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Solution Overview

We have conducted a comprehensive solution validation focused on five key areas, the

details of which are outlined below. Each section delves into the challenges faced by

customers, the solutions provided by NetApp, and the subsequent benefits to the

customer.

1. Milvus cluster setup with Kubernetes in on-premises

Customer challenges to scale independently on storage and compute, effective infrastructure management

and data management. In this section, we detail the process of installing a Milvus cluster on Kubernetes,

utilizing a NetApp storage controller for both cluster data and customer data.

2. Milvus with Amazon FSxN for NetApp ONTAP – file and object duality

In this section, Why we need to deploy vector database in cloud as well as steps to deploy vector database

( milvus standalone ) in Amazon FSxN for NetApp ONTAP within docker containers.

3. Vector database protection using NetApp SnapCenter.

In this section, we delve into how SnapCenter safeguards the vector database data and Milvus data

residing in ONTAP. For this example, we utilized a NAS bucket (milvusdbvol1) derived from an NFS

ONTAP volume (vol1) for customer data, and a separate NFS volume (vectordbpv) for Milvus cluster

configuration data.

4. Disaster Recovery using NetApp SnapMirror

In this section, we discuss about the importance of Disaster recovery(DR) for vector database and how

netapp disaster recovery product snapmirror provides DR solution to vector database.

5. Performance validation

In this section, we aim to delve into the performance validation of vector databases, such as Milvus and

pgvecto.rs, focusing on their storage performance characteristics such as I/O profile and netapp storage

controller behavious in support of RAG and inference workloads within the LLM Lifecycle. We will evaluate

and identify any performance differentiators when these databases are combined with the ONTAP storage

solution. Our analysis will be based on key performance indicators, such as the number of queries

processed per second(QPS).

Milvus Cluster Setup with Kubernetes in on-premises

This section discusses the milvus cluster setup for the vector database solution for

NetApp.

Milvus cluster setup with Kubernetes in on-premises

Customer challenges to scale independently on storage and compute, effective infrastructure management and

data management,

Kubernetes and vector databases together form a powerful, scalable solution for managing large data

operations. Kubernetes optimizes resources and manages containers, while vector databases efficiently

handle high-dimensional data and similarity searches. This combination enables swift processing of complex

queries on large datasets and seamlessly scales with growing data volumes, making it ideal for big data

applications and AI workloads.

1. In this section, we detail the process of installing a Milvus cluster on Kubernetes, utilizing a NetApp storage

controller for both cluster data and customer data.

2. To install a Milvus cluster, Persistent Volumes (PVs) are required for storing data from various Milvus

cluster components. These components include etcd (three instances), pulsar-bookie-journal (three
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instances), pulsar-bookie-ledgers (three instances), and pulsar-zookeeper-data (three instances).

In milvus cluster, we can use either pulsar or kafka for the underlying engine supporting

Milvus cluster’s reliable storage and publication/subscription of message streams. For Kafka

with NFS,NetApp has made improvements in ONTAP 9.12.1 and later, and these

enhancements, along with NFSv4.1 and Linux changes that are included in RHEL 8.7 or 9.1

and higher, resolve the "silly rename" issue that can occur when running Kafka over NFS. if

you interested in more in-depth information on the topic of running kafka with netapp NFS

solution, please check - this link.

3. We created a single NFS volume from NetApp ONTAP and established 12 persistent volumes, each with

250GB of storage. The storage size can vary depending on the cluster size; for instance, we have another

cluster where each PV has 50GB. Please refer below to one of the PV YAML files for more details; we had

12 such files in total. In each file, the storageClassName is set to 'default', and the storage and path are

unique to each PV.

root@node2:~# cat sai_nfs_to_default_pv1.yaml

apiVersion: v1

kind: PersistentVolume

metadata:

  name: karthik-pv1

spec:

  capacity:

    storage: 250Gi

  volumeMode: Filesystem

  accessModes:

  - ReadWriteOnce

  persistentVolumeReclaimPolicy: Retain

  storageClassName: default

  local:

    path: /vectordbsc/milvus/milvus1

  nodeAffinity:

    required:

      nodeSelectorTerms:

      - matchExpressions:

        - key: kubernetes.io/hostname

          operator: In

          values:

          - node2

          - node3

          - node4

          - node5

          - node6

root@node2:~#

4. Execute the 'kubectl apply' command for each PV YAML file to create the Persistent Volumes, and then

verify their creation using ‘kubectl get pv’
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root@node2:~# for i in $( seq 1 12 ); do kubectl apply -f

sai_nfs_to_default_pv$i.yaml; done

persistentvolume/karthik-pv1 created

persistentvolume/karthik-pv2 created

persistentvolume/karthik-pv3 created

persistentvolume/karthik-pv4 created

persistentvolume/karthik-pv5 created

persistentvolume/karthik-pv6 created

persistentvolume/karthik-pv7 created

persistentvolume/karthik-pv8 created

persistentvolume/karthik-pv9 created

persistentvolume/karthik-pv10 created

persistentvolume/karthik-pv11 created

persistentvolume/karthik-pv12 created

root@node2:~#

5. For storing customer data, Milvus supports object storage solutions such as MinIO, Azure Blob, and S3. In

this guide, we utilize S3. The following steps apply to both ONTAP S3 and StorageGRID object store. We

use Helm to deploy the Milvus cluster. Download the configuration file, values.yaml, from the Milvus

download location. Please refer to the appendix for the values.yaml file we used in this document.

6. Ensure that the 'storageClass' is set to 'default' in each section, including those for the log, etcd,

zookeeper, and bookkeeper.

7. In the MinIO section, disable MinIO.

8. Create a NAS bucket from ONTAP or StorageGRID object storage and include them in an External S3 with

the object storage credentials.

