary and unique keys. You can refer to sequence values
in SQL statements with these pseudocolumns:

« CURRVAL: Returns the current value of a sequence
« NEXTVAL: Increments the sequence and returns the next value
You must qualify CURRVAL and NEXTVAL with the name of the sequence:

sequence. CURRVAL
sequence. NEXTVAL

To refer to the current or next value of a sequence in the schema of another user, you
must have been granted either SELECT object privilege on the sequence or SELECT
ANY SEQUENCE system privilege, and you must qualify the sequence with the
schema containing it:

schema. sequence. CURRVAL
schema. sequence. NEXTVAL

To refer to the value of a sequence on a remote database, you must qualify the
sequence with a complete or partial name of a database link:

schema. sequence. CURRVAL@Ib! i nk
schema. sequence. NEXTVAL@Ibl i nk

See Also: "Referring to Objects in Remote Databases" on
page 2-114 for more information on referring to database links

Where to Use Sequence Values
You can use CURRVAL and NEXTVAL in the following locations:

« The select list of a SELECT statement that is not contained in a subquery,
materialized view, or view

« The select list of a subquery in an | NSERT statement
« The VALUES clause of an | NSERT statement
« The SET clause of an UPDATE statement

Restrictions on Sequence Values You cannot use CURRVAL and NEXTVAL in the
following constructs:

3-4 SQL Reference

Sequence Pseudocolumns

« Asubquery in a DELETE, SELECT, or UPDATE statement

« A query of a view or of a materialized view

« A SELECT statement with the DI STI NCT operator

« A SELECT statement with a GROUP BY clause or ORDER BY clause

« A SELECT statement that is combined with another SELECT statement with the
UNI ON, | NTERSECT, or M NUS set operator

« The WHERE clause of a SELECT statement

« The DEFAULT value of a column in a CREATE TABLE or ALTER TABLE
statement

« The condition of a CHECK constraint

Within a single SQL statement that uses CURRVAL or NEXTVAL, all referenced LONG
columns, updated tables, and locked tables must be located on the same database.

How to Use Sequence Values

When you create a sequence, you can define its initial value and the increment
between its values. The first reference to NEXTVAL returns the initial value of the
sequence. Subsequent references to NEXTVAL increment the sequence value by the
defined increment and return the new value. Any reference to CURRVAL always
returns the current value of the sequence, which is the value returned by the last
reference to NEXTVAL.

Before you use CURRVAL for a sequence in your session, you must first initialize the
sequence with NEXTVAL. Please refer to CREATE SEQUENCE on page 15-88 for
information on sequences.

Within a single SQL statement containing a reference to NEXTVAL, Oracle
increments the sequence only once:

« For each row returned by the outer query block of a SELECT statement. Such a
guery block can appear in the following places:

« Atop-level SELECT statement

« An | NSERT ... SELECT statement (either single-table or multitable). For a
multitable insert, the reference to NEXTVAL must appear in the VALUES clause,
and the sequence is updated once for each row returned by the subquery, even
though NEXTVAL may be referenced in multiple branches of the multitable
insert.

Pseudocolumns 3-5

Sequence Pseudocolumns

« A CREATETABLE ... AS SELECT statement

« A CREATE MATERI ALl ZED VI EW... AS SEL ECT statement
« For each row updated in an UPDATE statement

« For each | NSERT statement containing a VALUES clause

« For each row either inserted or updated in a MERGE statement. The reference to
NEXTVAL can appear in the mer ge_i nsert _cl ause or the mer ge_updat e_
cl ause.

If any of these locations contains more than one reference to NEXTVAL, then Oracle
increments the sequence once and returns the same value for all occurrences of
NEXTVAL.

If any of these locations contains references to both CURRVAL and NEXTVAL, then
Oracle increments the sequence and returns the same value for both CURRVAL and
NEXTVAL.

A sequence can be accessed by many users concurrently with no waiting or locking.

Finding the next value of a sequence: Example This example selects the next
value of the employee sequence in the sample schema hr :

SELECT enpl oyees_seq. next val
FROM DUAL;

Inserting sequence values into a table: Example This example increments the
employee sequence and uses its value for a new employee inserted into the sample
table hr . enpl oyees:

I NSERT | NTO enpl oyees
VALUES (enpl oyees_seq. nextval, 'John', 'Doe', 'jdoe',
' 555-1212', TO DATE(SYSDATE), 'PU CLERK', 2500, null, null,
30);

Reusing the current value of a sequence: Example This example adds a new
order with the next order number to the master order table. It then adds suborders
with this number to the detail order table:

I NSERT I NTO orders (order_id, order_date, custoner_id)
VALUES (orders_seq. nextval, TO DATE(SYSDATE), 106);

I NSERT | NTO order _itens (order_id, line_itemid, product_id)
VALUES (orders_seq.currval, 1, 2359);

3-6 SQL Reference

OBJECT_ID

I NSERT I NTO order _items (order_id, line_itemid, product_id)

VALUES (orders_seq.currval, 2, 3290);

I NSERT | NTO order _itens (order_id, line_itemid, product_id)

VALUES (orders_seq.currval, 3, 2381);

Version Query Pseudocolumns

The version query pseudocolumns are valid only in Oracle Flashback Version
Query, which is a form of Oracle Flashback Query. The version query
pseudocolumns are;

OBJECT _ID

VERS| ONS_STARTTI ME: Returns the timestamp of the first version of the rows
returned by the query.

VERS| ONS_STARTSCN: Returns the SCN of the first version of the rows
returned by the query.

VERSI ONS_ENDTI ME: Returns the timestamp of the last version of the rows
returned by the query.

VERS| ONS_ENDSCN: Returns the SCN of the last version of the rows returned
by the query.

VERSI ONS_XI D: For each version of each row, returns the transaction ID (a
RAW number) of the transaction that created that row version.

VERS| ONS_OPERATI ON: For each version of each row, returns a single
character representing the operation that caused that row version. The values
returned are | (for an insert operation), U (for an update operation) or D (for a
delete operation).

See Also: flashback_query_clause on page 19-18 for more
information on version queries

The OBJECT _| Dpseudocolumn returns the object identifier of a column of an object
table or view. Oracle uses this pseudocolumn as the primary key of an object table.
OBJECT | Dis useful in | NSTEAD CF triggers on views and for identifying the ID of
a substitutable row in an object table.

Pseudocolumns 3-7

OBJECT_VALUE

Note: In earlier releases, this pseudocolumn was called SYS _NC
O D$. That name is still supported for backward compatibility.
However, Oracle recommends that you use the more intuitive name
OBJECT_I D.

See Also: Oracle Database Application Developer's Guide -
Object-Relational Features for examples of the use of this
pseudocolumn

OBJECT_VALUE

The OBJECT_VALUE pseudocolumn returns system-generated names for the
columns of an object table, XML Ty pe table, object view, or XML Ty pe view. This
pseudocolumn is useful for identifying the value of a substitutable row in an object
table and for creating object views with the W THOBJECT | DENTI FI ERclause.

Note: In earlier releases, this pseudocolumn was called SYS _NC
ROW NFC$. That name is still supported for backward
compatibility. However, Oracle recommends that you use the more
intuitive name OBJECT _VALUE.

See Also:

= Object_table on page 16-63 and object_view_clause on page 17-45
for more information on the use of this pseudocolumn

« Oracle Database Application Developer's Guide - Object-Relational
Features for examples of the use of this pseudocolumn

ORA_ROWSCN

For each row, ORA_ROWSCN returns the conservative upper bound system change
number (SCN) of the most recent change to the row. This pseudocolumn is useful
for determining approximately when a row was last updated. It is not absolutely
precise, because Oracle tracks SCNs by transaction committed for the block in
which the row resides. You can obtain a more fine-grained approximation of the
SCN by creating your tables with row-level dependency tracking. Please refer to
CREATE TABLE ... NOROWDEPENDENCIES | ROWDEPENDENCIES on

page 16-58 for more information on row-level dependency tracking.

3-8 SQL Reference

ROWID

ROWID

You cannot use this pseudocolumn in a query to a view. However, you can use it to
refer to the underlying table when creating a view. You can also use this
pseudocolumn in the WHERE clause of an UPDATE or DELETE statement.

ORA_ROWSCN s not supported for Flashback Query. Instead, use the version query
pseudocolumns, which are provided explicitly for Flashback Query. Please refer to
the SELECT ... flashback _query_clause on page 19-18 for information on Flashback
Query and "Version Query Pseudocolumns” on page 3-7 for additional information
on those pseudocolumns.

Restriction: This pseudocolumn is not supported for external tables.
Example The first statement below uses the ORA ROASCN pseudocolumn to get
the system change number of the last operation on the enpl oyees table. The

second statement uses the pseudocolumn with the SCN_TO_TI MESTAMP function to
determine the timestamp of the operation:

SELECT ORA ROWSCN, |ast_nane FROM enpl oyees WHERE enpl oyee_id = 188;

SELECT SCN_TO_TI MESTAMP(ORA_ROWSCN), | ast_name FROM enpl oyees
WHERE enpl oyee_id = 188;

See Also: SCN_TO_TIMESTAMP on page 7-184

For each row in the database, the RON D pseudocolumn returns the address of the
row. Oracle Database rowid values contain information necessary to locate a row:

« The data object number of the object
« The data block in the datafile in which the row resides
« The position of the row in the data block (first row is 0)

« The datafile in which the row resides (first file is 1). The file number is relative
to the tablespace.

Usually, a rowid value uniquely identifies a row in the database. However, rows in
different tables that are stored together in the same cluster can have the same rowid.

Values of the ROW D pseudocolumn have the datatype RON D or UROW D. Please
refer to "ROWID Datatype" on page 2-37 and "UROWID Datatype" on page 2-38 for
more information.

Rowid values have several important uses:

Pseudocolumns 3-9

ROWNUM

ROWNUM

« They are the fastest way to access a single row.
« They can show you how the rows in a table are stored.
« They are unique identifiers for rows in a table.

You should not use ROWN D as the primary key of a table. If you delete and reinsert a
row with the Import and Export utilities, for example, then its rowid may change. If
you delete a row, then Oracle may reassign its rowid to a new row inserted later.

Although you can use the RON D pseudocolumn in the SELECT and WHERE clause
of a query, these pseudocolumn values are not actually stored in the database. You
cannot insert, update, or delete a value of the RON D pseudocolumn.

Example This statement selects the address of all rows that contain data for
employees in department 20:

SELECT RON'D, |ast_nane
FROM enpl oyees
WHERE department _id = 20;

For each row returned by a query, the ROANUMpseudocolumn returns a number
indicating the order in which Oracle selects the row from a table or set of joined
rows. The first row selected has a ROAMNUMof 1, the second has 2, and so on.

You can use ROANUMto limit the number of rows returned by a query, as in this
example:

SELECT * FROM enpl oyees WHERE ROANUM < 10;

If an ORDER BY clause follows ROANUMin the same query, then the rows will be
reordered by the ORDER BY clause. The results can vary depending on the way the
rows are accessed. For example, if the ORDER BY clause causes Oracle to use an
index to access the data, then Oracle may retrieve the rows in a different order than
without the index. Therefore, the following statement will not have the same effect
as the preceding example:

SELECT * FROM enpl oyees WHERE ROANUM < 11 ORDER BY | ast _nane;
If you embed the ORDER BY clause in a subquery and place the ROANUMcondition in

the top-level query, then you can force the ROAWNUMcondition to be applied after the
ordering of the rows. For example, the following query returns the employees with

3-10 SQL Reference

XMLDATA

XMLDATA

the 10 smallest employee numbers. This is sometimes referred to as top-N
reporting:

SELECT * FROM
(SELECT * FROM enpl oyees ORDER BY enpl oyee_i d)
VHERE RO/NUM < 11;

In the preceding example, the ROANUMvalues are those of the top-level SELECT
statement, so they are generated after the rows have already been ordered by
enpl oyee_i d in the subquery.

Conditions testing for ROANUMvalues greater than a positive integer are always
false. For example, this query returns no rows:

SELECT * FROM enpl oyees
WHERE ROMNUM > 1;

The first row fetched is assigned a ROANUMof 1 and makes the condition false. The
second row to be fetched is now the first row and is also assigned a ROANUMof 1
and makes the condition false. All rows subsequently fail to satisfy the condition, so
no rows are returned.

You can also use ROWNUMto assign unique values to each row of a table, as in this
example:

UPDATE my_tabl e
SET col uml = ROMUM

Please refer to the function ROW_NUMBER on page 7-179 for an alternative
method of assigning unique numbers to rows.

Note: Using ROANUMIn a query can affect view optimization. For
more information, see Oracle Database Concepts.

Oracle stores XMLType data either in LOB or object-relational columns, based on
XMLSchema information and how you specify the storage clause. The XMLDATA
pseudocolumn lets you access the underlying LOB or object relational column to
specify additional storage clause parameters, constraints, indexes, and so forth.

Example The following statements illustrate the use of this pseudocolumn.
Suppose you create a simple table of XMLType:

Pseudocolumns 3-11

XMLDATA

CREATE TABLE xm _l ob_tab of XM.TYPE;

The default storage is in a CLOB column. To change the storage characteristics of the
underlying LOB column, you can use the following statement:

ALTER TABLE xnl _| ob_tab MODIFY LOB (XMLDATA)
(STORAGE (BUFFER POOL DEFAULT) CACHE);

Now suppose you have created an XMLSchema-based table like the xwar ehouses
table created in "Using XML in SQL Statements” on page E-11. You could then use
the XMLDATA column to set the properties of the underlying columns, as shown in
the following statement:

ALTER TABLE xwar ehouses ADD (UNI QUE(XMLDATA. " War ehousel d"));

3-12 SQL Reference

A

Operators

An operator manipulates data items and returns a result. Syntactically, an operator
appears before or after an operand or between two operands.

This chapter contains these sections:
« About SQL Operators

« Arithmetic Operators

« Concatenation Operator

« Hierarchical Query Operators

« Set Operators

« Multiset Operators

« User-Defined Operators

This chapter discusses nonlogical (non-Boolean) operators. These operators cannot
by themselves serve as the condition of a WHERE or HAVI NGclause in queries or
subqueries. For information on logical operators, which serve as conditions, please
refer to Chapter 6, "Conditions".

About SQL Operators

Operators manipulate individual data items called operands or arguments.
Operators are represented by special characters or by keywords. For example, the
multiplication operator is represented by an asterisk (*).

If you have installed Oracle Text, then you can use the SCORE operator, which is
part of that product, in Oracle Text queries. You can also create conditions with the
built-in Text operators, including CONTAI NS, CATSEARCH, and MATCHES. For more
information on these Oracle Text elements, please refer to Oracle Text Reference.

Operators 4-1

About SQL Operators

If you are using Oracle Expression Filter, then you can create conditions with the
built-in EVALUATE operator that is part of that product. For more information,
please refer to Oracle Database Application Developer's Guide - Expression Filter.

Unary and Binary Operators
The two general classes of operators are:

= unary: A unary operator operates on only one operand. A unary operator
typically appears with its operand in this format:

oper at or operand

« binary: A binary operator operates on two operands. A binary operator appears
with its operands in this format:
operandl operator operand2

Other operators with special formats accept more than two operands. If an operator

is given a null operand, the result is always null. The only operator that does not
follow this rule is concatenation (] |).

Operator Precedence

Precedence is the order in which Oracle Database evaluates different operators in
the same expression. When evaluating an expression containing multiple operators,
Oracle evaluates operators with higher precedence before evaluating those with
lower precedence. Oracle evaluates operators with equal precedence from left to
right within an expression.

Table 4-1 lists the levels of precedence among SQL operators from high to low.
Operators listed on the same line have the same precedence.

Table 4-1 SQL Operator Precedence

Operator Operation

+, - (asunary operators), PRI OR, identity, negation, location in hierarchy
CONNECT_BY_ROOT

* multiplication, division

+, - (asbinary operators), || addition, subtraction, concatenation
SQL conditions are evaluated after SQL See "Condition Precedence" on page 6-4
operators

4-2 SQL Reference

Arithmetic Operators

Precedence Example In the following expression, multiplication has a higher
precedence than addition, so Oracle first multiplies 2 by 3 and then adds the result
to 1.

1+42*3

You can use parentheses in an expression to override operator precedence. Oracle
evaluates expressions inside parentheses before evaluating those outside.

SQL also supports set operators (UNI ON, UNI ONALL, | NTERSECT, and M NUS),
which combine sets of rows returned by queries, rather than individual data items.
All set operators have equal precedence.

See Also: "Hierarchical Query Operators" on page 4-6 and
"Hierarchical Queries" on page 9-3 for information on the PRI OR
operator, which is used only in hierarchical queries

Arithmetic Operators

You can use an arithmetic operator with one or two arguments to negate, add,
subtract, multiply, and divide numeric values. Some of these operators are also used
in datetime and interval arithmetic. The arguments to the operator must resolve to
numeric datatypes or to any datatype that can be implicitly converted to a numeric
datatype.

Unary arithmetic operators return the same datatype as the numeric datatype of the
argument. For binary arithmetic operators, Oracle determines the argument with
the highest numeric precedence, implicitly converts the remaining arguments to
that datatype, and returns that datatype. Table 4-2 lists arithmetic operators.

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion, "Numeric
Precedence" on page 2-17 for information on numeric precedence,
and "Datetime/Interval Arithmetic" on page 2-27

Operators 4-3

Concatenation Operator

Table 4-2 Arithmetic Operators

Operator Purpose Example
+ - When these denote a positive ~ SELECT * FROM order_itens
or negative expression, they are \WHERE quantity = -1;
unary operators. SELECT * FROM enpl oyees
WHERE -sal ary < 0;
When they add or subtract, SELECT hire_date
they are binary operators. FROM enpl oyees
VWHERE SYSDATE - hire_date
> 365;
*/ Multiply, divide. These are UPDATE enpl oyees
binary operators. SET salary = salary * 1.1,

Do not use two consecutive minus signs (--) in arithmetic expressions to indicate
double negation or the subtraction of a negative value. The characters -- are used to
begin comments within SQL statements. You should separate consecutive minus
signs with a space or parentheses. Please refer to "Comments" on page 2-91 for more
information on comments within SQL statements.

Concatenation Operator

The concatenation operator manipulates character strings and CLOB data. Table 4-3
describes the concatenation operator.

Table 4-3 Concatenation Operator

Operator Purpose Example

11 Concatenates SELECT 'Nane is ' || last_nane
character strings FROM enpl oyees;
and CLOB data.

The result of concatenating two character strings is another character string. If both
character strings are of datatype CHAR, the result has datatype CHAR and is limited
to 2000 characters. If either string is of datatype VARCHAR2, the result has datatype
VARCHARZ and is limited to 4000 characters. If either argument is a CLOB, the result
is a temporary CLOB. Trailing blanks in character strings are preserved by
concatenation, regardless of the datatypes of the string or CLOB.

4-4 SQL Reference

Concatenation Operator

On most platforms, the concatenation operator is two solid vertical bars, as shown
in Table 4-3. However, some IBM platforms use broken vertical bars for this
operator. When moving SQL script files between systems having different character
sets, such as between ASCII and EBCDIC, vertical bars might not be translated into
the vertical bar required by the target Oracle Database environment. Oracle
provides the CONCAT character function as an alternative to the vertical bar operator
for cases when it is difficult or impossible to control translation performed by
operating system or network utilities. Use this function in applications that will be
moved between environments with differing character sets.

Although Oracle treats zero-length character strings as nulls, concatenating a
zero-length character string with another operand always results in the other
operand, so null can result only from the concatenation of two null strings.
However, this may not continue to be true in future versions of Oracle Database. To
concatenate an expression that might be null, use the NVL function to explicitly
convert the expression to a zero-length string.

See Also:

« "Character Datatypes" on page 2-10 for more information on
the differences between the CHAR and VARCHAR?2 datatypes

« The functions CONCAT on page 7-40 and NVL on page 7-131

« Oracle Database Application Developer's Guide - Large Objects for
more information about CLOBs

Concatenation Example This example creates a table with both CHAR and
VARCHAR2 columns, inserts values both with and without trailing blanks, and then
selects these values and concatenates them. Note that for both CHAR and VARCHAR2
columns, the trailing blanks are preserved.

CREATE TABLE tabl (col 1 VARCHAR2(6), col 2 CHAR(6),
col 3 VARCHAR2(6), col4 CHAR(6));

I NSERT INTO tabl (col 1, col 2, col 3, col 4)
VALUES ('abc', 'def ", 'ghi Yokl

SELECT col 1] | col 2| | col 3| | col 4 "Concat enati on"
FROM t ab1;

Concat enat i on

Operators 4-5

Hierarchical Query Operators

Hierarchical Query Operators

Two operators, PRI ORand CONNECT_BY_RQOOT, are valid only in hierarchical
gueries.

PRIOR

In a hierarchical query, one expression in the CONNECT BY condi t i on must be
qualified by the PRI OR operator. If the CONNECT BY condi ti on is compound, then
only one condition requires the PRI OR operator, although you can have multiple
PRI OR conditions. PRI OR evaluates the immediately following expression for the
parent row of the current row in a hierarchical query.

PRI ORis most commonly used when comparing column values with the equality
operator. (The PRI OR keyword can be on either side of the operator.) PRI OR causes
Oracle to use the value of the parent row in the column. Operators other than the
equal sign (=) are theoretically possible in CONNECT BY clauses. However, the
conditions created by these other operators can result in an infinite loop through the
possible combinations. In this case Oracle detects the loop at run time and returns
an error. Please refer to "Hierarchical Queries" on page 9-3 for more information on
this operator, including examples.

CONNECT_BY_ROOT

CONNECT_BY_RQOOT is a unary operator that is valid only in hierarchical queries.
When you qualify a column with this operator, Oracle returns the column value
using data from the root row. This operator extends the functionality of the
CONNECT BY [PRI OR] condition of hierarchical queries.

Restriction on CONNECT_BY_ROOT You cannot specify this operator in the
START W TH condition or the CONNECT BY condition.

See Also: "CONNECT_BY_ROOT Examples" on page 9-8

Set Operators

Set operators combine the results of two component queries into a single result.
Queries containing set operators are called compound queries. Table 4-4 lists SQL
set operators. They are fully described, including examples and restrictions on these
operators, in "The UNION [ALL], INTERSECT, MINUS Operators" on page 9-9.

4-6 SQL Reference

Multiset Operators

Table 4-4 Set Operators

Operator Returns

UNI ON All rows selected by either query

UNI ON ALL All rows selected by either query, including all duplicates

| NTERSECT All distinct rows selected by both queries

M NUS All distinct rows selected by the first query but not the second

Multiset Operators

Multiset operators combine the results of two nested tables into a single nested
table.

The examples related to multiset operators require that two nested tables be created
and loaded with data as follows:

First, make a copy of the oe. cust oner s table called cust oner s_deno. We will
add the nested table columns to cust orrer s_deno.

CREATE TABLE custoners_demo AS
SELECT * FROM cust omers;

Next, create a table type called cust _addr ess_t ab_t yp. This type will be used
when creating the nested table columns.

CREATE TYPE cust _address_tab_typ AS
TABLE OF cust_address_typ
/

Now, create two nested table columns in the cust oner s_deno table:

ALTER TABLE custoners_deno
ADD (cust_address_ntab cust_address_tab_typ,
cust _address2_ntab cust_address_tab_typ)
NESTED TABLE cust address _ntab STORE AS cust _address _ntab store
NESTED TABLE cust _address2_ntab STORE AS cust_address2_ntab_store;

Finally, load data into the two new nested table columns using data from the cust _
addr ess column of the oe. cust oner s table:

UPDATE CUSTOVERS_DEMO cd
SET cust _address_ntab =
CAST(MULTI SET(SELECT cust _address
FROM cust oners ¢

Operators 4-7

Multiset Operators

WHERE c. customer _id =
cd. custoner _id) as cust_address_tab_typ);

UPDATE CUSTOVERS_DEMO cd
SET cust _address2_ntab =
CAST(MULTI SET(SELECT cust _address
FROM cust oners ¢
WHERE c. custoner_id =
cd. custoner_id) as cust_address_tab_typ);

MULTISET EXCEPT

MULTI SET EXCEPT takes as arguments two nested tables and returns a nested table
whose elements are in the first nested table but not in the second nested table. The
two input nested tables must be of the same type, and the returned nested table is of
the same type as well.

multiset_except::=

ALL

l DISTINCT '
—>Cnested_table1>a| MULTISET |->| EXCEPT } (nested_table2 >

« The ALL keyword instructs Oracle to return all elements in nest ed_t abl el
that are not in nest ed_t abl e2. For example, if a particular element occurs m
timesin nest ed_t abl el and n times in nest ed_t abl e2, then the result will
have (m n) occurrences of the element if m >n and 0 occurrences if nk=n. ALL
is the default.

« The DI STI NCT keyword instructs Oracle to eliminate any element in nest ed_
t abl e1 which is also in nest ed_t abl e2, regardless of the number of
occurrences.

« The element types of the nested tables must be comparable. Please refer to
"Comparison Conditions" on page 6-4 for information on the comparability of
nonscalar types.

Example

The following example compares two nested tables and returns a nested table of
those elements found in the first nested table but not in the second nested table:

SELECT custoner_id, cust_address_ntab
MULTI SET EXCEPT DI STI NCT cust _address2_ntab mul tiset_except

4-8 SQL Reference

Multiset Operators

FROM cust oner s_deno;

CUSTOMER | D MULTI SET_EXCEPT(STREET_ADDRESS, POSTAL_CODE, CITY, STATE PROVINCE, COUNTRY_| D)

101 CUST_ADDRESS_TAB_TYP()
102 CUST_ADDRESS_TAB_TYP()
103 CUST_ADDRESS TAB_ TYP()
104 CUST_ADDRESS_TAB_TYP()
105 CUST_ADDRESS_TAB_TYP()

The preceding example requires the table cust oner s_deno and two nested table
columns containing data. Please refer to "Multiset Operators" on page 4-7 to create
this table and nested table columns.

MULTISET INTERSECT

MULTI SET | NTERSECT takes as arguments two nested tables and returns a nested
table whose values are common in the two input nested tables. The two input
nested tables must be of the same type, and the returned nested table is of the same
type as well.

multiset_intersect::=

DISTINCT
—>Cnested_table1)a| MULTISET |->| INTERSECT } 5 nested_table2)>

« The ALL keyword instructs Oracle to return all common occurrences of
elements that are in the two input nested tables, including duplicate common
values and duplicate common NULL occurrences. For example, if a particular
value occurs mtimes in nest ed_t abl el and ntimesin nest ed_t abl e2, then
the result would contain the element m n(m n) times. ALL is the default.

« The DI STI NCT keyword instructs Oracle to eliminate duplicates from the
returned nested table, including duplicates of NULL, if they exist.

« The element types of the nested tables must be comparable. Please refer to
"Comparison Conditions" on page 6-4 for information on the comparability of
nonscalar types.

Example

The following example compares two nested tables and returns a nested table of
those elements found in both input nested tables:

Operators 4-9

Multiset Operators

SELECT custoner_id, cust_address_ntab
MULTI SET | NTERSECT DI STINCT cust _address2_ntab mul tiset_intersect
FROM cust oner s_deno;

CUSTOVER_I| D MULTI SET_| NTERSECT(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID

101 CUST_ADDRESS TAB TYP(CUST_ADDRESS TYP(' 514 W Superior St', '46901', 'Kokomo', 'IN, 'US))

102 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS TYP(' 2515 Bloyd Ave', '46218', 'Indianapolis', 'IN, 'US))
103 CUST_ADDRESS TAB_TYP(CUST_ADDRESS TYP(' 8768 N State Rd 37', '47404', 'Bloomington', 'IN, 'US))
104 CUST_ADDRESS TAB TYP(CUST_ADDRESS TYP(' 6445 Bay Harbor Ln', '46254', 'Indianapolis', "IN, 'US))
105 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS TYP(' 4019 W3Rd St', '47404', 'Bloomington', 'IN, 'US))

The preceding example requires the table cust oner s_deno and two nested table
columns containing data. Please refer to "Multiset Operators" on page 4-7 to create
this table and nested table columns.

MULTISET UNION

MULTI SET UNI ON takes as arguments two nested tables and returns a nested table
whose values are those of the two input nested tables. The two input nested tables
must be of the same type, and the returned nested table is of the same type as well.

multiset_union::=

DISTINCT

—><nested_table1>a| MULTISET |—>| UNION I nested_table2 }»

« The ALL keyword instructs Oracle to return all elements that are in the two
input nested tables, including duplicate values and duplicate NULL occurrences.
This is the default.

« The DI STI NCT keyword instructs Oracle to eliminate duplicates from the
returned nested table, including duplicates of NULL, if they exist.

« The element types of the nested tables must be comparable. Please refer to
"Comparison Conditions" on page 6-4 for information on the comparability of
nonscalar types.

4-10 SQL Reference

User-Defined Operators

Example

The following example compares two nested tables and returns a nested table of
elements from both input nested tables:

SELECT custoner _id, cust_address_ntab
MULTI SET UNI ON cust _address2_ntab nultiset_union
FROM cust oner s_deno;

CUSTOVER_I D MULTI SET_UNI ON(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_| D)

101 CUST_ADDRESS TAB_TYP(CUST_ADDRESS TYP('514 W Superior St', '46901', 'kKokomo', 'IN, 'US'),
CUST_ADDRESS TYP(' 514 W Superior St', '46901', 'kKokomo', 'IN, 'US))

102 CUST_ADDRESS TAB_TYP(CUST_ADDRESS TYP(' 2515 Bloyd Ave', '46218', 'Indianapolis', "IN, 'US),
CUST_ADDRESS TYP(' 2515 Bloyd Ave', '46218', 'Indianapolis', "IN,'US))

103 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS TYP(' 8768 N State Rd 37', '47404', 'Bloonington', 'IN, 'US),
CUST_ADDRESS_TYP(' 8768 N State Rd 37', '47404', 'Bloom ngton', "IN, 'US))

104 CUST_ADDRESS TAB_TYP(CUST_ADDRESS TYP(' 6445 Bay Harbor Ln', '46254', 'Indianapolis', "IN, "US),
CUST_ADDRESS_TYP(' 6445 Bay Harbor Ln', '46254', 'Indianapolis', "IN, 'US))

105 CUST_ADDRESS TAB_TYP(CUST_ADDRESS TYP(' 4019 W3Rd St', '47404', 'Bloomington', 'IN, 'US),
CUST_ADDRESS TYP(' 4019 W3Rd St', '47404', 'Bloomngton', "IN, 'US))

The preceding example requires the table cust oner s_deno and two nested table
columns containing data. Please refer to "Multiset Operators” on page 4-7 to create
this table and nested table columns.

User-Defined Operators

Like built-in operators, user-defined operators take a set of operands as input and

return a result. However, you create them with the CREATE OPERATOR statement,

and they are identified by user-defined names. They reside in the same namespace
as tables, views, types, and standalone functions.

Once you have defined a new operator, you can use it in SQL statements like any
other built-in operator. For example, you can use user-defined operators in the
select list of a SELECT statement, the condition of a WHERE clause, or in ORDER BY
clauses and GROUP BY clauses. However, you must have EXECUTE privilege on the
operator to do so, because it is a user-defined object.