###################################

# External S3

# - these configs are only used when `externalS3.enabled` is true

###################################

externalS3:

  enabled: true

  host: "192.168.150.167"

  port: "80"

  accessKey: "24G4C1316APP2BIPDE5S"

  secretKey: "Zd28p43rgZaU44PX_ftT279z9nt4jBSro97j87Bx"

  useSSL: false

  bucketName: "milvusdbvol1"

  rootPath: ""

  useIAM: false

  cloudProvider: "aws"

  iamEndpoint: ""

  region: ""

  useVirtualHost: false

3



9. Before creating the Milvus cluster, ensure that the PersistentVolumeClaim (PVC) does not have any pre-

existing resources.

root@node2:~# kubectl get pvc

No resources found in default namespace.

root@node2:~#

10. Utilize Helm and the values.yaml configuration file to install and start the Milvus cluster.

root@node2:~# helm upgrade --install my-release milvus/milvus --set

global.storageClass=default  -f values.yaml

Release "my-release" does not exist. Installing it now.

NAME: my-release

LAST DEPLOYED: Thu Mar 14 15:00:07 2024

NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

root@node2:~#

11. Verify the status of the PersistentVolumeClaims (PVCs).
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root@node2:~# kubectl get pvc

NAME                                                             STATUS

VOLUME         CAPACITY   ACCESS MODES   STORAGECLASS   AGE

data-my-release-etcd-0                                           Bound

karthik-pv8    250Gi      RWO            default        3s

data-my-release-etcd-1                                           Bound

karthik-pv5    250Gi      RWO            default        2s

data-my-release-etcd-2                                           Bound

karthik-pv4    250Gi      RWO            default        3s

my-release-pulsar-bookie-journal-my-release-pulsar-bookie-0      Bound

karthik-pv10   250Gi      RWO            default        3s

my-release-pulsar-bookie-journal-my-release-pulsar-bookie-1      Bound

karthik-pv3    250Gi      RWO            default        3s

my-release-pulsar-bookie-journal-my-release-pulsar-bookie-2      Bound

karthik-pv1    250Gi      RWO            default        3s

my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-0      Bound

karthik-pv2    250Gi      RWO            default        3s

my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-1      Bound

karthik-pv9    250Gi      RWO            default        3s

my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-2      Bound

karthik-pv11   250Gi      RWO            default        3s

my-release-pulsar-zookeeper-data-my-release-pulsar-zookeeper-0   Bound

karthik-pv7    250Gi      RWO            default        3s

root@node2:~#

12. Check the status of the pods.

root@node2:~# kubectl get pods -o wide

NAME                                            READY   STATUS

RESTARTS        AGE    IP              NODE    NOMINATED NODE

READINESS GATES

<content removed to save page space>

Please make sure the pods status are ‘running’ and working as expected

13. Test data writing and reading in Milvus and NetApp object storage.

◦ Write data using the "prepare_data_netapp_new.py" Python program.
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root@node2:~# date;python3 prepare_data_netapp_new.py ;date

Thu Apr  4 04:15:35 PM UTC 2024

=== start connecting to Milvus     ===

=== Milvus host: localhost         ===

Does collection hello_milvus_ntapnew_update2_sc exist in Milvus:

False

=== Drop collection - hello_milvus_ntapnew_update2_sc ===

=== Drop collection - hello_milvus_ntapnew_update2_sc2 ===

=== Create collection `hello_milvus_ntapnew_update2_sc` ===

=== Start inserting entities       ===

Number of entities in hello_milvus_ntapnew_update2_sc: 3000

Thu Apr  4 04:18:01 PM UTC 2024

root@node2:~#

◦ Read the data using the "verify_data_netapp.py" Python file.

root@node2:~# python3 verify_data_netapp.py

=== start connecting to Milvus     ===

=== Milvus host: localhost         ===

Does collection hello_milvus_ntapnew_update2_sc exist in Milvus: True

{'auto_id': False, 'description': 'hello_milvus_ntapnew_update2_sc',

'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64:

5>, 'is_primary': True, 'auto_id': False}, {'name': 'random',

'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var',

'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max_length': 65535}}, {'name': 'embeddings', 'description': '',

'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 16}}]}

Number of entities in Milvus: hello_milvus_ntapnew_update2_sc : 3000

=== Start Creating index IVF_FLAT  ===

=== Start loading                  ===

=== Start searching based on vector similarity ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 2600, distance: 0.602496862411499, entity: {'random':

0.3098157043984633}, random field: 0.3098157043984633

hit: id: 1831, distance: 0.6797959804534912, entity: {'random':

0.6331477114129169}, random field: 0.6331477114129169

hit: id: 2999, distance: 0.0, entity: {'random':

0.02316334456872482}, random field: 0.02316334456872482

hit: id: 2524, distance: 0.5918987989425659, entity: {'random':
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0.285283165889066}, random field: 0.285283165889066

hit: id: 264, distance: 0.7254047393798828, entity: {'random':

0.3329096143562196}, random field: 0.3329096143562196

search latency = 0.4533s

=== Start querying with `random > 0.5` ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.20963514,

0.39746657, 0.12019053, 0.6947492, 0.9535575, 0.5454552, 0.82360446,

0.21096309, 0.52323616, 0.8035404, 0.77824664, 0.80369574, 0.4914803,

0.8265614, 0.6145269, 0.80234545], 'pk': 0}

search latency = 0.4476s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 1831, distance: 0.6797959804534912, entity: {'random':

0.6331477114129169}, random field: 0.6331477114129169

hit: id: 678, distance: 0.7351570129394531, entity: {'random':

0.5195484662306603}, random field: 0.5195484662306603

hit: id: 2644, distance: 0.8620758056640625, entity: {'random':

0.9785952878381153}, random field: 0.9785952878381153

hit: id: 1960, distance: 0.9083120226860046, entity: {'random':

0.6376039340439571}, random field: 0.6376039340439571

hit: id: 106, distance: 0.9792704582214355, entity: {'random':

0.9679994241326673}, random field: 0.9679994241326673

search latency = 0.1232s

Does collection hello_milvus_ntapnew_update2_sc2 exist in Milvus:

True

{'auto_id': True, 'description': 'hello_milvus_ntapnew_update2_sc2',

'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64:

5>, 'is_primary': True, 'auto_id': True}, {'name': 'random',

'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var',

'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max_length': 65535}}, {'name': 'embeddings', 'description': '',

'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 16}}]}

Based on the above validation, the integration of Kubernetes with a vector database, as demonstrated

through the deployment of a Milvus cluster on Kubernetes using a NetApp storage controller, offers

customers a robust, scalable, and efficient solution for managing large-scale data operations. This

setup provides customers with the ability to handle high-dimensional data and execute complex queries

rapidly and efficiently, making it an ideal solution for big data applications and AI workloads. The use of

Persistent Volumes (PVs) for various cluster components, along with the creation of a single NFS

volume from NetApp ONTAP, ensures optimal resource utilization and data management. The process

of verifying the status of PersistentVolumeClaims (PVCs) and pods, as well as testing data writing and
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reading, provides customers with the assurance of reliable and consistent data operations. The use of

ONTAP or StorageGRID object storage for customer data further enhances data accessibility and

security. Overall, this setup empowers customers with a resilient and high-performing data

management solution that can seamlessly scale with their growing data needs.

Milvus with Amazon FSxN for NetApp ONTAP - file and
object duality

This section discusses the milvus cluster setup with Amazon FSxN for the vector

database solution for NetApp.

Milvus with Amazon FSxN for NetApp ONTAP – file and object duality

In this section, Why we need to deploy vector database in cloud as well as steps to deploy vector database (

milvus standalone) in Amazon FSxN for NetApp ONTAP within docker containers.

Deploying a vector database in the cloud provides several significant benefits, particularly for applications that

require handling high-dimensional data and executing similarity searches. First, cloud-based deployment offers

scalability, allowing for the easy adjustment of resources to match the growing data volumes and query loads.

This ensures that the database can efficiently handle increased demand while maintaining high performance.

Second, cloud deployment provides high availability and disaster recovery, as data can be replicated across

different geographical locations, minimizing the risk of data loss, and ensuring continuous service even during

unexpected events. Third, it provides cost-effectiveness, as you only pay for the resources you use, and can

scale up or down based on demand, avoiding the need for substantial upfront investment in hardware. Finally,

deploying a vector database in the cloud can enhance collaboration, as data can be accessed and shared from

anywhere, facilitating team-based work and data-driven decision making.

Please check the architecture of the milvus standalone with Amazon FSxN for NetApp ONTAP used in this

validation.
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1. Create an Amazon FSxN for NetApp ONTAP instance and note down the details of the VPC, VPC security

groups, and subnet. This information will be required when creating an EC2 instance. You can find more

details here - https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-1#file-system-create

2. Create an EC2 instance, ensuring that the VPC, Security Groups, and subnet match those of the Amazon

FSxN for NetApp ONTAP instance.

3. Install nfs-common using the command 'apt-get install nfs-common' and update the package information

using 'sudo apt-get update'.

4. Create a mount folder and mount the Amazon FSxN for NetApp ONTAP on it.

ubuntu@ip-172-31-29-98:~$ mkdir /home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$ sudo mount 172.31.255.228:/vol1

/home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$ df -h /home/ubuntu/milvusvectordb

Filesystem            Size  Used Avail Use% Mounted on

172.31.255.228:/vol1  973G  126G  848G  13% /home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$

5. Install Docker and Docker Compose using 'apt-get install'.

6. Set up a Milvus cluster based on the docker-compose.yaml file, which can be downloaded from the Milvus

website.

root@ip-172-31-22-245:~# wget https://github.com/milvus-

io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml

-O docker-compose.yml

--2024-04-01 14:52:23--  https://github.com/milvus-

io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml

<removed some output to save page space>

7. In the 'volumes' section of the docker-compose.yml file, map the NetApp NFS mount point to the

corresponding Milvus container path, specifically in etcd, minio, and standalone.Check Appendix D:

docker-compose.yml for details about changes in yml

8. Verify the mounted folders and files.
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ubuntu@ip-172-31-29-98:~/milvusvectordb$ ls -ltrh

/home/ubuntu/milvusvectordb

total 8.0K

-rw-r--r-- 1 root root 1.8K Apr  2 16:35 s3_access.py

drwxrwxrwx 2 root root 4.0K Apr  4 20:19 volumes

ubuntu@ip-172-31-29-98:~/milvusvectordb$ ls -ltrh

/home/ubuntu/milvusvectordb/volumes/

total 0

ubuntu@ip-172-31-29-98:~/milvusvectordb$ cd

ubuntu@ip-172-31-29-98:~$ ls

docker-compose.yml  docker-compose.yml~  milvus.yaml  milvusvectordb

vectordbvol1

ubuntu@ip-172-31-29-98:~$

9. Run 'docker-compose up -d' from the directory containing the docker-compose.yml file.

10. Check the status of the Milvus container.

ubuntu@ip-172-31-29-98:~$ sudo docker-compose ps

      Name                     Command                  State

Ports

------------------------------------------------------------------------

------------------------------------------------------------------------

----------

milvus-etcd         etcd -advertise-client-url ...   Up (healthy)

2379/tcp, 2380/tcp

milvus-minio        /usr/bin/docker-entrypoint ...   Up (healthy)

0.0.0.0:9000->9000/tcp,:::9000->9000/tcp, 0.0.0.0:9001-

>9001/tcp,:::9001->9001/tcp

milvus-standalone   /tini -- milvus run standalone   Up (healthy)

0.0.0.0:19530->19530/tcp,:::19530->19530/tcp, 0.0.0.0:9091-

>9091/tcp,:::9091->9091/tcp

ubuntu@ip-172-31-29-98:~$

ubuntu@ip-172-31-29-98:~$ ls -ltrh /home/ubuntu/milvusvectordb/volumes/

total 12K

drwxr-xr-x 3 root root 4.0K Apr  4 20:21 etcd

drwxr-xr-x 4 root root 4.0K Apr  4 20:21 minio

drwxr-xr-x 5 root root 4.0K Apr  4 20:21 milvus

ubuntu@ip-172-31-29-98:~$

11. To validate the read and write functionality of vector database and it’s data in Amazon FSxN for NetApp

ONTAP, we used the Python Milvus SDK and a sample program from PyMilvus. Install the necessary

packages using 'apt-get install python3-numpy python3-pip' and install PyMilvus using 'pip3 install

pymilvus'.