For example, if you define an operator i ncl udes, which takes as input a text
column and a keyword and returns 1 if the row contains the specified keyword, you
can then write the following SQL query:

SELECT * FROM product _descri ptions
WHERE i ncl udes (translated description, 'Oracle and UNIX') = 1;

Operators 4-11

User-Defined Operators

See Also: CREATE OPERATOR on page 15-42 and Oracle Data Cartridge
Developer's Guide for more information on user-defined operators

4-12 SQL Reference

D

Expressions

This chapter describes how to combine values, operators, and functions into
expressions.

This chapter includes these sections:

About SQL Expressions
Simple Expressions
Compound Expressions
CASE Expressions

CURSOR Expressions
Datetime Expressions
Function Expressions
Interval Expressions

Object Access Expressions
Scalar Subquery Expressions
Model Expressions

Type Constructor Expressions
Variable Expressions

Expression Lists

Expressions 5-1

About SQL Expressions

About SQL Expressions

An expression is a combination of one or more values, operators, and SQL
functions that evaluates to a value. An expression generally assumes the datatype
of its components.

This simple expression evaluates to 4 and has datatype NUVMBER (the same datatype
as its components):

2*2
The following expression is an example of a more complex expression that uses
both functions and operators. The expression adds seven days to the current date,

removes the time component from the sum, and converts the result to CHAR
datatype:

TO_CHAR(TRUNC(SYSDATE+7))

You can use expressions in:

« The select list of the SELECT statement

= A condition of the WHERE clause and HAVI NGclause

= The CONNECT BY, START W TH, and ORDER BY clauses
= The VALUES clause of the | NSERT statement

= The SET clause of the UPDATE statement

For example, you could use an expression in place of the quoted string' Sm th' in
this UPDATE statement SET clause:

SET last_name = 'Smith';

This SET clause has the expression | Nl TCAP(l ast _nane) instead of the quoted
string 'Smi t h":

SET | ast_nane = | NI TCAP(| ast _nane);

Expressions have several forms, as shown in the following syntax:

5-2 SQL Reference

Simple Expressions

expr::=

simple_expression
compound_expression
case_expression
Ccursor_expression
datetime_expression
function_expression

interval_expression

il

o
=
@D
Q
=1
QD
(@]
(=]
D
(2]
wm
@
>
el
3
@D
(2]
(%]
o
\T)

—(scalar_subquery_expression)—

!

model_expression

—(type_constructor_expression)—

|

variable_expression

Oracle Database does not accept all forms of expressions in all parts of all SQL
statements. Please refer to the individual SQL statements in Chapter 10 through
Chapter 19 for information on restrictions on the expressions in that statement.

You must use appropriate expression notation whenever expr appears in
conditions, SQL functions, or SQL statements in other parts of this reference. The
sections that follow describe and provide examples of the various forms of
expressions.

Simple Expressions

A simple expression specifies a column, pseudocolumn, constant, sequence number,
or null.

Expressions 5-3

Simple Expressions

simple_expression::=

guery_name

(&
view

materialized view
ROWID

J

|[

ROWNUM

text

number

sequence .

NULL

3] 9]

In addition to the schema of a user, schena can also be "PUBLI C' (double quotation
marks required), in which case it must qualify a public synonym for a table, view, or
materialized view. Qualifying a public synonym with "PUBLI C" is supported only
in data manipulation language (DML) statements, not data definition language
(DDL) statements.

You can specify RON Donly with a table, not with a view or materialized view.
NCHAR and NVARCHAR?2 are not valid pseudocolumn datatypes.

See Also: Chapter 3, "Pseudocolumns” for more information on
pseudocolumns and subquery_factoring_clause on page 19-14 for
information on query_narme

Some valid simple expressions are:

enpl oyees. | ast _name

"this is a text string'
10

N this is an NCHAR string'

5-4 SQL Reference

CASE Expressions

Compound Expressions

A compound expression specifies a combination of other expressions.

compound_expression::=

You can use any built-in function as an expression ("Function Expressions" on
page 5-12). However, in a compound expression, some combinations of functions
are inappropriate and are rejected. For example, the LENGTH function is
inappropriate within an aggregate function.

The PRI OR operator is used in CONNECT BY clauses of hierarchical queries.
See Also: "Operator Precedence" on page 4-2 and "Hierarchical
Queries" on page 9-3

Some valid compound expressions are:

(" CLARK' || 'SMTH)

LENGTH(' MOOSE') * 57

SQRT(144) + 72
my_fun(TO_CHAR(sysdat e, ' DD- MW YY"))

CASE Expressions

CASE expressions let you use | F ... THEN ... ELSE logic in SQL statements without
having to invoke procedures. The syntax is:

Expressions 5-5

CASE Expressions

case_expression::=

simple_case_expressionh
CASE ﬁl END |—>

searched_case_expression

simple_case_expression::=

WHEN |—>(comparison_expr>a| THEN |—>Creturn_expr>)—>

searched_case_expression::=

ﬁi‘ WHEN |e<c0ndition>9| THEN Kreturn_expr))—>
else_clause::=

In a simple CASE expression, Oracle searches for the first WHEN ... THEN pair for
which expr is equal to conpari son_expr and returnsr et ur n_expr . If none of
the VHEN ... THEN pairs meet this condition, and an ELSE clause exists, then Oracle
returns el se_expr . Otherwise, Oracle returns null. You cannot specify the literal
NULL for every r et ur n_expr and the el se_expr.

In a searched CASE expression, Oracle searches from left to right until it finds an
occurrence of condi ti on that is true, and then returns r et ur n_expr . If no
condi ti on is found to be true, and an ELSE clause exists, Oracle returns el se_
expr . Otherwise, Oracle returns null.

For a simple CASE expression, the expr and all conpari son_expr s must either
have the same datatype (CHAR, VARCHAR2, NCHAR, or NVARCHAR2, NUVBER,

Bl NARY_FLOAT, or Bl NARY_DOUBLE) or must all have a numeric datatype. If all
expressions have a numeric datatype, then Oracle determines the argument with
the highest numeric precedence, implicitly converts the remaining arguments to
that datatype, and returns that datatype.

For both simple and searched CASE expressions, all of the r et ur n_expr s must
either have the same datatype (CHAR, VARCHAR2, NCHAR, or N\VARCHAR2, NUVBER,
Bl NARY_FLOAT, or Bl NARY_DOUBLE) or must all have a numeric datatype. If all
return expressions have a numeric datatype, then Oracle determines the argument

5-6 SQL Reference

CASE Expressions

with the highest numeric precedence, implicitly converts the remaining arguments
to that datatype, and returns that datatype.

The maximum number of arguments in a CASE expression is 255. All expressions
count toward this limit, including the initial expression of a simple CASE expression
and the optional ELSE expression. Each WHEN ... THEN pair counts as two
arguments. To avoid exceeding this limit, you can nest CASE expressions so that the
return_expr itself is a CASE expression.

See Also:

« Table 2-11, " Implicit Type Conversion Matrix" on page 2-55 for
more information on implicit conversion

« "Numeric Precedence" on page 2-17 for information on numeric
precedence

» COALESCE on page 7-37 and NULLIF on page 7-128 for
alternative forms of CASE logic

« Oracle Data Warehousing Guide for examples using various
forms of the CASE expression

Simple CASE Example For each customer in the sample oe. cust omer s table, the
following statement lists the credit limit as "Low" if it equals $100, "High" if it
equals $5000, and "Medium" if it equals anything else.

SELECT cust _| ast _nane,
CASE credit_limt WHEN 100 THEN ' Low
WHEN 5000 THEN ' Hi gh'
ELSE ' Medi umi END
FROM cust oner s;

CUST_LAST_NAME CASECR
Bogart Medi um
Nol te Medi um
Loren Medi um
Queney Medi um

Searched CASE Example The following statement finds the average salary of the
employees in the sample table oe. enpl oyees, using $2000 as the lowest salary
possible:

SELECT AVG(CASE WHEN e. sal ary > 2000 THEN e. sal ary

Expressions 5-7

CURSOR Expressions

ELSE 2000 END) "Average Sal ary" from enpl oyees e;

Average Sal ary

6461. 68224

CURSOR Expressions

A CURSOR expression returns a nested cursor. This form of expression is equivalent
to the PL/SQL REF CURSOR and can be passed as a REF CURSOR argument to a
function.

cursor_expression: =

—>| CURSOR F@{subquew}e@»

A nested cursor is implicitly opened when the cursor expression is evaluated. For
example, if the cursor expression appears in a select list, a nested cursor will be
opened for each row fetched by the query. The nested cursor is closed only when:

« The nested cursor is explicitly closed by the user
= The parent cursor is reexecuted

« The parent cursor is closed

« The parent cursor is cancelled

« An error arises during fetch on one of its parent cursors (it is closed as part of
the clean-up)

Restrictions on CURSOR Expressions
« If the enclosing statement is not a SELECT statement, nested cursors can appear
only as REF CURSOR arguments of a procedure.

« If the enclosing statement is a SELECT statement, nested cursors can also
appear in the outermost select list of the query specification or in the outermost
select list of another nested cursor.

« Nested cursors cannot appear in views.

« You cannot perform Bl ND and EXECUTE operations on nested cursors.

Examples The following example shows the use of a CURSOR expression in the
select list of a query:

5-8 SQL Reference

CURSOR Expressions

SELECT depart nment _name, CURSOR(SELECT sal ary, conmm ssion_pct
FROM enpl oyees e
WHERE e. departnent _id = d.departnent _id)
FROM departnents d;

The next example shows the use of a CURSOR expression as a function argument.
The example begins by creating a function in the sample OE schema that can accept
the REF CURSOR argument. (The PL/SQL function body is shown in italics.)

CREATE FUNCTI ON f (cur SYS_REFCURSOR, ngr _hiredate DATE)
RETURN NUMBER | S
enp_hiredat e DATE;
bef ore nunber :=0;
after nunber: =0;

begi n

| oop
fetch cur into enp_hiredate;
exit when cur ¥NOTFOUND;
if enp_hiredate > ngr_hiredate then
after:=after+1;
el se
bef ore: =bef ore+1;
end if;
end | oop;
close cur;
if before > after then
return 1;
el se
return 0O;
end if;
end;
/

The function accepts a cursor and a date. The function expects the cursor to be a
guery returning a set of dates. The following query uses the function to find those
managers in the sample enpl oyees table, most of whose employees were hired
before the manager.

SELECT el.last_name FROM enpl oyees el
VWHERE f (
CURSOR(SELECT e2. hire_date FROM enpl oyees e2
WHERE el. enpl oyee_id = e2. manager _id),
el.hire_date) = 1,

LAST NAME

Expressions 5-9

Datetime Expressions

Mour gos
Canbraul t
Zl ot key
H ggens

Datetime Expressions
A datetime expression yields a value of one of the datetime datatypes.

datetime_expression::=

/| LOCAL

—><datetime_value_expr>e| AT |+

\| TIME |->| ZONE

Adateti ne_val ue_expr can be a datetime column or a compound expression
that yields a datetime value. Datetimes and intervals can be combined according to
the rules defined in Table 2-6 on page 2-28. The three combinations that yield
datetime values are valid in a datetime expression.

If you specify AT LOCAL, Oracle uses the current session time zone.
The settings for AT TI ME ZONE are interpreted as follows:
« Thestring' (+| -) HH: MM specifies a time zone as an offset from UTC.

« DBTI MEZONE: Oracle uses the database time zone established (explicitly or by
default) during database creation.

« SESSI ONTI MEZONE: Oracle uses the session time zone established by default or
in the most recent ALTER SESSI ON statement.

5-10 SQL Reference

Datetime Expressions

« time_zone_nane: Oracle returns the dat et i me_val ue_expr in the time
zone indicated by t i me_zone_nane. For a listing of valid time zone names,
query the V3Tl MEZONE_NAMES dynamic performance view.

Note: Timezone region names are needed by the daylight savings
feature. The region names are stored in two time zone files. The
default time zone file is a small file containing only the most
common time zones to maximize performance. If your time zone is
not in the default file, then you will not have daylight savings
support until you provide a path to the complete (larger) file by
way of the ORA_TZFI LE environment variable.

See Also:

« Oracle Database Administrator's Guide for more information
about setting the ORA_TZFI LE environment variable

« Oracle Database Globalization Support Guide. for a complete
listing of the timezone region names in both files

« Oracle Database Reference for information on the dynamic
performance views

« expr:Ifexpr returns acharacter string with a valid time zone format, Oracle
returns the input in that time zone. Otherwise, Oracle returns an error.

Example The following example converts the datetime value of one time zone to
another time zone:

SELECT FROM TZ(CAST(TO_DATE(' 1999-12-01 11:00: 00",
"YYYY-MM DD HH M :SS') AS TI MESTAMP), ' Anerical/ New York')
AT TIME ZONE ' Anerical/ Los_Angel es' "West Coast Tine"
FROM DUAL;

West Coast Tinme

01- DEC- 99 08.00.00. 000000 AM AMERI CA/ LOS_ANCELES

Expressions 5-11

Function Expressions

Function Expressions

You can use any built-in SQL function or user-defined function as an expression.
Some valid built-in function expressions are:

LENGTH(' BLAKE')
ROUND(1234. 567*43)
SYSDATE

See Also: "SQL Functions" on page 7-1 and "Aggregate
Functions" on page 7-9 for information on built-in functions

A user-defined function expression specifies a call to:

« A function in an Oracle-supplied package (see PL/SQL Packages and Types
Reference)

« A function in a user-defined package or type or in a standalone user-defined
function (see "User-Defined Functions" on page 7-287)

« A user-defined function or operator (see CREATE OPERATOR on page 15-42,
CREATE FUNCTION on page 14-61, and Oracle Data Cartridge Developer*s
Guide)

Some valid user-defined function expressions are:

circle_area(radius)

payrol | .tax_rate(enpno)

hr. enpl oyees. conm pct (dependents, enpno) @ enot e
DBMS_LOB. get | engt h(col urm_nane)

my_function(Dl STINCT a_col umm)

Restriction on User-Defined Function Expressions You cannot pass arguments of
object type or XMLTy pe to remote functions and procedures.

Interval Expressions

An interval expression yields a value of | NTERVAL YEAR TOMONTH or | NTERVAL
DAY TO SECOND.

5-12 SQL Reference

Object Access Expressions

interval_expression::=

interval_value_expr

Ieadmg f|eId |_precision [e@—(fractlonal second preu&on}%
>|I |—>| SECOND
Ieadlng fleld |_precision }_)
YEAR ﬁl |—>| MONTH

Thei nterval _val ue_expr can be the value of an | NTERVAL column or a
compound expression that yields an interval value. Datetimes and intervals can be
combined according to the rules defined in Table 2-6 on page 2-28. The six
combinations that yield interval values are valid in an interval expression.

Both| eadi ng field precisionandfracti onal _second_preci sioncan
be any integer from 0 to 9. If you omit the | eadi ng_fi el d_pr eci si on for either
DAY or YEAR, then Oracle Database uses the default value of 2. If you omit the
fractional _second_preci si on for second, then the database uses the default
value of 6. If the value returned by a query contains more digits that the default
precision, then Oracle Database returns an error. Therefore, it is good practice to
specify a precision that you know will be at least as large as any value returned by
the query.

For example, the following statement subtracts the value of the or der _dat e
column in the sample table or der s (a datetime value) from the system timestamp
(another datetime value) to yield an interval value expression. Because we do not
know how many days ago the oldest order was placed, we specify the maximum
value of 9 for the DAY lading field precision;

SELECT (SYSTI MESTAMP - order_date) DAY(9) TO SECOND from orders
WHERE order _id = 2458;

Object Access Expressions

An object access expression specifies attribute reference and method invocation.

Expressions 5-13

Scalar Subquery Expressions

object_access_expression::=

argument
e g

The column parameter can be an object or REF column. If you specify expr, it must
resolve to an object type.

attribute

table alias column
' object_table_alias .‘

When a type's member function is invoked in the context of a SQL statement, if the
SELF argument is null, Oracle returns null and the function is not invoked.

Examples The following example creates a table based on the sample oe. or der _
i t em_t yp object type, and then shows how you would update and select from the
object column attributes.

CREATE TABLE short_orders (
sal es_rep VARCHAR2(25), itemorder_itemtyp);

UPDATE short _orders s SET sal es_rep = 'Unassigned';

SELECT o.itemline_itemid, o.itemquantity FROM short_orders o;

Scalar Subquery Expressions

A scalar subquery expression is a subquery that returns exactly one column value
from one row. The value of the scalar subquery expression is the value of the select
list item of the subquery. If the subquery returns 0 rows, then the value of the scalar
subquery expression is NULL. If the subquery returns more than one row, then
Oracle returns an error.

You can use a scalar subquery expression in most syntax that calls for an expression
(expr). However, scalar subqueries are not valid expressions in the following
places:

« As default values for columns

= As hash expressions for clusters

5-14 SQL Reference

Model Expressions

= Inthe RETURNI NGclause of DML statements

= As the basis of a function-based index

= In CHECK constraints

« In VWHEN conditions of CASE expressions

= In GROUP BY and HAVI NGclauses

« In START W THand CONNECT BY clauses

« Instatements that are unrelated to queries, such as CREATE PROFI LE

Model Expressions

A model expression is used only in the nodel _cl ause of a SELECT statement and
then only on the right-hand side of a model rule. It yields a value for a cell in a
measure column previously defined in the nodel _cl ause. For additional
information, please refer to model_clause on page 19-30.

== H..
aggregate_function

When using an aggregate function in a model expression, the argument to the
function is a measure column that has been previously defined in the nodel _

cl ause. An aggregate function can be used only on the right-hand side of a model
rule.

model_expression::=

When expr is itself a model expression, it is referred to as a nested cell reference.

Restrictions on Nested Cell References
« Only one level of nesting is allowed.
« A nested cell reference must be a single-cell reference.

« When AUTOVATI C ORDER is specified in the nodel _rul es_cl ause, a nested
cell reference can be used on the left-hand side of a model rule only if the
measures used in the nested cell reference remain static.

The model expressions shown below are based on the following nodel _cl ause of
the SELECT statement:

Expressions 5-15

Type Constructor Expressions

SELECT country, prod, year, s

FROM sal es_vi ew

MODEL
PARTI TI ON BY (country)
DI MENSI ON BY (prod, year)
MEASURES (sal e s)
| GNORE NAV
UNI QUE DI MENSI ON
RULES UPSERT SEQUENTI AL ORDER

(
s[prod='Mouse Pad', year=2000] =
s[' Mouse Pad', 1998] + s['Muse Pad', 1999],
s[' Standard Muse', 2001] = s['Standard Muse', 2000]

)
ORDER BY country, prod, year;

The following model expression represents a single cell reference using symbolic
notation. It represents the sales of the Mouse Pad for the year 2000.

s[prod=" Mouse Pad', year=2000]

The following model expression represents a multiple cell reference using positional

notation. It represents the sales of the current value of the dimension column pr od
for the year 2001.

s[cv(prod), 2001]
The following model expression represents an aggregate function. It represents the
sum of sales of the Mouse Pad for the years between the current value of the

dimension column year less two and the current value of the dimension column
year less one.

sun(s)[' Muse Pad',year between cv()-2 and cv()-1]

See Also: CV on page 7-59 and model_clause on page 19-30

Type Constructor Expressions

A type constructor expression specifies a call to a type constructor. The argument to
the type constructor is any expression.

5-16 SQL Reference

Type Constructor Expressions

type_constructor_expression::=

X type_name }{ () @-)

The NEWkeyword applies to constructors for object types but not for collection
types. It instructs Oracle to construct a new object by invoking an appropriate
constructor. The use of the NEWkeyword is optional, but it is good practice to
specify it.

Ift ype_nane is an object type, then the expressions must be an ordered list, where
the first argument_is a value whose type matches the first attribute of the object
type, the second argument is a value whose type matches the second attribute of the
object type, and so on. The total number of arguments to the constructor must
match the total number of attributes of the object type.

If t ype_nane is a varray or nested table type, then the expression list can contain
zero or more arguments. Zero arguments implies construction of an empty
collection. Otherwise, each argument_corresponds to an element value whose type
is the element type of the collection type.

Type constructors can be invoked anywhere functions are invoked. They also have
similar restrictions, such as a limit on the maximum number of arguments.

See Also: Oracle Database Application Developer's Guide -
Object-Relational Features for additional information on type
constructors

Expression Example This example uses the cust _addr ess_t yp type in the
sample oe schema to show the use of an expression in the call to a type constructor
(the PL/SQL is shown in italics):

CREATE TYPE address_book_t AS TABLE OF cust_address_typ;
DECLARE
myaddr cust_address_typ := cust_address_typ(
'500 Oracle Parkway', 94065, 'Redwood Shores', 'CA','USA');
al l addr address_book_t := address_book_t();
BEG N
I NSERT | NTO customers VALUES (
666999, 'Joe', 'Smith', nyaddr, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL);
END;

Expressions 5-17

Variable Expressions

/

Subquery Example This example uses the war ehouse_t yp type in the sample
schema oe to illustrate the use of a subquery in the call to the type constructor.

CREATE TABLE war ehouse_tab OF war ehouse_typ;

I NSERT | NTO war ehouse_t ab
VALUES (war ehouse_typ(101, 'new wh', 201));

CREATE TYPE facility typ AS OBJECT (
facility_id NUMBER,
war ehouse_ref REF war ehouse_typ);

CREATE TABLE buil dings (b_id NUMBER building facility_typ);

I NSERT | NTO bui | di ngs VALUES (10, facility_typ(102,
(SELECT REF(w) FROM warehouse_tab w
WHERE war ehouse_name = 'new_wh')));

SELECT b.b_id, b.building.facility_id "FAC ID",
DEREF(b. bui | di ng. war ehouse_ref) "WH' FROM bui | di ngs b;

BID FAC | D W4 WAREHOUSE_ | D, WAREHOUSE NAME, LOCATI ON | D)

10 102 WAREHOUSE_TYP(101, 'new wh', 201)

Variable Expressions

A variable expression specifies a host variable with an optional indicator variable.
This form of expression can appear only in embedded SQL statements or SQL
statements processed in an Oracle Call Interface (OCI) program.

variable_expression::=

INDICATOR
[: indicator_variable

Some valid variable expressions are:

enpl oyee_name | NDI CATOR : enpl oyee_nane_i ndi cat or _var
:department _| ocation

5-18 SQL Reference

Expression Lists

Expression Lists

An expression list is a combination of other expressions.

expression_list::=

Expression lists can appear in comparison and membership conditions and in
GROUP BY clauses of queries and subqueries.

Comparison and membership conditions appear in the conditions of WHERE clauses.
They can contain either one or more comma-delimited expressions or one or more
sets of expressions where each set contains one or more comma-delimited
expressions. In the latter case (multiple sets of expressions):

« Each set is bounded by parentheses
« Each set must contain the same number of expressions

« The number of expressions in each set must match the number of expressions
before the operator in the comparison condition or before the | Nkeyword in the
membership condition.

A comma-delimited list of expressions can contain no more than 1000 expressions.
A comma-delimited list of sets of expressions can contain any number of sets, but
each set can contain no more than 1000 expressions.

The following are some valid expression lists in conditions:

(10, 20, 40)
('SCOTT', 'BLAKE', 'TAYLOR)
(("Guy', "Hnuro', "GHMJRO), ('Karen', 'Col nenares', 'KCOLMENA'))

In the third example, the number of expressions in each set must equal the number
of expressions in the first part of the condition. For example:

SELECT * FROM enpl oyees
VHERE (first_name, |ast_name, email) IN
(("Quy', "Hmro, "GHMRO),('Karen', 'Colnenares', 'KCOLMENA'))

Expressions 5-19

Expression Lists

See Also: "Comparison Conditions" on page 6-4 and IN
conditions on page 6-14

In a simple GROUP BY clause, you can use either the upper or lower form of
expression list:

SELECT department id, M N(salary), MAX(salary)
FROM enpl oyees
CGROUP BY department _id, salary;

SELECT department _id, M N(salary), MAX(salary)
FROM enpl oyees
GROUP BY (departnent_id, salary);

In ROLLUP, CUBE, and GROUPI NG SETS clauses of GROUP BY clauses, you can
combine individual expressions with sets of expressions in the same expression list.
The following example shows several valid grouping sets expression lists in one
SQL statement:

SELECT
prod_category, prod_subcategory, country_id, cust_city, count(*)
FROM products, sales, customers
WHERE sal es. prod_id = products.prod_id
AND sal es. cust _i d=cust oners. cust _id
AND sal es.tine_id = '01-oct-00'
AND cust omer s. cust _year _of _birth BETWEEN 1960 and 1970
GROUP BY GROUPI NG SETS
(
(prod_category, prod_subcategory, country_id, cust_city),
(prod_category, prod_subcategory, country_id),
(prod_category, prod_subcategory),
country_id

)i

See Also: SELECT on page 19-4

5-20 SQL Reference

6

Conditions

A condition specifies a combination of one or more expressions and logical
(Boolean) operators and returns a value of TRUE, FALSE, or UNKNO/N.

This chapter contains the following sections:
« About SQL Conditions

« Comparison Conditions

« Floating-Point Conditions

« Logical Conditions

« Range Conditions

« Null Conditions

« Compound Conditions

. EQUALS_PATH

« EXISTS

« IN

« ISASET

« ISANY

« ISEMPTY

« IS OF type

« ISPRESENT
« LIKE

« MEMBER

Conditions 6-1

About SQL Conditions

« REGEXP_LIKE
« SUBMULTISET
« UNDER_PATH

About SQL Conditions

Conditions can have several forms, as shown in the following syntax.

O
o
>
(o}
=
o
>
|

comparison_conditions
logical_conditions
range_conditions
null_conditions
compound_conditions
equals_path_condition
exists_condition

—Cfloating_point_condtions)—

in_conditions

i

——(is_a_set_conditions —>
is_any_condition
is_empty_conditions
is_of_type_conditions
is_present_condition
like_condition
member_condition
regexp_like_condition

submultiset_conditions

)

under_path_condition

6-2 SQL Reference

About SQL Conditions

If you have installed Oracle Text, then you can create conditions with the built-in
operators that are part of that product, including CONTAI NS, CATSEARCH, and
MATCHES. For more information on these Oracle Text elements, please refer to
Oracle Text Reference.

If you are using Oracle Expression Filter, then you can create conditions with the
built-in EVALUATE operator that is part of that product. For more information,
please refer to Oracle Database Application Developer's Guide - Expression Filter.

The sections that follow describe the various forms of conditions. You must use
appropriate condition syntax whenever condi t i on appears in SQL statements.

You can use a condition in the WHERE clause of these statements:

« DELETE
« SELECT
« UPDATE

You can use a condition in any of these clauses of the SELECT statement:
« VWHERE

« STARTWTH

« CONNECT BY

« HAVI NG

A condition could be said to be of a logical datatype, although Oracle Database does
not formally support such a datatype.

The following simple condition always evaluates to TRUE:
1=1
The following more complex condition adds the sal ary value to the

conmi ssi on_pct value (substituting the value 0 for null) and determines whether
the sum is greater than the number constant 25000:

NVL(sal ary, 0) + NVL(salary + (sal ary*commi ssion_pct, 0) > 25000)

Logical conditions can combine multiple conditions into a single condition. For
example, you can use the AND condition to combine two conditions:

(1=1) AND(5<7)

Here are some valid conditions:

Conditions 6-3

Comparison Conditions

name = 'SMTH

enpl oyees. department _id = departnents. department _id
hire_date > '01- JAN-88'

job_id IN ("SAMAN, 'SA REP')

sal ary BETWEEN 5000 AND 10000

conmi ssion_pct 1S NULL AND sal ary = 2100

See Also: The description of each statement in Chapter 10
through Chapter 19 for the restrictions on the conditions in that
statement

Condition Precedence

Precedence is the order in which Oracle Database evaluates different conditions in
the same expression. When evaluating an expression containing multiple
conditions, Oracle evaluates conditions with higher precedence before evaluating
those with lower precedence. Oracle evaluates conditions with equal precedence
from left to right within an expression.

Table 6-1 lists the levels of precedence among SQL condition from high to low.
Conditions listed on the same line have the same precedence. As the table indicates,
Oracle evaluates operators before conditions.

Table 6-1 SQL Condition Precedence

Type of Condition Purpose

SQL operators are evaluated before SQL See "Operator Precedence" on page 4-2
conditions

= =, < > <= >= comparison

I'S [NOT] NULL, LIKE, [NOT] comparison

BETWEEN, [NOT] IN, EXISTS, IS OF

type

NOT exponentiation, logical negation

AND conjunction

R disjunction

Comparison Conditions

Comparison conditions compare one expression with another. The result of such a
comparison can be TRUE, FALSE, or NULL.

6-4 SQL Reference

Comparison Conditions

Large objects (LOBs) are not supported in comparison conditions. However, you
can use PL/SQL programs for comparisons on CLOB data.

When comparing numeric expressions, Oracle uses numeric precedence to
determine whether the condition compares NUVBER, Bl NARY_FLOAT, or Bl NARY _
DOUBLE values. Please refer to "Numeric Precedence" on page 2-17 for information

on numeric precedence.

Two objects of nonscalar type are comparable if they are of the same named type
and there is a one-to-one correspondence between their elements. In addition,
nested tables of user-defined object types, even if their elements are comparable,
must have MAP methods defined on them to be used in equality or | Nconditions.

See Also:

« map_order_func_declaration on page 17-30 for more information

on MAP methods

» PL/SQL User's Guide and Reference for the requirements for
comparing user-defined object types in PL/SQL

Table 6-2 lists comparison conditions.

Table 6-2 Comparison Conditions

Type of
Condition Purpose Example
= Equality test. SELECT *
FROM enpl oyees
VWHERE sal ary = 2500;
= Inequality test. Some forms of the inequality SELECT *
A= condition may be unavailable on some platforms. FROM enpl oyees
<> VWHERE sal ary != 2500;
> Greater-than and less-than tests. SELECT * FROM enpl oyees

VWHERE sal ary > 2500;
SELECT * FROM enpl oyees
VWHERE sal ary < 2500;

Conditions 6-5

Comparison Conditions

Table 6-2 (Cont.) Comparison Conditions

Type of
Condition Purpose Example
>= Greater-than-or-equal-to and less-than-or-equal-to SELECT * FROM enpl oyees
tests. VWHERE sal ary >= 2500;
<= SELECT * FROM enpl oyees
VWHERE sal ary <= 2500;
ANY Compares a value to each value in a list or returned SELECT * FROM enpl oyees
SOVE by a query. Must be preceded by =, I=, >, <, <=, >=, VHERE sal ary = ANY
Can be followed by any expression or subquery that (SELECT sal ary
returns one or more values. FROM enpl oyees
Evaluates to FALSE if the query returns no rows. WHERE department _id = 30);
ALL Compares a value to every value in a list or returned SELECT * FROM enpl oyees
by a query. Must be preceded by =, I=, >, <, <=, >=, VWHERE sal ary >=

Can be followed by any expression or subquery that ALL (1400, 3000);
returns one or more values.

Evaluates to TRUE if the query returns no rows.

Simple Comparison Conditions

A simple comparison condition specifies a comparison with expressions or
subquery results.

6-6 SQL Reference

Comparison Conditions

simple_comparison_condition::=

ololelelolelele

If you use the lower form of this condition (with multiple expressions to the left of
the operator), then you must use the lower form of the expr essi on_| i st, and the
values returned by the subquery must match in number and datatype the
expressions in expressi on_|ist.