12. Validate data writing and reading operations from Amazon FSxN for NetApp ONTAP in the vector
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database.

root@ip-172-31-29-98:~/pymilvus/examples# python3

prepare_data_netapp_new.py

=== start connecting to Milvus     ===

=== Milvus host: localhost         ===

Does collection hello_milvus_ntapnew_sc exist in Milvus: True

=== Drop collection - hello_milvus_ntapnew_sc ===

=== Drop collection - hello_milvus_ntapnew_sc2 ===

=== Create collection `hello_milvus_ntapnew_sc` ===

=== Start inserting entities       ===

Number of entities in hello_milvus_ntapnew_sc: 9000

root@ip-172-31-29-98:~/pymilvus/examples# find

/home/ubuntu/milvusvectordb/

…

<removed content to save page space >

…

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/103/4487898457

91411923/b3def25f-c117-4fba-8256-96cb7557cd6c

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/103/4487898457

91411923/b3def25f-c117-4fba-8256-96cb7557cd6c/part.1

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/103/4487898457

91411923/xl.meta

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/0

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/0/448789845791

411924

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/0/448789845791

411924/xl.meta

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/1

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/1/448789845791

411925

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/1/448789845791

411925/xl.meta

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/100

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/100/4487898457
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91411920

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/100/4487898457

91411920/xl.meta

13. Check the reading operation using the verify_data_netapp.py script.

root@ip-172-31-29-98:~/pymilvus/examples# python3 verify_data_netapp.py

=== start connecting to Milvus     ===

=== Milvus host: localhost         ===

Does collection hello_milvus_ntapnew_sc exist in Milvus: True

{'auto_id': False, 'description': 'hello_milvus_ntapnew_sc', 'fields':

[{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': False}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}},

{'name': 'embeddings', 'description': '', 'type': <DataType.

FLOAT_VECTOR: 101>, 'params': {'dim': 8}}], 'enable_dynamic_field':

False}

Number of entities in Milvus: hello_milvus_ntapnew_sc : 9000

=== Start Creating index IVF_FLAT  ===

=== Start loading                  ===

=== Start searching based on vector similarity ===

hit: id: 2248, distance: 0.0, entity: {'random': 0.2777646777746381},

random field: 0.2777646777746381

hit: id: 4837, distance: 0.07805602252483368, entity: {'random':

0.6451650959930306}, random field: 0.6451650959930306

hit: id: 7172, distance: 0.07954417169094086, entity: {'random':

0.6141351712303128}, random field: 0.6141351712303128

hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817},

random field: 0.7434908973629817

hit: id: 830, distance: 0.05628090724349022, entity: {'random':

0.8544487225667627}, random field: 0.8544487225667627

hit: id: 8562, distance: 0.07971227169036865, entity: {'random':

0.4464554280115878}, random field: 0.4464554280115878

search latency = 0.1266s

=== Start querying with `random > 0.5` ===
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query result:

-{'random': 0.6378742006852851, 'embeddings': [0.3017092, 0.74452263,

0.8009826, 0.4927033, 0.12762444, 0.29869467, 0.52859956, 0.23734547],

'pk': 0}

search latency = 0.3294s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 4837, distance: 0.07805602252483368, entity: {'random':

0.6451650959930306}, random field: 0.6451650959930306

hit: id: 7172, distance: 0.07954417169094086, entity: {'random':

0.6141351712303128}, random field: 0.6141351712303128

hit: id: 515, distance: 0.09590047597885132, entity: {'random':

0.8013175797590888}, random field: 0.8013175797590888

hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817},

random field: 0.7434908973629817

hit: id: 830, distance: 0.05628090724349022, entity: {'random':

0.8544487225667627}, random field: 0.8544487225667627

hit: id: 1627, distance: 0.08096684515476227, entity: {'random':

0.9302397069516164}, random field: 0.9302397069516164

search latency = 0.2674s

Does collection hello_milvus_ntapnew_sc2 exist in Milvus: True

{'auto_id': True, 'description': 'hello_milvus_ntapnew_sc2', 'fields':

[{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': True}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}},

{'name': 'embeddings', 'description': '', 'type': <DataType.

FLOAT_VECTOR: 101>, 'params': {'dim': 8}}], 'enable_dynamic_field':

False}

14. If the customer wants to access (read) NFS data tested in the vector database via the S3 protocol for AI

workloads, this can be validated using a straightforward Python program. An example of this could be a

similarity search of images from another application as mentioned in the picture that is in the beginning of

this section.

root@ip-172-31-29-98:~/pymilvus/examples# sudo python3

/home/ubuntu/milvusvectordb/s3_access.py -i 172.31.255.228 --bucket

milvusnasvol --access-key PY6UF318996I86NBYNDD --secret-key

hoPctr9aD88c1j0SkIYZ2uPa03vlbqKA0c5feK6F

OBJECTS in the bucket milvusnasvol are :

***************************************

…

<output content removed to save page space>

…
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bucket/files/insert_log/448789845791611912/448789845791611913/4487898457

91611920/0/448789845791411917/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/1/448789845791411918/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/100/448789845791411913/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/101/448789845791411914/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/102/448789845791411915/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/103/448789845791411916/1c48ab6e-

1546-4503-9084-28c629216c33/part.1

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/103/448789845791411916/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/0/448789845791411924/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/1/448789845791411925/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/100/448789845791411920/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/101/448789845791411921/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/102/448789845791411922/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/103/448789845791411923/b3def25f-

c117-4fba-8256-96cb7557cd6c/part.1

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/103/448789845791411923/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791211880

/448789845791211881/448789845791411889/100/1/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791211880

/448789845791211881/448789845791411889/100/448789845791411912/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611920/100/1/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611920/100/448789845791411919/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611939/100/1/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611939/100/448789845791411926/xl.meta