See Also: "Expression Lists" on page 5-19 for more information

about combining expressions and SELECT on page 19-4 for
information about subqueries

Conditions 6-7

Comparison Conditions

Group Comparison Conditions

A group comparison condition specifies a comparison with any or all members in a
list or subquery.

group_comparison_condition::=

ololelElolelele

' expression_list '

expression_list::=
)
(o)
)
® 0

If you use the upper form of this condition (with a single expression to the left of
the operator), then you must use the upper form of expr essi on_I i st. If you use
the lower form of this condition (with multiple expressions to the left of the
operator), then you must use the lower form of expr essi on_I i st, and the
expressions in each expr essi on_I i st must match in number and datatype the
expressions to the left of the operator.

6-8 SQL Reference

Floating-Point Conditions

See Also:
« "Expression Lists" on page 5-19
« SELECT on page 19-4

Floating-Point Conditions

The floating-point conditions let you determine whether an expression is infinite or
is the undefined result of an operation (that is, is not a number or NaN).

floating_point_conditions::=

NAN

ea)

In both forms of floating-point condition, expr must resolve to a numeric datatype
or to any datatype that can be implicitly converted to a numeric datatype. Table 6-3
describes the floating-point conditions.

Table 6-3 Floating-Point Conditions

Type of
Condition Operation Example
I'S [NOT] Returns TRUE if expr is the SELECT COUNT(*) FROM enpl oyees
NAN special value NaNwhen NOT is not WHERE conmi ssion_pct |'S NOT NAN,
specified. Returns TRUE if expr is
not the special value NaNwhen
NOT is specified.
I'S [NOT] Returns TRUE if expr is the SELECT | ast _name FROM enpl oyees

I NFI NI TE special value +I NF or -I NF when VHERE sal ary |'S NOT | NFI NI TE;
NOT is not specified. Returns TRUE
if expr is neither +I NF nor -1 NF
when NOT is specified

See Also:

« "Floating-Point Numbers" on page 2-14 for more information
on the Oracle implementation of floating-point numbers

« "Implicit Data Conversion" on page 2-55 for more information
on how Oracle converts floating-point datatypes

Conditions 6-9

Logical Conditions

Logical Conditions

A logical condition combines the results of two component conditions to produce a
single result based on them or to invert the result of a single condition. Table 6-4
lists logical conditions.

Table 6-4 Logical Conditions

Type of
Condition Operation Examples
NOT Returns TRUE if the following SELECT *
condition is FALSE. Returns FROM enpl oyees
FALSE if itis TRUE. If it is VHERE NOT (job_id I'S NULL);
UNKNOWN, then it remains SELECT * -
UNKNOAN FROM enpl oyees
WHERE NOT
(sal ary BETWEEN 1000 AND 2000);
AND Returns TRUE if both SELECT *
component conditions are FROM enpl oyees
TRUE. Returns FALSE ifeither WHERE job id = ' PU CLERK
is FALSE. Otherwise returns AND depar tment id = 30:
UNKNOWN. -
R Returns TRUE if either SELECT *
component conditionis TRUE. ~ FROM enpl oyees
Returns FALSE if both are WHERE job_id = ' PU_CLERK'
FALSE. Otherwise returns OR department_id = 10;
UNKNOVN, -

Table 6-5 shows the result of applying the NOT condition to an expression.

Table 6-5 NOT Truth Table
— TRUE FALSE UNKNOWN
NOT FALSE TRUE UNKNOMN

Table 6-6 shows the results of combining the AND condition to two expressions.

Table 6-6 AND Truth Table
AND TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN

6-10 SQL Reference

Range Conditions

Table 6-6 AND Truth Table

AND TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWN FALSE UNKNOWN

For example, in the WHERE clause of the following SELECT statement, the AND
logical condition is used to ensure that only those hired before 1989 and earning
more than $2500 a month are returned:

SELECT * FROM enpl oyees
WHERE hire_date < TO _DATE(' 01- JAN-1989', ' DD MON- YYYY')
AND sal ary > 2500;
Table 6-7 shows the results of applying OR to two expressions.

Table 67 OR Truth Table

OR TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN

For example, the following query returns employees who have a 40% commission
rate or a salary greater than $20,000:

SELECT enpl oyee_i d FROM enpl oyees
WHERE commi ssion_pct = .4 OR salary > 20000;

Range Conditions
A range condition tests for inclusion in a range.

range_conditions::=

COER S [o L CD

Table 6-8 describes the range conditions.

Conditions 6-11

Null Conditions

Table 6-8 Range Conditions

Type of

Condition Operation Example

[NOT] [Not] greater than or equal to SELECT * FROM enpl oyees
BETVEEN X x and less than or equal to y. VWHERE sal ary

AND y BETWEEN 2000 AND 3000;

Null Conditions

A NULL condition tests for nulls. This is the only condition that you should use to
test for nulls.

null_conditions::=

NOT

e p =]

Table 6-9 lists the null conditions.

Table 6-9 Null Conditions

Type of
Condition Operation Example
I'S [NOT] Tests for nulls. SELECT | ast _name
NULL See Also: "Nulls" on FROM enpl oyees
page 2-89 VWHERE conmi ssi on_pct
I'S NULL;

Compound Conditions

A compound condition specifies a combination of other conditions.

6-12 SQL Reference

EQUALS_PATH

compound_conditions::=

(o

See Also: "Logical Conditions" on page 6-10 for more information
about NOT, AND, and OR conditions

EQUALS_PATH

The EQUALS PATH condition determines whether a resource in the Oracle XML
database can be found in the database at a specified path.

Use this condition in queries to RESOURCE_VI EWand PATH_VI EW These public
views provide a mechanism for SQL access to data stored in the XML database
repository. RESOURCE_VI EWcontains one row for each resource in the repository,
and PATH_VI EWcontains one row for each unique path in the repository.

equals_path_condition::=

O
—J{ EQUALS_PATH F@—)(column)-)@—(path_string) @

This condition applies only to the path as specified. It is similar to but more
restrictive than UNDER _PATH.

The optional corr el ati on_i nt eger argument correlates the EQUALS PATH
condition with its ancillary functions DEPTH and PATH.

See Also: UNDER_PATH on page 6-30, DEPTH on page 7-66, and
PATH on page 7-135

Example

The view RESOURCE_VI EWcomputes the paths (in the any_pat h column) that
lead to all XML resources (in the r es column) in the database repository. The
following example queries the RESOURCE VI EWview to find the paths to the
resources in the sample schema oe. The EQUALS PATH condition causes the query
to return only the specified path:

Conditions 6-13

EXISTS

SELECT ANY_PATH FROM RESOURCE_VI EW
WHERE EQUALS_PATH(res, '/sys/schemas/ O/ ww. or acl e. com) =1;

ANY_PATH

/ sys/ schemas/ OE/ www. or acl e. com

Compare this example with that for UNDER_PATH on page 6-30.

An EXI STS condition tests for existence of rows in a subquery.
exists_condition::=
—>| EXISTS @{subquery}@
Table 6-10 shows the EXI STS condition.
Table 6-10 EXISTS Condition
Type of
Condition Operation Example
EXI STS TRUE if a subquery returns at SELECT departnent _id
least one row. FROM departments d
WHERE EXI STS
(SELECT * FROM enpl oyees e
WHERE d. departnent _id
= e.departnent _id);

in_conditions::=
Anin_condi tion isamembership condition. It tests a value for membership in a
list of values or subquery

6-14 SQL Reference

=)
el

If you use the upper form of the i n_condi t i on condition (with a single
expression to the left of the operator), then you must use the upper form of
expression_list. Ifyou use the lower form of this condition (with multiple
expressions to the left of the operator), then you must use the lower form of
expression_I i st, and the expressions in each expr essi on_| i st must match
in number and datatype the expressions to the left of the operator.

See Also: "Expression Lists" on page 5-19

Table 6-11 lists the form of | N condition.

Conditions 6-15

Table 6-11 IN Conditions

Type of Condition Operation Example
IN Equal-to-any-member-of test. SELECT * FROM enpl oyees
Equivalent to =ANY. WHERE job_id IN

(" PU_CLERK' ," SH CLERK');
SELECT * FROM enpl oyees

VWHERE sal ary IN

(SELECT sal ary

FROM enpl oyees
VHERE departnent _id =30);
NOT | N Equivalent to !=ALL. SELECT * FROM enpl oyees
Evaluates to FALSE if any VWHERE sal ary NOT IN
member of the set is NULL. (SELECT sal ary

FROM enpl oyees
WHERE departnent _id = 30);
SELECT * FROM enpl oyees
WHERE j ob_id NOT IN
("PU_CLERK', 'SH CLERK');

If any item in the list following a NOT | N operation evaluates to null, then all rows
evaluate to FALSE or UNKNOMN, and no rows are returned. For example, the
following statement returns the string 'Tr ue' for each row:

SELECT ' True' FROM enpl oyees

WHERE departnent _id NOT IN (10, 20);
However, the following statement returns no rows:
SELECT ' True' FROM enpl oyees

VHERE departnent _id NOT IN (10, 20, NULL);

The preceding example returns no rows because the WHERE clause condition
evaluates to:
department _id != 10 AND departnent _id != 20 AND departnent _id != null
Because the third condition compares depar t nent _i d with a null, it results in an
UNKNOWN, so the entire expression results in FALSE (for rows with depart ment _

i d equal to 10 or 20). This behavior can easily be overlooked, especially when the
NOT | Noperator references a subquery:.

6-16 SQL Reference

ISASET

IS A SET

Moreover, if a NOT | Ncondition references a subquery that returns no rows at all,
then all rows will be returned, as shown in the following example;

SELECT ' True' FROM enpl oyees
VHERE departnent _id NOT I N (SELECT 0 FROM DUAL WHERE 1=2);

Restriction on LEVEL in WHERE Clauses In a[NOT] I Ncondition in a WHERE
clause, if the right-hand side of the condition is a subquery, you cannot use LEVEL
on the left-hand side of the condition. However, you can specify LEVEL in a
subquery of the FROMclause to achieve the same result. For example, the following
statement is not valid:

SELECT enpl oyee_i d, |ast_name FROM enpl oyees
WHERE (enpl oyee_id, LEVEL)
IN (SELECT enpl oyee_id, 2 FROM enpl oyees)
START WTH enpl oyee_id = 2
CONNECT BY PRI OR enpl oyee_id = manager _i d;

But the following statement is valid because it encapsulates the query containing
the LEVEL information in the FROMclause:

SELECT v. enpl oyee_id, v.last_nane, v.lev
FROM
(SELECT enpl oyee_id, last_nanme, LEVEL |ev
FROM enpl oyees v
START W TH enpl oyee_id = 100
CONNECT BY PRI OR enpl oyee_id = manager_id) v
WHERE (v.enployee_id, v.lev) IN
(SELECT enpl oyee_id, 2 FROM enpl oyees);

Use | S A SET conditions to test whether a specified nested table is composed of
unique elements. The condition returns TRUE if the nested table is a set, even if it is
a nested table of length zero, and FALSE otherwise. It returns NULL if the nested
table is empty.

is_a_set_conditions::=

NOT

(e s b —\ {7 }[5]

Conditions 6-17

IS ANY

Example

The following example selects from the table cust oner s_deno those rows in
which the cust _addr ess_nt ab nested table column contains unique elements:

SELECT custoner _id, cust_address_ntab
FROM cust oners_deno
WHERE cust_address_ntab IS A SET;

CUSTOMER | D CUST_ADDRESS_NTAB(STREET ADDRESS, POSTAL_CODE, CITY, STATE PROVINCE, COUNTRY_ | D)

101 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS TYP(' 514 W Superior St', '46901', 'Kokomo', 'IN, 'US'))

102 CUST_ADDRESS TAB_ TYP(CUST_ADDRESS TYP(' 2515 Bloyd Ave', '46218', 'Indianapolis', 'IN, 'US))
103 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS TYP(' 8768 N State Rd 37', '47404', 'Bloomington', 'IN, 'US))
104 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS TYP(' 6445 Bay Harbor Ln', '46254', 'Indianapolis', 'IN, 'US'))
105 CUST_ADDRESS TAB_TYP(CUST_ADDRESS TYP(' 4019 W3Rd St', '47404', 'Bloonmington', 'IN, 'US))

The preceding example requires the table cust oner s_deno and a nested table
column containing data. Please refer to "Multiset Operators" on page 4-7 to create
this table and nested table column.

IS ANY

is_any_condition::=

The I S ANY condition is relevant only for interrow calculations, and can be used
only in the nodel _cl ause of a SELECT statement. Use this condition to qualify all
values of a dimension column, including NULL.

dimension_column

ANY

The condition always returns a boolean value of TRUE in order to qualify all values
of the column.

See Also: model_clause on page 19-30 for more information on
interrow calculations and "Model Expressions” on page 5-15 for
information on model expressions

Example
The following example sets sales for each product for year 2000 to 0:

SELECT country, prod, year, s
FROM sal es_vi ew
MODEL

6-18 SQL Reference

IS EMPTY

IS EMPTY

PARTI TI ON BY (country)

DI MENSI ON BY (prod, year)

MEASURES (sal e s)
| GNORE NAV
UNI QUE DI MENSI ON

RULES UPSERT SEQUENTI AL ORDER

(

S[ANY, 2000] = 0

)

ORDER BY country, prod, year;

France
France
France
France
France
France
France
France
CGer many
Ger many
Ger many
Cer many
Cer many
CGer many
CGer many
Ger many

Mouse Pad
Standard Mouse
St andard Muse
St andard Muse
St andard Muse
Mouse Pad
Mouse Pad
Mouse Pad
Mouse Pad
St andard Muse
St andard Muse
St andard Muse
Standard Mouse

16 rows sel ected.

The preceding example requires the view sal es_vi ew. Please refer to "Interrow

Calculations: Examples" on page 19-45 to create this view.

Use the | S[NOT] EMPTY conditions to test whether a specified nested table is

empty, regardless whether any elements of the collection are NULL.

Conditions 6-19

IS OF type

IS OF type

is_empty_conditions::=

NOT

nested_table H EMPTY

The condition returns a boolean value: TRUE for an | S EMPTY condition if the
collection is empty, and TRUE for an | S NOT EMPTY condition if the collection is not
empty. If you specify NULL for the nested table or varray, the result is NULL.

Example
The following example selects from the sample table pm pri nt _nedi a those rows
in which the ad_t ext docs_nt ab nested table column is not empty:

SELECT product _id, TO CHAR(ad_finaltext) FROM print_nedia
WHERE ad_t ext docs_ntab IS NOT EMPTY;

Use the | SOF t ype condition to test object instances based on their specific type
information.

is_of_type_conditions::=

M\
)
T Ah | A EmO
ca 0 Ol o

You must have EXECUTE privilege on all types referenced by t ype, and all t ypes
must belong to the same type family.

This condition evaluates to null if expr is null. If expr is not null, then the
condition evaluates to true (or false if you specify the NOT keyword) under either of
these circumstances:

« The most specific type of expr is the subtype of one of the types specified in the
t ype list and you have not specified ONLY for the type, or

« The most specific type of expr is explicitly specified in the t ype list.

The expr frequently takes the form of the VALUE function with a correlation
variable.

6-20 SQL Reference

IS PRESENT

The following example uses the sample table oe. per sons, which is built on a type
hierarchy in "Substitutable Table and Column Examples" on page 16-68. The
example uses the | S OF t ype condition to restrict the query to specific subtypes:

SELECT * FROM persons p
WHERE VALUE(p) IS OF TYPE (enpl oyee_t);

NAMVE SSN
Joe 32456
Tim 5678

SELECT * FROM persons p
WHERE VALUE(p) IS OF (ONLY part _tine_enp_t);

IS PRESENT

is_present_condition::=

The | S PRESENT condition is relevant only for interrow calculations, and can be
used only in the nodel _cl ause of a SELECT statement. Use this condition to test
whether the cell referenced is present prior to the execution of the nodel _cl ause.

The condition returns TRUE if the cell exists prior to the execution of the nodel _
cl ause and FALSE if it does not.

See Also: model_clause on page 19-30 for more information on
interrow calculations and "Model Expressions” on page 5-15 for
information on model expressions

Example

In the following example, if sales of the Mouse Pad for year 1999 exist, then sales of
the Mouse Pad for year 2000 is set to sales of the Mouse Pad for year 1999.
Otherwise, sales of the Mouse Pad for year 2000 is set to 0.

SELECT country, prod, year, s
FROM sal es_vi ew

Conditions 6-21

LIKE

MODEL
PARTI TI ON BY (country)
DI MENSI ON BY (prod, year)
MEASURES (sal e s)
| GNORE NAV
UNI QUE DI MENSI ON
RULES UPSERT SEQUENTI AL ORDER
(
s[' Mouse Pad', 2000] =
CASE WHEN s[' Mouse Pad', 1999] | S PRESENT
THEN s[' Mouse Pad', 1999]
ELSE 0
END

)
ORDER BY country, prod, year;

COUNTRY PROD YEAR S
France Mouse Pad 1998 25009. 42
France Mouse Pad 1999 3678. 69
France Mouse Pad 2000 3678. 69
France Mouse Pad 2001 3269. 09
France Standard Muse 1998 2390. 83
France Standard Mouse 1999 2280. 45
France St andard Muse 2000 1274. 31
France St andard Muse 2001 2164. 54
Ger nmany Mouse Pad 1998 5827. 87
Ger nany Muse Pad 1999 8346. 44
Cer many Muse Pad 2000 8346. 44
Cer many Muse Pad 2001 9535. 08
Cer many St andard Mouse 1998 7116. 11
Cer many St andard Muse 1999 6263. 14
Ger nany St andard Mouse 2000 2637. 31
Cer nany St andard Mouse 2001 6456. 13

16 rows sel ected.

The preceding example requires the view sal es_vi ew. Please refer to "Interrow
Calculations: Examples" on page 19-45 to create this view.

LIKE

The LI KE conditions specify a test involving pattern matching. Whereas the
equality operator (=) exactly matches one character value to another, the LI KE
conditions match a portion of one character value to another by searching the first

6-22 SQL Reference

LIKE

value for the pattern specified by the second. LI KE calculates strings using
characters as defined by the input character set. LI KEC uses Unicode complete
characters. LI KE2 uses UCS2 code points. LI KE4 uses UCS4 code points.

like_condition::=

/->| ESCAPE Kesc_cha%

In this syntax:

« char 1 is acharacter expression, such as a character column, called the search
value.

« char 2 is a character expression, usually a literal, called the pattern.

« esc_char isacharacter expression, usually a literal, called the escape
character.

If esc_char is not specified, then there is no default escape character. If any of
char 1, char 2, or esc_char is null, then the result is unknown. Otherwise, the
escape character, if specified, must be a character string of length 1.

All of the character expressions (char 1, char 2, and esc_char) can be of any of
the datatypes CHAR, VARCHAR2, NCHAR, or NVARCHAR?Z. If they differ, then Oracle
converts all of them to the datatype of char 1.

The pattern can contain special pattern-matching characters:

« Anunderscore () in the pattern matches exactly one character (as opposed to
one byte in a multibyte character set) in the value.

« A percentsign (%) in the pattern can match zero or more characters (as opposed
to bytes in a multibyte character set) in the value. The pattern '%' cannot match
anull.

You can include the actual characters %or _ in the pattern by using the ESCAPE
clause, which identifies the escape character. If the escape character precedes the
character %or _ in the pattern, then Oracle interprets this character literally in the
pattern rather than as a special pattern-matching character. You can also search for
the escape character itself by repeating it. For example, if @ is the escape character,
then you can use @@ to search for @.

Conditions 6-23

LIKE

Table 6-12 describes the LI KE conditions.

Table 6-12 LIKE Conditions

Type of
Condition Operation Example
X [NOT] TRUE if x does [not] match the pattern SELECT | ast _nane
LIKE y y. Within y, the character %matches FROM enpl oyees
any string of zero or more characters VWHERE | ast name
[ESCAPE except null. The character _ matches LIKE ' %\ B% ESCAPE '\
"7 any single character. Any character can -

follow ESCAPE except percent (%) and
underbar (). A wildcard character is
treated as a literal if preceded by the
escape character.

To process the LI KE conditions, Oracle divides the pattern into subpatterns
consisting of one or two characters each. The two-character subpatterns begin with
the escape character and the other character is %, or _, or the escape character.

Let P, P,, ..., P,, be these subpatterns. The like condition is true if there is a way to
partition the search value into substrings S, S,, ..., S,, so that for all i between 1 and
n:

« IfP;is_, then S; is a single character.
« IfP;is %, then S; is any string.

« IfP;is two characters beginning with an escape character, then S; is the second
character of P;.

« Otherwise, P; =§;.

With the LI KE conditions, you can compare a value to a pattern rather than to a
constant. The pattern must appear after the LI KE keyword. For example, you can
issue the following query to find the salaries of all employees with names beginning
with R

SELECT sal ary
FROM enpl oyees
WHERE | ast _nane LIKE 'R%;

The following query uses the = operator, rather than the LI KE condition, to find the
salaries of all employees with the name 'R%":

SELECT sal ary

6-24 SQL Reference

LIKE

FROM enpl oyees
WHERE | ast_nane = 'R%;

The following query finds the salaries of all employees with the name 'SM%'". Oracle
interprets 'SM%' as a text literal, rather than as a pattern, because it precedes the
LI KE keyword:

SELECT sal ary
FROM enpl oyees
VHERE ' SM% LI KE | ast _nane;

Case Sensitivity

Case is significant in all conditions comparing character expressions that the LI KE
condition and the equality (=) operators. You can use the UPPER function to
perform a case-insensitive match, as in this condition:

UPPER(| ast _nane) LIKE ' SM%

Pattern Matching on Indexed Columns

When you use LI KE to search an indexed column for a pattern, Oracle can use the
index to improve performance of a query if the leading character in the pattern is
not %or _. In this case, Oracle can scan the index by this leading character. If the
first character in the pattern is %or _, then the index cannot improve performance
because Oracle cannot scan the index.

LIKE Condition: General Examples
This condition is true for all | ast _name values beginning with Ma:

| ast_name LIKE ' Ma%

All of these | ast _nane values make the condition true:
Mal lin, Markle, Marlow, Marvins, Marvis, Matos

Case is significant, so | ast _narme values beginning with MA, ma, and mA make the
condition false.

Consider this condition:
| ast_name LIKE 'SMTH '

This condition is true for these | ast _nane values:
SM THE, SM THY, SM THS

Conditions 6-25

MEMBER

MEMBER

This condition is false for SM TH because the special underscore character (_) must
match exactly one character of the | ast _nane value.

ESCAPE Clause Example The following example searches for employees with the
pattern A B in their name:

SELECT | ast_nane
FROM enpl oyees
VWHERE | ast _name LIKE ' %A\ _B% ESCAPE '\';

The ESCAPE clause identifies the backslash (\) as the escape character. In the
pattern, the escape character precedes the underscore (). This causes Oracle to
interpret the underscore literally, rather than as a special pattern matching
character.

Patterns Without % Example If a pattern does not contain the %character, then the
condition can be true only if both operands have the same length. Consider the
definition of this table and the values inserted into it:

CREATE TABLE ducks (f CHAR(6), v VARCHAR2(6));
I NSERT | NTO ducks VALUES (' DUCK', 'DUCK);
SELECT "*'||f]||"*" "char",

"“*|v||"*" "varchar"

FROM ducks;

Because Oracle blank-pads CHAR values, the value of f is blank-padded to 6 bytes.
v is not blank-padded and has length 4.

member_condition::=

-NOT OF
= akia

A nenber _condi ti on isamembership condition that tests whether an element is
a member of a nested table. The return value is TRUE if expr is a member of the

6-26 SQL Reference

REGEXP_LIKE

specified nested table or varray. The return value is NULL if expr is null or if the
nested table is empty.

« expr must be of the same type as the element type of the nested table.
« The OF keyword is optional and does not change the behavior of the condition.

« The NOT keyword reverses the boolean output: Oracle returns FALSE if expr is
a member of the specified nested table.

« The element types of the nested table must be comparable. Please refer to
"Comparison Conditions" on page 6-4 for information on the comparability of
nonscalar types.

Example

The following example selects from the table cust oner s_deno those rows in
which the cust _addr ess_nt ab nested table column contains the values specified
in the WHERE clause:

SELECT custoner _id, cust_address_ntab
FROM cust oners_deno
WHERE cust _address_typ(' 8768 N State Rd 37', 47404,
"Bloomington', "IN, "US")
MEMBER OF cust _address_nt ab;

CUSTOMVER_| D CUST_ADDRESS_NTAB(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_| D)

103 CUST_ADDRESS TAB_TYP(CUST ADDRESS TYP(' 8768 N State Rd 37', '47404', 'Bloomington', 'IN, 'US))

The preceding example requires the table cust oner s_deno and a nested table
column containing data. Please refer to "Multiset Operators" on page 4-7 to create
this table and nested table column.

REGEXP_LIKE

REGEXP_LI KE is similar to the L1 KE condition, except REGEXP_LI| KE performs
regular expression matching instead of the simple pattern matching performed by
LI KE. This condition evaluates strings using characters as defined by the input
character set.

This condition complies with the POSIX regular expression standard and the
Unicode Regular Expression Guidelines. For more information, please refer to
Appendix C, "Oracle Regular Expression Support".

Conditions 6-27

REGEXP_LIKE

regexp_like_condition::=
®
—>| REGEXP_LIKE @{source_string)@{pattern) @-)

« source_string isacharacter expression that serves as the search value. It is
commonly a character column and can be of any of the datatypes CHAR,
VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB.

« patternisthe regular expression. It is usually a text literal and can be of any
of the datatypes CHAR, VARCHAR2, NCHAR, or NVARCHARZ. It can contain up to
512 bytes. If the datatype of pat t er n is different from the datatype of sour ce_
st ri ng, Oracle converts pat t er n to the datatype of sour ce_stri ng. Fora
listing of the operators you can specify in pat t er n, please refer to Appendix C,
"Oracle Regular Expression Support".

« match_paramet er is a text literal that lets you change the default matching
behavior of the function. You can specify one or more of the following values
for mat ch_par anet er:

specifies case-insensitive matching.
— 'c¢' specifies case-sensitive matching.

— ''n' allows the period (.), which is the match-any-character wildcard
character, to match the newline character. If you omit this parameter, the
period does not match the newline character.

— ' treats the source string as multiple lines. Oracle interprets » and $ as
the start and end, respectively, of any line anywhere in the source string,
rather than only at the start or end of the entire source string. If you omit
this parameter, Oracle treats the source string as a single line.

If you specify multiple contradictory values, Oracle uses the last value. For
example, if you specify ' i ¢’ , then Oracle uses case-sensitive matching. If you
specify a character other than those shown above, then Oracle returns an error.

If you omit mat ch_par anet er, then:

— The default case sensitivity is determined by the value of the NLS_SORT
parameter.

— A period (.) does not match the newline character.

— The source string is treated as a single line.

See Also: "LIKE" on page 6-22

6-28 SQL Reference

SUBMULTISET

Examples

The following query returns the first and last names for those employees with a first
name of Steven or Stephen (where f i r st _nanme begins with St e and ends with en
and in between is either v or ph) :

SELECT first_name, |ast_nane
FROM enpl oyees
WHERE REGEXP_LIKE (first_name, '~Ste(v|ph)en$');

FI RST_NAME LAST_NAMVE
St even Ki ng
Steven Markl e

St ephen Stiles

The following query returns the last name for those employees with a double vowel
in their last name (where | ast _name contains two adjacent occurrences of either a,
e, i, 0,oru,regardless of case):

SELECT | ast_name
FROM enpl oyees
WHERE REGEXP_LI KE (last_name, '([aeiou])\1', "i');

LAST_NAMVE

De Haan
Greenberg
Khoo

Cee

G eene
Lee

Bl oom
Feeney

SUBMULTISET

The SUBMULTI SET condition tests whether a specified nested table is a submultiset
of another specified nested table. The operator returns a boolean value: TRUE if
nest ed_t abl el is a submultiset of nest ed_t abl e2.

Conditions 6-29

UNDER_PATH

submultiset_conditions::=

Ao} Ao}
nested_tablel SUBMULTISET nested_table2

« The OF keyword is optional and does not change the behavior of the operator.

« The NOT keyword reverses the boolean output: Oracle returns FALSE if
nest ed_t abl el isasubset of nest ed_t abl e2.

« The element types of the nested table must be comparable. Please refer to
"Comparison Conditions" on page 6-4 for information on the comparability of
nonscalar types.

Example

The following example selects from the cust orrer s_den table those rows in
which the cust _addr ess_nt ab nested table is a submultiset of the cust _
addr ess2_nt ab nested table:

SELECT custoner _id, cust_address_ntab
FROM cust oners_deno
VHERE cust _address_ntab SUBMULTI SET OF cust _address2_nt ab;

no rows selected

The preceding example requires the table cust oner s_deno and two nested table
columns containing data. Please refer to "Multiset Operators” on page 4-7 to create
this table and nested table columns.

UNDER_PATH

The UNDER_PATH condition determines whether resources specified in a column
can be found under a particular path specified by pat h_stri ng in the Oracle XML
database repository. The path information is computed by the RESOURCE_VI EW
view, which you query to use this condition.

Use this condition in queries to RESOURCE_VI EWand PATH_VI EW These public
views provide a mechanism for SQL access to data stored in the XML database
repository. RESOURCE VI EWcontains one row for each resource in the repository,
and PATH_VI EWcontains one row for each unique path in the repository.

6-30 SQL Reference

UNDER_PATH

under_path_condition::=

‘ ’ correlation_integer
UNDER_PATH 0 column (. }>(path_string) @-)

The optional | evel s argument indicates the number of levels down from pat h_
st ri ng Oracle should search. Oracle treats values less than 0 as 0.

The optional cor r el ati on_i nt eger argument correlates the UNDER_PATH
condition with its ancillary functions PATHand DEPTH.

See Also: The related condition EQUALS _PATH on page 6-13
and the ancillary functions DEPTH on page 7-66 and PATH on
page 7-135

Example

The view RESOURCE_VI EWcomputes the paths (in the any_pat h column) that
lead to all XML resources (in the r es column) in the database repository. The
following example queries the RESOURCE VI EWview to find the paths to the
resources in the sample schema oe. The query returns the path of the XML schema
that was created in "XMLType Table Examples" on page 16-72:

SELECT ANY_PATH FROM RESOURCE_VI EW
WHERE UNDER PATH(res, '/sys/schenas/ O/ ww. or acl e. cont) =1;

ANY_PATH

/ sys/ schemas/ OE/ www. or acl e. comf xwar ehouses. xsd

Conditions 6-31

UNDER_PATH

6-32 SQL Reference

v

Functions

Functions are similar to operators in that they manipulate data items and return a
result. Functions differ from operators in the format of their arguments. This format
enables them to operate on zero, one, two, or more arguments:

function(argument, argument, ...)

This chapter contains these sections;
« SQL Functions

« User-Defined Functions

SQL Functions

SQL functions are built into Oracle Database and are available for use in various
appropriate SQL statements. Do not confuse SQL functions with user-defined
functions written in PL/SQL.

If you call a SQL function with an argument of a datatype other than the datatype
expected by the SQL function, then Oracle attempts to convert the argument to the
expected datatype before performing the SQL function. If you call a SQL function
with a null argument, then the SQL function automatically returns null. The only
SQL functions that do not necessarily follow this behavior are CONCAT, NVL, and
REPLACE.

In the syntax diagrams for SQL functions, arguments are indicated by their
datatypes. When the parameter f unct i on appears in SQL syntax, replace it with
one of the functions described in this section. Functions are grouped by the
datatypes of their arguments and their return values.

Functions 7-1

SQL Functions

Note: When you apply SQL functions to LOB columns, Oracle
Database creates temporary LOBs during SQL and PL/SQL
processing. You should ensure that temporary tablespace quota is
sufficient for storing these temporary LOBs for your application.

See Also:

« "User-Defined Functions" on page 7-287 for information on user
functions and "Data Conversion" on page 2-54 for implicit
conversion of datatypes

=« Oracle Text Reference for information on functions used with
Oracle Text

« Oracle Data Mining Application Developer's Guide for information
on frequent itemset functions used with Oracle Data Mining

The syntax showing the categories of functions follows:

function::=

7-2 SQL Reference

single_row_function

aggregate_function

u

analytic_function

—Cobject_reference_function)—

model_function

user_defined_function

|

SQL Functions

single_row_function::=

numeric_function

character_function
datetime_function

conversion_function

collection_functions

\Cmiscellaneous_singIe_row_function)/

m

The sections that follow list the built-in SQL functions in each of the groups
illustrated in the preceding diagrams except user-defined functions. All of the
built-in SQL functions are then described in alphabetical order.

See Also: "User-Defined Functions" on page 7-287 and CREATE
FUNCTION on page 14-61

Single-Row Functions

Single-row functions return a single result row for every row of a queried table or
view. These functions can appear in select lists, WHERE clauses, START W THand
CONNECT BY clauses, and HAVI NGclauses.

Numeric Functions

Numeric functions accept numeric input and return numeric values. Most numeric
functions that return NUMBER values that are accurate to 38 decimal digits. The
transcendental functions COS, COSH, EXP, LN, LOG, SI N, SI NH, SQRT, TAN, and
TANH are accurate to 36 decimal digits. The transcendental functions ACCS, ASI N,
ATAN, and ATANZ are accurate to 30 decimal digits. The numeric functions are:

ABS
ACOS
ASIN
ATAN
ATAN2
BITAND
CEIL
COS
COSH
EXP

Functions 7-3

SQL Functions

FLOOR

LN

LOG

MOD

NANVL

POWER
REMAINDER
ROUND (number)
SIGN

SIN

SINH

SQRT

TAN

TANH

TRUNC (number)
WIDTH_BUCKET

Character Functions Returning Character Values

Character functions that return character values return values of the same datatype
as the input argument. The length of the value returned by the function is limited
by the maximum length of the datatype returned.

« For functions that return CHAR or VARCHARZ, if the length of the return value
exceeds the limit, then Oracle Database truncates it and returns the result
without an error message.

« For functions that return CLOB values, if the length of the return values exceeds
the limit, then Oracle raises an error and returns no data.

The character functions that return character values are:

CHR

CONCAT
INITCAP

LOWER

LPAD

LTRIM
NLS_INITCAP
NLS_LOWER
NLSSORT
NLS_UPPER
REGEXP_REPLACE
REGEXP_SUBSTR

7-4 SQL Reference

SQL Functions

REPLACE
RPAD
RTRIM
SOUNDEX
SUBSTR
TRANSLATE
TREAT
TRIM
UPPER

Character Functions Returning Number Values

Character functions that return number values can take as their argument any
character datatype.

The character functions that return number values are:

ASCII

INSTR
LENGTH
REGEXP_INSTR

Datetime Functions

Datetime functions operate on date (DATE), timestamp (TI MESTAVP, TI MESTAMP
W THTI ME ZONE, and TI MESTAMP W THLOCAL Tl ME ZONE), and interval
(I NTERVAL DAY TOSECOND, | NTERVAL YEAR TOMONTH) values.

Some of the datetime functions were designed for the Oracle DATE datatype (ADD _
MONTHS, CURRENT_DATE, LAST_DAY, NEW TI Mg, and NEXT_DAY). If you provide a
timestamp value as their argument, Oracle Database internally converts the input
type to a DATE value and returns a DATE value. The exceptions are the MONTHS _
BETWEEN function, which returns a number, and the ROUND and TRUNC functions,
which do not accept timestamp or interval values at all.

The remaining datetime functions were designed to accept any of the three types of
data (date, timestamp, and interval) and to return a value of one of these types.

The datetime functions are:

ADD_MONTHS
CURRENT_DATE
CURRENT_TIMESTAMP
DBTIMEZONE
EXTRACT (datetime)

Functions 7-5

SQL Functions

FROM_TZ

LAST_DAY
LOCALTIMESTAMP
MONTHS_BETWEEN
NEW_TIME
NEXT_DAY
NUMTODSINTERVAL
NUMTOYMINTERVAL
ROUND (date)
SESSIONTIMEZONE
SYS_EXTRACT_UTC
SYSDATE
SYSTIMESTAMP
TO_CHAR (datetime)
TO_TIMESTAMP
TO_TIMESTAMP_TZ
TO_DSINTERVAL
TO_YMINTERVAL
TRUNC (date)
TZ_OFFSET

Conversion Functions

Conversion functions convert a value from one datatype to another. Generally, the
form of the function names follows the convention dat at ype TOdat at ype. The
first datatype is the input datatype. The second datatype is the output datatype. The
SQL conversion functions are:

ASCIISTR
BIN_TO_NUM

CAST
CHARTOROWID
COMPOSE

CONVERT
DECOMPOSE
HEXTORAW
NUMTODSINTERVAL
NUMTOYMINTERVAL
RAWTOHEX
RAWTONHEX
ROWIDTOCHAR
ROWIDTONCHAR

7-6 SQL Reference

SQL Functions

SCN_TO_TIMESTAMP
TIMESTAMP_TO_SCN
TO_BINARY_DOUBLE
TO_BINARY_FLOAT
TO_CHAR (character)
TO_CHAR (datetime)
TO_CHAR (number)
TO_CLOB

TO_DATE
TO_DSINTERVAL
TO_LOB
TO_MULTI_BYTE
TO_NCHAR (character)
TO_NCHAR (datetime)
TO_NCHAR (number)
TO_NCLOB
TO_NUMBER
TO_DSINTERVAL
TO_SINGLE_BYTE
TO_TIMESTAMP
TO_TIMESTAMP_TZ
TO_YMINTERVAL
TO_YMINTERVAL
TRANSLATE ... USING
UNISTR

Collection Functions
The collection functions operate on nested tables and varrays. The SQL collection
functions are:

CARDINALITY

COLLECT

POWERMULTISET
POWERMULTISET_BY_CARDINALITY
SET

Miscellaneous Single-Row Functions

The following single-row functions do not fall into any of the other single-row
function categories:

BFILENAME

Functions 7-7

SQL Functions

COALESCE
cV

DECODE

DEPTH

DUMP

EMPTY_BLOB, EMPTY_CLOB
EXISTSNODE
EXTRACT (XML)
EXTRACTVALUE
GREATEST

LEAST

LNNVL
NLS_CHARSET_DECL_LEN
NLS_CHARSET_ID
NLS_CHARSET_NAME
NULLIF

NVL

NVL2

ORA_HASH

PATH

PRESENTNNV
PRESENTV

PREVIOUS
SYS_CONNECT_BY_PATH
SYS_CONTEXT
SYS_DBURIGEN
SYS_EXTRACT _UTC
SYS_GUID
SYS_TYPEID
SYS_XMLAGG
SYS_XMLGEN

uID

UPDATEXML

USER

USERENV

VSIZE

XMLAGG
XMLCOLATTVAL
XMLCONCAT
XMLFOREST
XMLSEQUENCE

7-8 SQL Reference

SQL Functions

XMLTRANSFORM

Aggregate Functions

Aggregate functions return a single result row based on groups of rows, rather than
on single rows. Aggregate functions can appear in select lists and in ORDERBY and
HAVI NGclauses. They are commonly used with the GROUP BY clause in a SELECT
statement, where Oracle Database divides the rows of a queried table or view into
groups. In a query containing a GROUP BY clause, the elements of the select list can
be aggregate functions, GROUP BY expressions, constants, or expressions involving
one of these. Oracle applies the aggregate functions to each group of rows and
returns a single result row for each group.

If you omit the GROUP BY clause, then Oracle applies aggregate functions in the
select list to all the rows in the queried table or view. You use aggregate functions in
the HAVI NGclause to eliminate groups from the output based on the results of the
aggregate functions, rather than on the values of the individual rows of the queried
table or view.

See Also: "Using the GROUP BY Clause: Examples” on

page 19-42 and the "HAVING Clause" on page 19-30 for more
information on the GROUP BY clause and HAVI NGclauses in queries
and subqueries

Many (but not all) aggregate functions that take a single argument accept these
clauses:

« DI STI NCT causes an aggregate function to consider only distinct values of the
argument expression.

« ALL causes an aggregate function to consider all values, including all
duplicates.

For example, the DI STI NCT average of 1, 1, 1, and 3 is 2. The ALL average is 1.5. If
you specify neither, then the default is ALL.

All aggregate functions except COUNT(*) and GROUPI NGignore nulls. You can use
the NVL function in the argument to an aggregate function to substitute a value for a
null. COUNT never returns null, but returns either a number or zero. For all the
remaining aggregate functions, if the data set contains no rows, or contains only
rows with nulls as arguments to the aggregate function, then the function returns
null.

Functions 7-9

SQL Functions

You can nest aggregate functions. For example, the following example calculates the
average of the maximum salaries of all the departments in the sample schema hr :

SELECT AVG MAX(sal ary)) FROM enpl oyees GROUP BY department _id;

AVG(MAX(SALARY))

This calculation evaluates the inner aggregate (MAX(sal ar y)) for each group
defined by the GROUP BY clause (depart ment _i d), and aggregates the results
again.

The aggregate functions are:

AVG

COLLECT

CORR

CORR_*

COUNT
COVAR_POP
COVAR_SAMP
CUME_DIST
DENSE_RANK
FIRST

GROUP_ID
GROUPING
GROUPING_ID
LAST

MAX

MEDIAN

MIN
PERCENTILE_CONT
PERCENTILE_DISC
PERCENT_RANK
RANK

REGR_ (Linear Regression) Functions
STATS_BINOMIAL_TEST
STATS_CROSSTAB
STATS_F_TEST
STATS_KS_TEST
STATS_MODE
STATS MW _TEST

7-10 SQL Reference

SQL Functions

STATS_ONE_WAY_ANOVA
STATS_T_TEST *
STATS_WSR_TEST
STDDEV

STDDEV_POP
STDDEV_SAMP

SUM

VAR_POP

VAR_SAMP

VARIANCE

Analytic Functions

Analytic functions compute an aggregate value based on a group of rows. They
differ from aggregate functions in that they return multiple rows for each group.
The group of rows is called a window and is defined by the anal yti c_cl ause.
For each row, a sliding window of rows is defined. The window determines the
range of rows used to perform the calculations for the current row. Window sizes
can be based on either a physical number of rows or a logical interval such as time.

Analytic functions are the last set of operations performed in a query except for the
final ORDER BY clause. All joins and all WHERE, GROUP BY, and HAVI NGclauses are
completed before the analytic functions are processed. Therefore, analytic functions
can appear only in the select list or ORDER BY clause.

Analytic functions are commonly used to compute cumulative, moving, centered,
and reporting aggregates.

analytic_function::=

DS
< O EE1 O D Y0

analytic_clause::=

query_partition_clause —(order_by_clause) 1

Functions 7-11

SQL Functions

guery_partition_clause::=

PARTITION

order_by clause::=

M
N
o r&Eh
SIBLINGS DESC
ORDER BY position

c_alias

it

windowing_clause::=

UNBOUNDED |—>| PRECEDING UNBOUNDED |—>| FOLLOWING

CURRENT |—>| ROW

PRECEDING
e
FOLLOWING

CURRENT |—>| ROW
PRECEDING

FOLLOWING

UNBOUNDED |—>| PRECEDING h
|

CURRENT |->| ROW |

value_expr)->| PRECEDING

The semantics of this syntax are discussed in the sections that follow.

analytic_function
Specify the name of an analytic function (see the listing of analytic functions
following this discussion of semantics).

7-12 SQL Reference

SQL Functions

arguments

Analytic functions take 0 to 3 arguments. The arguments can be any numeric
datatype or any nonnumeric datatype that can be implicitly converted to a numeric
datatype. Oracle determines the argument with the highest numeric precedence and
implicitly converts the remaining arguments to that datatype. The return type is
also that datatype, unless otherwise noted for an individual function.

See Also: "Numeric Precedence" on page 2-17 for information on
numeric precedence and Table 2-11, " Implicit Type Conversion
Matrix" on page 2-55 for more information on implicit conversion

analytic_clause

Use OVERanal yti c_cl ause to indicate that the function operates on a query
result set. That is, it is computed after the FROV| WHERE, GROUP BY, and HAVI NG
clauses. You can specify analytic functions with this clause in the select list or
ORDER BY clause. To filter the results of a query based on an analytic function, nest
these functions within the parent query, and then filter the results of the nested
subquery.

Notes on the analytic_clause:

= You cannot specify any analytic function in any part of the anal yti c_cl ause.
That is, you cannot nest analytic functions. However, you can specify an
analytic function in a subquery and compute another analytic function over it.

« You can specify OVERanal yti c_cl ause with user-defined analytic functions
as well as built-in analytic functions. See CREATE FUNCTION on page 14-61.

guery_partition_clause

Use the PARTI TI ON BY clause to partition the query result set into groups based on
one or more val ue_expr . If you omit this clause, then the function treats all rows
of the query result set as a single group.

To use the query_parti ti on_cl ause in an analytic function, use the upper
branch of the syntax (without parentheses). To use this clause in a model query (in
the nodel _col umm_cl auses) or a partitioned outer join (in the out er _j oi n_
cl ause), use the lower branch of the syntax (with parentheses).

You can specify multiple analytic functions in the same query, each with the same or
different PARTI TI ONBY keys.

Functions 7-13

SQL Functions

If the objects being queried have the parallel attribute, and if you specify an analytic
function with the query_partiti on_cl ause, then the function computations are
parallelized as well.

Valid values of val ue_expr are constants, columns, nonanalytic functions,
function expressions, or expressions involving any of these.

order_by_clause

Use the or der _by_cl ause to specify how data is ordered within a partition. For
all analytic functions except PERCENTI LE_CONT and PERCENTI LE_DI SC (which
take only a single key), you can order the values in a partition on multiple keys,
each defined by a val ue_expr and each qualified by an ordering sequence.

Within each function, you can specify multiple ordering expressions. Doing so is
especially useful when using functions that rank values, because the second
expression can resolve ties between identical values for the first expression.

Whenever the or der _by_cl ause results in identical values for multiple rows, the
function returns the same result for each of those rows. Please refer to the analytic
example for SUM on page 7-213 for an illustration of this behavior.

Restriction on the ORDER BY Clause When used in an analytic function, the
order _by_cl ause must take an expression (expr). The SI BLI NGS keyword is
not valid (it is relevant only in hierarchical queries). Position (posi ti on) and
column aliases (c_al i as) are also invalid. Otherwise this or der _by_cl ause is
the same as that used to order the overall query or subquery.

ASC | DESC Specify the ordering sequence (ascending or descending). ASC is the
default.

NULLS FIRST | NULLS LAST Specify whether returned rows containing nulls
should appear first or last in the ordering sequence.

NULLS LAST is the default for ascending order, and NULLS FI RST is the default for
descending order.

Analytic functions always operate on rows in the order specified in the or der _by
cl ause of the function. However, the or der _by_cl ause of the function does not
guarantee the order of the result. Use the or der _by_cl ause of the query to
guarantee the final result ordering.

See Also: order_by clause of SELECT on page 19-36 for more
information on this clause

7-14 SQL Reference

SQL Functions

windowing_clause

Some analytic functions allow the wi ndowi ng_cl ause. In the listing of analytic
functions at the end of this section, the functions that allow the wi ndowi ng_
cl ause are followed by an asterisk (*).

ROWS | RANGE These keywords define for each row a window (a physical or
logical set of rows) used for calculating the function result. The function is then
applied to all the rows in the window. The window moves through the query result
set or partition from top to bottom.

« ROWS specifies the window in physical units (rows).
« RANGE specifies the window as a logical offset.
You cannot specify this clause unless you have specified the or der _by_cl ause.

The value returned by an analytic function with a logical offset is always
deterministic. However, the value returned by an analytic function with a physical
offset may produce nondeterministic results unless the ordering expression results
in a unique ordering. You may have to specify multiple columns in the or der _by
cl ause to achieve this unique ordering.

BETWEEN ... AND Use the BETVEEN ... AND clause to specify a start point and end
point for the window. The first expression (before AND) defines the start point and
the second expression (after AND) defines the end point.

If you omit BETVEEEN and specify only one end point, then Oracle considers it the
start point, and the end point defaults to the current row.

UNBOUNDED PRECEDING Specify UNBOUNDED PRECEDI NGto indicate that the
window starts at the first row of the partition. This is the start point specification
and cannot be used as an end point specification.

UNBOUNDED FOLLOWING Specify UNBOUNDED FOLLOW NGto indicate that the
window ends at the last row of the partition. This is the end point specification and
cannot be used as a start point specification.

CURRENT ROW As a start point, CURRENT ROWspecifies that the window begins
at the current row or value (depending on whether you have specified RONor
RANGE, respectively). In this case the end point cannot be val ue_expr

PRECEDI NG

Functions 7-15

SQL Functions

As an end point, CURRENT ROMspecifies that the window ends at the current row or
value (depending on whether you have specified RONor RANGE, respectively). In
this case the start point cannot be val ue_expr FOLLON NG

value_expr PRECEDING or value_expr FOLLOWING For RANGE or ROV

« Ifval ue_expr FOLLOW NGis the start point, then the end point must be
val ue_expr FOLLOW NG

« Ifval ue_expr PRECEDI NGis the end point, then the start point must be
val ue_expr PRECEDI NG

If you are defining a logical window defined by an interval of time in numeric
format, then you may need to use conversion functions.

See Also: NUMTOYMINTERVAL on page 7-130 and
NUMTODSINTERVAL on page 7-129 for information on
converting numeric times into intervals

If you specified ROAB:

« val ue_expr is a physical offset. It must be a constant or expression and must
evaluate to a positive numeric value.

« Ifval ue_expr is part of the start point, then it must evaluate to a row before
the end point.

If you specified RANGE:

« val ue_expr is alogical offset. It must be a constant or expression that
evaluates to a positive numeric value or an interval literal. Please refer to
"Literals" on page 2-60 for information on interval literals.

« You can specify only one expression in the or der _by_cl ause

« Ifval ue_expr evaluates to a numeric value, then the ORDER BY expr must be
a numeric or DATE datatype.

« Ifval ue_expr evaluates to an interval value, then the ORDER BY expr must be
a DATE datatype.

If you omit the wi ndowi ng_cl ause entirely, then the default is RANGE BETWEEN
UNBOUNDED PRECEDI NG AND CURRENT ROW

Analytic functions are commonly used in data warehousing environments. In the
list of analytic functions that follows, functions followed by an asterisk (*) allow the
full syntax, including the wi ndowi ng_cl ause.

7-16 SQL Reference

SQL Functions

AVG *

CORR*
COVAR_POP *
COVAR_SAMP *
COUNT *
CUME_DIST
DENSE_RANK
FIRST
FIRST_VALUE *
LAG

LAST

LAST _VALUE *
LEAD

MAX *

MIN *

NTILE
PERCENT_RANK
PERCENTILE_CONT
PERCENTILE_DISC
RANK
RATIO_TO_REPORT
REGR_ (Linear Regression) Functions *
ROW_NUMBER
STDDEV *
STDDEV_POP *
STDDEV_SAMP *
SUM *

VAR_POP *
VAR_SAMP *
VARIANCE *

See Also: Oracle Data Warehousing Guide for more information on
these functions and for scenarios illustrating their use

Object Reference Functions

Object reference functions manipulate REFs, which are references to objects of
specified object types. The object reference functions are:

DEREF
MAKE_REF
REF

Functions 7-17

ABS

REFTOHEX
VALUE

See Also: Oracle Database Concepts for more information about
REFs

Model Functions

Model functions are relevant only for interrow calculations and can be used only in
the nodel _cl ause of the SELECT statement. They are nonrecursive. The model
functions are:

CcVv
ITERATION_NUMBER
PRESENTNNV
PRESENTV

PREVIOUS

Alphabetical Listing of SQL Functions

The SQL functions are described in alphabetical order.

ABS

Syntax

abs::=
0.0:0

Purpose
ABS returns the absolute value of n.

This function takes as an argument any numeric datatype or any nonnumeric
datatype that can be implicitly converted to a numeric datatype. The function
returns the same datatype as the numeric datatype of the argument.

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion

7-18 SQL Reference

ACOS

ACOS

Examples
The following example returns the absolute value of -15:

SELECT ABS(-15) "Absol ute" FROM DUAL;

Absol ute

Syntax

acos:. =
0,0:0

Purpose
ACCS returns the arc cosine of n. The argument n must be in the range of -1 to 1, and
the function returns a value in the range of 0 to pi, expressed in radians.

This function takes as an argument any numeric datatype or any nonnumeric
datatype that can be implicitly converted to a numeric datatype. If the argument is
Bl NARY_FLQOAT, then the function returns Bl NARY _DOUBLE. Otherwise the
function returns the same numeric datatype as the argument.

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion

Examples
The following example returns the arc cosine of .3:

SELECT ACOS(.3)"Arc_Cosine" FROM DUAL;

1. 26610367

Functions 7-19

ADD_MONTHS

ADD_MONTHS

Syntax

add_months::=
O @A)

Purpose

ADD_MONTHS returns the date dat e plusi nt eger months. The date argument can
be a datetime value or any value that can be implicitly converted to DATE. The

i nt eger argument can be an integer or any value that can be implicitly converted
to an integer. The return type is always DATE, regardless of the datatype of dat e. If
dat e is the last day of the month or if the resulting month has fewer days than the
day component of dat e, then the result is the last day of the resulting month.
Otherwise, the result has the same day component as dat e.

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion

Examples

The following example returns the month after the hi r e_dat e in the sample table
enpl oyees:

SELECT TO_CHAR(
ADD_MONTHS(hire_date, 1),
' DD- MON- YYYY') "Next nonth"
FROM enpl oyees
WHERE | ast _name = ' Baer';

Next Month

07-JUL- 1994

7-20 SQL Reference

ASCIISTR

ASCII

ASCIISTR

Syntax

ascii::=
OEQ

Purpose

ASCI | returns the decimal representation in the database character set of the first
character of char .

char can be of datatype CHAR, VARCHAR2, NCHAR, or NVARCHAR2. The value
returned is of datatype NUMBER. If your database character set is 7-bit ASCII, then
this function returns an ASCII value. If your database character set is EBCDIC
Code, then this function returns an EBCDIC value. There is no corresponding
EBCDIC character function.

This function does not support CLOB data directly. However, CLOBs can be passed
in as arguments through implicit data conversion.

See Also: "Datatype Comparison Rules" on page 2-50 for more
information.

Examples
The following example returns the ASCII decimal equivalent of the letter Q:

SELECT ASCI I (* Q) FROM DUAL;

Syntax

asciistr::=

(i HDOHEDOAD

Functions 7-21

ASIN

ASIN

Purpose

ASCI | STRtakes as its argument a string in any character set and returns an ASCI|I
version of the string. Non-ASCII characters are converted to the form \ xxxx, where
XXXX represents a UTF-16 code unit.

See Also: Oracle Database Globalization Support Guide for
information on Unicode character sets and character semantics

Examples

The following example returns the ASCII string equivalent of the text string
"ABACDE":

SELECT ASCI | STR(' ABACDE') FROM DUAL;

ASCI | STR("

AB\ 00CACDE

Syntax

asin::=
000

Purpose

ASI Nreturns the arc sine of n. The argument n must be in the range of -1 to 1, and
the function returns a value in the range of -pi/2 to pi/2, expressed in radians.

This function takes as an argument any numeric datatype or any honnumeric
datatype that can be implicitly converted to a numeric datatype. If the argument is
Bl NARY_FLOAT, then the function returns Bl NARY_DOUBLE. Otherwise the
function returns the same numeric datatype as the argument.

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion

Examples
The following example returns the arc sine of .3:

7-22 SQL Reference

ATAN

ATAN

SELECT ASIN(.3) "Arc_Sine" FROM DUAL;

Arc_Sine

. 304692654

Syntax

atan::=
0,040

Purpose

ATAN returns the arc tangent of n. The argument n can be in an unbounded range
and returns a value in the range of -pi/2 to pi/2, expressed in radians.

This function takes as an argument any numeric datatype or any nhonnumeric
datatype that can be implicitly converted to a numeric datatype. If the argument is
Bl NARY_FLOAT, then the function returns Bl NARY_DOUBLE. Otherwise the
function returns the same numeric datatype as the argument.

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion

Examples
The following example returns the arc tangent of .3:

SELECT ATAN(.3) "Arc_Tangent" FROM DUAL;
Arc_Tangent

. 291456794

Functions 7-23

ATAN2

ATAN2

Syntax

atan2::=
O
0:0 %‘ (MmO

Purpose

ATANZ returns the arc tangent of n and m The argument n can be in an unbounded
range and returns a value in the range of -pi to pi, depending on the signs of n and
m expressed in radians. ATAN2(n,) is the same as ATAN(n/ m).

This function takes as arguments any numeric datatype or any honnumeric
datatype that can be implicitly converted to a numeric datatype. If any argument is
Bl NARY_FLOAT or Bl NARY_DQOUBLE, then the function returns Bl NARY_DOUBLE.
Otherwise the function returns NUMBER

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion

Examples
The following example returns the arc tangent of .3 and .2;

SELECT ATAN2(.3, .2) "Arc_Tangent2" FROM DUAL;

Arc_Tangent 2

. 982793723

7-24 SQL Reference

AVG

AVG

Syntax

avg::=

| DISTINCT I
ALL

OVER P@»Canalytic_clausem
(expr ()) ﬂ

AVG [((

See Also: "Analytic Functions" on page 7-11 for information on
syntax, semantics, and restrictions

Purpose
AVGreturns average value of expr .

This function takes as an argument any numeric datatype or any nonnumeric
datatype that can be implicitly converted to a numeric datatype. The function
returns the same datatype as the numeric datatype of the argument.

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion

If you specify DI STI NCT, then you can specify only the query_partition_

cl ause of the anal yti c_cl ause. The order _by_cl ause and wi ndowi ng__

cl ause are not allowed.

See Also: "About SQL Expressions" on page 5-2 for information
on valid forms of expr and "Aggregate Functions" on page 7-9

Aggregate Example

The following example calculates the average salary of all employees in the
hr . enpl oyees table:

SELECT AVG(sal ary) "Average" FROM enpl oyees;

Aver age

Functions 7-25

BFILENAME

BFILENAME

Analytic Example

The following example calculates, for each employee in the enpl oyees table, the
average salary of the employees reporting to the same manager who were hired in
the range just before through just after the employee:

SELECT manager _id, |ast_nane, hire_date, salary,
AVG(sal ary) OVER (PARTITI ON BY manager _id ORDER BY hire_date
ROAS BETWEEN 1 PRECEDI NG AND 1 FOLLON NG) AS c_mavg
FROM enpl oyees;

MANAGER_| D LAST_NAME H RE_DATE SALARY C_MAVG
100 Kochhar 21- SEP- 89 17000 17000
100 De Haan 13- JAN-93 17000 15000
100 Raphael y 07- DEC- 94 11000 11966. 6667
100 Kaufling 01- MAY- 95 7900 10633. 3333
100 Hartstein 17- FEB- 96 13000 9633. 33333
100 Vi ss 18- JUL- 96 8000 11666. 6667
100 Russel | 01- OCT- 96 14000 11833. 3333

Syntax

bfilename::=

050 OO0 el0
Purpose

BFI LENANME returns a BFI LE locator that is associated with a physical LOB binary
file on the server file system.

« 'directory'isadatabase object that serves as an alias for a full path name on
the server file system where the files are actually located.

« 'fil ename'isthe name of the file in the server file system.

You must create the directory object and associate a BFI LE value with a physical
file before you can use them as arguments to BFI LENAME in a SQL or PL/SQL
statement, DBV5_L OB package, or OCI operation.

You can use this function in two ways:

7-26 SQL Reference

BIN_TO_NUM

« Ina DML statement to initialize a BFI LE column

« Inaprogrammatic interface to access BFI LE data by assigning a value to the
BFI LE locator.

The directory argument is case sensitive. That is, you must ensure that you specify
the directory object name exactly as it exists in the data dictionary. For example, if
an" Admi n" directory object was created using mixed case and a quoted identifier
in the CREATE DI RECTORY statement, then when using the BFI LENANME function
you must refer to the directory object as' Adm n' . You must specify the filename
argument according to the case and punctuation conventions for your operating
system.

See Also:

« Oracle Database Application Developer's Guide - Large Objects and
Oracle Call Interface Programmer's Guide for more information on
LOBs and for examples of retrieving BFI LE data

« CREATE DIRECTORY on page 14-52

Examples

The following example inserts a row into the sample table pm pri nt _nedi a. The
example uses the BFI LENAME function to identify a binary file on the server file
system:

CREATE DI RECTORY nedi a_dir AS '/deno/ schena/ product _nedi a';

I NSERT I NTO print_media (product_id, ad_id, ad_graphic)
VALUES (3000, 31001,
bfilename(' MEDIA DIR, 'nmodem conp_ad.gif'));

BIN_TO_NUM

Syntax

bin_to_num::=

S
[T n (D))

Functions 7-27

BITAND

Purpose

Bl N_TO_NUMconverts a bit vector to its equivalent number. Each argument to this
function represents a bit in the bit vector. This function takes as arguments any

numeric datatype, or any nonnumeric datatype that can be implicitly converted to
NUMBER. Each expr must evaluate to 0 or 1. This function returns Oracle NUVBER.

Bl N_TO_NUMis useful in data warehousing applications for selecting groups of
interest from a materialized view using grouping sets.
See Also:

« group_by clause on page 19-28 for information on GROUPI NG
SETS syntax

« Table 2-11, " Implicit Type Conversion Matrix" on page 2-55 for
more information on implicit conversion

« Oracle Data Warehousing Guide for information on data
aggregation in general

Examples
The following example converts a binary value to a number:

SELECT BIN.TO NUM 1,0, 1, 0) FROM DUAL;

BIN_TO NUM 1, 0, 1, 0)

BITAND

Syntax

bitand::=
O0:CDIOICDIO

Purpose

Bl TAND computes an AND operation on the bits of expr 1 and expr 2, both of which
must resolve to honnegative integers, and returns an integer. This function is
commonly used with the DECODE function, as illustrated in the example that
follows.

7-28 SQL Reference

BITAND

Both arguments can be any numeric datatype, or any nonnumeric datatype that can

be implicitly converted to NUMBER. The function returns NUVBER

Note: This function does not determine the datatype of the value
returned. Therefore, in SQL*Plus, you must specify Bl TANDin a

wrapper, such as TO_NUMBER, which returns a datatype.

See Also:

Examples

Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion

The following represents each or der _st at us in the sample table oe. or der s by
individual bits. (The example specifies options that can total only 7, so rows with
or der _st at us greater than 7 are eliminated.)