***************************************

root@ip-172-31-29-98:~/pymilvus/examples#

This section effectively demonstrates how customers can deploy and operate a standalone Milvus setup
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within Docker containers, utilizing Amazon’s NetApp FSxN for NetApp ONTAP data storage. This setup

allows customers to leverage the power of vector databases for handling high-dimensional data and

executing complex queries, all within the scalable and efficient environment of Docker containers. By

creating an Amazon FSxN for NetApp ONTAP instance and matching EC2 instance, customers can ensure

optimal resource utilization and data management. The successful validation of data writing and reading

operations from FSxN in the vector database provides customers with the assurance of reliable and

consistent data operations. Additionally, the ability to list (read) data from AI workloads via the S3 protocol

offers enhanced data accessibility. This comprehensive process, therefore, provides customers with a

robust and efficient solution for managing their large-scale data operations, leveraging the capabilities of

Amazon’s FSxN for NetApp ONTAP.

Vector Database Protection using SnapCenter

This section describes how to provide data protection for the vector database using

NetApp SnapCenter.

Vector database protection using NetApp SnapCenter.

For example, in the film production industry, customers often possess critical embedded data such as video

and audio files. Loss of this data, due to issues like hard drive failures, can have a significant impact on their

operations, potentially jeopardizing multimillion-dollar ventures. We have encountered instances where

invaluable content was lost, causing substantial disruption and financial loss. Ensuring the security and

integrity of this essential data is therefore of paramount importance in this industry.

In this section, we delve into how SnapCenter safeguards the vector database data and Milvus data residing in

ONTAP. For this example, we utilized a NAS bucket (milvusdbvol1) derived from an NFS ONTAP volume (vol1)

for customer data, and a separate NFS volume (vectordbpv) for Milvus cluster configuration data. please check

the here for the snapcenter backup workflow

1. Set up the host that will be used to execute SnapCenter commands.
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2. Install and configure the storage plugin. From the added host, select "More Options". Navigate to and

select the downloaded storage plugin from the NetApp Automation Store. Install the plugin and save the

configuration.

16

https://automationstore.netapp.com/snap-detail.shtml?packUuid=Storage&packVersion=1.0


3. Set up the storage system and volume: Add the storage system under "Storage System" and select the

SVM (Storage Virtual Machine). In this example, we’ve chosen "vs_nvidia".

4. Establish a resource for the vector database, incorporating a backup policy and a custom snapshot name.

◦ Enable Consistency Group Backup with default values and enable SnapCenter without filesystem

consistency.

◦ In the Storage Footprint section, select the volumes associated with the vector database customer data

and Milvus cluster data. In our example, these are "vol1" and "vectordbpv".

◦ Create policy for vector database protection and protect vector database resource using the policy.

5. Insert data into the S3 NAS bucket using a Python script. In our case, we modified the backup script
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provided by Milvus, namely 'prepare_data_netapp.py', and executed the 'sync' command to flush the data

from the operating system.

root@node2:~# python3 prepare_data_netapp.py

=== start connecting to Milvus     ===

=== Milvus host: localhost         ===

Does collection hello_milvus_netapp_sc_test exist in Milvus: False

=== Create collection `hello_milvus_netapp_sc_test` ===

=== Start inserting entities       ===

Number of entities in hello_milvus_netapp_sc_test: 3000

=== Create collection `hello_milvus_netapp_sc_test2` ===

Number of entities in hello_milvus_netapp_sc_test2: 6000

root@node2:~# for i in 2 3 4 5 6   ; do ssh node$i "hostname; sync; echo

'sync executed';" ; done

node2

sync executed

node3

sync executed

node4

sync executed

node5

sync executed

node6

sync executed

root@node2:~#

6. Verify the data in the S3 NAS bucket. In our example, the files with the timestamp '2024-04-08 21:22' were

created by the 'prepare_data_netapp.py' script.
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root@node2:~# aws s3 ls --profile ontaps3  s3://milvusdbvol1/

--recursive | grep '2024-04-08'

<output content removed to save page space>

2024-04-08 21:18:14       5656

stats_log/448950615991000809/448950615991000810/448950615991001854/100/1

2024-04-08 21:18:12       5654

stats_log/448950615991000809/448950615991000810/448950615991001854/100/4

48950615990800869

2024-04-08 21:18:17       5656

stats_log/448950615991000809/448950615991000810/448950615991001872/100/1

2024-04-08 21:18:15       5654

stats_log/448950615991000809/448950615991000810/448950615991001872/100/4

48950615990800876

2024-04-08 21:22:46       5625

stats_log/448950615991003377/448950615991003378/448950615991003385/100/1

2024-04-08 21:22:45       5623

stats_log/448950615991003377/448950615991003378/448950615991003385/100/4

48950615990800899

2024-04-08 21:22:49       5656

stats_log/448950615991003408/448950615991003409/448950615991003416/100/1

2024-04-08 21:22:47       5654

stats_log/448950615991003408/448950615991003409/448950615991003416/100/4

48950615990800906

2024-04-08 21:22:52       5656

stats_log/448950615991003408/448950615991003409/448950615991003434/100/1

2024-04-08 21:22:50       5654

stats_log/448950615991003408/448950615991003409/448950615991003434/100/4

48950615990800913

root@node2:~#

7. Initiate a backup using the Consistency Group (CG) snapshot from the 'milvusdb' resource
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8. To test the backup functionality, we either added a new table after the backup process or removed some

data from the NFS (S3 NAS bucket).

For this test, imagine a scenario where someone created a new, unnecessary, or inappropriate collection

after the backup. In such a case, we would need to revert the vector database to its state before the new

collection was added. For instance, new collections such as 'hello_milvus_netapp_sc_testnew' and

'hello_milvus_netapp_sc_testnew2' have been inserted.
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root@node2:~# python3 prepare_data_netapp.py

=== start connecting to Milvus     ===

=== Milvus host: localhost         ===

Does collection hello_milvus_netapp_sc_testnew exist in Milvus: False

=== Create collection `hello_milvus_netapp_sc_testnew` ===

=== Start inserting entities       ===

Number of entities in hello_milvus_netapp_sc_testnew: 3000

=== Create collection `hello_milvus_netapp_sc_testnew2` ===

Number of entities in hello_milvus_netapp_sc_testnew2: 6000

root@node2:~#

9. Execute a full restore of the S3 NAS bucket from the previous snapshot.
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10. Use a Python script to verify the data from the 'hello_milvus_netapp_sc_test' and

'hello_milvus_netapp_sc_test2' collections.

root@node2:~# python3 verify_data_netapp.py

=== start connecting to Milvus     ===

=== Milvus host: localhost         ===

Does collection hello_milvus_netapp_sc_test exist in Milvus: True

{'auto_id': False, 'description': 'hello_milvus_netapp_sc_test',

'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5

>, 'is_primary': True, 'auto_id': False}, {'name': 'random',

'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var',

'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max_length': 65535}}, {'name': 'embeddings', 'description': '',

'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 8}}]}

Number of entities in Milvus: hello_milvus_netapp_sc_test : 3000

=== Start Creating index IVF_FLAT  ===

=== Start loading                  ===

=== Start searching based on vector similarity ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 1262, distance: 0.08883658051490784, entity: {'random':

0.2978858685751561}, random field: 0.2978858685751561

hit: id: 1265, distance: 0.09590047597885132, entity: {'random':

0.3042039939240304}, random field: 0.3042039939240304

hit: id: 2999, distance: 0.0, entity: {'random': 0.02316334456872482},

random field: 0.02316334456872482

hit: id: 1580, distance: 0.05628091096878052, entity: {'random':

0.3855988746044062}, random field: 0.3855988746044062

hit: id: 2377, distance: 0.08096685260534286, entity: {'random':

0.8745922204004368}, random field: 0.8745922204004368

search latency = 0.2832s

=== Start querying with `random > 0.5` ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.20963514, 0.39746657,

22



0.12019053, 0.6947492, 0.9535575, 0.5454552, 0.82360446, 0.21096309],

'pk': 0}

search latency = 0.2257s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 747, distance: 0.14606499671936035, entity: {'random':

0.5648774800635661}, random field: 0.5648774800635661

hit: id: 2527, distance: 0.1530652642250061, entity: {'random':

0.8928974315571507}, random field: 0.8928974315571507

hit: id: 2377, distance: 0.08096685260534286, entity: {'random':

0.8745922204004368}, random field: 0.8745922204004368

hit: id: 2034, distance: 0.20354536175727844, entity: {'random':

0.5526117606328499}, random field: 0.5526117606328499

hit: id: 958, distance: 0.21908017992973328, entity: {'random':

0.6647383716417955}, random field: 0.6647383716417955

search latency = 0.5480s

Does collection hello_milvus_netapp_sc_test2 exist in Milvus: True

{'auto_id': True, 'description': 'hello_milvus_netapp_sc_test2',

'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5

>, 'is_primary': True, 'auto_id': True}, {'name': 'random',

'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var',

'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max_length': 65535}}, {'name': 'embeddings', 'description': '',

'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 8}}]}

Number of entities in Milvus: hello_milvus_netapp_sc_test2 : 6000

=== Start Creating index IVF_FLAT  ===

=== Start loading                  ===

=== Start searching based on vector similarity ===

hit: id: 448950615990642008, distance: 0.07805602252483368, entity:

{'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990645009, distance: 0.07805602252483368, entity:

{'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990640618, distance: 0.13562293350696564, entity:

{'random': 0.7864676926688837}, random field: 0.7864676926688837

hit: id: 448950615990642314, distance: 0.10414951294660568, entity:

{'random': 0.2209597460821181}, random field: 0.2209597460821181

hit: id: 448950615990645315, distance: 0.10414951294660568, entity:
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{'random': 0.2209597460821181}, random field: 0.2209597460821181

hit: id: 448950615990640004, distance: 0.11571306735277176, entity:

{'random': 0.7765521996186631}, random field: 0.7765521996186631

search latency = 0.2381s

=== Start querying with `random > 0.5` ===

query result:

-{'embeddings': [0.15983285, 0.72214717, 0.7414838, 0.44471496,

0.50356466, 0.8750043, 0.316556, 0.7871702], 'pk': 448950615990639798,

'random': 0.7820620141382767}

search latency = 0.3106s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 448950615990642008, distance: 0.07805602252483368, entity:

{'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990645009, distance: 0.07805602252483368, entity:

{'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990640618, distance: 0.13562293350696564, entity:

{'random': 0.7864676926688837}, random field: 0.7864676926688837

hit: id: 448950615990640004, distance: 0.11571306735277176, entity:

{'random': 0.7765521996186631}, random field: 0.7765521996186631

hit: id: 448950615990643005, distance: 0.11571306735277176, entity:

{'random': 0.7765521996186631}, random field: 0.7765521996186631

hit: id: 448950615990640402, distance: 0.13665105402469635, entity:

{'random': 0.9742541034109935}, random field: 0.9742541034109935

search latency = 0.4906s

root@node2:~#

11. Verify that the unnecessary or inappropriate collection is no longer present in the database.
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root@node2:~# python3 verify_data_netapp.py

=== start connecting to Milvus     ===

=== Milvus host: localhost         ===

Does collection hello_milvus_netapp_sc_testnew exist in Milvus: False

Traceback (most recent call last):

  File "/root/verify_data_netapp.py", line 37, in <module>

    recover_collection = Collection(recover_collection_name)

  File "/usr/local/lib/python3.10/dist-

packages/pymilvus/orm/collection.py", line 137, in __init__

    raise SchemaNotReadyException(

pymilvus.exceptions.SchemaNotReadyException: <SchemaNotReadyException:

(code=1, message=Collection 'hello_milvus_netapp_sc_testnew' not exist,

or you can pass in schema to create one.)>

root@node2:~#

In conclusion, the use of NetApp’s SnapCenter to safeguard vector database data and Milvus data residing in

ONTAP offers significant benefits to customers, particularly in industries where data integrity is paramount,

such as film production. SnapCenter’s ability to create consistent backups and perform full data restores

ensures that critical data, such as embedded video and audio files, are protected against loss due to hard drive

failures or other issues. This not only prevents operational disruption but also safeguards against substantial

financial loss.