SELECT order _id, customer_id,

DECODE(BI TAND(or der _status, 1), 1, 'Warehouse', 'PostOffice')

Locati on,

DECODE(BI TAND(or der _status, 2), 2, 'Gound, "Air') Method,

DECODE(BI TAND(or der _status, 4), 4, 'Insured', 'Certified) Receipt

FROM or ders

VWHERE order _status < 8;

CORDER_| D CUSTOMER | D

LOCATION MET

Postoffice Air
War ehouse Air
\War ehouse Air
Postoffice Air
Postoffice G
Warehouse G
War ehouse G
War ehouse Air
\War ehouse Air
Postoffice G
\War ehouse G

Certified
Certified
Certified
Certified
Certified
Certified
Certified
I nsur ed
| nsured
| nsured
| nsured

Functions 7-29

CARDINALITY

CARDINALITY

Syntax

cardinality::=
—] CARDINALITY P@»Cnested_table}@»

Purpose

CARDI NALI TY returns the number of elements in a nested table. The return type is
NUMBER. If the nested table is empty, or is a null collection, then CARDI NALI TY
returns NULL.

Examples

The following example shows the number of elements in the nested table column
ad_t ext docs_nt ab of the sample table pm pri nt _nedi a:

SELECT product _i d, CARDI NALI TY(ad_t ext docs_nt ab)
FROM print _nedi a;

PRODUCT | D CARDI NALI TY(AD_TEXTDOCS_NTAB)

CAST

Syntax

cast:.:.=

expr

MULTISET |—>®—><subquery 0)

E=110 55 W)

7-30 SQL Reference

CAST

Purpose

CAST converts one built-in datatype or collection-typed value into another built-in
datatype or collection-typed value.

CAST lets you convert built-in datatypes or collection-typed values of one type into
another built-in datatype or collection type. You can cast an unnamed operand
(such as a date or the result set of a subquery) or a named collection (such as a
varray or a nested table) into a type-compatible datatype or named collection. The
t ype_namne must be the name of a built-in datatype or collection type and the
operand must be a built-in datatype or must evaluate to a collection value.

For the operand, expr can be either a built-in datatype, a collection type, or an
instance of an AnyDat a type. If expr is an instance of an AnyDat a type, CAST will
try to extract the value of the AnyDat a instance and return it if it matches the cast
target type, otherwise, null will be returned. MULTI SET informs Oracle Database to
take the result set of the subquery and return a collection value. Table 7-1 shows
which built-in datatypes can be cast into which other built-in datatypes. (CAST does
not support LONG, LONG RAW any of the LOB datatypes, or the Oracle-supplied

types.)

Table 7-1 Casting Built-In Datatypes

from
BINARY_ from from
FLOAT, from from DATETIME / from ROWID, from
BINARY_ CHAR, INTERVAL UROWID NCHAR,
DOUBLE VARCHAR2 NUMBER (Note 1) RAW (Note 2) NVARCHAR2
to BINARY_FLOAT, X X X — — — X
BINARY_DOUBLE
to CHAR, X X X X X X —
VARCHAR?2
to NUMBER X X — — — X
to DATE, — X — X — — —
TIMESTAMP,
INTERVAL
to RAW — — — X — —
to ROWID, — — — — Xa —
UROWID
to NCHAR, X — X X X X X
NVARCHAR2

Note 1: Datetime/interval includes DATE, TI MESTAMP, TI MESTAMP W TH
TI MEZONE, | NTERVAL DAY TO SECOND, and | NTERVAL YEAR TO MONTH.

Functions 7-31

CAST

Note 2: You cannot cast a UROW Dto a ROWN D if the UROW D contains the value of a
ROW D of an index-organized table.

If you want to cast a named collection type into another named collection type, then
the elements of both collections must be of the same type.

If the result set of subquer y can evaluate to multiple rows, then you must specify
the MULTI SET keyword. The rows resulting from the subquery form the elements
of the collection value into which they are cast. Without the MULTI SET keyword,
the subquery is treated as a scalar subquery:.

Built-In Datatype Examples
The following examples use the CAST function with scalar datatypes:

SELECT CAST(' 22- OCT-1997' AS TI MESTAMP W TH LOCAL TI ME ZONE)
FROM dual ;

SELECT product _i d,
CAST(ad_sour cet ext AS VARCHAR2(30))
FROM print _nedi a;

Collection Examples

The CAST examples that follow build on the cust _addr ess_t yp found in the
sample order entry schema, oe.

CREATE TYPE address_book_t AS TABLE OF cust_address_typ;

/

CREATE TYPE address_array_t AS VARRAY(3) OF cust_address_typ;
/

CREATE TABLE cust _address (

custno NUMBER,
street _address VARCHAR2(40) ,
postal _code VARCHAR2(10) ,
city VARCHAR2(30) ,
state_province VARCHAR2(10) ,
country_id CHAR(2));

CREATE TABLE cust _short (custno NUMBER, nanme VARCHAR2(31));
CREATE TABLE states (state_id NUMBER, addresses address_array_t);

This example casts a subquery:

7-32 SQL Reference

CAST

SELECT s.custno, S.nane,
CAST(MULTI SET(SELECT

AS address_hook t)
FROM cust _short s;

CAST converts a varray type column into a nested table:
SELECT CAST(s. addresses AS address_book_t)

FROM states s

ca.
ca.
ca.
ca.
ca.
FROM cust _
WHERE s. custno = ca. custno)

WHERE s.state id = 111;

The following objects create the basis of the example that follows:

CREATE TABLE proj ects

(enpl oyee_i d NUMBER, project_nanme VARCHAR2(10));

CREATE TABLE enps_short

(enpl oyee_i d NUMBER, |ast_nanme VARCHAR2(10));

CREATE TYPE project_table_typ AS TABLE OF VARCHAR2(10);

/

The following example of a MULTI SET expression uses these objects:

SELECT e. | ast _nane,

street address,
post al _code,
city,
state_province,
country_id
address ca

CAST(MULTI SET(SELECT p. proj ect _nane

FROM proj ects p

WHERE p. enpl oyee_id = e. enployee_id

ORDER BY p. proj ect _nane)

AS project_table_typ)
FROM enps_short e;

Functions 7-33

CEIL

Syntax
ceil::=
0,00
Purpose
CEI L returns smallest integer greater than or equal to n.
This function takes as an argument any numeric datatype or any nonnumeric
datatype that can be implicitly converted to a numeric datatype. The function
returns the same datatype as the numeric datatype of the argument.
See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion
Examples
The following example returns the smallest integer greater than or equal to 15.7;
SELECT CEIL(15.7) "Ceiling" FROM DUAL;
Ceiling
16
Syntax

chartorowid::=
0:CH20

Purpose

CHARTOROW D converts a value from CHAR, VARCHAR2, NCHAR, or NVARCHAR2
datatype to RON D datatype.

7-34 SQL Reference

CHR

CHR

This function does not support CLOB data directly. However, CLOBs can be passed
in as arguments through implicit data conversion.

See Also: "Datatype Comparison Rules" on page 2-50 for more
information.

Examples

The following example converts a character rowid representation to a rowid. (The
function will return a different rowid on different databases).

SELECT | ast _name FROM enpl oyees
WHERE ROWN' D = CHARTOROW D(' AAAFd1AAFAAAABSAA ') ;

LAST_NAME

Syntax

chr::=

USING |->| NCHAR_CS |_\
a o

Purpose

CHR returns the character having the binary equivalent to n as a VARCHARZ value in
either the database character set or, if you specify USI NGNCHAR_CS, the national
character set.

For single-byte character sets, if n > 256, then Oracle Database returns the binary
equivalent of n nmod 256. For multibyte character sets, n must resolve to one entire
code point. Invalid code points are not validated, and the result of specifying
invalid code points is indeterminate.

This function takes as an argument a NUVBER value, or any value that can be
implicitly converted to NUMBER, and returns a character.

Functions 7-35

CHR

Note: Use of the CHR function (either with or without the optional
USI NGNCHAR_CS clause) results in code that is not portable
between ASCII- and EBCDIC-based machine architectures.

See Also: NCHR on page 7-116 and Table 2-11, " Implicit Type
Conversion Matrix" on page 2-55 for more information on implicit
conversion

Examples

The following example is run on an ASCII-based machine with the database
character set defined as WE8ISO8859P1:

SELECT CHR(67)| | CHR(65) | | CHR(84) "Dog" FROM DUAL;

Dog

caT

To produce the same results on an EBCDIC-based machine with the

WESBEBCDIC1047 character set, the preceding example would have to be modified
as follows:

SELECT CHR(195)| | CHR(193) || CHR(227) "Dog"
FROM DUAL,;
Dog
CAT
For multibyte character sets, this sort of concatenation gives different results. For
example, given a multibyte character whose hexadecimal value isala? (al

representing the first byte and a2 the second byte), you must specify for n the
decimal equivalent of 'ala2’, or 41378. That is, you must specify:

SELECT CHR(41378) FROM DUAL;

You cannot specify the decimal equivalent of al concatenated with the decimal
equivalent of a2, as in the following example:

SELECT CHR(161)| | CHR(162) FROM DUAL;

7-36 SQL Reference

COALESCE

COALESCE

However, you can concatenate whole multibyte code points, as in the following
example, which concatenates the multibyte characters whose hexadecimal values
areala2 and ala3:

SELECT CHR(41378)| | CHR(41379) FROM DUAL;

The following example uses the UTF8 character set:
SELECT CHR (50052 USI NG NCHAR CS) FROM DUAL;

CH

i

Syntax

coalesce::=

O
O @0

Purpose

CQALESCE returns the first non-null expr in the expression list. At least one expr
must not be the literal NULL. If all occurrences of expr evaluate to null, then the
function returns null.

If all occurrences of expr are numeric datatype or any nhonnumeric datatype that
can be implicitly converted to a numeric datatype, then Oracle Database determines
the argument with the highest numeric precedence, implicitly converts the
remaining arguments to that datatype, and returns that datatype.

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion and
"Numeric Precedence" on page 2-17 for information on numeric
precedence

This function is a generalization of the NVL function.

You can also use COALESCE as a variety of the CASE expression. For example,

Functions 7-37

COALESCE

COALESCE (exprl, expr2)

is equivalent to:
CASE WHEN expr1 |'S NOT NULL THEN exprl ELSE expr2 END

Similarly,
COALESCE (exprl, expr2, ..., exprn), for n>=3

is equivalent to:

CASE WHEN expr1 I'S NOT NULL THEN exprl
ELSE COALESCE (expr2, ..., exprn) END

See Also: NVL on page 7-131 and "CASE Expressions" on
page 5-5

Examples

The following example uses the sample oe. pr oduct _i nf or mat i on table to
organize a clearance sale of products. It gives a 10% discount to all products with a
list price. If there is no list price, then the sale price is the minimum price. If there is
no minimum price, then the sale price is "5™

SELECT product _id, list_price, min_price,
COALESCE(0.9*list_price, min_price, 5) "Sale"
FROM product _i nf or mati on
VWHERE supplier_id = 102050;

PRODUCT_I D LI ST_PRICE M N_PRI CE Sal e
2382 850 731 765
3355 5
1770 73 73
2378 305 247 274.5
1769 48 43.2

7-38 SQL Reference

COMPOSE

COLLECT

COMPOSE

Syntax

collect::=
—>| COLLECT F@{column}@»

Purpose

COLLECT takes as its argument a column of any type and creates a nested table of
the input type out of the rows selected. To get the results of this function you must
use it within a CAST function.

If col um is itself a collection, then the output of COLLECT is a nested table of
collections.

See Also: CAST on page 7-30

Examples
The following example creates a nested table from the varray column of phone
numbers in the sample table oe. cust oners:

CREATE TYPE phone_book_t AS TABLE OF phone_list_typ;

/

SELECT CAST(COLLECT(phone_nunbers) AS phone_book_t)
FROM cust oner s;

Syntax
compose::=

| compose [O D(eha A)

Purpose

COVPCSE takes as its argument a string in any datatype, and returns a Unicode
string in its fully normalized form in the same character set as the input. char can
be any of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB. For

Functions 7-39

CONCAT

CONCAT

example, an o code point qualified by an umlaut code point will be returned as the
o-umlaut code point.

See Also: Oracle Database Globalization Support Guide for
information on Unicode character sets and character semantics

Examples
The following example returns the o-umlaut code point:

SELECT COVPCSE ('o' || UNISTR('\0308')) FROM DUAL;
¢0)
)

See Also: UNISTR on page 7-261

Syntax

concat::=
OGO

Purpose

CONCAT returns char 1 concatenated with char 2. Both char 1 and char 2 can be
any of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB. The
string returned is in the same character set as char 1. Its datatype depends on the
datatypes of the arguments.

In concatenations of two different datatypes, Oracle Database returns the datatype
that results in a lossless conversion. Therefore, if one of the arguments is a LOB,
then the returned value is a LOB. If one of the arguments is a national datatype,
then the returned value is a national datatype. For example:

« CONCAT(CLOB, NCLOB) returns NCLOB
» CONCAT(NCLOB, NCHAR) returns NCLOB
» CONCAT(NCLOB, CHAR) returns NCLOB
» CONCAT(NCHAR, CLOB) returns NCLOB

7-40 SQL Reference

CONVERT

CONVERT

This function is equivalent to the concatenation operator (] |). The function is useful
when there are spaces in the values to be concatenated. The concatenation operator
does not permit spaces.

See Also: "Concatenation Operator" on page 4-4 for information
on the CONCAT operator

Examples
This example uses nesting to concatenate three character strings:
SELECT CONCAT(CONCAT(l ast _nane, '''s job category is '),
job_id) "Job"
FROM enpl oyees
WHERE enpl oyee_id = 152;

Hall's job category is SA REP

Syntax
convert::=

(OO (e harse 02
Purpose

CONVERT converts a character string from one character set to another. The datatype
of the returned value is VARCHAR2.

« Thechar argument is the value to be converted. It can be any of the datatypes
CHAR, VARCHAR2, NCHAR, N\VARCHAR2, CLOB, or NCLOB.

« Thedest _char_set argument is the name of the character set to which char
is converted.

« Thesource_char_set argument is the name of the character set in which
char is stored in the database. The default value is the database character set.

Functions 7-41

CONVERT

Both the destination and source character set arguments can be either literals or
columns containing the name of the character set.

For complete correspondence in character conversion, it is essential that the
destination character set contains a representation of all the characters defined in
the source character set. Where a character does not exist in the destination
character set, a replacement character appears. Replacement characters can be
defined as part of a character set definition.

Examples

The following example illustrates character set conversion by converting a Latin-1
string to ASCII. The result is the same as importing the same string from a
WES8ISO8859P1 database to a US7ASCII database.

SELECT CONVERT('AET OGABCDE", '"USTASCII', 'WVESI SO8859P1')
FROM DUAL;

CONVERT(" AEl GZIABCDE'

AEI ??2ABCDE?

Common character sets include:

= US7ASCII: US 7-bit ASCII character set

« WESDEC: West European 8-bit character set

« F7DEC: DEC French 7-bit character set

« WESEBCDIC500: IBM West European EBCDIC Code Page 500

« WEB8ISO8859P1: ISO 8859-1 West European 8-bit character set

« UTF8: Unicode 3.0 UTF-8 Universal character set, CESU-8 compliant
« AL32UTF8: Unicode 3.1 UTF-8 Universal character set

7-42 SQL Reference

CORR

CORR

Syntax

corr::=

[—>| OVER Wanalytic_clausem
0lCDI6CDC

See Also: "Analytic Functions" on page 7-11 for information on
syntax, semantics, and restrictions

Purpose

CORRreturns the coefficient of correlation of a set of number pairs. You can use it as
an aggregate or analytic function.

This function takes as arguments any numeric datatype or any honnumeric
datatype that can be implicitly converted to a numeric datatype. Oracle determines
the argument with the highest numeric precedence, implicitly converts the
remaining arguments to that datatype, and returns that datatype.

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion and
"Numeric Precedence" on page 2-17 for information on numeric
precedence

Oracle Database applies the function to the set of (expr 1, expr 2) after eliminating
the pairs for which either expr 1 or expr 2 is null. Then Oracle makes the following
computation:

COVAR_POP(exprl, expr2) / (STDDEV_POP(exprl) * STDDEV_POP(expr2))

The function returns a value of type NUMBER. If the function is applied to an empty
set, then it returns null.

Note: The CORR function calculates the Pearson's correlation
coefficient, which requires numeric expressions as arguments.
Oracle also provides the CORR_S (Spearman's rho coefficient) and
CORR_K (Kendall's tau-b coefficient) to support nonparametric or
rank correlation.

Functions 7-43

CORR

See Also: "Aggregate Functions" on page 7-9, "About SQL
Expressions” on page 5-2 for information on valid forms of expr,
and CORR_* on page 7-45 and CORR_S on page 7-46

Aggregate Example

The following example calculates the coefficient of correlation between the list
prices and minimum prices of products by weight class in the sample table
oe. product _i nformati on:

SELECT wei ght _cl ass, CORR(list_price, min_price)
FROM product _i nf or mati on
GROUP BY wei ght _cl ass;

WEI GHT_CLASS CORR(LI ST_PRI CE, M N_PRI CE)
1 . 99914795
2 . 999022941
3 . 998484472
4 . 999359909
5 . 999536087

Analytic Example

The following example returns the cumulative coefficient of correlation of monthly
sales revenues and monthly units sold from the sample tables sh. sal es and
sh. ti mes for year 1998:

SELECT t. cal endar _nont h_nunber,
CORR (SUM s. anount _sol d), SUMs. quantity_sold))
OVER (ORDER BY t. cal endar _nont h_nunber) as CUM CORR
FROM sales s, tines t
WHERE s.time_id = t.tine_id AND cal endar_year = 1998
CGROUP BY t. cal endar _nont h_nunber
ORDER BY t. cal endar_nont h_nunber;

CALENDAR_MONTH_NUMBER ~ CUM_CORR

. 994309382
. 852040875
. 846652204
. 871250628
. 910029803
. 917556399

O ~NO Ol WN B

7-44 SQL Reference

CORR_*

CORR_*

9 .920154356
10 .86720251
11 . 844864765
12 . 903542662

Correlation functions require more than one row on which to operate, so the first
row in the preceding example has no value calculated for it.

The CORR_* functions are:

« CORR S
« CORR K
Syntax
correlation::=
|
ONE_SIDED_SIG
)
exprl expr2)
) 00 @
Purpose

The CORR function (see CORR on page 7-43) calculates the Pearson's correlation
coefficient and requires numeric expressions as input. The CORR_* functions
support nonparametric or rank correlation. They let you find correlations between
expressions that are ordinal scaled (where ranking of the values is possible).
Correlation coefficients take on a value ranging from -1 to 1, where 1 indicates a
perfect relationship, -1 a perfect inverse relationship (when one variable increases as
the other decreases), and a value close to 0 means no relationship.

These functions takes as arguments any numeric datatype or any nonnumeric
datatype that can be implicitly converted to a numeric datatype. Oracle Database
determines the argument with the highest numeric precedence, implicitly converts
the remaining arguments to that datatype, makes the calculation, and returns
NUMBER.

Functions 7-45

CORR_*

CORR_S

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion and
"Numeric Precedence” on page 2-17 for information on numeric
precedence

expr 1 and expr 2 are the two variables being analyzed. The third argument is a
return value of type VARCHARZ. If you omit the third argument, the default is
COEFFI Cl ENT. The meaning of the return values is shown in the table that follows:

Table 7-2 CORR_* Return Values

Return Value Meaning

COEFFI Cl ENT Coefficient of correlation

ONE_SI DED_SI G One-tailed significance of the correlation
TWO SIDED SIG Two-tailed significance of the correlation

CORR_S calculates the Spearman's rho correlation coefficient. The input expressions
should be a set of (x;, y;) pairs of observations. The function first replaces each value
with a rank. Each value of x; is replaced with its rank among all the other x;s in the
sample, and each value of y; is replaced with its rank among all the other y;s. Thus,
each x; and y; take on a value from 1 to n, where n is the total number of pairs of
values. Ties are assigned the average of the ranks they would have had if their
values had been slightly different. Then the function calculates the linear correlation
coefficient of the ranks.

CORR_S Example Using Spearman's rho correlation coefficient, the following
example determines whether a correlation exists between an employee's salary and
commission percent:

SELECT CORR_S(sal ary, commission_pct, ' COEFFICIENT') coefficient,
CORR_S(sal ary, commission_pct, 'TWO SIDED SIG) two_sided p_val ue
FROM hr . enpl oyees;

CCEFFI Cl ENT TWO_SI DED P_VALUE

. 735837022 4. 7362E- 07

7-46 SQL Reference

CoS

CORR K

COS

CORR _K calculates the Kendall's tau-b correlation coefficient. As for CORR _S, the
input expressions are a set of (x;, y;) pairs of observations. To calculate the
coefficient, the function counts the number of concordant and discordant pairs. A
pair of observations is concordant if the observation with the larger x also has a
larger value of y. A pair of observations is discordant if the observation with the
larger x has a smaller y.

The significance of tau-b is the probability that the correlation indicated by tau-b
was due to chance—a value of 0 to 1. A small value indicates a significant
correlation for positive values of tau-b (or anticorrelation for negative values of
tau-b).

CORR_K Example Using Kendall's tau-b correlation coefficient, the following
example determines whether a correlation exists between an employee's salary and
commission percent:

SELECT CORR K(sal ary, comm ssion_pct, 'COEFFICIENT') coefficient,
CORR K(sal ary, commission_pct, 'TWO SIDED SIG) two_sided_p_val ue
FROM hr. enpl oyees;

CCEFFI CI ENT TWO SI DED_P_VALUE

. 603079768 3. 4702E- 07

Syntax

cos: .=
0050

Purpose

COS returns the cosine of n (an angle expressed in radians).

This function takes as an argument any numeric datatype or any nhonnumeric
datatype that can be implicitly converted to a numeric datatype. If the argument is

Bl NARY_FLQAT, then the function returns Bl NARY_DOUBLE. Otherwise the
function returns the same numeric datatype as the argument.

Functions 7-47

COSH

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion

Examples
The following example returns the cosine of 180 degrees:

SELECT COS(180 * 3.14159265359/180)
"Cosine of 180 degrees" FROM DUAL;

Cosi ne of 180 degrees

COSH

Syntax

cosh::=
ESI:0:0:0

Purpose
COSH returns the hyperbolic cosine of n.

This function takes as an argument any numeric datatype or any honnumeric
datatype that can be implicitly converted to a numeric datatype. If the argument is
Bl NARY_FLOAT, then the function returns Bl NARY_DOUBLE. Otherwise the
function returns the same numeric datatype as the argument.

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion

Examples
The following example returns the hyperbolic cosine of zero:

SELECT COSH(0) "Hyperbolic cosine of 0" FROM DUAL;

Hyperbolic cosine of 0

7-48 SQL Reference

COUNT

COUNT

Syntax

count::=

f—)| OVER P@{analytic_clausem
)

DISTINCT
O - {=mTh
ALL

expr

See Also: "Analytic Functions" on page 7-11 for information on
syntax, semantics, and restrictions

Purpose

COUNT returns the number of rows returned by the query. You can use it as an
aggregate or analytic function.

If you specify DI STI NCT, then you can specify only the query_partition_
cl ause of the anal yti c_cl ause. The order _by_cl ause and wi ndowi ng__
cl ause are not allowed.

If you specify expr , then COUNT returns the number of rows where expr is not
null. You can count either all rows, or only distinct values of expr .

If you specify the asterisk (*), then this function returns all rows, including
duplicates and nulls. COUNT never returns null.

See Also: "About SQL Expressions" on page 5-2 for information
on valid forms of expr and "Aggregate Functions" on page 7-9

Aggregate Examples
The following examples use COUNT as an aggregate function:

SELECT COUNT(*) "Total" FROM enpl oyees;

SELECT COUNT(*) "Allstars" FROM enpl oyees

Functions 7-49

COUNT

WHERE commi ssion_pct > 0;

Allstars

SELECT COUNT(DI STI NCT manager _i d) "Managers" FROM enpl oyees;

Manager s

Analytic Example

The following example calculates, for each employee in the enpl oyees table, the
moving count of employees earning salaries in the range 50 less than through 150
greater than the employee's salary.

SELECT | ast _nane, salary,
COUNT(*) OVER (ORDER BY sal ary RANGE BETWEEN 50 PRECEDI NG
AND 150 FOLLOWNG) AS nov_count FROM enpl oyees;

LAST_NAME SALARY MOV_COUNT
d son 2100 3
Mar ki e 2200 2
Phi | t anker 2200 2
Landry 2400 8
Cee 2400 8
Col menar es 2500 10
Pat el 2500 10

7-50 SQL Reference

COVAR_POP

Syntax
covar_pop::=
f—)| OVER F@{analytic_clausem
(OO
See Also: "Analytic Functions" on page 7-11 for information on
syntax, semantics, and restrictions
Purpose

COVAR_POP returns the population covariance of a set of number pairs. You can use
it as an aggregate or analytic function.

This function takes as arguments any numeric datatype or any honnumeric
datatype that can be implicitly converted to a numeric datatype. Oracle determines
the argument with the highest numeric precedence, implicitly converts the
remaining arguments to that datatype, and returns that datatype.

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion and
"Numeric Precedence" on page 2-17 for information on numeric
precedence

Oracle Database applies the function to the set of (expr 1, expr 2) pairs after
eliminating all pairs for which either expr 1 or expr 2 is null. Then Oracle makes
the following computation:

(SUMexprl * expr2) - SUMexpr2) * SUMexprl) / n) / n

where n is the number of (expr 1, expr 2) pairs where neither expr 1 nor expr 2 is
null.

The function returns a value of type NUMBER. If the function is applied to an empty
set, then it returns null.

See Also: "About SQL Expressions” on page 5-2 for information
on valid forms of expr and "Aggregate Functions” on page 7-9

Functions 7-51

COVAR_POP

Aggregate Example

The following example calculates the population covariance for the sales revenue
amount and the units sold for each year from the sample table sh. sal es:

SELECT t. cal endar _nont h_nunber,
COVAR _POP(s. anount _sol d, s.quantity_sold) AS covar_pop,
COVAR_SAMP(s. amount _sol d, s.quantity_sold) AS covar_sanp
FROMsales s, times t
WHERE s.time_id = t.tine_id
AND t.cal endar_year = 1998
GROUP BY t.cal endar _mont h_nunber;

CALENDAR_MONTH_NUMBER COVAR_PCP COVAR_SAMWP
5437. 68586 5437.88704
5923. 72544 5923. 99139
6040. 11777 6040. 38623
5946. 67897 5946. 92754
5986. 4463
5726. 79371 5727. 05703
5491. 65269 5491. 9239
5672. 40362 5672. 66882
5741.53626 5741.80025
10 5050. 5683 5050. 78195
11 5256. 50553 5256. 69145
12 5411. 2053 5411. 37709

O ~NOO U WN R
a1
©
o5}
o
N
N
~
[<3)
w

©

Analytic Example

The following example calculates cumulative sample covariance of the list price and
minimum price of the products in the sample schema oe:

SELECT product _i d, supplier_id,
COVAR POP(list _price, mn_price)
OVER (ORDER BY product_id, supplier_id)
AS CUM COVP,
COVAR _SAMP(list_price, min_price)
OVER (ORDER BY product _id, supplier_id)
AS CUM COVS
FROM product _i nformation p
WHERE category_id = 29
ORDER BY product _id, supplier_id;

PRODUCT_I D SUPPLIER ID CUM COVP CUM COVS

1774 103088 0

7-52 SQL Reference

COVAR_SAMP

1775 103087 1473.25 2946.5
1794 103096 1702. 77778 2554. 16667
1825 103093 1926. 25 2568. 33333
2004 103086 1591.4 1989.25
2005 103086 1512.5 1815
2416 103088 1475.97959 1721. 97619
COVAR_SAMP
Syntax

covar_samp::=

EE1 0G0

o s YDA O]

See Also: "Analytic Functions" on page 7-11 for information on
syntax, semantics, and restrictions

Purpose

COVAR_SAMP returns the sample covariance of a set of number pairs. You can use it
as an aggregate or analytic function.

This function takes as arguments any numeric datatype or any honnumeric
datatype that can be implicitly converted to a numeric datatype. Oracle determines
the argument with the highest numeric precedence, implicitly converts the
remaining arguments to that datatype, and returns that datatype.

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion and
"Numeric Precedence" on page 2-17 for information on numeric
precedence

Oracle Database applies the function to the set of (expr 1, expr 2) pairs after
eliminating all pairs for which either expr 1 or expr 2 is null. Then Oracle makes
the following computation:

(SUMexprl * expr2) - SUMexprl) * SUMexpr2) / n) [(n-1)

Functions 7-53

CUME_DIST

where n is the number of (expr 1, expr 2) pairs where neither expr 1 nor expr 2 is
null.

The function returns a value of type NUMBER. If the function is applied to an empty
set, then it returns null.

See Also: "About SQL Expressions” on page 5-2 for information
on valid forms of expr and "Aggregate Functions" on page 7-9

Aggregate Example
Please refer to the aggregate example for COVAR_POP on page 7-51.

Analytic Example
Please refer to the analytic example for COVAR_POP on page 7-51.

CUME_DIST

Aggregate Syntax

cume_dist_aggregate::=

O
o o et

Analytic Syntax

cume_dist_analytic::=

query_partition_clause
CUME_DIST o o OVER B{((order_by_clause)»(:)»

7-54 SQL Reference

CUME_DIST

See Also: "Analytic Functions" on page 7-11 for information on
syntax, semantics, and restrictions

Purpose

CUME_DI ST calculates the cumulative distribution of a value in a group of values.
The range of values returned by CUME_DI ST is >0 to <=1. Tie values always
evaluate to the same cumulative distribution value.

This function takes as arguments any numeric datatype or any honnumeric
datatype that can be implicitly converted to a numeric datatype. Oracle Database
determines the argument with the highest numeric precedence, implicitly converts
the remaining arguments to that datatype, makes the calculation, and returns
NUMBER

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion and
"Numeric Precedence" on page 2-17 for information on numeric
precedence

« Asan aggregate function, CUVE_DI ST calculates, for a hypothetical row r
identified by the arguments of the function and a corresponding sort
specification, the relative position of row r among the rows in the aggregation
group. Oracle makes this calculation as if the hypothetical row r were inserted
into the group of rows to be aggregated over. The arguments of the function
identify a single hypothetical row within each aggregate group. Therefore, they
must all evaluate to constant expressions within each aggregate group. The
constant argument expressions and the expressions in the ORDER BY clause of
the aggregate match by position. Therefore, the number of arguments must be
the same and their types must be compatible.

« Asan analytic function, CUVME_DI ST computes the relative position of a
specified value in a group of values. For a row r , assuming ascending ordering,
the CUME_DI ST of r is the number of rows with values lower than or equal to
the value of r , divided by the number of rows being evaluated (the entire query
result set or a partition).

Aggregate Example

The following example calculates the cumulative distribution of a hypothetical
employee with a salary of $15,500 and commission rate of 5% among the employees
in the sample table oe. enpl oyees:

SELECT CUME_DI ST(15500, .05) WTH N GROUP

Functions 7-55

CURRENT_DATE

(ORDER BY sal ary, commission_pct) "Cume-Dist of 15500"
FROM enpl oyees;

Cunme-Di st of 15500

. 972222222

Analytic Example

The following example calculates the salary percentile for each employee in the
purchasing division. For example, 40% of clerks have salaries less than or equal to
Himuro.

SELECT job_id, |ast_name, salary, CUME DI ST()
OVER (PARTITION BY job_id ORDER BY salary) AS cune_di st
FROM enpl oyees
VWHERE job_id LIKE ' PU% ;

JOB ID LAST_NAME SALARY CUME_DI ST
PU CLERK Col nenares 2500 2
PU CLERK Himuro 2600 .4
PU CLERK Tobi as 2800 .6
PU CLERK Baida 2900 8
PU CLERK Khoo 3100 1
PU_MAN Raphael y 11000 1

CURRENT_DATE
Syntax
current_date::=

CURRENT_DATE

Purpose

CURRENT _DATE returns the current date in the session time zone, in a value in the
Gregorian calendar of datatype DATE.

7-56 SQL Reference

CURRENT_TIMESTAMP

Examples

The following example illustrates that CURRENT_DATE is sensitive to the session
time zone:

ALTER SESSI ON SET TIME_ZONE = '-5:0';

ALTER SESSI ON SET NLS_DATE_FCRMAT = ' DD- MON- YYYY HH24: M : SS';
SELECT SESSI ONTI MEZONE, CURRENT_DATE FROM DUAL;

SESSI ONTI MEZONE CURRENT_DATE

-05: 00 29- MAY- 2000 13:14:03

ALTER SESSION SET TIME_ZONE = '-8:0';
SELECT SESSI ONTI MEZONE, CURRENT_DATE FROM DUAL,;

SESSI ONTI MEZONE CURRENT_DATE

CURRENT_TIMESTAMP

Syntax

current_timestamp::=

o precision o

—>| CURRENT_TIMESTAMP }

Purpose

CURRENT_TI MESTAMP returns the current date and time in the session time zone,
in a value of datatype TI MESTAMP W TH TI ME ZONE. The time zone offset reflects
the current local time of the SQL session. If you omit precision, then the default is 6.
The difference between this function and LOCALTI MESTAMP is that CURRENT _

TI MESTAMP returns a TI MESTAMP W TH TI ME ZONE value while

LOCALTI MESTAMP returns a TI MESTAMP value.

In the optional argument, pr eci si on specifies the fractional second precision of
the time value returned.

See Also: LOCALTIMESTAMP on page 7-102

Functions 7-57

CURRENT_TIMESTAMP

Examples
The following example illustrates that CURRENT_TI MESTAMP is sensitive to the
session time zone:

ALTER SESSI ON SET TIME_ZONE = '-5:0';
ALTER SESSI ON SET NLS_DATE_FCRMAT = ' DD- MON- YYYY HH24: M : SS';
SELECT SESSI ONTI MEZONE, CURRENT_TI MESTAMP FROM DUAL;

SESSI ONTI MEZONE CURRENT_TI MESTAMP

-05: 00 04- APR-00 01.17.56.917550 PM -05: 00

ALTER SESSI ON SET TIME_ZONE = '-8:0';
SELECT SESSI ONTI MEZONE, CURRENT_TI MESTAMP FROM DUAL,;

SESSI ONTI MEZONE CURRENT_TI MESTAMP

-08: 00 04- APR-00 10.18. 21. 366065 AM -08: 00

If you use the CURRENT _TI MESTAMP with a format mask, take care that the format
mask matches the value returned by the function. For example, consider the
following table:

CREATE TABLE current _test (col1l TIMESTAMP WTH TIME ZONE) ;
The following statement fails because the mask does not include the TI ME ZONE
portion of the type returned by the function:
I NSERT I NTO current _test VALUES

(TO_TI NESTAMP_TZ(CURRENT _TI MESTAMP, ' DD- MON-RR HH. M . SSXFF PM));
The following statement uses the correct format mask to match the return type of
CURRENT _TI MESTAMP;

I NSERT | NTO current_test VALUES (TO TI MESTAMP_TZ
(CURRENT _TI MESTAMP, ' DD- MON-RR HH. M . SSXFF PM TZH TZM));

7-58 SQL Reference

Ccv

CV

Syntax
CV..=

(oy
Purpose

The CV function is relevant only for interrow calculations. It can be used only in the
nodel _cl ause of a SELECT statement and then only on the right-hand side of a
model rule. It returns the current value of a dimension column carried from the
left-hand side to the right-hand side of a rule. This function is used in the model _
cl ause to provide relative indexing with respect to the dimension column. The
return type is that of the datatype of the dimension column. If you omit the
argument, it defaults to the dimension column associated with the relative position
of the function within the cell reference.

The CV function may be used outside a cell reference. In this case, di mensi on_
col um is required.

See Also: model_clause on page 19-30 and "Model Expressions” on
page 5-15 for the syntax and semantics of interrow calculations

Example

The following example assigns the sum of the sales of the product represented by
the current value of the dimension column (Mouse Pad or Standard Mouse) for
years 1999 and 2000 to the sales of that product for year 2001:

SELECT country, prod, year, s
FROM sal es_vi ew
MODEL
PARTI TI ON BY (country)
DI MENSI ON BY (prod, year)
MEASURES (sal e s)
| GNORE NAV
UNI QUE DI MENSI ON
RULES UPSERT SEQUENTI AL ORDER

(
S[FOR prod in (' Muse Pad', 'Standard Muse'), 2001] =

Functions 7-59

DBTIMEZONE

S[OV(), 1999] + s[CV(), 2000]

)
ORDER BY country, prod, year;

COUNTRY PROD YEAR S
France Mouse Pad 1998 25009. 42
France Mouse Pad 1999 3678. 69
France Muse Pad 2000 3000. 72
France Mouse Pad 2001 6679. 41
France Standard Muse 1998 2390. 83
France Standard Mouse 1999 2280. 45
France St andard Muse 2000 1274. 31
France St andard Muse 2001 3554, 76
Ger many Mouse Pad 1998 5827. 87
Ger nany Mouse Pad 1999 8346. 44
Ger many Mouse Pad 2000 7375. 46
Cer many Mouse Pad 2001 15721.9
Cer many St andard Mouse 1998 7116. 11
Cer many St andard Muse 1999 6263. 14
Ger many St andard Muse 2000 2637. 31
Cer nany St andard Mouse 2001 8900. 45

16 rows sel ected.

The preceding example requires the view sal es_vi ew. Refer to "Interrow
Calculations: Examples" on page 19-45 to create this view.

DBTIMEZONE

Syntax

dbtimezone::=
DBTIMEZONE

PUI’pOSG

DBTI MEZONE returns the value of the database time zone. The return type is a time
zone offset (a character type in the format' [+| -] TZH: TZM) or a time zone region
name, depending on how the user specified the database time zone value in the
most recent CREATE DATABASE or ALTER DATABASE statement.

7-60 SQL Reference

DECODE

DECODE

Examples
The following example assumes that the database time zone is set to UTC time
zone:

SELECT DBTI MEZONE FROM DUAL;

Syntax

decode::=

M\
U O
Q@O @D O 0%

Purpose

DECODE compares expr to each sear ch value one by one. If expr is equal to a
sear ch, then Oracle Database returns the corresponding r esul t . If no match is
found, then Oracle returns def aul t . If def aul t is omitted, then Oracle returns
null.

The arguments can be any of the numeric types (NUMBER, Bl NARY_FLQAT, or
Bl NARY_DOUBLE) or character types.

« Ifexpr and sear ch are character data, then Oracle compares them using
nonpadded comparison semantics. expr, sear ch, and r esul t can be any of
the datatypes CHAR, VARCHAR2, NCHAR, or N\VARCHAR2. The string returned is
of VARCHAR2 datatype and is in the same character set as the first r esul t
parameter.

« Ifthe first sear ch-resul t pair are numeric, then Oracle compares all
sear ch-resul t -result expressions and the first expr to determine the
argument with the highest numeric precedence, implicitly converts the
remaining arguments to that datatype, and returns that datatype.

The sear ch,resul t,and def aul t values can be derived from expressions.
Oracle evaluates each sear ch value only before comparing it to expr , rather than

Functions 7-61

DECODE

evaluating all sear ch values before comparing any of them with expr .
Consequently, Oracle never evaluates a sear ch if a previous sear ch is equal to
expr.

Oracle automatically converts expr and each sear ch value to the datatype of the
first sear ch value before comparing. Oracle automatically converts the return
value to the same datatype as the firstr esul t . If the firstr esul t has the datatype
CHARor if the firstr esul t is null, then Oracle converts the return value to the
datatype VARCHAR2.

In a DECODE function, Oracle considers two nulls to be equivalent. If expr is null,
then Oracle returns the r esul t of the first sear ch that is also null.

The maximum number of components in the DECODE function, including expr,
sear ches, resul t s, and def aul t, is 255.

See Also: "Datatype Comparison Rules" on page 2-50 for
information on comparison semantics, "Data Conversion™ on

page 2-54 for information on datatype conversion in general,
"Floating-Point Numbers" on page 2-14 for information on
floating-point comparison semantics, and "Implicit and Explicit
Data Conversion" on page 2-55 for information on the drawbacks of
implicit conversion

Examples

This example decodes the value war ehouse_i d. If war ehouse_i d is 1, then the
function returns 'Sout hl ake'; if war ehouse_i d is 2, then it returns 'San
Franci sco'; and so forth. If war ehouse_i d is not 1, 2, 3, or 4, then the function
returns '‘Non donestic'.

SELECT product _i d,

DECODE (war ehouse_id, 1, 'Southlake',

2, 'San Francisco',

3, 'New Jersey',

4, 'Seattle',

"Non domestic')

"Location of inventory" FROMinventories
WHERE product _id < 1775;

7-62 SQL Reference

DECOMPOSE

DECOMPOSE

Syntax

decompose::=

| CANONICAL q
COMPATIBILITY

E=31010 CD 6

Purpose

DECOVPCSE is valid only for Unicode characters. DECOVPOSE takes as its argument
a string in any datatype and returns a Unicode string after decomposition in the
same character set as the input. For example, an o-umlaut code point will be
returned as the "0" code point followed by an umlaut code point.

« String can be any of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR?,
CLOB, or NCLOB.

» CANONI CAL causes canonical decomposition, which allows recomposition (for
example, with the COMPOSE function) to the original string. This is the default.

0

« COWPATI BI LI TY causes decomposition in compatibility mode. In this mode,
recomposition is not possible. This mode is useful, for example, when
decomposing half-width and full-width katakana characters, where
recomposition might not be desirable without external formatting or style
information.

See Also: Oracle Database Globalization Support Guide for
information on Unicode character sets and character semantics

Examples

The following example decomposes the string "Chat eaux" into its component code
points:

SELECT DECOMPOSE (' Chateaux') FROM DUAL;

Cha't eaux

Functions 7-63

DENSE_RANK

DENSE_RANK

Aggregate Syntax

dense_rank_aggregate::=

O
o e -0)

Analytic Syntax

dense_rank_analytic::=
query_partition_clause
DENSE_RANK o o OVER [((5 order_by_clause)(P

See Also: "Analytic Functions" on page 7-11 for information on
syntax, semantics, and restrictions

Purpose

DENSE_RANK computes the rank of a row in an ordered group of rows and returns
the rank as a NUMBER. The ranks are consecutive integers beginning with 1. The
largest rank value is the number of unique values returned by the query. Rank
values are not skipped in the event of ties. Rows with equal values for the ranking
criteria receive the same rank. This function is useful for top-N and bottom-N
reporting.

This function accepts as arguments any numeric datatype and returns NUMBER.

« Asan aggregate function, DENSE_RANK calculates the dense rank of a
hypothetical row identified by the arguments of the function with respect to a
given sort specification. The arguments of the function must all evaluate to
constant expressions within each aggregate group, because they identify a

7-64 SQL Reference

DENSE_RANK

single row within each group. The constant argument expressions and the
expressions in the or der _by_cl ause of the aggregate match by position.
Therefore, the number of arguments must be the same and types must be
compatible.

« Asan analytic function, DENSE_RANK computes the rank of each row returned
from a query with respect to the other rows, based on the values of the val ue_
exprs intheorder by cl ause.

Aggregate Example

The following example computes the ranking of a hypothetical employee with the
salary $15,500 and a commission of 5% in the sample table oe. enpl oyees:

SELECT DENSE_RANK(15500, .05) WTH N GROUP
(ORDER BY sal ary DESC, conmission_pct) "Dense Rank"
FROM enpl oyees;

Dense Rank

Analytic Example

The following statement selects the department name, employee name, and salary
of all employees who work in the human resources or purchasing department, and
then computes a rank for each unique salary in each of the two departments. The
salaries that are equal receive the same rank. Compare this example with the
example for RANK on page 7-151.

SELECT d. department _name, e.last_nane, e.salary, DENSE_RANK()
OVER (PARTI TION BY e. departnent _id ORDER BY e.salary) as drank
FROM enpl oyees e, departnents d
WHERE e. departnent _id = d.departnent _id
AND d. departnent _id IN ('30", '40");

DEPARTMENT _NAME LAST_NAME SALARY DRANK
Pur chasi ng Col nenar es 2500 1
Pur chasi ng Hi mur o 2600 2
Pur chasi ng Tobi as 2800 3
Pur chasi ng Bai da 2900 4
Pur chasi ng Khoo 3100 5
Pur chasi ng Raphael y 11000 6
Human Resources Mar vi s 6500

Functions 7-65

DEPTH

DEPTH

Syntax

depth::=
—>| DEPTH P@»Ccorrelation_integer)a@»

Purpose

DEPTH s an ancillary function used only with the UNDER_PATHand EQUALS PATH
conditions. It returns the number of levels in the path specified by the UNDER_PATH
condition with the same correlation variable.

Thecorrel ati on_i nt eger can be any NUMBER integer. Use it to correlate this
ancillary function with its primary condition if the statement contains multiple
primary conditions. Values less than 1 are treated as 1.

See Also: EQUALS_PATH on page 6-13, UNDER_PATH on
page 6-30, and the related function PATH on page 7-135

Examples

The EQUALS PATHand UNDER _PATH conditions can take two ancillary functions,
DEPTH and PATH. The following example shows the use of both ancillary functions.
The example assumes the existence of the XMLSchema war ehouses. xsd (created
in "Using XML in SQL Statements" on page E-11).

SELECT PATH(1), DEPTH(2)
FROM RESCURCE_VI EW
WHERE UNDER PATH(res, '/sys/schemas/OE, 1)=1
AND UNDER PATH(res, '/sys/schemas/CE', 2)=1;

PATH(1) DEPTH(2)
/ www. or acl e. com 1
/ www. or acl e. conf xwar ehouses. xsd 2

7-66 SQL Reference

DEREF

DEREF

Syntax

deref::=
OEDO

Purpose

DEREF returns the object reference of argument expr , where expr must return a
REF to an object. If you do not use this function in a query, then Oracle Database
returns the object ID of the REF instead, as shown in the example that follows.

See Also: MAKE_REF on page 7-107

Examples

The sample schema oe contains an object type cust _addr ess_t yp. The "REF
Constraint Examples" on page 8-32 create a similar type, cust _address_typ_
new, and a table with one column that is a REF to the type. The following example
shows how to insert into such a column and how to use DEREF to extract
information from the column:

I NSERT | NTO address_t abl e VALUES
("1 First', '"&45 EUWB', 'Paris', 'CA, 'US);

I NSERT | NTO cust oner _addr esses
SELECT 999, REF(a) FROM address_table a;

SELECT address FROM cust omer _addr esses;
000022020876B2245DBE325C5FE03400400B40DCB176B2245DBE305C5FE03400400B40DCB1
SELECT DEREF(address) FROM cust onmer _addr esses;

DEREF(ADDRESS) (STREET _ADDRESS, POSTAL_CODE, CITY, STATE PROVINCE, COUNTRY_| D)

Functions 7-67

DUMP

DUMP

Syntax

dump::=

length
ot Sacicoal
O

Purpose

DUMP returns a VARCHAR? value containing the datatype code, length in bytes, and
internal representation of expr . The returned result is always in the database
character set. For the datatype corresponding to each code, see Table 2-1, " Built-In
Datatype Summary" on page 2-7.

The argument r et ur n_f mt specifies the format of the return value and can have
any of the following values:

« 8returns result in octal notation.

« 10 returns result in decimal notation.

« 16 returns result in hexadecimal notation.
« 17 returns result as single characters.

By default, the return value contains no character set information. To retrieve the
character set name of expr , add 1000 to any of the preceding format values. For
example, areturn_fnt of 1008 returns the result in octal and provides the
character set name of expr .

The arguments st art _posi ti on and| engt h combine to determine which
portion of the internal representation to return. The default is to return the entire
internal representation in decimal notation.

If expr is null, then this function returns null.

This function does not support CLOB data directly. However, CLOBs can be passed
in as arguments through implicit data conversion.

See Also: "Datatype Comparison Rules" on page 2-50 for more
information.

7-68 SQL Reference

EMPTY_BLOB, EMPTY_CLOB

Examples
The following examples show how to extract dump information from a string
expression and a column:

SELECT DUMP(' abc', 1016)
FROM DUAL;

DUMP(' ABC , 1016)

Typ=96 Len=3 Charact er Set =WESDEC. 61, 62, 63
SELECT DUMP(I ast _name, 8, 3, 2) "OCTAL"

FROM enpl oyees
WHERE | ast _name = 'Hunol d';

Typ=1 Len=6: 156, 157
SELECT DUMP(I ast _name, 10, 3, 2) "ASC|"

FROM enpl oyees
WHERE | ast _name = ' Hunol d';

Typ=1 Len=6: 110,111

EMPTY_BLOB, EMPTY_CLOB

Syntax

empty LOB::=
E=y OO
Purpose

EMPTY_BLOB and EMPTY_CLOB return an empty LOB locator that can be used to
initialize a LOB variable or, in an | NSERT or UPDATE statement, to initialize a LOB
column or attribute to EMPTY. EMPTY means that the LOB is initialized, but not

Functions 7-69

EXISTSNODE

populated with data. You must initialize a LOB attribute that is part of an object
type before you can access and populate it.

Restriction on LOB Locators You cannot use the locator returned from this
function as a parameter to the DBMS_L OB package or the OCI.

Examples

The following example initializes the ad_phot o column of the sample pm pri nt _
nmedi a table to EMPTY:

UPDATE print_nedia SET ad_photo = EMPTY_BLOB();

EXISTSNODE
Syntax
existsnode::=
—J EXISTSNODE @{XMLType_instance}@-)@ @
Purpose

EXI STSNODE determines whether traversal of an XML document using a specified
path results in any nodes. It takes as arguments the XMLType instance containing an
XML document and a VARCHAR2 XPath string designating a path. The optional
nanespace_stri ng must resolve to a VARCHAR2 value that specifies a default
mapping or namespace mapping for prefixes, which Oracle Database uses when
evaluating the XPath expression(s).

The return value is NUVBER:
« 0if no nodes remain after applying the XPath traversal on the document

« 1lifany nodes remain

Examples
The following example tests for the existence of the / War ehouse/ Dock node in the
XML path of the war ehouse_spec column of the sample table oe. war ehouses:

SELECT war ehouse_i d, war ehouse_nane
FROM war ehouses

7-70 SQL Reference

EXP

EXP

WHERE EXI STSNODE(war ehouse_spec, '/Warehouse/ Docks') = 1;

WAREHOUSE_| D WAREHOUSE_NANE

1 Sout hl ake, Texas
2 San Francisco
4 Seattle, Washington

Syntax

exp::=
0,00

Purpose
EXP returns e raised to the nth power, where e = 2.71828183 ... The function returns
a value of the same type as the argument.

This function takes as an argument any numeric datatype or any nonnumeric
datatype that can be implicitly converted to a numeric datatype. If the argument is
Bl NARY_FLQOAT, then the function returns Bl NARY DOUBLE. Otherwise the
function returns the same numeric datatype as the argument.

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion

Examples
The following example returns e to the 4th power:

SELECT EXP(4) "e to the 4th power” FROM DUAL;
e to the 4th power

54.59815

Functions 7-71

EXTRACT (datetime)

EXTRACT (datetime)

Syntax

extract_datetime::=

YEAR
MONTH

DAY

)

LR

HOUR

MINUTE

0 SECOND datetime_value_expression
-EXTRACT -FROM
TIMEZONE_HOUR interval_value_expression

TIMEZONE_MINUTE

TIMEZONE_REGION

TIMEZONE_ABBR

Purpose

EXTRACT extracts and returns the value of a specified datetime field from a
datetime or interval value expression. When you extract a TI MEZONE_REG ON or
TI MEZONE_ABBR (abbreviation), the value returned is a string containing the
appropriate time zone name or abbreviation. When you extract any of the other
values, the value returned is in the Gregorian calendar. When extracting from a
datetime with a time zone value, the value returned is in UTC. For a listing of time
zone names and their corresponding abbreviations, query the V3TI MEZONE_NAMES
dynamic performance view.

7-72 SQL Reference

EXTRACT (datetime)

Note: Timezone region names are needed by the daylight savings
feature. The region names are stored in two time zone files. The
default time zone file is a small file containing only the most
common time zones to maximize performance. If your time zone is
not in the default file, then you will not have daylight savings
support until you provide a path to the complete (larger) file by
way of the ORA_TZFI LE environment variable.

Some combinations of datetime field and datetime or interval value expression
result in ambiguity. In these cases, Oracle Database returns UNKNOWN (see the
examples that follow for additional information).

The field you are extracting must be a field of the dat et i ne_val ue_expr or

i nterval _val ue_expr. For example, you can extract only YEAR, MONTH, and

DAY from a DATE value. Likewise, you can extract TI MEZONE_HOUR and

TI MEZONE_M NUTE only from the TI MESTAMP W TH TI ME ZONE datatype.
See Also:

« Oracle Database Administrator's Guide for more information
about setting the ORA_TZFI LE environment variable

« Oracle Database Globalization Support Guide. for a complete
listing of the timezone region names in both files

« "Datetime/Interval Arithmetic" on page 2-27 for a description
of dat eti me_val ue_expr andi nterval _val ue_expr

« Oracle Database Reference for information on the dynamic
performance views

Examples
The following example returns the year 1998.

SELECT EXTRACT(YEAR FROM DATE ' 1998-03-07') FROM DUAL;

EXTRACT(YEARFROVDATE' 1998- 03-07")

The following example selects from the sample table hr . enpl oyees all employees
who were hired after 1998:

Functions 7-73

EXTRACT (XML)

SELECT | ast _name, enployee_id, hire_date
FROM enpl oyees
VHERE EXTRACT(YEAR FROM
TO DATE(hire_date, 'DD-MON-RR)) > 1998
ORDER BY hire_date;

LAST_NAME EMPLOYEE_| D H RE_DATE
Landry 127 14-JAN-99
Lorentz 107 07- FEB- 99
Cabrio 187 07- FEB- 99

The following example results in ambiguity, so Oracle returns UNKNOWN:

SELECT EXTRACT(TI MEZONE_REG ON
FROM TI MESTAMP ' 1999- 01- 01 10: 00: 00 -08:00")
FROM DUAL,;

EXTRACT(TI MEZONE_REG ONFROMTI MESTAMP' 1999- 01- 0110: 00: 00- 08: 00")

The ambiguity arises because the time zone numerical offset is provided in the
expression, and that numerical offset may map to more than one time zone region.

EXTRACT (XML)
Syntax
extract_xml::=
—>|WACT|—>@-><XMLType_instance)»@—(XPath_string) @—)
Purpose

EXTRACT (XML) is similar to the EXI STSNODE function. It applies a VARCHAR2
XPath string and returns an XMLType instance containing an XML fragment. The
optional nanespace_st ri ng must resolve to a VARCHAR2 value that specifies a
default mapping or namespace mapping for prefixes, which Oracle Database uses
when evaluating the XPath expression(s).

7-74 SQL Reference

EXTRACTVALUE

Examples

The following example extracts the value of the / War ehouse/ Dock node of the
XML path of the war ehouse_spec column in the sample table oe. war ehouses:

SELECT war ehouse_name, EXTRACT(war ehouse_spec, '/Warehouse/ Docks')
"Nurmber of Docks"
FROM war ehouses
WHERE war ehouse_spec |'S NOT NULL;

WAREHOUSE NAMVE Nunmber of Docks
Sout hl ake, Texas <Docks>2</ Docks>
San Franci sco <Docks>1</ Docks>
New Jer sey <Docks/ >
Seattle, Washington <Docks>3</ Docks>

Compare this example with the example for EXTRACTVALUE on page 7-75, which
returns the scalar value of the XML fragment.

EXTRACTVALUE

Syntax

extractvalue::=

O
—J| EXTRACTVALUE @{XMLType_instance XPath_string) @

The EXTRACTVALUE function takes as arguments an XMLType instance and an
XPath expression and returns a scalar value of the resultant node. The result must
be a single node and be either a text node, attribute, or element. If the result is an
element, then the element must have a single text node as its child, and it is this
value that the function returns. If the specified XPath points to a node with more
than one child, or if the node pointed to has a non-text node child, then Oracle
returns an error. The optional nanespace_st ri ng must resolve to a VARCHAR2
value that specifies a default mapping or namespace mapping for prefixes, which
Oracle uses when evaluating the XPath expression(s).

For documents based on XML schemas, if Oracle can infer the type of the return
value, then a scalar value of the appropriate type is returned. Otherwise, the result

Functions 7-75

FIRST

is of type VARCHAR2. For documents that are not based on XML schemas, the return
type is always VARCHAR2.

Examples

The following example takes as input the same arguments as the example for
EXTRACT (XML) on page 7-74. Instead of returning an XML fragment, as does the
EXTRACT function, it returns the scalar value of the XML fragment:

SELECT war ehouse_nane,
EXTRACTVALUE(e. war ehouse_spec, '/\Warehouse/ Docks')
"Docks"
FROM war ehouses e
WHERE war ehouse_spec |'S NOT NULL;

WAREHOUSE NAME Docks
Sout hl ake, Texas 2

San Francisco 1
New Jer sey

Seattle, Washington 3

FIRST

Syntax

first::=

{aggregate_function)% KEEP |—>

—>®->| DENSE_RANK |->| FIRST |->| ORDER |->| BY expr
[a| OVER Kquery_panition_clauseh

7-76 SQL Reference

FIRST

See Also: "Analytic Functions" on page 7-11 for information on
syntax, semantics, and restrictions of the ORDER BY clause and
OVER clause

Purpose

FI RST and LAST are very similar functions. Both are aggregate and analytic
functions that operate on a set of values from a set of rows that rank as the FI RST
or LAST with respect to a given sorting specification. If only one row ranks as

FI RST or LAST, the aggregate operates on the set with only one element.

This function takes as an argument any numeric datatype or any nonnumeric
datatype that can be implicitly converted to a numeric datatype. The function
returns the same datatype as the numeric datatype of the argument.

When you need a value from the first or last row of a sorted group, but the needed
value is not the sort key, the FI RST and LAST functions eliminate the need for self
joins or views and enable better performance.

« Theaggregate_function isanyone ofthe M N, MAX, SUM AVG COUNT,
VARI ANCE, or STDDEV functions. It operates on values from the rows that rank
either FI RST or LAST. If only one row ranks as FI RST or LAST, the aggregate
operates on a singleton (nonaggregate) set.

« DENSE RANK FI RST or DENSE_RANK LAST indicates that Oracle Database will
aggregate over only those rows with the minimum (FI RST) or the maximum
(LAST) dense rank (also called olympic rank).

You can use the FI RST and LAST functions as analytic functions by specifying the
OVERclause. The query_parti tioni ng_cl ause is the only part of the OVER
clause valid with these functions.

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion and LAST
on page 7-93

Aggregate Example

The following example returns, within each department of the sample table

hr . empl oyees, the minimum salary among the employees who make the lowest
commission and the maximum salary among the employees who make the highest
commission:

SELECT departnent _id,
M N(sal ary) KEEP (DENSE_RANK FI RST ORDER BY conmi ssion_pct) "Wrst",

Functions 7-77

FIRST

MAX(sal ary) KEEP (DENSE_RANK LAST ORDER BY commi ssion_pct) "Best"
FROM enpl oyees
GROUP BY department _id;

DEPARTMENT_I D Wor st Best
10 4400 4400
20 6000 13000
30 2500 11000
40 6500 6500
50 2100 8200
60 4200 9000
70 10000 10000
80 6100 14000
90 17000 24000

100 6900 12000
110 8300 12000
7000 7000

Analytic Example

The next example makes the same calculation as the previous example but returns
the result for each employee within the department;

SELECT | ast_name, departmnent_id, salary,
M N(sal ary) KEEP (DENSE_RANK FI RST ORDER BY conmi ssi on_pct)
OVER (PARTI TI ON BY departnent _id) "Wrst",
MAX(sal ary) KEEP (DENSE_RANK LAST ORDER BY conmi ssion_pct)
OVER (PARTI TI ON BY department _id) "Best"
FROM enpl oyees
ORDER BY departnent _id, salary;

LAST_NAME DEPARTMENT_I D SALARY Wor st Best
Vthal en 10 4400 4400 4400
Fay 20 6000 6000 13000
Hartstein 20 13000 6000 13000
Getz 110 8300 8300 12000
Hi ggi ns 110 12000 8300 12000
G ant 7000 7000 7000

7-78 SQL Reference

FIRST_VALUE

FIRST_VALUE

Syntax

first_value::=

f—)| IGNORE |->| NULLS |—\

See Also: "Analytic Functions" on page 7-11 for information on
syntax, semantics, and restrictions, including valid forms of expr

Purpose

FI RST_VALUE is an analytic function. It returns the first value in an ordered set of
values. If the first value in the set is null, then the function returns NULL unless you
specify | GNORE NULLS. This setting is useful for data densification. If you specify

| GNORE NULLS, then FI RST_VALUE returns the fist non-null value in the set, or
NULL if all values are null. Please refer to "Using Partitioned Outer Joins: Examples”
on page 19-52 for an example of data densification.

You cannot use FI RST_VALUE or any other analytic function for expr . That is, you
cannot nest analytic functions, but you can use other built-in function expressions
for expr . Please refer to "About SQL Expressions" on page 5-2 for information on
valid forms of expr .

Examples

The following example selects, for each employee in Department 90, the name of
the employee with the lowest salary.

SELECT departnent _id, |ast_name, salary, FIRST_VALUE(|ast_nanme)
OVER (ORDER BY sal ary ASC ROA5S UNBOUNDED PRECEDI NG) AS | owest _sal
FROM (SELECT * FROM enpl oyees WHERE departnent _id = 90

ORDER BY enpl oyee_id);

DEPARTMENT _| D LAST_NAME SALARY LONEST_SAL
90 Kochhar 17000 Kochhar
90 De Haan 17000 Kochhar
90 King 24000 Kochhar

Functions 7-79

FLOOR

The example illustrates the nondeterministic nature of the FI RST_VALUE function.
Kochhar and DeHaan have the same salary, so are in adjacent rows. Kochhar
appears first because the rows returned by the subquery are ordered by enpl oyee_
i d. However, if the rows returned by the subquery are ordered by enpl oyee_i d in
descending order, as in the next example, then the function returns a different
value:

SELECT departnent _id, |ast_name, salary, FIRST_VALUE(|ast_name)
OVER (ORDER BY sal ary ASC ROA5 UNBOUNDED PRECEDING) as fv
FROM (SELECT * FROM enpl oyees WHERE departnent _id = 90
ORDER by enpl oyee_i d DESC);

DEPARTMENT _I D LAST_NAME SALARY FV
90 De Haan 17000 De Haan
90 Kochhar 17000 De Haan
90 King 24000 De Haan

The following example shows how to make the FI RST_VALUE function
deterministic by ordering on a unique key.