In this section, we demonstrated how SnapCenter can be configured to protect data residing in ONTAP,

including the setup of hosts, installation and configuration of storage plugins, and the creation of a resource for

the vector database with a custom snapshot name. We also showcased how to perform a backup using the

Consistency Group snapshot and verify the data in the S3 NAS bucket.

Furthermore, we simulated a scenario where an unnecessary or inappropriate collection was created after the

backup. In such cases, SnapCenter’s ability to perform a full restore from a previous snapshot ensures that the

vector database can be reverted to its state before the addition of the new collection, thus maintaining the

integrity of the database. This capability to restore data to a specific point in time is invaluable for customers,

providing them with the assurance that their data is not only secure but also correctly maintained. Thus,

NetApp’s SnapCenter product offers customers a robust and reliable solution for data protection and

management.

Disaster Recovery using NetApp SnapMirror

This section discusses DR (disaster recovery) with SnapMirror for the vector database

solution for NetApp.

Disaster Recovery using NetApp SnapMirror
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Disaster recovery is crucial for maintaining the integrity and availability of a vector database, especially given

its role in managing high-dimensional data and executing complex similarity searches. A well-planned and

implemented disaster recovery strategy ensures that data is not lost or compromised in the event of

unforeseen incidents, such as hardware failures, natural disasters, or cyber-attacks. This is particularly

significant for applications relying on vector databases, where the loss or corruption of data could lead to

significant operational disruptions and financial losses. Moreover, a robust disaster recovery plan also ensures

business continuity by minimizing downtime and allowing for the quick restoration of services. This is achieved

through NetApp data replication product SnapMirrror across different geographical locations, regular backups,

and failover mechanisms. Therefore, disaster recovery is not just a protective measure, but a critical

component of responsible and efficient vector database management.

NetApp’s SnapMirror provides data replication from one NetApp ONTAP storage controller to another, primarily

used for disaster recovery (DR) and hybrid solutions. In the context of a vector database, this tool facilitates the

smooth transition of data between on-premises and cloud environments. This transition is achieved without

necessitating any data conversions or application refactoring, thereby enhancing the efficiency and flexibility of

data management across multiple platforms.

NetApp Hybrid solution in a vector database scenario can bring about more advantages:

1. Scalability: NetApp’s hybrid cloud solution offers the ability to scale your resources as per your

requirements. You can utilize on-premises resources for regular, predictable workloads and cloud

resources such as Amazon FSxN for NetApp ONTAP and Google Cloud NetApp Volume (GCNV) for peak

times or unexpected loads.

2. Cost Efficiency: NetApp’s hybrid cloud model allows you to optimize your costs by using on-premises

resources for regular workloads and only paying for cloud resources when you need them. This pay-as-

you-go model can be quite cost-effective with a NetApp instaclustr service offering. For on-prem and major

cloud service providers, instaclustr provids support and consultation.

3. Flexibility: NetApp’s hybrid cloud gives you the flexibility to choose where to process your data. For

example, you might choose to perform complex vector operations on-premises where you have more

powerful hardware, and less intensive operations in the cloud.

4. Business Continuity: In the event of a disaster, having your data in a NetApp hybrid cloud can ensure

business continuity. You can quickly switch to the cloud if your on-premises resources are affected. We can

leverage NetApp SnapMirror to move the data from on-prem to cloud and vice versa.
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5. Innovation: NetApp’s hybrid cloud solutions can also enable faster innovation by providing access to

cutting-edge cloud services and technologies. NetApp innovations in cloud such as Amazon FSxN for

NetApp ONTAP, Azure NetApp Files and Google Cloud NetApp Volumes are cloud service providers

innovative products and preferred NAS.

Vector Database Performance Validation

This section highlights the performance validation that was performed on the vector

database.

Performance validation

Performance validation plays a critical role in both vector databases and storage systems, serving as a key

factor in ensuring optimal operation and efficient resource utilization. Vector databases, known for handling

high-dimensional data and executing similarity searches, need to maintain high performance levels to process

complex queries swiftly and accurately. Performance validation helps identify bottlenecks, fine-tune

configurations, and ensure the system can handle expected loads without degradation in service. Similarly, in

storage systems, performance validation is essential to ensure data is stored and retrieved efficiently, without

latency issues or bottlenecks that could impact overall system performance. It also aids in making informed

decisions about necessary upgrades or changes in storage infrastructure. Therefore, performance validation is

a crucial aspect of system management, contributing significantly to maintaining high service quality,

operational efficiency, and overall system reliability.

In this section, we aim to delve into the performance validation of vector databases, such as Milvus and

pgvecto.rs, focusing on their storage performance characteristics such as I/O profile and netapp storage

controller behavious in support of RAG and inference workloads within the LLM Lifecycle. We will evaluate and

identify any performance differentiators when these databases are combined with the ONTAP storage solution.

Our analysis will be based on key performance indicators, such as the number of queries processed per

second(QPS).

Please check the methodology used for milvus and progress below.

Details Milvus ( Standalone and Cluster) Postgres(pgvecto.rs)

version 2.3.2 0.2.0

Filesystem XFS on iSCSI LUNs

Workload Generator VectorDB-Bench – v0.0.5

Datasets LAION Dataset

* 10Million Embeddings

* 768 Dimensions

* ~300GB dataset size

VectorDB-Bench with Milvus standalone cluster

we did the following performance validation on milvus standalone cluster with vectorDB-Bench.

The network and server connectivity of the milvus standalone cluster is below.
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In this section, we share our observations and results from testing the Milvus standalone database.

. We selected DiskANN as the index type for these tests.