SELECT departnent _id, |ast_name, salary, hire_date,
FI RST_VALUE(| ast _nane) OVER
(ORDER BY sal ary ASC, hire_date ROAS UNBOUNDED PRECEDI NG AS fv
FROM (SELECT * FROM enpl oyees
WHERE departnent _id = 90 ORDER BY enpl oyee_id DESC);

DEPARTMENT _| D LAST_NAME SALARY H RE_DATE FV
90 Kochhar 17000 21- SEP-89 Kochhar
90 De Haan 17000 13- JAN-93 Kochhar
90 King 24000 17-JUN-87 Kochhar

Syntax

floor::=

210,040

7-80 SQL Reference

FROM_TZ

FROM_TZ

Purpose
FLOOR returns largest integer equal to or less than n.

This function takes as an argument any numeric datatype or any nonnumeric
datatype that can be implicitly converted to a numeric datatype. The function
returns the same datatype as the numeric datatype of the argument.

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion

Examples
The following example returns the largest integer equal to or less than 15.7;

SELECT FLOOR(15.7) "Floor" FROM DUAL;

Fl oor
15
Syntax
from_tz::=
—>| FROM_TZ F@»Ctimestamp_value ‘ o
Purpose

FROM TZ converts a timestamp value and a time zone to a TI| MESTAMP W THTI MVE
ZONE value. ti me_zone_val ue is a character string in the format' TZH: TZM or a
character expression that returns a string in TZR with optional TZD format.

Examples
The following example returns a timestamp value to TI MESTAMP W THTI ME ZONE:

SELECT FROM TZ(TI MESTAMP ' 2000-03-28 08: 00: 00", '3:00")
FROM DUAL,;

FROM_TZ(TI MESTAMP' 2000- 03-2808: 00: 00", ' 3: 00")

28- MAR-00 08.00.00 AM +03:00

Functions 7-81

GREATEST

GREATEST

Syntax

greatest::=

O
EzzaloN 0

Purpose

GREATEST returns the greatest of the list of one or more expressions. Oracle
Database uses the first expr to determine the return type. If the first expr is
numeric, then Oracle determines the argument with the highest numeric
precedence, implicitly converts the remaining arguments to that datatype before the
comparison, and returns that datatype. If the first expr is not numeric, then each
expr after the first is implicitly converted to the datatype of the first expr before
the comparison.

Oracle Database compares each expr using nonpadded comparison semantics.
Character comparison is based on the value of the character in the database
character set. One character is greater than another if it has a higher character set
value. If the value returned by this function is character data, then its datatype is
always VARCHAR2.

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion,
"Floating-Point Numbers" on page 2-14 for information on
binary-float comparison semantics, and "Datatype Comparison
Rules" on page 2-50

Examples
The following statement selects the string with the greatest value:

SELECT GREATEST (' HARRY', 'HARRIOT', 'HAROLD)
"Geatest"” FROM DUAL;

G eat est

7-82 SQL Reference

GROUP_ID

GROUP_ID

Syntax

group_id::=
0:0

Purpose

GROUP_I Ddistinguishes duplicate groups resulting from a GROUP BY specification.
It is useful in filtering out duplicate groupings from the query result. It returns an
Oracle NUVMBER to uniquely identify duplicate groups. This function is applicable
only in a SELECT statement that contains a GROUP BY clause.

If n duplicates exist for a particular grouping, then GROUP_I| Dreturns numbers in
the range 0 to n-1.

Examples

The following example assigns the value 1 to the duplicate co. country_r egi on
grouping from a query on the sample tables sh. count ri es and sh. sal es:

SELECT co. country_region, co.country_subregion,
SUM's. amount _sol d) " Revenue",
GROUP_ID() ¢
FROM sal es s, custoners c, countries co
WHERE s.cust_id = c.cust_id AND
c.country_id = co.country_id AND
s.time_id = "1-JAN-00' AND
co.country_region IN (" Americas', 'Europe')
GROUP BY co.country_region,
ROLLUP (co.country_region, co.country_subregion);

COUNTRY_REG ON COUNTRY_SUBREG ON Revenue G
Aneri cas Northern Anerica 220844 0
Anericas Sout hern America 10872 0
Eur ope Eastern Europe 12751 0
Eur ope Vst ern Europe 558686 0
Areri cas 231716 0
Eur ope 571437 0
Anericas 231716 1
Eur ope 571437 1

Functions 7-83

GROUPING

GROUPING

To ensure that only rows with GROUP_I D< 1 are returned, add the following
HAVI NGclause to the end of the statement :

HAVI NG GROUP_I () < 1

Syntax

grouping::=
0210

Purpose

GROUPI NG distinguishes superaggregate rows from regular grouped rows. GROUP
BY extensions such as ROLLUP and CUBE produce superaggregate rows where the
set of all values is represented by null. Using the GROUPI NGfunction, you can
distinguish a null representing the set of all values in a superaggregate row from a
null in a regular row.

The expr in the GROUPI NGfunction must match one of the expressions in the
GROUP BY clause. The function returns a value of 1 if the value of expr in the row is
a null representing the set of all values. Otherwise, it returns zero. The datatype of
the value returned by the GROUPI NG function is Oracle NUVBER. Please refer to the
SELECT group_by_clause on page 19-28 for a discussion of these terms.

Examples

In the following example, which uses the sample tables hr . depar t nent s and
hr . empl oyees, if the GROUPI NGfunction returns 1 (indicating a superaggregate
row rather than a regular row from the table), then the string "All Jobs" appears in
the "JOB" column instead of the null that would otherwise appear:

SELECT DECODE(GROUPI NG department _nane), 1, 'Al Departments',
depart ment _name) AS departnent,
DECODE(GROUPI NG(j ob_id), 1, "All Jobs', job_id) AS job,
COUNT(*) "Total Enpl", AVG(salary) * 12 "Average Sal"
FROM enpl oyees e, departnents d
WHERE d. departnent _id = e.departnent _id
GROUP BY ROLLUP (departnent_nanme, job_id);

7-84 SQL Reference

GROUPING_ID

DEPARTMENT JOB Total Enpl Average Sal
Accounting AC_ACCOUNT 1 99600
Accounting AC_MR 1 144000
Accounting Al Jobs 2 121800
Adni ni stration AD_ASST 1 52800
Adni ni stration Al'l Jobs 1 52800
Executive AD PRES 1 288000
Executive AD VP 2 204000
Executive Al Jobs 3 232000
Fi nance FI _ACCOUNT 5 95040
Fi nance FI _MR 1 144000
Fi nance Al Jobs 6 103200
GROUPING_ID
Syntax
grouping_id::=

2
[Groune_ o b0 (@) ()

Purpose

GROUPI NG _I Dreturns a number corresponding to the GROUPI NG bit vector
associated with a row. GROUPI NG_I Dis applicable only in a SELECT statement that
contains a GROUP BY extension, such as ROLLUP or CUBE, and a GROUPI NG
function. In queries with many GROUP BY expressions, determining the GROUP BY
level of a particular row requires many GROUPI NG functions, which leads to
cumbersome SQL. GROUPI NG | Dis useful in these cases.

GROUPI NG _I Dis functionally equivalent to taking the results of multiple

GROUPI NG functions and concatenating them into a bit vector (a string of ones and
zeros). By using GROUPI NG _| Dyou can avoid the need for multiple GROUPI NG
functions and make row filtering conditions easier to express. Row filtering is easier
with GROUPI NG _| D because the desired rows can be identified with a single
condition of GROUPI NG _| D= n. The function is especially useful when storing
multiple levels of aggregation in a single table.

Functions 7-85

GROUPING_ID

Examples

The following example shows how to extract grouping IDs from a query of the
sample table sh. sal es:

SELECT channel _id, promo_id, sun{amount_sold) s_sales,
GROUPI NG channel _i d) gc,
GROUPI NG promo_i d) gp,
GROUPI NG_I D(channel _id, promo_id) gcp,
GROUPI NG_I D(promo_i d, channel _id) gpc
FROM sal es
WHERE prono_id > 496
CGROUP BY CUBE(channel _id, promo_id);

C PROMOID S_SALES &C GP GCP GPC
C 497 26094. 35 0 0 0 0
C 498 22272. 4 0 0 0 0
C 499 19616. 8 0 0 0 0
C 9999 87781668 0 0 0 0
C 87849651. 6 0 1 1 2
I 497 50325. 8 0 0 0 0
I 498 52215. 4 0 0 0 0
I 499 58445. 85 0 0 0 0
I 9999 169497409 0 0 0 0
I 169658396 0 1 1 2
P 497 31141.75 0 0 0 0
P 498 46942. 8 0 0 0 0
P 499 24156 0 0 0 0
P 9999 70890248 0 0 0 0
P 70992488. 6 0 1 1 2
S 497 110629. 75 0 0 0 0
S 498 82937.25 0 0 0 0
S 499 80999. 15 0 0 0 0
S 9999 267205791 0 0 0 0
S 267480357 0 1 1 2
T 497 8319.6 0 0 0 0
T 498 5347. 65 0 0 0 0
T 499 19781 0 0 0 0
T 9999 28095689 0 0 0 0
T 28129137. 3 0 1 1 2
497 226511. 25 1 0 2 1

498 209715.5 1 0 2 1

499 202998. 8 1 0 2 1

9999 623470805 1 0 2 1
624110031 1 1 3 3

7-86 SQL Reference

INITCAP

HEXTORAW

INITCAP

Syntax

hextoraw::=

[EELI0IEDI0

Purpose

HEXTORAWconverts char containing hexadecimal digits in the CHAR, VARCHAR?,
NCHAR, or N\VARCHAR? character set to a raw value.

This function does not support CLOB data directly. However, CLOBs can be passed
in as arguments through implicit data conversion.

See Also: "Datatype Comparison Rules" on page 2-50 for more
information.

Examples

The following example creates a simple table with a raw column, and inserts a
hexadecimal value that has been converted to RAW

CREATE TABLE test (raw col RAW10));
I NSERT | NTO test VALUES (HEXTORAW' 7D));

See Also: "RAW and LONG RAW Datatypes" on page 2-30 and
RAWTOHEX on page 7-155

Syntax

initcap::=

LEA0CDI0

Functions 7-87

INSTR

INSTR

Purpose

I NI TCAP returns char , with the first letter of each word in uppercase, all other
letters in lowercase. Words are delimited by white space or characters that are not
alphanumeric.

char can be of any of the datatypes CHAR, VARCHAR2, NCHAR, or NVARCHAR2. The
return value is the same datatype as char .

This function does not support CLOB data directly. However, CLOBs can be passed
in as arguments through implicit data conversion.

See Also: "Datatype Comparison Rules" on page 2-50 for more
information.

Examples
The following example capitalizes each word in the string:

SELECT I NI TCAP(' the soap') "Capitals" FROM DUAL;

Capitals

The Soap

Syntax
instr::=
oy
jE
=
Purpose

The | NSTR functions search st ri ng for subst ri ng. The function returns an
integer indicating the position of the character in st r i ng that is the first character

0%

substring

7-88 SQL Reference

INSTR

of this occurrence. | NSTR calculates strings using characters as defined by the input
character set. | NSTRB uses bytes instead of characters. | NSTRC uses Unicode
complete characters. | NSTR2 uses UCS2 code points. | NSTR4 uses UCS4 code
points.

« positionisannonzero integer indicating the character of st ri ng where
Oracle Database begins the search. If posi ti on is negative, then Oracle counts
and searches backward from the end of st ri ng.

« occurrence is an integer indicating which occurrence of st ri ng Oracle
should search for. The value of occur r ence must be positive.

Both st ri ng and subst ri ng can be any of the datatypes CHAR, VARCHAR2,
NCHAR, NVARCHAR2, CLOB, or NCLOB. The value returned is of NUVBER datatype.

Both posi ti on and occur r ence must be of datatype NUVBER, or any datatype
that can be implicitly converted to NUVBER, and must resolve to an integer. The
default values of both posi ti on and occurr ence are 1, meaning Oracle begins
searching at the first character of st r i ng for the first occurrence of substri ng.
The return value is relative to the beginning of st r i ng, regardless of the value of
posi ti on, and is expressed in characters. If the search is unsuccessful (if

subst ri ng does not appear occur r ence times after the posi ti on character of
st ri ng), then the return value is 0.

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion

Examples
The following example searches the string CORPORATE FLOOR, beginning with the

third character, for the string "OR". It returns the position in CORPORATE FLOOR at
which the second occurrence of "OR" begins:

SELECT | NSTR(' CORPCRATE FLOOR ,' OR', 3, 2)
"Instring" FROM DUAL;

Instring

In the next example, Oracle counts backward from the last character to the third
character from the end, which is the first Oin FLOOR. Oracle then searches
backward for the second occurrence of OR, and finds that this second occurrence
begins with the second character in the search string :

Functions 7-89

ITERATION_NUMBER

SELECT | NSTR(' CORPORATE FLOOR ,' OR', -3, 2)
"Reversed Instring"
FROV DUAL;

Reversed I nstring

The next example assumes a double-byte database character set.

SELECT | NSTRB(' CORPCRATE FLOOR ,'OR',5,2) "Instring in bytes"
FROM DUAL;

Instring in bytes

ITERATION_NUMBER

Syntax

iteration_number::=

—>| ITERATION_NUMBER |—>

PUI’pOSE

The | TERATI ON_NUMBER function is relevant only for interrow calculations. It can
be used only in the nodel _cl ause of the SELECT statement and then only when
| TERATE(number) is specified in the nodel _rul es_cl ause. It returns an
integer representing the completed iteration through the model rules. The

| TERATI ON_NUMBER function returns 0 during the first iteration. For each
subsequent iteration, the | TERATI ON_NUMBER function returns the equivalent of

i teration_number plusone.

See Also: model_clause on page 19-30 and "Model Expressions” on
page 5-15 for the syntax and semantics of interrow calculations

Examples

The following example assigns the sales of the Mouse Pad for the years 1998 and
1999 to the sales of the Mouse Pad for the years 2001 and 2002 respectively:

SELECT country, prod, year, S

7-90 SQL Reference

ITERATION_NUMBER

FROM sal es_vi ew

MODEL

PARTI TI ON BY (country)

DI MENSI ON BY (prod, year)

MEASURES (sal e s)
| GNORE NAV
UNI QUE DI MENSI ON

RULES UPSERT SEQUENTI AL ORDER | TERATE(2)

(

)

ORDER BY country, prod, year;

France
France
France
France
France
France
France
France
France
Cer many
CGer many
Cer many
Ger many
Ger many
Cer many
Cer many
CGer many
Cer many

s[' Mouse Pad', 2001 + | TERATI ON_NUMBER]
s[' Mouse Pad', 1998 + | TERATI ON_NUMBER]

Mouse Pad
St andard Muse
Standard Mouse
Standard Mouse
St andard Muse
Mouse Pad
Mouse Pad
Mouse Pad
Mouse Pad
Mouse Pad
St andard Muse
St andard Mouse
St andard Muse
St andard Muse

18 rows sel ect ed.

The preceding example requires the view sal es_vi ew. Please refer to "Interrow

Calculations: Examples" on page 19-45 to create this view.

Functions 7-91

LAG

LAG

Syntax

lag::=

—>| LAG value_expr) @»

query_partition_clause
OVER ({ order_by clause)(b

See Also: "Analytic Functions" on page 7-11 for information on
syntax, semantics, and restrictions, including valid forms of
val ue_expr

Purpose

LAGis an analytic function. It provides access to more than one row of a table at the
same time without a self join. Given a series of rows returned from a query and a
position of the cursor, LAG provides access to a row at a given physical offset prior
to that position.

If you do not specify of f set , then its default is 1. The optional def aul t value is
returned if the offset goes beyond the scope of the window. If you do not specify
def aul t, then its default is null.

You cannot use LAGor any other analytic function for val ue_expr . That is, you
cannot nest analytic functions, but you can use other built-in function expressions
for val ue_expr.

See Also: "About SQL Expressions” on page 5-2 for information
on valid forms of expr and LEAD on page 7-97

Examples

The following example provides, for each salesperson in the enpl oyees table, the
salary of the employee hired just before:

SELECT | ast_name, hire_date, salary,
LAG sal ary, 1, 0) OVER (ORDER BY hire_date) AS prev_sal
FROM enpl oyees
VHERE job_id = 'PU_CLERK ;

7-92 SQL Reference

LAST

LAST_NAME H RE_DATE SALARY PREV_SAL
Khoo 18- MAY- 95 3100 0
Tobi as 24-JUL- 97 2800 3100
Bai da 24- DEC- 97 2900 2800
H nmuro 15- NOV- 98 2600 2900
Col menar es 10- AUG- 99 2500 2600
Syntax

last::=

{aggregate_function)% KEEP |—>

DESC

=
ASC

—>®->| DENSE_RANK |—>| LAST |—>| ORDER |—>| BY expr
[e| OVER Kquery_panition_clauseh

See Also: "Analytic Functions" on page 7-11 for information on
syntax, semantics, and restrictions of the query_partiti oni ng_
cl ause

Purpose

FI RST and LAST are very similar functions. Both are aggregate and analytic
functions that operate on a set of values from a set of rows that rank as the FI RST
or LAST with respect to a given sorting specification. If only one row ranks as

FI RST or LAST, the aggregate operates on the set with only one element.

This function takes as an argument any numeric datatype or any nhonnumeric
datatype that can be implicitly converted to a numeric datatype. The function
returns the same datatype as the numeric datatype of the argument.

Functions 7-93

LAST_DAY

LAST_DAY

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion

Please refer to FIRST on page 7-76 for complete information on this function and for
examples of its use.

Syntax

last_day::=
O@EQ

Purpose

LAST_DAY returns the date of the last day of the month that contains dat e. The
return type is always DATE, regardless of the datatype of dat e.

Examples
The following statement determines how many days are left in the current month.
SELECT SYSDATE,

LAST_DAY(SYSDATE) "Last",
LAST_DAY(SYSDATE) - SYSDATE "Days Left"

FROM DUAL;
SYSDATE Last Days Left
30- MAY- 01 31- MAY-01 1

The following example adds 5 months to the hire date of each employee to give an
evaluation date:

SELECT | ast_name, hire_date, TO CHAR(
ADD_MONTHS(LAST_DAY(hire_date), 5)) "Eval Date"

FROM enpl oyees;
LAST_NAVE H RE_DATE Eval Date
Ki ng 17- JUN- 87 30- NOv- 87

7-94 SQL Reference

LAST_VALUE

Kochhar 21- SEP- 89 28- FEB- 90
De Haan 13- JAN- 93 30- JUN-93
Hunol d 03-JAN-90 30-JUN-90
Er nst 21- MAY-91 31-CCT-91
Austin 25- JUN-97 30- NOV- 97
Pat abal | a 05- FEB-98 31-JUL-98
Lorentz 07- FEB-99 31-JUL-99
Syntax

last_value::=

[—>| IGNORE |—>| NULLS |—\

See Also: "Analytic Functions" on page 7-11 for information on
syntax, semantics, and restrictions, including valid forms of expr

Purpose

LAST_VALUE is an analytic function. It returns the last value in an ordered set of
values. If the last value in the set is null, then the function returns NULL unless you
specify | GNORE NULLS. This setting is useful for data densification. If you specify

| GNORE NULLS, then LAST_VALUE returns the fist non-null value in the set, or
NULL if all values are null. Please refer to "Using Partitioned Outer Joins: Examples”
on page 19-52 for an example of data densification.

You cannot use LAST_VALUE or any other analytic function for expr . That is, you
cannot nest analytic functions, but you can use other built-in function expressions
for expr . Please refer to "About SQL Expressions" on page 5-2 for information on
valid forms of expr .

Examples
The following example returns, for each row, the hire date of the employee earning
the highest salary:

SELECT | ast_name, salary, hire_date, LAST_VALUE(hire_date) OVER
(ORDER BY sal ary
ROWS BETWEEN UNBOUNDED PRECEDI NG AND UNBOUNDED FOLLOWNG) AS |v

Functions 7-95

LAST_VALUE

FROM (SELECT * FROM enpl oyees WHERE department _id = 90
ORDER BY hire_date);

LAST_NAME SALARY HI RE_DATE LV

Kochhar 17000 21- SEP-89 17- JUN-87
De Haan 17000 13-JAN-93 17-JUN-87
Ki ng 24000 17-JUN-87 17-JUN-87

This example illustrates the nondeterministic nature of the LAST_VALUE function.
Kochhar and De Haan have the same salary, so they are in adjacent rows. Kochhar
appears first because the rows in the subquery are ordered by hi r e_dat e.
However, if the rows are ordered by hi r e_dat e in descending order, as in the next
example, then the function returns a different value:

SELECT | ast_name, salary, hire_date, LAST_VALUE(hire_date) OVER

(ORDER BY sal ary

ROAS BETWEEN UNBOUNDED PRECEDI NG AND UNBOUNDED FOLLOAN' NG AS |v
FROM (SELECT * FROM enpl oyees WHERE department _id = 90

ORDER BY hire_date DESC);

LAST_NAME SALARY HI RE_DATE LV

De Haan 17000 13- JAN-93 17-JUN-87
Kochhar 17000 21- SEP-89 17-JUN-87
Ki ng 24000 17-JUN-87 17-JUN-87

The following two examples show how to make the LAST_VALUE function
deterministic by ordering on a unique key. By ordering within the function by both
sal ary and hi r e_dat e, you can ensure the same result regardless of the ordering
in the subquery

SELECT | ast_name, salary, hire_date, LAST_VALUE(hire_date) OVER
(ORDER BY salary, hire_date

ROAS BETWEEN UNBOUNDED PRECEDI NG AND UNBOUNDED FOLLOW NG AS |v
FROM (SELECT * FROM enpl oyees WHERE department _id = 90

ORDER BY hire_date);

LAST_NAME SALARY HI RE_DATE LV

Kochhar 17000 21- SEP-89 17- JUN-87
De Haan 17000 13-JAN-93 17-JUN-87
Ki ng 24000 17-JUN-87 17-JUN-87

SELECT | ast_name, salary, hire_date, LAST_VALUE(hire_date) OVER

7-96 SQL Reference

LEAD

LEAD

(ORDER BY sal ary, hire_date

ROWS BETWEEN UNBOUNDED PRECEDI NG AND UNBOUNDED FOLLOWNG) AS |v
FROM (SELECT * FROM enpl oyees WHERE departnent _id = 90

ORDER BY hire_date DESC);

LAST_NANVE SALARY HI RE_DATE LV
Kochhar 17000 21- SEP-89 17- JUN-87
De Haan 17000 13- JAN-93 17- JUN-87
Ki ng 24000 17- JUN-87 17- JUN-87
Syntax

lead::=

—>| LEAD @{value_expr) ‘ o @—>

query_partition_clause
OVER (A order_by_clause) b

See Also: "Analytic Functions" on page 7-11 for information on
syntax, semantics, and restrictions, including valid forms of
val ue_expr

Purpose

LEAD is an analytic function. It provides access to more than one row of a table at
the same time without a self join. Given a series of rows returned from a query and
a position of the cursor, LEAD provides access to a row at a given physical offset
beyond that position.

If you do not specify of f set , then its default is 1. The optional def aul t value is
returned if the offset goes beyond the scope of the table. If you do not specify
def aul t, then its default value is null.

You cannot use LEAD or any other analytic function for val ue_expr . That is, you
cannot nest analytic functions, but you can use other built-in function expressions
for val ue_expr.

Functions 7-97

LEAST

See Also: "About SQL Expressions” on page 5-2 for information
on valid forms of expr and LAG on page 7-92

Examples

The following example provides, for each employee in the enpl oyees table, the
hire date of the employee hired just after:

SELECT | ast _name, hire_date,
LEAD(hire_date, 1) OVER (ORDER BY hire_date) AS "NextHired"
FROM enpl oyees WHERE departnent _id = 30;

LAST_NAME H RE_DATE Next Hi red
Raphael y 07- DEC- 94 18- MAY-95
Khoo 18- MAY- 95 24- JUL- 97
Tobi as 24- JUL- 97 24- DEC-97
Bai da 24- DEC-97 15- NOV- 98
H nuro 15- NOV- 98 10- AUG- 99
Col menar es 10- AUG 99

Syntax

least::=

'~
| LeasT (O ()

Purpose

LEAST returns the least of the list of expr s. All expr s after the first are implicitly
converted to the datatype of the first expr before the comparison. Oracle Database
compares the expr s using nonpadded comparison semantics. If the value returned
by this function is character data, then its datatype is always VARCHARZ.

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion,
"Floating-Point Numbers" on page 2-14 for information on
binary-float comparison semantics, and "Datatype Comparison
Rules" on page 2-50

7-98 SQL Reference

LENGTH

Examples
The following statement selects the string with the least value:

SELECT LEAST(' HARRY',' HARRI OT", ' HARCLD') "LEAST"
FROM DUAL,;

LENGTH

Syntax

length::=

LENGTH

Purpose

The LENGTH functions return the length of char . LENGTH calculates length using
characters as defined by the input character set. LENGTHB uses bytes instead of
characters. LENGTHC uses Unicode complete characters. LENGTH2 uses UCS2 code
points. LENGTH4 uses UCS4 code points.

char can be any of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or
NCLOB. The return value is of datatype NUMBER. If char has datatype CHAR, then
the length includes all trailing blanks. If char is null, then this function returns
null.

Examples

The following example uses the LENGTH function using a single-byte database
character set:

SELECT LENGTH(' CANDIDE') "Length in characters”

Functions 7-99

LN

LN

FROM DUAL,;

Length in characters

The next example assumes a double-byte database character set.
SELECT LENGTHB (' CANDIDE') "Length in bytes"
FROM DUAL;

Length in bytes

Syntax

In::=
0.0:0

Purpose

LN returns the natural logarithm of n, where n is greater than 0.

This function takes as an argument any numeric datatype or any honnumeric
datatype that can be implicitly converted to a numeric datatype. If the argument is

Bl NARY_FLOAT, then the function returns Bl NARY_DOUBLE. Otherwise the
function returns the same numeric datatype as the argument.

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion

Examples
The following example returns the natural logarithm of 95:

SELECT LN(95) "Natural |og of 95" FROV DUAL;

Natural |og of 95

4.55387689

7-100 SQL Reference

LNNVL

LNNVL

Syntax

Innvl::=
—>| LNNVL F@{condition}»@»

Purpose

LNNVL provides a concise way to evaluate a condition when one or both operands
of the condition may be null. The function can be used only in the WHERE clause of a
guery. It takes as an argument a condition and returns TRUE if the condition is
FALSE or UNKNOWN and FAL SE if the condition is TRUE. LNNVL can be used
anywhere a scalar expression can appear, even in contexts where the | S [NOT]
NULL, AND, or OR conditions are not valid but would otherwise be required to
account for potential nulls. Oracle Database sometimes uses the LNNVL function
internally in this way to rewrite NOT | N conditions as NOT EXI STS conditions. In
such cases, output from EXPLAI N PLAN shows this operation in the plan table
output. The condi t i on can evaluate any scalar values but cannot be a compound
condition containing AND, OR, or BETWEEN.

The table that follows shows what LNNVL returns given that a =2 and b is null.

Condition Truth of Condition LNNVL Return Value
a=1 FALSE TRUE

a=2 TRUE FALSE

al SNULL FALSE TRUE

b=1 UNKNOVWN TRUE

b1 SNULL TRUE FALSE

a=b UNKNOWN TRUE

Examples

Suppose that you want to know the number of employees with commission rates of
less than 20%, including employees who do not receive commissions. The following
guery returns only employees who actually receive a commission of less than 20%:

SELECT COUNT(*) FROM enpl oyees WHERE commi ssion_pct < . 2;

Functions 7-101

LOCALTIMESTAMP

To include the 72 employees who receive no commission at all, you could rewrite
the query using the LNNVL function as follows:

SELECT COUNT(*) FROM enpl oyees WHERE LNNVL(commi ssion_pct >= .2);

LOCALTIMESTAMP

Syntax

localtimestamp::=

o timestamp_precision o

—)| LOCALTIMESTAMP

Purpose

LOCALTI MESTANP returns the current date and time in the session time zone in a
value of datatype TI MESTAMP. The difference between this function and CURRENT _
Tl MESTAMP is that LOCALTI MESTAMP returns a TI MESTAMP value while
CURRENT _TI MESTAMP returns a TI| MESTAMP W THTI ME ZONE value.

The optional argument ti nest anp_pr eci si on specifies the fractional second
precision of the time value returned.

See Also: CURRENT_TIMESTAMP on page 7-57

Examples

This example illustrates the difference between LOCALTI MESTAMP and CURRENT _
TI MESTAVP:

ALTER SESSI ON SET TIME_ZONE = '-5:00';
SELECT CURRENT_TI MESTAMWP, LOCALTI MESTAMP FROM DUAL;

CURRENT_TI MESTAMP LOCALTI MESTAMP

7-102 SQL Reference

LOG

LOG

04- APR-00 01.27.18.999220 PM -05: 00 04-APR-00 01.27.19 PM

ALTER SESSI ON SET TIME_ZONE = '-8:00';
SELECT CURRENT_TI MESTAMP, LOCALTI MESTAMP FROM DUAL;

CURRENT_TI MESTAMP LOCALTI MESTAMP

04- APR-00 10.27.45.132474 AM -08: 00 04- APR-00 10.27.451 AM

If you use the LOCALTI MESTAMP with a format mask, take care that the format
mask matches the value returned by the function. For example, consider the
following table:

CREATE TABLE | ocal _test (col1 TI MESTAMP WTH LOCAL TI ME ZONE);
The following statement fails because the mask does not include the TI ME ZONE
portion of the return type of the function:

I NSERT I NTO | ocal _test VALUES
(TO_TI MESTAMP(LOCALTI MESTAMP, ' DD- MON- RR HH. M . SSXFF'));

The following statement uses the correct format mask to match the return type of
LOCALTI MESTAMP;

I NSERT I NTO | ocal _test VALUES
(TO_TI MESTAMP(LOCALTI MESTAMP, ' DD- MON-RR HH. M . SSXFF PM));

Syntax

log::=
ES:0:0:0:0:0

Purpose

LOGreturns the logarithm, base m of n. The base mcan be any positive value other
than 0 or 1 and n can be any positive value.

This function takes as arguments any numeric datatype or any nonnumeric
datatype that can be implicitly converted to a numeric datatype. If any argument is

Functions 7-103

LOWER

Bl NARY_FLQOAT or Bl NARY_DOUBLE, then the function returns Bl NARY_DOUBLE.
Otherwise the function returns NUVBER.

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion

Examples
The following example returns the log of 100:

SELECT LOG(10, 100) "Log base 10 of 100" FROM DUAL;

Log base 10 of 100

LOWER

Syntax

lower::=
(Oehar)()

Purpose

LOAER returns char , with all letters lowercase. char can be any of the datatypes
CHAR, VARCHAR2, NCHAR, NVARCHARZ, CLOB, or NCLOB. The return value is the
same datatype as char .