. Ingesting, optimizing, and creating indexes for a dataset of approximately 100GB took around 5 hours. For

most of this duration, the Milvus server, equipped with 20 cores (which equates to 40 vcpus when Hyper-

Threading is enabled), was operating at its maximum CPU capacity of 100%.We found that DiskANN is

particularly important for large datasets that exceed the system memory size.

. In the query phase, we observed a Queries per Second (QPS) rate of 10.93 with a recall of 0.9987. The 99th

percentile latency for queries was measured at 708.2 milliseconds.

From the storage perspective, the database issued about 1,000 ops/sec during the ingest, post-insert

optimization, and index creation phases. In the query phase, it demanded 32,000 ops/sec.

The following section presents the storage performance metrics.

Workload Phase Metric Value

Data Ingestion

and

Post insert optimization

IOPS < 1,000

Latency < 400 usecs

Workload Read/Write mix, mostly writes

IO size 64KB

Query IOPS Peak at 32,000

Latency < 400 usecs

Workload 100% cached read

IO size Mainly 8KB

The vectorDB-bench result is below.
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From the performance validation of the standalone Milvus instance, it’s evident that the current setup is

insufficient to support a dataset of 5 million vectors with a dimensionality of 1536. we’ve determined that the

storage possesses adequate resources and does not constitute a bottleneck in the system.

VectorDB-Bench with milvus cluster

In this section, we discuss the deployment of a Milvus cluster within a Kubernetes environment. This

Kubernetes setup was constructed atop a VMware vSphere deployment, which hosted the Kubernetes master

and worker nodes.

The details of the VMware vSphere and Kubernetes deployments are presented in the following sections.
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In this section, we present our observations and results from testing the Milvus database.

* The index type used was DiskANN.

* The table below provides a comparison between the standalone and cluster deployments when working with

5 million vectors at a dimensionality of 1536. We observed that the time taken for data ingestion and post-insert

optimization was lower in the cluster deployment. The 99th percentile latency for queries was reduced by six

times in the cluster deployment compared to the standalone setup.

* Although the Queries per Second (QPS) rate was higher in the cluster deployment, it was not at the desired

level.

The images below provide a view of various storage metrics, including storage cluster latency and total IOPS
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(Input/Output Operations Per Second).

The following section presents the key storage performance metrics.

Workload Phase Metric Value

Data Ingestion

and

Post insert optimization

IOPS < 1,000

Latency < 400 usecs

Workload Read/Write mix, mostly writes

IO size 64KB

Query IOPS Peak at 147,000

Latency < 400 usecs

Workload 100% cached read

IO size Mainly 8KB

Based on the performance validation of both the standalone Milvus and the Milvus cluster, we present the

details of the storage I/O profile.

* We observed that the I/O profile remains consistent across both standalone and cluster deployments.

* The observed difference in peak IOPS can be attributed to the larger number of clients in the cluster

deployment.

vectorDB-Bench with Postgres (pgvecto.rs)

We conducted the following actions on PostgreSQL(pgvecto.rs) using VectorDB-Bench:

The details regarding the network and server connectivity of PostgreSQL (specifically, pgvecto.rs) are as

follows:
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In this section, we share our observations and results from testing the PostgreSQL database, specifically using

pgvecto.rs.

* We selected HNSW as the index type for these tests because at the time of testing, DiskANN wasn’t

available for pgvecto.rs.

* During the data ingestion phase, we loaded the Cohere dataset, which consists of 10 million vectors at a

dimensionality of 768. This process took approximately 4.5 hours.

* In the query phase, we observed a Queries per Second (QPS) rate of 1,068 with a recall of 0.6344. The 99th

percentile latency for queries was measured at 20 milliseconds. Throughout most of the runtime, the client

CPU was operating at 100% capacity.

The images below provide a view of various storage metrics, including storage cluster latency total IOPS

(Input/Output Operations Per Second).

The following section presents the key storage performance metrics.
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Performance comparison between milvus and postgres on vector DB Bench

Based on our performance validation of Milvus and PostgreSQL using VectorDBBench, we observed the

following:
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• Index Type: HNSW

• Dataset: Cohere with 10 million vectors at 768 dimensions

We found that pgvecto.rs achieved a Queries per Second (QPS) rate of 1,068 with a recall of 0.6344, while

Milvus achieved a QPS rate of 106 with a recall of 0.9842.

If high precision in your queries is a priority, Milvus outperforms pgvecto.rs as it retrieves a higher proportion of

relevant items per query. However, if the number of queries per second is a more crucial factor, pgvecto.rs

exceeds Milvus. It’s important to note, though, that the quality of the data retrieved via pgvecto.rs is lower, with

around 37% of the search results being irrelevant items.

Observation based on our performance validations:

Based on our performance validations, we have made the following observations:

In Milvus, the I/O profile closely resembles an OLTP workload, such as that seen with Oracle SLOB. The

benchmark consists of three phases: Data Ingestion, Post-Optimization, and Query. The initial stages are

primarily characterized by 64KB write operations, while the query phase predominantly involves 8KB reads.

We expect ONTAP to handle the Milvus I/O load proficiently.

The PostgreSQL I/O profile does not present a challenging storage workload. Given the in-memory

implementation currently in progress, we didn’t observe any disk I/O during the query phase.

DiskANN emerges as a crucial technology for storage differentiation. It enables the efficient scaling of vector

DB search beyond the system memory boundary. However, it’s unlikely to establish storage performance

differentiation with in-memory vector DB indices such as HNSW.

It’s also worth noting that storage does not play a critical role during the query phase when the index type is

HSNW, which is the most important operating phase for vector databases supporting RAG applications. The

implication here is that the storage performance does not significantly impact the overall performance of these

applications.

35



Copyright information

Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

36

http://www.netapp.com/TM

	Solution Verification Overview : NetApp Solutions
	Table of Contents
	Solution Overview
	Milvus Cluster Setup with Kubernetes in on-premises
	Milvus with Amazon FSxN for NetApp ONTAP - file and object duality
	Vector Database Protection using SnapCenter
	Disaster Recovery using NetApp SnapMirror
	Vector Database Performance Validation