Examples

The following example returns a string in lowercase:

SELECT LOAER(' MR. SCOTT MCM LLAN) "Lowercase"
FROM DUAL;

Lower case

mr. scott ncmillan

7-104 SQL Reference

LPAD

LPAD

Syntax

Ipad::=

.exprZ
o002 g,

Purpose

LPAD returns expr 1, left-padded to length n characters with the sequence of
characters in expr 2. This function is useful for formatting the output of a query.

Both expr 1 and expr 2 can be any of the datatypes CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB. The string returned is of VARCHAR2 datatype and is
in the same character set as expr 1. The argument n must be a NUMBER integer or a
value that can be implicitly converted to a NUVBER integer.

If you do not specify expr 2, then the default is a single blank. If expr 1 is longer
than n, then this function returns the portion of expr 1 that fits in n.

The argument n is the total length of the return value as it is displayed on your
terminal screen. In most character sets, this is also the number of characters in the
return value. However, in some multibyte character sets, the display length of a
character string can differ from the number of characters in the string.

Examples
The following example left-pads a string with the asterisk (*) and period (.)
characters:

SELECT LPAD(' Page 1',15,' *.') "LPAD exanpl e"
FROM DUAL;

LPAD exampl e

..*.*-*Page 1

Functions 7-105

LTRIM

LTRIM

Syntax

Itrim::=

mo@ Y g,

Purpose

LTRI Mremoves from the left end of char all of the characters contained in set . If
you do not specify set , it defaults to a single blank. If char is a character literal,
then you must enclose it in single quotes. Oracle Database begins scanning char
from its first character and removes all characters that appear in set until reaching
a character not in set and then returns the result.

Both char and set can be any of the datatypes CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB. The string returned is of VARCHAR2 datatype and is
in the same character set as char .

See Also: RTRIM on page 7-183

Examples
The following example trims all of the left-most x's and y's from a string:

SELECT LTRI M xyxXxyLAST VORD ," xy') "LTRI M exanpl e"
FROM DUAL;

LTRI M exanpl e

XxyLAST WWORD

7-106 SQL Reference

MAKE_REF

MAKE_REF

Syntax

make_ref::=

table

e

view

Purpose

MAKE REF creates a REF to a row of an object view or a row in an object table
whose object identifier is primary key based.

See Also: Oracle Database Application Developer’s Guide -
Object-Relational Features for more information about object views
and DEREF on page 7-67

Examples

The sample schema oe contains an object view oc_i nvent or i es based on

i nvent ory_t yp. The object identifier is pr oduct _i d. The following example
creates a REF to the row in the oc_i nvent ori es object view with a pr oduct _i d
of 3003:

SELECT MAKE_REF (oc_inventories, 3003) FROM DUAL;

MAKE_REF(OC_| NVENTCR! ES, 3003)

00004A038A0046857C14617141109EE03408002082543600000014260100010001
00290090606002A00078401FE0000000B03C21F040000000000000000000000000
0000000000

Functions 7-107

MAX

MAX

Syntax
max::=
)
ALL f—)| OVER P@{analytic_clausem

See Also: "Analytic Functions" on page 7-11 for information on
syntax, semantics, and restrictions

Purpose
MAX returns maximum value of expr . You can use it as an aggregate or analytic
function.

If you specify DI STI NCT, then you can specify only the query_partition_
cl ause of the anal yti c_cl ause. The order _by_cl ause and wi ndowi ng__
cl ause are not allowed.

See Also: "About SQL Expressions" on page 5-2 for information
on valid forms of expr , "Floating-Point Numbers" on page 2-14 for
information on binary-float comparison semantics, and "Aggregate
Functions" on page 7-9

Aggregate Example
The following example determines the highest salary in the hr . enpl oyees table:

SELECT MAX(sal ary) "Maxi muni FROM enpl oyees;

Analytic Example
The following example calculates, for each employee, the highest salary of the
employees reporting to the same manager as the employee.

SELECT manager _id, |ast_nane, salary,
MAX(sal ary) OVER (PARTI TI ON BY manager _id) AS ngr_max

7-108 SQL Reference

MAX

FROM enpl oyees;

MANAGER | D LAST NAME SALARY MR _MAX
100 Kochhar 17000 17000
100 De Haan 17000 17000
100 Raphael y 11000 17000
100 Kaufling 7900 17000
100 Fripp 8200 17000
100 Wi ss 8000 17000

If you enclose this query in the parent query with a predicate, then you can
determine the employee who makes the highest salary in each department;

SELECT manager _id, |ast_nane, salary
FROM (SELECT manager _id, |ast_name, salary,
MAX(sal ary) OVER (PARTITI ON BY manager _id) AS rnax_sal
FROM enpl oyees) WHERE sal ary = rnax_sal;

MANAGER | D LAST_NAME SALARY
100 Kochhar 17000
100 De Haan 17000
101 G eenberg 12000
101 Hi ggens 12000
102 Hunol d 9000
103 Ernst 6000
108 Favi et 9000
114 Khoo 3100
120 Nayer 3200
120 Tayl or 3200
121 Sarchand 4200
122 Chung 3800
123 Bel | 4000
124 Rajs 3500
145 Tucker 10000
146 King 10000
147 Vi shney 10500
148 Qzer 11500
149 Abel 11000
201 Coyal 6000
205 Getz 8300

Ki ng 24000

Functions 7-109

MEDIAN

MEDIAN

Syntax

median::=

OVER query_partition_clausem
B0

See Also: "Analytic Functions" on page 7-11 for information on
syntax, semantics, and restrictions

Purpose

MEDI AN is an inverse distribution function that assumes a continuous distribution
model. It takes a numeric or datetime value and returns the middle value or an
interpolated value that would be the middle value once the values are sorted. Nulls
are ignored in the calculation.

This function takes as arguments any numeric datatype or any honnumeric
datatype that can be implicitly converted to a numeric datatype. If you specify only
expr , then the function returns the same datatype as the numeric datatype of the
argument. if you specify the OVER clause, then Oracle Database determines the
argument with the highest numeric precedence, implicitly converts the remaining
arguments to that datatype, and returns that datatype.

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion and
"Numeric Precedence" on page 2-17 for information on numeric
precedence

The result of MEDI AN is computed by first ordering the rows. Using Nas the number
of rows in the group, Oracle calculates the row number (RN) of interest with the
formula RN = (1 + (0.5*%(N-1)). The final result of the aggregate function is computed
by linear interpolation between the values from rows at row numbers CRN =

CEl LI NG(RN) and FRN = FLOOR(RN).

The final result will be:

if (CRN=FRN=RN then
(val ue of expression fromrow at RN)
el se
(CRN - RN * (value of expression for row at FRN) +

7-110 SQL Reference

MEDIAN

(RN - FRN) * (value of expression for row at CRN)

You can use MEDI AN as an analytic function. You can specify only the query_
partition_cl ause inits OVERclause. It returns, for each row, the value that
would fall in the middle among a set of values within each partition.

Compare this function with these functions:

« PERCENTILE_CONT on page 7-138, which returns, for a given percentile, the
value that corresponds to that percentile by way of interpolation. MEDI ANis the
specific case of PERCENTI LE_CONT where the percentile value defaults to 0.5.

» PERCENTILE_DISC on page 7-141, which is useful for finding values for a
given percentile without interpolation.

Examples
The following query returns the median salary for each department in the
hr . enpl oyees table:

SELECT departnent _id, MEDI AN(sal ary)
FROM enpl oyees
GROUP BY department _id;

DEPARTMENT_| D MEDI AN(SALARY)

10 4400
20 9500
30 2850
40 6500
50 3100
60 4800
70 10000
80 8900
90 17000
100 8000
110 10150

7000

Functions 7-111

MIN

MIN

Syntax

min::=

| DISTINCT I
ALL

MIN |((

[—>| OVER P@{analytic_clausem
(‘expr ())

See Also: "Analytic Functions" on page 7-11 for information on
syntax, semantics, and restrictions

Purpose

M Nreturns minimum value of expr . You can use it as an aggregate or analytic
function.

If you specify DI STI NCT, then you can specify only the query_partition_
cl ause of the anal yti c_cl ause. The order _by_cl ause and wi ndowi ng__
cl ause are not allowed.

See Also: "About SQL Expressions" on page 5-2 for information
on valid forms of expr , "Floating-Point Numbers" on page 2-14 for
information on binary-float comparison semantics, and "Aggregate
Functions" on page 7-9

Aggregate Example
The following statement returns the earliest hire date in the hr . enpl oyees table:

SELECT M N(hire_date) "Earliest" FROM enpl oyees;

Earli est

17- JUN- 87

Analytic Example

The following example determines, for each employee, the employees who were
hired on or before the same date as the employee. It then determines the subset of
employees reporting to the same manager as the employee, and returns the lowest
salary in that subset.

7-112 SQL Reference

MOD

SELECT manager _id, |ast_nane, hire_date, salary,
M N(sal ary) OVER(PARTI TI ON BY manager _id ORDER BY hire_date
RANGE UNBOUNDED PRECEDI NG as p_cmin

FROM enpl oyees;
MANAGER_| D LAST_NAME H RE_DATE SALARY P CMN
100 Kochhar 21- SEP- 89 17000 17000
100 De Haan 13- JAN-93 17000 17000
100 Raphael y 07- DEC- 94 11000 11000
100 Kaufling 01- MAY- 95 7900 7900
100 Hartstein 17- FEB- 96 13000 7900
100 Weiss 18- JUL- 96 8000 7900
100 Russel | 01- OCT- 96 14000 7900
100 Partners 05- JAN- 97 13500 7900
100 Errazuriz 10- MAR- 97 12000 7900
Syntax
mod::=
0:,0.0:0.0
Purpose

MOD returns the remainder of mdivided by n. Returns mif n is 0.

This function takes as arguments any numeric datatype or any honnumeric
datatype that can be implicitly converted to a numeric datatype. Oracle determines
the argument with the highest numeric precedence, implicitly converts the
remaining arguments to that datatype, and returns that datatype.

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion and
"Numeric Precedence" on page 2-17 for information on numeric
precedence

Examples
The following example returns the remainder of 11 divided by 4:

Functions 7-113

MONTHS_BETWEEN

SELECT MOD(11, 4) "Modul us" FROM DUAL;

Modul us

This function behaves differently from the classical mathematical modulus function
when mis negative. The classical modulus can be expressed using the MOD function
with this formula:

m- n * FLOOR(m n)

The following table illustrates the difference between the MOD function and the
classical modulus:

m n MOD(m,n) Classical Modulus
11 4 3 3

11 -4 3 -1

-11 4 -3 1

-11 -4 -3 -3

See Also: FLOOR on page 7-80 and REMAINDER on page 7-175,
which is similar to MOD, but uses ROUND in its formula instead of
FLOOR

MONTHS_BETWEEN

Syntax

months_between::=
—| MoNTHS_BETWEEN |5(() O 0)

Purpose

MONTHS BETWEEN returns number of months between dates dat el and dat e2. If
dat el is later than dat e2, then the result is positive. If dat el is earlier than

dat e2, then the result is negative. If dat el and dat e2 are either the same days of
the month or both last days of months, then the result is always an integer.

7-114 SQL Reference

NANVL

NANVL

Otherwise Oracle Database calculates the fractional portion of the result based on a
31-day month and considers the difference in time components dat el and dat e2.

Examples
The following example calculates the months between two dates:

SELECT MONTHS_BETVEEN
(TO_DATE(' 02- 02-1995', ' M\ DD- YYYY'),
TO DATE(' 01-01-1995' , ' MV DD- YYYY')) "Mont hs"
FROM DUAL;

1. 03225806

Syntax

nanvl::=
0:0:0:0:0

Purpose

The NANVL function is useful only for floating-point numbers of type Bl NARY _
FLOAT or Bl NARY_DOUBLE. It instructs Oracle Database to return an alternative
value n if the input value mis NaN (not a number). If mis not NaN, then Oracle
returns m This function is useful for mapping NaN values to NULL.

This function takes as arguments any numeric datatype or any honnumeric
datatype that can be implicitly converted to a numeric datatype. Oracle determines
the argument with the highest numeric precedence, implicitly converts the
remaining arguments to that datatype, and returns that datatype.

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion,
"Floating-Point Numbers" on page 2-14 for information on
binary-float comparison semantics, and "Numeric Precedence” on
page 2-17 for information on numeric precedence

Functions 7-115

NCHR

Examples
Using table f | oat _poi nt _deno created for TO_BINARY_DOUBLE on page 7-231,
insert a second entry into the table:

Insert INTO float_point_denmo
VALUES (0,' NaN ,' NaN);

SELECT * FROM fl oat _poi nt _deno;

DEC_NUM BI N_DOUBLE Bl N_FLOAT

1234.56 1.235E+003 1.235E+003
0 Nan Nan

The following example returns bi n_f | oat if it is not a number. Otherwise, 0 is
returned.
SELECT bin_float, NANVL(bin_float, 0)

FROM f | oat _poi nt _deno;

BI N_FLOAT NANVL(BI N_FLCAT, 0)

1. 235E+003 1. 235E+003
Nan 0
NCHR
Syntax
nchr::=
—>| NCHR F@{number}»@»
Purpose

NCHR returns the character having the binary equivalent to nunber in the national
character set. This function is equivalent to using the CHR function with the USI NG
NCHAR_CS clause.

This function takes as an argument a NUMBER value, or any value that can be
implicitly converted to NUMBER, and returns a character.

See Also: CHR on page 7-35

7-116 SQL Reference

NEW_TIME

Examples
The following examples return the nchar character 187:

SELECT NCHR(187) FROM DUAL;

NC

-

SELECT CHR(187 USI NG NCHAR CS) FROM DUAL;
CH

>

NEW_TIME

Syntax

new_time::=
D@ O 0

Purpose

NEW TI ME returns the date and time in time zone t i nezone2 when date and time
in time zone t i nezonel are dat e. Before using this function, you must set the
NLS_DATE_FORMAT parameter to display 24-hour time. The return type is always
DATE, regardless of the datatype of dat e.

Note: This function takes as input only a limited number of time
zones. You can have access to a much greater number of time zones
by combining the FROM TZ function and the datetime expression.
See FROM_TZ on page 7-81 and the example for "Datetime
Expressions"” on page 5-10.

The argumentsti nezonel and t i nezone?2 can be any of these text strings:
« AST, ADT: Atlantic Standard or Daylight Time
« BST, BDT: Bering Standard or Daylight Time

Functions 7-117

NEXT_DAY

« CST, CDT: Central Standard or Daylight Time

« EST, EDT: Eastern Standard or Daylight Time

« GMT: Greenwich Mean Time

« HST, HDT: Alaska-Hawaii Standard Time or Daylight Time.
« MST, MDT: Mountain Standard or Daylight Time

« NST: Newfoundland Standard Time

« PST, PDT: Pacific Standard or Daylight Time

« YST, YDT: Yukon Standard or Daylight Time

Examples
The following example returns an Atlantic Standard time, given the Pacific
Standard time equivalent:

ALTER SESSI ON SET NLS_DATE_FORMAT =
" DD- MON- YYYY HH24: M : SS';

SELECT NEW TI ME(TO_DATE(
'11-10-99 01:23:45', 'MMDD-YY HH24: M :SS'),
'AST', 'PST') "New Date and Time" FROM DUAL;

New Date and Ti e

09- NOV-1999 21:23: 45

NEXT_DAY

Syntax

next_day::=
0,CD:0:CHL0

Purpose

NEXT _DAY returns the date of the first weekday named by char that is later than
the date dat e. The return type is always DATE, regardless of the datatype of dat e.
The argument char must be a day of the week in the date language of your session,
either the full name or the abbreviation. The minimum number of letters required is

7-118 SQL Reference

NLS_CHARSET_DECL_LEN

the number of letters in the abbreviated version. Any characters immediately
following the valid abbreviation are ignored. The return value has the same hours,
minutes, and seconds component as the argument dat e.

Examples
This example returns the date of the next Tuesday after February 2, 2001:

SELECT NEXT_DAY(' 02- FEB-2001',' TUESDAY') "NEXT DAY"
FROM DUAL;

NEXT DAY

06- FEB- 2001

NLS_CHARSET DECL_LEN

Syntax

nls_charset_decl_len::=
— NLS_CHARSET_DECL_LEN F@a(byte_count)»@»(char_set_id)a@—)

Purpose

NLS CHARSET DECL_LENreturns the declaration length (in number of characters)
of an NCHAR column. The byt e_count argument is the width of the column. The
char _set _i d argument is the character set ID of the column.

Examples
The following example returns the number of characters that are in a 200-byte
column when you are using a multibyte character set:

SELECT NLS_CHARSET_DECL_LEN
(200, nls_charset_id('jal6eucfixed'))
FROM DUAL;

NLS_CHARSET_DECL_LEN(200, NLS_CHARSET_| D(" JALI6EUCFI XED))

Functions 7-119

NLS_CHARSET_ID

NLS_CHARSET ID

Syntax

nls_charset_id::=
OEO

Purpose

NLS CHARSET I Dreturns the character set ID number corresponding to character
set namet ext . Thet ext argument is a run-time VARCHAR?2 value. The t ext value
'CHAR_CS' returns the database character set ID number of the server. The t ext
value 'NCHAR_CS' returns the national character set ID number of the server.

Invalid character set names return null.

Examples
The following example returns the character set ID of a character set:

SELECT NLS_CHARSET | D('j al6euc')
FROM DUAL;

NLS_CHARSET | D(' JALGEUC)

See Also: Oracle Database Globalization Support Guide for a list of
character set names

NLS_CHARSET NAME

Syntax

nls_charset_name::=

—{ NLS_CHARSET_NAME F@{number}s@»

7-120 SQL Reference

NLS_INITCAP

Purpose

NLS_CHARSET_NAME returns the name of the character set corresponding to ID
number nunber . The character set name is returned as a VARCHAR? value in the
database character set.

If nuber is not recognized as a valid character set ID, then this function returns

null.
Examples
The following example returns the character set corresponding to character set ID
number 2:
SELECT NLS_CHARSET NAME(2)
FROM DUAL
NLS CH
VESDEC
See Also: Oracle Database Globalization Support Guide for a list of
character set IDs
Syntax
nls_initcap::=
elo O
0%
Purpose

NLS | NI TCAP returns char , with the first letter of each word in uppercase, all
other letters in lowercase. Words are delimited by white space or characters that are
not alphanumeric.

Both char and' nl spar am can be any of the datatypes CHAR, VARCHAR2, NCHAR,
or NVARCHAR2. The string returned is of VARCHAR2 datatype and is in the same
character set as char .

The value of ' nl spar am can have this form:

Functions 7-121

NLS_INITCAP

"NLS_SORT = sort'

where sor t is either a linguistic sort sequence or Bl NARY. The linguistic sort
sequence handles special linguistic requirements for case conversions. These
requirements can result in a return value of a different length than the char . If you
omit' nl spar am , then this function uses the default sort sequence for your
session.

This function does not support CLOB data directly. However, CLOBs can be passed
in as arguments through implicit data conversion.

See Also: "Datatype Comparison Rules" on page 2-50 for more
information.

Examples
The following examples show how the linguistic sort sequence results in a different
return value from the function:

SELECT NLS_I NI TCAP
("ijsland') "InitCap" FROM DUAL;

I'jsland
SELECT NLS_| NI TCAP

("ijsland", 'NLS_SORT = Xbutch') "InitCap"
FROM DUAL;

| Jsl and

See Also: Oracle Database Globalization Support Guide for
information on sort sequences

7-122 SQL Reference

NLSSORT

NLS_LOWER

NLSSORT

Syntax

nis_lower::=

-nlsparam
D@L Savot

Purpose
NLS LOWERTreturns char, with all letters lowercase.
Both char and' nl spar am can be any of the datatypes CHAR, VARCHAR2, NCHAR,

NVARCHAR2, CLOB, or NCLOB. The string returned is of VARCHAR2 datatype and is
in the same character set as char .

The ' nl sparam can have the same form and serve the same purpose as in the
NLS | NI TCAP function.

Examples

The following statement returns the character string ‘ci tt a' ' using the XGerman
linguistic sort sequence:

SELECT NLS_LOVER
("CTTA "', "NLS_SORT = XCGernan') "Lowercase"
FROM DUAL;

Syntax

nissort::=

-nlsparam
@ Savo

Functions 7-123

NLSSORT

Purpose
NLSSORT returns the string of bytes used to sort char .

Both char and' nl spar am can be any of the datatypes CHAR, VARCHAR2, NCHAR,
or N\VARCHAR2. The string returned is of RAWdatatype.

The value of ' nl spar am can have the form
"NLS_SORT = sort'

where sort is a linguistic sort sequence or Bl NARY. If you omit' nl spar ani , then
this function uses the default sort sequence for your session. If you specify Bl NARY,
then this function returns char .

If you specify ' nl spar am , then you can append to the linguistic sort name the
suffix _ai to request an accent-insensitive sort or _ci to request a case-insensitive
sort. Please refer to Oracle Database Globalization Support Guide for more information
on accent- and case-insensitive sorting.

This function does not support CLOB data directly. However, CLOBs can be passed
in as arguments through implicit data conversion.

See Also: "Datatype Comparison Rules" on page 2-50 for more
information.

Examples

This function can be used to specify sorting and comparison operations based on a
linguistic sort sequence rather than on the binary value of a string. The following
example creates a test table containing two values and shows how the values
returned can be ordered by the NLSSORT function:

CREATE TABLE test (name VARCHARZ2(15));
I NSERT I NTO test VALUES (' Gaardiner');
I NSERT I NTO test VALUES (' Gaberd');

I NSERT | NTO test VALUES (' Gaasten');

SELECT * FROM test ORDER BY nane;

Gaar di ner
Gaast en
Gaberd

SELECT * FROM test ORDER BY NLSSORT(name, 'NLS_SORT = XDanish');

7-124 SQL Reference

NLSSORT

Gaberd
Gaar di ner
Gaast en

The following example shows how to use the NLSSORT function in comparison
operations:

SELECT * FROM test WHERE nanme > ' Gaberd';
no rows selected

SELECT * FROM test WHERE NLSSCRT(nane, 'NLS_SORT = XDanish') >
NLSSORT(" Caberd', 'NLS_SORT = XDanish');

Gaar di ner
Gaast en

If you frequently use NLSSORT in comparison operations with the same linguistic
sort sequence, then consider this more efficient alternative: Set the NLS_COWP
parameter (either for the database or for the current session) to ANSI , and set the
NLS_ SORT parameter for the session to the desired sort sequence. Oracle Database
will use that sort sequence by default for all sorting and comparison operations
during the current session:

ALTER SESSI ON SET NLS_COwWP
ALTER SESSI ON SET NLS_SORT

"ANS| " ;
' XDani sh';

SELECT * FROM test WHERE nane > ' Gaberd';

Gaar di ner
Gaast en

See Also: Oracle Database Globalization Support Guide for
information on sort sequences

Functions 7-125

NLS_UPPER

NLS_UPPER

Syntax

nls_upper::=

-nlsparam
O@ Y0 Savo

Purpose
NLS UPPER returns char , with all letters uppercase.
Both char and' nl spar am can be any of the datatypes CHAR, VARCHAR2, NCHAR,

NVARCHAR2, CLOB, or NCLOB. The string returned is of VARCHAR2 datatype and is
in the same character set as char .

The ' nl sparam can have the same form and serve the same purpose as in the
NLS | NI TCAP function.

Examples
The following example returns a string with all the letters converted to uppercase:

SELECT NLS_UPPER (' grofRe') "Uppercase"
FROV DUAL;

SELECT NLS_UPPER (' groRe', 'NLS_SORT = XGerman') "Uppercase"
FROM DUAL;

See Also: NLS_INITCAP on page 7-121

7-126 SQL Reference

NTILE

NTILE

Syntax

ntile::=

iE (OO TR (GEEIDY0)

See Also: "Analytic Functions" on page 7-11 for information on
syntax, semantics, and restrictions, including valid forms of expr

Purpose

NTI LE is an analytic function. It divides an ordered data set into a number of
buckets indicated by expr and assigns the appropriate bucket number to each row.
The buckets are numbered 1 through expr . The expr value must resolve to a
positive constant for each partition. Oracle Database expects an integer, and if expr
is a noninteger constant, then Oracle truncates the value to an integer. The return
value is NUVBER

The number of rows in the buckets can differ by at most 1. The remainder values
(the remainder of number of rows divided by buckets) are distributed one for each
bucket, starting with bucket 1.

If expr is greater than the number of rows, then a number of buckets equal to the
number of rows will be filled, and the remaining buckets will be empty.

You cannot use NTI LE or any other analytic function for expr . That is, you cannot
nest analytic functions, but you can use other built-in function expressions for
expr.

See Also: "About SQL Expressions” on page 5-2 for information
on valid forms of expr and Table 2-11, " Implicit Type Conversion
Matrix" on page 2-55 for more information on implicit conversion

Examples

The following example divides into 4 buckets the values in the sal ary column of
the oe. enpl oyees table from Department 100. The sal ar y column has 6 values
in this department, so the two extra values (the remainder of 6 / 4) are allocated to
buckets 1 and 2, which therefore have one more value than buckets 3 or 4.

Functions 7-127

NULLIF

NULLIF

SELECT | ast_name, salary, NTILE(4) OVER (ORDER BY sal ary DESC)
AS quartile FROM enpl oyees
WHERE departnent _id = 100;

LAST_NAME SALARY QUARTI LE
G eenberg 12000 1
Favi et 9000 1
Chen 8200 2
Ur man 7800 2
Sciarra 7700 3
Popp 6900 4
Syntax

nullif::=

OO0

Purpose

NULLI F compares expr 1 and expr 2. If they are equal, then the function returns
null. If they are not equal, then the function returns expr 1. You cannot specify the
literal NULL for expr 1.

If both arguments are numeric datatypes, then Oracle Database determines the
argument with the higher numeric precedence, implicitly converts the other
argument to that datatype, and returns that datatype. If the arguments are not
numeric, then they must be of the same datatype, or Oracle returns an error.

The NULLI F function is logically equivalent to the following CASE expression:
CASE WHEN exprl = expr 2 THEN NULL ELSE expr1l END

See Also: "CASE Expressions" on page 5-5

Examples

The following example selects those employees from the sample schema hr who
have changed jobs since they were hired, as indicated by aj ob_i d inthej ob_
hi st ory table different from the currentj ob_i d in the enpl oyees table:

7-128 SQL Reference

NUMTODSINTERVAL

SELECT e.l ast_nanme, NULLIF(e.job_id, j.job_id) "Od Job ID'

FROM enpl oyees e, job_history j
WHERE e. enpl oyee_id = j.enployee_id

ORDER BY | ast _nane;

LAST NAME

De Haan
Hartstein
Kaufling
Kochhar
Kochhar
Raphael y
Tayl or
Tayl or
Wal en
Wal en

NUMTODSINTERVAL

Syntax

numtodsinterval::=

ad Job ID

—>| NUMTODSINTERVAL o @ ’ ‘ ' o

Purpose

NUMTODSI NTERVAL converts n to an | NTERVAL DAY TO SECOND literal. The
argument n can be any NUMBER value or an expression that can be implicitly
converted to a NUVBER value. The argumenti nt er val _uni t can be of CHAR
VARCHARZ2, NCHAR, or N\VARCHAR?2 datatype. The value fori nt erval _unit
specifies the unit of n and must resolve to one of the following string values:

« ‘DAY’

« 'HOUR

« 'M NUTE'
= 'SECOND

i nterval _unit iscase insensitive. Leading and trailing values within the
parentheses are ignored. By default, the precision of the return is 9.

Functions 7-129

NUMTOYMINTERVAL

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion

Examples

The following example calculates, for each employee, the number of employees
hired by the same manager within the past 100 days from his or her hire date:

SELECT manager _i d, |ast_nane, hire_date,
COUNT(*) OVER (PARTI TI ON BY manager _i d ORDER BY hire_date
RANGE NUMTCDSI NTERVAL(100, ‘day') PRECEDING AS t_count

FROM enpl oyees;

MANAGER_| D LAST_NAME H RE_DATE T_COUNT
100 Kochhar 21- SEP- 89 1

100 De Haan 13- JAN- 93 1

100 Raphael y 07- DEC- 94 1

100 Kaufling 01- MAY- 95 1

100 Hartstein 17- FEB- 96 1

149 G ant 24- MAY- 99 1

149 Johnson 04- JAN- 00 1

201 CGoyal 17- AUG 97 1

205 Getz 07- JUN- 94 1

Ki ng 17- JUN- 87 1

NUMTOYMINTERVAL

Syntax

numtoyminterval::=
—>| NUMTOYMINTERVAL o @ ’ ‘ ‘ o

Purpose

NUMTOYM NTERVAL converts number n to an | NTERVAL YEAR TOMONTH literal.
The argument n can be any NUMBER value or an expression that can be implicitly
converted to a NUVBER value. The argumenti nt er val _uni t can be of CHAR
VARCHARZ2, NCHAR, or N\VARCHAR2 datatype. The value fori nt erval _unit
specifies the unit of n and must resolve to one of the following string values:

7-130 SQL Reference

NVL

NVL

« 'YEAR
= 'MONTH

i nterval _unit iscase insensitive. Leading and trailing values within the
parentheses are ignored. By default, the precision of the return is 9.

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion

Examples

The following example calculates, for each employee, the total salary of employees
hired in the past one year from his or her hire date.

SELECT | ast_name, hire_date, salary, SUMsalary)
OVER (ORDER BY hire_date
RANGE NUMTOYM NTERVAL(1,'year') PRECEDING AS t_sal
FROM enpl oyees;

LAST_NAME HI RE_DATE SALARY T SAL
Ki ng 17- JUN- 87 24000 24000
\Whal en 17- SEP- 87 4400 28400
Kochhar 21- SEP- 89 17000 17000
Mar k| e 08- MAR- 00 2200 112400
Ande 24- MAR- 00 6400 106500
Banda 21- APR- 00 6200 109400
Kumar 21- APR- 00 6100 109400
Syntax
nvl::=

OEDOEHD)
Purpose

NVL lets you replace null (returned as a blank) with a string in the results of a query.
If expr 1 is null, then NVL returns expr 2. If expr 1 is not null, then NVL returns
expr 1.

Functions 7-131

NVL

The arguments expr 1 and expr 2 can have any datatype. If their datatypes are
different, then:

« Ifexpr 1 ischaracter data, then Oracle Database converts expr 2 to the
datatype of expr 1 before comparing them and returns VARCHAR?Z in the
character set of expr 1.

« Ifexpr 1 is numeric, then Oracle determines which argument has the highest
numeric precedence, implicitly converts the other argument to that datatype,
and returns that datatype.

See Also: Table 2-11, " Implicit Type Conversion Matrix" on
page 2-55 for more information on implicit conversion and
"Numeric Precedence" on page 2-17 for information on numeric
precedence

Examples

The following example returns a list of employee names and commissions,
substituting "Not Applicable" if the employee receives no commission:

SELECT | ast_name, NVL(TO_CHAR(commi ssion_pct), 'Not Applicable')
"COW SSI ON' FROM enpl oyees
WHERE | ast _nanme LIKE ' B%
ORDER BY | ast _nane;

LAST_NAME COW SSI ON
Baer Not Applicable
Bai da Not Applicable
Banda .1

Bat es .15